

Pearson Technology Group
201 West 103rd Street Indianapolis, Indiana 46290

JavaScript
Goodies

by Joe Burns, Ph.D.

Second Edition

00 0789726122_FM 10/2/01 8:29 AM Page i

ii

Praise for Joe’s most recent book, Web Site Design Goodies
Those looking for design templates and HTML “how-to” will be disappointed. And a good
thing, too. Instead, Joe Burns provides refreshing honesty and opinion, with intelligent
advice on the key elements of Web site design, and advice which will still stand you in
good stead long after HTML is a distant memory—a Web design guide for life.

Give a man a design template or code list, and you’ve fed him for one Web site. Give him
this book, and you’ve set him on his way to building as many different Web sites as he
needs. Instead of a paint-by-numbers approach, Joe uses his personable, conversational
style to encourage self-development and design confidence.

At the same time, he provides in-depth comment on important Web site design issues, such
as colors, technical wizardry, link placement, fonts, focus, and so on, and uses numerous
examples, surveys, and site reviews to back up his points. Anyone who thinks they’ve done
a good job with their Web site would do well to read this book and then reassess their
work.

—Mark Brownlow; VP Content, Internet Business Forum, Inc.; http://www.ibizhome.com/

This is the kind of book an aspiring Web designer should read before learning HTML. For it
is not just another HTML book, in fact it contains no HTML at all. The author presents
pages followed by his opinion regarding the design. As Burns is the first to say, his opinions
are not infallible; there can be circumstances where you may not want to follow his advice.
However, he does know what he is talking about, so do not be hasty toward the contrary
position.

I found the book easy to read, and the choices for sample sites were well made. Rather than
making it easy for himself by picking sites that are awful, in general he chose pages that are
quite good. If a site had been atrocious, the problems would have been obvious, even for a
beginner. By choosing good ones, he could then point out the “flaws” that are easily over-
looked.

This is a book that should be read either before or concurrently with a book that teaches
the construction of pages. It is not necessary to know HTML to understand the material,
and Web pages are like houses: You should first learn to read the blueprints before you start
to build the walls.

—Charles Ashbacher; author of Sams Teach Yourself XML in 24 Hours

00 0789726122_FM 10/2/01 8:29 AM Page ii

iii

Another Superb Job by Joe Burns!
I have been working with Web pages for over four years, and I have taught Web design
classes. I thought I had a good idea of what is involved with the design, setup, and market-
ing of a Web site. Now I find this book, and there are so many things I had never thought
of before.

As with other Joe Burns books, this book is an excellent representation of what you can do
if you have a little guidance to help you along. Burns is truly remarkable in the ways he is
able to present ideas clearly yet make them understandable at the same time.

The book begins with an overview of what things to look for and what ideas to consider
when planning and designing a Web site. Then Burns has you consider five questions
before you begin the actual design layout—an approach that will help in making a better
Web site.

There are other topics, like the 10 things you shouldn’t put in the Web site, choosing a
server and an ISP, text, and color; there is something for beginners and experts alike. Burns
also spends time explaining links, images, and visual effects before moving on to counters
and Web site promotion.

Overall, there is about everything you need to have to make sure you have a successful Web
site right from the start and for years to come. A first-rate book from a first-rate author.

—Michael Woznicki

Praise for Author Joe Burns’s HTML Goodies Web Site

From the Web Site Visitors
“I’d like to thank you for your HTML site. Instead of wasting time scouring the Internet,
the code and examples on your site have made it so much easier to see my mistakes and to
finally create a working Web site.”

—Anthony Moore

“… your tutorial, page by page, word by word, told me every other thing I needed to know
about Web design. It was like finding a gold mine. Your language was so impressive and so
much direct to the heart that I always thought you [were] there talking to me, instead of
me reading from your site. I saved all the pages of [HTMLGoodies.com] and [it] became the
bible of my Web design.”

—Barun Sen

00 0789726122_FM 10/2/01 8:29 AM Page iii

iv

“Thank you so much! Trying to learn how to use tables was causing my brain to pick up
smoking. I understand now; thanks for explaining it in English.”

—Elizabeth Rotondi

“Thanks thanks thanks for the wonderful (easy) primer! I am going day by day, and my
page, boring though it is … is really coming along!”

—Jean Van Minnen

“… HTMLgoodies is an excellent Web site with plenty of GOLD content about HTML ….
Well done on a superbly successful site!”

—Carl Blythe

“Thanks for the beautiful pieces of work. I salute you.”

—John J. Lacombe II; jlacombe@cpcug.org; Capital PC Users Group

“This is not only a first-rate page but is also a huge help to me, and, my guess is, many,
MANY people like me. These tutorials have helped me create my own page. Once again,
thank you. You’re terrific.”

—Rose Dewitt Bukater

“You probably get dozens of thank-you notes each day, but I just wanted to add my own to
the lot. Since I’m a just starting out in the HTML world, I’ve been visiting your tutorials a
lot. Just wanted you to know I’ve learned more from your site than from any of the books
I’ve bought!”

—Dawn C. Lindley

“Dear Mr. Really Smart Cool-Happening Dude, I would like to thank you because I have
made the transition from FrontPage 98 to HTML all because of you. I spent months trying
to learn HTML before I learned of your site, and at age 14 I fully understand the ins and
outs of HTML 4. My page is in the works, and I owe it all to you.”

—Taylor Ackley

“I just wanted to let you know that you are doing an amazing service to all of us weekend
Webmasters. Thanks a million! P.S. My Web page looks and feels a thousand times better
since I have been following your tutorials.”

—Aaron Joel Chettle; Seneca College Engineering

00 0789726122_FM 10/2/01 8:29 AM Page iv

v

“WOW!!!! … I was always interested in setting up a Web page but was afraid that it would
be too difficult for me to comprehend…. So my first introduction to HTML was actually
YOUR primers … and WOW!!!!!!! I went through ALL of them this very morning with my
mouth hanging wide open …. I am still so surprised that I cannot gather any words to
describe to you how I feel at this moment.”

—Ludwin L. Statie

“I’m an old dog learning new tricks. I will be taking a Web publishing college course come
August. I used your primer as a jump start. I really enjoyed your primer and thought it
would … help me. I now feel prepared for the college course and not so afraid to ‘run with
the big dogs.’”

—Patricia Cuthbertson

From the Media
“If you are just learning, or already know HTML, this site is the only place you’ll need.
Expert tutorials make learning Web design quick and easy. Definitely check this site out.”

—HTML Design Association

“Dr. Joe Burns offers help at all levels—from novice to the expert.”

—Signal Magazine; January 26, 1998

“Great stuff. Probably the best overall site reviewed here.”

—NetUser Magazine

“If you’re looking for information on HTML, you’ll find it here.”

—USA Today Hot Site; March 23, 1998

“His is a technical site that appeals to an exploding piece of the Internet pie—people build-
ing their own Web site.”

—PCNovice Guide to Building Web Sites; 1997

“We would like permission to use your Web pages [HTML Goodies] to help teach [building]
Web sites.”

—San Antonio Electronic Commerce Resource Center; February 10, 1998

00 0789726122_FM 10/2/01 8:29 AM Page v

vi

From Teachers
“If everyone wrote ‘how-to’ pages and books as well as you, boy life would be simpler.”

—Deb Spearing Ph.D.; University Registrar, Ohio State University

“I am going to use your Goodies [to teach with] this summer! Awesome!”

—Cynthia Lanius; Rice University

“I hope your own students and colleagues appreciate the importance and magnitude of the
service you provide to the discipline of communication technology via the Internet. In just
a short time, Joe Burns has become a legend on the Internet among those who teach in
this field.”

—Raymond E. Schroeder; Professor of Communication, Springfield University

“The English classes at Union Alternative High School [are] using Dr. Joe Burns’s Web site
HTML Goodies as an online text book. Students now have Web pages they are proud of.
They have learned to teach themselves unfamiliar subject matter. There is new excitement
in the class; self-esteem is up. In a nutshell: We have succeeded. Thank you for helping, Dr.
Burns.”

—Aaron Wills; English teacher, Union School District, Union, MO

00 0789726122_FM 10/2/01 8:29 AM Page vi

00 0789726122_FM 10/2/01 8:29 AM Page vii

viii

JavaScript Goodies, Second Edition
Copyright © 2002 by Que Publishing

All rights reserved. No part of this book shall be repro-
duced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the
use of the information contained herein. Although every
precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility
for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information con-
tained herein.

International Standard Book Number: 0-7897-2612-2

Library of Congress Catalog Card Number: 2001094356

Printed in the United States of America

First Printing: November, 2001

04 03 02 01 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be
trademarks or service marks have been appropriately capi-
talized. Que Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not
be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer
Every effort has been made to make this book as com-
plete and as accurate as possible, but no warranty or fit-
ness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither
liability nor responsibility to any person or entity with
respect to any loss or damages arising from the informa-
tion contained in this book.

Associate Publisher
Dean Miller

Acquisitions Editor
Todd Green

Development Editor
Victoria Elzey

Technical Editor
Jim O’Donnell

Managing Editor
Thomas F. Hayes

Senior Editor
Susan Ross Moore

Production Editor
Megan Wade

Indexer
D&G Limited, LLC

Proofreader
Bob LaRoche

Team Coordinator
Cindy Teeters

Media Developer
Michael Hunter

Interior Design
Louisa Klucznik

Cover Design
Aren Howell

Page Layout
D&G Limited, LLC

00 0789726122_FM 10/2/01 8:29 AM Page viii

ix

Contents at a Glance
Introduction 1

1 The Basics 7

2 Popping Up Text with Mouse Events 29

3 Manipulating Data and the Hierarchy of JavaScript 59

4 Flipping Images and Opening Windows with Mouse
Events 87

5 Forms: A Great Way to Interact with Your Users 115

6 Mathematics, Random Things, and Loops 147

7 Clocks, Counts, and Scroll Text 175

8 Arrays 209

9 Putting It All Together 243

Script Tip 1 Rainbow Text 273

Script Tip 2 Full Text Date Script 283

Script Tip 3 Random Banner Ad Script 291

Script Tip 4 Frames Script 295

Script Tip 5 Search Multiple Search Engines 307

Script Tip 6 Image Proportion Script 317

Script Tip 7 A Calculator 329

Script Tip 8 Placing a Cookie 349

Script Tip 9 A 16.7 Million-Color Script 361

Script Tip 10 A Digital Clock with Image Display 373

Appendixes
A JavaScript Basic Concepts 383

B JavaScript Command Reference 389

C JavaScript Reserved Variable Words 427

D Scripts Available on htmlgoodies.com 429

Index 459

00 0789726122_FM 10/2/01 8:30 AM Page ix

x

Contents
Why Now? ..1

An Introduction by Joe Burns 1
My Coauthor ..2
How You Will Learn ..2
The Format of the Lessons ..4
Examples and Assignments ..4
Let’s Get Started with JavaScript ..5

1 The Basics 7
What Is JavaScript? ..7

JavaScript Is Case Sensitive ..8
Beware of Line Breaks and Spaces ..8
Don’t Set Margins ..9

Lesson 1: Writing Text to a Web Page9
Deconstructing the Script ..10
Your Assignment ..13

Lesson 2: Error Messages ..13
How Browsers Display the Error Messages14
The Two Types of Error Messages16
Fixing the Errors ..17
Dealing with Multiple Errors ..18
The “Something’s Not Defined” Error18
Your Assignment ..18

Lesson 3: Object Properties ..19
The Property Scripts ..20
Deconstructing the Scripts ..21
Your Assignment ..24

Lesson 4: Chapter Wrap-Up and Review25
Deconstructing the Script ..26
Your Assignment ..27

00 0789726122_FM 10/2/01 8:30 AM Page x

xi

Contents

2 Popping Up Text with Mouse Events 29
Lesson 5: JavaScript’s onMouseOver Event Handler29

Deconstructing the Script ..30
Other Properties, Other Uses ..33
Your Assignment ..35

Lesson 6: More Event Handlers ..35
The onClick Command ..35
The onFocus Event Handler ..36
The onBlur Event Handler ..37
The onChange Event Handler ..38
The onSubmit Command ..39
The onLoad Event Handler ..40
Your Assignment ..41

Lesson 7: onUnload and onMouseOut, the After-
Effect Commands ..41
Deconstructing the Script ..42
Your Assignment ..43

Lesson 8: HTML 4.0, the Flag, and Some
New Event Handlers ..44
The Flag ..44
The Sample Script ..46
Deconstructing the Script ..46
The New Event Handlers ..47
Your Assignment ..47

Lesson 9: Let’s Go! ..48
Deconstructing the Script ..49
Your Assignment ..50

Lesson 10: The Second End-of-Chapter Review51
Deconstructing the Script ..53
Your Assignment ..54

Using Escape Characters ..54
The Alert Example ..55
A Bigger Alert Box Example ..56
The document.write Example ..56

3 Manipulating Data and the Hierarchy of JavaScript 59
Lesson 11: Prompts and Variables60

Creating a Variable ..60
The Prompt Command ..61

00 0789726122_FM 10/2/01 8:30 AM Page xi

xii

JavaScript Goodies

The Sample Script ..62
Wait! What Are Those /* and */ Things?63
Deconstructing the Script ..63
Your Assignment ..64

Lesson 12: Dates and Times ..65
The Date and Time Methods ..65
The Methods and What They Return66
The Sample Script ..66
Wait! What’s That // Thing? ..67
Deconstructing the Script ..67
Your Assignment ..71

Lesson 13: Hierarchy of Objects ..71
Terms, Terms, Terms: DOM ..72
The Hierarchy of Objects’ Effects ..73
Deconstructing the Hierarchy of Objects74
A Very Important Concept ..74
Your Assignment ..75

Lesson 14: Creating a Function ..75
Hey! What Are Those <!-- and --> Things?77
Deconstructing the Script ..77
A Word About Global and Local Variables79
Your Assignment ..79

Lesson 15: An Introduction to Arrays80
Deconstructing the Script ..81
Setting Up the Array ..82
Grabbing a Piece of the Array ..82
Your Assignment ..83

Lesson 16: The Third End-of-Chapter Review—
A <BODY> Flag Script ..83
Deconstructing the Script ..85
Your Assignment ..86

4 Flipping Images and Opening Windows
with Mouse Events 87
Lesson 17: An Image Flip Using onMouseOver and
Preloading Images ..87
Deconstructing the Script ..89
Your Assignment ..92

00 0789726122_FM 10/2/01 8:30 AM Page xii

xiii
xiii

Lesson 18: An Image Flip with a Function92
Deconstructing the Script ..94
More Than One Image Flip ..95
Preloading Those Images ..96
Your Assignment ..97

Lesson 19: Opening New Windows97
Deconstructing the Script ..98
The Config Commands ..99
Tags in the New Window ..100
Multiple Windows ..101
Closing the Window ..102
One More Thing—Opening the Window on Call102
Your Assignment ..103

Lesson 20: Opening a Window with a Function103
Deconstructing the Script ..105
Getting the Window on Call ..106
Your Assignment ..106

Lesson 21: The confirm() Method, with an
Introduction to if and else ..106
Deconstructing the Script ..109
Your Assignment ..110

Lesson 22: The Fourth End-of-Chapter Review—
Some Jumping Jacks ..110
Deconstructing the Script ..112
Your Assignment ..114

5 Forms: A Great Way to Interact with Your
Users 115
Lesson 23: What Is Written in the Text Box?116

Deconstructing the Script ..117
Your Assignment ..119

Lesson 24: Passing Information to the Function120
Deconstructing the Script ..121
Your Assignment ..123

Lesson 25: Calling Functions with Forms123
Literals ..125
String ..125
Deconstructing the Script ..125
Your Assignment ..126

00 0789726122_FM 10/2/01 8:30 AM Page xiii

xiv

Lesson 26: Form Fields and the Value Property127
Deconstructing the Script ..128
Your Assignment ..129

Lesson 27: Pull-Down Menu of Links129
Deconstructing the Script ..130
Wait! I’m Getting an Error ..133
Your Assignment ..133

Lesson 28: A Guestbook with All the Bells and
Whistles ..134
Deconstructing the Script ..135
Your Assignment ..140

Lesson 29: The Fifth End-of-Chapter Review—
Posting Link Descriptions While Users Pass Over140
Deconstructing the Script ..143
Your Assignment ..144

6 Mathematics, Random Things, and Loops 147
Lesson 30: Math Operators ..148

The Arithmetic Operators ..148
Deconstructing the Super Math Script149
In Terms of Numbers and Binary Operators151
Your Assignment ..151

Lesson 31: Mathematics and Forms151
Deconstructing the Script ..153
Your Assignment ..154

Lesson 32: Creating Random Numbers with a Date154
Deconstructing the Script ..156
Your Assignment ..157

Lesson 33: Creating Random Numbers Through
Mathematics ..157
Deconstructing the Script ..158
The Math Object ..159
Your Assignment ..161

Lesson 34: Producing Random Statements and
Images ..161
Deconstructing the Script ..162
Your Assignment ..164

Lesson 35: Introduction to for Loops164
Deconstructing the Script ..166
Your Assignment ..167

00 0789726122_FM 10/2/01 8:30 AM Page xiv

xv

Contents

Lesson 36: Introduction to while Loops167
The while Condition ..169
Deconstructing the Script ..169
Your Assignment ..170

Lesson 37: End-of-Chapter Review—A Browser-
Detect Script ..171
Event Handlers ..172
Deconstructing the Script ..173
Placement of the Script ..174
Your Assignment ..174

7 Clocks, Counts, and Scroll Text 175
Lesson 38: A Running Clock ..176

Deconstructing the Script ..177
Your Assignment ..179

Lesson 39: A Fancy Digital Clock179
Deconstructing the Script ..182
Your Assignment ..186

Lesson 40: An Image-Driven Clock186
Deconstructing the Script ..191
But I Want an Image Clock That Runs193
Your Assignment ..194

Lesson 41: Countdown to Date ..194
Deconstructing the Script ..194
Your Assignment ..197

Lesson 42: Scrolling Text ..197
Deconstructing the Script ..199
Your Assignment ..201

Lesson 43: End-of-Chapter Review—Counting to
an Event ..201
Deconstructing the Script ..204
Your Assignment ..207

8 Arrays 209
Lesson 44: Two Different Array Formats210

Deconstructing the Script ..210
A Different Type of Array ..214
When Do I Use One or the Other?215
Your Assignment ..215

00 0789726122_FM 10/2/01 8:30 AM Page xv

xvi

JavaScript Goodies

Lesson 45: Combining User Input with Arrays215
Deconstructing the Script ..217
Your Assignment ..219

Lesson 46: Random Quotes ..220
Deconstructing the Script ..221
Random Anything ..223
Your Assignment ..223

Lesson 47: A Guessing Game Using Arrays223
Deconstructing the Script ..225
Your Assignment ..227

Lesson 48: A Password Script ..227
Deconstructing the Script ..229
Toughening It Up ..231
Your Assignment ..232

Lesson 49: End-of-Chapter Review—A Quiz232
Deconstructing the Script ..236
Altering the Display ..240
Your Assignment ..241

9 Putting It All Together 243
Lesson 50: JavaScript Animation244

Deconstructing the Script ..246
Your Assignment ..250

Lesson 51: Jumping Focus Between Form Elements250
Deconstructing the Script ..252
Your Assignment ..256

Lesson 52: Limiting Check Box Choices256
Deconstructing the Script ..258
Your Assignment ..260

Lesson 53: Positioning a New Window261
Deconstructing the Script ..262
Your Assignment ..265

Lesson 54: Self-Typing Typewriter265
What’s Happening? ..266
Deconstructing the Script ..267
Your Assignment ..269

Lesson 55: Scrolling Credits ..269
Deconstructing the Script ..271
Your Assignment ..272

00 0789726122_FM 10/2/01 8:30 AM Page xvi

xvii

Contents

Script Tip 1 Rainbow Text 273
What Are Those Colors? ..277
Putting Color to the Text ..278
Assigning Color ..280

Script Tip 2 Full Text Date Script 283
Taking Elements from the Arrays287
Adding Those Two Letters288

Script Tip 3 Random Banner Ad Script 291
The Arrays ..292
The Random Number ..293
Calling for the Array Index294
Writing It to the Page ..294

Script Tip 4 Frames Script 295
The First Frame Function ..301
The Buttons ..303
Showing the Code ..304

Script Tip 5 Search Multiple Search Engines 307
NAMEs ..312
The Check Boxes ..312
Replacing the Space with a Plus Sign312
Doing the Search ..314

Script Tip 6 Image Proportion Script 317
Grabbing and Displaying the Dimensions323
New Width ..325
Let Me See It ..327

Script Tip 7 A Calculator 329
The Display ..337
The Backspace Button ..337
The Clear Button ..338
The Other Buttons ..338

00 0789726122_FM 10/2/01 8:30 AM Page xvii

xviii

JavaScript Goodies

Seven ..340
Eight ..340
Nine ..340
Add ..341
Subtract ..341
Reciprocal ..341
Power ..342
Sine ..342

The Next Two Lines ..343
The Last Row of Buttons ..343

Zero and Decimal ..344
Square Root ..344
Random ..344
Pi ..345
Equals ..345

Positive to Negative ..346

Script Tip 8 Placing a Cookie 349
Setting the Cookie ..354
What About Nobody? ..356
Displaying Cookie Contents357
Displaying It ..358
Two Different Welcomes ..359
Placing the Variable ..359

Script Tip 9 A 16.7 Million-Color Script 361
What Are All Those Back Slashes for?366

Building the Table ..366
The mix() Function ..368
Making It Work in Netscape371
Losing the MSIE-Only Commands372
Flipping the Table and Function372
Changing the Page Background372
One More Slight Change ..372

Script Tip 10 A Digital Clock with Image Display 373
Loading All the Images ..377
Displaying the Images ..378
Minutes and Seconds ..381

00 0789726122_FM 10/2/01 8:30 AM Page xviii

xix

Contents

A JavaScript Basic Concepts 383
Literals ..383
Boolean Literals ..384
Comments ..384
Document Object Model ..385
Event Handlers ..385
Literal Integers ..386
Methods ..386
Objects ..386
Operators ..386
Properties ..387
String ..387
Variable ..387

B JavaScript Command Reference 389
action Property ..389
alert Method ..390
alinkColor Property ..390
appCodeName Property ..391
appName Property ..391
appVersion Property ..391
array Method ..391
back Method ..392
bgColor Property ..393
big Method ..393
blink Method ..393
bold Method ..394
close Method ..394
confirm Method ..394
Date Object ..395
defaultStatus Property of window395
document Object ..396
document Property ..396
eval Method ..396
fgColor Property ..397
fixed Method ..397
fontcolor Method ..397
fontsize Method ..398
for loop ..398

00 0789726122_FM 10/2/01 8:30 AM Page xix

xx

JavaScript Goodies

forward Method ..398
frame Property ..399
function Object ..399
getDate Method ..400
getDay Method ..400
getFullYear Method ..400
getHours Method ..401
getMinutes Method ..401
getMonth Method ..401
getSeconds Method ..402
getTimezoneOffset Method ..402
getYear Method ..402
go Method ..403
history Object ..403
host Property ..403
hostname Property ..404
href Property of location ..404
if/else ..404
indexOf Method ..405
italics Method ..406
lastModified Property ..406
length Property ..406
linkColor Property ..407
location Object ..407
location Property ..407
Math Object ..408
navigator Object ..409
onBlur Event Handler ..410
onChange Event Handler ..410
onClick Event Handler ..410
onDblClick Event Handler ..410
onFocus Event Handler ..411
onKeyDown Event Handler ..411
onKeyUp Event Handler ..411
onLoad Event Handler ..411
onMouseDown Event Handler ..411
onMouseMove Event Handler ..412
onMouseOut Event Handler ..412
onMouseOver Event Handler ..412
onMouseUp Event Handler ..412

00 0789726122_FM 10/2/01 8:30 AM Page xx

xxi

Contents

onSelect Event Handler ..413
onSubmit Event Handler ..413
onUnload Event Handler ..413
open Method ..413
parent Property of frame and window414
pathname Property ..415
port Property ..415
prompt Method ..415
protocol Property ..416
referrer Property ..416
self Property ..417
selectedIndex Property ..417
setDate Method ..417
setHours Method ..418
setMinutes Method ..418
setMonth Method ..418
setSeconds Method ..419
setTime Method ..419
setTimeout Method ..419
setYear Method ..420
small Method ..420
status Property ..420
strike Method ..421
sub Method ..421
substring Method ..421
sup Method ..421
title Property ..422
toLowerCase Method ..422
toUpperCase Method ..422
userAgent Property ..423
value Property ..423
var Variable ..423
vlinkColor Property ..424
while Loop ..424
window Object ..424
write Method ..425
writeln Method ..425

00 0789726122_FM 10/2/01 8:30 AM Page xxi

xxii

JavaScript Goodies

C JavaScript Reserved Variable Words 427

D Scripts Available on htmlgoodies. com 429
Alert Scripts ..430
Button, Links, and E-mail Scripts432
The Three Cs: Clocks, Calendars, and Calculator
Scripts ..436

Color Scripts ..440
Game Scripts ..442
HTML and Developer Scripts ..444
Image Scripts ..447
Scrolling Scripts ..449
Text-Based Scripts ..450
Miscellaneous Scripts ..455

Index 459

00 0789726122_FM 10/2/01 8:30 AM Page xxii

xxiii

About the Authors
Joe Burns, Ph.D. is a professor at Southeastern Louisiana University where he teaches
graduate and undergraduate classes in Web design and Internet-mediated communication.
Joe is the Webmaster of HTML Goodies (http://www.htmlgoodies.com), a site devoted to
teaching HTML and Web design that serves up close to seven million pages every month to
almost a half-million individual readers. He is also an Internet consultant for Internet.com.
Joe first became interested in the Internet while studying for his Ph.D. at Bowling Green
State University. There he created HTML Goodies and first began teaching computer class-
es. Joe is currently working on the viability of delivering university-level classes over the
Internet and the effect of teaching in a Web-based environment. Joe lives in Hammond,
Louisiana, with his wife Tammy, and two cats, Chloe and Mardi.

Andree Growney is currently a software engineer at TERC, a nonprofit educational
research and development company in Cambridge, Massachusetts, where she does Internet
applications development. She has been working with computers for more than 20 years. A
former programmer and systems analyst, she became infatuated with the Web early in its
development. She was formerly the Webmaster at Susquehanna University in Selinsgrove,
Pennsylvania, where she also taught client/server and other database-to-Web–related
courses.

00 0789726122_FM 10/2/01 8:30 AM Page xxiii

xxiv

Dedication
Dedication by Joe Burns
This book is dedicated to my wife, Tammy, who never seems to think anything is outside of my
grasp. Plus, she found that missing equal sign in Chapter 7 that kept me at bay for two hours.

Dedication by Andree Growney
To my husband, Wally, with all my love.

To Kristen, Todd, Eric, and Diann, for whom my love and admiration grow daily.

And in loving memory of my mother, Bess Schwedersky, who eyed computers suspiciously, but
always supported me in whatever folly I chose to pursue.

Acknowledgments
Acknowledgments by Joe Burns
First and foremost, many, many thanks to Andree Growney who went into this project
with me knowing full well that it might never become anything more than a series of Web
pages. Hey, Andree! We got a book!

Thanks to Tiffany Taylor for content editing the first edition of this book. Compared to the
HTML Goodies book, this was painless. Ditto the painless comments from Michelle Wyner
at Netscape. Your tech editing was great. You pointed out concerns in a helpful manner,
and I probably used your words more times than I should have.

As for this second edition of JavaScript Goodies: Big thanks to Todd Green for the go-ahead
to get the project underway and not getting upset when I said I wanted to bulk the book
up … way up. Thanks to Victoria Elzey for the DE work. Finally, thanks to Jim O’Donnell
for tech editing this second edition. It’s a much better, and more up-to-date, book now
because of Jim’s work.

Larry Augustine deserves thanks for allowing me to sit in my office at work and write when
I should have been taking care of a radio station. I know you knew. Thanks for giving me
the time.

00 0789726122_FM 10/2/01 8:30 AM Page xxiv

xxv

Thanks to Ken Kopf for being there when I was at the end of my JavaScript rope. You
helped more than you know.

Thanks to Mom and Dad for playing cheerleader after the last book and now for this one.
Every person in Cleveland who came into contact with them was forced to listen to stories
of their son, the author.

A big thank-you to Charles Spiro, a professor at Lord Fairfax Community College, who
used this book for one of this Internet programming classes. He found, and helped repair,
many of the concerns and problems in the first edition. Thanks Charles, you’re a gentle-
man.

Dave … I’m a teacher because I wanted to be just like you.

Acknowledgments by Andree Growney
A special thank-you to our publisher, Dean Miller, and to everyone at Que who helped
with the production of this book.

Thanks also to our wonderful technical and content editors, Michelle and Tiffany.

Special thanks to Mike Greene at EarthWeb for his encouragement.

Many, many thanks to my coauthor Joe Burns, for bringing me on board, and for the rare
pleasure of laughing out loud while reading a computer book!

00 0789726122_FM 10/2/01 8:30 AM Page xxv

xxvi

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

As an associate publisher for Que, I welcome your comments. You can fax, e-mail, or write
me directly to let me know what you did or didn’t like about this book—as well as what we
can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name
and phone or fax number. I will carefully review your comments and share them with the
author and editors who worked on the book.

Fax: 317-581-4666

E-mail: feedback@quepublishing.com

Mail: Publisher
Que
201 West 103rd Street
Indianapolis, IN 46290 USA

00 0789726122_FM 10/2/01 8:30 AM Page xxvi

An Introduction
by Joe Burns

Welcome to JavaScript Goodies, Second Edition. I never thought I’d write a book, let alone a
second edition. How about that?

The purpose of this book’s lessons is to get you started writing your own JavaScript events.

If you’ve tried to learn JavaScript through a textbook or from the Internet, my guess is that
you found it quite difficult. Me, too. After a while, the text melds into a large block of
strange hieroglyphics equal to the Rosetta stone. I always feel like I’m deciphering the text
rather than reading it.

Learning JavaScript is literally learning a new language. The text might look like English,
but the construction of the sentences is quite different. This book teaches you JavaScript by
coming at the language from an entirely new perspective. Instead of getting all the com-
mands and then building a script, we’ll start with the script and tear it down to its individ-
ual commands. In the process, you’ll learn JavaScript programming.

Why Now?
In 1999, when HTML Goodies (http://www.htmlgoodies.com) was dedicated solely to HTML,
I would get e-mail asking, “When are you going to put together a series of lessons for

01 0789726122_Intro 10/2/01 8:26 AM Page 1

JavaScript Goodies ➤

2

writing JavaScript?” Most readers of my sites know that I already have primers for HTML
and for creating advertising banners, so why not JavaScript? Good question!

In an effort to put lessons together, I bought the books, read them, read them again, and
gave up. JavaScript books, at least the four I’ve bulled through, are dry and hard to follow.
They’re textbooks, and we all know how fun those are to read. So, in an effort to not have
to write JavaScript lessons at all, I created the Java Goodies Web site at http://www.java-
goodies.com. There’s no need to look for it—it has since been combined into
JavaScripts.com. Ah, it’s the way of the Web.

My purpose for starting JavaGoodies.com was to create the largest possible download
source for JavaScript. I figured that instead of teaching you to make your own JavaScripts, I
would supply you with as many ready-to-go scripts as I could. Well, it seemed like a smart
idea at the time. JavaGoodies.com once had more than 1,000 scripts, and readers still want-
ed JavaScript lessons. I should have seen it coming.

My Coauthor
Andree Growney used to be the Director of Instructional Technology Support Services and
Webmaster at the university where I worked and is a bit of a wizard at this JavaScript stuff.
One day I asked if she would be interested in putting a book together on how to write
JavaScript and posting it to the HTML Goodies Web site to test it out. To my great joy,
Andree said yes. So, we got started.

We sat in her office and brainstormed until we came up with 30 JavaScript topics. Our
thinking was, “If you’ve grasped these 30 lessons, you’re well on your way to writing your
own scripts.” We then set to work creating scripts for each topic idea. I wrote the tutorials
for my scripts; Andree wrote for hers. Then, we edited each other’s work.

I finally set it all to hypertext, and it hit the Net in August 1998, as the HTML Goodies 30-
Step JavaScript Primer series at http://www.htmlgoodies.com/primers/jsp/.

Wow! What a response. The bulk of the e-mail from the site didn’t concern the content or
the teaching method as much as the format for teaching JavaScript. E-mail after e-mail
stated, “I understand this.”

Mission accomplished.

How You Will Learn
My own method of learning the JavaScript language is the method these lessons—and
hopefully you—will follow. I didn’t set out to learn JavaScript following this book’s
method. It just happened that way. Let me explain.

01 0789726122_Intro 10/2/01 8:26 AM Page 2

3

Introduction

Every script submitted to the Java Goodies site arrived via e-mail. Usually, the e-mail trans-
mission did quite a number on it. Scripts always arrived bent, folded, and mutilated, and it
was my job to put them back together so they would work again. After doing that a couple
hundred times, I found I was using my reference books less and less. I could look at a script
and see what the problem was. Error messages stopped sending me into a rage. Commands
were becoming familiar. Formats and structure started to become friendly.

I was learning JavaScript. But I was learning it backward from the approach described in
the books I had read. Everything I had seen to that point gave the commands and then
built the script. So I thought, let’s go the other way. Let’s start with the script fully finished
and then tear it apart. If we keep doing that over and over with new scripts, readers are
bound to see patterns and common structures.

Forget trying to write from scratch right off. Let’s get the readers altering finished scripts.
There’s a phenomenal sense of accomplishment if you can look at a script and alter where
its output appears, or change the color of the text, or make numbers add up in different
fashions.

With that sense of accomplishment comes the desire to learn more, to write a brand new
script. The next thing you know, you’re writing JavaScript.

More and more research shows that teaching by lecturing doesn’t work. When you read a
textbook, you are essentially being lectured. These primers are going to come at the subject
from a different angle.

A professor of mine liked to say, “Tell me and I forget. Show me and I remember. Involve
me and I learn.” The purpose here is to involve you.

After the go-ahead was given to turn the JavaScript Primers into a book, I knew 30 lessons
wouldn’t be enough to satisfy the reader. The online users are right now screaming for the
lessons to be expanded. So, I almost doubled the number of lessons. This book has 55 dif-
ferent scripts that we’ll break down for your entertainment.

Furthermore, in this second edition, I’ve added 10 of the Script Tips from the HTML
Goodies site. These are big, involved scripts broken down so you can understand how they
work.

Each of the now 65 lessons display one JavaScript and tear it apart so you can see how it
works. You see, you have to be taught why something works, not just be shown that it
works. Case in point: David Copperfield doesn’t close the door on his assistant, open it,
and exclaim, “Son of a gun! She’s gone again!” He knows why she disappeared. All you
know is that he shut the door and she went away. You both know that the box works, but
only he knows why it works. He will be in a better position to create another trick, whereas
you’ll just keep closing the door, hoping it’ll work.

01 0789726122_Intro 10/2/01 8:26 AM Page 3

JavaScript Goodies ➤

4

The Format of the Lessons
As I said before, this book contains 55 lessons in nine chapters. Each of those first 55
lessons follows the same format:

1. First, you get a brief concept statement regarding what the script is supposed to do
and what the example is supposed to teach you.

2. Next, you see the script in text form.

3. Then, you see the script’s effect. This book is fully supported online. I’ll tell you how
you can get all the scripts in the book into your own computer in a moment.

4. Next, we tear the script apart, looking closely at the building blocks used to create the
whole. The purpose is for you to be able to read a JavaScript as you would a sentence.

5. Finally, each lesson has an assignment. You’re asked to alter the script you’ve just
worked on so that it will be a little different, or a lot different. Either way, you will be
asked to create 55 new scripts from the 55 we give you.

Then, at the end of each chapter, you’ll find a review lesson. We’ll stop, quickly review the
JavaScript commands you’ve learned up to that point, and then use them to create an
entirely new script. This is where this book will hopefully start to come to life for you.

The Script Tips at the end of the book walk you through more scripts and further you
along in your quest to understand this language.

I’ve been a college professor for a number of years now, and the hardest thing to teach stu-
dents is that there comes a point where they have to look at the building blocks I’ve
shown them and use those blocks to build something that is fully their own. Just mimick-
ing what I show you here is not enough; you need to build something new.

Examples and Assignments
This is a book. You knew that. But we want this book to have an interactive feel to it. You
should be able to see the JavaScripts in action. When you finish an assignment, you should
be able to see a possible answer and be able to look at the source code to see how it could
be done.

In an effort to help you do that, the wonderful staff at HTML Goodies and Java Goodies—
me—has put together a packet that contains all this book’s examples and assignment
answers. How often do you get the answers up front? Just don’t cheat and look before you
try to do the assignment yourself, okay?

You can use the examples and assignments packet in one of two ways.

01 0789726122_Intro 10/2/01 8:26 AM Page 4

5

Introduction

First, it’s all available online at http://www.htmlgoodies.com/JSBook/. Please make a point
of entering the address just as you see it. Note that the “J,” “S,” and “B” are capital letters.
Log on to the Internet, and use your browser to look at the pages as you need to. You’ll
find an easy-to-follow chart of the examples and assignments by lesson. I also offer a
direct URL to the required page right here in the book. Keep in mind that these pages
were created for your use. Feel free to download one or all of them by clicking File and
selecting Save As.

Second, you can download the entire packet of examples and assignments and install them
right on to your own computer. It’s very easy to grab and install. The packet contains all 55
scripts found in the book, along with all 55 assignments. It’s available in Zip-file format.
Follow these steps:

1. Log on to the Internet, and point your browser to http://www.htmlgoodies.com/
JSBook/JavaScriptGoodies.zip. Again, make a point of following the capitalization
pattern.

2. After you have the packet, unzip its contents into an empty folder on your hard
drive.

3. Use a browser to open the file index.html, and you’ll see links to all the examples and
assignments.

Let’s Get Started with JavaScript
Be careful going through these lessons. Often, a student will want to roll through the earli-
er lessons as quickly as possible. Most of the time that leads to commands being jumbled
up in the mind. Your brain needs time to digest all of this. If I may make a suggestion:
Don’t do more than two or three lessons a day.

Students tell me they read the entire chapter, but they can’t remember what they read.
That’s because getting to the end was the goal, not getting the most out of the reading.
Speed kills. Give your brain time. Here’s an example. You read all of this, right? Well, with-
out looking back up the page, tell me the name of my coauthor. I’ve written it three times
now.

You rolled before you crawled, before you walked, before you ran. Give your brain time to
roll around the easy scripts.

Andree and I wish you the best of luck with your future JavaScripts.

01 0789726122_Intro 10/2/01 8:26 AM Page 5

01 0789726122_Intro 10/2/01 8:26 AM Page 6

The Basics

Chapter 1

This chapter contains the following lessons and scripts:

What Is JavaScript?

Lesson 1: Writing Text to a Web Page

Lesson 2: Error Messages

Lesson 3: Object Properties

Lesson 4: Chapter Wrap-Up and Review

The purpose of this chapter is to get you started on the right JavaScript foot. In this chapter
you’ll learn how to work with JavaScript and how to create JavaScripts that print text to
your HTML page, fix error messages, and tell the world what time it is.

What Is JavaScript?
First off, JavaScript is not Java. It’s easy to get confused and think that Java and JavaScript
are one and the same. Not so. Java is a programming language developed at Sun
Microsystems. On the other hand, JavaScript is a programming language created by the
good people at Netscape.

02 0789726122_CH01 10/2/01 8:28 AM Page 7

JavaScript Goodies

8

With Java, you create fully standalone programs that must go through a somewhat complex
process of writing, compiling, and being referenced in your Web page. JavaScript, on the
other hand, is simply text you type into your Web page much as you type in HTML tags
and text. For JavaScript to work, the Web page it is in must be viewed with a browser that
understands the JavaScript language, such as all Netscape browsers 2.0 and above. Some
earlier versions of the Internet Explorer browsers have trouble with advanced JavaScript
commands found in JavaScript version 1.1 and 1.2. The scripts in the book, however, stay
mainly at the JavaScript 1.0 level and will run on both browsers. When writing JavaScript,
remember that JavaScript is not HTML! I am often asked whether one is simply a different
version of the other. Nope. The following sections outline the differences.

JavaScript Is Case Sensitive
In HTML, the tag works the same as the tag . That’s because HTML doesn’t differen-
tiate between upper- and lowercase characters. Not so in JavaScript. You must pay very close
attention to the capitalization of commands. Placing an uppercase character where a lower-
case one should be causes an error.

Beware of Line Breaks and Spaces
HTML is very forgiving in terms of spaces and line breaks. It doesn’t matter how many
spaces you leave between words or paragraphs. In fact, there’s no reason why you couldn’t
write an HTML document as one long line or skip 20 lines between every word. It doesn’t
matter.

The opposite is true in JavaScript. It makes a big difference where each line ends. Some-
times you can break (or truncate) a line of JavaScript, but not very often. Following is a sin-
gle line of JavaScript:

document.write(“This Is Red Text”)

Those commands must all stay on one line. If you change this line to look something like
this

document.write(“This Is Red Text

“)

the code will not work properly and will cause an error. (We’ll get into errors and fixing
them in Lesson 2.) Also, an extra space between two commands, or anywhere else a space
doesn’t belong, will cause an error.

02 0789726122_CH01 10/2/01 8:28 AM Page 8

9

Chapter 1 ➤ The Basics

Don’t Set Margins
Whether you’re writing or editing a script, you cannot allow margins to get in the way.
Always edit your work in a text editor that has no margins. I don’t mean margins set to
their widest point. I mean no margins. You should be able to write off of the right side of
the text screen for miles. Doing it any other way is going to cause you problems.

And now with some of the basics out of the way, let’s get right to your first JavaScript!

Lesson 1: Writing Text to a Web Page
This first script is meant to introduce you to the very basics of creating and placing a
JavaScript on your page. Simply type the following JavaScript into any existing HTML page
of your Web site:

<SCRIPT LANGUAGE=”javascript”>

document.write(“This Is Red Text”)

</SCRIPT>

The concept of this script is to use JavaScript to place text on a Web page, as illustrated in
Figure 1.1. In this case, the text will be red.

Figure 1.1
Putting red text on your
HTML page.

02 0789726122_CH01 10/2/01 8:28 AM Page 9

JavaScript Goodies

10

To see the script working on your own computer, open Lesson One’s Script Effect or point
your browser to http://www.htmlgoodies.com/JSBook/lesson1effect.html.

Deconstructing the Script
Let’s start at the top. The first line of the script looks like this:

<SCRIPT LANGUAGE=”javascript”>

That’s HTML code to alert the browser that what immediately follows is going to be a
JavaScript script. That seems simple enough. All JavaScripts start with this same command.
We’re writing this script in JavaScript version 1.0. Because no number follows the word
javascript, the browser assumes by default that the following code is in JavaScript 1.0.

At the time of the writing of this second edition, the Internet Explorer browser 5.5 was out,
as was Netscape Navigator 6.0. Both understand versions of JavaScript well above 1.0 and
default to the latest version the browser understands. That means you can simply write
LANGUAGE=”javascript” and if the browser understands version 1.2, that will be the default.
There’s no real need to add the version number, but if you find yourself going beyond this
book and getting into higher versions of JavaScript, adding the number at the end of the
“javascript” is not a bad habit to get into.

That said … what about that LANGUAGE=”javascript” deal? Won’t the browser simply
default to the highest JavaScript version? Do you really need that anymore?

Yes, you need it. It’s because there are other types of scripts: VBScript, for example. Using
that LANGUAGE attribute keeps it straight in the browser’s mind.

Because we’re dealing with only three lines of text here, allow me to jump right to the end.
The flag

</SCRIPT>

ends every JavaScript. No exceptions. Now, put that on a brain cell. That’s the last time
those two commands will be discussed. Remember, start with <SCRIPT
LANGUAGE=”javascript”> and end with </SCRIPT>.

Now we hit the meat of the script:

document.write(“This Is Red Text”)

This script is simple enough that you can just about guess what each little bit does, but
let’s go over it anyway so that we’re all speaking with the same common terms.

02 0789726122_CH01 10/2/01 8:28 AM Page 10

11

Chapter 1 ➤ The Basics

The document holds the contents of the page within the browser window, including all the
HTML code and JavaScript commands. If it helps you to simply think of document as the
HTML document, that’s fine.

That document will be altered by write-ing something to it. What will be written to the
document is inside the parentheses.

Now we’ll cover some terms. In JavaScript, the document is what’s known as an object. The
write that follows, separated by a period, is what is known as the object’s method, an action
to be performed on the object. So, the script is basically saying, take the object, something
that already exists, and write something to it.

The open and close parentheses are called the instance. The text inside the parentheses is
called the method’s parameters. Are you with me so far?

Notice that what is inside the parentheses is encased in double quotation marks. In HTML,
quotation marks are not always required. In JavaScript, they are. You must use them. And
not only that, there’s an exact way of using them.

The text inside the double quotation marks is simple text: It is written to the screen exactly
as shown. Note the HTML flags within the double quotes. That’s fine. The script is just
going to write it all to the page.

But there are a couple of things to be concerned about when using a document.write()
JavaScript command:

You should recognize the text as a FONT flag that will turn text red. Notice that single
quotation marks appear around the HTML attribute code .

If you use double quotes, the JavaScript thinks it’s at the end of the line and you get
only part of your text written to the object. You know you didn’t intend that double
quote to mean the end of the line, but the script doesn’t. You’ll most likely get an
error message telling you something is wrong.

Some people get around this concern by not using any quotes around HTML attri-
butes. They write the previous command this way: . Either way
works, but if you decide to write using quotes around HTML attributes, remember
this: Inside double quotes … use single quotes.

When writing text within double quotes, be careful not to use any words that are
contractions. For example

document.write(“Don’t go there!”)

That line of code produces a JavaScript error. You know that the single quote doesn’t
denote an attribute, but JavaScript doesn’t know that. It thinks you’ve started an
attribute, and when it doesn’t find the ending single quote, an error results.

02 0789726122_CH01 10/2/01 8:28 AM Page 11

JavaScript Goodies

12

Note

If what you want is simply to have a single quote, such as in a contraction, place a back-
ward slash in front of the quote mark. That slash is called an escape character. The format
for the previous line of text would look like this:

document.write(“Don\’t go there!”)

What happens is the backslash escapes the script just long enough so the computer
understands the single quote is meant to be text rather than part of the JavaScript code.
Keep this concept in mind for later. I’ll discuss it in much deeper detail in Chapter 2,
“Popping Up Text with Mouse Events,” when we begin popping up alert boxes.

If you simply must have more right now, I have an entire tutorial on escape characters at
http://www.htmlgoodies.com/beyond/escapecharacter.html.

How Did the Text Become Red?
So, did the JavaScript actually turn the text red? No. The HTML did that for you. What the
JavaScript did was write the code to the page. There it displayed and was shown as red
thanks to the FONT FACE flag and attribute. The JavaScript was simply the delivery device.
Neat, huh?

One More Thing
Look at this code and its result, shown in Figure 1.2:

<SCRIPT LANGUAGE=”javascript”>

document.write(“This is the text that will be written to the page.”);

document.write(“But even though these lines of text are on different lines”);

document.write(“in this script, they will not reproduce the same way on the”);

document.write(“HTML document.”);

</SCRIPT>

Notice how all the lines run together when written to the page even though the text is
written in four lines. The reason is that the document.write statement just writes text to the
page. It does not add any breaks when its lines stop.

How about that? The first lesson is over, and you’ve already got two very useful commands
under your belt. Better yet, you know how to use them.

02 0789726122_CH01 10/2/01 8:28 AM Page 12

13

Chapter 1 ➤ The Basics

Your Assignment
Each time you do an assignment, you’ll need to copy the script described in the lesson so
you can paste it into an HTML document and play with it. You probably already noticed
this, but you can always copy and paste the script right from the sample Web page. If
you’re going online to see the examples, go to http://www.htmlgoodies.com/JSBook/
lesson1example.html.

Alter the previous script so that it will produce two lines of text, one red and one blue. But
you must do this by writing more JavaScript commands, not by simply adding more HTML
to the instance. Make the two bits of text write to two different lines rather than simply
following each other on the same line.

You’ll find one possible answer by clicking Lesson One Assignment or pointing your browser
to http://www.htmlgoodies.com/JSBook/assignment1.html.

Lesson 2: Error Messages
You know what I’ve found missing from the myriad of JavaScript books I’ve read? They’re
missing a description of how to deal with error messages. I guess the assumption is that
you’ll get all your code right the first time and never see one. Welcome to reality.

If you’ve ever attempted to write or install a JavaScript on your Web pages, you know these
little jewels are part of the fun. Just when you think you’ve got it right, boom, something
like Figure 1.3 pops up.

Figure 1.2
Multiple document.write
statements run together.

02 0789726122_CH01 10/2/01 8:28 AM Page 13

JavaScript Goodies

14

This lesson is intended to tell you what to do when you encounter error messages. I’ve
worked through thousands of them. Now you’re starting to write JavaScript, and you’ll get
your share of them, too. But first, let’s look at the new face of error messages.

How Browsers Display the Error Messages
Figure 1.3 is a view of how error messages looked in Netscape Navigator before version 4.x
browsers were released. After the version 4.x browsers came out, JavaScript version 1.3 was
in vogue. Version 1.3 offered something new called the JavaScript Console. It looks similar
to Figure 1.4.

The benefit of the JavaScript Console is that the errors are displayed in a single package. In
contrast, the JavaScript errors in Navigator 3.x and below version browsers simply piled up
one on top of another, resulting in a mess. The JavaScript Console displays all the errors on
a scroll, showing the first error on top and following down the errors from there.

I actually enjoyed the way the errors displayed in Navigator version 3.x and below
browsers because the errors were right there as soon as they occurred. You couldn’t ignore
them. The console is less intrusive, though. When you get an error in a 4.x browser, you’re
alerted to the error in the browser’s status bar and asked to write “javascript:” in the
Location (now Netsite) bar. That command brings up the JavaScript Console, where you see
your errors.

Figure 1.3
A JavaScript error in ver-
sion 3.x of Netscape
Navigator.

02 0789726122_CH01 10/2/01 8:29 AM Page 14

15

Chapter 1 ➤ The Basics

In some ways I like the old gray JavaScript error boxes popping up and in others I like the
JavaScript Console. You can make your choice. If you do not find the JavaScript Console to
your liking, try changing your browser to the older, gray-box method. It’s an easy change;
the instructions are on the Netscape Developer site at http://developer.netscape.com/
docs/technote/javascript/jsconsole.html.

Note whom the author of that Netscape developer page is. It’s Michelle Wyner. She tech
edited the first edition of this book! Woo hoo!

You Internet Explorer fans get your errors as is shown in Figure 1.5.

JavaScript errors in Internet Explorer either pop up or they do not, depending on how
you’ve set up your system. Again, I like my error messages to pop right up. You’ll note in
Figure 1.5 that the error box that pops up offers the ability to uncheck a box so that the
gray dialog box won’t pop up.

If you select that option, you’ll still get a warning, but it won’t be as blatant. A small, yel-
low triangle with an exclamation point will appear in the lower-left portion of the browser.
Text will also proclaim that you have an error. You then click the yellow triangle and up
will pop the error dialog box.

Gray box or no gray box? That is the question.

OK, now that you can actually understand your browsers and how they are trying to tell
you that you have JavaScript errors, let’s move along to how you can fix those errors.

Figure 1.4
JavaScript errors in the
Netscape Navigator
JavaScript Console.

02 0789726122_CH01 10/2/01 8:29 AM Page 15

JavaScript Goodies

16

It is said that the best way to fix errors is to avoid creating them. That’s a great deal easier
said than done. However, you can up your chances of getting fewer error messages by writ-
ing in a text editor that does not have margins. Also, allow each line of JavaScript to
remain on its own line. There’s no need to break longer lines in two. In fact, doing that
will probably throw errors. That said, I’ll bet you get errors just about every time you start
to play with this new language, so let’s get into how to repair them.

The Two Types of Error Messages
There are basically two types of errors you can produce:

Syntax error—This means that you’ve misspelled something, or the JavaScript is
not configured correctly.

Runtime error—This means that you have used an incorrect command and the
JavaScript doesn’t understand what you’re trying to do.

Either way, they both mean the same thing: Somewhere, something’s messed up.

Some programs do exist that will help you fix your errors—a process called debugging—but
I still prefer to do it by hand. I wrote it, and I want to fix it, and it’s actually easier than
you think.

Figure 1.5
An error being displayed in
Internet Explorer.

02 0789726122_CH01 10/2/01 8:29 AM Page 16

17

Chapter 1 ➤ The Basics

Fixing the Errors
The wonderful thing about a JavaScript error message box is that the little window that
pops up tells you where and what the problem is. Look at the error message box previously
shown in Figure 1.3. It’s a syntax error, meaning I have not configured the script correctly,
and the error is on line 9. What’s more, the error message is pointing at the problem area.
See the long line of dots and then the little caret pointing up? It’s like the browser is say-
ing, “Here’s what I don’t get.”

When an error message denotes the line number in which the error occurred, you locate
that line by counting down from the top of the HTML document, not the top of the
JavaScript. You must also count blank lines. You might have a text editor program that
offers to find a specific line for you, which is really helpful.

For instance, the following document has an error in line 9. It is a syntax error because the
instance was not allowed to close on the same line on which it started. See how the last
word and parenthesis were jumped to the next line?

<HTML>

<HEAD>

<TITLE>My JavaScript Page</TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE=”javascript”>

document.write(“text for the

page”)

</SCRIPT>

</BODY>

</HTML>

After you’ve counted down and you’re actually at the line that has an error, you need to
decide what to do. More times than not, if it’s a syntax error, one of the following is true:

The line has been truncated. That means it has been chopped off early, such as in the
previous example.

Something is misspelled.

You have used a double quotation mark where a single quotation mark should be.
That’s called using unbalanced quotes.

You’re missing a parenthesis.

02 0789726122_CH01 10/2/01 8:29 AM Page 17

JavaScript Goodies

18

If the error is runtime, the error message is pointing at a command that doesn’t logically
follow in the sequence. For instance, you might have used the code document.wrote instead
of document.write.

Dealing with Multiple Errors
Nothing gives me heartburn faster than running a script and getting multiple errors. I used
to think multiple boxes meant there were actually that many errors. But it’s not always so.

JavaScript is an extremely logical language that likes to work in a linear fashion. Let’s say
you have 10 errors throughout a long script. When the error messages pile up, don’t go
after that last error first. It probably doesn’t exist.

You see … the first error in the script might very well be creating all the other errors. If you
forgot to put a command in the third line of code, every subsequent line that needs that
command to work will claim it has an error. So, fix the errors in sequence from bottom to
top. I have found many times that a script threw 20 errors, but fixing only the first error
solved all the subsequent errors.

The “Something’s Not Defined” Error
You’ll see this written on a few JavaScript error boxes before too long. This is a runtime
error that means something in the script doesn’t jibe quite right. The text that is throwing
the error has come out of the clear blue sky—to the computer anyway. When I get a “not
defined” error, I always make sure the text wasn’t created by a longer line being truncated.
If that’s not the case, I try erasing the problem line. It can always be put back at another
time. Typos do occur, so see whether this isn’t one of those typos. It happens more times
than you would believe.

There’s not much more that can be said about error messages at this point. You now have
enough knowledge to fix 99% of the problems that pop up. Just remember that getting
error messages is actually a plus. If you didn’t get them, all you would have is a blank page
with no suggestion about what the problem might be.

Error messages are quite helpful if you think about them in the right light.

Your Assignment
Go to your packet download and click the link that reads Lesson Two Assignment. You can
also go right to it online at http://www.htmlgoodies.com/JSBook/assignment2.html.

When you click the link on that page, the script throws an error or two. You Netscape
Navigator users might have to write “javascript:” into the Location bar to pop up the
JavaScript Console and grab the error.

02 0789726122_CH01 10/2/01 8:29 AM Page 18

19

Chapter 1 ➤ The Basics

Your assignment is to fix the errors so that the script runs. Now, you probably won’t recog-
nize some of the commands in this script, but that doesn’t matter. The error boxes that
appear will give you enough information to make this script run.

HINT!!! You might get only one error when you first run it. The second error might come
after you fix the first.

If the JavaScript runs correctly, the current date will display on the page.

After you get the script to run, or give up trying, you can look at the corrected script by
going to http://www.htmlgoodies.com/JSBook/assignment2_answer.html.

You’ll find a short explanation of what had to be fixed right on the page.

Lesson 3: Object Properties
You should be starting to get an understanding of the hierarchy of JavaScript. In fact, hier-
archy is quite important in this language, so much so that I devote an entire lesson, Lesson
13, to it.

You know there are objects, such as document, and methods, such as write. You know that
methods act upon objects. And you know how to write the document and method format
in JavaScript:

document.write(“This writes to the page”;)

In this lesson, you’re introduced to a new part of the JavaScript hierarchy: object proper-
ties. A property is like a subsection of an object. It holds specific characteristics about the
object. The object you’re already familiar with—document—has a few properties, such as its
background color, text color, and location. The four scripts in the next section each cover
one of the following objects and a great many of their properties:

document

navigator—This object represents the browser.

history—This object represents the list the browser keeps of all the pages the user vis-
ited during the current online session.

location—This represents the current URL of the page that is being displayed.

Figure 1.6 shows the results of running the four scripts we’ll examine.

02 0789726122_CH01 10/2/01 8:29 AM Page 19

JavaScript Goodies

20

You can see the effects of all the scripts by going to http://www.htmlgoodies.com/JSBook/
lesson3effect.html.

The Property Scripts
There are actually four scripts in the following—but they all follow the same format: an
object.property statement placed into a document.write() statement to be written to the
page.

Writing document Object Properties
<SCRIPT LANGUAGE=”javascript”>

document.write(“The background color of this page is ”

➥+document.bgColor+ “.”)

document.write(“
The foreground (or text) color

➥ of this page is ” +document.fgColor+ “.”)

document.write(“
The link color of this page is ”

➥ +document.linkColor+ “.”)

document.write(“
The active link color of this page is ”

➥ +document.alinkColor+ “.”)

document.write(“
The visited link color of this page is ”

➥ +document.vlinkColor+ “.”)

document.write(“
The URL of this page is ”

➥ +document.location+ “.”)

Figure 1.6
The property scripts.

02 0789726122_CH01 10/2/01 8:29 AM Page 20

21

Chapter 1 ➤ The Basics

document.write(“
The page you were at before this page was ”

➥ +document.referrer+ “.”)

document.write(“
Here’s what’s written in the TITLE

➥ of this page is ” +document.title+ “.”)

document.write(“
The document was last modified: ”

➥ +document.lastModified+ “.”)

</SCRIPT>

Writing navigator Object Properties
<SCRIPT LANGUAGE=”javascript”>

document.write(“You are using ” +navigator.appName+ “.
”)

document.write(“It is version “ +navigator.appVersion+ “.
”)

document.write(“Its code name is “ +navigator.appCodeName+ “.
”)

document.write(“It sends the header “ +navigator.userAgent+ “.”);

</SCRIPT>

Writing history Object Properties
<SCRIPT LANGUAGE=”javascript”>

document.write(“You have visited “ +history.length+ “

➥ pages before this one.”)

</SCRIPT>

Writing location Object Properties
<SCRIPT LANGUAGE=”javascript”>

document.write(“The name of this location is ”

➥ + location.host + “.”)

</SCRIPT>

<SCRIPT LANGUAGE=”javascript”>

document.write(“The name of this location is ”

➥ + location.hostname + “.”)

</SCRIPT>

Deconstructing the Scripts
Please notice that the format of calling a property is the same as attaching an object and a
method. You write the object name, a dot, and then the property. The biggest difference in
the appearance is there are no parentheses after the property. A method affects an object; a
property already exists. You just want that property and nothing else, so there is no need

02 0789726122_CH01 10/2/01 8:29 AM Page 21

JavaScript Goodies

22

for the parentheses instance. Plus, later in the book, you see that those parentheses are
used to pass data around. The property already exists and thus has nothing that can be
passed to it. Therefore, there’s no need for the parentheses.

What Do Those Plus Signs Do?
Ah, you noticed that! You’re very observant. Here’s the first line of code from the first
script:

document.write(“The background color of this page is ”

➥ +document.bgColor+ “.”)

See the plus signs on either side of the code document.bgColor? Those plus signs are central
to getting the results of the script.

You already know that whatever is within double quotation marks is written to the page.
This is a document.write statement, after all.

Those plus signs are used in JavaScript to set aside the object.property code as something
that should be returned. You don’t want the text document.bgColor to appear on the page;
you want the property that line of text represents. In this case, it’s the document’s back-
ground color.

By enclosing the document.bgColor statement in plus signs, connect what is returned as
part of the entire line. It puts the three elements together on one line. The plus signs are
used to concatenate the three elements.

Notice that document.bgColor is not surrounded by quotes, so it will not print as text. The
value it represents, what is returned from the browser, will print. By using the plus signs,
the first run of text, the return, and the last bit of text all run together on one line. The
plus sign adds the three pieces together. Get it?

Hey! The Text Is Bold in Some Places!
Yes. That’s another extra little trick thrown in for fun. Look at the code for any of the items
that appear in bold. All I did was add the and statements on either side of the
object.property code—inside the double quotation marks. Because this is a document.write
statement, the bold commands are written to the page and then act upon the property that
was returned. I wanted you to see that you could also affect what is returned from the
script, rather than just the text you write within the document.write statement.

Just make sure the HTML commands are inside the double quotation marks so they are
seen as text rather than part of the script commands. If you don’t, you’ll get an error.

Now let’s find out what all these properties mean.

02 0789726122_CH01 10/2/01 8:29 AM Page 22

23

Chapter 1 ➤ The Basics

Properties of the document Object
The HTML document object properties are very popular in JavaScript. The script displays nine.

Pay close attention to the capitalization pattern of each property. Every time you write
these properties, you must use that pattern. Why? Because that’s the way JavaScript likes it:

bgColor—Returns the background color in hexadecimal code.

fgColor—Returns the foreground color in hexadecimal code.

linkColor—Returns the link color in hexadecimal code.

alinkColor—Returns the active link color in hexadecimal code.

vlinkColor—Returns the visited link color in hexadecimal code.

location—Returns the URL, or Web address, of the page. If you are not online, mean-
ing no server is involved, this property returns the filename.

referrer—Returns the page the user came from before the current page. If no page is
available, this property returns a blank space. The one drawback to this command is
that for a page to be recognized as a referring page, a click must have been made to
get to the page containing the document.referrer code. If the page containing the
document.referrer code was not arrived at by clicking, the property is returned as
blank space. There are a few of these fun little bugs throughout JavaScript.

title—Returns the text between the HTML document’s TITLE commands.

lastModified—Returns the date the page was last modified. The return is actually the
date the page was uploaded to the server, or last saved on hard disk.

These document properties are not shown in the script:

cookie—Returns the user’s cookie text file

anchors—Returns the number of HREF anchors on the page

forms—Returns an array (listing) of the form items on a page

links—Returns a number for each individual link

Properties of the navigator Object
People love these properties. The HTML Goodies e-mail box always gets questions about
how to display browser characteristics. This is it. The object is navigator. After all, Netscape
came up with JavaScript, so why not use its own browser’s name to denote the browser
object, right? Four properties are available. Once again, be careful of your capitalization:

appName—Returns the name of the browser, such as Netscape or Microsoft Internet
Explorer.

appVersion—Returns the version number of the browser and the platform for which it
is created.

02 0789726122_CH01 10/2/01 8:29 AM Page 23

JavaScript Goodies

24

appCodeName—Returns the code name given to the browser. Netscape calls its browser
Mozilla; Microsoft calls its browser Internet Explorer.

userAgent—Returns the hypertext transfer protocol (HTTP) header used by the brows-
er when working with servers so the server knows what it is dealing with. Web pages
use HTTP protocol, so you write that at the beginning of each Web page address.

Knowing all this information about the browser is important. Later, we’ll get into IF state-
ments. Knowing the user’s browser and version numbers allows you to say IF the browser
is this, do this.

Properties of the history Object
This is a very popular object. Many readers want to be able to make links that take people
back one or more pages, or forward one or more pages with one click. The purpose is to re-
create the Back and Forward buttons at the top of the browser window.

Properties of the location Object
Location is JavaScript for URL, or the address of the page. The location object has eight
properties, and you’ll meet a few more later. However, these two properties are by far the
most popular: host and hostname. The properties are equal in that they both do the same
thing—return the URL in either IP number or text format depending on what format the
server is using:

location.host—Returns the URL plus the port the user is attached to

location.hostname—Returns only the URL

If you are getting the same result with both commands, that means your server has not
routed you to a specific port. In technical terms, the port property is “null”.

By the way, these two commands will not work if you are running the page from your hard
drive. You must be running this from a server for there to be an address for the script to
return.

Your Assignment
Okay, smart person—do this: Using one of the previous object.property statements, write
a JavaScript that creates a link to a page on your server on the HTML document. An exam-
ple is if you’re on www.you.com, the JavaScript would create a link to the page www.you.com/
joe.html.

02 0789726122_CH01 10/2/01 8:29 AM Page 24

25

Chapter 1 ➤ The Basics

You can see a possible answer on your computer by opening Lesson Three Assignment in the
download packet. But do yourself a favor. See it online at http:// www.htmlgoodies.com/
JSBook/assignment3.html. The answer requires that the page be on a server to get the
effect—that should be a pretty good hint right there.

Lesson 4: Chapter Wrap-Up and Review
We’ve reached the end of Chapter 1. The concept of this lesson is to stop, review the
JavaScript commands you’ve learned to this point, and build something new.

The chapters are progressively longer, and you’ll be presented with this type of lesson at
the end of each. Through years of teaching, Andree and I have learned that one of the
hardest things for a student to do is to take what he or she has learned and apply it toward
something outside the realm of the class. In short—make something new. We’re going to
try to force you to think past just what we’re showing you in this book.

Table 1.1 shows the JavaScript commands you’ve seen up to now.

Table 1.1 JavaScript Commands Demonstrated in Chapter 1
Object Methods Properties
document write() alinkColor, bgColor, fgColor,

linkColor, lastModified,
location, referrer, title,
vlinkColor

history length

location host, hostname
navigator appCodeName, appName,

appVersion, userAgent

You know what each of these commands does. Now let’s use the commands to create
something functional that’s different from what you have seen so far. Enter the following
JavaScript:

<SCRIPT LANGUAGE=”javascript”>

document.write(“Go

➥back one page.”)

</SCRIPT>

Figure 1.7 shows the script’s effect.

02 0789726122_CH01 10/2/01 8:29 AM Page 25

JavaScript Goodies

26

To see the script’s effect on your own computer, open Lesson Four’s Script Effect in the down-
load packet or see it online at http://www.htmlgoodies.com/JSBook/lesson4effect.
html.

Notice that this script uses the document.referrer object property. It’s best to see that
online. The previous page address provides a link to click to get to the page with the
document.referrer code, so you’ll see the code’s effect correctly.

Deconstructing the Script
The purpose of the script is to create a link back one page. Here’s the line of code that does
the trick:

document.write(“Go

➥back one page.”)

It’s a basic document.write() formula that posts the code of a hypertext link to the page.
Note there are no spaces before or next to the double quotation marks. That means the
text returned from the document.referrer command will butt right up against the hyper-
text link text.

The movement back one page through the user’s history list is created by returning the
document’s referrer property to the browser to act as a hypertext link. It’s simple, and it’s
useful.

Figure 1.7
The script creates a link to
the previous Web page.

02 0789726122_CH01 10/2/01 8:29 AM Page 26

27

Chapter 1 ➤ The Basics

Your Assignment
Your final assignment in this chapter is to create something new and useful.

Take a moment and look back over the commands you’ve learned. What can you do with
them? Remember that functionality does not always mean there has to be a flashy effect.
You could use the commands to simply communicate with the user.

Here are a couple of suggestions:

Create a page containing Internet Explorer–only commands and another containing
Netscape Navigator–only commands. You could have the page read: You’re using a
***** browser. Please click the ***** link below to go to a page made just for

you. The ***** would be filled in using some of the commands we’ve discussed.

Use the commands to talk to the viewer about the page. The text could read Thank
you for coming in from **** to *****. I see you’re using the ***** browser.

Good choice.

The code for both these examples is available for you to look at. Click Lesson Four
Assignment on your download packet, or see it online at http://www.htmlgoodies.com/
JSBook/assignment4.html.

I got the second suggested effect by using multiple document.write codes. Think about how
you would get the effect, and then go to the assignment page to see how I did it.

02 0789726122_CH01 10/2/01 8:29 AM Page 27

02 0789726122_CH01 10/2/01 8:29 AM Page 28

Popping Up Text
with Mouse
Events

Chapter 2

This chapter contains the following lessons and scripts:

Lesson 5: JavaScript’s onMouseOver Event Handler

Lesson 6: More Event Handlers

Lesson 7: onUnload and onMouseOut, the After-Effect Commands

Lesson 8: HTML 4.0, the Flag, and Some New Event Handlers

Lesson 9: Let’s Go!

Lesson 10: The Second End-of-Chapter Review

Using Escape Characters

Lesson 5: JavaScript’s onMouseOver Event Handler
We’ve discussed objects, methods, and properties. Now let’s start playing with events. Think
of events as things that happen. They add life and interest to your Web site; they’re things
that make your viewers say, “Ooooooo,” without your having to create large JavaScripts.
Event handlers are the commands that detect the user’s input and trigger an event.

Now allow me to throw a curve into the process. Events, created using event handlers, are
JavaScript, but unlike what you’ve seen so far, they are “built in” to HTML code rather than
standing alone. Event handlers are meant to be embedded, so they don’t require the
<SCRIPT> and </SCRIPT> flags. They themselves are not scripts but are small interfaces allow-
ing for interaction between your page and your reader.

03 0789726122_CH02 10/2/01 8:37 AM Page 29

JavaScript Goodies

30

Several events exist, and we’ll get to them, but let’s start with one of the most popular ones:
onMouseOver. Consider the following JavaScript:

<A HREF=”http://www.htmlgoodies.com”

➥onMouseOver=”window.status=’Go to the Goodies Home Page’;

➥ return true”>Click Here

The purpose of this script is to show text in the status bar, as shown in Figure 2.1, when
your user rolls her mouse over the hypertext link.

Figure 2.1
The onMouseOver event in
the script makes text
appear in the status bar.

To see the script working on your computer, click Lesson Five Script Effect One in your down-
load packet or see it online at http://www.htmlgoodies.com/JSBook/lesson5effect1.
html.

Deconstructing the Script
Knowing what you already know, this one just about explains itself. So let’s look at it
quickly and then start to play around with it.

First, onMouseOver (notice the capitalization pattern) is an event handler. In this case it is
triggering when an event occurs in conjunction with the hypertext link. Does that make
sense? We’re using it inside the hypertext link.

The HTML format for the hypertext link remains the same. You use the same commands
and the same double quotation marks. The event handler is stuck in right after the URL

03 0789726122_CH02 10/2/01 8:37 AM Page 30

31

Chapter 2 ➤ Popping Up Text with Mouse Events

address, as you can see in the code. Now, just to be fair, the event handler doesn’t have to
be after the URL. It could go before, right after the A, but I like it sitting after the URL. It
seems to be written in order when it’s sitting after the URL. But, if you want it just after the
A, go for it. To each their own.

The event is called for by writing onMouseOver= and then telling the browser to do some-
thing when the mouse actually does pass over. In this case, it’s “window.status=’Go to the

Goodies Home Page’.

The pattern should look somewhat familiar now: two items separated by a period. The
window is an object. It exists. status is a property of window and is the smaller section of the
window where status messages go. You might be familiar with the traditional Document
Done text that always appears in the status bar when an HTML page is finished loading. The
window.status statement tells the browser where the following text should appear, which
in this case is in the status bar.

Note

Is it getting confusing remembering which are properties and which are methods? I try to
keep them straight by thinking that a method will usually be in the form of a verb, such as
write or go. A property is a noun that exists as a smaller part of the item before the dot.

In the script, window.status is also followed by an equal sign (=) telling the browser that
what follows is supposed to happen when the mouse actually does pass over. In this case,
what follows is text in single quotation marks:

window.status=’Go to the Goodies Home Page’;

That text will show up in the status bar when the user rolls her mouse over the hypertext
link.

Oh, Those Double and Single Quotation Marks
Match them up. When you use double quotation marks at the start of something, use dou-
ble quotation marks at the end. If you use single quotation marks, use single quotation
marks at the end.

The best method to keep the quotation marks straight in your own mind is to think that
there is a hierarchy to them. I keep it straight by thinking that double quotation marks
always go on the outside. Single quotation marks sit inside double quotation marks. If
there’s something inside single quotation marks, such as an HTML attribute, I don’t give it
quotation marks. Here’s an example:

OnClick=”location.href=’page.html’”

03 0789726122_CH02 10/2/01 8:37 AM Page 31

JavaScript Goodies

32

See how the double quotation marks surround the single quotation marks? If you follow
that hierarchy thinking, you’re more likely to be sure the quotation marks line up single
with single and double with double.

But that is simply a suggestion. As long as you make the quotation marks equal, you’re
good to go.

That said, make a point of keeping an eye on the quotation marks pattern in each of your
scripts. They are, quote, important.

Get it? “Quote” important? Ha! I kill me.

The Semicolon
In JavaScript, the semicolon acts as a statement terminator—it basically says this code
statement is done.

In this script, the semicolon is used because the effect we wanted to achieve through the
event handler is finished:

onMouseOver=”window.status=’Go to the Goodies Home Page’;

➥ return true”>Click Here

Now let’s do something new.

So why not write the code to a new line? You did just fine without a semicolon in Chapter
1, “The Basics,” when you wrote document.write statements. Well, that was a different
story; each of those document.write statements sat on its own line and had only one func-
tion. This is different. Now there are two code statements: First there’s onMouseOver and
then that return true statement.

That’s why this code is all on the same line separated by a semicolon. The JavaScript knows
the two items are related, and now it also understands where one stops and the other
begins, thanks to the semicolon.

It should be said here that even though that semicolon is not necessary, it is good practice
to use one every time you end a line of code. It will help you quickly see where the lines
end and help you be a better JavaScript author. Really. I wouldn’t lie to you.

Now, what about that return true code?

return true

Those extra two words have quite a bearing on what happens when the mouse rolls over
the link. If the words are present, the return true statement allows the script to overwrite
whatever’s there. Notice in the example that when the user rolls her mouse over the link,

03 0789726122_CH02 10/2/01 8:37 AM Page 32

33

Chapter 2 ➤ Popping Up Text with Mouse Events

the text in the status bar is locked in. It doesn’t change if she rolls over the link again and
again. If you try this example yourself and refresh the page, you’ll be able to see the effect
a little better.

But what if you lose those two words? Well, let’s think it out. If you do not have permis-
sion to overwrite what’s in the status bar, then you can’t overwrite what is in the status bar.
When the mouse moves away from the link, the event will occur only once.

If you remember your HTML, the default is to display the URL to which the link is point-
ing. Then, after the mouse is off the link, the onMouseOver event takes place. The event
occurs every time the mouse passes over the link. It’s actually a better effect, in my
opinion.

To see what the effect would look like losing the return true code, click Lesson Five Script
Effect Two in your download packet or see it online at http://www.htmlgoodies.com/
JSBook/lesson5effect2.html.

Other Properties, Other Uses
You know other objects must have properties, too. How about a page’s background color?
In HTML code, the attribute to change the background color is BGCOLOR. It’s the same here,
except now we’re concerned again with capitalization. In JavaScript, it’s written bgColor
(capital C). So, let’s think through creating a link that would change the window’s back-
ground color using an onMouseOver event:

First off, this will be a link, so it’s a pretty good bet that the format is the same as the
format in the earlier script. So, you should keep it.

Are you changing the window, or are you changing your old standby, the document?
Well, where does the BGCOLOR command go when you write a Web page? It’ll be in the
document, so that must be the object you’re concerned with. Therefore, change window
in the earlier code to document.

You want to change the document object’s background, so change status to bgColor.

You no longer want text to appear, so change that text to a color. Let’s use pink for
this example.

When the mouse moves over the link you probably want the color to stay whether
the mouse runs over the links again or not, so you’ll need to reenter the return true
after the semicolon.

Here’s the resulting JavaScript:

<A HREF=”http://www.htmlgoodies.com”

➥onMouseOver=”document.bgColor=’pink’; return true”>Click Here

03 0789726122_CH02 10/2/01 8:37 AM Page 33

JavaScript Goodies

34

To see the background color effect, click Lesson Five Script Effect Three in your download
packet or see it online at http://www.htmlgoodies.com/JSBook/lesson5effect3.html.

But what if you want both effects—the background color change and the text in the status
bar? Okay, let’s think it through: Common sense would suggest you write two onMouseOver
commands. Let’s try that.

The two commands are not separate from each other. You want them to occur at the same
time, so you can’t separate them using a semicolon because you know a semicolon is a
statement terminator. Here’s a new rule: Use a comma when setting multiple JavaScript
events.

And what about all those pesky quotation marks? Remember that the double quotation
marks go around the entire event handler statement, and single quotation marks go
around the effects, such as text to be printed or in the color to be used:

You want these two onMouseOver commands to happen as one, so you need double
quotation marks only at the very beginning of the first event handler statement and
at the very end of the second one. That way, the quotation marks surround it all,
showing it to the browser as if it were one event.

The single quotation marks surround the color and the text.

Here’s the resulting JavaScript:

<A HREF=”http://www.htmlgoodies.com”

onMouseOver=”document.bgColor=’pink’,

➥onMouseOver=window.status=’Go to the Goodies Home Page’;

➥return true”>Click Here

You can see this double effect by clicking Lesson Five Script Effect Four in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson5effect4.html.

These event handlers are great, and there are a slew of them. The next lesson discusses a
whole handful.

Note

You might have noticed that the lessons are starting to “think things through” a bit.
Remember that the JavaScript language is very logical. Later in this book is a lesson just on
the hierarchy of items because the language is so logical. Just for now, though, try taking
a few minutes before you write and thinking out what must happen for your idea to come
to life in script.

03 0789726122_CH02 10/2/01 8:37 AM Page 34

35

Chapter 2 ➤ Popping Up Text with Mouse Events

Your Assignment
Let’s see whether I can’t trip you up on this one. I’m going to give you a new method for
this assignment: alert(). What it does is pop up a small dialog box with text written above
an OK button. See whether you can get the alert box to pop up when your mouse rolls
across a hypertext link. Here’s the format:

alert(‘text that appears on the alert box’)

Think it through: What must happen first, second, and so on? It’s actually quite simple
(not that that’s a hint or anything).

See a possible answer by clicking Lesson Five Assignment in your packet download, or see it
online at http://www.htmlgoodies.com/JSBook/assignment5.html.

Lesson 6: More Event Handlers
Well, now you’ve got the basic hang of event handlers. So let’s look at another lesson and
see a few more in action. Event handlers all work basically the same way. As long as you
know the format of the event, and then think through the logic of getting it to run, you’ll
be able to place these all over your pages.

The onClick Command
Think about onMouseOver. You already know onMouseOver causes an event when the mouse
is passed over a link. It can be used other places, too, but to this point you’ve only seen it
used in a link. If passing over the link causes the event, clicking the link should be just as
successful when you use the onClick event handler. That seems logical, yes?

I’ll use the alert() method to show this one off. If you did the assignment from the last
lesson, you know how it is used. But just for memory’s sake, the alert() format goes like
this:

alert(‘Text that appears on the alert box’)

So, following the same pattern as the onMouseOver, you get this JavaScript:

<A HREF=”http://www.htmlgoodies.com”

➥onClick=”alert(‘You are off!’);”>Click Here

The result appears in Figure 2.2.

03 0789726122_CH02 10/2/01 8:37 AM Page 35

JavaScript Goodies

36

See the effect on your computer by clicking Lesson Six Script’s Effect in your download pack-
et, or see it online at http://www.htmlgoodies.com/JSBook/lesson6effect.html.

The onFocus Event Handler
This is a great event handler that enables you to create action when your reader uses the
mouse, tabs, or arrow keys to focus on one item on the page. This works for FORM object
drop-down boxes, text boxes, and text area boxes.

Here’s an example using a text box:

<FORM>

<INPUT TYPE=”text” SIZE=”30”

➥onFocus=”window.status=’Write your name in the box’;”>

</FORM>

Figure 2.3 shows the result of this JavaScript; as you can see, I followed the directions
onscreen and entered my name.

Figure 2.2
Using onClick to display
an alert box.

03 0789726122_CH02 10/2/01 8:37 AM Page 36

Tip

Never make an alert box the event of an onFocus event handler. Here’s why: Let’s say you
had the onFocus set up on a text box, just the same way I do in the preceding code. You
click the text box and the alert pops up. That causes focus to be lost from the text box.
When you close the alert box, focus returns to the text box and the alert pops back up.
It’s a pretty nasty loop to get caught in.

See the effect on your computer by clicking Lesson Six Script’s Effect Two in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson6effect2.html.

The onBlur Event Handler
If you can focus on an item, you can blur, or lose focus, on an item. The onBlur event han-
dler allows you to take focus off an item.

You can pretty much guess at the code, but here it is anyway:

<FORM>

<INPUT TYPE=”text” SIZE=”40” onBlur=”alert(You changed your answer -

➥ Is it still correct?’);”>

</FORM>

The resulting effect appears in Figure 2.4.

37

Chapter 2 ➤ Popping Up Text with Mouse Events

Figure 2.3
When the text box has
focus, the status bar text
appears.

03 0789726122_CH02 10/2/01 8:37 AM Page 37

JavaScript Goodies

38

See the effect on your computer by clicking Lesson Six Script’s Effect Three in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson6effect3.html.

The onChange Event Handler
Its main function is to work as a check mechanism. If something changes, this event han-
dler is enabled. Think of this as an event that ensures the user fills in what you are asking
for:

<form>

<INPUT TYPE=”text” SIZE=”40”

➥onChange=”alert(‘The text box has been changed’)”>

</form>

The result of this JavaScript appears in Figure 2.5.

See the effect on your computer by clicking Lesson Six Script’s Effect Four in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson6effect4.html.

Figure 2.4
This alert box appears after
clicking off the text box.

03 0789726122_CH02 10/2/01 8:37 AM Page 38

39

Chapter 2 ➤ Popping Up Text with Mouse Events

The onSubmit Command
This is the command everyone seems to want to lay his hands on. This command enables
you to make the page change when the Submit button is clicked. People want this because
they seem to require that wonderful effect when the user clicks a form’s Submit button,
and the page changes to another page that says Thanks for writing!

Here’s the format:

<FORM>

<INPUT TYPE=”submit” onSubmit=”alert(‘thanksalot.html’)”;>

</FORM>

This event handler is difficult to show you as a figure, so see the effect on your computer by
clicking Lesson Six Script’s Effect Five in your download packet. Or see it online at http://
www.htmlgoodies.com/JSBook/lesson6effect5.html.

location.href

You’ve probably noticed a few new commands in the previous script that respond to the
Submit button, so let’s look at one. location.href is the basic format for setting up a link
to another page. The href property might be new to you, but if you’ve programmed in
HTML at all, you can guess what it means. HREF stands for Hypertext REFerence, and it cre-
ates a link to another page. I use this format a great deal.

Figure 2.5
This alert box appears after
the data in the text box is
altered.

03 0789726122_CH02 10/2/01 8:37 AM Page 39

JavaScript Goodies

40

Just make a point of remembering the single and double quotation mark configuration.
Double quotation marks surround location through the end of the command. The page
the link sends the user to is surrounded in single quotation marks.

Remember, you have to surround the page location in quotation marks, but double quota-
tion marks suggest to the browser that the command is over. So, use single quotation
marks instead.

The onLoad Event Handler
The onLoad event handler is a great, and extremely useful, command. Unlike the other
event handlers examined, onLoad sits within the HTML document’s BODY flag. It’s enacted
when the page finishes loading into the browser window. The following example pops up a
simple alert box to welcome the user to the page:

<BODY onLoad=”alert(‘Thanks for coming to my page’)”)>

Later in the book, you’ll use the onLoad command to trigger larger scripts to start working.
It will become a real tool in your JavaScript toolbox.

Figure 2.6 shows the result of the onLoad JavaScript.

Figure 2.6
An alert box pops up when
the page loads.

03 0789726122_CH02 10/2/01 8:37 AM Page 40

41

Chapter 2 ➤ Popping Up Text with Mouse Events

See the effect on your computer by clicking Lesson Six Script’s Effect Six in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson6effect6.html.

Your Assignment
For this assignment, I want you to create a form that has some interaction with the user.
I’m assuming you know how to create forms here. If forms are a bit foreign to you, see this
HTML Goodies tutorial: http://www.htmlgoodies.com/tutors/forms.html.

The form should have four elements: a text box that asks for the person’s name, two check
boxes that ask whether the person prefers chocolate or vanilla, and a Submit button. Now,
here’s what I want to happen with each item:

The text box should print Put your name in here in the status bar when the user fills
it in.

The two check boxes should write You have chosen --- in the status bar, indicating
the user’s choice.

The Submit button should pop up an alert box thanking the user for filling out the
form.

See a possible answer on your own computer by clicking Lesson Six Assignment in your
download packet, or see it online at http://www.htmlgoodies.com/JSBook/
assignment6.html.

Lesson 7: onUnload and onMouseOut, the After-Effect
Commands
Two after-effect event handler commands you should have in your arsenal are onMouseOut
and onUnload. Again, watch the capitalization pattern.

You already know that the onMouseOver command makes things happen when the mouse
passes over something on the HTML page. The onMouseOut command acts after the mouse
leaves the link. You also know the onLoad command makes something happen when the
HTML page fully loads. Well, the onUnload command makes something happen when the
user unloads or leaves the page.

Both are quite useful, but try to keep the events that occur from your onUnload short. You
don’t want to slow the loading of the incoming page.

This script uses the onUnload event handler:

<BODY onUnload=”alert(‘Leaving so soon?’)”>

03 0789726122_CH02 10/2/01 8:37 AM Page 41

JavaScript Goodies

42

This script uses the onMouseOut event handler:

<A HREF=”thanksalot.html”

➥onMouseOver=”window.status=’Hey! Get off of me!’; return true

➥”onMouseOut=”window.status=’Much better - Thanks’; return true”>

➥Place your mouse on and off of this

The examples, shown in Figures 2.7a and 2.7b, actually use both scripts. In Figure 2.7a, a
link on the HTML page produces text in the status bar both when the mouse passes over it
and when the mouse leaves, thanks to the onMouseOver and onMouseOut event handlers. In
Figure 2.7b, when you actually click the link, the onUnload event handler pops up the alert
window with the text Leaving so soon?

Figure 2.7a
onMouseOut text appears
in the status bar when the
mouse leaves the link.

See the effect on your computer by clicking Lesson Seven’s Script Effect in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson7effect.html.

Deconstructing the Script
There’s not a lot to tell that you probably haven’t figured out for yourself at this point. The
mouse-over effects are created by the onMouseOver and onMouseOut commands.

Please notice that unlike the simultaneous onMouseOver and bgColor effects from Lesson 5,
the two commands here are quite separate from each other. You do not want these occur-
ring at the same time.

03 0789726122_CH02 10/2/01 8:37 AM Page 42

43

Chapter 2 ➤ Popping Up Text with Mouse Events

You want one thing to happen when the mouse passes over the link and another to hap-
pen when the mouse moves off. So you write them as two totally separate commands, each
containing its own return true statements, forcing the text to remain after the fact.

The effect when you’re leaving the page is created by adding the onUnload=”alert(‘Leaving
so soon?’)” command to the BODY flag of the HTML document.

Again, please notice the placements of the double and single quotation marks. You can’t
use the double quotation marks surrounding the text because that would mean double
quotation marks inside of double quotation marks. The browser would see it as the end of
a line, and not understand what follows—resulting in an error.

You’ll get a lot of use out of these event handlers.

Your Assignment
You’re going to use an onUnload, onMouseOver, and onMouseOut in this assignment. Here’s
what I want to happen:

Create a page with a hypertext link. The link should place the text Hello browser
name user - Click here! in the status bar when the mouse passes over.

The text You should leave page URL right away should then appear when the mouse
moves off the link.

Figure 2.7b
An alert box is produced
when the link is clicked.

03 0789726122_CH02 10/2/01 8:37 AM Page 43

JavaScript Goodies

44

When the link is actually clicked, an alert should pop up that reads Leaving so soon?
Do not use an onClick command to get the alert box; use the onUnload command.

Think about it for a minute. You’ve been able to get document.property returns to appear
on the page. Now, how do you get them to appear in the status bar? You must combine the
two formats you have learned so far in this chapter with what you learned in Chapter 1.
You can do it.

Tip

The problem you’ll run into involves the double and single quotation marks. Remember
that in a document.write command, the double quotation marks mean text to be printed
to the page. Well, now you have double quotation marks around the entire text for the
window.status command, so those double quotation marks around the text are out the
window. Use single quotation marks instead.

But in case you don’t hit it on the first try, read the error messages. They’ll tell you where
the problem is.

See a possible answer to this assignment by clicking Lesson Seven Assignment in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/assignment7.html.

Lesson 8: HTML 4.0, the Flag, and Some
New Event Handlers
In late 1998, the World Wide Web Consortium (http://www.w3c.org) gave its thumbs-up to
a new version of HTML, HTML 4.0. With the new version came new HTML flags, and with
the new HTML flags came new JavaScript event handlers. As of the writing of this second
edition, June 2001, a few of the new event handlers could be run using Internet Explorer
4.0, but Netscape Navigator couldn’t run any of them. But time marches on, and soon
these new event handlers will be in widespread use.

This lesson’s example script shows three of those new event handlers in action. You’ll also
be introduced to a new HTML 4.0 delivery device flag, .

The Flag
First, let’s look at the template for the sample script. It looks like this:

Text on HTML Page

03 0789726122_CH02 10/2/01 8:37 AM Page 44

45

Chapter 2 ➤ Popping Up Text with Mouse Events

If you haven’t seen the HTML flag before, be prepared to become very familiar with
it. As HTML 4.0 comes more and more into the mainstream, this flag will become the dar-
ling of Web artists everywhere.

“What does it do,” you ask? Nothing. Not a darn thing. The flag has no properties
at all to affect or manipulate text or images in any way. In fact, if you take a piece of text
and surround it with the and flags, you won’t alter the text at all. The view-
er wouldn’t know it is there unless he looked at the source code.

But there has to be a reason this book is devoting page space to the flag. There is
and with good reason.

 is a delivery device. The flag itself has no effect. But that’s the point. ’s whole
purpose is to act as a platform to carry other HTML attributes and JavaScript commands to
text, images, tables, or whatever else you can think of to surround with and
.

Look at the format again:

Text on HTML Page

The text that is surrounded by the flags can include any event handler you’ve seen
to this point. Once inside the flag, the event handler is enacted when the user inter-
acts with the text in some way.

Here’s an example before we get into the specifics of this lesson’s script. Let’s say you want
to create a piece of text that acts as a hypertext link but doesn’t carry the blue coloring or
the underline. You want it to look like any other text. Believe it or not, this is actually a
fairly popular request. HTML Goodies receives a fair amount of mail asking how it’s done.

Think it out. The link will occur when the text is clicked. That would suggest you use the
onClick event handler. Then you must set it so that when the user clicks, the page changes.
You already know location.href as the code that creates a link. So let’s build it.

The format would look like this:

Click to Go

Now you have text that retains its color but carries with it the properties of a link, thanks
to JavaScript. You can try the previous link by clicking Lesson Eight Script’s Effect Two in
your download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson8effect2.html. Remember that this works only in Internet Explorer 4.0 or better.

03 0789726122_CH02 10/2/01 8:37 AM Page 45

JavaScript Goodies

46

The Sample Script
Now, let’s look at this lesson’s sample script:

<SPAN onMouseDown=”window.status=’Mouse Is Down’”;

onMouseUp=”window.status=’Mouse Is Up’”;

➥onDblClick=”location.href=’thanksalot.html’”;>

Click on this text

The script’s effect is shown in Figure 2.8. See the effect on your computer by clicking Lesson
Eight’s Script Effect in your download packet, or see it online at http://www.htmlgoodies.
com/JSBook/lesson8effect.html.

Figure 2.8
Multiple event handlers are
applied to this window.

Make a point of looking at the example in an Internet Explorer browser, version 4.0 or
higher. Those browsers support the HTML flags and JavaScript commands. By the time
you’re reading this, other browsers might support the code, too, but at the time of writing,
Internet Explorer 4.0 (and above) was the only available browser to display this script
properly.

Deconstructing the Script
The script starts with the flag. Three new JavaScript event handlers are inside the
flag.

03 0789726122_CH02 10/2/01 8:37 AM Page 46

47

Chapter 2 ➤ Popping Up Text with Mouse Events

The first event handler, onMouseDown, is enacted when the user has her pointer on the text
and clicks down. Notice the event handler is set up to place text in the status bar.

Although the semicolon is not necessary, I still use it to help me quickly see where each
piece of code ends. It’s my preference—you don’t have to have it in your code.

The second event handler, onMouseUp, posts text to the status bar when the user lets the
mouse click back up.

The third event handler, onDblClick, is put into use when the user double-clicks the link.
In this script, the double-click sends the user to a new page named thanksalot.html.

The text that will appear on the HTML document page is then written after the flag.

Finally, the flag ends the entire format.

The New Event Handlers
You’ve seen three of them in this lesson’s script, onMouseDown, onMouseUp, and onDblClick.
Note the capitalization pattern of each.

Now that I’ve whet your appetite, here are a few other new event handlers and what they
do:

onKeyDown—Reacts when the user presses a key

onKeyUp—Reacts when the user lets the key back up

onKeyPress—Reacts when the user clicks a key up and down

onMouseMove—Reacts when the user moves the mouse

Just remember that the event handlers in this lesson are not supported across the board
yet, so use them sparingly, if at all. If you do use them, test them in a few different
browsers on your own computer before posting the pages to the Web. If you can’t run the
command, your users probably can’t either.

Your Assignment
Use the flag and a couple of event handlers on the text Green to Red so that when
the mouse passes over it, the background turns green and when the mouse leaves the text,
the background turns red. You’ll get bonus points if you can get the page to change to pur-
ple when the user double-clicks.

HINT: Use Internet Explorer 4.0 or better to view your work.

You can see a possible answer by clicking Lesson Eight Assignment in your download packet,
or see it online at http://www.htmlgoodies.com/JSBook/assignment8.html.

03 0789726122_CH02 10/2/01 8:37 AM Page 47

JavaScript Goodies

48

Lesson 9: Let’s Go!
So far, this chapter has dealt with user interaction through JavaScript event handlers. This
particular lesson deals with a new method, go(). Although including a method with a
group of event handlers seems a bit odd, it isn’t. The go() method often acts along with
event handlers to move your user through his history object.

This lesson’s JavaScript is as follows:

<FORM>

<INPUT TYPE=”button” VALUE=”BACK” onClick=”history.go(-1)”>

<INPUT TYPE=”button” VALUE=”FORWARD” onCLick=”history.go(1)”>

</FORM>

This is a very popular use of the go() method. The code produces two buttons that act the
same way as the Back and Forward buttons at the top of your browser window. Figure 2.9
shows these buttons in a browser.

Figure 2.9
Buttons that move users
through their history
objects.

See the effect on your computer by clicking Lesson Nine’s Script Effect in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson9effect.html.

03 0789726122_CH02 10/2/01 8:37 AM Page 48

49

Chapter 2 ➤ Popping Up Text with Mouse Events

Deconstructing the Script
The code for the two buttons is both HTML and JavaScript. The buttons are both FORM
items created using this HTML code:

<FORM>

<INPUT TYPE=”button” VALUE=”BACK”>

<INPUT TYPE=”button” VALUE=”FORWARD”>

</FORM>

Using this format alone, the buttons will display, but they’re little more than nice gray rec-
tangles that don’t actually do anything. It’s the event handler and go() method that create
the effect.

The Back Button
The code for the Back button looks like this:

<INPUT TYPE=”button” VALUE=”BACK” onClick=”history.go(-1)”>

Let’s read it from left to right:

INPUT—HTML code for an input item.

TYPE=”button”—Tells the browser that the input item will be a button.

VALUE=”BACK”—Puts the text on the button.

onClick=—The event handler that will trigger what follows it when the user clicks the
button.

history.go—An object.method format JavaScript statement you should be pretty
familiar with by now. history is the object; it represents the record the browser keeps
of the user’s current online session. Basically, it’s a record of every page the user has
been to, in order. The go method (parentheses left off on purpose) acts to move the
user through that history object.

(-1)—The instance of the method go. The -1 is telling the method to move one page
back through the user’s history object.

It would seem logical that if go(-1) is acceptable, go(-2) or go(-34) is also acceptable. They
are. Just remember that the higher the number you put in that instance, the more pages
the user will have had to have visited before coming to the current page. If the user is visit-
ing the page containing this code first, the button is basically dead because there is no
such thing as -1 in the history object.

03 0789726122_CH02 10/2/01 8:37 AM Page 49

JavaScript Goodies

50

However, there is one small exception to this rule. In Microsoft Internet Explorer 3.0, any
negative value that is put into the go method parentheses sends the user back only one
page. It’s a known bug. You might want to keep that in mind when thinking about sending
the user back multiple pages. Maybe one is enough.

The Forward Button
This code is similar to what you saw for the Back button:

<INPUT TYPE=”button” VALUE=”FORWARD” onCLick=”history.go(1)”>

The only two differences are as follows:

VALUE= has been changed so that the button text now reads Forward, rather than
Back.

go() has been changed to now read a positive number, rather than a negative one. It
moves the user forward through the history object list.

The method is the same, except that now when the user clicks the button, the next page
up in the history object is loaded.

The Forward button is often dead because users might not have gone to another page and
then returned to the page containing the code. However, I would still offer the button.
Those who have gone to another page and returned can use it, and those who have not
probably won’t use it, knowing they didn’t go anywhere. And if they do click the button,
nothing will happen because there isn’t a page to go to in the history object.

Your Assignment
The HTML Goodies site gets a great deal of mail asking how to set up guestbook, or form,
pages so that when the user clicks to submit the page, either a thank-you page loads or the
user is taken back to the page where he came from before clicking to fill out the guestbook.

The second scenario is your assignment. Create a small guestbook—one text box will do—
so that when the user clicks to submit the form, he is taken back to the page he came from
to fill out the guestbook form.

You can see one possible answer by clicking Lesson Nine Assignment in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/assignment9.html.

The page that loads following this link offers a link to the guestbook page. After the user
fills in the text box and submits it, the original assignment page reloads.

03 0789726122_CH02 10/2/01 8:37 AM Page 50

51

Chapter 2 ➤ Popping Up Text with Mouse Events

Lesson 10: The Second End-of-Chapter Review
Once again, we’re going to stop, look at the JavaScript commands you’ve learned up to this
point, and build some new scripts. I’ll offer one new script in this lesson and then make a
suggestion or two for some new scripts. But keep in mind the purpose of these reviews is
for you to take what you’ve learned so far and create a new and functional script to use on
your pages.

Table 2.1 contains the object-related JavaScript commands you’ve learned up to now. In
addition, you’ve seen these other JavaScript elements:

The alert() method

These event handlers: onBlur, onChange, onClick, onDblClick, onFocus, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, and onSubmit

The HTML 4.0 flag

Table 2.1 Object-Related JavaScript Commands Demonstrated in
Chapters 1 and 2
Object Methods Properties
document write() alinkColor, bgColor, fgColor,

linkColor, lastModified, location,
referrer, title, vlinkColor

history go() length

location host, hostname, href
navigator appCodeName, appName, appVersion,

userAgent

window status

That’s actually a pretty impressive list of commands. You can create some very nice
JavaScripts out of just what I’ve listed, as you can see here:

<SPAN onClick=”document.write(‘

➥To get to the other side.<FORM>

➥<INPUT TYPE=button VALUE=BACK onClick=history.go(-1)></FORM>’)”>

Why did the chicken cross the road?

Allow me to explain a bit before you start copying the script. I am getting the before-and-
after effect shown in Figures 2.10 and 2.11 by using only one flag. Remember that
you can’t break document.write commands into multiple lines because the script will throw

03 0789726122_CH02 10/2/01 8:37 AM Page 51

JavaScript Goodies

52

an error. So, the entire preceding code should be kept on one long line. Also, because of
the flag, you should look at this script’s example in an Internet Explorer browser,
version 4.0 or above.

Figure 2.10
The window before you
click the text.

Figure 2.11
The window after you click
the text.

03 0789726122_CH02 10/2/01 8:37 AM Page 52

53

Chapter 2 ➤ Popping Up Text with Mouse Events

See the effect on your computer by clicking Lesson Ten’s Script Effect in your download pack-
et, or see it online at http://www.htmlgoodies.com/JSBook/lesson10effect.html.

Deconstructing the Script
When the script says document.write, it means document.write.

As you’ve been reading through this chapter, did you stop and wonder what would happen
if you put a document.write statement after an event handler? Well, here’s what happens:
An entirely new document is written over the one currently in the browser window.

Look at the title bar in Figure 2.10: It says Lesson Ten. The title bar of Figure 2.11 says
JSBook\Web Pages\Lesson10effect.html. The reason is that by putting the document.write
command with an onClick, the browser did what you told it to. It wrote a brand-new page.

This is the code that did the trick:

<SPAN onClick=”document.write(‘

➥To get to the other side.<FORM>

➥<INPUT TYPE=button VALUE=BACK onClick=history.go(-1)></FORM>’)”>

I’ll stress again that the code should all go on one line. The book page just isn’t long
enough to show it that way.

Let’s take it piece by piece:

—The HTML 4.0 code that acts as a delivery device so you can apply the
onClick to an item, which in this case is text.

onClick=—The event handler that triggers what follows it when the user clicks.

“document.write=—The object.method statement used to write the text to the page.
Please take note that double quotation marks appear before document.write and again
at the very end of the flag, right before the >.

Single quotation marks—These are around all the text within the document.write
instance.

To get to the other side.—The basic HTML code that pro-
duces text at a font size of plus three.

<FORM><INPUT TYPE=button VALUE=BACK onClick=history.go(-1)></FORM>—The HTML
and JavaScript code that creates a Back button. You just saw that in Lesson 9. The
code creates a button that moves the user back one page on his history object. Notice
no quotation marks are around button, BACK, or history.go(-1). You’ve already used

03 0789726122_CH02 10/2/01 8:37 AM Page 53

JavaScript Goodies

54

double quotation marks around the document.write statement, and single quotation
marks are used around the text in the instance. There’s no quotation mark smaller
than single quotation marks, so you don’t use any.

Finally, the text that will appear on the page is written in, and the flag ends
the code.

As I said earlier in this chapter, JavaScript is very logical. When you’re creating a new
script, stop and think about what you want to happen, think about what must come before
what, and then write the code in a linear fashion. You should be able to break it down like
I broke down the preceding lines of code.

Now take some time to think about what you can do with the commands you already
know.

Your Assignment
Make something of your own. May I suggest using the document.location statement to cre-
ate a reload button?

Or how about a line of hypertext that takes the user to a new page without having to click?
A simple mouse pass would create the change of the page.

I have both of those suggested scripts available for you to view if you click Lesson Ten
Assignment in your download packet. Or see it online at http://www.htmlgoodies.
com/JSBook/assignment10.html.

But first, go make your own!

Using Escape Characters
In this chapter’s lessons, I have you popping up alert boxes and writing text to HTML
pages. I mentioned in Chapter 1 that you have to be careful of writing contractions such as
“isn’t” or “you’re” because they contain a single quotation mark. You know that that single
quotation mark doesn’t end the JavaScript line, but the JavaScript doesn’t. It sees a quote
and acts on it, which usually causes a pretty big error.

But you can’t very well write only to alert boxes and document.write text and never use a
single quotation mark. Furthermore, what if you want a line break or a tab setting in your
statements?

The answer is the use of escape characters. Let’s talk a little about aesthetics.

03 0789726122_CH02 10/2/01 8:37 AM Page 54

55

Chapter 2 ➤ Popping Up Text with Mouse Events

The Alert Example
Figure 2.12 is a quick example of using escape characters in an alert box.

Figure 2.12
An alert box using escape
characters to format the
text.

Here’s the code for the alert button:

alert(“Please write your \’name\’ in the box\rWrite it with \”quotes\” like

➥this.”)

The JavaScript code should be all on one line.

Look closely at Figure 2.12 and then at the code. You’ll notice the single quotes were creat-
ed with this: \’.

The return, or line break, was created with this: \r.

The double quote was created with this: \”.

The backslash is the key. If you use that backslash in front of the quotation marks or the
letter “r”, you escape the coding long enough for the script to understand you want the
character to represent text rather than a command to be used in the coding. That’s why
it’s called an escape character. Get it?

03 0789726122_CH02 10/2/01 8:37 AM Page 55

JavaScript Goodies

56

A Bigger Alert Box Example
I used four different escape characters in this example—the three shown previously and \t
to create a tab effect. Note I sometimes used two to get a double tab or a double return.
Again, look at Figure 2.13 and then at the code and pick out what escape character did
what.

Figure 2.13
An alert box using many
escape characters to format
the text.

Now here’s the code. This should all be written on one long line. Just make a point of
going through it piece by piece, and you’ll see each of the escape characters at work:

alert(“OK Then!\r\rYou want a neat box like \”this\” one?\r\rWell!\r\rYou\’ll

need:\rBrains\tBeauty\t\tTalent\rMoney\tDog food\t\tLuck\rA Cat\tEye of Newt\tA

➥Shrubbery!\r\rAnd the ability to \’read\’ this tutorial.\r\rOK?”)

Get it?

The document.write Example
You wouldn’t want to use the return character in a document.write because it’s better to lit-
erally write a BR or P flag to the page. Hopefully, you remembered that from all the way
back in Chapter 1. Where these escape characters come in handy is situations in which
you need to use a double or single quotation mark, yet you do not want to end the line.
For example, let’s say the following line has to be written with a document.write command:

We’re going to “need” to know where you’re going tonight, young man!

03 0789726122_CH02 10/2/01 8:37 AM Page 56

57

Chapter 2 ➤ Popping Up Text with Mouse Events

Anybody else have parents that sounded like that? Mine did. It was the only sentence I
could think of that had a single and double quote in it. Huh. I guess I have issues to work
out. Here’s the code:

<SCRIPT LANGUAGE=”javascript”>

document.write(‘We\’re going to \”need\” to know where you\’re going tonight,

➥young man!’)

</SCRIPT>

Read slowly and pick out the escape characters.

I’ll bet those little blips of information just made someone’s life a little easier. At least now
you’ll have fewer alert boxes that do not talk in contractions.

Okay, that’s the end of aesthetics. Let’s get back to JavaScript coding.

03 0789726122_CH02 10/2/01 8:37 AM Page 57

03 0789726122_CH02 10/2/01 8:37 AM Page 58

Manipulating
Data and the
Hierarchy of
JavaScript

Chapter 3

This chapter contains the following lessons and scripts:

Lesson 11: Prompts and Variables

Lesson 12: Dates and Times

Lesson 13: Hierarchy of Objects

Lesson 14: Creating a Function

Lesson 15: An Introduction to Arrays

Lesson 16: The Third End-of-Chapter Review—A <BODY> Flag Script

The JavaScript commands in this chapter are grouped together because they all deal with
data in some way, shape, or form. That data can consist of dates, times, or input from the
user. In addition, each of these lessons introduces you to one of the most important topics
in JavaScript—the hierarchy of objects.

You have already been introduced to JavaScript hierarchy in the object.method and
object.property statements in Lesson Nine (see Chapter 2, “Popping Up Text with Mouse
Events”). But now you’ll learn about creating hierarchy with variables and other types of
JavaScript data.

As Lesson 13 in this chapter states, “… after you understand the hierarchy of objects,
you’ve conquered JavaScript.”

04 0789726122_CH03 10/2/01 8:33 AM Page 59

JavaScript Goodies

60

Lesson 11: Prompts and Variables
This lesson has two concepts. First is the prompt box, which you use when you want to
prompt the user for information. The second, creating variables, is one you’ll use through-
out the remainder of your JavaScript life. Let’s begin by examining these concepts.

Creating a Variable
The concept of variables is paramount in JavaScript, so you must know how to create them.
When you create a variable, you are denoting a one-word (or one-letter) representation for
the output of a JavaScript command line. Remember when you were posting the name of
the browser to the page using the method appName? When you placed the name in the
document.write statement, you wrote out the entire navigator.appName. Because you did it
only once, it wasn’t so hard. But what if you wanted to write it ten times across the same
page? Writing those characters again and again would get boring.

So you assign a variable to represent the output of the method. Let’s say you choose the
variable NA. That way, you would have to write navigator.appName only once and assign
NA to it. The rest of the way through, you would write only NA when you wanted the
navigator.appName.

Please keep in mind that the variable is “NA” with two capital letters. You’ll need to follow
whatever capitalization pattern you choose every time you call for the variable you created
because JavaScript is case sensitive. You could also have a variable “na” in the same script,
and it would be seen as completely different from “NA”. Please understand I’m just making
a point by showing “NA” and “na” together. You would never want to do that in a script
simply because it would be confusing. The point I want to make is to be aware of your capi-
talization when creating variable names.

Are you still with me? Let’s get back to this example.

This lesson’s script uses the following line to denote a variable:

var username = prompt (“Write your name in the box below”, “Write it here”)

We created the variable following this format:

var proclaims that the word immediately following will be the variable name.

username is the name of the variable. I made this up. It didn’t have to be this long; in
fact, I could have made it N if I wanted. It’s always best to create the variable names in
such a way that you can easily remember what the variables represent.

The equal sign (=) denotes that the variable name will equal the output of the com-
mands that follow. In this case, the variable will represent the output of the prompt
box.

04 0789726122_CH03 10/2/01 8:33 AM Page 60

61

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

One more thing: Variable names can be just about any word or combination of letters and
numbers you want; however, some variable names are off limits.

For instance, you should not create a variable name that is the same word as a JavaScript
command. You’ll know you didn’t mean for the word to be used as a command, but the
computer won’t.

In addition to not using JavaScript commands as variable names, Appendix C, “JavaScript
Reserved Variable Words,” has a list of other words you should avoid. Some of the words
are already in use as JavaScript commands, and some are reserved words that will be used
in upcoming JavaScript versions. You might want to take a quick look at the list before
going further.

I’ve found that as long as you create a variable name that is representative of the data, you
shouldn’t run into any trouble, but just to be sure, take a look at Appendix C.

Please notice that no quotation marks surround either var or the variable name. Just follow
one word with the next as shown in the code. The JavaScript will understand what you’re
saying.

The Prompt Command
I used a new command for this example: prompt. This method pops up a box prompting
the user for a response.

Here’s the basic format of the prompt:

var variable_name = prompt(“Message on the gray box”,”Default Reply”)

The default reply is the text that will appear in the user-entry field on the prompt box. You
should include text in case the user doesn’t fill anything in. That way, you’ll have some-
thing for the JavaScript to work with.

But if you like the look of an empty user-entry field on the prompt box, that’s fine. If the
user doesn’t enter any text, the text null will be returned for you.

In case you’re wondering … to get a blank white box in the user-entry field, do not write
any text between the second set of quotation marks. And yes, you need the quotation
marks even if they’re empty. If you do not put the second set of quotation marks in, the
white box will read undefined.

The var and the variable name you assigned are included in the format. They have to be;
otherwise, you’ll get the prompt, but nothing will be done with the data the user enters.

04 0789726122_CH03 10/2/01 8:33 AM Page 61

JavaScript Goodies

62

The Sample Script
Now you’re back to creating full JavaScripts rather than just adding events to HTML, so
you’ll need to again start using the full <SCRIPT LANGUAGE=”javascript”> to </SCRIPT> for-
mat.

Here’s what you’re going to do. You’ll ask the user for his name and assign a variable to
that name. After the variable is assigned, you can enter it in a document.write line that
posts the user’s name to the page. The script is as follows:

<SCRIPT LANGUAGE=”javascript”>

/*This script is intended to take information from the user

and place it upon the page*/

var username = prompt (“Write your name in the box below”,

➥”Write it here”);

document.write(“Hello “ + username + “. Welcome to my page!”);

</SCRIPT>

This script brings up a prompt box asking for the user’s name, as shown in Figure 3.1.
Figure 3.2 shows the result after the user enters his name and clicks OK.

Figure 3.1
The prompt box asks for
the user’s name.

04 0789726122_CH03 10/2/01 8:33 AM Page 62

63

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

To see this script’s effect on your computer, click Lesson Eleven Effect in your download pack-
et, or see it online at http://www.htmlgoodies.com/JSBook/lesson11effect.html.

Wait! What Are Those /* and */ Things?
Yeah, I stuck in two extra commands that comment out text in the script. When you com-
ment out something, the text sits in the source code for you and anyone else who’s interest-
ed to read it, but it won’t affect the script nor show up on the resulting page. It’s a great
way to add copyrights, tell what the script does, and generally help yourself along by
adding instruction text that’s not part of the script.

These comment commands allow for multiple lines. Just have /* at the beginning and */
at the end, and everything in between will comment out. You can write a whole paragraph
of commented text as long as it is between the two comment commands—it won’t affect
the script in any way.

Deconstructing the Script
Now that you know all the parts of the prompt, let’s examine the meat of the script:

var user_name = prompt (“Write your name in the box below”,

➥”Write it here”);

document.write(“Hello “ + username + “. Welcome to my page!”);

Figure 3.2
The script responds appro-
priately to the user’s input.

04 0789726122_CH03 10/2/01 8:33 AM Page 63

JavaScript Goodies

64

The variable name username is assigned to the output of the prompt.

The prompt asks the user to write his name in the box. The white box reads “Write
it here”.

A semicolon ends the line because I wanted it there. It is not necessary.

The document.write statement calls for the text “Hello “ (space for continuity).

The plus sign (+) denotes that what follows will write right after the line of text.

username is representative of the output of the prompt. No quotation marks are
used—we don’t want it printed.

Another plus sign is used.

“. Welcome to my page!”, with a period and a space for continuity, completes the
text.

The semicolon is placed on purpose to show me that the line has ended.

That’s all.

Please make a point of truly understanding the concept of variables before you proceed.
Variables are used extensively in this language. If you’re lost at this point, reread the
lesson.

Your Assignment
… is a review.

Let’s combine a couple of the commands you’ve learned so far with the new variable and
prompt commands you just learned.

Here’s what I want you to do:

Create two prompts. One will ask for the user’s first name, and one will ask for the
user’s last name. Don’t let this throw you—just create two fully formed prompt lines
in the preceding script and assign each one a different variable name. One will simply
follow the other in the script.

Using the prompts, create this line of text: Hello first-name last-name. I see you
are using browser-name. Thanks for coming to document-title.

BUT! Write the code so that the browser-name and document title items are called by
the variables BN and PT, respectively.

Think it through, and then write the script. There are bonus points if you comment
out a couple of lines.

04 0789726122_CH03 10/2/01 8:33 AM Page 64

65

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

You can see a possible answer to this assignment on your own computer by clicking Lesson
Eleven Assignment in your download packet, or see it online at http://www.htmlgoodies.
com/JSBook/assignment11.html.

Lesson 12: Dates and Times
What’s nice about writing JavaScript right to a Web page is all the stuff that already exists
that you can grab and display.

This lesson talks about how you can display existing information using a new object, Date,
and seven new methods: getDay(), getDate(), getMonth(), getYear(), getHours(),
getMinutes(), and getSeconds().

Date is an object that contains the current day of the week, month, day of the month, cur-
rent hour, current minute, current second, and current year. All that and looks, too, huh?

So, if Date has all that, why use any of the methods? Because you might not want all that
stuff every time. What if you want only the day of the week? Then you use getDay() to
extract just that day of the week from the Date object.

The Date and Time Methods
Even before beginning to delve into the sample script, let’s discuss each of the Date object
methods. They are quirky to say the least.

First, all seven methods return numbers rather than text. It would be nice if getDay()
would give you Monday, or Wednesday, or Saturday, but it doesn’t. It gives you a number
between 0 and 6.

Between 0 and 6?

Yes. Allow me to introduce you to one of the more frustrating aspects of JavaScript.

JavaScript counts start at 0. The number 0 is equal to the first element of a list in
JavaScript’s mind.

The common week starts on Sunday and ends on Saturday. You might see it differently, but
JavaScript sees the seven-day week as Sunday through Saturday. Those seven days are in
JavaScript’s mind as being numbered from 0 (Sunday) through 6 (Saturday).

So, if you call for getDay() and it’s Wednesday, you will actually get only the number 3
returned. Goofy, yes, but that’s what happens.

But so what? The previous script doesn’t call for the day of the week. True, but it does call
for the month. JavaScript counts that up from 0, too. Thus, the number returned for the
month is always one less than you would expect.

04 0789726122_CH03 10/2/01 8:33 AM Page 65

JavaScript Goodies

66

The Methods and What They Return
Here’s a quick rundown of each method and what it returns. It’ll help you to understand
what pops up on your page when using the variable, as I’ll show:

getDate()—Believe it or not, this one acts normally. It returns the day of the month
as the correctly numbered day of the month.

getDay()—Returns the numbers 0 (Sunday) through 6 (Saturday), depending on the
day of the week.

getHours()—Returns the hour of the day in a 24-hour format counting the hours up
from 0 through 23.

getMinutes()—Returns the minute of the hours counting up from 0 up through 59,
but this one isn’t bad. There actually is a 0 at the top of the hour, so we’re good to go
with getMinutes.

getMonth()—Returns the month of the year counting up from 0. The month of
February therefore returns the number 1.

getSeconds()—Returns the second of the minute counting up from 0 to 59. This
method, like getMinutes, is okay in that there is actually a 0 at the top of the hour.

getFullYear()—Returns the 4-digit year. JavaScript ran into a little trouble when the
Y2K bug hit. The original year command, getYear(), returned only a two-digit year.
When it was 1999, that was okay. But when 2000 began, instead of returning 00, the
command returned 100. Oops. Do yourself a favor and start using getFullYear()
exclusively. It’s a quick fix that works pretty well.

The Sample Script
Take a look at this lesson’s script:

<SCRIPT LANGUAGE=”JavaScript”>

//This script posts the exact day and time you arrived

RightNow = new Date();

document.write(“Today’s date is “ + RightNow.getMonth()+ “-”)

document.write(“+ RightNow.getDate() + “-” + RightNow.getFullYear() + “.”)

document.write(“You entered this Web Page at exactly: “

➥ + RightNow.getHours() + “hours”)

document.write(“+ RightNow.getMinutes() + “ minutes and “

➥ + RightNow.getSeconds() + “ seconds”)

</SCRIPT>

The script displays the date and time the page was loaded with this script, as shown in
Figure 3.3.

04 0789726122_CH03 10/2/01 8:33 AM Page 66

67

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

To see this script’s effect on your computer, click Lesson Eleven Effect in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson12effect.html.

Wait! What’s That // Thing?
You are an observant one, aren’t you? That double slash denotes a single comment line
inside the script. It means that the text that follows will not be used in the process, but
rather will just be reprinted as is. It works just like the multiline comment you saw in
Lesson 11, earlier in this chapter. You can add as many of them as you want, as long as
each line starts with the double slash.

You also can use the double slashes at the end of a line of JavaScript to remind yourself, or
tell your users, what the line of JavaScript will do. Here’s an example:

document.write(“text”) //This writes text to the page

Deconstructing the Script
If you look at the sample script, you’ll see that the effect is created by asking the script to
write the month, date, year, hour, minute, and second to the page. The extra verbiage stuck
in there just makes it obvious what you’re looking at.

Figure 3.3
The date and time methods
display a variety of useful
information.

04 0789726122_CH03 10/2/01 8:33 AM Page 67

JavaScript Goodies

68

Let’s start with the first one called for in the preceding script—the month—and then we
can start to break down how this works. As stated before, getMonth() is a method. That
said, we now must concern ourselves with what object getMonth() is a method of.

It might appear from the script that getSomething() is a method of document. Not so—the
method of document is write. getMonth() is actually a method of the object Date. Look up at
the script and you’ll see that Date is set aside in the command:

RightNow = new Date();

What is happening here is we are setting aside the object for the method getMonth() to
work on. Actually, we’re creating a new Date object to work with in the script.

Date, remember, contains all the date and time information you’ll need. In fact, when you
use one of the getSomething() methods, you’re simply extracting one section of what Date
possesses.

I’ll prove that to you. Here’s code that uses only the Date object without any method:

<SCRIPT LANGUAGE=”javascript”>

document.write(“Here’s some information: “ +Date()+ “.”)

</SCRIPT>

With just that, look at Figure 3.4 to see all the good stuff you get.

Figure 3.4
Using the Date object
yields a lot of information.

04 0789726122_CH03 10/2/01 8:33 AM Page 68

69

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

Defining a Variable for the Date Object
The variable name given to the Date object in the sample script is RightNow. Now, I could
have called it Zork or Fred, for all the browser cares. It doesn’t matter as long as the object
is given an original name that isn’t found in JavaScript. See Appendix C for a list of unus-
able words.

If that seems backwards to you, it does to me, too. It seems like it should be
new Date = RightNow, but it isn’t. You’re learning a new language, and you have to play
by its rules.

The earlier command is saying this: RightNow is the variable that represents a new Date();.

But why “new” Date? The date has to be new so that you get a new date every time the
page is entered or reloaded. Without the new command, the date would remain static. You
reinforce the fact that the date has to be new by giving it a variable name, too.

Hooray! You have your object variable name set so that your getMonth() method can act on
it. You want this month to be printed on the page, so you need to have a document.write()
statement in there somewhere. You also know that what appears in the parentheses is
printed on the page, so put together a smaller version of the big script in this lesson by fol-
lowing a logical process:

1. You need to place the <SCRIPT LANGUAGE=”javascript”> first.

2. Then, insert a comment line that tells what this thing does.

3. You’ll need to create a new Date object before you can call on the getMonth() portion,
so insert that. Make sure the call ends with a semicolon.

4. Now you can place the document.write() statement.

5. Inside the document.write’s incidence, follow the same format as in Lesson 1 in
Chapter 1, “The Basics.”

6. Text that is to be printed must be inside double quotation marks.

7. Finish up with </SCRIPT>.

Here’s what you get:

<SCRIPT LANGUAGE=”javascript”>

//This script will post the name of the month

RightNow = new Date();

document.write(“This is the month “ + RightNow.getMonth “.”)

</SCRIPT>

Look at the full script again. That long line of text doesn’t look so tough now. It’s simply the
RightNow object variable name followed by the next getSomething() method. I separated each
with a hyphen; remember the hyphen is to be printed so it must be in quotation marks.

04 0789726122_CH03 10/2/01 8:33 AM Page 69

JavaScript Goodies

70

Building the Lines of document.write Code
I won’t go through it all because you probably have the swing of it by now, so I’ll discuss
just the date portion of the script. It looks like this:

document.write(“Today’s date is “ + RightNow.getMonth()+ “-”)

document.write(+ RightNow.getDate() + “-” + RightNow.getYear() + “.”)

It starts with “Today’s date is “, with a space at the end for continuity.

The plus sign is next.

RightNow.getMonth() is added without quotation marks because we do not want that
printed—we want the number returned.

Another plus sign follows.

Now, a hyphen appears in quotation marks to separate it from the next number. No
space is used because we want the next number to butt right up against it.

Next comes a plus sign.

Then comes the next document.write statement.

It starts with a plus sign because the first item in this statement is a return.

Now RightNow.getDate is added because we want the number of the day (no quota-
tion marks).

A plus sign is next.

Another hyphen appears in quotation marks so it is printed right to the page.

Another plus sign is next.

Last is another new method, RightNow.getYear, which returns the number of the year.

Just continue to follow this same format, and the script will print out what you tell it to.
So now you can tell everyone what time it is. But as Chicago sang, “Does anybody really
know what time it is? Does anybody really care?”

Wait! What About Some of the Numbers Being One Off?
It’s actually pretty easy to fix. So far, you’ve seen the plus sign used to surround text so that
it acts as a return rather than printing to the page.

That plus sign can also act as a, well, as a plus sign intended to add things together. We’ll
get more into the mathematics of JavaScript in Chapter 5, “Forms: A Great Way to Interact
with Your Users,” but for now, let’s just do some simple addition.

To get the returns from getDay(), getMonth(), and getSeconds() to display correctly, you
must add a couple of steps to the process.

04 0789726122_CH03 10/2/01 8:33 AM Page 70

71

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

To return the correct number, you need to return each of the method.objects (listed earlier)
and assign each a variable name.

Also, when you assign a variable name, you must add 1. Here’s an example of a script that
returns the date in ##/##/#### format:

<SCRIPT LANGUAGE=”javascript”>

RightNow = new Date();

var dy = RightNow.getDate() + 1

var mth = RightNow.getMonth() + 1

var yr = RightNow.getFullYear()

document.write(+ dy + “/” + mth + “/” + yr + “.”)

</SCRIPT>

See the format? I assigned the variable name dy to the code that would return the number
representing the day of the week and added 1. Then, in the document.write statement,
I called only for the variable name dy. That returns the number returned by
RightNow.getDay() plus 1.

Now it’s correct.

I did the same for RightNow.getMonth(). The command getFullYear() returns the entire
four-digit year.

Your Assignment
This one isn’t so tough:

Write a script that asks for the user’s name through a prompt.

Use that name to write a piece of text that reads Welcome user-name. It is minutes
past hour. Thanks for coming.

Now, here’s the kicker: Make that text appear in an alert that pops up when the page
loads.

Bonus points are available if you call for the minutes and hours by using variable
names.

You can see a possible answer on your own computer by clicking Lesson Twelve Assignment
in your download packet, or see it online at http://www.htmlgoodies.com/JSBook/
assignment12.html.

Lesson 13: Hierarchy of Objects
Whoa! Let’s pause and get familiar with the concept of hierarchy. What better time to stop
than lucky Lesson 13?

04 0789726122_CH03 10/2/01 8:33 AM Page 71

JavaScript Goodies

72

You know that JavaScript has objects, which are similar to nouns. You also know that
objects have properties that describe how objects look, just as adjectives describe nouns.

You also know that objects have methods, or actions, that can be performed to the object.
Different objects have access to different properties and methods. But what follows what,
and which of these is most important? How do you write the code to the page so that the
JavaScript understands that this is a property of this, and this method is to act upon this
object? You do it by writing objects, methods, and properties in a hierarchical fashion.

Now you’ll learn THE secret to understanding JavaScript—the hierarchy of objects, illustrat-
ed in Figure 3.5. Don’t tell a soul, but after you understand the hierarchy of objects, you’ve
conquered JavaScript!

Figure 3.5
The concept of an object
hierarchy.

You can either see this diagram up close by clicking Lesson Thirteen Script’s Effect or see it
online at http://www.htmlgoodies.com/JSBook/lesson13effect.html.

Please understand that the image is not a complete representation of the hierarchy of
JavaScript; it represents only what you’ve learned up to this point.

Terms, Terms, Terms: DOM
The purpose of this book is to teach you JavaScript in the friendliest and most easy-to-
understand method possible.

Figure 3.5 shows the hierarchy of JavaScript. That hierarchy actually has a term—it’s called
a Document Object Model, or DOM for short.

04 0789726122_CH03 10/2/01 8:33 AM Page 72

73

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

I don’t use the term because it really doesn’t tell you, the reader, anything. In fact, at the
level you’re at, it might actually be confusing.

I use the term hierarchy statement because it is a better representation of the code.

Just keep in mind at your next party full of technical people that the true term is DOM, or
Document Object Model.

The Hierarchy of Objects’ Effects
All references begin with the top object, the window (the browser screen), and go down.
window is the highest-level object in JavaScript. So much so that JavaScript doesn’t even
require that you use it in your code. JavaScript just understands that, unless told otherwise,
everything happens within the browser window.

That means that everything you’ve seen so far actually should be written with the object
window at the beginning, like so:

window.document.write

window.RightNow.getDay()

window.default.status

If you want to write your code this way, great, but it’s not required, obviously, because the
top-level object, window, is understood to be the overriding object.

Here are some examples. Notice they follow the hierarchy pattern from Figure 3.5, from
top to bottom:

document.mypic.src = “pic1.gif”

Again, window is not needed at the very beginning because it is assumed that all this is
inside the window. This references an image named mypic, changing its contents to
pic1.gif. Did you follow that? document is the page the item is on, mypic is the item’s
name, and SRC is the item’s source.

It is getting smaller going left to right, one inside the other. It’s similar to how a page con-
tains a sentence, a sentence contains a word, and a word contains a letter. Look at this
example:

document.write(location.href)

write() is a method of the document object, and location.href returns the full URL of the
window. Notice that location and document are at the same level. They are written to the
left of the only dot. However, one has a method following it (write), and the other has a
property following it (href).

04 0789726122_CH03 10/2/01 8:33 AM Page 73

JavaScript Goodies

74

That means you get the location of that same-level document denoted by document.write,
even though one hierarchy statement is sitting in the instance—the parentheses—of the
other. Both document.write and location.href act within the same document window
because they are at the same level. Still with me?

Deconstructing the Hierarchy of Objects
What’s most confusing about this is that some objects are also properties. I’m referencing
Figure 3.5 again here:

window is just an object.

document is an object inside the window.

form is a property of document, but it is also an object with its own properties.

value and src are just properties.

Not all objects and properties are displayed here. However, this should be enough to help
you understand this format. All references start at the top with window and go down, writ-
ing them left to right, separated by dots.

You therefore can’t write document.mytext.myform or mypic.src.document because they are
not in correct order. The order must go biggest to smallest from left to right.

A Very Important Concept
Order is paramount in hierarchy. It will come into play when we start to talk about forms
in Chapter 6, “Mathematics, Random Things, and Loops.”

Let’s say you have an HTML text box on your page, and the user writes something in the
text box. To return the contents of that text box using JavaScript, you must use the proper-
ty value; for example, document.myform.mytext.value. Just writing document.myform.mytext
gives information about the form field but not its contents. The value command returns
what is written inside the text box.

Just know that an HTML form field, like a text box or a radio button, is given a name. In
the preceding example, it’s myform. If you call for that alone, you’ll get information about
the form item itself, just like getDay() returns the day number. But if you want what is
written in the form element itself, you must add value to the end of the hierarchy state-
ment. Now you’re one level below the form field itself. You’re at the level of what the user
wrote—what is contained within the form.

Think of value as a reading of what something is or is not at a specific time. A check box
can have a value of on or off depending on whether it has been clicked. A text box field
can have a value of “hidden” if you don’t want the user to see it. And, as noted previously,
a TEXT field can have input written to it, which is that field’s value. Get it?

04 0789726122_CH03 10/2/01 8:33 AM Page 74

75

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

Maybe not yet, but you will. Hierarchy is at the very heart of JavaScript. We will talk about
hierarchy a great deal throughout the rest of the book.

Your Assignment
Here’s a little bit of code for you to look at:

<FORM>

<INPUT TYPE=”button” Value=”Click Here”

onClick=”parent.frames[1].location=’zippy5.html’;

parent.frames[2].location=’zippy6.html’;

parent.frames[3].location=’zippy7.html’;”

</FORM>

You can see the basic format as a FORM button, but what does all that stuff after the onClick
stand for?

Follow the thought process from the preceding lesson and without looking at the answer,
make a point of writing down what you think this script does.

Also—think about how it does it.

You can see a full tutorial on what that link does by clicking Lesson Thirteen Assignment in
your download packet, or see it online at http://www.htmlgoodies.com/JSBook/
assignment13.html.

Lesson 14: Creating a Function
In the creation of a variable, you assign a one-word title to the output of a JavaScript com-
mand or event. Creating a function is doing the same thing, except you are assigning a
title to an entire series of commands. You are combining many JavaScript commands into
one.

Here’s an example. Let’s say you have some JavaScript code that grabs the hour, minute,
and second. Then you have some code that writes that code to the page. You want the
return from that code to appear on the page four times. There’s no reason why you
couldn’t write the code again and again. It will work just fine, but wouldn’t assigning a
one-word title to both pieces of code be easier? Then you could call for the two pieces of
code by just calling on that one word.

It’s good programming, too, because you must call on only one name to get an effect. Your
page isn’t full of extra, and probably confusing, code.

To illustrate, let’s use a script that’s actually in two parts: the script itself, which contains
the function; and the onLoad event handler, which triggers the function to work.

04 0789726122_CH03 10/2/01 8:33 AM Page 75

JavaScript Goodies

76

Here are both parts:

<SCRIPT LANGUAGE=”javascript”>

<!-- Hide from browsers that do not understand JavaScript

function dateinbar()

{

var d = new Date();

var y = d.getFullYear();

var m = d.getMonth() + 1;

var d = d.getDate();

var t = m + ‘/’ + d + ‘/’ + y + ‘ ‘;

defaultStatus = “You arrived at the page on “ + t + “.”;

}

// end hiding -->

</SCRIPT>

And here’s the onLoad command in the <BODY>:

<BODY BGCOLOR=”FFFFcc” onLoad=”dateinbar()”>

The script’s effect displays in the status bar, as shown in Figure 3.6.

We kept basically the same type of date script we’ve been using in past lessons so it would
all look somewhat familiar to you. See how we assigned the getSomething() method’s vari-
able names and added 1?

Figure 3.6
The function displays the
date in the status bar.

04 0789726122_CH03 10/2/01 8:33 AM Page 76

77

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

You can see this effect on your computer by clicking Lesson Fourteen Script’s Effect, or see it
online at http://www.htmlgoodies.com/JSBook/lesson14effect.html.

Hey! What Are Those <!-- and --> Things?
They’re yet another couple of extra commands stuck in for good measure. Those probably
look familiar to you because they’re the two comment flags you use to comment out text
in an HTML document. It looks like this:

<!-- The text in here would comment out -->

I am using them here because, believe it or not, there are still browsers out there that do
not read JavaScript. I wrote this section on June 28, 2001, and yes, even today there are
browsers that will not read JavaScript. By using these comment commands, the text of the
JavaScript is commented out so that it isn’t printed on the page. You see, if the browser
doesn’t understand JavaScript, it sees that text as something to be printed on the page, and
it looks bad. But if you use the comment flags, the browser that can’t read JavaScript happi-
ly ignores the text and displays the page.

If you use these comment flags, there are a few very important rules to follow.

The commands go inside the <SCRIPT> and </SCRIPT> flags. If you put them outside those
commands, you would comment out the entire JavaScript on all browsers and nothing
would run. The <!-- flag can be followed by a line of text as long as the text is all on the
same line. The --> flag must be commented out using the double slashes; otherwise, the
JavaScript thinks the command is part of the script, causing an error.

Notice you can also put some text before it because it is commented out. No, you do not
have to use text along with these commands. I put the text in because it made explaining
the purpose of the flags easier. Follow the format and placement style discussed earlier, and
you’ll have no trouble.

Deconstructing the Script
Two things are happening here. The first is the script section that creates the function. The
second is the command found in the HTML <BODY> flag that triggers the function to work.
Let’s look at the concept of the function first:

function dateinbar()

{

var d = new Date();

var y = d.getFullYear() + 1900;

var m = d.getMonth() + 1;

var d = d.getDate();

04 0789726122_CH03 10/2/01 8:33 AM Page 77

JavaScript Goodies

78

var t = m + ‘/’ + d + ‘/’ + y + ‘ ‘;

defaultStatus = “You arrived at the page on “ + t + “.”;

}

The format is straightforward:

The function is given a name by writing function and then the name you want to
assign to the function. It’s very similar to the way you create a variable name.

But please note that the function name has the parentheses following it the same way
that method commands do. I always keep it straight by thinking that in creating a
function, I am actually creating a new method for performing a task.

A variable is made for the year. Another variable is assigned to the month, and anoth-
er for the day.

A fourth variable, t, is created to represent the entire date format. It should look
familiar. It was created to enable you to call for the full date anywhere in the HTML
document by just calling for t.

The last command is new to you:

defaultStatus = “You arrived at the page on “ + t + “.”;

defaultStatus is a property of the object window. Its purpose is to place text into the
status bar at the bottom of the browser window.

There’s only one status bar, so that has to be the default.

The onLoad= Command
The command onLoad tells the browser that upon loading the page, do what follows. In
this case, what follows is the function dateinbar().

This onLoad=functionname() command format is almost always found in the BODY portion of
the HTML document.

Placement of These Items
Where you put the two sections—the function and the onLoad command—is important.
You know the onLoad command goes in the BODY portion. The script that contains the func-
tion should be placed between the <HEAD> and </HEAD> commands in the HTML document.
You can actually stick it anywhere on the page and it’ll run, but placing it after the onLoad
command causes it to start after the entire page has been loaded. Putting it before the
onLoad command places it in the computer’s memory first, so it’s there ready to go when
the onLoad calls for it.

04 0789726122_CH03 10/2/01 8:33 AM Page 78

79

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

A Word About Global and Local Variables
Okay, now you understand how to assign a variable name and how to create a function.
What you might not know is that variables are seen differently by JavaScript, depending on
whether they are inside the function or outside the function.

JavaScript allows for two levels of variables, local and global.

Local variables are variables that are viable only within a function. JavaScript understands
that whenever a variable is encased within a function, that variable name is viable only
inside that function. That way, if you copy and paste a script onto a page that already has a
script on it, any existing variables that are equally named will not clash as long as that
variable name is found within a function.

Global variables are variables that are not found within functions, and thus can clash with
the existing variables on the same page.

Here’s an example:

<SCRIPT LANGUAGE=”javascript”>

var joe = 12

function writeit()

{

var joe = “Joe Burns”

document.write(joe)

}

</SCRIPT>

The variable joe is used twice, but because one is found outside the function (the global
variable) and one is found inside the function (the local variable), the two will not clash.

Now, with all that said it is not a good idea to follow the preceding format and use like
variable names within your scripts. The purpose of the local variables being hidden is far
more for protection against clashes with other scripts on the same page than clashes with
variable names within the same script.

Name all your variables descriptively and differently, and you’ll run into very few, if any,
problems.

Your Assignment
Just about any group of JavaScript commands that produce an effect can be set into a func-
tion format. In fact, your assignment today is to try to prove that theory.

04 0789726122_CH03 10/2/01 8:33 AM Page 79

JavaScript Goodies

80

This one’s a little involved:

1. Create a function that calls for two prompts. The first asks for the person’s first name,
whereas the second prompt asks for the person’s last name.

2. Then, in the same function, have an alert box pop up with the text Hello first name
last name. Welcome to page address, My Great Page!

3. Make sure you make a variable for the page address.

4. If you want to make this assignment a little more fun, present My Great Page to the
viewer some other way than simply writing it in text in the alert command. Make a
variable for that, too.

You can see a possible answer by clicking Lesson Fourteen Assignment in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/assignment14.html.

Lesson 15: An Introduction to Arrays
Let’s return to Lesson 12. When you used any one of the getSomething() date or time
methods, a number representing the Date object property was returned. In some cases, such
as the hour and day of the month, that’s fine, but for other Date returns it isn’t so good.
Take getDay(), for example. As you probably thought, it’s not very helpful to have the days
of the week returned as 0, 1, 2, 3, 4, 5, or 6.

The best approach is to take the number that’s returned and change it into text. That
makes more sense and is easier to read.

Here’s how:

<SCRIPT LANGUAGE=”JavaScript”>

var dayName=new Array(“Sunday”,”Monday”,”Tuesday”,

➥”Wednesday”,”Thursday”,”Friday”,”Saturday”)

var y=new Date();

document.write(“Today is “+dayName[y.getDay()] + “.”);

</SCRIPT>

Figure 3.7 shows the result of this script. You can also see this effect on your computer by
clicking Lesson Fifteen Script’s Effect, or see it online at http://www.htmlgoodies.
com/JSBook/lesson15effect.html.

04 0789726122_CH03 10/2/01 8:33 AM Page 80

81

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

Deconstructing the Script
Let’s start with the same rule that started Lesson 12:

JavaScript starts counting at 0.

That’s why the month number is always returned one less than what the month actually is.
JavaScript starts counting January at 0.

For this lesson, we’ll add to the preceding rule:

JavaScript counts everything you give it and always starts counting at 0.

If you offer JavaScript a list of simple text items, such as a number of names or words
(known in JavaScript as literals), the script will assign numbers to the items in that list.
Guess what number it assigns to the first item? That’s right: 0.

So let’s give JavaScript a long list of things—the days of the week. But like everything else,
you can’t just throw a bunch of words in a script and hope the browser picks up what you
mean. There is a method to offering a long list of items, such as the days of the week.

It’s called creating an array.

Figure 3.7
The function displays the
day of the week.

04 0789726122_CH03 10/2/01 8:33 AM Page 81

JavaScript Goodies

82

Setting Up the Array
Here’s the array line from the sample script:

var dayName=new Array(“Sunday”,”Monday”,”Tuesday”,

➥”Wednesday”,”Thursday”,”Friday”,”Saturday”)

The format for creating an array is pretty simple:

1. You assign the array of literals a variable name. In this case, I called the array dayName.

2. You tell the browser that this is a new array by writing new Array. That makes sense.
Note the capitalization pattern.

3. The array of literals is placed within parentheses.

4. Each new array item is surrounded with double quotation marks. Remember that
each array item is text, and that requires double quotation marks.

5. Each array item is separated from the next by a comma, no spaces. You can have
spaces if you want, but I feel this format looks a little cleaner.

6. The big question is in what order to put the array items. Here the answer is easy: You
know that the days of the week are represented Sunday through to Saturday, 0–6. So,
you list Sunday first because you know it will receive the 0 both from the getDay()
method and from the JavaScript assigning numbers to the array. That makes it a pret-
ty sure bet that a 0 will return Sunday to the page.

Later in the book, we’ll discuss arrays that do not come with a 0 through whatever pattern
is already set. That gets a little more complicated. For now, we’ll stay with the rather easy-
to-create arrays because JavaScript has set the order for us already.

Grabbing a Piece of the Array
Now that you’ve set up the seven-day text array, you need to create a method to return the
numeric day of the week through the getDay() method, and then turn that number into
the correct day from the array.

Here’s the code that does it:

var y=new Date();

document.write(“Today is “+dayName[y.getDay()] + “.”);

The first line should be familiar by now. A variable, y, is set up that represents the new Date().

The document.write statement should also look familiar. The text within the double quota-
tion marks writes to the page, whereas the text within the plus signs returns something to
the page in its place.

04 0789726122_CH03 10/2/01 8:33 AM Page 82

83

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

Here’s the magic in the script:

dayName[y.getDay()]

The code turns the attention of the return to the array, dayName.

The code in the brackets is the same format used to return the numeric day of the week
number: variablename.getDay().

The y.getDay() is replaced by a number representing the day of the week, like it always is.

So what the command is actually saying is Go to this array[find this number].

If you were running this script on a Monday, the y.getDay() would return the number 1.
The browser would see the command dayName[y.getDay()] as dayName[1] and would return
the text in the array associated with the number 1. The number 1 is Monday because
JavaScript counts up from 0.

Get it? Good.

Your Assignment
Use the previous instructions and array to create a script that prints this line to the page:
Today is Day-Of-The-Week in the month of Month-Name.

You already know the format for the day of the week. Now create an array that returns the
name of the month. Just follow the pattern shown earlier to create the array, and remem-
ber to give the new array a new variable name. You can’t have two variables in the same
script with the same name.

Remember, even in months, JavaScript starts counting at 0.

You can see a possible answer by clicking Lesson Fifteen Assignment in your download pack-
et, or see it online at http://www.htmlgoodies.com/JSBook/assignment15.html.

Lesson 16: The Third End-of-Chapter Review—A <BODY>
Flag Script
If you stopped at this point, you would do just fine. What you have is sufficient to create
some wonderful scripts.

But why stop now? Let’s review!

Table 3.1 contains the object-related JavaScript commands you’ve learned up to now. In
addition, you’ve been introduced to these JavaScript concepts:

04 0789726122_CH03 10/2/01 8:33 AM Page 83

JavaScript Goodies

84

The alert() method and the prompt() method

These event handlers: onBlur, onChange, onClick, onDblClick, onFocus, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, onSubmit

The HTML 4.0 flag

Creating variable names

Creating a function

Table 3.1 Object-Related JavaScript Commands Demonstrated in
Chapters 1–3
Object Methods Properties
date getDate(),

getDay(),
getHours(),
getMinutes(),
getMonth(),
getSeconds(),
getYear()

document write() alinkColor, bgColor, fgColor,
linkColor, lastModified, location,
referrer, title, vlinkColor

history go() length

location host, hostname, href
navigator appCodeName, appName, appVersion,

userAgent

window defaultstatus, status

Next, let’s use some of these commands to create a script that helps the viewer create the
page. The script will ask the viewer what background and text colors she would like. Then,
the page will display with those colors. Finally, the viewer will be told, in the status bar,
Here’s your color background and color text.

The script is as follows:

<SCRIPT LANGUAGE=”javascript”>

var color = prompt(“What color would you like the page’s background to be”,””)

var txtcolor = prompt(“What color would you like the text to be?”,””)

document.write(“<BODY BGCOLOR=” +color+ “ TEXT=” +txtcolor+ “>”)

defaultStatus=”Here’s your “ +color+ “ background and “ +txtcolor+ “ text”

</SCRIPT>

Figure 3.8 shows the script’s effect.

04 0789726122_CH03 10/2/01 8:33 AM Page 84

85

Chapter 3 ➤ Manipulating Data and the Hierarchy of JavaScript

You can see this effect on your computer by clicking Lesson Sixteen Script’s Effect, or see it
online at http://www.htmlgoodies.com/JSBook/lesson16effect.html.

Deconstructing the Script
The script starts by setting a couple of variables using prompts. You need to get the user’s
input on what background and text color she wants, so this seems as good a way as any.

The variables are color and txtcolor, respectively. The code looks like this:

var color = prompt(“What color would you like the page’s background to be”,””)

var txtcolor = prompt(“What color would you like the text to be?”,””)

Now that you have the input from the user, you’ll need to use that data to alter the page.
The real beauty of this script is its placement on the page.

Up until now, each of the scripts in this book had no real placement concerns. The script
could pretty much sit anywhere in an HTML document, and the results would display.
Now, though, you are concerned with where this script will place its output.

The script must write its line of text so that that line of text becomes the HTML docu-
ment’s <BODY> flag.

The quickest way to implement the user’s background and text color requests is to write
them to the <BODY> flag. So that’s what you did. This script’s main purpose is to write the
HTML document’s <BODY> flag to the page, so you must ensure that the entire script sits

Figure 3.8
The script creates a page
with the user’s desired
background color and text
color.

04 0789726122_CH03 10/2/01 8:33 AM Page 85

JavaScript Goodies

86

right where the body command needs to sit on the HTML page. And, of course, you need
to ensure that you don’t write a <BODY> into the HTML document yourself. You need to let
the script do that for you.

Here’s the code that writes the <BODY> flag:

document.write(“<BODY BGCOLOR=” +color+ “ TEXT=” +txtcolor+ “>”)

The colors are entered as return variables inside the two plus signs. That way, what the user
writes in the prompt is what is returned.

Status Bar, Too?
But the script goes a little further than just writing a <BODY> flag. It also places the viewer’s
data to the status bar, almost as if the page were served to her.

Here’s the line of code that does it:

defaultStatus=”Here’s your “ +color+ “ background and “ +txtcolor+ “ text”

It follows the same format as the document.write statement, with text surrounded by dou-
ble quotation marks and return variables surrounded by plus signs, except in this case the
text is sent to the status bar.

Your Assignment
Okay, your turn. Make a new script—something that adds to your page. I stuck with
prompts and variables for my example.

If you want to, may I suggest creating a Mad-Lib party game? It’s that game where you’re
asked for a noun, a verb, a state, and things like that. Then, you read the sentence you cre-
ated using those words. And you know from playing it that the sentence never makes any
sense.

It would be your first JavaScript game.

For my brand-new script, I created a button that, when clicked, displays the current date
and time. It’s rather simple. (You should try the Mad-Lib game or something even more
helpful.)

You can see a possible answer to making the button that shows the date and time by click-
ing Lesson Sixteen Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment16.html.

04 0789726122_CH03 10/2/01 8:33 AM Page 86

Flipping Images
and Opening
Windows with
Mouse Events

Chapter 4

This chapter contains the following lessons and scripts:

Lesson 17: An Image Flip Using onMouseOver and Preloading Images

Lesson 18: An Image Flip with a Function

Lesson 19: Opening New Windows

Lesson 20: Opening a Window with a Function

Lesson 21: The confirm Method, with an Introduction to if and else

Lesson 22: The Fourth End-of-Chapter Review—Some Jumping Jacks

Up to this point, each of the JavaScripts you’ve built has dealt with altering, changing, or
writing text to the page. Sure, there’s been some color, but there has to be more than text
manipulation in JavaScript. In this chapter, you’ll start to look at manipulating images,
opening new windows, and offering users a choice, rather than simply taking information
from them.

Lesson 17: An Image Flip Using onMouseOver and
Preloading Images
An image flip is a great effect. Some people call it a mouse rollover or an image rollover. The
user rolls her mouse pointer over an image, and it changes to a new image. When the
mouse leaves the image, the image changes back. It’s a very popular event on the Web.

05 0789726122_CH04 10/2/01 8:27 AM Page 87

JavaScript Goodies

88

This example goes back to the use of the onMouseOver and onMouseOut event handlers. You
use the event handler to affect not only text, but also the space the image is sitting in.
Here’s the script:

<A HREF=”http://www.cnn.com”

onMouseOver=”document.pic1.src=’menu1on.gif’”

onMouseOut=”document.pic1.src=’menu1off.gif’”>

It’ll take two figures to show you this one. Take a look at Figures 4.1 and 4.2.

Figure 4.1
The page looks like this
when the mouse is off
the image.

You can see the effect on your own computer by clicking Lesson Seventeen Example in
your download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson17example.html.

In this example—and the ones that follow, for that matter—the images are all the same
size. You don’t need to use same-size images for your image flips, but it’s a good idea. It
really heightens the look.

Notice again that there is no need for the <SCRIPT> and </SCRIPT> tags. You’re using event
handlers again. The JavaScript onMouseOver and onMouseOut events are built into an
<A HREF> HTML flag, so not only is this an image flip, it’s also a hypertext link.

Also notice that by including BORDER=”0” in the tag, no link box appears around
the image.

05 0789726122_CH04 10/2/01 8:27 AM Page 88

89

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

Deconstructing the Script
From what you already know about event handlers, you should be able to go a long way
toward picking this one apart by yourself. When the mouse is off the image space, the
image menu1off.gif is displayed. That’s the image displayed when the page first loads; it’s
also the image called for in the flag. When the mouse is on the image, the
menu1on.gif image is shown.

The NAME Attribute
Notice the flag has been given a NAME= attribute. In this example, the name given
to the image—or more correctly, the space the image is occupying—is pic1.

That NAME= attribute becomes quite important if you want to put multiple image flips on
the same page. For every new image flip you put on the page, you must choose a different
name for the new image space. Here’s an example of three image flips in a row:

<A HREF=”http://www.htmlgoodies.com”

onMouseOver=”document.pic1.src=’menu1on.gif’”

onMouseOut=”document.pic1.src=’menu1off.gif’”>

<A HREF=”http://www.developer.com”

onMouseOver=”document.pic2.src=’menu1on.gif’”

onMouseOut=”document.pic2.src=’menu1off.gif’”>

Figure 4.2
When the mouse is on
the image, the message
changes.

05 0789726122_CH04 10/2/01 8:27 AM Page 89

JavaScript Goodies

90

<A HREF=”http://www.javagoodies.com”

onMouseOver=”document.pic3.src=’menu1on.gif’”

onMouseOut=”document.pic3.src=’menu1off.gif’”>

Not only were the links changed to new locations, but notice also that all the names were
changed, both in the and in the hierarchy statements.

The Hierarchy Statement
The name of the space the image is sitting in, pic1 in this case, is referenced in the hier-
archy statement referenced by the onMouseOver and onMouseOut statements. The hierarchy
statement, document.pic1.src, reads this way:

window is implied. You could have written this with the object window at the begin-
ning, but as you read in Lesson 13 in Chapter 3, “Manipulating Data and the
Hierarchy of JavaScript,” it is not necessary. JavaScript simply assumes all that is going
on is going on inside a browser window.

document refers to the current HTML document object.

pic1 is the name of the space the image will occupy. You swap out images within a
space occupied by an image, and you make up that NAME and stick it in the
flag.

src is a property of the image object that enables you to load a new image into the
current image’s space.

When the mouse passes over the space occupied by the image, the onMouseOver event han-
dler springs into action, replacing the menu1off.gif image with the menu1on.gif image.

The process might take a second or two to allow the image that will display to be loaded
into the browser. But you can cut down on that time by preloading the image.

Preloading Images
Through JavaScript, you can set up code that downloads images into the user’s browser
cache for later use. Using the previous image flip code, the menu1off.gif image loads to the
cache because it is being called for by the HTML document in the .

If the term cache is new to you, here’s what’s so great about it: The cache is a section of
your hard drive, set aside by your browser, so it can store files after it has displayed them
for you. Have you noticed how much faster a page loads after you’ve first seen it? That’s
because the browser is not reading the images and text from the server anymore. It is read-
ing them from your hard drive.

05 0789726122_CH04 10/2/01 8:27 AM Page 90

91

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

By pre-caching, or preloading, images for your user, when she starts to use the image flip,
the browser works quickly the first time without having to contact the server again for the
image it wants to display. It’s a very clever way of doing things.

Here, you need to call for the menu1on.gif to load into the cache with the rest of the page.
Then, when the image flip is called for, the menu1on.gif is there ready and waiting to be
posted. The flips will go much faster the first time around because the browser isn’t waiting
for the server to be contacted and the new image to be loaded.

Here’s the code that performs the preload:

<SCRIPT LANGUAGE=”javascript”>

Image1= new Image(200,200)

Image1.src = “menu1on.gif”

</SCRIPT>

The preload occurs thanks to a completely different script from the image flip. The format
follows this pattern:

Image1 = new Image(200,200) assigns a variable name to a new image that is 200 pix-
els wide by 200 tall. The script doesn’t know what the image is yet; it just knows that
now the image will be brought into the cache under that variable name.

Image1.src = “menu1on.gif” tells the JavaScript the source, or path, to find the image.

The preceding JavaScript loads the image into the browser cache under the variable name
Image1. But the name used to pull the image into the cache becomes immaterial because
you never call for the image by that variable name. You call for it only by its true, or literal,
name: menu1on.gif.

The purpose of the preceding JavaScript is to load the image to the browser cache, period.
The variable names assigned mean nothing past a format you must use to get that behind-
the-scenes download to occur.

Let’s say you had multiple images to download. Again, the variable names don’t matter, so
you might as well just keeping adding one to the variable name Image1. Preloading three
images might look like this:

<SCRIPT LANGUAGE=”javascript”>

Image1= new Image(200,200)

Image1.src = “menu1on.gif”

05 0789726122_CH04 10/2/01 8:27 AM Page 91

JavaScript Goodies

92

Image2= new Image(125,15)

Image2.src = “line.gif”

Image3= new Image(20,10)

Image3.src = “button.gif”

</SCRIPT>

Notice each new two-line command group is given a new variable name and a new image
to preload. The height and width parameters have also changed to fit the image.

Put this script between the <HEAD> flags in your script, and the preloaded images should be
waiting in the cache when your user tries the image flips for the first time.

Your Assignment
Take this sample code and add a few comments so that when the mouse is on the image,
the status bar reads, Oh, Click it! Then, when the mouse is off the image, the status bar
should read, Click to go!

Here’s a hint: return true.

To see a possible answer on your own computer, click Lesson Seventeen Assignment in
your download packet, or see it online at http://www.htmlgoodies.com/JSBook/
assignment17.html.

Lesson 18: An Image Flip with a Function
Here is another example of onMouseOver and onMouseOut event handlers being used to create
an image flip effect. But this time, instead of including the JavaScript statements to swap
pictures in the <A HREF> tag, the event is called for in a function.

To show you where each of the parts should be placed on your page, this display includes
the entire HTML document format:

<HTML>

<HEAD>

<TITLE>Javascript Example 18</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>

function up()

{

document.mypic.src=”up.gif”

}

function down()

{

document.mypic.src=”down.gif”

05 0789726122_CH04 10/2/01 8:27 AM Page 92

93

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

}

</SCRIPT>

</HEAD>

<BODY>

<CENTER>

<h2>Sample Animation</h2>

<A HREF=http://www.htmlgoodies.com onMouseOver=”up()”

➥ onMouseOut=”down()”; return true>

</BODY>

</HTML>

It’s a simple image flip animation with onMouseOver and onMouseOut event handlers in a
function. In the example, if you mouse over and out quickly, this looks like an animation
of a stick figure doing jumping jacks.

Andree did the artwork shown in Figures 4.3 and 4.4. I take no responsibility for that.

Figure 4.3
The stick figure stands up
straight when the mouse is
off the image.

You can see the man (I think it’s a man) doing jumping jacks on your own computer by
clicking Lesson Eighteen Example in your download packet, or see it online at http://
www.htmlgoodies.com/JSBook/lesson18example.html.

There aren’t a whole lot of external words on the page. I just took the preceding code and
pasted it into an HTML document.

05 0789726122_CH04 10/2/01 8:27 AM Page 93

JavaScript Goodies

94

Deconstructing the Script
In this example you are calling for two different images, so you need two separate func-
tions. Here’s what they look like:

<SCRIPT LANGUAGE=”JavaScript”>

function up()

{

document.mypic.src=”up.gif”

}

function down()

{

document.mypic.src=”down.gif”

}

</SCRIPT>

Look again at the format for creating a function.

The command function is followed immediately by the name of the function followed by
the two parentheses. In this case, the parentheses are empty because you are passing noth-
ing to the function. Later in the book, we’ll discuss putting parameters into the parenthe-
ses so that information can be passed to the function. The commands that make up the
function are housed within left and right braces ({}).

Figure 4.4
The figure does a jumping
jack when the mouse is on
the image.

05 0789726122_CH04 10/2/01 8:27 AM Page 94

95

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

The functions are equal to the statements used in the previous JavaScript lesson on image
flips. Remember the hierarchy statements? Here the function contains the statements,
rather than adding them into the <A HREF> flag.

The format for the hierarchy statement is document, and then comes the NAME assigned to
the image space, and finally the SRC path to the image.

The two functions were named up() and down(). The names could have been just about
anything, but we used these two because of the actual position of the man doing jumping
jacks.

Calling for the Function
Now let’s look at the call for the function:

<A HREF=”http://www.htmlgoodies.com” onMouseOver=”up()”

➥ onMouseOut=”down()”; return true>

The format is close to that used in Lesson 15 (see Chapter 3), but a function is called on
here, rather than the hierarchy statement being included in the HREF command itself.

By calling for the function name following onMouseOver and onMouseOff, in effect, what is
included in the function statements is replaced with the function name.

The code onMouseOver=”up()” basically means this:

onMouseOver=”document.mypic.src=’up.gif’”

More Than One Image Flip
Remember from Lesson 17, earlier in this chapter, that if you want to create multiple image
flips on a page, you must continue using new NAME= attributes to separate each image space
in the browser’s mind? It’s the same thing here, except now you must create whole new
function names in addition to new NAME= attributes.

For example, suppose you want to place on the page another JavaScript image flip, similar
to the first example. You would create two new functions by copying and pasting the same
functions shown earlier and altering the function name. The easiest and quickest method
is to add the number 2.

Then, you also have to change the NAME=. So, you change the name to mypic2. But be sure
you change the name of the image space every time it appears.

05 0789726122_CH04 10/2/01 8:27 AM Page 95

JavaScript Goodies

96

Now you get code that looks like this in the HEAD commands:

<SCRIPT LANGUAGE=”JavaScript”>

function up()

{

document.mypic.src=”up.gif”

}

function down()

{

document.mypic.src=”down.gif”

}

function up2()

{

document.mypic2.src=”upagain.gif”

}

function down2()

{

document.mypic2.src=”downagain.gif”

}

</SCRIPT>

You also get code like the following to call for the two different images:

<A HREF=”http://www.htmlgoodies.com” onMouseOver=”up()”

➥ onMouseOut=”down()”; return true>

<a href=”http://www.htmlgoodies.com” onMouseOver=”up2()”

➥ onMouseOut=”down2()”; return true>

See how the new functions are linked to a specific image space through the NAME=, and all
the image space names were changed? Follow that process every time you add a new image
flip, and you can put hundreds on the same page. Well, maybe not hundreds—just about
100 will probably do the trick.

Preloading Those Images
Keep in mind that you can help your viewer along by preloading the images that will be
called for in the flip.

Here again is the format:

<SCRIPT LANGUAGE=”javascript”>

Image1= new Image(200,200)

05 0789726122_CH04 10/2/01 8:27 AM Page 96

97

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

Image1.src = “menu1on.gif”

</SCRIPT>

It’ll help your user greatly because she won’t be sitting around waiting.

Your Assignment
First, you need to get four images. If you can supply them, that’s great. If not, I have four
for you at

http://www.htmlgoodies.com/JSBook/img1.gif

http://www.htmlgoodies.com/JSBook/img2.gif

http://www.htmlgoodies.com/JSBook/img3.gif

http://www.htmlgoodies.com/JSBook/img4.gif

Download them into your computer. Use the function and code shown earlier to make
img1.gif and img2.gif to create an image flip, and then get img3.gif and img4.gif to do an
image flip. You will create two image flips from the preceding code.

TIP

Watch the order in which you put the images in the function. You’ll know you have it right when

you roll your pointer over the image and it flips correctly. If it stays flipped, you’re out of order.

To see a possible answer on your own computer, click Lesson Eighteen Assignment
in your download packet, or see it online at http://www.htmlgoodies.com/JSBook/
assignment18.html.

Lesson 19: Opening New Windows
This is the first of two lessons about opening a new window through JavaScript. This first
new-window lesson deals with the JavaScript commands you would use to open a new
window that displays a second HTML document.

Let’s get started with a basic script:

<SCRIPT LANGUAGE=”javascript”>

window.open(‘opened.html’,’joe’,config=’height=300,width=300’)

</SCRIPT>

The script’s effect appears in Figure 4.5.

05 0789726122_CH04 10/2/01 8:27 AM Page 97

JavaScript Goodies

98

You can try the script yourself by clicking Lesson Nineteen Script’s Effect in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson19example.html.

Figure 4.5
The script opens a new
window.

NOTE

This script only opens the window. The links that appear in the new window were written on

the HTML page that filled the new window, but what about those links in the new window?

They’re functional, too.

If you look at this example in your download packet or online, you’ll see that a link in the
little window loads a new page in the big window, and then you’ll see a link closes the lit-
tle window. It’s like fireworks at a fairground. You can even say “Oooo” and “Ahhh,” if the
mood strikes you.

I’ll get to those links in the little window and how they are written to control the main
window, as well as how to close the window itself, later in this chapter.

Deconstructing the Script
Let’s start by talking about the placement of this script in your HTML document. Until
now, I have always said it’s good to place scripts up high in the document so they can run
early in the page load. When you’re dealing with a function, the script goes up in the head
commands. Here, I would like to make a different suggestion.

05 0789726122_CH04 10/2/01 8:27 AM Page 98

99

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

If you’re going to open a second window, put the commands that do it down pretty low in
the HTML document. In fact, make them last. The reasoning is simple: The page loads—
then the new window pops up. If you have the commands first, the new window pops up
before the viewer gets to see what’s there in the big window. There’s also a greater chance
that the user will close the little window before it can be used.

That’s just my opinion, of course. You can actually place this script anywhere in the docu-
ment you want. It’ll run from wherever it sits. I just think the order of the window pop-
ping last is more beneficial to your viewers.

Let’s look at the basic window-opening code again:

<SCRIPT LANGUAGE=”javascript”>

window.open(‘opened.html’,’joe’,config=’height=300,width=300’)

</SCRIPT>

The code window.open couldn’t be more blatant. window is the object, and open is the
method that acts on it. That’s the easy part. Now you get to configure the window.

Configuring the Window
This is all that good stuff in the instance of the command (that’s the parentheses, remem-
ber?). Here’s the format you need to follow:

(‘URL of document in window’, ‘New Window Name’, config=’New Window Parameters’)

Here’s the command from the script with the current elements:

(‘opened.html’, ‘joe’, config=’height=300,width=300’)

opened.html is the URL of the page that will appear in the new window. If the page is
from your server, or in a different directory, you’ll need to add the http:// stuff or a
directory path so the browser can find it.

joe is the name of the new window. This will be important in a moment.

config= means that what follows will configure the window. Currently, there are only
a couple of configuration settings—the height and the width of the window—but
there are many more window parameters you can set.

The Config Commands
The config commands in this script open a new window that is 300 pixels wide by 300
pixels tall.

Numerous features work under the config= command. height and width are two you already
know. They work by adding the number wide by number tall in pixels. The remainder of

05 0789726122_CH04 10/2/01 8:27 AM Page 99

JavaScript Goodies

100

these commands all work using yes or no, depending on whether or not you want to
include the element in your page. Remember that even if you use every one of these attrib-
utes, you should be sure to run them all together just as you did the height and width in
the sample script. A space equals an error. Here are the Config commands and what they do:

toolbar=—The toolbar is the line of buttons at the top of the browser window that
contains Back, Forward, Stop, Reload, and other buttons.

menubar=—The menu bar is the line of items labeled File, Edit, View, Go, and so on,
which gives the user access to menus of options.

scrollbars=—I wouldn’t make a new window that would need scrollbars. I think it
kills the effect.

resizable=—Denotes whether the user can change the size of the window by drag-
ging the window’s resize area.

location=—The location bar is the space at the top of the browser window where the
page URL is displayed.

directories=—This is the bar at the top of the Netscape browser window that has the
bookmarks and such.

status=—Denotes whether the window will contain a status bar.

Here’s an example of what code would look like using some of these commands:

(‘opened.html’, ‘joe’, config=’height=300,width=300,

➥toolbar=no,menubar=0,status=1’)

You should notice that for the toolbar, no is used because we didn’t want one. For the
menu bar and status bars, we used 0 and 1. Which is right?

Well, you can use either. Remember that JavaScript counts everything … and … it starts
counting from 0. To JavaScript, 0 means no, and 1 means yes.

Of course, you can always use the words yes and no. I just wanted to make you aware that,
once again, JavaScript was counting and it was counting up from 0.

What About the Title Bar?
In case you’re wondering whether you can lose the title bar, and apparently you are, the
answer is no. That’s a given. You get it, like it or not.

Tags in the New Window
The new window that pops up can be more than a frame for the HTML document that is
posted inside. As you can see from the new window in this lesson’s example, I made the
background a nice greenish-blue. Also, there were two links.

05 0789726122_CH04 10/2/01 8:27 AM Page 100

101

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

The first link opens the HTML Goodies site in the main window. This is the code that
makes it happen:

Whether you know it or not, the big window has a name, main. There’s no need for you to
name it main—that’s already done from the start for you. It’s the default name of the big
window. In fact, it has two names: parent and opener. If you use either one of them as the
target, the output of the hypertext link in the new window will display in the big window.
It’s another little extra from the friendly folks at JavaScript, Inc. (Netscape, actually. It
invented JavaScript.)

All I did was add the command TARGET=”--” to the <A HREF> flag and enter parent to indi-
cate where the page should load.

But what if you wanted the page to load in the small window? In that case, you would add
nothing. You should know from basic HTML that any hypertext link, by default, loads into
its own window. Just make a link to appear in the little window and when your user clicks,
the page will display in the little window.

Multiple Windows
You can actually have multiple windows by adding multiple window.open commands. Just
be sure to give each window a different name. Then, you can have links from window to
window, as long as you continue to target the links correctly.

Suppose you have this code on your main window page:

<SCRIPT LANGUAGE=”javascript”>

window.open(‘opened.html’,’joe’,config=’height=300,width=300’)

</SCRIPT>

<SCRIPT LANGUAGE=”javascript”>

window.open(‘nextopened.html’,’andree’, config=’height=300,width=300’)

</SCRIPT>

Two windows will pop up. Then, as long as you set the links correctly, you could target
links from one window to the next. This HTML code, which shows up in the small window
named joe, would target a link to open in the second small window named andree:

Click

As long as you keep the names straight, you can target your links to the main window or
any one of the smaller windows that have opened.

05 0789726122_CH04 10/2/01 8:27 AM Page 101

JavaScript Goodies

102

Closing the Window
In the original example for this lesson, the second link on the new window closed it.
Here’s the format to do that:

Click To Close

It’s a basic <A HREF> link that points to nothing. See the empty quotation marks following
the HREF=? Setting the link to point to nothing disallows another page to load. The com-
mand that actually closes the window is onClick=”self.close()”.

self is a property of window, whereas the command close is a method that does the dirty
work.

Some people would rather their windows not be closed by a simple link. They believe a
button looks much more official, and there’s some merit in that. If you would rather use a
button to close your window, here’s the code:

<FORM>

<INPUT TYPE=”button” VALUE=”Click to Close the Window” onClick=”self.close()”>

</FORM>

One More Thing—Opening the Window on Call
Let’s say you wanted to open a window on command rather than just having it simply
happen when the person logs in. Try this:

<SCRIPT LANGUAGE=”javascript”>

function openIt()

{

window.open(‘000.html’, ‘joe’, config=’height=300,width=300’);

}

</SCRIPT>

Click to open New window

It’s a small function that contains the commands to open a new window. I only have the
height and width in there, but any of the config commands will fit.

Then, a basic hypertext link is set to enact “javascript”. That JavaScript command is an
onClick that triggers the function. I know I say that usually functions sit up in the HEAD for
the document, whereas the HTML that calls for them sits in the BODY. If you want to set
this code up that way, fine; the browser won’t care. I, however, simply drop the whole
block of code—function and all—right where I want the link to go.

05 0789726122_CH04 10/2/01 8:27 AM Page 102

103

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

You just need to be sure that the function sits above the link in the code. If you keep the
format shown previously, you’ll have no troubles.

Your Assignment
I didn’t get a chance to show you all the extra little functions that are available in action.
So, your assignment is to write a script that opens a new window incorporating every one
of these features:

Make the window 300 pixels tall by 500 pixels wide.

Include a location bar and a status bar.

Don’t include a toolbar, menu bar, scrollbar, or directories.

Make the new window resizable.

There should be two links:

One opens a new page in the main window.

The second page opens a new page in the same window.

The second page that opens in the small window should have the links to close the
window.

Oh, and make the background yellow (ffff00).

To see a possible answer on your own computer, click Lesson Nineteen Assignment in
your download packet, or see it online at http://www.htmlgoodies.com/JSBook/
assignment19.html.

Lesson 20: Opening a Window with a Function
In Lesson 19, earlier in this chapter, you opened a new window using the window.open com-
mand. That window was then filled with a different HTML document you named in the
instance.

Here, you’ll create a new window function where the new window, and all its contents,
will be carried along in the same HTML document. It is literally the equivalent of two
pages in one.

Lessons 17 and 18 discussed preloading images for your image flips. Think of this as pre-
loading a second page. Here’s the sample script:

<SCRIPT LANGUAGE=”javascript”>

function openindex()

{

05 0789726122_CH04 10/2/01 8:27 AM Page 103

JavaScript Goodies

104

var OpenWindow=window.open(“”, “newwin”, “height=300,width=300”);

OpenWindow.document.write(“<HTML>”)

OpenWindow.document.write(“<TITLE>New Window</TITLE>”)

OpenWindow.document.write(“<BODY BGCOLOR=’00ffff’>”)

OpenWindow.document.write(“<CENTER>”)

OpenWindow.document.write(“ New Window<P>”)

OpenWindow.document.write(“”)

OpenWindow.document.write(“This will open
 in the main window<p>”)

OpenWindow.document.write(“<P><HR WIDTH=’60%’><P>”)

OpenWindow.document.write(“

➥ This closes the window<p>”)

OpenWindow.document.write(“</CENTER>”)

OpenWindow.document.write(“</HTML>”)

}

</SCRIPT>

And in the BODY command is this code:

onLoad=”openindex()”

The script’s effect is exactly the same as in Lesson 19, as you can see in Figure 4.6. The
same size window opens and contains the same two links. The difference is that it was all
done with one page.

Figure 4.6
This script opens a new
window.

05 0789726122_CH04 10/2/01 8:27 AM Page 104

105

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

You can try the script yourself by clicking Lesson Twenty Script’s Effect in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson20example.html.

Deconstructing the Script
The main script, the code between the <SCRIPT> and </SCRIPT> that contains the function,
is placed between the <HEAD> and </HEAD>, as are most functions.

The function is named openindex(), in the normal fashion.

Then, the braces surround what the function will do when called on.

Now we get to the meat of the script. The variable OpenWindow is created to represent the
window.open(“instance”) command. It looks like this:

var OpenWindow=window.open(“”, “newwin”, “height=300,width=300’);

The format is familiar. The only real difference is that there is no URL writing the first set
of quotation marks. See the empty double quotation marks? They tell the browser to look
to the script to find the new window information, rather than looking for another page
somewhere on the server.

It’s very similar to not placing a URL in the command that closed the window. It wouldn’t
close if it had something to load. Same here—it wouldn’t look to the script if it had some-
thing else to load.

Now you start to build the HTML page that will go inside the new window. Here’s the first
line of text:

OpenWindow.document.write(“<HTML>”)

This format should also look somewhat familiar. The command is saying that this line of
text should be written on the variable OpenWindow (the new window).

Look back at the full script. That format is followed again and again, writing line after line
of text. There’s no reason there can’t be hundreds of lines of text creating a fully function-
ing HTML document.

I would suggest again that you pay close attention to the double and single quotation mark
patterns.

Finally, the function is triggered in the BODY command through an onLoad event handler.

05 0789726122_CH04 10/2/01 8:27 AM Page 105

JavaScript Goodies

106

Getting the Window on Call
Maybe you don’t want this window to open when the page loads. The effect might be bet-
ter if the page opened when the user clicked a link or a button.

You would follow the same patterns outlined in Lesson 19, except here the user’s click
would activate the function rather than call for a new window.

Here’s the format for a hypertext link that opens the window:

Click To Open ‘joe’

And here’s the code for the button:

<FORM>

<INPUT TYPE=”button” VALUE=”Click to Open a New Window” onClick=”openindex()”>

</FORM>

Your Assignment
For this assignment, you’ll create a window that opens using a function. Please make the
document that appears in the window have a green background.

In addition, make the TITLE command read Hello user name - Here is your window! You
can gather the user’s name through a prompt. Of course, make a link that closes the win-
dow.

The big concern now is where to put the prompt. Think about when you want it to appear.
If you want the prompt to appear when the user first enters the page, put it in the docu-
ment outside the function. If you want the prompt to appear when the new window is
called for, put it in the function. Put it first in the function.

To see a possible answer on your own computer, click Lesson Twenty Assignment in your
download packet, or see it online at http://www.htmlgoodies.com/JSBook/
assignment20. html.

Lesson 21: The confirm() Method, with an Introduction to
if and else
The confirm() method acts very much like the alert() method, except confirm() adds a
Cancel button to the dialog box. You should use alert() to simply pass along information
to the user. confirm() is best for when you want some feedback.

If you use the confirm() method by itself, it doesn’t do much except post the OK and
Cancel buttons. No matter which button you choose, you go in.

05 0789726122_CH04 10/2/01 8:27 AM Page 106

107

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

Add the if and else commands, and you start to get some neat effects.

First, let’s look at the basic format. This script doesn’t do much:

<SCRIPT LANGUAGE=”javascript”>

confirm(“Are you sure you want to enter?”)

</SCRIPT>

Look familiar? It should. It’s the same format as an alert(), except the word confirm is used
instead of alert. Figure 4.7 shows an example of what this little script does.

Figure 4.7
The script displays a
confirm box.

You can try the confirm box yourself by clicking Lesson Twenty-One Script’s Effect One in
your download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson21example.html.

As you saw, if you looked, no matter which button you click, you got to see the page load.

Now here’s the same script with some new additions:

<SCRIPT LANGUAGE=”javascript”>

if (confirm(“Are you sure you want to enter Effect Two?”))

{

location.href=’lesson21effect2c.html’

alert(“Good choice”)

}

else

{

05 0789726122_CH04 10/2/01 8:27 AM Page 107

JavaScript Goodies

108

alert(“Then you’ll stay right here”)

}

</SCRIPT>

You can see what you get in Figure 4.8. The effect works best if you are coming from
another page to see it. When you open the page listed previously, you’ll get a link. Click
the link, and then you’ll see the effect.

Figure 4.8
The confirm box after
clicking OK.

You can try the second confirm box yourself by clicking Lesson Twenty-One Script’s Effect
Two in your download packet, or see it online at http://www.htmlgoodies.com/
JSBook/lesson21effect2.html.

Now we’re getting somewhere. Here’s a link that asks you whether you want to enter.
Except this time, if you click OK, you’ll enter the site. If you click Cancel, you won’t.

Three pages are actually involved in the effect:

The page with the Click To Go! link.

The page that contains the confirm script. This page displays if the user clicks Cancel.
In the preceding example, if this page loads, the text “Chicken!” shows up.

The page that displays if the user clicks OK. This is the page URL in the confirm
script.

Try the script again. See whether you can pick out the three pages.

05 0789726122_CH04 10/2/01 8:27 AM Page 108

109

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

Deconstructing the Script
The process of the script is quite logical, as is all JavaScript. First, the script makes the state-
ment:

if (confirm(“Are you sure you want to enter HTML Goodies?”))

The if means, “Here is your chance to make a choice.”

Before going on, look at the multiple uses of parentheses. The if statement always has an
instance, and that means parentheses. But you also know that confirm(), too, has paren-
theses. That’s fine. Just use the parentheses like you normally would, and you’ll get the pre-
vious look. Notice how the parentheses from the if command simply surround the entire
confirm() method, including its parentheses. Let’s get back to the script.

Because this is a choice, options are available. In this case, a confirm() method is used to
offer two choices—OK and Cancel. I think of them as yes and no.

Immediately following the if statement are the commands to be carried out for each
choice. Please notice the commands are encased inside those lovely little braces ({}).
Because curly brackets are involved, you might think that what is encased is a function. I
guess if you want to think of it that way, that’s fine, but technically it isn’t. That’s just the
format of an if statement. The commands in the first set of braces are what should happen
if the user clicks OK:

{

location.href=’lesson21effect2c.html’

alert(“Good choice”)

}

The line location.href creates a link. If that’s the choice the user makes, you have a basic
alert proclaiming Good Choice.

But what if the user clicks Cancel? You already know that the commands that immediately
follow the if statement are what occur if the user clicks OK.

Notice that right after the first set of braces ends, the word else pops up.

Think of the command else as meaning if not. So, the code

else

{

alert(“Then you’ll stay right here”)

}

means if not, post the alert message and do not change the page.

05 0789726122_CH04 10/2/01 8:27 AM Page 109

JavaScript Goodies

110

Put it all together, and you get the effect of giving the user a choice—enter or don’t enter.
And you’ve also set up an event to occur either way.

Your Assignment
Don’t get nervous! You can do this. Your assignment is to turn the commands discussed
here into a function. Oh, and make it so that when the user chooses not to go in, not only
does the alert pop up, but the status bar of the window reads Chicken!

If you really want to be fancy, when the person clicks OK, make the page open up on a
new window.

To see a possible answer on your own computer, click Lesson Twenty-One Assignment in
your download packet, or see it online at http://www.htmlgoodies.com/JSBook/
assignment21.html.

By the way, to see the answer, you actually have to click the Cancel button. Sorry about the
“Chicken!” in the status bar. I mean it in the nicest way.

Lesson 22: The Fourth End-of-Chapter Review—Some
Jumping Jacks
The scripts and commands in this chapter are real crowd pleasers, so this should be a pret-
ty good end-of-chapter wrap-up.

The following lists the commands you’ve learned so far. Read them over and start thinking
about how you could use them to create something new and functional to use on your
pages.

Table 4.1 contains the object-related JavaScript commands we’ve discussed. In addition,
you’ve been introduced to these other JavaScript concepts:

The alert(), confirm(), and prompt() methods

The if/else conditional statement

These event handlers: onBlur, onChange, onClick, onDblClick, onFocus, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, and onSubmit

The HTML 4.0 flag

Creating variable names

Creating a function

05 0789726122_CH04 10/2/01 8:27 AM Page 110

111

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

Table 4.1 Object-Related JavaScript Commands Demonstrated in
Chapters 1–4
Object Methods Properties
date getDate(),

getDay(),
getHours(),
getMinutes(),
getMonth(),
getSeconds(),
getYear()

document write() alinkColor, bgColor, fgColor,
linkColor, lastModified, location,
referrer, title, vlinkColor

history go() length

location host, hostname, href
navigator appCodeName, appName, appVersion,

userAgent

window close() defaultstatus, directories, location,
menubar, resizable, self, scrollbars,
status, toolbar

Here’s a script that puts some of the JavaScript commands to work:

<FORM>

<INPUT TYPE=”button” VALUE=”Jump!”

onClick=”document.jj.src=’up.gif’, window.status=’Put me down!’; return true”>

<INPUT TYPE=”button” VALUE=”Stop”

➥ onClick=”document.jj.src=’down.gif’, window.status=’Thank you!’”>?

</FORM>

We’re using Andree’s wonderful artwork again for this one. You already know how to make
the jumping jack images work as an image flip. This script enables your user to decide
when the person jumps by clicking form buttons, as you can see in Figure 4.9. Better yet,
the little image yells at the person clicking the buttons in the status bar.

You can try the manual jumping jacks yourself by clicking Lesson Twenty-Two Script’s Effect
One in your download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson22effect.html.

05 0789726122_CH04 10/2/01 8:27 AM Page 111

JavaScript Goodies

112

Deconstructing the Script
What you’ve got here is basically something that’s fun. Stop and think about the uses of
changing an image when a click occurs. You could make one of the images a solid color—
for example, the same color as the background so that when the user clicks, it appears as if
the image comes up out of nowhere.

You could use one of the buttons as a link and have the image change when the user
clicks. It would be great for clicks where the user stays at the same page. A link to a file to
be downloaded is a good example.

The concept I want to get across here is that images and the items that control them do
not have to be in the same HTML flag like the image flips.

As long as you keep the names equal in the hierarchy statements, you can separate the but-
tons and the images completely, as has been done here.

Let’s break it down.

The Form Buttons
The code for the form buttons looks like this:

<FORM>

<INPUT TYPE=”button” VALUE=”Jump!”

onClick=”document.jj.src=’up.gif’, window.status=’Put me down!’; return true”>

Figure 4.9
Manual jumping jacks.

05 0789726122_CH04 10/2/01 8:27 AM Page 112

113

Chapter 4 ➤ Flipping Images and Opening Windows with Mouse Events

<INPUT TYPE=”button” VALUE=”Stop”

➥onClick=”document.jj.src=’down.gif’; window.status=’Thank you!’”>?

</FORM>

The only reason one <FORM> and one </FORM> flag are used to make the two buttons is
because that allows the buttons to sit on the same line. If separate <FORM> and </FORM> flags
were used for each button, they would have stacked on top of each other.

Changing the Image
Here’s the code that creates the image flip:

onClick=”document.jj.src=’up.gif’

You should recognize the onClick event handler by now, but the hierarchy statement
might still be a little new. Let’s take it piece by piece, biggest to smallest, left to right:

document is the HTML document the buttons and images sit on.

jj is the name you have assigned to the image command.

src stands for the source of the image.

After an equal sign, the image name—or URL if necessary—is written in.

The Text in the Status Bar
The text in the status bar is produced at the same time as the click, so you get that
window.status command right next to the onClick event handler, separated by a comma.
It looks like this:

, window.status=’Put me down!’; return true”

The return true statement ensures the text will act only when the click occurs.

The second button is put together the same way, but is calling for the original image. Thus,
it appears you are putting the jumping jacks man down.

The Image
The image code should look pretty familiar:

The NAME attribute is used to connect this image with the buttons that sit just above it. In
the hierarchy statement in the buttons, the name jj was used. Here you can see how jj
was connected to the image.

05 0789726122_CH04 10/2/01 8:27 AM Page 113

JavaScript Goodies

114

Now, see whether you can think of a few more interesting ways to use the button to image
link. There have to be a hundred good things that can come out of my giggling at the little
stick figure screaming for me to stop.

Your Assignment
As always, your assignment is to look over the commands you’ve learned and create some-
thing new, interesting, and functional to put on your Web page. But as always, I make a
suggestion.

Can you alter the confirm() script in Lesson 21 so that when the user clicks Cancel, he is
taken back one page?

That way, the user would go back to where he came from, rather than to the page that con-
tains the script loading. Try it.

To see a possible answer on your own computer, click Lesson Twenty-Two Assignment in
your download packet, or see it online at http://www.htmlgoodies.com/JSBook/
assignment22.html.

05 0789726122_CH04 10/2/01 8:27 AM Page 114

Forms: A Great
Way to Interact
with Your Users

Chapter 5

This chapter contains the following lessons and scripts:

Lesson 23: What Is Written in the Text Box?

Lesson 24: Passing Information to the Function

Lesson 25: Calling Functions with Forms

Lesson 26: Form Fields and the Value Property

Lesson 27: Pull-Down Menu of Links

Lesson 28: A Guestbook with All the Bells and Whistles

Lesson 29: The Fifth End-of-Chapter Review—Posting Link Descriptions While Users
Pass Over

Until this point, you have gathered information from the user mostly through a prompt.
This chapter looks at using JavaScript commands along with HTML form flags. Users will be
able to enter their data into form fields and send the results along to you or use the form
elements as new methods of choosing links.

I should state here that the following forms are all simply mailto: format scripts. We have
not gone as far as attaching the output of the script to a CGI, as is commonplace today.

I mention that because Internet Explorer and Netscape Navigator handle mailto: forms dif-
ferently. Netscape browsers enable you to submit a mailto: form and have the information

06 0789726122_CH05 10/2/01 8:36 AM Page 115

JavaScript Goodies

116

sent to an e-mail address as a packet. Internet Explorer, on the other hand, most likely
opens a new mail message in whatever mail program you’re using.

Supposedly, IE 4.0 and better act on forms as Netscape does, but the user must have filled
out all the mail preferences for it to work. You can’t always be sure of that.

The possibilities of what you can do with JavaScript and HTML forms are endless. Just
remember that when using a form to submit information, IE users might have some trouble.

Lesson 23: What Is Written in the Text Box?
When you are dealing with form elements, there are three basic JavaScript events you want
to be able to perform:

Extract the information from the fields so you can use it for other purposes.

Display information in a form element.

Send the information to yourself via e-mail.

This lesson deals with the first event. Someone has written something into a form field on
your HTML document, and now you want to extract and display back to that person what
she wrote in the field.

In this lesson, pay close attention to how the form elements are named and the format of
the JavaScript hierarchy statement. Those two elements are, by far, the most important con-
cepts in this lesson—and possibly this chapter.

The sample script is being displayed in full HTML format to show the placement of the ele-
ments:

<HTML>

<HEAD>

<TITLE>Lesson 23</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>

function readit()

{

alert(“You wrote “ + document.myform.thebox.value + “ in the box.”)

}

</SCRIPT>

</HEAD>

<BODY>

<FORM NAME=”myform”>

Write something in the box. <INPUT TYPE=”text” NAME=”thebox”><p>

<INPUT TYPE=”button” VALUE=”Then Click Here” onClick=”readit()”>

</FORM>

06 0789726122_CH05 10/2/01 8:36 AM Page 116

117

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

</BODY>

</HTML>

In Figure 5.1, I’ve entered my name into the box and clicked the button.

Figure 5.1
Displaying text box data.

To see the effect on your own computer click Lesson Twenty-Three Script’s Effect in your
download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson23effect.html.

Deconstructing the Script
When you start working with forms, the uses of the hierarchy statement and NAME attri-
butes become very important. We will move through this script from top to bottom, often
referencing from the function to the form elements.

The Function
The function’s purpose in this script is to take the information written to the text box and
display it as part of an alert() box. It looks like this:

<SCRIPT LANGUAGE=”JavaScript”>

function readit()

{

alert(“You wrote “ + document.myform.thebox.value + “ in the box.”)

06 0789726122_CH05 10/2/01 8:36 AM Page 117

JavaScript Goodies

118

}

</SCRIPT>

The alert() format should be familiar. The new coding is the longer, more specific hierar-
chy statement representing what is written in the box. The hierarchy statement reads like
this:

document.myform.thebox.value

Without a more in-depth explanation, now let’s stop and look at the HTML form elements.
You need to become familiar with them to understand the hierarchy statement when we
discuss it again. The FORM code is as follows:

<FORM NAME=”myform”>

Write something in the box. <INPUT TYPE=”text” NAME=”thebox”><p>

<INPUT TYPE=”button” VALUE=”Then Click Here” onClick=”readit()”>

</FORM>

Here is each line of the form and what it means:

<FORM NAME=”myform”> is the overriding form command that starts the entire form
process. The NAME= attribute gives the entire form a name. You must do this even if
only one form is on the page—every form must have an overriding name.

<INPUT TYPE=”text” NAME=”thebox”> is the name of the form element you are most
concerned with. This is the element where I typed in my name. The NAME= attribute in
this case gives a name to the form element.

Now the form itself has a name, and the form element has a name. It is important
that you make that separation in your mind. The form is now named myform, and the
specific form element is named thebox.

<INPUT TYPE=”button” VALUE=”Then Click Here” onClick=”readit()”> is the button
the user clicked to get the alert. The JavaScript in this button is an event handler that
calls on the previous function, onClick=”readit()”.

</FORM> ends the HTML form section of the script.

Back to the Hierarchy Statement
Here is the hierarchy statement from the function, one more time:

document.myform.thebox.value

Remember that in hierarchy statements, things go from biggest to smallest, left to right. In
this case, the hierarchy statement is narrowing down the items on the page until we get to
the specific text I typed in the box:

06 0789726122_CH05 10/2/01 8:36 AM Page 118

119

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

document refers to the HTML document sitting inside the browser window.

myform is the name of the form on the page. Again, because only one form is on the
page, this seems unnecessary, but this is JavaScript. You have to follow the syntax.

thebox is the name of the text box form element where I typed in my name.

value is the JavaScript representation of what I typed in the box.

Now here’s the entire alert() command from the previous function:

alert(“You wrote “ + document.myform.thebox.value + “ in the box.”)

The format is very similar to what you did in earlier lessons. You gathered information
from the user—usually in the form of a prompt—and then returned that value to the page
through an alert() or a document.write.

This is exactly the same method, except you are gathering the text written into a text box
through a hierarchy statement pointed right at the value.

The more things change, the more they stay the same.

The Entire Process
So, what is happening in this JavaScript?

The function is loaded into the browser’s memory, but nothing is actually done with it. It
isn’t needed until the form button is clicked.

After something is typed into the form box, the user then clicks the button.

The button click triggers the function, which starts to post an alert box. However, if the
button isn’t clicked, nothing happens. But let’s assume the user clicks the button. The text
of the alert box calls for the value of a form element, thebox, inside a form, myform, on the
current document.

After that data is retrieved, the alert box is posted—end of JavaScript.

Your Assignment
Your assignment should take a little bit of brainpower. Take the preceding script, and add a
second text box to it. You’ll have to assign it a NAME, of course.

Then, get the alert button to pop up and read Hello firstname lastname!

You’ll get extra points if you can turn the long hierarchy statements into variable names.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Twenty-Three Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment23.html.

06 0789726122_CH05 10/2/01 8:36 AM Page 119

JavaScript Goodies

120

Lesson 24: Passing Information to the Function
Now that you understand the concept of how to extract the value from a form item, let’s
play with it a bit. This lesson’s script posts a series of alert boxes that tell you the values in
the boxes, change the text to all uppercase, and then change it to all lowercase.

After all the alert boxes have finished, text will show up in a third text box thanking the
user for watching the show.

The concept is this: If you can take information out of a form element, you can certainly
put it back. Here’s the code:

<SCRIPT LANGUAGE=”JavaScript”>

function readitagain()

{

var greeting=”Hello “

alert(greeting + document.myform.fname.value + “ “ + document.myform.lname.value)

alert(“length of first name “ + document.myform.fname.value.length)

alert(“First name in ALL CAPS: “ + document.myform.fname.value.toUpperCase())

alert(“Full name in all lowercase letters: “

➥ + document.myform.fname.value.toLowerCase() + “ “

➥ + document.myform.lname.value.toLowerCase())

document.myform.receiver.value= (“Thanks “ + document.myform.fname.value + “.”)

}

</SCRIPT>

<FORM NAME=”myform”>

What is your First Name? <INPUT TYPE=”text” NAME=”fname”><p>

What is your Last Name? <INPUT TYPE=”text” NAME=”lname”><p>

<INPUT TYPE=”button” VALUE=”Submit” onClick=”readitagain()”><P>

Look Here after Alert Boxes: <INPUT TYPE=”text” NAME=”receiver”><P>

</FORM>

Figure 5.2 shows the script’s effect.

You can try the script for yourself by clicking Lesson Twenty-Four Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson24effect.
html.

06 0789726122_CH05 10/2/01 8:36 AM Page 120

121

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

Deconstructing the Script
Let’s start at the bottom and work our way back up the scale of the script. Here are the four
form elements first:

<FORM NAME=”myform”>

What is your First Name? <INPUT TYPE=”text” NAME=”fname”><p>

What is your Last Name? <INPUT TYPE=”text” NAME=”lname”><p>

<INPUT TYPE=”button” VALUE=”Submit” onClick=”readitagain()”><P>

Look Here after Alert Boxes: <INPUT TYPE=”text” NAME=”receiver”><P>

</FORM>

The entire form has been named myform. That goes first, immediately following
document in the hierarchy statement.

The first text box is named fname. It contains the first name, which makes sense.

The second text box is named lname. It contains the last name. Again, that’s logical.

The input button is the familiar format. It is used to trigger the earlier function you
called readitagain().

The third text box is named receiver because it receives something from the func-
tion.

Okay, now you know the players, so let’s get to the plays found in the function.

Figure 5.2
This alert box changes a
name to lowercase letters.

06 0789726122_CH05 10/2/01 8:36 AM Page 121

JavaScript Goodies

122

The Alert Boxes
Probably the easiest way to break down this script is to look at each element in the func-
tion. You might have already noticed that the function is a long list of alerts that run one
right after the other.

Finally, there’s a hierarchy statement pointing at something. We’ll look at that last. But
first, here are the alerts:

var greeting=”Hello “

alert(greeting + document.myform.fname.value + “ “ + document.myform.lname.value)

The first alert shown in the preceding code uses a variable greeting to place the word Hello.
Do you find it funny that the variable name is longer than the actual word and space it’s
representing? Me, too, but all this is to teach, so that’s how we did it.

Then, the first and last name are called for from the text boxes using the full hierarchy
statements.

No surprises here:

alert(“length of first name “ + document.myform.fname.value.length)

Here’s something new. The alert posts the length, in letters, or whatever is entered in the
first text box.

You might have taken it from the earlier lesson that value was at the end of the hierarchy
food chain when it came to forms. That was true for that lesson, but not for all of
JavaScript. value has a couple of properties, actually; its length is just one of them. The
JavaScript counts the letters, spaces, and any symbols in the value and posts the number it
comes up with.

Luckily, in this case, JavaScript does not start counting at 0.

Once again, you see a familiar hierarchy statement with something stuck on the end of it:

alert(“First name in ALL CAPS: “ + document.myform.fname.value.toUpperCase())

This statement takes the information from the first name box and changes all the letters to
uppercase.

It’s done by attaching the toUpperCase() method on the very end. Please note that
toUpperCase() is a method, and you need those parentheses at the end.

If you can change letters to uppercase, it follows logically that you can change them to
lowercase:

06 0789726122_CH05 10/2/01 8:36 AM Page 122

123

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

alert(“Full name in all lowercase letters: “

➥ + document.myform.fname.value.toLowerCase() + “ “

➥ + document.myform.lname.value.toLowerCase())

It’s done by following the same formula shown earlier, but you change the method at the
end to toLowerCase(). Again, note the parentheses because toLowerCase() is a method.

Writing to the Text Box
Now you get to the most interesting part of this script. How did we get that text to show
up in the text box? Here’s the line of code that did it:

document.myform.receiver.value= (“Thanks “ + document.myform.fname.value + “.”)

The concept is fairly straightforward. When you use the hierarchy statement
document.myform.receiver.value as a return, you get the value of the text box returned.

But if you turn the process around and use the hierarchy statement as a target, as is being
done in the previous code, the statement places the value rather than returning it.

That’s why the text in the instance pops into the box.

Your Assignment
Okay, smart person! Try to do this one:

Create a script that has two prompts. The first prompt asks for a name, whereas the
second one asks for a home state.

After the two prompts have been filled in, two text boxes and a button should appear.

When the user clicks the button, the first text box should read Your name is name.

The second box should read You are from state.

Both effects should occur with one click of the button.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Twenty-Four Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment24.html.

Lesson 25: Calling Functions with Forms
At face value, this lesson’s script might seem rather simple, but its workings are quite new
and rather important. Up until now, the functions you created have been stable—they
couldn’t be altered by the user.

This script allows your users to pass information from form elements to the function itself
before the function runs.

06 0789726122_CH05 10/2/01 8:36 AM Page 123

JavaScript Goodies

124

The following script again shows the full HTML document. (Forms always begin with
<FORM> and end with </FORM>. No surprises here yet, just good old HTML!) Here’s the code:

<HTML>

<HEAD>

<SCRIPT LANGUAGE=”JavaScript”>

function newcolor(color)

{

alert(“You Chose “ + color)

document.bgColor=color

}

</SCRIPT>

</HEAD>

<BODY>

<h3>Select a Background Color</h3>

<FORM>

<INPUT TYPE=”button” VALUE=”Blue” onClick=”newcolor(‘lightblue’)”>

<INPUT TYPE=”button” VALUE=”Pink” onClick=”newcolor(‘pink’)”>

</FORM>

</BODY>

</HTML>

As you can see in Figure 5.3, this script uses form buttons to enable users to choose a back-
ground color, either blue or pink.

Figure 5.3
Describing the change in
color in a message box.

06 0789726122_CH05 10/2/01 8:36 AM Page 124

125

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

You can try the script for yourself by clicking Lesson Twenty-Five Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson25effect.
html.

Literals
We mentioned this term in passing before, but now you can add it to your JavaScript
vocabulary. A literal is a data value that appears directly in a program and can be a string in
double or single quotation marks, a value, or numbers. Even NULL is considered to be a lit-
eral. Just remember that a literal is solid; it can’t be altered.

String
A string is any run of letters or numbers within single or double quotation marks.
Therefore, the following section from the sample script defines the literal string lightblue:

onClick=”newcolor(‘lightblue’)

You might now ask, so what? Well, the so what is this: When you place text into a format
like this, it becomes a literal, and you can’t then use the text for something else.

Let’s say you set up this script with literals such as document.title and Date(). You know
that you want the page title and the full date returned, but JavaScript doesn’t see it like
that. It sees those commands only as text, just as they’re written and not what they would
normally represent. Therefore, it displays them as such, and you get Date() written to the
page rather than what Date() would normally return.

Go ahead—try it. Drive yourself nuts.

Deconstructing the Script
Here are the script’s input items again:

function newcolor(color)

{

alert(“You chose “ + color)

document.bgColor=color

}

<form>

<INPUT TYPE=”button” VALUE=”blue” onClick=”newcolor(‘lightblue’)”>

<INPUT TYPE=”button” VALUE=”Pink” onClick=”newcolor(‘pink’)”>

</form>

06 0789726122_CH05 10/2/01 8:36 AM Page 125

JavaScript Goodies

126

Here’s the basic concept: You are passing a literal string, ‘lightblue’ or ‘pink’, to the func-
tion newcolor(color).

Basically, the function is waiting until it is called on and given the information it needs to
perform.

Remember that in all functions up until this point, the parentheses were empty. The func-
tion had all the parts it needed. Here, however, it does not have the required parts, and it
won’t until someone clicks a button.

Look again at the form button code. The buttons contain the function format in their
onClick=, but this time the function has the data it needs: a color command.

Think of it this way: The function line at the top of the script is sitting there with a vari-
able name inside the function instance. Here, it’s color. When a user triggers the onClick
in the button, the same function name is used. But this time, there is a real color name in
the instance, and it is assigned the variable name it replaced—color.

So, how does the JavaScript know that the word color in the original function is only a vari-
able name? It doesn’t. In fact, the JavaScript never even looked at it. The function text was
loaded into memory, but until it’s triggered by the button, the function never runs.

That’s good to know because we’ve set up a basic template, function(). Every time the user
clicks, the function is given a new function() header, but the function() is run with the
new value in the parentheses, lightblue or pink.

If you set up your onClicks to include the same text as the function, when the click is
made, the onClick function() statement replaces the old function line and assigns the vari-
able name to the new string brought up from the button.

Until now, functions were static. They did what they were written to do. Now you can write
functions with a function() header and let the user pass along what she wants to happen.

This is a fairly difficult concept to grasp, but look over the script again, and follow its path
from the button back up to the top of the function.

Your Assignment
Alter the script in this lesson so that you now have three buttons: blue, yellow, and green.
Make the same background effect occur, but lose the alert button and post a text box.

When you click one of the color buttons, the background color should change right away
and the text box should read You Chose color.

You’ll get bonus points if you change all the variable names to new words.

06 0789726122_CH05 10/2/01 8:36 AM Page 126

127

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

You can see a possible answer to this assignment on your own computer by clicking Lesson
Twenty-Five Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment25.html.

Lesson 26: Form Fields and the Value Property
This lesson takes the last one a little further. You’ll transfer information into the function
again, but this time you’ll transfer a string the user enters into a field. The string will then
be used to create a hypertext link and send a search to Yahoo!:

<SCRIPT LANGUAGE=”JavaScript”>

function Gofindit()

{

var searchfor = document.formsearch.findthis.value;

var FullSearchUrl = “http://av.yahoo.com/bin/query?p=” + searchfor ;

location.href = FullSearchUrl;

}

</SCRIPT>

<FORM NAME=”formsearch”>

Search Yahoo for: <INPUT NAME=”findthis” SIZE=”40” TYPE=”text”>

<INPUT TYPE=”button” VALUE=”Go Find It” onClick=”Gofindit()”>

</FORM>

Figure 5.4 shows the script in action.

Figure 5.4
The form is ready to search
Yahoo!

06 0789726122_CH05 10/2/01 8:36 AM Page 127

JavaScript Goodies

128

You can try the script for yourself by clicking Lesson Twenty-Six Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson26effect.
html.

Deconstructing the Script
Do you remember that at the very beginning of this chapter I said there were two main
reasons for using forms?

The first reason is to accept and manipulate input from your users. The second is to allow
information to be sent back to you or around the Internet.

We have arrived at reason number two.

The Function
The function Gofindit() is created in the normal fashion:

function Gofindit()

{

var searchfor = document.formsearch.findthis.value;

var FullSearchUrl = “http://av.yahoo.com/bin/query?p=” + searchfor ;

location.href = FullSearchUrl;

}

That’s a good title for this one, don’t you think?

Three variables are set up. This is a wonderful example of one variable building from the
one before it.

The first assigns searchfor to a hierarchy statement representing the text box where the
user will enter his keyword. At this point, assuming everything is correct, you should be
able to pick out that the name of the form must be formsearch and the name of the text
box must be findthis.

Another variable is created: FullSearchUrl. FullSearchUrl is the address to Yahoo’s search
engine, plus the variable you just created representing the value of the text box.

Finally, location.href is assigned FullSearchUrl, which represents the entire URL and
input, a string literal, from the user.

By going to all this trouble, you get the entire URL, plus the text input, down to one word
that you could easily put with location.href. It’s a very clean form of coding.

The HTML Form Code
Let’s move on to the FORM flags. There are two flags this time around. One is a text box that
receives a string from the user, and the other is a button that enacts the function.

06 0789726122_CH05 10/2/01 8:36 AM Page 128

129

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

It looks like this:

<FORM NAME=”formsearch”>

Search Yahoo for: <INPUT NAME=”findthis” SIZE=”40” TYPE=”text”>

<INPUT TYPE=”button” VALUE=”Go Find It” onClick=”Gofindit()”>

</FORM>

The entire form is named formsearch. The TEXT box has been named findthis. But you
knew that without looking.

The form button has the onClick=”Gofindit()” command that triggers the function.
Finally, be sure you have a </FORM> command to kill the form. Mission accomplished.

What Happens
The user enters a literal string to the box and clicks the button to begin the search. The
function is triggered, and the value is taken from the text box. The value is attached to the
Yahoo! URL, which connects and performs a search. The full URL is assigned a variable
name and given to a location.href command. The information is then sent on its way.

Your Assignment
Alter the script so that it uses a search engine other than Yahoo! Also, change the script so
that when the user clicks, an alert pops up that reads Going to Search....

You might have to go to a different search engine and look at its code to be able to do this
assignment.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Twenty-Six Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment26.html.

Lesson 27: Pull-Down Menu of Links
Ever since the HTML Goodies Web site first started putting up JavaScript examples, this has
been one of the most requested scripts. People just seem to love the look of it. It is nice.

This is a simple drop-down box made with form commands. You select the link you want
and click the button to complete the link, as you can see in Figure 5.5:

<SCRIPT LANGUAGE=”javascript”>

function LinkUp()

{

var number = document.DropDown.DDlinks.selectedIndex;

location.href = document.DropDown.DDlinks.options[number].value;

}

06 0789726122_CH05 10/2/01 8:36 AM Page 129

JavaScript Goodies

130

</SCRIPT>

<FORM NAME=”DropDown”>

<SELECT NAME=”DDlinks”>

<OPTION SELECTED>Choose a Link

<OPTION VALUE=”page.html”> Page One

<OPTION VALUE=”page2.html”> Page Two

<OPTION VALUE=”page3.html”> Page Three

</SELECT>

<INPUT TYPE=”BUTTON” VALUE=”Click to Go!” onClick=”LinkUp()”>

</FORM>

Figure 5.5
Selecting a link from a
drop-down list.

You can try the script for yourself by clicking Lesson Twenty-Seven Script’s Effect in your
download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson27effect.html.

Deconstructing the Script
Keep two concepts in mind as we go through this deconstruction:

JavaScript counts everything starting at 0.

If the HTML form element can’t accept a value, you assign it one.

06 0789726122_CH05 10/2/01 8:36 AM Page 130

131

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

The HTML Form Code
We’ll start this from the ground up. Here is the HTML form code:

<FORM NAME=”DropDown”>

<SELECT NAME=”DDlinks”>

<OPTION SELECTED>Choose a Link

<OPTION VALUE=”page.html”> Page One

<OPTION VALUE=”page2.html”> Page Two

<OPTION VALUE=”page3.html”> Page Three

</SELECT>

<INPUT TYPE=”BUTTON” VALUE=”Click to Go!” onClick=”LinkUp()”>

</FORM>

Let’s get the vitals out of the way first:

The name of the entire form is DropDown. It is a name I assigned it.

The name of this SELECT form element is DDlinks. It stands for drop-down links and is a
name I assigned.

The first OPTION flag is not part of the Links menu simply because I chose to not make
it part of the Links menu. The code <OPTION SELECTED>Choose a Link displays the text
Choose a Link on the drop-down box before it has been clicked.

The next three OPTION statements are links. They have been given VALUEs of page.html,
page2.html, and page3.html, respectively. Those are the three links the user can choose
from.

It is important that you see the VALUE is the actual link, and not the text that follows.
Because the drop-down link format is not something that accepts data from a viewer,
it can’t accept a literal string. But it can have one assigned to it, so that’s what we did.

</SELECT> ends the SELECT drop-down menu box.

The button code should be familiar by now. It is set with an onClick trigger to acti-
vate the function, which we’ll get to next.

</FORM> ends the code.

The Function
This is where the magic happens. It might look complicated at first, but if you’ve read up
to this point, you should have no trouble understanding what’s here. Except for two com-
mands, you’ve actually seen it all before. The function is enacted after a choice is made
and the user clicks the button triggering it to start. Here’s the function:

function LinkUp()

{

06 0789726122_CH05 10/2/01 8:36 AM Page 131

JavaScript Goodies

132

var number = document.DropDown.DDlinks.selectedIndex;

location.href = document.DropDown.DDlinks.options[number].value;

}

The function is called LinkUp()—a name we made up.

First, a variable, number, is created that represents the number of a link in the drop-down
menu.

If you follow along in the hierarchy statement from left to right, document is first. Then
comes the name of the form itself, DropDown, followed by the name of the form element,
DDlinks. Last in the statement is that new thing, selectedIndex.

selectedIndex

This is the command that makes it possible to turn this drop-down menu into a series of
links.

Remember that JavaScript counts everything and starts at 0. That means the four items in
this list have all been assigned a number, 0–3, starting with the first OPTION SELECTED item,
even though it will never come into play.

The selectedIndex command enables you to choose one of the items on the list and grab
its number. We make it a selected Index. Get it?

Setting Up Link Properties
Now that you have a variable set up that represents the number of the item in the drop-
down box, you can start setting up the link properties of the JavaScript.

Here’s the code that does that:

location.href = document.DropDown.DDlinks.options[number].value;

You know that location.href means a link, but a link to what? It’s a link to a specific value
from the drop-down menu. You know the values are all URLs, so the purpose of this line is
to grab a specific value chosen by the user.

It’s done with another hierarchy statement. document leads it off, and it is followed by the
name of the form itself, the name of the form element, and then the option.

In this case, think of the user’s option as a property of an array of strings. This drop-down
box is as good an array as any other, so you want an option. But which one? The one the
user chooses. You know which one he selects because the option is given the number of
the choice through the number variable in brackets.

06 0789726122_CH05 10/2/01 8:36 AM Page 132

133

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

So, if the user selects the last option in the drop-down menu, the user gets the number 3
returned to the options property. JavaScript counts everything, starting at 0.

Then the hierarchy gets going and asks for the value of the number returned.

The value is a URL, and the process is complete. The hierarchy link returns a specific value,
and the link is performed.

It’s a very clever method of drawing a link out of the drop-down menu and using it to
make a connection.

Wait! I’m Getting an Error
We missed something, didn’t we? One of the biggest problems you’ll run into when writ-
ing a JavaScript that interacts with a user is setting up a contingent for every choice the
user makes.

We would love it if all our users would simply select one of the three links and then click.
Well, some won’t. Some will simply click without selecting a link. They will click while the
text Choose a Link is still showing. If a user clicks while that text is showing, he’ll get an
error. Try it yourself.

So, what do you do about it? You set up a plan that will so something if the user clicks that
link. The easiest fix is to set a VALUE for the first line and make that value the same page.
That way, if the person clicks, the page simply reloads.

The code will look like this:

<FORM NAME=”DropDown”>

<SELECT NAME=”DDlinks”>

<OPTION SELECTED VALUE=”lesson27effect.html”>Choose a Link

<OPTION VALUE=”page.html”> Page One

<OPTION VALUE=”page2.html”> Page Two

<OPTION VALUE=”page3.html”> Page Three

</SELECT>

Later in this book, you’ll write code that’s a little fancier and does more than simply
reload the page.

Your Assignment
This is mostly an assignment to see whether you have the ability to keep everything straight.

Using the previous script, copy and paste it a second time on the page. When your page
displays, there should be two drop-down boxes: one of them going to links on your site,
and one of them going to links off your site.

06 0789726122_CH05 10/2/01 8:36 AM Page 133

JavaScript Goodies

134

You know you’re obviously going to need to change the values to change the links, but be
careful. You’ll need to change a few other things as well.

Remember to put in a VALUE for each of the elements so that no matter what the user
selects, he will not get an error.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Twenty-Seven Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment27.html.

Lesson 28: A Guestbook with All the Bells and Whistles
Whenever you hear someone talking about forms, it’s a good bet he wants to use the forms
to act as a Guestbook for his site.

Most people can get the mail just fine through basic HTML form code, but then they want
more, and the Guestbook in this lesson carries every one of the bells and whistles. After
you understand it, you can apply only the parts you like to your own site’s Guestbook, or
use the whole thing.

This Guestbook is a JavaScript-driven event that opens with two prompts. One asks for the
person’s name, and the second asks for the person’s e-mail address.

The Guestbook page then displays. After the user types in the text box and clicks Submit, a
second window pops up thanking him for his e-mail, which is written there for him to see.

When the e-mail arrives in your mailbox, the subject line will read Mail from user’s name
at user’s e-mail address.

You’ll be the envy of Web designers everywhere.

It actually takes three different scripts and then some HTML form code to make this tech-
nique work:

<SCRIPT LANGUAGE=”javascript”>

var name = prompt(“What is your name?”,”Write It Here”)

var email = prompt(“What is your email address”, “Write It Here”)

</SCRIPT>

<SCRIPT LANGUAGE=”javascript”>

function verify()

{

var OpenWindow=window.open(“”, “newwin”, “height=300,width=300”);

OpenWindow.document.write(“<HTML>”)

OpenWindow.document.write(“<TITLE>Thanks for Writing</TITLE>”)

06 0789726122_CH05 10/2/01 8:36 AM Page 134

135

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

OpenWindow.document.write(“<BODY BGCOLOR=’ffffcc’>”)

OpenWindow.document.write(“<CENTER>”)

OpenWindow.document.write(“Thank you ” + name +

➥ “ from ” +email+ “<P>”)

OpenWindow.document.write(“Your message <P><I>”

➥ + document.gbookForm.maintext.value + “</I><P>”)

OpenWindow.document.write(“from “ + name + “ / “ +email+ “<P>”)

OpenWindow.document.write(“will be sent along when you close this window.<p>”)

OpenWindow.document.write(“<CENTER>”)

OpenWindow.document.write(“<FORM><INPUT TYPE=’button’

➥ VALUE=’Close Window’ onClick=’self.close()’></FORM>”)

OpenWindow.document.write(“</CENTER>”)

OpenWindow.document.write(“</HTML>”)

}

</SCRIPT>

<SCRIPT LANGUAGE=’javascript’>

document.write(“<FORM METHOD=’post’

➥ ACTION=’mailto:jburns@sunlink.net?Subject=Mail from “

➥ +name+ “ at “ +email+ “‘ ENCTYPE=’text/plain’ NAME=’gbookForm’>”)

</SCRIPT>

What would you like to tell me?

<TEXTAREA COLS=”40” ROWS=”20” NAME=”maintext”></TEXTAREA><P>

<INPUT TYPE=”submit” VALUE=”Send It” onClick=”verify()”>

</FORM>

As you can see in Figure 5.6, the Guestbook is set up to send the output to Joe Burns. So, if
you want to write me, this is the place to do it. It’s coming to a mailbox set up just for this
Guestbook.

You can try the script for yourself by clicking Lesson Twenty-Eight Script’s Effect in your
download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson28effect.html.

Deconstructing the Script
There is a lot to this script, so let’s talk about it script by script; then at the end, we’ll put it
all together into one working Guestbook package.

06 0789726122_CH05 10/2/01 8:36 AM Page 135

JavaScript Goodies

136

The Prompt Script
We’ll start where the Guestbook event starts. The first thing that occurs when the page
loads is that a couple of prompts pop up asking for your name and e-mail address:

<SCRIPT LANGUAGE=”javascript”>

var name = prompt(“What is your name?”,”Write It Here”)

var email = prompt(“What is your email address”, “Write It Here”)

</SCRIPT>

There shouldn’t be any surprises here. The prompts are in the traditional format. Just
remember that the prompt that asks for the name is assigned the variable name, and the
prompt that asks for the e-mail is given the variable email.

Those variable names will become quite important later.

The Verification Window Script
This is the script that creates the smaller window that pops up when the user clicks to sub-
mit the Guestbook data:

<SCRIPT LANGUAGE=”javascript”>

function verify()

{

var OpenWindow=window.open(“”, “newwin”, “height=300,width=300”);

OpenWindow.document.write(“<HTML>”)

Figure 5.6
Results of clicking the Send
It button.

06 0789726122_CH05 10/2/01 8:36 AM Page 136

137

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

OpenWindow.document.write(“<TITLE>Thanks for Writing</TITLE>”)

OpenWindow.document.write(“<BODY BGCOLOR=’ffffcc’>”)

OpenWindow.document.write(“<CENTER>”)

OpenWindow.document.write(“Thank you ” + name + “ from ”

➥ +email+ “<P>”)

OpenWindow.document.write(“Your message <P><I>”

➥ + document.gbookForm.maintext.value + “</I><P>”)

OpenWindow.document.write(“from “ + name + “ / “ +email+ “<P>”)

OpenWindow.document.write(“will be sent along when you close this window.<p>”)

OpenWindow.document.write(“<CENTER>”)

OpenWindow.document.write(“<FORM><INPUT TYPE=’button’

➥ VALUE=’Close Window’ onClick=’self.close()’></FORM>”)

OpenWindow.document.write(“</CENTER>”)

OpenWindow.document.write(“</HTML>”)

}

</SCRIPT>

We used the format from Lesson 20, opening a new window with a function and named
the function verify().

The window opens 300 pixels wide and 300 pixels tall. The background is an off-yellow
represented by the hex code ffffcc, and the text in the new window is centered.

Now, we get into how all the relevant text was entered into the window. Remember that
you assigned the variables name and email to the information from the two prompts in the
first script. Here those returned literal strings come into play. The line

OpenWindow.document.write(“Thank you ” + name + “ from ”

➥ +email+ “<P>”)

writes the text Thank you name from e-mail@address.com to the news window. It’s a nice
personal touch. Pay close attention to where the double quotation marks fall as well as
where the and flags come into play.

In the next line, you make the connection with the HTML form items that are yet to come
in this deconstruction:

OpenWindow.document.write(“Your message <P><I>”

➥ + document.gbookForm.maintext.value + “</I><P>”)

Notice first the hierarchy statement that takes the information from the <TEXTAREA> box.

It starts with a document; then, it calls for a form named gbookForm, a form element named
maintext, and finally that form element’s value.

06 0789726122_CH05 10/2/01 8:36 AM Page 137

JavaScript Goodies

138

When the HTML in the instance is written to the page, you get the text Your Message fol-
lowed by what the user typed in the <TEXTAREA> box. It’s a very clean effect.

The next lines of code again list the user’s name and e-mail address using the name and
email returns from the prompts. That might look like overkill because those two pieces of
information were already posted; we put them in, though, because it gave the appearance
that the information was posted as a signature.

The next code creates a traditional button that closes the window, and the last two
document.write lines close the HTML document being written to the new window’s page.

The <FORM> Flag Script
In Chapter 3, “Manipulating Data and the Hierarchy of JavaScript,” Lesson 16 talked about
using the input from a user to build a line of HTML. The big concern was that the script
must be sitting right where the line of HTML code itself will sit.

That’s what the following code does. A simple document.write line is used to create the
main HTML <FORM> flag:

<SCRIPT LANGUAGE=’javascript’>

document.write(“<FORM METHOD=’post’

➥ ACTION=’mailto:jburns@sunlink.net?Subject=Mail from “

➥ +name+ “ at “ +email+ “‘ ENCTYPE=’text/plain’ NAME=’gbookForm’>”)

</SCRIPT>

By doing this, you can use the literal returns from prompts to make the ACTION text actually
write the user’s name and e-mail address.

NOTE

Please note that the previous line is truncated into a couple of lines. That’s bad, but the
book page just isn’t long enough. When you get this to your page, make sure it all goes
on one line.

This was the line in the code that took the longest time to build. Look at all the double
and single quotation marks. It gets rather hairy, but we stuck to it, error after error, and got
the effect.

As you might have guessed from the previous hierarchy statement, the name of this entire
form is gbookForm.

06 0789726122_CH05 10/2/01 8:36 AM Page 138

139

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

The Rest of the FORM Items
It’s not written here because the main <FORM> flag is in a script by itself, but this is the
remainder of the FORM gbookForm:

What would you like to tell me?

<TEXTAREA COLS=”40” ROWS=”20” NAME=”maintext”></TEXTAREA><P>

<INPUT TYPE=”submit” VALUE=”Send It” onClick=”verify()”>

</FORM>

The <TEXTAREA> element is named maintext. This is an HTML tip, but remember that when
you use a <TEXTAREA> box, it requires an end flag.

Look at the button code. This is quite important. Notice the TYPE is set to submit. You are
submitting this form; therefore, if you just wrote in that the type was equal to button, the
format would not work. This button not only activates the function verify()—note the
onClick=—but it also sends the form.

Wait!
The little window says the button on it sends the mail. I know, but it’s part of the illusion
of the Guestbook. It was done on purpose. The actual mail-sending dirty work was accom-
plished by the TYPE=”submit” button.

It’s done so that the user stops for a moment to read the window. That way the browser is
given a spot of downtime during which to send the mail.

Clever, no?

What Is Happening?
The process of the Guestbook is pretty straightforward:

The user enters the page and is asked for her name and e-mail address.

Those two literal strings are assigned the variables name and email, respectively.

The rest of the page loads. The new <FORM> flag, with the user’s name and e-mail
address, is written to the page.

The user types in the <TEXTAREA> box and clicks the Submit button.

The function is triggered, and a new page is displayed showing the user what she wrote.

06 0789726122_CH05 10/2/01 8:36 AM Page 139

JavaScript Goodies

140

In the background, the mail is being sent while the user reads the mail and thinks
what a fantastic Guestbook you have.

The mail arrives in your box with a subject line which tells you that you have mail
from a specific person with a specific e-mail address.

Your Assignment
This was quite a large, multiscript event, but can you add one more touch to it?

When the user clicks the Send It button, can you make a page that reads Thanks A Lot load
into the mail window and still get that new little window?

You can see a possible answer to this assignment on your own computer by clicking Lesson
Twenty-Eight Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment28.html.

Lesson 29: The Fifth End-of-Chapter Review—Posting Link
Descriptions While Users Pass Over
I’m going to list the commands you’ve learned so far again. Read them over, and start think-
ing how you could use them to create something new and functional to use on your pages.

Table 5.1 contains the object-related JavaScript commands we’ve discussed. In addition,
you’ve been introduced to these other JavaScript concepts:

The alert(), confirm(), and prompt() methods

The if/else conditional statement

These event handlers: onBlur, onChange, onClick, onDblClick, onFocus, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, and onSubmit

The HTML 4.0 flag

Creating variable names

Creating a function

HTML form items

The form item attribute NAME=

These form item properties: length, value, and selectedIndex

These form item methods: toLowerCase and toUpperCase()

06 0789726122_CH05 10/2/01 8:36 AM Page 140

141

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

Table 5.1 Object-Related JavaScript Commands Demonstrated in
Chapters 1–5
Object Methods Properties
date getDate(),

getDay(),
getHours(),
getMinutes(),
getMonth(),
getSeconds(),
getYear()

document write() alinkColor, bgColor, fgColor,
linkColor, lastModified, location,
referrer, title, vlinkColor

history go() length

location host, hostname, href
navigator appCodeName, appName, appVersion,

userAgent

window close() defaultstatus, directories, location,
menubar, resizable, self, scrollbars,
status, toolbar

Here’s a script that puts some of the JavaScript commands to work:

<TABLE BORDER=”0”><TD>

<A HREF=”http://www.htmlgoodes.com”

onMouseOver=”document.pic1.src=’flip1b.gif’,

document.PostText.Receive.value=’This link points toward the

➥ HTML Goodies Home Page’”

onMouseOut=”document.pic1.src=’flip1.gif’”><img src=”flip1.gif”

➥ NAME=”pic1” border=”0”>

<A HREF=”http://www.JavaGoodies.com”

onMouseOver=”document.pic2.src=’flip1b.gif’,

document.PostText.Receive.value=’Click here to go to JavaGoodies’”

onMouseOut=”document.pic2.src=’flip1.gif’”><img src=”flip1.gif”

➥ NAME=”pic2” border=”0”>

<A HREF=”http://www.internet.com”

onMouseOver=”document.pic3.src=’flip1b.gif’,

document.PostText.Receive.value=’This is HTML Goodies parent company.

➥ Go see what they are all about.’”

➥ onMouseOut=”document.pic3.src=’flip1.gif’”>

06 0789726122_CH05 10/2/01 8:36 AM Page 141

JavaScript Goodies

142

</TD>

<TD>

<FORM NAME=”PostText”>

<TEXTAREA COLS=”20” ROWS=”20” they go.”

➥ NAME=”Receive” wrap=”virtual”></TEXTAREA>

</FORM>

</TD>

</TABLE>

We’re going to combine some image flips with form items in this example. There will be
three image flip mystery links sitting to the left of a <TEXTAREA> box. When you pass your
mouse over the top of each link, a description of where that link points will pop up in the
<TEXTAREA> box, as shown in Figure 5.7.

Think about how you would do it, and then read how we did it.

Figure 5.7
Image flips posting text to
a form item.

You can try the script for yourself by clicking Lesson Twenty-Nine Script’s Effect in your
download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson29effect.html.

06 0789726122_CH05 10/2/01 8:36 AM Page 142

143

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

Deconstructing the Script
Let’s take this script apart piece by piece. We’ll start with its layout and design. Until now,
the layout of the scripts didn’t much matter. The output was posted somewhere, and the
look didn’t come into play.

Well, now the layout does matter. The layout is set so that the buttons are all on the left of
the <TEXTAREA> box. We got that look through a simple two-celled TABLE layout:

<TABLE BORDER=”0”>

<TD>

The image flips went in here

</TD><TD>

The <TEXTAREA> box went in here

</TD>

</TABLE>

However, let me offer a word of caution. When you use tables and JavaScript, you can run
into trouble. It’s not enough trouble for me to say never use tables and JavaScript together.
But be aware that placing HTML elements and JavaScript into table formats, especially if
you put different code sections into different table cells, can cause trouble and throw
errors.

If you are trying to combine tables and JavaScript and are getting errors, try eliminating
the tables. If the script runs, that was your problem. Find a different layout and design
format.

The Form
Let’s go a little backwards. We’re going to start with the form and the <TEXTAREA> box first.
It looks like this:

<FORM NAME=”PostText”>

<TEXTAREA COLS=”20” ROWS=”20” NAME=”Receive” wrap=”virtual”></TEXTAREA>

</FORM>

The form itself is named PostText, and the <TEXTAREA> box is named Receive.

What I wanted to show was a new HTML attribute that will help with script:
WRAP=”virtual”. The code makes the text that will fall into this box wrap at the end, rather
than just running off the right. It’s really necessary to get the effect we’re shooting for.

Now that you know the elements required to create a hierarchy statement, let’s get to the
image flips.

06 0789726122_CH05 10/2/01 8:36 AM Page 143

JavaScript Goodies

144

The Image Flips
This is where all the magic occurs. Here’s the first image flip:

<A HREF=”http://www.htmlgoodes.com”

onMouseOver=”document.pic1.src=’flip1b.gif’,

document.PostText.Receive.value=’This link points toward the

➥ HTML Goodies Home Page’”

onMouseOut=”document.pic1.src=’flip1.gif’”><img src=”flip1.gif”

➥ NAME=”pic1” border=”0”>

If you learn this one, the others will fall right into place. They follow the same pattern.

This is a lot of text, but the script will work best if everything shown in the previous code
snippet is allowed to stay on one line, one very long line.

The format for the image flips is pretty basic. The onMouseOver points to the document, and
then the name of the image space (pic1), and finally the src (flip1b.gif).

But notice that immediately following that, we’ve placed a comma and then a hierarchy
statement pointing at the <TEXTAREA> box. It reads as follows:

,document.PostText.Receive.value=’This link points toward the

➥ HTML Goodies Home Page’”

That is what places the text into the box. The hierarchy statement refers to the document,
the form we named PostText, and the form element we named Receive; then it sets its
value to ‘This link points toward the HTML Goodies Home Page’.

Because the two hierarchy statements were separated by a comma, the onMouseOver triggers
them both. The image flips, and the text pops up in the box.

A neat effect indeed.

Image Flips

Just remember that when you are doing multiple image flips on the same page, you must
always give each image space a new name and change that name out in each image flip’s
hierarchy statements.

Your Assignment
At the end of the chapters, your assignment is always to create a new and functional script
from what you know to this point, but I always make a suggestion.

06 0789726122_CH05 10/2/01 8:36 AM Page 144

145

Chapter 5 ➤ Forms: A Great Way to Interact with Your Users

Can you create a drop-down box that will answer people’s questions? For example, create a
drop-down box that people can use to find out what HTML code they should use to get an
effect. Make the box read, What is the code for? When the user opens the box, she can
choose from bold, italic, and underline.

After the user has made her choice, she will click a button and a text box will show her the
code.

Remember that the user could very well click the button even though she has not selected
anything. Make the text Pick One Please pop into the text box if that happens.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Twenty-Nine Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment29.html.

06 0789726122_CH05 10/2/01 8:36 AM Page 145

06 0789726122_CH05 10/2/01 8:36 AM Page 146

Mathematics,
Random Things,
and Loops

Chapter 6

This chapter contains the following lessons and scripts:

Lesson 30: Math Operators

Lesson 31: Mathematics and Forms

Lesson 32: Creating Random Numbers with a Date

Lesson 33: Creating Random Numbers Through Mathematics

Lesson 34: Producing Random Statements and Images

Lesson 35: Introduction to for Loops

Lesson 36: Introduction to while Loops

Lesson 37: End-of-Chapter Review—A Browser-Detect Script

From Joe Burns: One of the first things I ever saw done with JavaScript involved entering
numbers on a page and having that page perform a mathematical computation using those
numbers. The actual example was to figure a 15% tip. I thought that was the greatest thing
I had ever seen. In fact, I wrote a script that does the same thing in Lesson 31, later in this
chapter.

The purpose of this chapter is to take you back to math class, teach you how to make ran-
dom events occur, and teach you how to use math to create JavaScript loops. All these
events are seldom standalone items. Math typically is used to create a greater event. Case in
point: Generating random numbers is nice, but what good is it unless the numbers help
you to win the lottery?

07 0789726122_CH06 10/2/01 8:32 AM Page 147

JavaScript Goodies

148

Hey! That’s a great idea for a script.

But you have to walk before you can run, so let’s start with the basics of JavaScript mathe-
matics.

Lesson 30: Math Operators
This page will not only show you how to use numeric values to perform computation with
JavaScript, but it will also test your basic math skills. There might be a test later. Its purpose
is to introduce you to mathematical operators, something you’ll use often. If you have
done any type of computer programming before, you should be experiencing déjà vu! If
not, don’t panic. Using this script, I’ll give you an easy introduction:

<SCRIPT LANGUAGE=”javascript”>

var result = 10 * 2 + 1 / 3 - 7

alert (“the answer to 10 * 2 + 1 / 3 - 7 is “ +result + “.”)

var numsums = 10 + 2

alert(“10 + 2 is “ + numsums)

var x = 10

alert(“ten is “ + x)

var y = x * 2

alert(“10 * 2 = “ + y)

var z = “Hello “ + “Good Bye”

alert(z)

</SCRIPT>

The script’s effect appears in Figure 6.1.

To see the effect on your own computer, click Lesson Thirty Script’s Effect in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson30effect.html.

The Arithmetic Operators
I think it would be hard to get to this point in the book and not be able to figure this one
out pretty quickly. But it’s not the makeup of the script that’s important. The purpose here
is to show you the JavaScript binary operators.

07 0789726122_CH06 10/2/01 8:32 AM Page 148

149

Chapter 6 ➤ Mathematics, Random Things, and Loops

That’s a fancy way to refer to the addition (+), subtraction (-), multiplication (*), and divi-
sion (/) symbols.

Percent (%) is also a binary operator. Its technical name is a modulus operator. However, it
doesn’t create percentages. You actually have to create the percentages by hand, dividing
one number into the other. The percent sign only returns any number left over, a
remainder, in a division equation.

For example, the code 10 % 2 would return 0 because 2 divides into 10 evenly. But 10 % 3
would return the number 1. That’s what’s left over.

Deconstructing the Super Math Script
Well, maybe it’s not super, but it makes its point.

Each two-line piece of code sets up a mathematical equation or number usage and then
uses an alert method to display the answers. Here’s the quick rundown:

var result = 10 * 2 + 1 / 3 - 7

alert (“the answer to 10 * 2 + 1 / 3 - 7 is “ +result + “.”)

Figure 6.1
Alert box displaying math
answers.

07 0789726122_CH06 10/2/01 8:32 AM Page 149

JavaScript Goodies

150

We tried to create an equation that would use all the traditional binary operators. This is
what came out. The answer is 13.333333333.

When you look at the equation, it might seem that the JavaScript is doing the wrong calcu-
lation. If you pull out a calculator and follow the format, you might come up with this:

10*2+1 (that equals 21) / 3-7 (that equals -4)

Right? Well, JavaScript doesn’t see it that way. Remember, we’re dealing with a computer
here. That computer just bulls through left to right without stopping to see this as a divi-
sion problem. If you simply read the equation straight through, you’ll get the answer the
computer did:

10*2 (equals 20) + 1/3 (a third) -7 = 13.333333

So how do you get around the computer bulling through? Parentheses, my friend.
Remember that from high school algebra? In math, the stuff in the parentheses is evaluat-
ed first. Same here. If I wanted to turn this into a division problem with an equation on
either side of the slash, it would look like this:

var result = (10 * 2 + 1) / (3 - 7)

Be careful when you put together mathematical equations in your JavaScript. Make sure
the computer is figuring out what you want it to figure out. Always check the math against
a calculator before offering your work to the public.

var numsums = 10 + 2

alert(“10 + 2 is “ + numsums)

The script sets a numsums variable. Can you see that it’s equal to 12 (10+2)? The script trans-
fers that variable to an alert box and displays that 10 + 2 = the variable, or 12:

var x = 10

alert(“ten is “ + x)

Another variable, x, is set to equal 10. The alert box then displays that value:

var y = x * 2

alert(“10 X 2 = “ + y)

Another variable, y, is set to equal the x variable multiplied by 2. That should be 20, right?
It is. The answer is displayed in the alert method:

var z = “Hello “ + “Good Bye”

alert(z)

07 0789726122_CH06 10/2/01 8:32 AM Page 150

151

Chapter 6 ➤ Mathematics, Random Things, and Loops

Finally, the variable z is created, showing you can connect text using the computation
symbols. That variable is then displayed using the alert boxes. (That will become very
important later.)

The nice thing about the binary operator (+) is that it fulfils two duties. If it is placed
between two numbers, it adds them. On the other hand, if it is placed between two strings,
it puts them together into a single string, a process known as concatenation.

In Terms of Numbers and Binary Operators
Never put quotation marks around numbers. If you do put quotation marks around a num-
ber, it becomes a string. That’s bad. For example, if you run the equation “3”+4, you will
get 34 because the quotation marks made the “3” a string and set the 4 to a string, “4”; the
plus sign simply put the two items together rather than adding them. If you want 7 to be
the result, don’t use any quotation marks so the plus sign sees both the 3 and the 4 as
numbers.

Your Assignment
Write a script in which a prompt is used to ask the user for a number between 2 and 10.
Then, have that number’s square display on the page.

You do know what a square is, right? The number times itself.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Thirty Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment30.html.

Lesson 31: Mathematics and Forms
After Chapter 5, “Forms: A Great Way to Interact with Your Users,” you should be pretty
familiar with entering data into form fields and then getting values to show up.

Let’s take a look at that tip script that impressed Joe so much. It’s basic, but it does the
trick:

<SCRIPT LANGUAGE=”javascript”>

function figureItOut()

{

var dinCost = document.meal.dinner.value

var tipCost = dinCost * .15

var bigtipCost = dinCost * .25

document.meal.tip.value = tipCost

document.meal.bigtip.value = bigtipCost

07 0789726122_CH06 10/2/01 8:32 AM Page 151

JavaScript Goodies

152

}

</SCRIPT>

<FORM NAME=”meal”>

How much was dinner? $<INPUT TYPE=”text” NAME=”dinner”>

<INPUT TYPE=”button” VALUE = “OK, Hit Me!” onClick=”figureItOut()”><P>

You should tip: $<INPUT TYPE=”text” NAME=”tip”>

A big tipper would leave 25% $<INPUT TYPE=”text” NAME=”bigtip”>

</FORM>

This script accepts input from the user, manipulates the data, and then posts an answer.
Very clever. You can see the script’s effect in Figure 6.2.

Figure 6.2
How much should you tip?

To see the effect on your own computer, click Lesson Thirty-One Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson31effect.
html.

07 0789726122_CH06 10/2/01 8:32 AM Page 152

153

Chapter 6 ➤ Mathematics, Random Things, and Loops

Deconstructing the Script
We’ll start with the form elements this time around because they are probably still some-
what fresh in your mind:

<FORM NAME=”meal”>

How much was dinner? $<INPUT TYPE=”text” NAME=”dinner”>

<INPUT TYPE=”button” VALUE = “OK, Hit Me!” onClick=”figureItOut()”><P>

You should tip: $<INPUT TYPE=”text” NAME=”tip”>

A big tipper would leave 25% $<INPUT TYPE=”text” NAME=”bigtip”>

</FORM>

First, note the formal names. The entire form is called meal, and the first input text box is
called dinner. The button is set up to trigger a function called, smartly enough,
figureItOut().

The results of the normal 15% tip shows up in a text box called tip, and the larger 25% tip
result displays in a text box called bigtip.

Okay, now you know the players, so let’s get to the plays of the script:

function figureItOut()

{

var dinCost = document.meal.dinner.value

var tipCost = dinCost * .15

var bigtipCost = dinCost * .25

document.meal.tip.value = tipCost

document.meal.bigtip.value = bigtipCost

}

</SCRIPT>

We could have written out the hierarchy statement for the text box that accepted the user’s
data, but because it was going to be used at least twice, we decided to assign a variable to
it. document.meal.dinner.value was assigned the variable dinCost.

Now that we have that variable, we can start to create some mathematical equations
with it.

The variable tipCost was assigned to the cost of dinner multiplied by the traditional 15%,
or .15, tip. Remember that the % sign does not mean percentage—it means the remainder
of a multiplication. That’s why we use the .15 and .25 rather than 15% and 25%.

The variable bigtipCost was assigned to the cost of dinner and multiplied by the better tip
amount 25%, or .25.

07 0789726122_CH06 10/2/01 8:32 AM Page 153

JavaScript Goodies

154

Now you need to get those values into the correct form items when you click the button.
This is done by these lines of code:

document.meal.tip.value = tipCost

document.meal.bigtip.value = bigtipCost

Notice the hierarchy statement points at the two form elements set up to receive the data.
The values assigned to each box are the variable names that represent the equations set up
a moment ago.

When you put the whole process together, the function figures the tip amounts, assigns
variable names to them, and writes them to the form element.

Nothing to it.

Your Assignment
Until now, you have had it easy with the math. Now let’s try something a little harder. Can
you create a two–text box form with a button in the middle that changes Celsius degrees to
Fahrenheit degrees?

Here’s the equation:

Fahrenheit = (Celsius X 9/5)+32

In case you want to get clever, Fahrenheit to Celsius is done using this formula:

(Fahrenheit - 32) X 5/9

TIP

You’ll do best by taking each section of the equation and making it its own variable. You can then

do the equation with text, and you’ll be sure the numbers within the parentheses are being fig-

ured by themselves.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Thirty-One Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment31.html.

Lesson 32: Creating Random Numbers with a Date
This example introduces you to random numbers. People love random numbers for some
reason. Here’s our example:

<SCRIPT LANGUAGE=”JavaScript”>

function rand()

{

07 0789726122_CH06 10/2/01 8:32 AM Page 154

155

Chapter 6 ➤ Mathematics, Random Things, and Loops

var now=new Date()

var num=(now.getSeconds())%9

var numEnd=num+1

alert(numEnd)

}

</SCRIPT>

<FORM>

<INPUT TYPE=”button” VALUE=”Random Number from 1 to 10” onClick=”rand()”>

</FORM>

You can see the script’s effect in Figure 6.3.

Figure 6.3
Generating a random
number.

To see the effect on your own computer, click Lesson Thirty-Two Script’s Effect in your
download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson32effect.html.

Notice this in the script: The number after the % is the ending number. The following
example picks a random number between 1 and 10.

But wait! The number after the % is 9! And there’s that % sign we keep mentioning for some
reason. Keep reading to find out why.

07 0789726122_CH06 10/2/01 8:32 AM Page 155

JavaScript Goodies

156

Deconstructing the Script
We’ll start with the function this time:

function rand()

{

var now=new Date()

var num=(now.getSeconds())%9

var numEnd=num+1

alert(numEnd)

}

It takes a few steps to get the random number.

First, you must set aside a function. We called ours rand().

Next, we set aside a variable that will act as a method called new Date().

Another variable, called num, is set aside. It contains the method getSeconds() to grab a
number between 0 and 59.

JavaScript counts everything and starts counting from 0. The number returned from
getSeconds() is divided by 9, and a remainder is returned. Remember that the % sign
returns only the remainder of a division.

The remainder has one number added to it. That number is assigned the variable name
numEnd.

The alert() method then displays the number.

How Does That Give a Random Number?
Here’s the concept. 9 divides into 0 through 60 approximately 6.7 times. So, every six and
a half seconds or so, a new number can be returned.

Let’s say the second returned is 54. 9 divides into 54 with a result of 6. That’s a perfect
number. There is no remainder. Therefore, the remainder is 0. Remember that the % sign
returns only the remainder of a division. 1 is added, and the random number is 1.

Here’s another example. The second return is 22. 9 divides into it 2.4 times. 4 is the
remainder. 1 is added to it, and you get a random number of 5.

You’ll never get a 0 returned as the random number because 1 is always added to the mix.

It’s hard to believe it works, but it does.

07 0789726122_CH06 10/2/01 8:32 AM Page 156

157

Chapter 6 ➤ Mathematics, Random Things, and Loops

The Form Items
<FORM>

<INPUT TYPE=”button” VALUE=”Random Number from 1 to 10” onClick=”rand()”>

</FORM>

There’s no real need to name the form or the form items in this case. None of the elements
comes into play. The button is simply there to act as a trigger to produce the number
through the rand() function.

It’s a neat trick.

Your Assignment
Do you play the lottery? Let’s create a JavaScript that picks the three-digit daily lotto draw-
ing numbers. You have to return three random numbers, 0–9.

Make the numbers appear on an alert box. For good measure, put the text Good Luck! in
the status bar.

TIP

If you use getSeconds() for all three number generators, you’ll always get all three numbers the

same.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Thirty-Two Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment32.html.

Lesson 33: Creating Random Numbers Through
Mathematics
This script enables you to create a random number using JavaScript mathematics state-
ments rather than relying on a date return:

<SCRIPT LANGUAGE=”javascript”>

var num = Math.round(35 * Math.random());

document.write(“Random number between 0 and 35: ” + num + “.”)

</SCRIPT>

The script’s effect appears in Figure 6.4.

07 0789726122_CH06 10/2/01 8:32 AM Page 157

JavaScript Goodies

158

To see the effect on your own computer, click Lesson Thirty-Three Script’s Effect in your
download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson33effect.html.

Deconstructing the Script
It might not seem at first that there is a lot to this script, but it is quite useful. First, it’s
compact, and it always returns a positive integer starting at 0.

In addition, the fact that it runs without a function is also helpful.

Here’s the line of code that does the trick:

var num = Math.round(35 * Math.random());

The line is set up as a variable assigned the name num. That enables you to post the result
anywhere on the page.

The mathematics are done through two object.method statements.

Math is an object that alerts the browser that the methods which follow are to be used
specifically to produce mathematical results. The Math object itself carries no value; it sim-
ply sets the course of the methods that follow to do math.

Math.round() is an object.method statement that takes whatever is in its argument and
rounds it to the nearest integer.

Figure 6.4
Generating a random
number through math.

07 0789726122_CH06 10/2/01 8:32 AM Page 158

159

Chapter 6 ➤ Mathematics, Random Things, and Loops

Math.random() is an object method that returns a number between 0 and 1. Now, that
might sound silly at first, but here’s another thing about how JavaScript counts. It starts at
0 and goes up. Better than that, JavaScript has the capability to count in milliseconds.

There are actually 999 different responses this Math.random can return, from .001 up to .999.

The number 35 is in there because we put it there. It is known as the upper limit. The
answer returns between 0 and 35 because it is mathematically impossible to go higher than
what you’re multiplying.

For example, Math.random() returns .234. 35 times .234 is 8.19. That rounds down because
it’s closer to 8 than it is to 9. Therefore, the random number produced is 8.

The line

document.write(“Random number between 0 and 35: ” + num + “.”)

writes the random number to the document surrounded by text that explains to the user
what the number represents.

But what if you do not want 0 as one of the random numbers? Well, you’ll have to do two
things:

Add 1 to the output of the random number equation. Remember how we did that in
the last lesson?

Make the upper limit 34. If you leave it at 35, there’s every chance that 35 will be the
number returned and adding would make the number 36. That’s bad.

Isn’t this math stuff fun?

The Math Object
The Math object is amazing. Table 6.1 shows all the methods that can be attached to it.
When using the Math object, think of it in the same way as you would the
Date.getSomething() method. It functions in a similar fashion and returns numbers the
same way.

Where you see argument in the table, I mean a mathematical equation.

For example, the first Math.method()—Math.abs()—could be written this way:

Math.abs((22*3) / 4)

07 0789726122_CH06 10/2/01 8:32 AM Page 159

JavaScript Goodies

160

Table 6.1 Math Object Methods
Method Return Value
Math.abs(argument) The absolute value of an argument
Math.acos(argument) The arc cosine of the argument
Math.asin(argument) The arc sine of the argument
Math.atan(argument) The arc tangent of the argument
Math.atan2(argument1, argument2) The angle of polar coordinates x and y
Math.ceil(argument) The number one larger than or equal to the

argument rounded up to the nearest integer
Math.cos(argument) The cosine of the argument
Math.exp(argument) A natural logarithm
Math.floor(argument) The number 1 less than or equal to the argu-

ment rounded down to the nearest integer
Math.E Base of natural logarithms, approximately

2.718
Math.LN2 Logarithm of 2 (appx: 0.6932), natural loga-

rithm
Math.LN10 Logarithm of 10 (appx: 2.3026), natural loga-

rithm
Math.log Base-10 logarithm
Math.LOG10E Base-10 logarithm of E
Math.LOG2E Base-2 logarithm of E
Math.max(arg1,arg2) The greater of the two arguments
Math.min(arg1,arg2) The lesser of the two arguments
Math.PI The value of pi, approximately 3.14159
Math.pow(arg1, arg2) arg1 raised to the arg2 power
Math.random A random number between 0 and 1,

noninclusive of either 000 or 1
Math.round(value) Rounds to the nearest integer
Math.sin(argument) The sine of the argument
Math.sqrt(argument) The square root of the argument
Math.SQRT1_2 The square root of 1/2
Math.SQRT2 The square root of 2
Math.tan(argument) The tangent of the argument

07 0789726122_CH06 10/2/01 8:32 AM Page 160

161

Chapter 6 ➤ Mathematics, Random Things, and Loops

Your Assignment
Set up the preceding script so that a prompt appears and asks the user for the upper limit
number. The document should then read Here is your random number between 1 and
usersnumber.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Thirty-Three Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment33.html.

Lesson 34: Producing Random Statements and Images
As referenced in Lessons 32 and 33, producing random numbers is good, but by itself, the
technique doesn’t do much besides post a number. Here we start to take that concept of
randomness and apply it to other items. In this case, one of three statements will pop up
on the screen—which statement depends on which random number the computer comes
up with.

In Lesson 21 in Chapter 4, “Flipping Images and Opening Windows with Mouse Events,”
you learned the concept of if and else. Here we use that concept once again to get the
desired effect:

<SCRIPT LANGUAGE=”JavaScript”>

var0=”An Apple A Day”

var1=”A Stitch in Time”

var2=”Bird in the Hand”

now=new Date()

num=(now.getSeconds())%3

document.write(“Random Number: “ + num + “
”)

if (num == 0)

{cliche=var0}

if (num == 1)

{cliche=var1}

if (num == 2)

{cliche=var2}

document.write(cliche)

</SCRIPT>

<p>....as I always say.

You can see the script’s effect in Figure 6.5.

To see the effect on your own computer, click Lesson Thirty-Four Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson34effect.
html.

07 0789726122_CH06 10/2/01 8:32 AM Page 161

JavaScript Goodies

162

Deconstructing the Script
This one reads very nicely from the top down. Here we start by giving three lines of text
three variable names var0 through var2:

var0=”Apple a Day”;

var1=”A Stitch in Time”;

var2=”Bird in the Hand”;

We could have started with 1, but that would have required setting the random number
generator code to add 1. It’s not worth the concern, so we’re just starting with 0. Moving
along:

now=new Date()

num=(now.getSeconds())%3

Next, the script uses the two-line date code to draw a random number between 0 and 2.
Note the number 3 after the % sign. Remember that means the numbers 0, 1, and 2 could
come up.

The code has assigned the variable name now to the new date object and the variable num
the result of the random number code.

Finally, this line writes the random number to the page through a document.write statement:

document.write(“Random Number: “+ num + “
”)

Figure 6.5
Random statement.

07 0789726122_CH06 10/2/01 8:32 AM Page 162

163

Chapter 6 ➤ Mathematics, Random Things, and Loops

Getting the Random Statement
Now, let’s look at the second section of the JavaScript:

if (num == 0)

{cliche=var0}

if (num == 1)

{cliche=var1}

if (num == 2)

{cliche=var2}

document.write(cliche)

The code that assigned the variable and chose a random number is now used to choose
one of these three statements. Let’s take a look at just the first two lines of code:

if (num == 0)

{cliche=var0}

This is a statement using the if method. Remember from Lesson 21 that any statement
that follows if must be sitting inside parentheses.

Those two lines mean this: “If the number, num, created by the random number code is 0,
set cliche equal to variable var0.”

Notice the cliche= statement is within braces ({}). The reason is that it’s actually a func-
tion of the if method.

But you remembered that from Lesson 21.

Double and Single Equal Signs
You might have caught this already, but it’s very important, so we’ll drive the point home.
In JavaScript, a double equal sign actually means is equal to.

A single equal sign simply acts as the verb is. Remember that you use a single equal sign in
assigning variable names. Think of that as meaning is. But, if you want to make the state-
ment that something is equal to in JavaScript, you use the double equal signs.

Yes, we know it sounds backward, but that’s the way it is.

We keep it straight by thinking that a double (==) means is equal to, and a single (=) means is.

Back to the Deconstruction
The code then sets two more cliché numbers to var1 and var2, depending on whether 1 or
2 is chosen:

if (num == 1)

{cliche=var1}

07 0789726122_CH06 10/2/01 8:32 AM Page 163

JavaScript Goodies

164

if (num == 2)

{cliche=var2}

document.write(cliche)

Finally, a document.write statement is used to write the cliché to the page. Because there is
no text surrounding cliche, no plus signs are necessary.

What’s Happening?
The process is quite linear. First, three variable names are set, attaching three text strings to
the variables var0 through var2.

Next, a random number is chosen and written to the page.

Then, that number is looked at through a series of if statements. If the first statement isn’t
true, num does not equal 0, and the next if statement is looked at. If that statement isn’t
true, the script goes on to the next.

One of those statements will be true because only 0, 1, or 2 will be returned from the ran-
dom number code.

Why Don’t You Use an else with Your if?
It isn’t necessary. One of those if statements will be true. You could just as easily have
written this so that the last if statement was an else. It would have worked just the same
way, but again, it’s not necessary. Three ifs will do just fine.

Your Assignment
We have three pictures for you at

http://www.htmlgoodies.com/JSBook/pic1.gif

http://www.htmlgoodies.com/JSBook/pic2.gif

http://www.htmlgoodies.com/JSBook/pic3.gif

Modify this JavaScript program to display a random picture rather than text. Make the text
under the image read describes my mood today.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Thirty-Four Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment34.html.

Lesson 35: Introduction to for Loops
All programming languages have a branching method. The branching method in JavaScript is
if, which we just looked at. It allows you to say, “If this is that, execute these statements.”

07 0789726122_CH06 10/2/01 8:32 AM Page 164

165

Chapter 6 ➤ Mathematics, Random Things, and Loops

In addition, all programming languages also have looping techniques. Looping is a fancy
way of saying, “Run the script again and again, rather than just once.”

JavaScript has two looping methods: for loops and while loops.

In general, you use for loops when you know how many times you want to perform a
loop. In contrast, you use while loops when you are not sure how many times you want to
perform a loop.

That probably didn’t make a whole lot of sense, so let’s get right to an example. We’ll start
with a for loop because we know how many times we want this script to loop (the next
lesson discusses while loops):

We’ll now count from one to five:

<script language=”JavaScript”>

for (i=1; i<=5; i=i+1)

{

document.write(i + “
”);

}

</SCRIPT>

...and we’re done

The script’s effect appears in Figure 6.6.

Figure 6.6
Results of a for loop.

To see the effect on your own computer, click Lesson Thirty-Five Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/ lesson35example.html.

07 0789726122_CH06 10/2/01 8:32 AM Page 165

JavaScript Goodies

166

Deconstructing the Script
First, look at how short this script is. It’s a nice break, don’t you think?

If you haven’t noticed, the for statement is seen as a function. See the braces?

Let’s look at the syntax of a for statement:

for(i=1; i<=5; i=i+1)

There are three parts separated by semicolons. We’ll take each part in order:

i=1

This sets the starting value of the variable used to control the loop. In this case it’s set to 1,
but it could be set to 10 or 100. Think of it simply as a starting point for the loop. That
starting point has now been assigned the variable i:

i <= 5

This is the condition controlling the number of times the loop will be repeated. In this
example, the loop will be repeated while i is less than or equal to 5.

TIP

You’re probably familiar with that less than sign from middle-school math. I was always
able to keep the greater than and less than signs apart by thinking of it as an alligator’s
mouth. The alligator always wants to bite the biggest number. It’s a good tip, compli-
ments of Miss Scovern, my sixth-grade math teacher:

i=i+1

This defines the increment value. Every time the loop is run, the program adds 1 to i. The
program can add any number you want; we just want it to add 1.

Finally, a document.write statement prints the number. Notice the
. That makes each of
the numbers break to the next line. You could just as easily have the numbers all in a row
separated by commas, by just altering that section of text that appears after each number.

This JavaScript is triggered, or looped, five times. Therefore, it produces the numbers 1–5.
We could have it count to 1,000,000 just as easily as 5, but that would take up too much
Web page space.

07 0789726122_CH06 10/2/01 8:32 AM Page 166

167

Chapter 6 ➤ Mathematics, Random Things, and Loops

Your Assignment
This is a great, and not so difficult, effect. You’re going to use this for loop as a delay.

Write an HTML document that displays Counting Now with a white background. Then, use
JavaScript to count to 10,000. Yes, that is 10,000. Do not use commas in for statements;
otherwise, you’ll get errors!

At the point the script is done counting, the background color should change to yellow,
and an alert box should pop up that reads done.

Do not have the numbers print to the page. You do not want them to be seen because they
are only there to count.

TIP

You might want to try writing the script setting the number to 10 rather than 10,000 to start with.

You don’t want to get stuck in a 10,000-number loop.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Thirty-Five Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment35.html.

Lesson 36: Introduction to while Loops
This example looks at the while loop. You usually use for loops when you know how many
times you want to perform a loop; you use while loops when you are not sure how many
times you want to perform a loop.

Look at this code to see how to use variables to count iterations in a loop and to help you
get ready for your assignment:

<SCRIPT LANGUAGE=”JavaScript”>

var usernum = prompt(“How many times should I write Happy?”,”0”)

loops=usernum

num=1

while (num <= loops)

{

document.write(“Happy “)

num=num+1

}

document.write(“Birthday”)

</SCRIPT>

You can see the script’s effect in Figures 6.7 and 6.8.

07 0789726122_CH06 10/2/01 8:32 AM Page 167

JavaScript Goodies

168

Figure 6.8
Results of a while loop.

Figure 6.7
Getting information for the
while loop.

To see the effect on your own computer, click Lesson Thirty-Six Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson36example.
html.

07 0789726122_CH06 10/2/01 8:32 AM Page 168

169

Chapter 6 ➤ Mathematics, Random Things, and Loops

The while Condition
The while loop is similar to the for statement in syntax. The difference is that in the for
loop, you set the beginning index number and increment in the for statement.

The while statement just contains a condition, and you wait for input from the user to get
the loop underway.

The script in this example uses the statement while(num <=loops).

The condition is actually just the <=. It stands for less than or equal to. Table 6.2 shows the
other conditions JavaScript recognizes.

Table 6.2 Conditions JavaScript Recognizes
Condition What It Means
== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
?: Conditional statement

The conditional statement is a pretty fancy item. It assigns a variable name depending on
the outcome of one of the other conditions in the table. Here’s an example:

YearsWithCompany = (ywc >=45) ? “retire” : “notretire”

If the person has been with the company equal to or more years than 45, the value retire
is attached to it. Conversely, if the years value is less than 45, the notretire variable is
attached.

Deconstructing the Script
Here’s another short script. We’ll whip right through it.

It starts with a basic prompt asking the user for a number. Notice that a 0 appears in the
second set of quotation marks. That’s done so that if the user simply clicks OK without
entering a number, the script will still run without errors. You always need to be conscious
of any move the user can make and code for it in the script.

That number is assigned the variable name usernum. The variable loops is set to represent
the number the user enters.

07 0789726122_CH06 10/2/01 8:32 AM Page 169

JavaScript Goodies

170

The while(num<=loops) statement tells the program to do the loop over and over while the
variable num is less than or equal to loops entered by the user. See the use of the <= condi-
tion?

It might seem that the variable num just came out of nowhere—basically, it did. We needed a
number equal to 0. We could have set num to 0 but didn’t need to. JavaScript counts every-
thing and starts counting at 0. num is a new variable, so by default, it gets the value of 0.

If the user enters the number 7, the loop will roll seven times.

Each time the program goes through the loop, it writes Happy plus a space and adds 1 to
num. The following code in the function does that:

document.write(“Happy “)

num=num+1

Let’s say the user enters the number 7. The loop rolls, and 1 is added to num. The script
then rolls again and checks to see whether the new number meets the criteria. This looping
continues until the number 7—the number the user entered—is met. After that’s done, the
looping stops.

The finishing touch is the addition of Birthday at the end through a document.write state-
ment.

So Happy, Happy, Happy, Happy, Happy, Happy, Happy Birthday to you.

Your Assignment
Here’s another challenge. Set up this lesson’s script so that the prompt asks how long a ran-
dom number the user wants. Then, take the number the user enters and create a random
number that long.

TIP

You can’t create the number as a whole; you must create it one number at a time.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Thirty-Six Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment36.html.

07 0789726122_CH06 10/2/01 8:32 AM Page 170

171

Chapter 6 ➤ Mathematics, Random Things, and Loops

Lesson 37: End-of-Chapter Review—A Browser-Detect Script
It’s the end of a chapter, and that means review and do.

Look over the commands you have learned so far, shown in Table 6.3, and think about
how you can use them to create useful and functional JavaScripts for your site. You’ve also
been introduced to these JavaScript concepts:

The alert(), confirm(), and prompt() methods

The if/else conditional statement

These event handlers: onBlur, onChange, onClick, onDblClick, onFocus, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, and onSubmit

These arithmetic operators: +, -, *, /, and %

These conditions: ==, !=, <, >, =<, =>, and ?:

The HTML 4.0 flag

Creating variable names

Creating a function

for loops

HTML form items

The form item attribute NAME=

These form item properties: length, value, and selectedIndex

These form item methods: toLowerCase and toUpperCase()

while loops

Table 6.3 Object-Related JavaScript Commands Demonstrated in
Chapters 1–6
Object Methods Properties
date getDate(),

getDay(),
getHours(),
getMinutes(),
getMonth(),
getSeconds(),
getYear()

document write() alinkColor, bgColor, fgColor, linkColor,
lastModified, location, referrer, title,
vlinkColor

07 0789726122_CH06 10/2/01 8:32 AM Page 171

JavaScript Goodies

172

Table 6.3 continued
Object Methods Properties
history go() length

location host, hostname, href
Math random(), round()
navigator appCodeName, appName, appVersion,

userAgent

window close() defaultstatus, directories, location,
menubar, resizable, self, scrollbars,
status, toolbar

Event Handlers
Here’s the sample script:

<SCRIPT LANGUAGE=”javascript”>

if (navigator.appName == “Netscape”)

{

location.href=”nspage.html”

}

else

if (navigator.appName == “Microsoft Internet Explorer”)

{

location.href=”iepage.html”

}

else

if (navigator.appName != “Netscape”)

{

location.href=”textpage.html”

}

</SCRIPT>

The effect is difficult to show. Take a look, though, and if you don’t get what’s happening
immediately, stop back and we’ll describe it to you.

To see the effect on your own computer, click Lesson Thirty-Six Script’s Effect in your
download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson37effect.html.

This JavaScript is what is known as a browser-detect script. The purpose of the script is to
view the user’s browser and load a page made specifically for that browser. It’s a script that
is widely requested from the HTML Goodies site.

07 0789726122_CH06 10/2/01 8:32 AM Page 172

173

Chapter 6 ➤ Mathematics, Random Things, and Loops

The script is set up to load nspage.html if the user’s browser is Netscape Navigator, and to
load iepage.html if the user’s browser is Internet Explorer.

Finally, a statement acts as a catchall for users who are not running either browser. Those
users are sent to textpage.html, a text-based version of the other two pages.

Deconstructing the Script
The script is made up of three if statements, but they really only check for two things.

The format of the script is set up to test for Netscape Navigator browsers first:

if (navigator.appName == “Netscape”)

{

location.href=”nspage.html”

}

The check is performed by asking whether the browser’s appName is Netscape. If it is, that’s
the end of the script. The nspage.html is loaded, and all’s well.

If the user is not running Navigator, however, the second if statement comes into play and
checks to see whether the browser’s appName is Internet Explorer. You’ll notice an extra else
in there between the two if statements. That’s a good habit to get into because it breaks
the script into multiple blocks of if statements. Moving along with the script ….

If the browser is MSIE, that’s the end of the script. The iepage.html loads:

else

if (navigator.appName == “Microsoft Internet Explorer”)

{

location.href=”iepage.html”

}

NOTE

By the way, we found the return from the navigator.appName to use in the script by sim-
ply writing a very small script that returned the value to the page. Then, we ran the script
in Netscape Navigator and Internet Explorer and wrote the values down.

If the browser is neither of those, the third if statement is checked:

else

if (navigator.appName != “Netscape”)

{

location.href=”textpage.html”

}

07 0789726122_CH06 10/2/01 8:32 AM Page 173

JavaScript Goodies

174

Notice again that an else is used before the third if statement.

The third statement might seem a bit silly. We already know that the browser is not
Netscape. If it were, the script would have sent us to the Netscape page.

But that’s the beauty of it all. We know the browser is not Netscape because the script
would have never gotten this far if the browser were one of the other two.

By writing the code to check whether it is not Netscape, we are guaranteeing that this if
statement is true; therefore, the browser goes to the textpage.html.

Pretty clever, huh?

Placement of the Script
Where you place this script is quite important. It should be on a page all by itself. External
text will not display anyway and will probably slow the page’s completion.

The user will never see this script. The reaction is usually so fast that all he sees is a fast
blank page load, and then up comes the page for his browser.

So, make this a page unto itself and put the bells and whistles on the pages you write for
the browsers.

Your Assignment
Your assignment, as it always is at the end of a chapter, is to create something you’re proud
to put on your Web pages. But we always make a suggestion.

Let’s play the lottery, but not that silly three-number lottery; let’s play the big six.

Set up a page with 12 small text boxes. Six of the boxes will be for the user to enter her six
numbers between 1 and 47.

Then, there should be a button that randomly generates six numbers between 1 and 47.

Finally, a button should be created that pops up an alert box to tell the user whether she
wins. (The win button is a bit of a ploy.)

You can see a possible answer to this assignment on your own computer by clicking Lesson
Thirty-Seven Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment37.html.

07 0789726122_CH06 10/2/01 8:32 AM Page 174

Clocks, Counts,
and Scroll Text

Chapter 7

This chapter contains the following lessons and scripts:

Lesson 38: A Running Clock

Lesson 39: A Fancy Digital Clock

Lesson 40: An Image-Driven Clock

Lesson 41: Countdown to Date

Lesson 42: Scrolling Text

Lesson 43: End-of-Chapter Review—Counting to an Event

The purpose of this chapter is to take what you have learned so far and create real-time
effects with it. It’s nice to be able to post the time the user arrived, but that’s a static num-
ber. Here, you’ll learn to create a digital clock that runs right in the browser window.

You’ll also learn to post text depending on what time of day it is. It’s a nice way to wish
someone a good morning at the right time.

You’ll also learn to create counts and countdowns to dates and events.

Finally, you’ll learn one of the most popular events available through JavaScript—scrolling
text.

08 0789726122_CH07 10/2/01 8:26 AM Page 175

JavaScript Goodies

176

Lesson 38: A Running Clock
In this lesson you’ll set up a script that returns the hour, minute, and second the user
arrives at the page. It’s a format you should be quite familiar with at this point.

This lesson takes one more step by setting the script so that it runs again and again, giving
the appearance that the clock is advancing on its own.

The script is displayed in full HTML document format to show the placement of each of the
parts of code:

<HTML>

<HEAD>

<SCRIPT LANGUAGE=”javascript”>

function RunningTime() {

var RightNow = new Date()

var hr = RightNow.getHours() + 1

var min = RightNow.getMinutes()

var sec = RightNow.getSeconds()

var printIt = “Time: “ +hr+ “:” +min+ “:” +sec

document.clock.clockface.value = printIt

var KeepItGoing=setTimeout(“RunningTime()”,”1000”)

}

</SCRIPT>

</HEAD>

<body bgcolor=”ffffff” onLoad=”RunningTime()”>

<FORM NAME=”clock”>

<INPUT TYPE=”text” name=”clockface”>

</FORM>

</body>

</html>

You can see the script’s effect in Figure 7.1.

To see the effect on your own computer, click Lesson Thirty-Eight Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson38example.
html.

08 0789726122_CH07 10/2/01 8:26 AM Page 176

177

Chapter 7 ➤ Clocks, Counts, and Scroll Text

Deconstructing the Script
We’ll start from the bottom and then go over the JavaScript:

<FORM NAME=”clock”>

<INPUT TYPE=”text” name=”clockface”>

</FORM>

You’ve seen this before. It’s a basic HTML form text box meant to receive and display what
is returned from the JavaScript.

The form itself is named clock, and the text box is named clockface.

Next up from the bottom is the onLoad= trigger that starts the script rolling when the page
loads into the browser window. You’ll find that in the BODY flag.

It would be best to explain what happens before going into each smaller section of the
script.

The script is set up to return a basic hour:minute:second time format. The returns from the
getSomething() methods display in a text box—you could probably figure that much out
just by looking at the script.

The magic of this script is in the fact that it appears to be running, but it’s not. Here’s the
deal: The script loads and posts the time to the text box. Then, the script waits one second
and runs again. Then, it waits one second and runs again. Then, it waits one second

Figure 7.1
The digital clock.

08 0789726122_CH07 10/2/01 8:26 AM Page 177

JavaScript Goodies

178

and … you know the rest. The effect of the script updating every second is that the seconds
are counting up and the clock is running.

No Loop!
Let me point out that this is not done with a for or a while loop. If we were to achieve the
effect through a loop—and you can get the same effect—we would tie up the page to the
point where you couldn’t even click any links. The method used in this lesson is con-
trolled; it runs one time every second.

If this were done with a loop, the loop might run 500 times per second or more. It would
be all the browser could do to keep updating the page. It wouldn’t have time for your
users.

If you want a running clock, this is the way to go. Keep reading for the method.

Getting the Time
Now we move on to the script’s parts. We’ll work from the middle out. This is the code
that returns the hour:minute:second time format:

var RightNow = new Date()

var hr = RightNow.getHours()

var min = RightNow.getMinutes()

var sec = RightNow.getSeconds()

The format is quite typical. The Date object is assigned the variable name RightNow. Then,
the hour, minute, and second are assigned the variable names hr, min, and sec, respectively.

The Function
The entire script to this point is set up as a function. The format looks like this:

function RunningTime()

{

Everything mentioned so far is in here

setTimeout(“RunningTime()”,”1000”)

}

The function is titled RunningTime(). Each time RunningTime() is triggered, a new value
from the Date object is returned and posted to the text box.

08 0789726122_CH07 10/2/01 8:26 AM Page 178

179

Chapter 7 ➤ Clocks, Counts, and Scroll Text

So, as mentioned earlier, we need to find a method of getting the function to run, wait a
second, and then run again. As you might have already guessed, this is what does the trick:

setTimeout(“RunningTime()”,”1000”)

If you start to really get into writing JavaScript, this format will become very familiar. We’re
setting up a rest period. The setTimeout() method does just what its name implies: It sets a
certain amount of time out. In this case, 1000/1000ths of a second, or one second.

The format to implement the setTimeout() method is the traditional format you would use
to set up a variable.

The method setTimeout() is given two parameters: the name of the function,
RunningTime(), and the number of milliseconds that the timeout should be.

Remember, JavaScript counts everything; it starts counting at 0, and it counts time in mil-
liseconds. Thus, 1000 is equal to one second. If you want the script to count up in five-
second intervals, set the number to 5000.

The effect is that the script runs, waits a second, and then runs the function RunningTime().
Then, it waits a second and runs the function RunningTime(), and then waits a second …
you know the rest.

Just remember: The setTimeout() method command line is inside the function. In fact, it is
the last line of code before the second curly brace that finishes off the function.

Placement is important—make sure setTimeout() is last.

Your Assignment
For this assignment, see whether you can get the running clock to display in the status bar.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Thirty-Eight Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment38.html.

Lesson 39: A Fancy Digital Clock
Chapter 6, “Mathematics, Random Things, and Loops,” discussed the if conditional state-
ment. Here we’re going to use those if conditions to redesign the clock in Lesson 38 so
that it reads like a normal digital clock. It will read in normal time using only the hours
1–12 for the hour, rather than 1–24. In addition, we’ll get the seconds to read 00 rather
than 60 when the clock turns over to the new minute.

We’ll even get an AM or PM to pop up at the end.

08 0789726122_CH07 10/2/01 8:26 AM Page 179

JavaScript Goodies

180

Here’s the script:

<HTML>

<HEAD>

<SCRIPT LANGUAGE=”javascript”>

function RunningTime() {

var RightNow = new Date()

var ampm = RightNow.getHours()

if (ampm > 12)

{nampm = “PM”}

else

{nampm = “AM”}

var hr = RightNow.getHours()

if(hr >= 12)

{nhr = hr -12}

else

{nhr = hr}

if (hr == 0)

{nhr = “12”}

else

{nhr = nhr}

var min = RightNow.getMinutes()

if (min < 10)

{nmin = “0” +min}

else

{nmin = min}

var sec = RightNow.getSeconds()

if (sec < 10)

{nsec = “0” +sec}

else

{nsec = sec}

if (nsec >= 60)

{nnsec = “00”}

else

{nnsec = nsec}

08 0789726122_CH07 10/2/01 8:26 AM Page 180

181

Chapter 7 ➤ Clocks, Counts, and Scroll Text

var printIt = “Time: “ +nhr+ “:” +nmin+ “:” +nnsec+ “:” +nampm

document.clock.clockface.value = printIt

setTimeout(“RunningTime()”,”1000”)

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR=”ffffff” onLoad=”RunningTime()”>

<FORM NAME=”clock”>

<INPUT TYPE=”text” name=”clockface”>

</FORM>

</BODY>

</HTML>

The script’s effect appears in Figure 7.2.

Figure 7.2
The fancy digital clock.

08 0789726122_CH07 10/2/01 8:26 AM Page 181

JavaScript Goodies

182

To see the effect on your own computer, click Lesson Thirty-Nine Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson39example.
html.

Deconstructing the Script
By now, we’re going to assume you understand the concept of returning the hour:minute:
second time format by assigning the Date object a variable name and then assigning vari-
ables to the getHours(), getMinutes(), and getSeconds() methods to get the correct time.

In this script, that same format is followed; however, after each of the getSomething()
methods, a series of if statements is set up to alter the number that is returned.

In addition, a series of if conditional statements is set up to assign text a variable name,
depending on what number is being returned.

If this is all getting a little confusing, read on. We’re going to take each new section in
order.

The Hours
This is the code that returns the hour number and the if statements that alter it:

var ampm = RightNow.getHours()

if (ampm >= 12)

{nampm = “PM”}

else

{nampm = “AM”}

var hr = RightNow.getHours()

if(hr > 12)

{nhr = hr -12}

else

{nhr = hr}

if (hr == 0)

{nhr = “12”}

else

{nhr = nhr}

You might notice that the hour is called for twice. But also take note that the variable
name in each call for the hour number is different. The reason is because the first small
block of code is using the hour to assign a variable name to the text AM and PM. The sec-
ond block of code ensures that the hour number returned is in the traditional 12-number
format, rather than the 24-hour military time.

08 0789726122_CH07 10/2/01 8:26 AM Page 182

183

Chapter 7 ➤ Clocks, Counts, and Scroll Text

We’ll look at the first small block of code first:

var ampm = RightNow.getHours()

if (ampm >= 12)

{nampm = “PM”}

else

{nampm = “AM”}

The number returned from the RightNow.getHours() object.method is assigned the variable
ampm.

A basic if/else statement is set up that means, “If ampm is greater than 12, assign the vari-
able nampm the text value of PM. If not, assign nampm the text value of AM.” We chose the
variable nampm to represent the new ampm. Get it?

Do you see what happened? The concept is that if the hour returned is after noon, the vari-
able nampm is assigned “PM”; otherwise, it gets “AM”.

Now we have this variable in our hip pocket. Later, in a document.write statement, we can
call for this text value and it will show up on the page. Got it? Good. You have to love this
math stuff. Now the second small block of code:

var hr = RightNow.getHours()

if(hr > 12)

{nhr = hr -12}

else

{nhr = hr}

This works like the first block, except it actually alters the number that is returned from the
RightNow.getHours() method.

The if/else reads, “If the variable hr is greater than 12, nhr (new hr, just like previously) is
hr minus 12. If not, nhr equals hr.”

The reason for subtracting 12 in the first instance is to lose the 24-hour format. If the script
runs at 10 p.m., the number returned is 22. By subtracting 12, we get the more familiar 10.

But what if it’s 0 o’clock? That can happen. If you remember, the getHours() method
returns the numbers 0 (midnight) through 23 (11:00 p.m.). Thus, we run the risk of 0
being returned from midnight through 1:00 a.m. That’s not good. So, let’s set up yet anoth-
er if/else statement that looks like this:

if (hr == 0)

{nhr = “12”}

else

{nhr = nhr}

08 0789726122_CH07 10/2/01 8:26 AM Page 183

JavaScript Goodies

184

The block of code tests the hour return. If the return is 0, the variable nhr is changed to 12
to represent the time between midnight and 1:00 a.m. Otherwise, we let nhr’s value display
as returned.

Yes, we could have created a new variable, but why bother? It’s only going to come into
play one twenty-fourth of the time anyway. We just kept the variable name the same.
Besides, we liked nhr.

Now remember, this is set up so that nhr is the correct number—the number we want to
post to the page. That’s the variable you need to call for in the document.write statements,
not hr. That hr variable was just used as a means to an end.

If this seems like a lot of worry over the hour number, it is. In Chapter 5, “Forms: A Great
Way to Interact with Your Users,” I talked about coding to cover every event that can take
place. This is doing just that. We stopped and thought about how many different returns
the hour can deliver and then how we could alter the hour return so that it would display
correctly.

I think it’s one of the more enjoyable parts of programming. Hopefully, you do, too,
because we have to do it again for the minute and second returns. Here we go.

The Minutes
This code should be pretty easy for you to figure out after rolling through the hour code.
Here it is:

var min = RightNow.getMinutes()

if (min < 10)

{nmin = “0” +min}

else

{nmin = min}

The minute is assigned the variable name min and is called for in the normal fashion. At
this point, the number is correct, so there’s no need to manipulate it more, right? Well,
sharp-eyed readers have probably noticed that when the minute is less than 10, the return
is just the single number. The display would look better if we could get a 0 in front when
there is just that single digit. So that’s what we’re going to do.

The if/else statement reads, “If the variable min is less than 10, nmin (new min, remember?)
will read 0 followed by the number. If not, make nmin equal to min.”

Now we have that variable nmin in the correct form to be used in the clock.

08 0789726122_CH07 10/2/01 8:26 AM Page 184

185

Chapter 7 ➤ Clocks, Counts, and Scroll Text

The Seconds
Here’s the code that creates the correct second return:

var sec = RightNow.getSeconds()

if (sec < 10)

{nsec = “0” +sec}

else

{nsec = sec}

if (nsec >= 60)

{nnsec = “00”}

else

{nnsec = nsec}

The first block of code is identical to what we just did with the minutes. If the second
returned is less than 10, it makes the display two digits by writing a 0 in front of the single
digit. If not, it lets nsec be equal to sec.

The second block of code comes into play only once a minute, but it’s a great look. You
know by adding 1 to the end of the RightNow.getSeconds() that the numbers 1–60 will be
returned. But 60 is not a normal number to see on a digital clock. Usually, when the num-
ber gets to 59, the next number in line is 00. That’s what the second block of code is
doing. It reads, “If the number returned by nsec is greater than or equal to 60, make nnsec
(new, new sec) equal to 00. If not, let nnsec equal nsec.”

See how one variable is built off the value assigned to another? That’s one of the corner-
stones of JavaScript programming. You get a value returned and then manipulate it before
displaying it for the viewer.

The Rest of the Script
The rest of the script is identical to the script in Lesson 38. The script gives the impression
it is running through the use of the setTimeout() command:

setTimeout(“RunningTime()”,”1000”)

Finally, the output of the script is sent to an HTML form text box for display. It looks like
this:

<FORM NAME=”clock”>

<INPUT TYPE=”text” name=”clockface”>

</FORM>

08 0789726122_CH07 10/2/01 8:26 AM Page 185

JavaScript Goodies

186

It seems like a lot is going on again, and again, and again, and it is. But your computer’s
pretty smart—it can handle it.

Your Assignment
Rewrite a section of the script so that not only will the output of the script read AM and PM,
but it should also read Good Morning between midnight and noon, Good Afternoon between
noon and 6 p.m., and Good Evening after 6 p.m.

Tip

Set up the if statements with Good Evening as the result if the first if statement is true.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Thirty-Nine Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment39.html.

Lesson 40: An Image-Driven Clock
This is a very popular effect. We’ll use the template digital clock from Lesson 38 and set up
a series of if statements so that the returns are images rather than text:

<SCRIPT LANGUAGE=”javascript”>

var RightNow = new Date()

var hr = RightNow.getHours()

if (hr == 0)

{hrn = “”}if (hr == 01)

{hrn = “”}

if (hr == 02)

{hrn = “”}

if (hr == 03)

{hrn = “”}

if (hr == 04)

{hrn = “”}

if (hr == 05)

{hrn = “”}

if (hr == 06)

{hrn = “”}

if (hr == 07)

{hrn = “”}

08 0789726122_CH07 10/2/01 8:26 AM Page 186

187

Chapter 7 ➤ Clocks, Counts, and Scroll Text

if (hr == 08)

{hrn = “”}

if (hr == 09)

{hrn = “”}

if (hr == 10)

{hrn = “”}

if (hr == 11)

{hrn = “”}

if (hr == 12)

{hrn = “”}

if (hr == 13)

{hrn = “”}

if (hr == 14)

{hrn = “”}

if (hr == 15)

{hrn = “”}

if (hr == 16)

{hrn = “”}

if (hr == 17)

{hrn = “”}

if (hr == 18)

{hrn = “”}

if (hr == 19)

{hrn = “”}

if (hr == 20)

{hrn = “”}

if (hr == 21)

{hrn = “”}

if (hr == 22)

{hrn = “”}

if (hr == 23)

{hrn = “”}

var min = RightNow.getMinutes() + 1

if (min == 01)

{nmin = “”}

if (min == 02)

{nmin = “”}

if (min == 03)

{nmin = “”}

if (min == 04)

08 0789726122_CH07 10/2/01 8:26 AM Page 187

JavaScript Goodies

188

{nmin = “”}

if (min == 05)

{nmin = “”}

if (min == 06)

{nmin = “”}

if (min == 07)

{nmin = “”}

if (min == 08)

{nmin = “”}

if (min == 09)

{nmin = “”}

if (min == 10)

{nmin = “”}

if (min == 11)

{nmin = “”}

if (min == 12)

{nmin = “”}

if (min == 13)

{nmin = “”}

if (min == 14)

{nmin = “”}

if (min == 15)

{nmin = “”}

if (min == 16)

{nmin = “”}

if (min == 17)

{nmin = “”}

if (min == 18)

{nmin = “”}

if (min == 19)

{nmin = “”}

if (min == 20)

{nmin = “”}

if (min == 21)

{nmin = “”}

if (min == 22)

{nmin = “”}

if (min == 23)

{nmin = “”}

08 0789726122_CH07 10/2/01 8:26 AM Page 188

189

Chapter 7 ➤ Clocks, Counts, and Scroll Text

if (min == 24)

{nmin = “”}

if (min == 25)

{nmin = “”}

if (min == 26)

{nmin = “”}

if (min == 27)

{nmin = “”}

if (min == 28)

{nmin = “”}

if (min == 29)

{nmin = “”}

if (min == 30)

{nmin = “”}

if (min == 31)

{nmin = “”}

if (min == 32)

{nmin = “”}

if (min == 33)

{nmin = “”}

if (min == 34)

{nmin = “”}

if (min == 35)

{nmin = “”}

if (min == 36)

{nmin = “”}

if (min == 37)

{nmin = “”}

if (min == 38)

{nmin = “”}

if (min == 39)

{nmin = “”}

if (min == 40)

{nmin = “”}

if (min == 41)

{nmin = “”}

if (min == 42)

{nmin = “”}

if (min == 43)

{nmin = “”}

08 0789726122_CH07 10/2/01 8:26 AM Page 189

JavaScript Goodies

190

if (min == 44)

{nmin = “”}

if (min == 45)

{nmin = “”}

if (min == 46)

{nmin = “”}

if (min == 47)

{nmin = “”}

if (min == 48)

{nmin = “”}

if (min == 49)

{nmin = “”}

if (min == 50)

{nmin = “”}

if (min == 51)

{nmin = “”}

if (min == 52)

{nmin = “”}

if (min == 53)

{nmin = “”}

if (min == 54)

{nmin = “”}

if (min == 55)

{nmin = “”}

if (min == 56)

{nmin = “”}

if (min == 57)

{nmin = “”}

if (min == 58)

{nmin = “”}

if (min == 59)

{nmin = “”}

document.write(hrn+ “” +nmin)

</SCRIPT>

You can see the script’s effect in Figure 7.3.

To see the effect on your own computer, click Lesson Forty Script’s Effect in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson40example.html.

08 0789726122_CH07 10/2/01 8:26 AM Page 190

191

Chapter 7 ➤ Clocks, Counts, and Scroll Text

Deconstructing the Script
To start with, let’s create 11 images. They are the numbers 0–9 and a colon. The 11 images
are shown in Figure 7.4.

Figure 7.3
Clock displaying images.

Figure 7.4
The clock images.

08 0789726122_CH07 10/2/01 8:26 AM Page 191

JavaScript Goodies

192

If you have grabbed the download packet from the HTML Goodies Web site, you already
have the images on your computer. They are named 0.gif through 9.gif and sc.gif for
the colon.

If you need to get them online, point your browser to
http://www.htmlgoodies.com/JSBook/0.gif through
http://www.htmlgoodies.com/JSBook/9.gif, as well as to
http://www.htmlgoodies.com/JSBook/sc.gif for the colon.

The script is very long compared to the size of the scripts we’ve been working with up to
this point. But if you take another look, you’ll notice that the script is little more than the
same hour:minute return format used in the previous two lessons with a whole lot of if
statements underneath.

The Hour
The hour is returned using the basic RightNow.getHours() object.method statement and is
assigned the variable name hr. We are dealing with the military time format here; 0–23 will
be returned, so there’s no need to add 1 to the getHours return. We’ll just allow an if state-
ment for a return of 0.

Then, the if statements start to roll. Here’s the first one:

if (hr == 0)

{hrn = “”}

The first if statement deals with a getHours return of 0. That would be midnight. It reads,
“If the hr variable, the number returned, is equal to 0, hrn (hour new is what we meant) is
equal to these two images: .” That represents midnight.

Now we have the variable hrn set to return the 1 image and the 2 image.

Here’s the second if statement that is enacted if the getHours return is equal to 01:

if (hr == 01)

{hrn = “”}

In this if statement, we’re dealing with 1:00 a.m. The return will be 01, so we set the two
numbers to display as 0 and 1.

We didn’t have to use 0 and 1; we could have just returned the 1 image. It would have
worked just as well, but we think it looks better to have all numbers in the time set to dis-
play double images. It’s just personal preference.

08 0789726122_CH07 10/2/01 8:26 AM Page 192

193

Chapter 7 ➤ Clocks, Counts, and Scroll Text

The if statements roll on until all numbers, 0–23, are represented. Notice we have the 0
and the 1 image set to return for the number 13 so that the clock will display the tradition-
al 1–12 hours.

An else statement isn’t necessary at the end because we know that the number returned
has to be 0–23. One of those if statements will come true every time.

The Minutes
Now this was a lot of coding. The concept is exactly the same as the earlier example,
except we set 60 different if statements, one each for the numbers 1–59.

The code is the same except for one small difference. For the number 60, we set the images
0 and 0 to be returned. Clock readouts usually don’t display 60, but rather 00, so we want-
ed to equal that.

The Display
This might be the shortest display since Lesson 1. The hour variable hrn is returned, the
colon is placed, and then the minute variable nmin is returned. It looks like this:

document.write(hrn+ “” +nmin)

Because the variables are returning text representing four images—two for each—what you
get is a series of five images across.

For example, if the time is 5:24, the document.write line will read as follows:

➥

Get it?

But I Want an Image Clock That Runs
And you shall have it. Contrary to what you might think, the format for getting a clock to
run with images is a little more difficult than simply sticking a setTimeout() function at
the end of this long script. The reason is that we’re dealing with image code being written
to a page, so it’s quite involved.

That said, I do have an image-based clock for you in Script Tip 10, “A Digital Clock with
Image Display.” It’s a bit involved and a little too much to put right here. After you finish
the remainder of the lessons, take a look at the script. It’s a big one, let me tell you.

08 0789726122_CH07 10/2/01 8:26 AM Page 193

JavaScript Goodies

194

Your Assignment
Add some code to the end of this script so that it also displays the seconds.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Forty Assignment in your download packet, or see it online at http://www.htmlgoodies.
com/JSBook/assignment40.html.

Lesson 41: Countdown to Date
How many days is it to your birthday, Christmas, the new year? You can figure it out auto-
matically as long as you know how to set a date in the future. After you have that future
point, you can perform mathematics to find out the number of days until the date you set.

Of course, you can also get the minutes and seconds, too, but first things first:

<SCRIPT LANGUAGE=”javascript”>

RightNow = new Date()

mil = new Date(“January 1, 2005”)

mil.setYear = RightNow.getFullYear;

day = (1000*60*60*24)

computeDay = (mil.getTime() - RightNow.getTime()) / day;

DayResult = Math.round(computeDay);

document.write(“<center> “+DayResult+” days until

➥ January 1st, 2005</center>”);

</SCRIPT>

The script’s effect appears in Figure 7.5.

To see the effect on your own computer, click Lesson Forty-One Script’s Effect in your
download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson41example.html.

Deconstructing the Script
The concept of the script is pretty simple. We first set a date off in the distance. That’s our
ending point. We then grab the current date. Now that we have these two points, we can—
through mathematics—figure out the number of days, minutes, or seconds from this point
to the one we set way off in the future.

08 0789726122_CH07 10/2/01 8:26 AM Page 194

195

Chapter 7 ➤ Clocks, Counts, and Scroll Text

Here’s script from the top down:

RightNow = new Date()

mil = new Date(“January 1, 2005”)

mil.setYear = RightNow.getFullYear;

The first three lines of the script set up the Date object and assign it the variable name
RightNow.

Next, a new date is assigned to the variable mil because this is a script to figure out the
days to the millennium. But take a second look. See how the instances now have a date in
the middle, “January 1, 2005”? That’s where we set a date off in the distance. Now we
have our future point.

Set It!
Next, we permanently set the current year. mil.setYear is a method used to set a year point
and not allow it to move.

When you use getSomething(), the number returned is ever-changing, especially the sec-
ond. By changing the text get to set, we make it permanent. That works for hours, min-
utes, seconds, days, months, and as shown here, years.

Figure 7.5
Display of days until
January 1, 2005.

08 0789726122_CH07 10/2/01 8:26 AM Page 195

JavaScript Goodies

196

JavaScript Counts by the Thousand
As if you didn’t have enough to remember about how JavaScript counts, here’s one more
fact. 1000 is equal to one second. JavaScript counts time in 1/1000ths of a second (millisec-
onds).

Remember the Math.random() statement we used earlier to return a random number
between 000 and 999? Well, that could be done because JavaScript counts in milliseconds.

So we move along.

What’s a Day?
This is a day:

day = (1000*60*60*24)

Because we have set our point in the future, now we need to create some mathematical
statements so we can start figuring the days.

1000 equals a second, multiplied by 60 is a minute, multiplied by 60 equals an hour, and
multiplied by 24 equals a day. See how that works? Now we have a variable, day, that repre-
sents one 24-hour period.

Figuring the Days
Now let’s do the math. We’ll set a variable name, computeDay, to figure the days between
the point we set in the future and the current date. It looks like this:

computeDay = (mil.getTime() - RightNow.getTime()) / day;

DayResult = Math.round(computeDay);

The variable mil.getTime() is new to this book. The method getTime() works under the
object Date, just like any of the other getSomething() or setSomething() methods do.

Where getTime() differs is that it represents the current date. When this method is run, it
grabs all the dates and times at once. This represents our second point in time—the pre-
sent.

The math is performed by subtracting rightNow from our date in the future and dividing it
by a day.

The number returned will most likely not be a round number, so we need to round it off
using the Math.round() object.method statement.

The result is assigned the variable name DayResult.

08 0789726122_CH07 10/2/01 8:26 AM Page 196

197

Chapter 7 ➤ Clocks, Counts, and Scroll Text

Putting It on the Page
The result is put to the page through a basic document.write statement and use some fancy
HTML coding to create the superscript st:

document.write(“<center> “+DayResult+” days until

➥ January 1st, 2001</center>”);

The script looks complicated at first, but after you break it down to its smallest parts, you
can see it’s a simple math problem where we display the results.

Your Assignment
Add some code to our script so it also displays the number of minutes until a set date.

(It’s not as simple as multiplying the number of days by 60.)

You can see a possible answer to this assignment on your own computer by clicking
Lesson Forty-One Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment41.html.

Lesson 42: Scrolling Text
Scrolling, scrolling, scrolling. Keep those letters scrolling.

Setting up scrolling text is a little tricky. It’s done by setting a line of text and then moving
it a little to the left after a certain amount of time, again and again.

But after you get the scroll to roll, you can get it to scroll in the status bar, an HTML divi-
sion, an HTML layer, or a text box, like we did here:

<HTML>

<HEAD>

<SCRIPT LANGUAGE=”JavaScript”>

var space = “ “

var scr = space + “This text is scrolling along...”

function ScrollAlong()

{

temp = scr.substring(0,1);

scr += temp

scr = scr.substring(1,scr.length);

document.Scroll.ScrollBox.value = scr.substring(0,55);

setTimeout(“ScrollAlong()”,50);

08 0789726122_CH07 10/2/01 8:26 AM Page 197

JavaScript Goodies

198

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR=”#FFFFFF” onLoad=”ScrollAlong()”>

<FORM NAME=”Scroll”>

<INPUT TYPE=”text” size=”50” name=”ScrollBox” value=””>

</FORM>

</BODY>

</HTML>

You can see the script’s effect in Figure 7.6.

Figure 7.6
Scroll in text box.

To see the effect on your own computer, click Lesson Forty-Two Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson42example.
html.

08 0789726122_CH07 10/2/01 8:26 AM Page 198

199

Chapter 7 ➤ Clocks, Counts, and Scroll Text

Deconstructing the Script
The JavaScript that produces the scroll actually sits between the HTML <HEAD> flags. The
script that creates the scroll is contained in a function named ScrollAlong() that is trig-
gered by an onLoad= event handler in the <BODY> flag.

The output of the script is displayed in a text box that looks like this:

<FORM NAME=”Scroll”>

<INPUT TYPE=”text” size=”50” name=”ScrollBox” value=””>

</FORM>

The name of the entire form is Scroll, and the name of the text box that will receive the
scrolling text is ScrollBox.

Now that you understand the setup and the names of all the external parts, let’s concen-
trate on the script.

The Text That Scrolls
The first two lines of the script, before the function, set the text that will scroll:

var space = “ “

var scr = space + “This text is scrolling along...”

If the first line looks a little strange, there’s a good reason. It’s meant to produce space
before the scroll. The variable name space is assigned to around 50 spaces. Then, the vari-
able name scr is assigned to space and the text “This text is scrolling along...”.

Now we have a long set of spaces and then text. The reason is aesthetic. If we didn’t put a
bunch of space before, or after, the scrolling text, one scroll would just bump right into
another.

Yes, we could have put all this on one line, but showing it this way was better because it
gave us a chance to write this little section telling you to add a bunch of spaces before and
after your scrolling text.

The Scrolling Script
This script, surrounded by the function ScrollingAlong(), actually creates the scroll. In
reality, nothing is actually scrolling. The script is just taking all those spaces and text and
moving them to the left a nudge, again and again. The effect is the appearance that the
text is scrolling.

08 0789726122_CH07 10/2/01 8:26 AM Page 199

JavaScript Goodies

200

Let’s break it down. First, the variable temp is assigned to scr.substring(0,1). scr, you’ll
remember, represents the text that will scroll along:

temp = scr.substring(0,1);

The substring(0,1) command is new. It returns a portion, or sub, of a text string depend-
ing on an index. The index is contained within the instance, 0 and 1. Basically, this com-
mand returns part of the text to the scroll when called on. At this point, it is set to return
only one character. This is what actually creates the scroll.

Next, scr is given a new value. Here’s the code:

scr += temp

The operator in the middle is what does the trick. That += operator means to add what is
before the operator to what is beyond the operator. So, scr += temp could actually have
been written as scr = scr + temp. The += is just a little shorthand we thought you’d like to
know.

So what has happened? The substring scr is now the entire text string plus the entire text
string one character in. If that happens again and again, the text builds, adding one more
character from the string each time to the next letter or space in the string to create the
next display. That gives the effect that the start point keeps moving one space to the left,
eating away at the substring text. The text keeps displaying one letter to the right and gives
the effect that it’s actually scrolling out from the right side of the text box.

The script continues to build up again using scr as the variable of choice.

scr = scr.substring(1,scr.length);

Now, scr is assigned a value that’s a substring of itself, working with the two indexes and
the text string’s length. This might seem a little confusing at this point, but what you are
asking for here is a subset of the text string. If you enter a number, only that many letters
will be returned. By setting the argument of the subset to the length of the substring, you
can be assured the entire string will be returned, rather than just the string, each time miss-
ing one letter.

At this point, the code that came before is making the return keep moving one to the left.
And then the following line, posting the text in full, is starting at that one space to the left
again and again. That’ll look like a scroll, right?

document.Scroll.ScrollBox.value = scr.substring(0,55);

The output of scr.substring is now being sent to the text box through the hierarchy state-
ment document.Scroll.ScrollBox.value. The two numbers in the instance are, again, two

08 0789726122_CH07 10/2/01 8:26 AM Page 200

201

Chapter 7 ➤ Clocks, Counts, and Scroll Text

arguments. Yet this time, we’re not dealing with text, but rather that return space within
the text box. This line is set up to provide 55 spaces of visible text in which the text will
scroll.

You can prove that to yourself by setting the 55 to 25 and rerunning the script. The space
in which the text scrolls will be cut almost in half.

Now you need to make the script keep repeating itself, because if it doesn’t, this will be a
one-character space scroll. That would be too quick and pretty boring. Here’s what does it:

setTimeout(“ScrollAlong()”,50);

Here’s that setTimeout() statement you’ve come to know and love. This time around, the
variable name is counts, and it runs the next substring every 50/1000ths of a second.

Set the number higher to go slower, and set it lower to go faster. Just remember that you’re
not setting a speed here—you’re setting the 1/1000ths of a second before the script runs
again. The result is that the scroll appears faster or slower.

Scrolls are rough, but after you have the very basics of them, you should be able to scroll
with the best of them.

Your Assignment
Alter the code in this lesson so that the text that scrolls is different, the scroll occurs in the
status bar, and finally, it scrolls much faster than it is set to scroll now.

You can see a possible answer to this assignment on your own computer by clicking
Lesson Forty-Two Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment42.html.

Lesson 43: End-of-Chapter Review—Counting to an Event
Up until now, we have either had events that run consistently or figured out set times.
Now let’s get a countdown to roll in much the same fashion as we got the scroll to roll.

The script in this lesson is set up to count five seconds and then perform an event.

Table 7.1 shows the object-related JavaScript commands you’ve learned up to now. You’ve
also been introduced to these JavaScript concepts:

string and the substring() method

The alert(), confirm(), and prompt() methods

The if/else conditional statement

08 0789726122_CH07 10/2/01 8:26 AM Page 201

JavaScript Goodies

202

These event handlers: onBlur, onChange, onClick, onDblClick, onFocus, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, and onSubmit

These arithmetic operators: +, -, *, /, and %

These conditions: ==, !=, <, >, =<, =>, ?:, and +=

The HTML 4.0 flag

Creating variable names

Creating a function

for loops

HTML form items

The form item attribute NAME=

These form item properties: length, value, and selectedIndex

These form item methods: toLowerCase and toUpperCase()

while loops

Table 7.1 Object-Related JavaScript Commands Demonstrated in
Chapters 1–7
Object Methods Properties
date getDate(),

getDay(),
getHours(),
getMinutes(),
getMonth(),
getSeconds(),
getTime(),
setYear(),
setDate(),
setDay(),
setHours(),
setMinutes(),
setMonth(),
setSeconds()

document write() alinkColor, bgColor, fgColor,
linkColor, lastModified,
location, referrer, title,
vlinkColor

history go() length

08 0789726122_CH07 10/2/01 8:26 AM Page 202

203

Chapter 7 ➤ Clocks, Counts, and Scroll Text

Table 7.1 continued
Object Methods Properties
location host, hostname, href
Math random(), round()
navigator appCodeName, appName,

appVersion, userAgent
window close(), defaultstatus, setTimeout()

directories, location, menubar,
resizable, self, scrollbars,
status, toolbar

Here’s a script that puts some of these concepts to work:

<HTML>

<HEAD>

<TITLE>Lesson 43</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>

RightNow = new Date();

StartPoint = RightNow.getTime();

function StartTheCount()

{

var RightNow2 = new Date();

var CurrentTime = RightNow2.getTime();

var timeDifference = CurrentTime - StartPoint;

this.DifferenceInSeconds = timeDifference/1000;

return(this.DifferenceInSeconds);

}

function TheSeconds()

{

var SecCounts = StartTheCount();

var SecCounts1 = “ “+SecCounts;

SecCounts1= SecCounts1.substring(0,SecCounts1.indexOf(“.”)) + “ seconds”;

if (DifferenceInSeconds >= 6)

{alert(“done”)}

else

{

document.FormCount.CountBox.value = SecCounts1

window.setTimeout(‘TheSeconds()’,1000);}

08 0789726122_CH07 10/2/01 8:26 AM Page 203

JavaScript Goodies

204

}

</SCRIPT>

</HEAD>

<BODY BGCOLOR=”FFFFFF” onLoad=”window.setTimeout(‘TheSeconds()’,1)”>

<FORM NAME=”FormCount”>

<INPUT TYPE=”text” size=9 NAME=”CountBox”>

</FORM>

</HTML>

The script’s effect appears in Figure 7.7.

Figure 7.7
Alert box after countdown.

To see the effect on your own computer, click Lesson Forty-Three Script’s Effect in your
download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson43example.html.

Deconstructing the Script
For this chapter wrap-up, we’ll use a rather large effect. The script is made up of objects
you already know, but it has a lot of them. It also has two functions.

08 0789726122_CH07 10/2/01 8:26 AM Page 204

205

Chapter 7 ➤ Clocks, Counts, and Scroll Text

We’ll start again from the bottom:

<FORM NAME=”FormCount”>

<INPUT TYPE=”text” size=9 NAME=”CountBox”>

</FORM>

The preceding code creates an HTML form text box that receives the output of the script.
The form itself is named FormCount, and the box that will receive the value is named
CountBox. Now you know the names and can start tearing down the script.

The Script
The script begins in a familiar fashion, by assigning the value RightNow to the Date object:

RightNow = new Date();

StartPoint = RightNow.getTime();

Because we will be figuring out seconds until an event, we’ll need to set a point in time.
So, we assigned the variable StartPoint to the second in time the script runs—
RightNow.getTime().

The First Function
The first function is named StartTheCount(), appropriately enough. The code is similar to
the code from Lesson 41 that figures the number of days until a set point:

function StartTheCount()

{

var RightNow2 = new Date();

var CurrentTime = RightNow2.getTime();

var timeDifference = CurrentTime - StartPoint;

this.DifferenceInSeconds = timeDifference/1000;

return(this.DifferenceInSeconds);

}

The variable RightNow2 is assigned to a brand-new Date object. Then, the variable
CurrentTime is assigned to the exact point in time at which the script runs, as returned by
RightNow2.getTime().

The time difference in seconds between the CurrentTime and StartPoint is figured by sub-
tracting one from the other. The answer is then divided by 1000—JavaScript’s representa-
tion of a second. The result is assigned the variable name DifferenceInSeconds.

Now, we take our answer and run the second function.

08 0789726122_CH07 10/2/01 8:26 AM Page 205

JavaScript Goodies

206

The Second Function
The second function, named TheSeconds(), is actually a couple of events put together. The
first event creates the count; the second event watches the numbers roll by and enacts an
alert box when the count reaches 6.

The first event looks like this:

var SecCounts = StartTheCount()

var SecCounts1 = “ “+SecCounts;

SecCounts1= SecCounts1.substring(0,SecCounts1.indexOf(“.”)) + “ seconds”;

The variable name SetCount is assigned to the output of the first function
DifferenceInSeconds. Obviously, we didn’t have to do this, but it seemed a good idea to
assign a new name because we were in a whole new function.

The variable SecCounts1 is assigned to a space plus the results of the first function. This is
similar to how the scrolling script was put together, adding space to a value.

SecCounts1 is then given a value, the substring of itself. A substring returns the greater of
the two indexes in its instance. In the preceding code, the two indexes are 0 and the
indexOf() SecCounts1.

Yes, that indexOf() is new. That command returns a count of what you point it toward. In
this case, it points toward the results of the first script. That means the indexOf() starts to
count from the point returned by the mathematics in the first function, probably 1 or less
than 1.

However, now the substring will not return a letter as in the scroll script; instead it returns
the number, and the indexOf() begins the count.

But how does it count up? Look at the last line of the second function:

window.setTimeout(‘TheSeconds()’,1000);}

It’s a basic setTimeout() method that reruns the function TheSeconds() every second. That’s
why the script counts; it is run again and again and again ….

Stopping the Count
One of the selling points of this script is that it counts up to a certain point and then
throws an alert box, or whatever you set it to do.

The count is watched, and then the alert box is enacted by the following code:

08 0789726122_CH07 10/2/01 8:26 AM Page 206

207

Chapter 7 ➤ Clocks, Counts, and Scroll Text

if (DifferenceInSeconds >= 6)

{alert(“done”)}

else

{

document.FormCount.CountBox.value = SecCounts1

window.setTimeout(‘TheSeconds()’,1000);}

}

It is a simple if/else statement that says, “If the output of the first script,
DifferenceInSeconds, is greater than or equal to 6, post an alert. If not, continue to post
the output of SecCounts1 to the text box CountBox in the form named FormCount.”

Why Count from the First Function?
Ah, you noticed that. We’re not relying on the count from the second function to set off
the alert. You see, the second function is just a display—the first function is the one that is
really keeping count. That’s why we’re using the result, DifferenceInSeconds, to count for
the if/else statement.

It’s a true count using that number. The count that displays is for show only.

Your Assignment
Set up a greeting for your users. This is a great effect. Get the text Good Morning, Good
Afternoon, or Good Evening, to scroll in the status bar. The text should then be followed by
the text Welcome to my page.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Forty-Three Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment43.html.

08 0789726122_CH07 10/2/01 8:26 AM Page 207

08 0789726122_CH07 10/2/01 8:26 AM Page 208

Arrays

Chapter 8

This chapter contains the following lessons and scripts:

Lesson 44: Two Different Array Formats

Lesson 45: Combining User Input with Arrays

Lesson 46: Random Quotes

Lesson 47: A Guessing Game Using Arrays

Lesson 48: A Password Script

Lesson 49: End-of-Chapter Review—A Quiz

One of the staples of any programming language is the ability to create an indexed, ordered
list of items for the program to use, manipulate, or display. That indexed list is called an
array.

JavaScript offers two basic formats for presenting an array. Each works equally well,
although after we get into the scripts in this chapter, you’ll see how using one format or
the other in particular cases is best, simply to keep it all straight in your own mind.

Setting up an array is a little tricky at first. You have to be concerned with the order of
the items, whether the items are data or literal strings, and how the data will be used.
Plus there’s the concern that JavaScript counts everything, and the fact that it starts count-
ing at 0.

09 0789726122_CH08 10/2/01 8:34 AM Page 209

JavaScript Goodies

210

But after you grasp the concept of setting up arrays, the possibilities of what you can do
with them are endless.

Lesson 44: Two Different Array Formats
Sharp-minded readers might remember that way back in Lesson 15 (see Chapter 3,
“Manipulating Data and the Hierarchy of JavaScript”) we put together an array. The array
was set up to present the day of the week. Here, we set up the exact same array and result—
only this time we’ll follow a different method of presenting the array.

Both formats are included for explanation purposes. We’ll start with the format you haven’t
seen yet:

<SCRIPT LANGUAGE=”JavaScript”>

var dayName=new Array(7)

dayName[0]=”Sunday”

dayName[1]=”Monday”

dayName[2]=”Tuesday”

dayName[3]=”Wednesday”

dayName[4]=”Thursday”

dayName[5]=”Friday”

dayName[6]=”Saturday”

var y=new Date();

var Today = y.getDay()

document.write(“Today is “+dayName[Today] + “.”);

</SCRIPT>

The script’s effect appears in Figure 8.1.

To see the effect on your own computer, click Lesson Forty-Four Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson44example.
html.

Deconstructing the Script
Immediately following the <SCRIPT LANGUAGE=javascript> flag is the array that presents the
days of the week. It looks like this:

var dayName=new Array(7)

dayName[0]=”Sunday”

dayName[1]=”Monday”

09 0789726122_CH08 10/2/01 8:34 AM Page 210

211

Chapter 8 ➤ Arrays

dayName[2]=”Tuesday”

dayName[3]=”Wednesday”

dayName[4]=”Thursday”

dayName[5]=”Friday”

dayName[6]=”Saturday”

Figure 8.1
Day of the week posted
through an array.

Notice the order. Remember that JavaScript counts everything and starts counting at 0. The
order of the days in the previous code starts with 0 for Sunday. We chose to put Sunday
first because, when you call for the dates of the week using the getDays() method, Sunday
returns the number 0, Monday returns 1, and so on. So the order is not up for discussion.

The Format of a New Array
Look at the format of the array. The browser sees the array as a variable name. That’s
extremely handy because after the variable name is assigned, we can call on the array—and
an index number—and just that piece of data or literal string is returned.

The array is assigned the variable name dayName. Notice the format used to set a new array.
It is similar to the format used when setting a new Date object. You assign the variable
name, specify that the assigned item is new, and then declare it as an array: new Array(7).

The number that appears in the array’s instance (the parentheses) is the number of items in
the array. Even though the array starts numbering items at 0, you still need to count the

09 0789726122_CH08 10/2/01 8:34 AM Page 211

JavaScript Goodies

212

first item as a member of the array. Too frequently the author doesn’t count the element
because the first element in the array is listed as 0. JavaScript counts it, so you must count
it, too.

Listing the Array Items
This format of listing array items is good in that the number assigned to the array item is
right there for all the world to see. The first item looks like this:

dayName[0]=”Sunday”

dayName is the variable name assigned to the entire array. To set apart an item as an element
in the dayName array, you use the variable name and then the number that will be assigned
by JavaScript, starting at 0 and simply counting up by 1. The number assigned to the
indexed items in the array is referred to as the index number.

Notice the number is within square brackets. We always keep that usage straight because
square brackets are all that’s left. We can’t use parentheses because they are used for param-
eters, and we can’t use braces because they are used for enclosing functions. Okay, it’s not a
good method of remembering, but it sure works for us.

Next, the single equal sign is used to assign a value to the variable[#]. In this case, the
value is a literal string, Sunday. It is text, nothing more. We do not want to manipulate this
data or do anything with it other than display it if needed. Because it is only text, double
quotation marks surround it.

Later in this chapter, we create arrays that consist of numbers and answers to a quiz. That
numeric data is not to be returned. We want to manipulate it and return something else
depending on the outcome; therefore, that numeric data does not appear within quotation
marks. Here, though, we’re using literal strings. They sit within the double quotation
marks. Have we driven that point home?

To complete the array, you work down the line, assigning the same variable name and
adding 1 to the number until you reach the end of your list. When all items have been list-
ed, you’ve finished your array.

More than One in a JavaScript
It is more common to have multiple arrays in a JavaScript than it is to have only one. Your
assignment today requires you to put more than one array in the script.

The format for each new script is the same as we’ve already described. However, each new
array must be assigned a new variable name. Then, when you list the items in the array,
you must assign them numbers using that new variable name.

09 0789726122_CH08 10/2/01 8:34 AM Page 212

213

Chapter 8 ➤ Arrays

However, every new array starts counting at 0.

Here’s an example of three small arrays that could all go on the same page:

var tree=new Array(3)

tree[0]=”Elm”

tree[1]=”Pine”

tree[2]=”Maple”

var NumberData=new Array(3)

NumberData[0]=15

NumberData[1]=30

NumberData[2]=45

var Cats=new Array(3)

Cats[0]=”Fido”

Cats[1]=”Chloe”

Cats[2]=”Stimpy”

All three arrays have different variable names, and each list starts counting at 0. You can
include 1,000 arrays on a page as long as you come up with 1,000 different variable names
and number them all starting with 0.

Returning from the Array
Now that we have gone over the concept of setting up the array, we need to discuss how to
get one of the items returned—and not just any item. Let’s get the one we want. Here’s the
code that calls for the day of the week:

var y=new Date();

var Today = y.getDay()

document.write(“Today is “+dayName[Today] + “.”);

The first two lines should look familiar. The new Date object is assigned the variable name
y. Then, the object.method statement y.getDay() is assigned the variable name Today.
When all is said and done, Today will return the number representing the day of the week.

The document.write statement is where the magic happens. It starts off posting the text
Today is , leaving the space for appearance. Then, a return is called for. Notice the plus
signs. The return is the variable name we assigned to the array. We know that the string to
be returned will come from that array, but which one?

09 0789726122_CH08 10/2/01 8:34 AM Page 213

JavaScript Goodies

214

Notice that within the square brackets is the output of y.getDay(), Today. That value is a
number. If the number returned is 0, today must be Sunday. If the number returned is 4,
today must be Thursday.

Whatever the number, the value is placed within the square brackets. That value is then
used to go to the array and return the string attached to that number.

And the day of the week appears on the page.

But what about adding 1 to the y.getDate() statement to get the number up to snuff? It’s
not necessary. You added 1 when you were returning just a number. Because of the 0 being
in the mix, you needed to add 1 because everything starts counting at 0. If you didn’t, the
month, year, hour, and so on would all be off by 1.

Here, there’s no need to add 1. In fact, you’ll mess things up by doing it. The array allows
for 0 to be a correct answer. If you add 1, 0 will never be returned, and it will never get to
be Sunday. And we can’t have that.

A Different Type of Array
Now, let’s look at the script we wrote in Lesson 15. It does the same thing as the script
we’ve just discussed in this lesson, but the arrays are set up differently:

<SCRIPT LANGUAGE=”JavaScript”>

var dayName=new Array(“Sunday”,”Monday”,”Tuesday”,

➥”Wednesday”,”Thursday”,”Friday”,”Saturday”)

var y=new Date();

var Today = y.getDay()

document.write(“Today is “+dayName[Today] + “.”);

</SCRIPT>

This is the line that creates the array:

var dayName=new Array(“Sunday”,”Monday”,”Tuesday”,

➥”Wednesday”,”Thursday”,”Friday”,”Saturday”)

The same rules described earlier still apply. The array is assigned a variable name, and the
array is noted as being new, just like setting up a Date object.

The difference between the two arrays is that in this format, we’re allowing the JavaScript
to assign the values for the array items, rather than doing it ourselves. Sunday is 0,
Monday gets a 1, Tuesday gets 2, and so on.

The results will be the same, and both scripts will run just fine.

09 0789726122_CH08 10/2/01 8:34 AM Page 214

215

Chapter 8 ➤ Arrays

The main difference is that in this format, you can’t tell at a glance which number is
assigned to each element. I found myself counting more times than I wanted to.

When Do I Use One or the Other?
After writing the scripts in the chapter, we found that the format we use is as much person-
al preference as anything else. However, the straight-line format worked best when we were
comparing two lines of arrays. That way, the arrays were listed on two lines, and we could
quickly see which data went with which in the arrays.

When simply returning data based on the user’s input, the vertical list is best.

But the choice is yours. Either one works, and both are useful. Just remember that strings
are surrounded by double quotation marks, and when you use the all-in-a-row format—
such as the script from Lesson 15—the items are separated by a comma and no spaces.

Your Assignment
Add a second array to the script, following the same pattern, to complete the phrase It is
day in the month of month.

You can see a possible answer to this assignment on your own computer by clicking
Lesson Forty-Four Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment44.html.

Lesson 45: Combining User Input with Arrays
Joe is a huge fan of the Rocky movies. He wrote this script. The concept is pretty basic:
There are five Rocky movies, and the user is asked to enter a number (1–5) in a text box and
then click a button.

When the button is clicked, the title of the movie and a very brief plot summary appears
in two other text boxes.

This script has two arrays. Depending on which number the user enters, that number in
both arrays is returned. So here again, both arrays are locked into an order: One number,
two arrays, and two returns.

While you read through the list, keep in mind that no Rocky 0 exists. However, you have to
make allowances for those users who try to be funny and enter a goose egg.

Here’s the script:

<SCRIPT LANGUAGE=”javascript”>

function Balboa()

09 0789726122_CH08 10/2/01 8:34 AM Page 215

JavaScript Goodies

216

{

var num = document.RockyForm.RockyUser.value

var Movie = new Array(6)

Movie[0]=”There was no Rocky 0”

Movie[1]=”Rocky”

Movie[2]=”Rocky II”

Movie[3]=”Rocky III”

Movie[4]=”Rocky IV”

Movie[5]=”Rocky V”

var Outcome = new Array(6)

Outcome[0]=”No Outcome”

Outcome[1]=”Rocky Loses”

Outcome[2]=”Rocky Wins”

Outcome[3]=”Rocky Loses, then Wins”

Outcome[4]=”Apollo Dies, Rocky Wins”

Outcome[5]=”Rocky Wins Street Brawl”

document.RockyForm.RockyTitle.value=Movie[num]

document.RockyForm.RockyOutcome.value=Outcome[num]

}

</SCRIPT>

<FORM NAME=”RockyForm”>Enter a Rocky Movie Number (1-5):

<INPUT NAME=”RockyUser” TYPE=”text” SIZE=”2”>

<INPUT TYPE=”button” Value=”Tell Me What Happens”onClick=”Balboa()”><P>

You chose: <INPUT NAME=”RockyTitle” TYPE=”text” SIZE=”26”>

The outcome was: <INPUT NAME=”RockyOutcome” TYPE=”text” SIZE=”26”>

</FORM>

You can see the script’s effect in Figure 8.2.

To see the effect on your own computer, click Lesson Forty-Five Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson45example.
html.

09 0789726122_CH08 10/2/01 8:34 AM Page 216

217

Chapter 8 ➤ Arrays

Deconstructing the Script
As is often the case when the script includes a form element, we will start from the bottom:

<FORM NAME=”RockyForm”>Enter a Rocky Movie Number (1-5):

<INPUT NAME=”RockyUser” TYPE=”text” SIZE=”2”>

<INPUT TYPE=”button” Value=”Tell Me What Happens”

➥onClick=”Balboa()”><P>

You chose: <INPUT NAME=”RockyTitle” TYPE=”text” SIZE=”26”>

The outcome was: <INPUT NAME=”RockyOutcome” TYPE=”text” SIZE=”26”>

</FORM>

This HTML form code is constructed to provide a box to accept data, a button to start the
process, and then two text boxes to receive the output of the script. Let’s take them in
order.

The name of the entire form is RockyForm.

The box that receives the user’s number is named RockyUser. Now we know enough to start
creating hierarchy statements to represent this box. This particular text box is referred to as
document.RockyForm.RockyUser.value.

Figure 8.2
Output from user input.

09 0789726122_CH08 10/2/01 8:34 AM Page 217

JavaScript Goodies

218

Next, a form button reads Tell Me What Happened. When clicked, the button triggers a
function named Balboa().

The final two boxes receive the output of the script. The first gets the title of the movie,
whose name is RockyTitle. The second box receives the brief plot line, whose title is
RockyOutcome.

Okay, now that we know the players on the field, let’s move on to the function.

The Function
The first three lines of the script play a very important role:

function Balboa()

{

var num = document.RockyForm.RockyUser.value

The first line sets the entire script into a function called Balboa(). Remember that from the
button?

The second line has the opening brace to start encasing the script. Then, we get to the line
that takes the information from the user.

In the preceding code, while identifying the text boxes, we stopped and wrote out the hier-
archy of the box that receives the user’s number. The line

var num = document.RockyForm.RockyUser.value

now assigns the variable num to whatever the user enters. That’s important because later we
will use that num value to call on a specific array object from both arrays.

The Arrays
Both arrays contain six elements. The titles of the films are assigned the variable name
Movie, and the brief plot lines are assigned the variable name Outcome:

var Movie = new Array(6)

Movie[0]=”There was no Rocky 0”

Movie[1]=”Rocky”

Movie[2]=”Rocky II”

Movie[3]=”Rocky III”

Movie[4]=”Rocky IV”

Movie[5]=”Rocky V”

var Outcome = new Array(6)

Outcome[0]=”No Outcome”

09 0789726122_CH08 10/2/01 8:34 AM Page 218

219

Chapter 8 ➤ Arrays

Outcome[1]=”Rocky Loses”

Outcome[2]=”Rocky Wins”

Outcome[3]=”Rocky Loses, then Wins”

Outcome[4]=”Apollo Dies, Rocky Wins”

Outcome[5]=”Rocky Wins Street Brawl”

Notice that the two arrays are set in the same order. If you look at array item number three
in each, the title and outcome line up. We’ll use one number, represented by num, to pull
from both arrays. If you don’t have the two arrays in the same order, either the title or the
outcome will be wrong.

Only five Rocky movies exist, but six items are in the array. The reason is that you simply
can’t ignore that 0 exists. JavaScript loves it; it has to have it. So, you make a point of offer-
ing it an array value. In this case, we simply specified that there was no Rocky 0, and there
was no outcome.

Pulling from the Arrays
The following code enters information into the two text boxes when the button is clicked:

document.RockyForm.RockyTitle.value=Movie[num]

document.RockyForm.RockyOutcome.value=Outcome[num]

The first line returns the array item represented by the number the user entered from the
Movie array.

The second line returns the array item represented by the number the user entered from
the Outcome array.

Because both arrays are set up in the same order, the same number returns the same array
item number, and the two results match up with each other. That means you won’t get the
title of Rocky II and the outcome of Rocky IV.

This type of script can be used to create numerous returns as long as the items being
returned are in a set order. This technique could be used to create a listing of presidents,
Super Bowl winners, World Series winners, or any other numeric rundown of items. It also
could be set up as a great teaching tool.

Your Assignment
Add code to the sample script so that a third text box receives a rating. When the user
clicks the button, he should see three things: the new rating, the name of the movie, and
what happens.

09 0789726122_CH08 10/2/01 8:34 AM Page 219

JavaScript Goodies

220

You can see a possible answer to this assignment on your own computer by clicking
Lesson Forty-Five Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment45.html.

Lesson 46: Random Quotes
One of the biggest selling points of JavaScript is how easily you can set up a random event.
Arrays lend themselves to randomization very well.

In this lesson, we’ll set up a script that returns one of ten quotes chosen at random.

Remember that even though we’re using quotes, anything that you list in the array can be
returned in a random fashion: Links, images, or a greeting are some of the more popular
items.

So read through this lesson, think about how you could apply this concept of grabbing a
random array item, and apply it to your own pages.

Here’s the script:

<SCRIPT LANGUAGE=”JavaScript”>

var quote = new Array(10);

quote[0] = “ Education is going to college to learn

➥to express your ignorance in scientific terms “;

quote[1] = “Chance favors the prepared mind”;

quote[2] = “A stitch in time, saves nine.”;

quote[3] = “The only difference between bravery and stupidity is the outcome”;

quote[4] = “One should never let a formal education get in the way of learning”;

quote[5] = “Happiness is two kinds of ice cream.”;

quote[6] = “If you choose not to make a choice, you still have made a

➥decision.”;

quote[7] = “Do, or do not. There is no try”;

quote[8] = “Reality is merely an illusion, albeit a very persistent one.”;

quote[9] = “No one ever said life would be easy.”;

var now=new Date()

var num=(now.getSeconds())%10

document.write(quote[num])

</SCRIPT>

The script’s effect appears in Figure 8.3. Note that we’ve added the text A Random Quote to
the figure. The script does not post that text.

09 0789726122_CH08 10/2/01 8:34 AM Page 220

221

Chapter 8 ➤ Arrays

To see the effect on your own computer, click Lesson Forty-Six Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson46example.
html.

Deconstructing the Script
Do you like the quotes? If not, change them, or add more. Either way, let’s get started tear-
ing this script apart. Here’s the array:

var quote = new Array(10);

quote[0] = “ Education is going to college to learn to

➥express your ignorance in scientific terms “;

quote[1] = “Chance favors the prepared mind”;

quote[2] = “A stitch in time, saves nine.”;

quote[3] = “The only difference between bravery and stupidity is the outcome”;

quote[4] = “One should never let a formal education get in the way of learning”;

quote[5] = “Happiness is two kinds of ice cream.”;

quote[6] = “If you choose not to make a choice, you still have made a deci-

sion.”;

quote[7] = “Do, or do not. There is no try”;

quote[8] = “Reality is merely an illusion, albeit a very persistent one.”;

quote[9] = “No one ever said life would be easy.”;

Figure 8.3
Random quote.

09 0789726122_CH08 10/2/01 8:34 AM Page 221

The format is the same as seen in the last lesson. But just to drive a point home, we could
have used the array format in which all ten quotes were listed in a row, in quotation
marks, and separated by commas (and no spaces). It would have worked just fine, but
think of what it would have looked like. The line of code that contained the array items
would have been a mile long and couldn’t have been easily understood at a glance. Using
the preceding format, you can quickly see each of the array items and its number.

Let’s get back to the array. The array has been assigned the variable name quote. Ten items
are in the array. Notice, though, that the array only goes up to 9. Again, that is because a 0
is in the count. We know we keep pointing it out, but it can be very confusing and very
easy to overlook.

Tip

I have seen JavaScripts that use random arrays set up so that 0 never comes into play. The
random number is set to return 1 as its lowest number. Still, the author had to make a
point of putting a 0 array item in the run. It didn’t have a useful value because it was
never going to come up, but there had to be some value so the JavaScript wouldn’t throw
an error. Then, even though the author was working with only 10 items, he had to make a
point of the array being listed as 11 items because even though the 0 item would never
come into play, it still had to be counted. Ugh! What a pain. Follow the previous format
and just remember that there has to be a 0 line. Your life and your math will be a whole
lot easier.

The Random Number Code
We’re using the same random number code found throughout the book. The Date object is
assigned the variable name now:

var now=new Date()

var num=(now.getSeconds())%9

The variable num represents the random number produced by dividing the returned second
by 10 and using the remainder. Did you remember that the % sign actually returns the
remainder of the division? If not, now you will.

This code returns a number between 0 and 9. Of course, you know those are the same
numbers we have set up in our array. See how all the pieces are coming together?

Putting It on the Page
Because we’re dealing with only a returned value and no other text surrounding it, we
don’t need to use plus signs or quotation marks. What we want returned is one of the

JavaScript Goodies

222

09 0789726122_CH08 10/2/01 8:34 AM Page 222

223

Chapter 8 ➤ Arrays

quote array items. Which item is returned is settled by entering the result of the random
number code in the square brackets:

document.write(quote[num])

Depending on the number, that quote is returned to the page.

Random Anything
As long as the array is set up correctly and you set up the document.write statement in the
correct fashion, just about anything can be returned randomly to the page. The HTML
Goodies e-mail box receives a great deal of mail asking how to create random images, links,
banners, and the like. This is how it’s done. You’ll have to play with the code a little to
make it all display correctly, but we’ve shown you the base methodology and format.

So be random.

Your Assignment
Add five more quotes to the scripts. That might seem easy, but look closely. You have to do
more than just add the text.

You can see a possible answer to this assignment on your own computer by clicking
Lesson Forty-Six Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment46.html.

Lesson 47: A Guessing Game Using Arrays
Let’s play a game. In this example, the user is asked to guess the JavaScript’s favorite state
from a list of states. The prompt statement is repeated until the user guesses the state cor-
rectly. But it’s not as easy as it seems. The user can’t just keep guessing down the line until
she gets it right by process of elimination. Each time the button is clicked, a new random
state is selected.

This script uses the randomization you just read about and takes you in a new direction,
testing user input against what is returned from the array:

<SCRIPT LANGUAGE=”JavaScript”>

var states=new Array()

states[0]=”CT”

states[1]=”PA”

states[2]=”NJ”

states[3]=”NY”

states[4]=”RI”

09 0789726122_CH08 10/2/01 8:34 AM Page 223

JavaScript Goodies

224

function pickstate()

{

var now=new Date()

var num=(now.getSeconds())%5

var guess=prompt(“What’s my favorite state: CT, PA, NJ, NY, or RI?”)

if (states[num] == guess.toUpperCase())

{alert(“That’s my favorite state!”)}

else

{alert(“No, Try again”)}

}

</SCRIPT>

<FORM>

<INPUT TYPE=”button” VALUE=”Guess My Favorite State” onClick=”pickstate()”>

</FORM>

You can see the script’s effect in Figure 8.4.

Figure 8.4
Random array game.

To see the effect on your own computer, click Lesson Forty-Seven Script’s Effect in your
download packet, or see it online at http://www.htmlgoodies.com/JSBook/
lesson47example.html.

09 0789726122_CH08 10/2/01 8:35 AM Page 224

225

Chapter 8 ➤ Arrays

Deconstructing the Script
It might be more tradition at this point, but this script has form elements, so we’ll start
from the bottom:

<FORM>

<INPUT TYPE=”button” VALUE=”Guess My Favorite State” onClick=”pickstate()”>

</FORM>

The form element is simply a button to get the entire process under way. When the button
is clicked, a function named pickstate() is triggered and run.

The Array
var states=new Array()

states[0]=”CT”

states[1]=”PA”

states[2]=”NJ”

states[3]=”NY”

states[4]=”RI”

The array is the vertical format listing five possible favorite states. The state names are in
double quotation marks, so they are simple literal strings that are returned later through a
piece of random code.

The Game Function pickstate()
Now let’s look at the pickstate() function:

function pickstate()

{

var now=new Date()

var num=(now.getSeconds())%5

var guess=prompt(“What’s my favorite state: CT, PA, NJ, NY, or RI?”)

if (states[num] == guess.toUpperCase())

{alert(“That’s my favorite state!”)}

else

{alert(“No, Try again”)}

}

</SCRIPT>

09 0789726122_CH08 10/2/01 8:35 AM Page 225

JavaScript Goodies

226

The random number is returned as it was in the last lesson. The Date object is assigned the
variable now. Then, the variable num is assigned the returned number created by dividing the
current second by 5 and using the remainder of the equation.

That means there is a possibility of five numbers being returned, 0–4. Those are the same
five numbers represented in the array.

The game is played by first asking the user to name a favorite state:

var guess=prompt(“What’s my favorite state: CT, PA, NJ, NY, or RI?”)

Notice that the prompt offers the choices the user can make. One of the five must be the
choice. If the user does not enter one of those choices, the answer and the return from the
array will simply match. The variable name guess is assigned to the user’s entry.

Then, an if statement asks whether the array item returned by the random number gener-
ator is equal to the guess the user made:

if (states[num] == guess.toUpperCase())

We’ve tried to compensate for the fact that JavaScript sees lowercase and uppercase letters
differently by adding the method toUppercase() to the end of the guess variable. (You
might remember the toUpperCase() method from Chapter 5, “Forms: A Great Way to
Interact with Your Users.” It sets a literal string to all capital letters.) By using
toUpperCase(), we ensure that the guess will always be uppercase and a user will not lose
the game simply because he entered lowercase letters rather than the required uppercase
letters.

Next, the if statement posts an alert box that reads That’s my favorite state! if the user’s
state and the state returned from the random code are the same. If the two are not the
same, an alert box pops up to say No, Try again:

{alert(“That’s my favorite state!”)}

else

{alert(“No, Try again”)}

The game might seem simple at first, a basic one-in-five chance. Not so. At the start of
every game, a new state is generated. Therefore, from game to game, the chance of choos-
ing the winner stays the same. That means you just can’t keep choosing the same state and
winning by simple state elimination. That would be cheating.

09 0789726122_CH08 10/2/01 8:35 AM Page 226

227

Chapter 8 ➤ Arrays

Your Assignment
This one can be done a few different ways. Alter the script so that it produces a form but-
ton. When the user clicks the button, he will be sent to one of three randomly chosen
links.

You can see a possible answer to this assignment on your own computer by clicking
Lesson Forty-Seven Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment47.html.

Lesson 48: A Password Script
Password protection is very popular on the Web. Whether what is being protected really
requires protection is a matter of personal opinion. The thinking might be that if you need
a password to see what is behind the curtain, it must be more important than what is just
sitting out there for the world to see.

An array offers a fantastic method for setting up a password-protected page or directory.

The password script in this lesson offers an array of seemingly random letters. The user is
asked to enter three numbers. Those numbers are checked against the array, and a page
URL is created. The many number combinations make guessing at the name of the page
being protected quite difficult.

But because you, the JavaScript author, know the page name, you can set up the script to
return the correct three letters to form the protected page’s address.

As you look down the script, I’ll tell you that the page name being protected is joe.html
and the password is 145:

<SCRIPT LANGUAGE=”javascript”>

function GoIn()

{

var Password = new Array(“p”,”j”,”l”,”t”,”o”,”e”,”o”,”b”,”x”,”z”)

function getNumbers()

{

return document.userInput.u1.value

return document.userInput.u2.value

return document.userInput.u3.value

}

09 0789726122_CH08 10/2/01 8:35 AM Page 227

JavaScript Goodies

228

var input1 = document.userInput.u1.value

var input2 = document.userInput.u2.value

var input3 = document.userInput.u3.value

var pw1 = Password[input1]

var pw2 = Password[input2]

var pw3 = Password[input3]

var pw = pw1 + pw2 + pw3

if (pw == pw1+pw2+pw3)

{location.href = pw+ “.html”}

}

</SCRIPT>

Put in Your Three-Number Password to Enter:

<FORM NAME=”userInput”>

<INPUT TYPE=”text” Name =”u1” SIZE=”2”>

<INPUT TYPE=”text” Name =”u2” SIZE=”2”>

<INPUT TYPE=”text” Name =”u3” SIZE=”2”>

<INPUT TYPE=”button” VALUE=”Enter” onClick=”GoIn()”>

</FORM>

The script’s effect appears in Figure 8.5.

Figure 8.5
Accepting the password.

09 0789726122_CH08 10/2/01 8:35 AM Page 228

229

Chapter 8 ➤ Arrays

To see the effect on your own computer, click Lesson Forty-Eight Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson48example.
html.

Deconstructing the Script
What’s that? You say you didn’t see the password in the script? Of course you didn’t. What
good would a password script be if all you had to do was look at the script and pull out the
password? That’s like writing the combination to a lock on the back of the lock. This script
is a little hard to crack just by looking at the source code.

The Form Elements
This script contains form elements, so we will start from the bottom and meet the players:

Put in Your Three-Number Password to Enter:

<FORM NAME=”userInput”>

<INPUT TYPE=”text” Name =”u1” SIZE=”2”>

<INPUT TYPE=”text” Name =”u2” SIZE=”2”>

<INPUT TYPE=”text” Name =”u3” SIZE=”2”>

<INPUT TYPE=”button” VALUE=”Enter” onClick=”GoIn()”>

</FORM>

The form itself is named userInput, which makes sense.

The first text box is named u1, the second is named u2, and the third is named u3.

Finally, a form button, when clicked, starts a function called GoIn().

Now you know the names and will understand the hierarchy statements, so let’s go back to
the top.

The Script
Here’s the function GoIn() being created. The brace always comes right after the function
name:

function GoIn()

{

var Password = new Array(“p”,”j”,”l”,”t”,”o”,”e”,”o”,”b”,”x”,”z”)

Next is the array. To the viewer, it looks like a run of random letters, which is what we
want. It should look like there is no rhyme or reason to why the letters are set in the order
they are. In reality, there is an order—at least an order we know—so that as the script pro-
gresses, we can call for array letter number 1, number 4, and number 5, put them all
together, and create joe.html.

09 0789726122_CH08 10/2/01 8:35 AM Page 229

JavaScript Goodies

230

Now, do you see a little pattern emerging? The other letters will never enter into it. We are
interested only in the second letter in the list, which is represented by the number 1, so
the letter is j.

The second number in the password script is 4. The letter represented by the number 4 is o.
Remember, count up from 0!

The third number in the password is 5, and the letter represented by the number 5 is e.

By putting those three array items together and adding .html, we get the URL joe.html.

We made the order of the letters of joe correct. You can further attempt to confuse the
reader by putting the letters out of order. Just make sure the numbers you call for are the
numbers that coincide with the page name you are attempting to create.

Getting the Results into the Function
This is new. The purpose of this function is to ensure that the data the user entered in the
three text boxes is in the function so we can work with it. It basically pulls the values into
the script:

function getNumbers()

{

return document.userInput.u1.value

return document.userInput.u2.value

return document.userInput.u3.value

}

There was no need to do this in the game script in the last lesson because we were dealing
with only one piece of data. Now, though, we have three. So, by setting up a function and
calling for the return of the values found in the text boxes, we now have those three num-
bers in the function.

It is a good idea to do this anytime you have multiple input values from a user.

The following lines aren’t necessary, but it is a good idea to assign a much simpler variable
name to the data the user has entered in the text boxes. That way we don’t have to write
out those long hierarchy statements again and again:

var input1 = document.userInput.u1.value

var input2 = document.userInput.u2.value

var input3 = document.userInput.u3.value

Now, we start to build the page’s URL from the data the user has entered. The three vari-
able names pw1, pw2, and pw3 are assigned to the letters returned by taking the three num-
bers entered by the user and grabbing the corresponding letters in the array:

09 0789726122_CH08 10/2/01 8:35 AM Page 230

231

Chapter 8 ➤ Arrays

var pw1 = Password[input1]

var pw2 = Password[input2]

var pw3 = Password[input3]

For example, if the user entered the number 3 in the first box, pw1 would be equal to t.
That happens two more times using the data in the second and third text boxes.

The variable name pw is created using the values pw1, pw2, and pw3:

var pw = pw1 + pw2 + pw3

Finally, an if statement asks whether pw is equal to pw1+pw2+pw3. Of course, it is—the vari-
able pw was created by using those three pw# variables:

if (pw == pw1+pw2+pw3)

{location.href = pw+ “.html”}

}

Because pw always equals pw1+pw2+pw3, the script attempts to find a page with the URL
made up of the three letters returned.

Unless the three letters are correct, the browser won’t find the page. An error message will
pop up saying the page made up of the three letters the user posted can’t be found.
Because the user is given no indication whether her answer is even close, every try is a ran-
dom shot.

Ten letters exist, and three of them must be correct. That means the user has a 1-in-10
chance, times 3. Do the math; that’s a pretty slim chance of just guessing the correct three
numbers.

Now, those odds of guessing the password ring true only if you make your array out of
purely random letters or groupings of letters. A smart person might be able to go into the
previous code after seeing what it is looking for and pick out joe through a little brain
power. But if I made the name of the protected page bjz, figuring it out would be much
harder because that’s just a group of letters that means nothing.

Toughening It Up
Try setting up the text array with multiple letters in each position.

Try setting up the script so that you require four numbers.

Try setting up the script so that each of the text boxes pulls from a different array, and
make each array a different grouping of ASCII text characters.

09 0789726122_CH08 10/2/01 8:35 AM Page 231

JavaScript Goodies

232

You could make this JavaScript even more challenging by rewriting it so the script contains
two arrays. The first is a series of random numbers, which coincide with letters in a second
array. Use the number from the first array to pull a letter from the second.

For example, suppose the user enters the number 0. In the first array, the number in the 0
position is 4. Now, use that 4 to pull out the letter at the number 4 index position in the
second array. I can’t even begin to think of the odds of guessing that one correctly.

Your Assignment
This time around, you won’t need to do much, but you will need to pay close attention to
what you are changing. Take the script from this lesson, and alter it so that the new pass-
word is 364.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Forty-Eight Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment48.html.

Lesson 49: End-of-Chapter Review—A Quiz
The purpose of this end-of-chapter review is the same as all the other ones. You are to take
everything you have learned up to this point and create a new and useful script to place on
your own pages.

Of course, we’ll offer one ourselves and then make a suggestion or two.

Table 8.1 shows the object-related JavaScript commands you’ve been given up to now.
You’ve also been introduced to these JavaScript concepts:

string and the substring() method

Arrays

The alert(), confirm(), and prompt() methods

The if/else conditional statement

These event handlers: onBlur, onChange, onClick, onDblClick, onFocus, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, and onSubmit

These arithmetic operators: +, -, *, /, and %

These conditions: ==, !=, <, >, =<, =>, ?:, and +=

The HTML 4.0 flag

Creating variable names

Creating a function

09 0789726122_CH08 10/2/01 8:35 AM Page 232

233

Chapter 8 ➤ Arrays

for loops

HTML form items

The form item attribute NAME=

These form item properties: length, value, and selectedIndex

These form item methods: toLowerCase and toUpperCase()

return

while loops

Table 8.1 Object-Related JavaScript Commands Demonstrated in
Chapters 1–8
Object Methods Properties
date getDate(),

getDay(),
getHours(),
getMinutes(),
getMonth(),
getSeconds(),
getTime(),
setYear(),
setDate(),
setDay(),
setHours(),
setMinutes(),
setMonth(),
setSeconds()

document write() alinkColor, bgColor, fgColor,
linkColor, lastModified,
location, referrer, title,
vlinkColor

history go() length

location host, hostname, href
Math random(), round()
navigator appCodeName, appName,

appVersion, userAgent
window close(), defaultstatus, setTimeout()

directories, location, menubar,
resizable, self, scrollbars,
status, toolbar

09 0789726122_CH08 10/2/01 8:35 AM Page 233

JavaScript Goodies

234

This lesson’s script is a quiz. There are five form element drop-down boxes with three
answers each. The user will choose the answers she feels are correct and click the button to
see her score:

<SCRIPT LANGUAGE=”javascript”>

function Gradeit()

{

function getselectedIndex(){

return document.quiz.q1.selectedIndex

return document.quiz.q2.selectedIndex

return document.quiz.q3.selectedIndex

return document.quiz.q4.selectedIndex

return document.quiz.q5.selectedIndex

}

var Answers=new Array(1,2,2,3,1)

var UserAnswers = new Array(document.quiz.q1.selectedIndex,

➥document.quiz.q2.selectedIndex,document.quiz.q3.selectedIndex,

➥document.quiz.q4.selectedIndex,document.quiz.q5.selectedIndex)

var count0 = 0

if (Answers[0] == UserAnswers[0])

{count0 = count0 + 1}

else

{count0 = count0}

if (Answers[1] == UserAnswers[1])

{count1 = count0 + 1}

else

{count1 = count0}

if (Answers[2] == UserAnswers[2])

{count2 = count1 + 1}

else

{count2 = count1}

if (Answers[3] == UserAnswers[3])

{count3 = count2 + 1}

else

{count3 = count2}

09 0789726122_CH08 10/2/01 8:35 AM Page 234

235

Chapter 8 ➤ Arrays

if (Answers[4] == UserAnswers[4])

{count4 = count3 + 1}

else

{count4 = count3}

alert(“You got “ + count4 + “/5 right.”)

}

</SCRIPT>

<FORM NAME=”quiz”>

#1: What is 2 + 2?

<SELECT NAME=”q1”>

<OPTION SELECTED>Choose One

<OPTION>4

<OPTION>2

<OPTION>22

</SELECT>

<P>

#2: Trees have:

<SELECT NAME=”q2”>

<OPTION SELECTED>Choose One

<OPTION>engines

<OPTION>leaves

<OPTION>dogs

</SELECT>

<P>

#3: This book is about:

<SELECT NAME=”q3”>

<OPTION SELECTED>Choose One

<OPTION>Nothing

<OPTION>JavaScript

<OPTION>Love and Romance

</SELECT>

<P>

#4: Who sang “Yesterday”?

<SELECT NAME=”q4”>

<OPTION SELECTED>Choose One

<OPTION>Van Halen

09 0789726122_CH08 10/2/01 8:35 AM Page 235

JavaScript Goodies

236

<OPTION>Metallica

<OPTION>The Beatles

</SELECT>

<P>

#5 What color is blue?

<SELECT NAME=”q5”>

<OPTION SELECTED>Choose One

<OPTION>blue

<OPTION>green

<OPTION>off-blue

</SELECT>

<P>

<INPUT TYPE=”button” VALUE=”Grade Me” onClick=”Gradeit()”>

</FORM>

The beauty of this script is that it uses two arrays to get the final score. The first array con-
sists of the correct answers, whereas the second array consists of the answers given by the
user.

One by one, the answers are checked against each other. If the answer is correct, 1 is added
to the score. If not, the score remains the same.

The results of the script are then displayed in an alert box.

You can see the script’s effect in Figure 8.6.

To see the effect on your own computer, click Lesson Forty-Nine Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson49example.
html.

Deconstructing the Script
Okay, this is a long script and it looks scary, but don’t be put off. It’s a lot of the same ele-
ments again, and again, and again.

This script has form elements, so we’ll start at the bottom.

The Form Elements
Rather than display all five drop-down boxes, let’s look at only the first one. The other four
work exactly the same way. Hopefully, you can get the answer to this one:

09 0789726122_CH08 10/2/01 8:35 AM Page 236

237

Chapter 8 ➤ Arrays

<FORM NAME=”quiz”>

#1: What is 2 + 2?

<SELECT NAME=”q1”>

<OPTION SELECTED>Choose One

<OPTION>4

<OPTION>2

<OPTION>22

</SELECT>

<P>

Figure 8.6
The results of the quiz.

The name of the entire form is quiz. Remember that the entire form contains all five drop-
down menu boxes. You are seeing only the first one here. Look back at the full script if you
need to.

The name of the first drop-down menu box is q1. We decided on that because it represent-
ed question one, which makes sense.

The next four drop-down menu boxes are set up the same, except they are named q2
through q5, respectively.

Remember: JavaScript counts everything and starts counting at 0. In each of these drop-
down menu boxes, each selection is assigned a number by the JavaScript. The first is 0, and
it counts up from there.

09 0789726122_CH08 10/2/01 8:35 AM Page 237

JavaScript Goodies

238

Notice that the first choice—the one that will receive the number 0—is not a viable answer.
It simply displays Choose One, so the user knows to click to choose an answer.

Finally, there is a form button after the five drop-down menu boxes:

<INPUT TYPE=”button” VALUE=”Grade Me” onClick=”Gradeit()”>

That button triggers a function named Gradeit().

Still with us? Good.

The Script
The script is a little long, but there’s nothing new in it, and its inner workings are pretty
straightforward.

The script begins by being surrounded by the function Gradeit(). This is the function the
HTML form button triggers when the user clicks:

function Gradeit()

{

You probably remember the next part from the last lesson. This function is making a point
of bringing up the answers the user chose so that the data can be manipulated in this
script. Notice the q1 through q5 names in the hierarchy statements:

function getselectedIndex(){

return document.quiz.q1.selectedIndex

return document.quiz.q2.selectedIndex

return document.quiz.q3.selectedIndex

return document.quiz.q4.selectedIndex

return document.quiz.q5.selectedIndex

}

Notice how I am not asking for the value the user entered because the input device is not a
text box. It’s a drop-down menu box, and the command used to return that value is
selectedIndex. Remember that from Chapter 5?

Next come the answers. The array was created as a key:

var Answers=new Array(1,2,2,3,1)

The answers that are taken from the drop-down menu boxes are tested against these num-
bers. If the numbers returned from the menu boxes are the same, the user gets 5 out of 5. If
not, the user gets a lower score.

09 0789726122_CH08 10/2/01 8:35 AM Page 238

239

Chapter 8 ➤ Arrays

Here are the results of the quiz as given by the user:

var UserAnswers = new

Array(document.quiz.q1.selectedIndex,

➥document.quiz.q2.selectedIndex,document.quiz.q3.selectedIndex,

➥document.quiz.q4.selectedIndex,document.quiz.q5.selectedIndex)

Yes, the format for setting it up in the single-line array format is a little long, but the
answers are in the single-line format, so we felt this should be, too.

We could have made this line shorter by assigning variable names to the long hierarchy
statements. However, we’re writing the statement only once, so assigning variable names is
a step that just isn’t required.

Grading the Test
Grading is achieved by comparing the Answers array and the UserAnswers array, one array
item at a time. The 0 items in both arrays are compared. If they match, 1 is added. If not,
nothing is done and it moves on to the next one.

Each time you grade another answer, you must change the variable name. It gets a little
confusing, but follow it along.

First, a variable, count0, is created and assigned a 0 value:

var count0 = 0

You have to do this in case the user doesn’t get any of the answers correct. Without setting
the count to 0 to begin, the JavaScript would throw an error if the result was 0 out of 5.

Now we move to the grading itself. Let’s look at only the first two questions being graded:

if (Answers[0] == UserAnswers[0])

{count0 = count0 + 1}

else

{count0 = count0}

if (Answers[1] == UserAnswers[1])

{count1 = count0 + 1}

else

{count1 = count0}

The first if statement compares the two numbers in the 0 position in the Answers and
UserAnswers arrays.

09 0789726122_CH08 10/2/01 8:35 AM Page 239

JavaScript Goodies

240

If they are the same, count0 gets 1 added. If not, count0 remains the same value, 0.

The next two numbers in both arrays—the numbers in the 1 position—are now compared.
If they are the same, count1, a new variable, equals count0 plus 1.

If not, count1 equals count0, or still 0.

The process continues this way, creating a new variable name to coincide with each new
question’s grading. It looks like this. Follow the new variable names along:

if (Answers[2] == UserAnswers[2])

{count2 = count1 + 1}

else

{count2 = count1}

if (Answers[3] == UserAnswers[3])

{count3 = count2 + 1}

else

{count3 = count2}

if (Answers[4] == UserAnswers[4])

{count4 = count3 + 1}

else

{count4 = count3}

When all is said and done, count4 will have the final score out of five. An alert box is set to
pop up with count4’s value displayed as a grade. It looks like this:

alert(“You got “ + count4 + “/5 right.”)

Altering the Display
Okay, we agree that displaying the score on an alert box is a little cheesy. The point of
showing you this script is to provide an example of getting a JavaScript to grade a quiz.

The display is up to you. You easily have enough knowledge at this point to take the
count4 variable and post it all over the place.

In fact, look back through the script. You can pretty easily display the user’s choices right
along with her score. You can even make all that information pop up in a new browser
window.

All we provided here was a way to get the math done. Now it’s up to you to make it pretty.
Think about it for a moment; there must be 50 ways to get this script to display the results.

09 0789726122_CH08 10/2/01 8:35 AM Page 240

241

Chapter 8 ➤ Arrays

Your Assignment
For this assignment, put together an entirely new script. The script should post a random
image. Furthermore, the random image should have an URL attached to it. The URL should
not be random—it should always be attached to that image when it displays.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Forty-Nine Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment49.html.

09 0789726122_CH08 10/2/01 8:35 AM Page 241

09 0789726122_CH08 10/2/01 8:35 AM Page 242

Putting It All
Together

Chapter 9

This chapter contains the following lessons and scripts:

Lesson 50: JavaScript Animation

Lesson 51: Background Color-Changing Script

Lesson 52: A Floating, Moving, New Browser Window

Lesson 53: Form Validation

Lesson 51: Jumping Focus Between Form Elements

Lesson 52: Limiting Check Box Choices

Lesson 53: Positioning a New Window

Lesson 54: Self-Typing Typewriter

Lesson 55: Scrolling Credits

All the way through this book, I’ve been pushing that you should always be thinking about
building scripts that will be helpful to your users. You should be building scripts that do
something that will be seen as a help to your Web site. This chapter is pretty much that
idea wrapped up in six little scripts.

With only the JavaScript you know to this point, you have the ability to create rather large
and involved scripts that can create some pretty great effects.

Because this is somewhat of a “wrap-up” chapter, allow me to talk about JavaScript usage
for a short while.

10 0789726122_CH09 10/2/01 8:25 AM Page 243

JavaScript Goodies

244

As you’ve no doubt seen throughout this book, JavaScript can be rather flashy and intru-
sive. I find that when I teach HTML and Web design to new programmers, they tend to
immediately jump on the flash and pizzazz of JavaScript. Alert boxes, pop-up windows, and
prompt boxes pop up all over the pages. Is that good? Is it wise to use JavaScript in such a
way to force a user to look at or do something?

Probably not.

Think about your own surfing habits. Do you enjoy when sites throw up elements without
your input? Do you like to be slowed down to witness an effect that doesn’t do much to
help you? Case in point, would you like a site to pop up a prompt box that asks for your
name just so that an alert box can pop up right after it proclaiming you are welcome into
the site, calling you by the name you just entered?

I don’t know that you would. JavaScript is fantastically helpful when used to interact with
your users but also as an aid to the user. Scripts should help them along and do some of the
work for them. Scripts also should put on little shows now and again.

But they shouldn’t jump out and scream every time someone logs on to your site.

So, think about your own surfing. What is it that you’ve run into that you think a
JavaScript could help you with? What script could you create that would be of assistance or
add entertainment value to a Web site without throwing alert box confetti every time the
user pops in?

It’s said that necessity is the mother of invention. The following scripts are ones that I
think offer assistance and a little pizzazz without going bonkers.

After all, this is what you want. You want a Web site that interacts with users and makes
their stay within your domain a little more enjoyable. That way, they’ll probably come
back.

Let’s look at some great little scripts you can incorporate … and maybe alter a bit to suit
your own needs.

Lesson 50: JavaScript Animation
You already know about image flips that occur when the mouse passes over an image. Here
you’ll go one step farther. This script takes a series of 10 images and plays them one after
another, like a movie.

The script acts as an animator so you can animate either GIF or JPEG images without the
use of an animator software package.

We’ve simply counted our images from 0 to 9, but if you use images in the correct order,
this script will play them at whatever speed you want to create a basic animation:

10 0789726122_CH09 10/2/01 8:25 AM Page 244

245

Chapter 9 ➤ Putting It All Together

<SCRIPT LANGUAGE=”JavaScript”>

var num=0

img0 = new Image (55,45)

img0.src = “0.gif”

img1 = new Image (55,45)

img1.src = “1.gif”

img2 = new Image (55,45)

img2.src = “2.gif”

img3 = new Image (55,45)

img3.src = “3.gif”

img4 = new Image (55,45)

img4.src = “4.gif”

img5 = new Image (55,45)

img5.src = “5.gif”

img6 = new Image (55,45)

img6.src = “6.gif”

img7 = new Image (55,45)

img7.src = “7.gif”

img8 = new Image (55,45)

img8.src = “8.gif”

img9 = new Image (55,45)

img9.src = “9.gif”

function startshow()

{

num=num+1

if(num==10)

{num=0}

10 0789726122_CH09 10/2/01 8:25 AM Page 245

JavaScript Goodies

246

document.mypic.src=eval(“img”+num+”.src”)

setTimeout(“startshow()”,”1000”)

}

</SCRIPT>

<p>

Display Animation

You can see the script’s effect in Figure 9.1.

Figure 9.1
The first cell of the anima-
tion count to 10.

To see the effect on your own computer, click Lesson Fifty Script’s Effect in your download
packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson50example.html.

Deconstructing the Script
Let’s begin by talking about the 10 small blocks of code that start the script:

Img0 = new Image (55,45)

Img0.src = “0.gif”

10 0789726122_CH09 10/2/01 8:25 AM Page 246

247

Chapter 9 ➤ Putting It All Together

Img1 = new Image (55,45)

Img1.src = “1.gif”

We’re only showing the first two blocks of code here because the same format is followed
again and again. Notice each of the small blocks of code calls for a new image, 0.gif
through 9.gif.

The code is preloading the images. Remember what we’re trying to do here. The latter por-
tions of the script, which we’ll get to in a moment, create an animation by showing 10
images in a row.

If you have to wait for the server to be contacted every time a new image is called for, it
wouldn’t be much of an animation. You want all 10 images in the cache and ready to go
when the user clicks to start the animation show. That’s why you need to preload all the
images.

The format is pretty basic. It reads as if you were setting a new Date object. A variable name
is assigned to a new Image object. The numbers in the parentheses are the height and
width, in that order, of the image.

In the next line, the image source is offered in an object.property format: img1.src =
“0.gif”. Note the double quotation marks. If you don’t surround the name of the image in
quotation marks, the script will think that the dot separates an object from a property or a
method and cause an error. But by inserting double quotation marks, you set “0.gif” apart
as a string.

And so it goes 10 times. Each time, a new object is set with a new variable name, and then
a source is offered.

The result is a download of the image. Now, when the animation is called for, all the
images are already in the browser cache—or at least on their way—and the viewer should
get a good show.

The Animation
The basic concept here is that we’re going to perform an image flip, but we’re going to per-
form it 10 times in a row. After those 10 flips have occurred, we’ll start from the top and
do it all again.

The effect will be that 10 images flip by—one per second, or whatever timeframe you set—
giving the impression of an animation. Here’s the code that does the trick. It’s not much,
but it is powerful:

function startshow()

{

10 0789726122_CH09 10/2/01 8:25 AM Page 247

JavaScript Goodies

248

num=num+1

if(num==10)

{num=0}

document.mypic.src=eval(“img”+num+”.src”)

setTimeout(“startshow()”,”1000”)

}

We’ll start at the top. I mean the very top—look back at the very beginning of the script,
right before the preload commands. See where I initiated a variable?

It looks like this:

var num=0

I set that above everything else so that the variable num would be available after the func-
tion started. Also, by setting it outside the function, I made it a global variable. Now let’s
look at the bottom of the script:

Here’s the HTML flag that places the first image on the page. Note that it has the name
mypic set to it. That’s going to be important when we look at the script’s hierarchy state-
ment shortly. Back to the function ….

Sorry to jump around, but I needed to get you all the parts to understand how this func-
tion works. We start by immediately increasing num by one:

num=num+1

That makes sense. 0.gif already is displaying on the page; we put it there through the
HTML flag. We need 1.gif to appear now, so we add one to num.

Next, we need to check something. We don’t have a 10.gif; however, if num keeps getting
one added to it, sooner or later it will equal 10. That’s a problem that easily can be fixed by
telling the script that if num equals 10, just reset it to 0. Like so:

if(num==10)

{num=0}

10 0789726122_CH09 10/2/01 8:25 AM Page 248

249

Chapter 9 ➤ Putting It All Together

The effect is a rollover from 9 to 0 and a count that starts all over again. Thus, the anima-
tion appears to loop. Cool, huh? Here’s the code:

document.mypic.src=eval(“img”+num+”.src”)

Now let’s discuss the fancy stuff. We set the hierarchy statement to see the document, the
specific image space mypic, and then to set a source. It’s done just like an image flip, except
now we use the preload commands.

The command eval evaluates what is inside the parentheses. For example, say that num is
showing a count of 7. (I’m just pulling a number out of my head. There’s no significance
past that.)

The text within the parentheses will therefore read img7.src. See that? The eval command
then evaluates what that means—the source for img7 is 7.gif.

How do I know that? Look at the preload commands. See how img7.src equals 7.gif?
That’s it!

Therefore, image 7.gif is placed in the image space mypic.

But how does it happen again and again? You should know this command by now:

setTimeout(“startshow()”,”1000”)

The function is called for repeatedly every second using setTimeOut().

So, the function fires, it adds one to num, and then that number is checked to see whether
it is 10. If it’s not, the function evaluates the image source requested by the hierarchy state-
ment. It then posts the image to the space.

This happens repeatedly, each time raising num by one and then resetting it when it gets to
10. The result is a 10-frame animation that loops again and again.

Calling for the Animation
Here’s the code that starts the animation:

Display animation

Now, here’s something new. Look at the format of the hypertext link that starts the anima-
tion. It points at JavaScript:startshow() rather than a hypertext link.

That’s a quick way to put active text on a page to trigger a function. By putting
JavaScript: in the hypertext formula, the browser knows that a function, contained within
the document, will be enacted. The function name that follows tells the browser which to
trigger. It’s very clever.

10 0789726122_CH09 10/2/01 8:25 AM Page 249

JavaScript Goodies

250

Your Assignment
This one will take a bit of thought. Change the script so that the animation is no longer in
it. Then, make it so that when you click, you get the next image in line, repeatedly, until
you have rolled through the entire set of 10 images.

It should change to the next image only when you click. Basically, you should turn this
animation script into a slideshow script.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Fifty Assignment in your download packet or by viewing it online at http://www.
htmlgoodies.com/JSBook/assignment50.html.

Lesson 51: Jumping Focus Between Form Elements
This is a fun little script that acts as an aid to the user. Let’s say you set up a form that asks
for information in a set structure. For example, you could ask for a phone number that is
to be entered in three text boxes, a five- or nine-digit ZIP code, or a two-letter state abbrevi-
ation. After the user has filled in the information, why not set it up so that the cursor sim-
ply jumps right to the next text box?

You can get this effect by forcing the browser to put focus on the next element in line after
the current element has reached its capacity.

I’ll even go you one better. I’ve added a little piece of code that jumps the cursor to the
first form element when the page loads. That way, the form is ready and waiting when
your user starts to type.

Here’s the script. It’s a little long, so I’ve added a few comments to help you at each stage
of the process. It’s a tip you might want to think about when you get into writing bigger
scripts. They can get confusing, even to the author. Here’s the code:

<HEAD>

<SCRIPT LANGUAGE=”javascript”>

<!-- This code makes the jump from textbox one to textbox two -->

function check()

{

var letters = document.joe.burns.value.length +1;

if (letters <= 4)

{document.joe.burns.focus()}

else

{document.joe.tammy.focus()}

}

10 0789726122_CH09 10/2/01 8:25 AM Page 250

251

Chapter 9 ➤ Putting It All Together

<!-- This code makes the jump from textbox two to textbox three -->

function check2()

{

var letters2 = document.joe.tammy.value.length +1;

if (letters2 <= 4)

{document.joe.tammy.focus()}

else

{document.joe.chloe.focus()}

}

<!-- This code makes the jump from textbox three to textbox four -->

function check3()

{

var letters3 = document.joe.chloe.value.length +1;

if (letters3 <= 4)

{document.joe.chloe.focus()}

else

{document.joe.mardi.focus()}

}

<!-- This code makes the jump from textbox four to the submit button -->

function check4()

{

var letters4 = document.joe.mardi.value.length +1;

if (letters4 <= 4)

{document.joe.mardi.focus()}

else

{document.joe.go.focus()}

}

</SCRIPT>

</HEAD>

<!-- The onLoad in the BODY flag puts focus in the first textbox -->

<BODY BGCOLOR=”ffffff” onLoad=”document.joe.burns.focus()”>

<!-- This is the form -->

<FORM NAME=”joe”>

<INPUT TYPE=”text” name=”burns” size=”10” MAXLENGTH=”4” onKeyUp=”check()”>

<INPUT TYPE=”text” name=”tammy” size=”10” MAXLENGTH=”4” onKeyUp=”check2()”>

<INPUT TYPE=”text” name=”chloe” size=”10” MAXLENGTH=”4” onKeyUp=”check3()”>

<INPUT TYPE=”text” name=”mardi” size=”10” MAXLENGTH=”4” onKeyUp=”check4()”>

<INPUT TYPE=”submit” VALUE=”Click to Send” NAME=”go”>

</FORM>

10 0789726122_CH09 10/2/01 8:25 AM Page 251

JavaScript Goodies

252

You can see the script’s effect in Figure 9.2.

Figure 9.2
After the first box was
filled with four characters,
focus jumped to the next
box.

To see the effect on your own computer, click Lesson Fifty-One Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson51example.
html.

Deconstructing the Script
Okay, first things first.

Please understand that this works only with browser versions 4.0 and above—I’ll tell you
why in a moment. But don’t let that stop you from installing this on your forms. Lower
version browsers will not understand the event handler command and will not trigger the
functions, which means no errors. Those users who have browser versions 4.0 or higher get
the effect; those who don’t just fill in the form as they normally would.

The reason the script works in only 4.0 and above actually has to do with the event han-
dler onKeyUp rather than the script itself. Keep reading, and I’ll tell you about my trial and
error when writing the script and finally landing on the onKeyUp event handler.

The overall concept is this: There are four form elements, five if you count the submit but-
ton. A small piece of JavaScript places focus (denoted by the cursor appearance) on the first
form element, the first text box.

10 0789726122_CH09 10/2/01 8:25 AM Page 252

253

Chapter 9 ➤ Putting It All Together

Four JavaScript functions were created, and each is assigned to a text box. The JavaScript
functions look at the number of characters within the text box. When the number reaches
four, focus (again, the cursor) is placed on the next text box.

Each function can be changed around to your heart’s content allowing as many or as few
letters as you want.

By the way, I tried this with other form elements, radio buttons, check boxes, and select
boxes. The effect works for them all. The form element becomes highlighted, but that’s it.
The user then has to use her mouse to complete the task. That’s not at all a bad thing; I
just wanted to make you aware of it. This format works best with text boxes and text area
boxes.

Now let’s break this code down, starting with the form elements.

The Form Elements
<FORM NAME=”joe”>

<INPUT TYPE=”text” name=”burns” size=”10” onKeyUp=”check()”>

<INPUT TYPE=”text” name=”tammy” size=”10” onKeyUp=”check2()”>

<INPUT TYPE=”text” name=”chloe” size=”10” onKeyUp=”check3()”>

<INPUT TYPE=”text” name=”mardi” size=”10” onKeyUp=”check4()”>

<INPUT TYPE=”submit” VALUE=”Click to Send” NAME=”go”>

</FORM>

This is a basic form whose name is joe.

After the form are four text boxes. Each box is given a name, size, and maximum length
and is finally attached to a function triggered to work using the onKeyUp event handler.

Remember that from the previous code? That onKeyUp event handler is a relatively new
command. This is where I ran into nothing but trouble when writing this script. The script
must be set up so that every time someone enters a new character in a text box, the func-
tion must run to recount the number of characters the user has entered.

I tried everything—I mean everything. I tried onFocus and onClick; I even tried setting the
function to a for loop and a while loop. I set up a setTimeout() function. Nothing worked.
But as soon as I entered onKeyUp, I had success. Each time a key is released, the function
runs.

So easy, yet so hard to find. You’ll find that worrying over one little command will be one
of your joys when writing JavaScript.

10 0789726122_CH09 10/2/01 8:25 AM Page 253

JavaScript Goodies

254

Now that you know the names of all the form elements, we can start to build some
JavaScript hierarchy statements. For example, the first text box can be called on through
the following statement:

document.joe.burns

Furthermore, the number of characters within the first text box can be returned through
this hierarchy statement:

document.joe.burns.value

With those two concepts, the scripts basically build themselves. But wait! How did we get
the focus to start in the first text box without any input from the user?

Getting the First Focus
That didn’t just happen by default. We must “force” focus to the first text box. I did it in
the BODY flag, like so:

<BODY BGCOLOR=”ffffff” onLoad=”document.joe.burns.focus()”>

That focus() is what does the trick. By attaching it to the end of a hierarchy statement,
focus is put on the form element. In this case, it’s the first text box (burns) under the form
(joe).

Keep that concept in mind. We’ll do it again and again throughout the four functions.

From Box One to Box Two
The first two text boxes are named burns and tammy. If that seems odd to you, it isn’t to me
because I am using my own name and those of my family. I actually find that remember-
ing my variable names is easier if I use common names I can remember. Because JavaScript
doesn’t worry about it, I don’t. It helps me, so I use it.

You just learned that if you attach focus() to the end of the hierarchy statement, you can
set focus on the form element. Let’s put that concept to work.

The text box burns has its onKeyUp event handler set to a function named check(). It looks
like this:

function check()

{

var letters = document.joe.burns.value.length +1;

if (letters <= 4)

{document.joe.burns.focus()}

else

10 0789726122_CH09 10/2/01 8:25 AM Page 254

255

Chapter 9 ➤ Putting It All Together

{document.joe.tammy.focus()}

}

The function first sets the number of characters found within the first text box (burns) to a
variable and then adds one. The onKeyUp event handler is the trick. It forces the function to
run every time something is entered.

Next, an if statement asks if the number of characters within the text box burns is less
than or equal to four. If it is, focus remains on the text box burns.

We want the effect to allow four letters to appear in the text box, so to get that effect, we
add one to the number of characters found in the box. That way, one equals two, two
equals three, and so on. After the fourth letter is entered, the if statement is no longer
true. Yes, you could get the same effect by not adding one and setting all the numbers up
one, but that gets confusing. By adding one, you can set the if statement to the number of
letters you want to appear in the box. It’s much easier to follow.

After the if statement is no longer true (letters now equals 5, but only four letters are in
the box), focus jumps to the next box, tammy.

Now that focus is on tammy, the function check2() is the one that runs each time a key is
let up. See that in the form elements? The text box tammy has onKeyUp set to check2().

The function looks like this:

function check2()

{

var letters2 = document.joe.tammy.value.length +1;

if (letters2 <= 4)

{document.joe.tammy.focus()}

else

{document.joe.chloe.focus()}

}

Does it look familiar? It should. It’s the exact same format as before except that the func-
tion name has changed from check() to check2().

The variable name letters has been changed to letters2, and the hierarchy statements are
now set to jump from text box two to text box three.

The reason for the changes is that you can’t have the same variable names used twice to
represent two different values within the same script.

After focus is on text box three, chloe, the function check3() takes over and performs the
same tasks.

10 0789726122_CH09 10/2/01 8:25 AM Page 255

JavaScript Goodies

256

After focus is on the fourth text box, mardi, the function check4() takes over and does the
same thing, except this time when four letters are entered, focus jumps to the submit
button.

Don’t expect the submit button to do anything—it won’t.

Got it?

Do you see how the functions work? Each is doing the exact same thing. You just have to
change some variable names so that you won’t get JavaScript errors.

Cool, huh?

Your Assignment
Using what you know from this script, rewrite the script so that a user can enter a phone
number into three separate text boxes. This is often done so that the company receiving
the information can keep the phone numbers separated by area code and exchange. It’s a
fairly quick method of judging where groupings of customers are located.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Fifty-One Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment51.html.

Lesson 52: Limiting Check Box Choices
Let’s stay in the same vein regarding using a script to assist a person filling out a form.

Here’s a fantastic effect. Multiple check boxes often are avoided in forms because users
have a tendency to simply check all the boxes no matter what. Radio buttons have become
the preferred element when a choice must be made. You typically see check boxes used as
single items. I see them mostly at the end of larger forms asking whether I want to receive
a newsletter or e-mail updates about a product I’m downloading.

But what if you want a user to choose two from, say, five elements?

Well, here’s a script you can attach to your forms that enables you to limit the number of
checks your users can make. You’ll fall in love with check boxes all over again. I got the
original idea for this script from an HTML Goodies reader. He has a similar script that
works only in Internet Explorer, so I took the concept and rewrote it to work across
browsers.

Here’s the script:

10 0789726122_CH09 10/2/01 8:25 AM Page 256

257

Chapter 9 ➤ Putting It All Together

<SCRIPT LANGUAGE=”javascript”>

function KeepCount() {

var NewCount = 0

if (document.joe.dog.checked)

{NewCount = NewCount + 1}

if (document.joe.cat.checked)

{NewCount = NewCount + 1}

if (document.joe.pig.checked)

{NewCount = NewCount + 1}

if (document.joe.ferret.checked)

{NewCount = NewCount + 1}

if (document.joe.hampster.checked)

{NewCount = NewCount + 1}

if (NewCount == 3)

{

alert(‘Pick Just Two Please’)

document.joe; return false;

}

}

</SCRIPT>

<FORM NAME=”joe”>

Pick Only Two Please!

<INPUT TYPE=”checkbox” NAME=”dog” onClick=”return KeepCount()”> Dog

<INPUT TYPE=”checkbox” NAME=”cat” onClick=”return KeepCount()”> Cat

<INPUT TYPE=”checkbox” NAME=”pig” onClick=”return KeepCount()”> Pig

<INPUT TYPE=”checkbox” NAME=”ferret” onClick=”return KeepCount()”> Ferret

<INPUT TYPE=”checkbox” NAME=”hampster” onClick=”return KeepCount()”> Hampster

</FORM>

You can see the script’s effect in Figure 9.3.

To see the effect on your own computer, click Lesson Fifty-Two Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson52example.
html.

Give it a try. I know it says to choose only two, but to see the effect, you’ll need to pick a
third option.

Go ahead! Break the rules! Try to pick three!

You can even make different choices, unclick choices, and change things around. As long
as you have only two, you’re good to go. But select three, and you get the alert.

10 0789726122_CH09 10/2/01 8:25 AM Page 257

JavaScript Goodies

258

Deconstructing the Script
The example has only check boxes, but you can surround them with any number of extra
form elements. I just singled out the form check boxes for demonstration purposes. The
code looks like this:

<FORM NAME=”joe”>

Pick Only Two Please!

<INPUT TYPE=”checkbox” NAME=”dog” onClick=”return KeepCount()”> Dog

<INPUT TYPE=”checkbox” NAME=”cat” onClick=”return KeepCount()”> Cat

<INPUT TYPE=”checkbox” NAME=”pig” onClick=”return KeepCount()”> Pig

<INPUT TYPE=”checkbox” NAME=”ferret” onClick=”return KeepCount()”> Ferret

<INPUT TYPE=”checkbox” NAME=”hampster” onClick=”return KeepCount()”> Hampster

</FORM>

These are basic check boxes. The form is named joe, and each check box is then given a
NAME. The NAME is equal to what the check box represents—that’s pretty basic form stuff.

The trick is the onClick() inside each of the check boxes.

Notice that the onClick() asks for a return from a function named KeepCount(). That return
function enables you to disallow the third box (or whichever you choose) to be checked.

Figure 9.3
Stop picking three!

10 0789726122_CH09 10/2/01 8:25 AM Page 258

259

Chapter 9 ➤ Putting It All Together

Make a point of following that format; otherwise, this JavaScript won’t give you the desired
effect.

Got it? Super. Moving along ….

The Script
It’s a fairly simple little script that looks like this:

<SCRIPT LANGUAGE=”javascript”>

function KeepCount() {

var NewCount = 0

if (document.joe.dog.checked)

{NewCount = NewCount + 1}

if (document.joe.cat.checked)

{NewCount = NewCount + 1}

if (document.joe.pig.checked)

{NewCount = NewCount + 1}

if (document.joe.ferret.checked)

{NewCount = NewCount + 1}

if (document.joe.hampster.checked)

{NewCount = NewCount + 1}

if (NewCount == 3)

{

alert(‘Pick Just Two Please’)

document.joe; return false;

}

}

</SCRIPT>

The script works because it’s set up to inspect every check box every time. That’s how
you’re able to check, uncheck, and check again as long as only two are selected. The script
counts the number of check marks every time you click.

We start with the function, which I called KeepCount() for fairly obvious reasons. You’ll
remember that this function triggers every time your user selects a check box. We need to
give the JavaScript somewhere to keep a count, so I set it up as a variable named NewCount.

Now we get to the magic. Notice the script checks each check box right in a row, every
time. Here’s just the first blip of code:

if (document.joe.dog.checked)

{NewCount = NewCount + 1}

10 0789726122_CH09 10/2/01 8:25 AM Page 259

JavaScript Goodies

260

If the first check box (dog) is checked, NewCount gets one added to it. If not, it moves along
to the next check box.

Following the script down, if cat is checked, one is added. If not, we go to the next blip.

Each check box is tested in order. The script keeps count again and again each time the
user clicks. But what if three are checked?

if (NewCount == 3)

{

alert(‘Pick Just Two Please’)

document.joe; return false;

}

If NewCount is equal (==) to 3, up pops the alert box and the user is returned to the form;
therefore, the third check box is false. It deselects.

The function bracket and the end-script flag round out the script.

The reason the script is capable of counting the boxes repeatedly is at the top of the func-
tion. Every time the function triggers, the NewCount value is set back to 0.

You can set this to as many check boxes as you want and as many choices from those
boxes as you want. If you use the effect more than once on a page, though, please remem-
ber that you must change the NAME of the check boxes, so you must also change those
names in the script.

You’ll need a blip of code for every check box you have for the check boxes to count each
time. Just make sure that your script equals your check boxes both in number and in NAMEs.
My suggestion is if you’re going to use this more than one time on the page, paste an
entirely new script with a new function name and new count name (other than NewCount).

Just be sure to keep the return command in the check boxes themselves. That’s what
makes the magic in this little script.

Your Assignment
I’ll bet at least one of you noticed that this script has an alert in it. The first text in this
chapter warned against using them. Well, actually it warned against using a lot of them.

Let’s take that to heart. Rewrite this script so that an alert no longer exists, but rather the
entire run of check boxes becomes unchecked.

Here’s a hint: The change is quite minimal. Think about what command you would use
when constructing an HTML form to create a button to clear the contents. After you have
that, you’ll know the command to uncheck every box.

10 0789726122_CH09 10/2/01 8:25 AM Page 260

261

Chapter 9 ➤ Putting It All Together

When you get the command, remember that it is now going to act on the form, so add the
two parentheses after the command.

Wow, I practically gave it to you.

Just remember that if you use this method as part of a larger form, it resets the entire
thing.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Fifty-Two Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment52.html.

Lesson 53: Positioning a New Window
In Lesson 19 (see Chapter 4, “Flipping Images and Opening Windows with Mouse Events”)
I discussed how to open a new window. If you remember, numerous methods are available
for altering the look of that window, but there’s more.

In this lesson, I’ll show you a couple of neat tricks to working with a pop-up window. First,
we’ll start with a basic script that enables you to position the window when it pops up.
After you have a handle on that, I’ll give you one more line of code that will change your
pop-up window to a pop-under window. That means the window pops up behind the par-
ent window rather than resting on top, as new windows normally do.

We’ll start with the script that enables you to position a new window.

I want to point out that I am triggering this new window through a button. Often, new
windows are triggered simply through onLoad event handlers. I’ll quickly discuss that also
before the end of the lesson. I just want to use the button to show the code so it’s a more
controlled method to start with.

Here’s the script:

<SCRIPT LANGUAGE=”JavaScript”>

function goNewWin() {

// Place the window

var NewWinPutX=100;

var NewWinPutY=210;

//Get what is below onto one line

TheNewWin =window.open(“untitled.html”,’TheNewpop’,

‘height=200,width=200,fullscreen=yes,toolbar=no,location=no,directories=no,

status=no,menubar=no,scrollbars=no,resizable=no’);

10 0789726122_CH09 10/2/01 8:25 AM Page 261

JavaScript Goodies

262

//Get what is above onto one line

TheNewWin.moveTo(NewWinPutX,NewWinPutY);

}

</script>

<CENTER>

<FORM>

<input type=”button” VALUE=”click me!” onClick=”goNewWin()”>

</FORM>

</CENTER>

You can see the script’s effect in Figure 9.4.

Figure 9.4
100 in and 210 down from
the top.

To see the effect on your own computer, click Lesson Fifty-Three Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson53example.
html.

Deconstructing the Script
Here’s the basic thinking. To apply an effect to a new window, you must make that new
window be seen as a single entity. The easiest method of that in JavaScript is to assign the
new window to a variable name.

10 0789726122_CH09 10/2/01 8:25 AM Page 262

263

Chapter 9 ➤ Putting It All Together

After you have that, you can then apply JavaScript commands to the variable name and
affect the entire window. With me? Good.

We start by setting the entire script into a function. That enables us to call on the new
window however and whenever we want using event handlers or some other command.
Like so:

function goNewWin() {

We start this script by setting a couple of parameters in terms of placement. We create two
new variables: NewWinPutX denotes where along the X (or horizontal) axis the window
should be placed, and NewWinPutY denotes where along the Y (or vertical) axis the window
will sit. Here’s the code:

// Place the window

var NewWinPutX=100;

var NewWinPutY=210;

If you’re wondering how the window is actually placed, the coordinates we just set are
applied to the new window’s upper-left corner. Using this script, that corner is at exactly
100 and 210.

Now let’s assign the entire new window to a variable name all its own:

//Get what is below onto one line

TheNewWin =window.open(“untitled.html”,’TheNewpop’,

‘height=200,width=200,fullscreen=yes,toolbar=no,location=no,directories=no,

status=no,menubar=no,scrollbars=no,resizable=no’);

//Get what is above onto one line

The window code is exactly what you read in Lesson 19; I just have it set to the variable
TheNewWin.

Now we’ll position it:

TheNewWin.moveTo(NewWinPutX,NewWinPutY);

The command that does the trick is moveTo.

Notice how moveTo has been set to affect the entire window by attaching it to the variable
name representing the entire window—NewWin.

The moveTo command understands where to place the window because we have given it the
parameters we set up previously: NewWinPutX,NewWinPutY.

10 0789726122_CH09 10/2/01 8:25 AM Page 263

JavaScript Goodies

264

After you get a new window set apart and attached to a variable name, you can have a
great time playing with the window as a whole.

Now, you might be wondering why I set up the script so that I am calling for parameters
from outside the moveTo command. I could have just as easily entered the numbers I want-
ed rather than going through the trouble of setting up NewWinPutX,NewWinPutY.

Good question. I did it that way specifically so I could break out the height and width. I
design these scripts so that many people can use them, and I like to make them as easy as
possible to manipulate, even for a beginner. By breaking out the positions, I can set aside a
piece of code, title it like I did in the previous example, and make it rather blatant where
to set the position coordinates. It’s a help to another user, nothing more than that.

Here’s another example, popping the window up and under.

Making a Pop-Under Window
For a new window to fall behind the parent window, you must do what’s known as blurring
the focus on that new window. We’ll use the blur you learned about in Chapter 2,
“Popping Up Text with Mouse Events.”

You might have noticed in your own surfing that a pop-under window quickly shows up as
an outline and then falls back behind the main window. That quick appearance is the new
window coming to focus. After that focus is on the window, the code immediately blurs
that window’s focus, and it falls behind.

The effect is rather easy to get. We’ll just add one line to the previous script:

TheNewWin.blur();

You most likely could have guessed that one, huh? We know we needed to blur the entire
window, so we set the command with the variable representing the entire new window.

Placement within the script is really our only concern. I put the line last in my function.
The new script would look like this:

<SCRIPT LANGUAGE=”JavaScript”>

function goNewWin() {

// Place the window

var NewWinPutX=100;

var NewWinPutY=210;

//Get what is below onto one line

10 0789726122_CH09 10/2/01 8:25 AM Page 264

265

Chapter 9 ➤ Putting It All Together

TheNewWin =window.open(“untitled.html”,’TheNewpop’,

‘height=200,width=200,fullscreen=yes,toolbar=no,location=no,directories=no,

status=no,menubar=no,scrollbars=no,resizable=no’);

//Get what is above onto one line

TheNewWin.moveTo(NewWinPutX,NewWinPutY);

TheNewWin.blur();

}

</script>

Using the onLoad Event Handler to Trigger the New Window
As I said before, a button seems a silly method of using this format. You’ll most likely want
the effect to fire as soon as the page loads.

To get that, you simply delete the previous HTML button code and fire the function using
the onLoad event handler in the BODY flag. It’ll look something like this:

<BODY BGCOLOR=”FFFFFF” onLoad=”goNewWin()”>

Your Assignment
Let’s see whether you can break out another set of parameters, other than the positioning
X and Y numbers.

Alter this script so two new variables are set up that alter the new window’s height and
width. That means you’ll need to pull those parameters out of the window code, of course.
You’ll also need to write a line of code that resizes the window—try using resizeTo().

Oh, and make the new window open via the onLoad event handler.

I know it’s coding overkill, but it just might help a less knowledgeable coder down the line.
Plus, it’s a pretty good assignment, if I do say so myself.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Fifty-Three Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment53.html.

Lesson 54: Self-Typing Typewriter
This is a fantastic effect. A text box shows up and the computer appears to be typing into
it. Its uses can range from a simple greeting, to page instructions, to simply keeping a view-
er’s attention.

10 0789726122_CH09 10/2/01 8:25 AM Page 265

JavaScript Goodies

266

If you like to put scrolls on your page, this is a type of scroll but with a little twist. I also
don’t see it as being as intrusive as a scroll. Let’s take a look.

Here’s the script:

<SCRIPT LANGUAGE=”javascript”>

var i = 0

var typeString= “All work and no play makes Jack a dull boy.”

+” All work and no play makes Jack a dull boy.

➥All work and no play makes Jack a dull boy. “

+” All work and no play makes Jack a dull boy.

➥All work and no play makes Jack a dull boy. “

+” All work and no play makes Jack a dull boy.

➥All work and no play makes Jack a dull boy. “

function type()

{

var typeLength= typeString.length

document.typewriterScreen.typepage.value=

➥document.typewriterScreen.typepage.value + typeString.charAt(i)

i++

setTimeout(“type()”,70)

}

</SCRIPT>

<BODY onLoad= “type()”>

<FORM NAME=”typewriterScreen”>

<TEXTAREA ROWS=6 COLS=45 WRAP=”virtual” NAME=”typepage”></TEXTAREA>

</FORM>

The script’s effect appears in Figure 9.5.

To see the effect on your own computer, click Lesson Fifty-Four Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson54example.
html.

What’s Happening?
Here’s the scoop on how the typing effect is created.

Each time the JavaScript is run, the script posts the value of the TEXTBOX with the next let-
ter in the string, chosen by i. It works similarly to a scroll, working one letter into the
string each time it runs.

10 0789726122_CH09 10/2/01 8:25 AM Page 266

267

Chapter 9 ➤ Putting It All Together

The first time the JavaScript runs, the return is a blank TEXTBOX and the letter A from the
string. That return is posted.

The next time it runs, the return from the TEXTBOX is A with the next letter in the string, l,
added. That return is also posted.

The next time the script runs, the return from the TEXTBOX is Al and the next letter in the
string, l, is added. That is posted.

If this happens again and again, the effect is the letters typing themselves to the screen.
Now, let’s dig into the script.

Deconstructing the Script
Usually, we would start by naming the HTML form elements, but not this time. The form
elements actually play a role in the effect, so we will discuss them last after you understand
the typing effect.

This script begins by setting up a variable i and setting it to one. Then, a very long literal
string is given the variable name typeString. It looks like this:

var i = 0

var typeString= “All work and no play makes Jack a dull boy.”

+” All work and no play makes Jack a dull boy.

➥All work and no play makes Jack a dull boy. “

Figure 9.5
Typewriter typing.

10 0789726122_CH09 10/2/01 8:25 AM Page 267

JavaScript Goodies

268

+” All work and no play makes Jack a dull boy.

➥All work and no play makes Jack a dull boy. “

+” All work and no play makes Jack a dull boy.

➥All work and no play makes Jack a dull boy. “

Notice that each statement in quotation marks is connected by a plus sign so that one will
just follow the other in one long line of text.

The Typing Function
The function is named type():

function type()

{

var typeLength= typeString.length

document.typewriterScreen.typepage.value=

➥document.typewriterScreen.typepage.value + typeString.charAt(i)

i++

setTimeout(“type()”,70)

}

It is triggered to run through an onLoad= event handler in the BODY flag.

First, the variable typeLength is created and given the value of the number of letters in the
literal string, typeString.length.

Next, the TEXTBOX of the following HTML form is set up to receive the output of the script.
You can probably guess just from this line of code that the form itself is named
typewriterScreen and the TEXTBOX is named typepage. They are.

The typing effect is created by taking the value of the TEXTBOX and adding the first charac-
ter of typeString. That’s done with the following code:

= document.typewriterScreen.typepage.value + typeString.charAt(i)

Remember that i is equal to one.

After that occurs, i starts to move incrementally up. Notice the double plus signs.

Finally, the code setTimeout(type(),70) sets a timeout for the script of 70/1000 of a second
before it runs through the function again.

The HTML Form Elements
As I said earlier, the name of the form is typewriterScreen and the name of the TEXTAREA
box is typepage. You can see that in the following code:

10 0789726122_CH09 10/2/01 8:25 AM Page 268

269

Chapter 9 ➤ Putting It All Together

<FORM NAME=”typewriterScreen”>

<TEXTAREA ROWS=6 COLS=45 WRAP=”virtual” NAME=”typepage”></TEXTAREA>

</FORM>

This form element differs from the others we’ve used because this one plays a part in the
effect. Notice the attribute WRAP=”virtual”. That forces the text to wrap at the edge of the
TEXTBOX rather than continue going off to the right.

But it’s the size that gets the look. The COLS attribute is set two letters longer than the text
All work and no play makes Jack a dull boy. By doing that, we were able to create what appear
to be carriage returns right where we want them. Without each new line of text appearing
on a new line, a great deal of the effect would be lost.

Your Assignment
Add some code to the preceding script so that after the entire string of text has posted, an
alert box pops up.

Hint: It should happen when the count is equal to the number of characters in the string.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Fifty-Four Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment54.html.

Lesson 55: Scrolling Credits
When you go to the movies, do you stick around and watch the credits? Wouldn’t it be
great to get that kind of scroll on a Web page credit list?

That’s what this script does—it scrolls the page rather than the text. It’s a great effect, and a
fitting end to the book’s last lesson:

<SCRIPT LANGUAGE=”javascript”>

var I = 0;

function scrollit() {

if (I == 1000) {stop = true}

else {

self.scroll(1,I);

I = eval(I + 1);

setTimeout(“scrollit()”, 20);

}

}

10 0789726122_CH09 10/2/01 8:25 AM Page 269

JavaScript Goodies

270

</SCRIPT>

<BODY OnLoad=”scrollit()”>

<CENTER>

JavaScript Goodies

<P>

by<P>

Joe Burns, Ph.D.

&

Andree Growney

</CENTER>

The script’s effect appears in Figure 9.6.

Figure 9.6
Credits scrolling.

10 0789726122_CH09 10/2/01 8:25 AM Page 270

271

Chapter 9 ➤ Putting It All Together

To see the effect on your own computer, click Lesson Fifty-Five Script’s Effect in your down-
load packet, or see it online at http://www.htmlgoodies.com/JSBook/lesson55example.
html.

Deconstructing the Script
Okay, first off, let me explain what this is all about:

Do you see that code, right below the BODY flag and right above the HTML that will appear
in the document window? It’s there to add space before the text. If there is no space above
the text, the page can’t scroll.

Now remember, when you use this script, either make the page that will scroll longer than
the browser’s viewing area or add a bunch of breaks above the text so that the page is long
enough to scroll.

Plus, if you create enough space so that the text is pushed down out of the browser screen,
you get the effect of the text scrolling up and out of the bottom, like during a movie’s
credits.

The script starts again by setting the variable I to 0 outside a function.

The function is then set and named scrollit():

var I = 0;

function scrollit() {

The function starts by setting up an if condition that states when I equals 1000, the scroll
is to stop:

if (I == 1000) {stop = true}

Because that won’t be true for 1,000 cycles of the script, something else has to happen.

The following code sets the scroll of the page, denoted by self.scroll, to scroll up one
line:

else {

self.scroll(1,I);

Then one is added to I:

I = eval(I + 1);

10 0789726122_CH09 10/2/01 8:25 AM Page 271

JavaScript Goodies

272

Notice the eval() method. You should remember that it is used to set the results of the
items within the parentheses to a numeric value.

Finally, the script is given a rest for 20/1000 of a second and the function is run again:

setTimeout(“scrollit()”, 20);

The process occurs repeatedly until I reaches 1000, or until the end of the page is reached
and it can’t scroll anymore.

The rest of the code is basic HTML to make the page long enough to actually have some-
thing to scroll.

Here’s a hint about using this script: It looks best if the script starts the scroll on a blank
page. That way, the text pops up from the bottom of the browser screen like normal movie
credits.

To get that effect, you must either add enough blank lines of code above the first line of
text to literally push the text off the screen or set up some other method of pushing the
text off the bottom of the screen. Maybe a transparent 1×1 image set to a height of 400 or
600 would work well. I got the effect in the example by simply adding lines.

Now, take this code and make some credits. Be sure to remember Andree and me. Heck, we
showed you how to do all this stuff; the least you could do is give us a credit.

Your Assignment
The assignment is to create your site’s own scrolling credits, plus one more thing—create
good and useful scripts.

You can see a possible answer to this assignment on your own computer by clicking Lesson
Fifty-Five Assignment in your download packet, or see it online at http://www.
htmlgoodies.com/JSBook/assignment55.html.

10 0789726122_CH09 10/2/01 8:25 AM Page 272

Rainbow Text

Script Tip 1

If you’ve ever attempted to create a run of text where each letter is a different color, you
know how unbelievably time-consuming it can be. Setting all those FONT COLOR flags can
take weeks.

Well, FONT no more. This script is set up to create those multicolored runs of letters with
little or no work on your part—aside from entering the text, of course. I mean … you have
to do something, right?

This script was sent to me to use as a tip. I really liked it the first time I saw it. Yeah, I’m 37
(at least I was when I wrote this text), but bright lights and lots of color still make me
happy. The script itself is a lot more interesting than the effect suggests. The coding is com-
pact and gets the job done quickly.

You might want to test this script in a Netscape Navigator browser. It’s not that the coding
is Navigator-specific; it’s just that if you look at the source code in IE, all you see is the
script. In Navigator, you see the entire run of letters and the colors attached to them.

11 0789726122_STO 1 10/2/01 8:38 AM Page 273

JavaScript Goodies

274

Here’s the script:

<HTML>

<HEAD>

<TITLE>Put Some Colors Into The Text</TITLE>

<SCRIPT language=JavaScript>

<!-- Start hiding

var i

function ColoredText() {

var argLen = ColoredText.arguments.length;

if (argLen == 0)

{argLen = 1}

var text = ColoredText.arguments[0];

var textLen = ColoredText.arguments[0].length;

var defClrsArray = new Array(“red”,”purple”,”cyan”,”green”,”blue”,

➥ “magenta”); //default colors, change as needed

for (i=0; i<textLen; i++) {

charColor = text.charAt(i);

if (argLen == 1)

{

colorCode = Math.floor(Math.random() * defClrsArray.length);

tempStr = charColor.fontcolor(defClrsArray[colorCode])

}

else

{

colorCode = i % (argLen - 1);

tempStr = charColor.fontcolor(ColoredText.arguments[colorCode+1])

}

document.write(tempStr)

}

}

// Stop hiding -->

</SCRIPT>

</HEAD>

11 0789726122_STO 1 10/2/01 8:38 AM Page 274

275

Script Tip 1 ➤ Rainbow Text

<BODY bgcolor=”ffffcc”>

<SCRIPT language=JavaScript>

<!-- Start hiding

ColoredText(“This is a text sample written using the function

➥ ColoredText”);

document.write (“
”)

ColoredText(“Another text sample, this time only with red and orange

➥ repeatedly”,”red”,”orange”);

document.write (“
<H1>”)

ColoredText(“Another sample with shades of

green”,”#006000”,”#007000”,”#008000”,”#009000”,”#00A000”,”#00B000”);

document.write (“</H1>

<CENTER>”)

ColoredText(“Try refreshing the page a couple of times!”);

document.write (“</CENTER>”)

// Stop hiding -->

</SCRIPT>

</BODY>

</HTML>

The effect is shown in Figure ST1.1. Of course, this is in black and white, so you should go
see it online (see the following link).

To see the effect on your own computer click Script Tip 1 in your download packet or see it
online at http://www.htmlgoodies.com/stips/scripttip81effect.html.

The code is available for copy and paste at http://www.htmlgoodies.com/stips/
scripttip81script.html or by viewing the source of the page in your download packet.

11 0789726122_STO 1 10/2/01 8:38 AM Page 275

JavaScript Goodies

276

This is actually two scripts in one. Let’s begin with the bottom script—that’s the one that
has all the display text:

<SCRIPT language=JavaScript>

<!-- Start hiding

ColoredText(“This is a text sample written using the function

➥ ColoredText”);

document.write (“
”)

ColoredText(“Another text sample, this time only with red and orange

➥ repeatedly”,”red”,”orange”);

document.write (“
<H1>”)

ColoredText(“Another sample with shades of

green”,”#006000”,”#007000”,”#008000”,”#009000”,”#00A000”,”#00B000”);

document.write (“</H1>

<CENTER>”)

ColoredText(“Try refreshing the page a couple of times!”);

document.write (“</CENTER>”)

// Stop hiding -->

</SCRIPT>

I can’t stress enough that the previous code is truncated. See how some of the long lines
break into two lines? When you run this on your system, the lines must all be on one line
as it shows in the script.

Figure ST1.1
The letters are really color-
ful … really. I know the
shot is in black and white,
so just take my word for it.

11 0789726122_STO 1 10/2/01 8:38 AM Page 276

277

Script Tip 1 ➤ Rainbow Text

What is on this page is for display purposes only.

Okay, you can see that this is both the text on the page and a script. Notice that the text
that appears on the page is enclosed in the argument to the function. The concept is that
the text within the instance will be displayed on the page only after the function
ColoredText() has had the opportunity to act upon it.

Notice also that the HTML commands that alter the text are not included with the text.
Those HTML tags are contained within document.write commands. They had to be because
this is a script. Without the document.write, the script wouldn’t know what to do with the
text and you’d get an error.

If you tried to put the tags inside the ColoredText() instance, the script wouldn’t see them
as tags but rather as text to be altered. The concept of tags outside the text is pretty easy to
follow. Notice all the beginning tags are in the document.write before the text, and all the
end tags are in the document.write after the text.

No big deal. Moving along ….

If you look at the first ColoredText() line of text, you see that it’s just text with nothing
following it. Yet, the next two lines of text do have something following them. It might
seem odd at first, but the text that had nothing following it is the most colorful.

The second line has “red” and “orange” after it. Note the displayed text is only red and
orange.

The next line has a series of green hex codes; thus the text is in shades of green.

Here’s a good rule of thumb: The more colors you offer after the text, the more colorful
your text will be. The more shades of the same color you offer, the more smoothly your
text will appear to flow. If you put in 50 different shades of green from lightest to darkest,
your text will roll through that spectrum.

What Are Those Colors?
They’re arguments. See the format? First, you have text in double quotation marks and
then a list of elements, in this case colors, in double quotation marks one after the other.

That’s JavaScript shorthand. You could get the exact same effect if you simply created an
array of all the greens and called for one after the other, as is shown in Chapter 8, “Arrays.”
It would be a lot of typing, though. This way, the browser understands that what follows
are arguments, thanks to the format. What’s more, the arguments are turned into an array
for you.

Now, that’s helpful.

11 0789726122_STO 1 10/2/01 8:38 AM Page 277

JavaScript Goodies

278

You now have four lines of text, two of which have arguments, so you know what color
they’re going to be. But how does that code that has no arguments get to be so darn
colorful?

Putting Color to the Text
Now on to the fun part. Let’s get to acting on those lines of text. First off, let’s look at the
really colorful ones, those without arguments:

function ColoredText() {

var argLen = ColoredText.arguments.length;

if (argLen == 0)

{argLen = 1}

var text = ColoredText.arguments[0];

var textLen = ColoredText.arguments[0].length;

var defClrsArray = new Array(“red”,”purple”,”cyan”,”green”,”blue”,

➥”magenta”);

//default colors, change as needed

for (i=0; i<textLen; i++) {

charColor = text.charAt(i);

if (argLen == 1)

{

colorCode = Math.floor(Math.random() * defClrsArray.length);

tempStr = charColor.fontcolor(defClrsArray[colorCode])

}

else

{

colorCode = i % (argLen - 1);

tempStr = charColor.fontcolor(ColoredText.arguments[colorCode+1])

}

document.write(tempStr)

}

}

// Stop hiding -->

</SCRIPT>

Again, the script is a little out of order. You’ll need to make a point of getting it into the
same format as the display in the script.

The function isn’t overly long, but it does get goofy at times, so let’s examine it in two
parts. First, I’ll discuss the variables and how the non-argument text is created.

11 0789726122_STO 1 10/2/01 8:38 AM Page 278

279

Script Tip 1 ➤ Rainbow Text

The name of the function is Coloredtext(). That’s the same name as the function that
wrote the text to the page. Actually, it was the same function. By placing the text inside
the function instance, you literally pass the text to the function. It’s after the text is given
color that it’s written to the page.

Let’s start at the top.

The variable argLen is given the value of the argument’s length. Remember, I previously
said that the color names that follow the display text are arguments. The JavaScript knows
they’re arguments because of the format in which they are presented.

Obviously, the first line of text does not have any arguments. That would make the argu-
ment equal to zero. You can’t have that, so the next blip of code asks whether the argu-
ment is equal to zero. If it is, the variable argLen is given the value of 1. That will still
enable you to separate it from those that have at least two arguments, in the second line
of text.

JavaScript has already turned those arguments into an array, so you need to get some hier-
archy statements into array format to deal with them. That’s these two:

var text = ColoredText.arguments[0];

var textLen = ColoredText.arguments[0].length;

The first line enables you to pull out a specific argument by calling for its array number.
The second tells you the length of the array, meaning the number of items in the array.

The next line is a default list of colors. This is where the color in the non-argument text
comes from. If there isn’t a set of arguments, use these:

var defClrsArray = new Array(“red”,”purple”,”cyan”,”green”,”blue”,

➥”magenta”);

Remember I said the script gets a little goofy? Here it comes. The next little section deals
with attaching color to each of the letters in the display text:

for (i=0; i<textLen; i++) {

It starts with a for loop. The loop is set up with three conditions, each separated by a semi-
colon. The first condition sets a value to a variable; the second condition determines how
often the loop should occur. In this case, the loop continues only as long as there are let-
ters. See that? As long as i is less than the length of the text, it keeps looping.

Finally, the third condition does something to the variable if the loop isn’t finished. In this
case it adds one. The double plus sign does the adding. The effect is that each letter in the

11 0789726122_STO 1 10/2/01 8:38 AM Page 279

JavaScript Goodies

280

run of text is looked at one after the other until there’s no more text. The following code
sets a variable name to the character represented by i:

charColor = text.charAt(i);

Remember, this loops through again and again, so each time it loops, charAt(i) is differ-
ent. The command charAt() pulls a specific letter out of a run of text. In this case, the let-
ter it pulls is the letter equal to the number represented by i. As the loop rolls, i increases.

The following actually sets color:

if (argLen == 1)

{

colorCode = Math.floor(Math.random() * defClrsArray.length);

tempStr = charColor.fontcolor(defClrsArray[colorCode])

}

An If statement starts it off testing whether argLen is equal to 1. We know it is in the first
line of text because I set it that way earlier. Remember that? If there are no arguments,
argLen is equal to 1. In this case, it’s equal to 1.

The variable colorCode is given a specific value through a little math. Just like algebra class,
let’s start inside the parentheses. Math.random generates a random number between 0 and 1
without choosing either 0 or 1. It could be .334 or .562 or anywhere in that range of num-
bers. That random number is then multiplied by the length of the default color array.

The number resulting from that equation is then floored by Math.floor. The floor takes
whatever number is inside the parentheses and drops it to the lower whole number. For
example, if the answer in the parentheses was 2.6, Math.floor would turn it into 2.

Yes, there’s an equal to that going the other way. Math.ceil pushes the number to the ceil-
ing, or the next higher full number. The number 2.6 would therefore become 3.

Here’s an interesting thing to keep in mind: Notice how some arrays are set and some are
random? If you refresh the example a few times, you’ll notice that the lines with set arrays
remain static and display the same color scheme. Those that use random colors, however,
change.

Keep that in mind: Use this script either for random or a set color scheme.

And speaking of color ….

Assigning Color
The next line is a hierarchy statement that uses the default array of colors, represented
by the variable charColor, and assigns the color as a fontcolor to what’s inside the

11 0789726122_STO 1 10/2/01 8:38 AM Page 280

281

Script Tip 1 ➤ Rainbow Text

parentheses. The command fontcolor works just like in HTML. If you look at
the source code of this script in Netscape Navigator, you’ll see letter after letter written
with individual font color tags.

If the previous line generated the number 2, cyan would be the color plucked from the
array. Remember, JavaScript starts counting at 0. That cyan color would be set into a
fontcolor by the array statement inside the parentheses.

From the default color array, defClrsArray, pluck out the number represented by colorCode.

Next, assign it all to a variable named tempStr.

Now you have the colors yanked from the default list. But what about those texts that
actually have arguments? And how does that text get written to the page?

We’ve already used up just about the entire function. Now we’re interested in just this:

else

{

colorCode = i % (argLen - 1);

tempStr = charColor.fontcolor(ColoredText.arguments[colorCode+1])

}

document.write(tempStr)

}

}

See how it starts with else? That’s because I cut it off in the middle of an if statement. If
the display text carries an argument with it, this else statement is brought into play.

The variable colorCode is given a numeric value through a fairly fancy equation.

The value of i is % against the argument length minus one. For example, say you have six
arguments. It would be six colors in this case. Let’s say the for loop has rolled a few times
and is now equal to 5.

The percent sign is a mathematical operator that returns the remainder of an equation. So
let’s do the math.

5 % (6–1) produces 5 % 5. There is no remainder, so 0 is returned. That is equal to the first
element in the array created through the argument. The loop rolls again, and now i is
equal to 6.

6 % (6–1) results in 6 % 5, which equals 1.2. The remainder, 2, is returned. The third color
in the array is therefore returned (JavaScript starts counting at 0).

11 0789726122_STO 1 10/2/01 8:38 AM Page 281

JavaScript Goodies

282

The next line works just like its partner. The charColor.fontcolor is given the value repre-
sented by the array of arguments plucked out by whatever number is returned by the line
we just discussed plus one. That value is assigned to the variable tempStr.

Again, in the world of JavaScript, fontcolor is equal to in HTML. Look at the
source code in Navigator to see them all.

That’s pretty slick, eh?

Lastly, a basic document.write puts tempStr on the page and we’re done.

11 0789726122_STO 1 10/2/01 8:38 AM Page 282

Full Text Date
Script

Script Tip 2

A reader wanted to post a date that goes beyond the basic number returns. He wanted the
date to display in text. I am the author of the following script, which I wrote to present the
day and the month in text.

As an added bonus, the script adds the “th”, “st”, “nd”, or “rd” depending on the day of
the month. I also used a new method to extract a four-digit year, rather than a two-digit
year. It’s a bit long, but it works pretty well. It looks like this:

<SCRIPT LANGUAGE=”JavaScript”>

DaysofWeek = new Array()

DaysofWeek[0]=”Sunday”

DaysofWeek[1]=”Monday”

DaysofWeek[2]=”Tuesday”

DaysofWeek[3]=”Wednesday”

DaysofWeek[4]=”Thursday”

DaysofWeek[5]=”Friday”

DaysofWeek[6]=”Saturday”

12 0789726122_STO 2 10/2/01 8:38 AM Page 283

JavaScript Goodies

284

Months = new Array()

Months[0]=”January”

Months[1]=”February”

Months[2]=”March”

Months[3]=”April”

Months[4]=”May”

Months[5]=”June”

Months[6]=”July”

Months[7]=”August”

Months[8]=”September”

Months[9]=”October”

Months[10]=”November”

Months[11]=”December”

RightNow = new Date()

var day = DaysofWeek[RightNow.getDay()]

var date = RightNow.getDate()

var Month = Months[RightNow.getMonth()]

var Year = RightNow.getFullYear()

if (date == 1 || date == 21 || date == 31)

{ender = “st”}

else

if (date == 2 || date == 22)

{ender = “nd”}

else

if (date == 3 || date == 23)

{ender = “rd”}

else

{ender = “th”}

document.write(“Today is “ +day+ “ “ +Month+ “ “ +date+ ender+ “,

➥” +Year+ “.”)

</SCRIPT>

The script produces the result shown in Figure ST2.1. I’ve made it a little bigger in the
screen capture than it will come out on your page simply so you can better see the format.

12 0789726122_STO 2 10/2/01 8:38 AM Page 284

285

Script Tip 2 ➤ Full Text Data Script

To see the effect on your own computer, click Script Tip Two in your download packet or see
it online at http://www.htmlgoodies.com/stips/scripttip31.html.

The code is available for copy and paste at http://www.htmlgoodies.com/stips/
scripttip31script.html or by viewing the source of the page in your download packet.

Let’s start from the top. This script relies on two arrays. The first array lists the days of the
week, and the second array lists the months of the year. Here’s the first array, the days of
the week:

DaysofWeek = new Array()

DaysofWeek[0]=”Sunday”

DaysofWeek[1]=”Monday”

DaysofWeek[2]=”Tuesday”

DaysofWeek[3]=”Wednesday”

DaysofWeek[4]=”Thursday”

DaysofWeek[5]=”Friday”

DaysofWeek[6]=”Saturday”

An array is just what you see—a listing of things the JavaScript can refer to later. This spe-
cific array is made up of text strings. Note that each day of the week is surrounded by dou-
ble quotation marks. Those double quotation marks tell the browser that what is contained
within should be treated as just text. However, arrays can contain just about any text, com-
mand, number, or combination of the three you want.

Figure ST2.1
A great display of the date
in a usable format.

12 0789726122_STO 2 10/2/01 8:38 AM Page 285

JavaScript Goodies

286

Each array starts with a line that announces to the browser that an array is starting. That
line looks like this:

DaysofWeek = new Array()

The format is similar to setting up a new Date(), which you’ll actually do later. The line
announces a new Array() and gives the array a name. In this case, the name is DaysofWeek.
I made the name up just like I would a variable name because, in reality, it is a variable
name. It’s just that this variable has multiple values.

Notice that the seven days of the week are numbered 0–6. It’s what’s called an index
number. The format is to offer the name of the array, square brackets around the index
number, and then the item that is being indexed. In this case it’s a text string, so the dou-
ble quotation marks surround the text.

The getDay() method returns the day of the week, but it returns that day as a numeric
value, 0–6 representing Sunday through Saturday. Now do you see the reason for the order
of days? We’ve set up an array of days that is equal to the returns that getDay() will return.
A little later, we’ll get into why this is important.

Now that you’re somewhat familiar with the format of an array, let’s take a look at the sec-
ond one. This one deals with the months of the year:

Months = new Array()

Months[0]=”January”

Months[1]=”February”

Months[2]=”March”

Months[3]=”April”

Months[4]=”May”

Months[5]=”June”

Months[6]=”July”

Months[7]=”August”

Months[8]=”September”

Months[9]=”October”

Months[10]=”November”

Months[11]=”December”

The name of the array is Months, and the months are arranged in order 0–11 because those
are the numbers returned by using the getMonth() method.

Okay, now you’re up to speed with the concept and structure of an array. You can begin
calling for the array index through the getDay() and getMonth() methods.

12 0789726122_STO 2 10/2/01 8:38 AM Page 286

287

Script Tip 2 ➤ Full Text Data Script

Taking Elements from the Arrays
Here’s the code you’re worried about right now:

RightNow = new Date()

var day = DaysofWeek[RightNow.getDay()]

var date = RightNow.getDate()

var Month = Months[RightNow.getMonth()]

var Year = RightNow.getFullYear()

The first line should be very near and dear to your heart by now. The variable name
RightNow is assigned to a new Date() object. That new date()object contains all the infor-
mation regarding the current date and time. Next, you’ll use a couple of methods to
extract from that Date() object the day, date, month, and year.

Let me explain this first line because, after you get this line down, the rest just falls into
place:

var day = DaysofWeek[RightNow.getDay()]

The line starts by assigning the variable name day to the result of what follows.

What follows is the variable name of the first array, DaysofWeek. Now you know that this
line will act on the first array, which is the one that lists the days of the week.

The format is the same as one of the DaysofWeek array items. Square brackets immediately
follow the array name, and inside those brackets is the code that returns the day of the
week: RightNow.getDay().

So what’s going to happen is the RightNow.getDay() will return a number, 0–6, representing
the day of the week. Let’s say the number returned is 4. In the DaysofWeek array, 4 means
Thursday. Thus, the variable day now represents Thursday. When you call on the variable
day, the text Thursday is returned.

The next line of code

var date = RightNow.getDate()

follows a similar format but is not attached to an array. This is the number day of the
month, and you want that to remain a number.

The next line follows the array format exactly, except this time around you’re looking for
the month of the year:

var Month = Months[RightNow.getMonth()]

12 0789726122_STO 2 10/2/01 8:38 AM Page 287

JavaScript Goodies

288

Let’s say it’s May. RightNow.getMonth() would therefore return the number 4. That’s equal
to the text string May in the Months array. Thus, when you call on the variable name Month,
you’ll get the text string May.

The last line of code might be new to you:

var Year = RightNow.getFullYear()

In the past, I’ve used the older getYear() method to extract the year from the Date()
object. Well, that works, but it returns only a two-digit year. That created some problems
when Y2K came and went. Because we’re past the year 1999, you should start to use only
the getFullYear() method because it returns the full four-digit year. You should start using
it across the board when you want a year displayed.

Now you have all the returns ready to go. You have the day in text, the number date, the
month in text, and a four-digit year. All you need to do now is decide which two-letter
extension should print after the day number. Of course, it has to be the correct two letters;
you don’t want your text to read Tuesday, May 11rd, 1999.

That would be bad.

Adding Those Two Letters
After you write a computer language for a while, you start to find sections of commands
you really enjoy using. In HTML, I really like tables. I think they’re great. In JavaScript, it’s
the if/else conditional statements. I’m amazed at how flexible and powerful they really
are. I used another one in this script—you’ve probably seen it by now. It looks like this:

if (date == 1 || date == 21 || date == 31)

{ender = “st”}

else

if (date == 2 || date == 22)

{ender = “nd”}

else

if (date == 3 || date == 23)

{ender = “rd”}

else

{ender = “th”}

The purpose of the previous conditional statements is to look at the number returned from
the RightNow.getDate() object.method statement. Remember that you assigned that num-
ber to return the variable name date.

12 0789726122_STO 2 10/2/01 8:38 AM Page 288

289

Script Tip 2 ➤ Full Text Data Script

The purpose of these lines of code is to look at the number and decide which two-letter
extension should follow. Let’s think it through logically. Yes, you could set up a condition
for every number 1–31, but that’s really going overboard.

There are only three times when the “st” is needed.

There are only two times when the “nd” is needed.

There are only two times when the “rd” is needed.

The rest of the numbers get the “th”.

So, you should set up the conditions as follows:

if (date == 1 || date == 21 || date == 31)

{ender = “st”}

The first statement reads, “If the date is equal to 1 or equal to (notice the double equal
signs) 21 or equal to 31, then the variable ender equals st”. That would help
produce “1st”, “21st”, and “31st”.

You probably already know that the HTML <SUP> makes text appear as the smaller letters
up high. You can also set that to <SUB> if you want, but I don’t think the effect is quite as
nice.

Did you catch that double vertical lines mean “or”? That’s a great way of adding multiple
conditions that have the same result all in one line of code rather than writing each condi-
tion out on its own. If you don’t know, you’ll find that vertical line on the same keyboard
button as the backslash, usually just above the Enter key.

As with all if statements, if the first condition does not apply, the script rolls over to the
next one in line. It looks like this:

else

if (date == 2 || date == 22)

{ender = “nd”}

This tests whether the date number is either 2 or 22. If so, ender is equal to nd.
If not, you move along:

else

if (date == 3 || date == 23)

{ender = “rd”}

12 0789726122_STO 2 10/2/01 8:38 AM Page 289

JavaScript Goodies

290

Is the date 3 or 23? If so, ender is equal to rd. If not, you move on:

else

{ender = “th”}

This is a catchall. You set up a conditional system that tests the date number return over
three sets of if statements: If the number meets none of the statements, this else state-
ment handles it. If the number gets this far—and it’s a darn good bet it will because “th” is
the most frequently used text—ender is equal to th.

Now that you have all the parts, use a basic document.write() statement to get it onto the
page for all the world to see:

document.write(“Today is “ +day+ “ “ +Month+ “ “ +date+ ender+ “, “ +Year+ “.”)

Got it? Good.

12 0789726122_STO 2 10/2/01 8:38 AM Page 290

Random Banner
Ad Script

Script Tip 3

Again, this one was by request. It’s a random banner script. I wrote this one, so feel free to
use it. The script uses two arrays and five images to get its effect. The script posts a random
banner. What’s more, the banner is active. You can click it to go where the banner reads.
It’s a quick script that can be used in myriad ways.

I have every intention of doing this entire script quickly. It’s all review:

<SCRIPT LANGUAGE=”javascript”>

banners = new Array()

banners[0]=””

banners[1]=””

banners[2]=””

banners[3]=””

banners[4]=””

13 0789726122_STO 3 10/2/01 8:38 AM Page 291

JavaScript Goodies

292

GoTo = new Array()

GoTo[0]=”http://www.htmlgoodies.com”

GoTo[1]=”http://www.developer.com”

GoTo[2]=”http://www.mtv.com”

GoTo[3]=”http://www.vh1.com”

GoTo[4]=”http://www.whitehouse.gov”

var Number = Math.round(4 * Math.random());

var TheLink = GoTo[Number]

var TheImage = banners[Number]

document.write(“<CENTER>” +TheImage+ “

➥</center>”)

</SCRIPT>

To see the effect on your own computer, click Script Tip Three in your download packet or see
it online at http://www.htmlgoodies.com/stips/scripttip34.html.

The code is available for copy and paste at http://www.htmlgoodies.com/stips/
scripttip34script.html or by viewing the source of the page in your download packet.

The Arrays
banners = new Array()

banners[0]=””

banners[1]=””

banners[2]=””

banners[3]=””

banners[4]=””

GoTo = new Array()

GoTo[0]=”http://www.htmlgoodies.com”

GoTo[1]=”http://www.developer.com”

GoTo[2]=”http://www.mtv.com”

GoTo[3]=”http://www.vh1.com”

GoTo[4]=”http://www.whitehouse.gov”

The script starts off with two arrays. The first array, named banners, is a series of five
images. Those are our banners. Figure ST3.1 shows what banner0.gif through banner4.gif

look like.

13 0789726122_STO 3 10/2/01 8:38 AM Page 292

293

Script Tip 3 ➤ Random Banner Ad Script

You can grab each of the four images at http://www.htmlgoodies.com/stips/banner0.gif
through http://www.htmlgoodies.com/stips/banner4.gif.

Notice that double quotation marks surround each indexed item so you know each is to be
handled as if it were just simple text. Notice also that no quotation marks are around the
zero or the name of the image. That would mess up the script by stopping the line too
early and result in an error.

The second array contains the URLs that will match the banners. Note that the URLs are in
the same order as the banners. That way, you can use the same number to call for an ele-
ment from each array. For example, the first banner reads “HTML Goodies Home Page.”
The first GoTo array item is the URL for HTML Goodies. Now you can use the number 0 to
return both the Goodies banner and the Goodies URL. With me?

The Random Number
var Number = Math.round(4 * Math.random());

The variable number is assigned a random number between 0 and 4.

That number is created by multiplying 4 times a random point between .001 and .999 cre-
ated by the Math.random commands. The numbers returned can be 0, 1, 2, 3, or 4. The
Math.round object.method statement ensures that the number is rounded off so there are no
remainders in the result.

Figure ST3.1
The five images you’ll need
for this script.

13 0789726122_STO 3 10/2/01 8:38 AM Page 293

JavaScript Goodies

294

Calling for the Array Index
var TheLink = GoTo[Number]

var TheImage = banners[Number]

Two new variable names are created. TheLink represents the text return from the GoTo array,
whereas the variable TheImage represents the return from the banners array.

In both cases, the same number—the random number created earlier—is used to choose
the item from both arrays. That way you know all the banners/URLs will line right up.

Writing It to the Page
Next, you’ll use JavaScript to build a line of HTML. Because this HTML creates something
on the page, remember to place this script wherever on the page you want the effect to
appear:

document.write(“<CENTER>” +TheImage+ “

➥</center>”)

You’re using a document.write() statement to get it to the page. Notice that the A HREF
command is fully built—you’re just filling in the blanks. The two text strings from the
arrays are placed, and the entire line of HTML is centered.

When the page displays, the banner is centered on the page and is active to the URL it is
representing.

See how we’ve taken parts from other scripts and built something new? You can do that.
Using just what’s on this page, you could make a random line of text come up on your
page or use a function to enact the script so it offers random fortunes, like the Magic 8-
Ball. You can do it.

13 0789726122_STO 3 10/2/01 8:38 AM Page 294

Frames Script

Script Tip 4

If you ever have trouble writing code for frames, like I do, then this is the script for you.

All you do is ask for a certain number of frames in rows and columns, and the script writes
it out for you.

On top of its functionality, it offers some new JavaScript coding to look at. Plus, it is easily
understandable when you start to break it down.

Here it is:

<HTML>

<HEAD>

<TITLE>Frame Maker</TITLE>

<SCRIPT language=JavaScript>

14 0789726122_STO 4 10/2/01 8:39 AM Page 295

JavaScript Goodies

296

//Below are Variables that will be used in each paste function

var top=”<HTML>” + “\r” + “<TITLE>My Frame Page</TITLE>” + “\r” +

➥”<HEAD></HEAD>”

var nf=”<noframes>” + “\r” + “You need a frames-capable browser to

➥view this page.” + “\r” + “</noframes>” + “\r” + “</HTML>”

var f=”</frameset>”

var bc=”bordercolor=blue>”

var MW=”marginwidth=0”

var MH=”marginheight=0”

//Below are six functions that produce frame code in the TEXTAREA box

function framesa()

{

document.Framer.Fillit.value=top

+ “\r” + “<frameset cols=50%,* “

+ “ “ + bc + “\r” + “<frame src=w.htm” +” “ + “name=One”

+ “\r” + “scrolling=auto” + “ “ + MW + “ “ + MH + “ “ +

➥”noresize=yes>”

+ “\r” + “<frame src=x.htm” +” “ + “name=Two”

+ “\r” + “scrolling=auto” + “ “ + MW + “ “ + MH + “ “ +

➥”noresize=yes>”

+ “\r” + f

+ “\r” + nf

}

function framesb()

{

document.Framer.Fillit.value=top

+ “\r” + “<frameset rows=50%,* “

+ “ “ + bc + “\r” + “<frame src=w.htm” +” “ + “name=One”

+ “\r” + “scrolling=auto” + “ “ + MW + “ “ + MH + “ “ +

➥”noresize=yes>”

+ “\r” + “<frame src=x.htm” +” “ + “name=Two”

+ “\r” + “scrolling=auto” + “ “ + MW + “ “ + MH + “ “ +

➥”noresize=yes>”

+ “\r” + f

+ “\r” + nf

}

function framemixa()

{

document.Framer.Fillit.value=top

+ “\r” + “<frameset cols=30%,* “ + bc + “ “ + “noresize=yes>”

+ “\r” + “<frame src=w.htm” + “ “ + “name=One” + “ “ + “scrolling=yes”

14 0789726122_STO 4 10/2/01 8:39 AM Page 296

297

Script Tip 4 ➤ Frames Script

+ “\r” + MW + “ “ + MH + “ “ + “noresize=yes>”

+ “\r” + “<frameset rows=50%,*>”

+ “\r” + “<frame src=x.htm” + “ “ + “name=Two” + “ “ + MW

+ “\r” + MH + “ “ + “scrolling=yes>”

+ “\r” + “<frame src=y.htm” + “ “ + “name=Three” + “ “ + “scrolling=no”

+ “\r” + MW + “ “ + MH + “ “ + “noresize=no>”

+ “\r” + f

+ “\r” + f

+ “\r” + nf

}

function frames3v()

{

document.Framer.Fillit.value=top

+ “\r” + “<frameset cols=33%,33%,*” + “ “ + bc

+ “\r” + “<frame src=w.htm name=One” + “ “ + “scrolling=auto”

+ “\r” + MW + “ “ + MH + “ “ + “noresize=yes>”

+ “\r” + “<frame src=x.htm” + “ “ + “name=Two” + “ “ +

➥”scrolling=auto”

+ “\r” + MW + “ “ + MH + “ “ + “noresize=yes>”

+ “\r” + “<frame src=y.htm” + “ “ + “name=Three” + “ “ +

“scrolling=auto”

+ “\r” + MW + “ “ + MH + “ “ + “noresize=yes>”

+ “\r” + f

+ “\r” + nf

}

function frames3h()

{

document.Framer.Fillit.value=top

+ “\r” + “<frameset rows=33%,33%,*” + “ “ + bc

+ “\r” + “<frame src=w.htm name=One” + “ “ + “scrolling=auto”

+ “\r” + MW + “ “ + MH + “ “ + “noresize=yes>”

+ “\r” + “<frame src=x.htm” + “ “ + “name=Two” + “ “ +

➥”scrolling=auto”

+ “\r” + MW + “ “ + MH + “ “ + “noresize=yes>”

+ “\r” + “<frame src=y.htm” + “ “ + “name=Three” + “ “ +

“scrolling=auto”

+ “\r” + MW + “ “ + MH + “ “ + “noresize=yes>”

+ “\r” + f

+ “\r” + nf

}

14 0789726122_STO 4 10/2/01 8:39 AM Page 297

JavaScript Goodies

298

function framemixb()

{

document.Framer.Fillit.value=top

+ “\r” + “<frameset cols=30%,* “ + bc + “ “ + “noresize=yes>”

+ “\r” + “<frameset rows=50%,*>” + “\r” + “<frame src=w.htm” + “ “ +

“name=One”

+ “ “ + “scrolling=no” + “ “ + MW + “\r” + MH + “ “ + “noresize=yes>”

+ “\r” + “<frame src=x.htm” + “ “ + “name=Two” + “ “ + MW

+ “\r” + MH + “ “ + “scrolling=yes>”

+ “\r” + f

+ “\r” + “<frameset rows=50%,*>” + “\r” + “<frame src=y.htm” + “ “ +

“name=Three”

+ “\r” + “scrolling=no” +” “ + MW + “ “ + MH + “ “ + “noresize=no>”

+ “\r” + “<frame src=z.htm” +” “ + “name=Four” + “ “ + “scrolling=yes”

+ “\r” + MW + “ “ + MH + “ “ + “noresize=yes>”

+ “\r” + f

+ “\r” + f

+ “\r” + nf

}

//Below is the function that copies text from one box to the other

function Copy()

{

if (document.Framer.Fillit.value==””)

{ alert (‘The top box is empty. Please enter a script by clicking

➥one of the frames buttons.’) }

else

{ document.Framer.Pastebox.value=document.Framer.Fillit.value }

}

//Below is the function that displays the code in a new window

function view()

{

if (document.Framer.Pastebox.value==””)

{ alert (‘The paste box is empty. Please enter a script by clicking

➥the Copy/Edit button.’)

return false;

}

else

{ alert(‘If you like the results, remember to paste it to a text

➥editor!’)

boat = open (“”,”DisplayWindow”)

see = parent.document.Framer.Pastebox.value

boat.document.write (see)

return true;

14 0789726122_STO 4 10/2/01 8:39 AM Page 298

299

Script Tip 4 ➤ Frames Script

}

}

</SCRIPT>

</HEAD>

<BODY aLink=#ff0000 bgColor=#c0c0c0 link=#0000ee text=#000000

➥vLink=#551a8b>

//Below is the FORM and TABLE code that creates the look on the page

<FORM name=Framer>

<TABLE border=1>

<TBODY>

<TR>

<TD WIDTH=”150”>

1. Choose One:<P>

<INPUT onClick=framesa() type=button value=”2 Vertical”>

<INPUT onClick=frames3v() type=button value=”3 Vertical”>

<INPUT onClick=framesb() type=button value=”2 Horizontal”>

<INPUT onClick=frames3h() type=button value=”3 Horizontal”>

<INPUT onClick=framemixa() type=button value=”3 Mixed”>

<INPUT onClick=framemixb() type=button value=”4 Mixed”>
 </TD>

<TD vAlign=top>

<TEXTAREA cols=56 name=Fillit rows=15></TEXTAREA>

<CENTER>

</TD></TR>

<TR>

<TD>

2. Paste it in:<P>

<INPUT onClick=Copy() type=button value=Copy/Edit><p>

<INPUT onClick=”alert(‘Misfire? No problem, a new copy will be pasted to

➥the bottom box. Good Luck!’);Copy()” type=button value=”Start Over”>

<INPUT onClick=reset() type=button value=”Clear All”>
 </TD>

<TD vAlign=top>

<TEXTAREA cols=56 name=Pastebox rows=15></TEXTAREA>

<CENTER>

3. Then: <INPUT onClick=view() type=button value=” View It! “>

</CENTER>

14 0789726122_STO 4 10/2/01 8:39 AM Page 299

JavaScript Goodies

300

</TD>

</TR>

</TBODY>

</TABLE>

<P>

</FORM>

</P>

</BODY>

</HTML>

Now that’s a script! In this case bigger does mean better. Figure ST4.1 is what you get with
that code.

Figure ST4.1
This script creates quite an
interface and helps with
frames code.

To see the effect on your own computer, click Script Tip Four in your download packet or see
it online at http://www.htmlgoodies.com/stips/scripttip49effect.html.

The code is available for copy and paste at http://www.htmlgoodies.com/stips/
scripttip49script.html or by viewing the source of the page in your download packet.

Normally, when FORM commands are involved, I go after those first. Not this time. I want
to start by talking about how the frame code is created.

14 0789726122_STO 4 10/2/01 8:39 AM Page 300

301

Script Tip 4 ➤ Frames Script

If you were going to create a script like this, you might find yourself writing the same
things again and again. Every frame code requires the HTML and TITLE flags. You’d also write
the NOFRAMES code again and again. Yes, you could write it again and again, but it would be
a whole lot easier if you simply assigned a short variable name to the code; then you could
call it all up with just a couple of letters.

That’s what was done in the first block of code:

var top=”<HTML>” + “\r”

+ “<TITLE>My Frame Page</TITLE>”

+ “\r” +”<HEAD></HEAD>”

var nf=”<noframes>” + “\r” + “You need a frames-capable browser to

➥view this page.”

+ “\r” + “</noframes>” + “\r” + “</HTML>”

var f=”</frameset>”

var bc=”bordercolor=blue>”

var MW=”marginwidth=0”

var MH=”marginheight=0”

You get to pick out what each of the variables represent, so I’ll just discuss a couple of
them. With this, all you need to do is call for “top” and you’ll get the entire text string:

<HTML>

<TITLE>My Frame Page</TITLE>

<HEAD></HEAD>

Won’t that make life a little easier? Now, you might notice the code \r stuck in there. Look
again and notice where it’s stuck. It’s put in as if it were text (double quotation marks are
around it). See what it does? It produces a line break when the text string is displayed.
How’s that for a good trick? Just make sure the slash is a backslash—a forward slash does
not make the line break.

So, now you have top for the header information, nf for the noframes text, f for the end
frameset flag, bc for the body’s background color, MW for the marginwidth, and MH for the
marginheight.

The First Frame Function
Moving down the script, let’s look at the first, and easiest, frame function. This is the func-
tion that produces the text for two vertical frames:

function framesa()

{

14 0789726122_STO 4 10/2/01 8:39 AM Page 301

JavaScript Goodies

302

document.Framer.Fillit.value=top

+ “\r” + “<frameset cols=50%,* “

+ “ “ + bc + “\r” + “<frame src=w.htm” +” “ + “name=One”

+ “\r” + “scrolling=auto” + “ “ + MW + “ “ + MH + “ “ +

➥”noresize=yes>”

+ “\r” + “<frame src=x.htm” +” “ + “name=Two”

+ “\r” + “scrolling=auto” + “ “ + MW + “ “ + MH + “ “ +

➥”noresize=yes>”

+ “\r” + f

+ “\r” + nf

}

It really looks cryptic, huh? Well, let’s break it down. When the function is called for, the
first thing you’ll get is top. That’s the header information. Then you get a line break and
then the frameset flag. The background color (bc) then is added and a line break. The first
frame window’s source is next, adding a NAME, a line break, the scrolling=auto text, the
marginwidth (MW), marginheight (MH), and finally the noresize=yes text.

You’ll notice a lot of blank spaces were created by using the code (“ “). That’s the author’s
preference. I always add spaces by putting a space on the end of the text inside the double
quotation marks. This is another method that works just as well.

That format is followed again for the next frame window source: a line break, the end
frameset flag (f), and another line break. Then the noframes text (nf) is added.

Put it all together and you get the following display:

<HTML>

<TITLE>My Frame Page</TITLE>

<HEAD></HEAD>

<frameset cols=50%,* bordercolor=blue>

<frame src=w.htm name=One

scrolling=auto marginwidth=0 marginheight=0 noresize=yes>

<frame src=x.htm name=Two

scrolling=auto marginwidth=0 marginheight=0 noresize=yes>

</frameset>

<noframes>

You need a frames-capable browser to view this page.

</noframes>

</HTML>

That format was followed six times until the author created the six FRAME code functions:
framesa(), framesb(), framemixa(), frames3v(), frames3h(), and framemixb(). Read them
through—go slowly because they get confusing. I was impressed the first time I went
through it. It’s a pretty nice bit of coding.

14 0789726122_STO 4 10/2/01 8:39 AM Page 302

303

Script Tip 4 ➤ Frames Script

The Buttons
Let’s jump to the bottom again to get a handle on the buttons. You’ve probably noticed by
now that this script has many of the same function types again and again. A bunch of but-
tons display, but they all work pretty much the same way. Each has an onClick event han-
dler that triggers a function found farther up the page.

First, here are a few names. Take a look at the code toward the bottom. You see that multi-
ple FORM elements are used. The NAME of the form itself is Framer. The top TEXTAREA box is
named Fillit, and the bottom box is named Pastebox.

When I spoke about the six frame functions last time, I neglected the code
document.Framer.Fillit.value that starts each one. That code points to the first TEXTAREA
box, setting its value. That’s why the text appears where it does.

That’s easy enough, but how does the text get pasted from the top box to the bottom box?
Again, a button is involved, triggering the paste. The button’s purpose is to fire the func-
tion Copy(). It looks like this:

function Copy()

{

if (document.Framer.Fillit.value==””)

{ alert (‘The top box is empty.’) }

else

{ document.Framer.Pastebox.value=document.Framer.Fillit.value }

}

The function is an if/else conditional statement. If the top box
(document.Framer.Fillit.value) is empty (“”), throw up an alert that says so. Otherwise,
what is in document.Framer.Fillit.value should now go into
document.Framer.Fillit.value.

So far, so good, but there are two more buttons to deal with.

The Start Over button is similar to the one you just looked at. In fact, it fires the same
Copy() function. The only difference is that it first launches an alert box that is intended to
put you at ease. The button code looks like this:

<INPUT onClick=”alert(‘Misfire? No problem.’);Copy()”

type=button value=”Start Over”>

See how it’s done? The alert code is followed by a semicolon and then the function name.
Nice effect.

14 0789726122_STO 4 10/2/01 8:39 AM Page 303

JavaScript Goodies

304

The Clear All button fires another function named reset(). Don’t bother looking for it; it
isn’t there. Reset is a function built into the browser. When you make Guestbook forms,
you create a reset button through this code:

<INPUT TYPE=”reset”>

In this case, the coding is just a little different to allow you to put text on the reset button.
Here’s how the author did it:

<INPUT onClick=reset() type=button value=”Clear All”>

One click and everything goes away! Just remember that for this effect, every FORM element
must be between the same FORM and /FORM flags; otherwise, only those elements within the
reset’s FORM flags will erase.

All that’s left to do is open the new window and display it.

Showing the Code
The button that displays the frame code in a new window looks like this:

<INPUT onClick=view() type=button value=” View It! “>

The function view() looks like this:

function view()

{

if (document.Framer.Pastebox.value==””)

{ alert (‘The paste box is empty.’)

return false;

}

else

{ alert(‘If you like the results, paste it to a text editor!’)

boat = open (“”,”DisplayWindow”)

see = parent.document.Framer.Pastebox.value

boat.document.write (see)

return true;

}

}

The function is again set up as an if/else conditional statement. The purpose is to post an
alert box if the user attempts to view when nothing is there to view:

if (document.Framer.Pastebox.value==””)

{ alert (‘The paste box is empty.’)

14 0789726122_STO 4 10/2/01 8:39 AM Page 304

305

Script Tip 4 ➤ Frames Script

return false;

}

If the bottom TEXTAREA box is empty (“”), the alert goes up and the return is false. That
means the script dies right there. It doesn’t go any further.

Otherwise, the following occurs:

else

{ alert(‘If you like the results, paste it to a text editor!’)

boat = open (“”,”DisplayWindow”)

see = parent.document.Framer.Pastebox.value

boat.document.write (see)

return true;

Assign the code (“”,”DisplayWindow”) to the variable boat. Why boat? I don’t know; ask the
author. Notice the empty quotation marks at the beginning. That is where a page URL
would normally sit. Because it’s empty, it’s forcing the script to look at itself for the infor-
mation to display.

Next, the variable see is assigned the value of what is in the bottom TEXTAREA box (parent.
document.Framer.Pastebox.value). Now the command parent sits in front because you’re
dealing with two windows and you want the information taken from the window that
spawned the new one—the parent.

Into boat (the new window), you document.write see, the contents of the bottom TEXTAREA
box found on the parent window. Then, it returns true, which completes the event.

There you go. I’ll bet the first time you saw this one, you thought it was going to take 10
tips to complete. That’s part of the beauty of JavaScript programming. You can use the
same format again and again in the same script to get different results. I only had to show
you one frame code function, and you could get them all.

14 0789726122_STO 4 10/2/01 8:39 AM Page 305

14 0789726122_STO 4 10/2/01 8:39 AM Page 306

Search Multiple
Search Engines

Script Tip 5

When I started HTML Goodies, oh so long ago, I was sent a lot of scripts that were posted
straightaway. I needed to fill space at first. As the months went on, I became more selective
in what should be posted. I guess the two biggest criteria in posting a script were these: Is it
original, and is it functional?

I received a bunch of scripts that would change the background of a page using everything
from event handlers to a person’s name to make the change. It’s clever, but not overly use-
ful. After you have the basic concept of changing the background color, you pretty much
can take it from there.

I received the following multiple search engine script right in the middle of all those back-
ground-color–changing scripts. The script was much larger than you see it here. I’ve cut it
down a bit for this series of Script Tips. It used to search ten different engines, now it only
searches five. Of course, by the end, you’ll know it well enough to add as many searches as
you’d like.

15 0789726122_STO 5 10/2/01 8:39 AM Page 307

JavaScript Goodies

308

The script is quite functional in that it allows many searches from one page. Results are
posted in a new window so you never leave the search page. Plus, you don’t have to per-
form each search individually. You could put in a keyword (or keywords, cleverly enough)
and five search engines will return their results in five separate windows.

It’s a very helpful, and involved, script. People have been asking that I get into some more
advanced JavaScript. Well, this should fit the bill.

Here’s the code:

<SCRIPT LANGUAGE=”JavaScript”>

function wordsplit(items)

{

var charect = “”;

for (var n = 1 ; n <= items.length ; n++)

{

if (items.substring(n-1,n) == “ “)

{ charect+=”+”; }

else

{ charect+=items.substring(n-1,n); }

}

return charect;

}

function search()

{

var keywords=document.searching.query.value;

var search1;

var search2;

var search3;

var search4;

var search5;

key=wordsplit(keywords);

if(document.searching.yahoo.checked)

{

search1= document.searching.yahoo.value;

search1+=key;

wind=window.open(search1,”newwindow1”,”width=700,height=200,

➥scrollbars=yes”);

}

15 0789726122_STO 5 10/2/01 8:39 AM Page 308

309

Script Tip 5 ➤ Search Multiple Search Engines

else

if(document.searching.altavista.checked)

{

search2 = document.searching.altavista.value;

search2+=key;

wind=window.open(search2,”newwindow2”,”width=700,height=200,

➥scrollbars=yes”);

}

if(document.searching.webcrawler.checked)

{

search3 = document.searching.webcrawler.value;

search3+=key;

wind=window.open(search3,”newwindow3”,”width=700,height=200,

➥scrollbars=yes”);

}

if(document.searching.lycos.checked)

{

search4 = document.searching.lycos.value;

search4+=key;

wind=window.open(search4,”newwindow4”,”width=700,height=200,

➥scrollbars=yes”);

}

if(document.searching.excite.checked)

{

search5 = document.searching.excite.value;

search5+=key;

wind=window.open(search5,”newwindow5”,”width=700,height=200,

➥scrollbars=yes”);

}

}

</SCRIPT>

15 0789726122_STO 5 10/2/01 8:39 AM Page 309

JavaScript Goodies

310

<FORM NAME=”searching”>

Enter the Key word : <INPUT TYPE=”text” NAME=”query” SIZE=20>

Select the Search Engine(s):

<INPUT TYPE=”checkbox” NAME=”yahoo”

➥VALUE=”http://search.yahoo.com/search?p=”> Yahoo

<INPUT TYPE=”checkbox” NAME=”altavista “VALUE=”http://www.altavista.digital.com/

➥cgi-bin/query?pg=q&what=web&fmt=.&q=”>Altavista

<INPUT TYPE=”checkbox” NAME=”webcrawler” VALUE=” http://search.excite.com/

➥search.gw?c=web&lk=webcrawler&onload=&s=j >WebCrawler

<INPUT TYPE=”checkbox” NAME=”excite”

➥VALUE=”http://www.excite.com/search.gw?trace=a&search=”>Excite

<INPUT TYPE=”checkbox” NAME=”lycos”

➥VALUE=”http://www.lycos.com/cgi-bin/pursuit?query=”>Lycos

<INPUT TYPE=”button” VALUE=”Search” onClick=”search()”>

<INPUT TYPE=”reset” VALUE=” Clear “>

</FORM>

Put in your keyword and search away. It’ll look like Figure ST5.1.

Figure ST5.1
The search interface is
“framed” by the three
windows that pop up from
each of the three chosen
search engines.

15 0789726122_STO 5 10/2/01 8:39 AM Page 310

311

Script Tip 5 ➤ Search Multiple Search Engines

To see the effect on your own computer, click Script Tip Five in your download packet, or see
it online at http://www.htmlgoodies.com/stips/scripttip42.html.

The code is available for copy and paste at http://www.htmlgoodies.com/stips/
scripttip42script.html or by viewing the source of the page in your download packet.

As with most scripts that include FORM elements, I want to start with them. If you’re a regu-
lar Script Tip reader, you’re probably familiar with NAMEs and VALUEs. Still, read this over.
You’ll find this form used in a different way from what you’re used to.

The form code looks like this:

<FORM NAME=”searching”>

Enter the Keyword :

<INPUT TYPE=”text” NAME=”query” SIZE=15>

Select the Search Engine(s):

<INPUT TYPE=”checkbox” NAME=”yahoo”

VALUE=”http://search.yahoo.com/search?p=”> Yahoo

<INPUT TYPE=”checkbox” NAME=”altavista”

VALUE=”http://www.altavista.digital.com/cgi-bin/query?pg=q&what=

➥web&fmt=.&q=”>Altavista

<INPUT TYPE=”checkbox” NAME=”webcrawler”

VALUE=” http://search.excite.com/search.gw?c=web&lk=webcrawler&onload=&s=j “>

➥WebCrawler

<INPUT TYPE=”checkbox” NAME=”excite”

VALUE=”http://www.excite.com/search.gw?trace=a&search=”>Excite

<INPUT TYPE=”checkbox” NAME=”lycos”

VALUE=”http://www.lycos.com/cgi-bin/pursuit?query=”>Lycos

<INPUT TYPE=”button” VALUE=”Search” onClick=”search()”>

<INPUT TYPE=”reset” VALUE=” Clear “>

</FORM>

Okay, you have three things to look for here. First is the text box in which the user enters
the keyword to be searched. The second is the code that allows the choice of search
engines, and the third is the button that triggers the function to search.

15 0789726122_STO 5 10/2/01 8:39 AM Page 311

JavaScript Goodies

312

NAMEs
The name of the FORM itself is searching, and the text box name is query. Each of the check
boxes is given the name of the search engine it represents.

Finally, the button triggers a function called search().

Now you know enough to start constructing hierarchy statements, but unlike other forms
you’ve dealt with here, this has multiple hierarchy statements depending on what the user
chose. We’ll get into how the JavaScript knows which has been clicked later.

The Check Boxes
Yes, this could have also been done with radio buttons and, with some special coding, a
drop-down menu. The reason the author chose check boxes is because that enables the
user to check as many as desired. It doesn’t limit the choice. Let’s look at the first check
box code:

<INPUT TYPE=”checkbox” NAME=”yahoo

➥”VALUE=”http://search.yahoo.com/search?p=”> Yahoo

It’s a basic INPUT TYPE=”checkbox” format. This check box represents Yahoo!, so that’s the
NAME. Now, here’s the trick: see the VALUE? That VALUE is the URL that attaches to the Yahoo!
search engine. If you attached the keywords entered by the user to the end of that URL,
you’d get a search performed.

It’s the same with the other four check boxes. Each VALUE is equal to the URL required to
perform a search on that particular engine. The code is pretty easy to find. You just go to
the search page of the engine and look at the source code; I’m sure that’s where the author
got it.

So, you have a text box that assigns the variable query to keywords. You also have check
boxes that return URLs of search engines. Put the two together, and you get a full search
string. Seeing the process yet?

Replacing the Space with a Plus Sign
I have found that one of the hardest things about writing a JavaScript is trying to set up
code so that every possible thing a user could do is handled in one way or another. I
always forget something.

Many of you know that when using a search engine, a plus sign (+) between words is a
good idea to help to search. Let’s look at the code that searches the keywords entered in
this script. If a space is found, a plus sign replaces it.

15 0789726122_STO 5 10/2/01 8:39 AM Page 312

313

Script Tip 5 ➤ Search Multiple Search Engines

I am worried about the code that makes up the first function, wordsplit(items). It looks
like this:

function wordsplit(items)

{

var charect = “”;

for (var n = 1 ; n <= items.length ; n++)

{

if (items.substring(n-1,n) == “ “)

{ charect+=”+”; }

else

{ charect+=items.substring(n-1,n); }

}

return charect;

}

Now, this is not the function that performs the search. That function is called search(),
and it’s coming later. This function is one that is called upon as part of search. Rather than
going back and forth, I’ll tell you what this does so that you can just plug it in later.

Notice the function has the parameter items in the instance. That means that items is
returned to the function to be acted on.

The function begins with a variable, charect, being set and assigned the value of nothing.
See the empty quotation marks? That means “no space”.

Next a loop is created with this code:

for (var n = 1 ; n <= items.length ; n++)

The loop’s format follows this pattern: A variable, n, is created and given the value of 1.
Then a condition is set, which states that n is less than, or equal to, the length of charac-
ters in the item. Finally, the third element of the loops states what should happen as long
as the condition is not met. The code n++ means that n should move upward incrementally.
Double minus signs mean moving downward in the same fashion.

So, what in the world does this do? It looks at each character in the item one by one.
Again, this is a little out of order. The item is given the same value as what the user writes
into the text box. Stay with me; that will happen soon. For now, just take my word that
that’s what it means.

Each time a new character is looked at, an if/else statement is employed. If the character
is a space, that space is replaced with a plus sign (+). If it is not a space (else), the character
stays the same and the loop fires up again, checking the next character.

15 0789726122_STO 5 10/2/01 8:39 AM Page 313

JavaScript Goodies

314

This happens as long as n is less than the length of characters in the text entered by the
users. Every character is checked, and every empty space is given the new value of (+).

Then, after all the characters have been checked, the loop shuts down and the new text is
returned. That means the script now has it stored for later use. And you will use it later.

Doing the Search
You’ve set up search URLs and created something that will check the entered text for
spaces. Now, you’ll do the search.

Because five search engines are represented, I really need to show you only one section of
the function because the other four follow the same format. Here’s the top of the function
triggered by the button and the first search, Yahoo!:

function search()

{

var keywords=document.searching.query.value;

var search1;

var search2;

var search3;

var search4;

var search5;

key=wordsplit(keywords);

if(document.searching.yahoo.checked)

{

search1= document.searching.yahoo.value;

search1+=key;

wind=window.open(search1,”newwindow1”,”width=700,height=200,

➥scrollbars=yes”);

The function traditionally starts with function search() and then the curly bracket.

Next a variable, keywords, is set and assigned the value of what was written in the text box:

document.searching.query.value.

Next, five new variables are set, search1 through search5. They are not assigned any value
yet; they are just being created now so that they will be available later to receive values.

Next, you attach the output of the text box with the previous function that checked for
spaces:

key=wordsplit(keywords);

15 0789726122_STO 5 10/2/01 8:39 AM Page 314

315

Script Tip 5 ➤ Search Multiple Search Engines

Here, the variable key is created and assigned the value of wordsplit(keywords). Get what
just happened? keywords represents what was written into the text box. Because that vari-
able name is within the instance of the function, it is given over to it. Thus, what was writ-
ten into the text box is handed to the function wordsplit() to be checked for spaces.

Remember that the results of that handing off are assigned the variable name key. That
means that key is now the text entered by the user with any spaces changed to plus signs.
It’s ready to be used in a search.

Next are the if statements. Five of them are used because the user had five search engines
to choose from:

if(document.searching.yahoo.checked)

{

search1= document.searching.yahoo.value;

search1+=key;

wind=window.open(search1,”newwindow1”,”width=700,height=200,

➥scrollbars=yes”);

It reads as follows: If the check box Yahoo! is checked, search1 (remember creating that?) is
to have the VALUE found in the check box representing Yahoo! (that’s the search URL).

Next, search1 is to have the variable key added to it. Remember that key is the text entered
by the user. The addition takes place because of this operator: +=. See that? It means to con-
catenate or build together the strings you’re working with.

So now search1 represents the entire URL plus the text to be searched. Now you need to
open that URL in a new window:

wind=window.open(search1,”newwindow1”,”width=700,height=200,

➥scrollbars=yes”);

A new window opens using search1 as its URL. That performs the search. The new window
has the name of newwindow1, is 700×200, and will have scrollbars.

The second curly bracket ends this particular if statement.

But what if Yahoo! is not checked?

Then this particular if statement is not true and is ignored. The script goes on to the next,
and the next, and the next until one is correct.

But what if no check boxes are checked?

Then none of the if elements are true and nothing happens. The script just sits there look-
ing back at you.

15 0789726122_STO 5 10/2/01 8:39 AM Page 315

JavaScript Goodies

316

Can I put up an alert saying to post?

Using the format here, it’s a bit rough. Here’s the catch 22: If you put an alert as a final
else statement, that alert will pop up every time, regardless of whether the user checked a
box.

To prevent that else from being called on every time, you need to put an else between
every if statement. Then the alert pops up only when no other boxes are checked; how-
ever, this limits the search capabilities because the user can’t choose multiple engines. As
soon as the script runs into an if statement that is true, it stops.

I played around with some code, checking all the ifs in one shot, and it started to be too
much code for what it produced. I’m happy with the page just sitting still if no search
engines are checked.

So, there you go! It’s a multiple search engine script.

15 0789726122_STO 5 10/2/01 8:39 AM Page 316

Image
Proportion
Script

Script Tip 6

If you’ve ever attempted to guess at the correct height and width when attempting to resize
an image in HTML code, you know it can be pretty rough guessing.

Sure, you could open an image editor, but I like to stay inside the browser. This script solves
those problems. You can stay in the browser and still get those proportions and get a look
at the image before choosing the numbers.

I received this “Proportional” script from Ann Evans. It was a great idea. You enter the
height and width of an image you want to resize. Then, by entering a new height, the
script figures the new width, keeping the same proportions the image original had.

I really liked the script, but thought it asked too much of the user. I knew you could grab
the image’s height and width straight from the image. Then, after setting the new height
and width, it seemed logical to show the image in its new dimensions.

16 0789726122_STO 6 10/2/01 8:39 AM Page 317

JavaScript Goodies

318

So, using Ann’s original calculations and table structure, I rewrote and added on until I got
this:

<!-- The following creates the prompt and displays the image -->

<SCRIPT LANGUAGE=”javascript”>

var path = prompt(“Where will I find the image? Put in full URL or Hard Drive

➥Path and Image Name For example: C:/directory/image.jpg”,”Only image name

➥ required if in same directory”)

if(path == “Only image name required if in same directory”)

{

alert(‘Come on, put in an image name’)

javascript:location.reload()

}

if(path == null)

{

alert(‘Do not click Cancel’)

javascript:location.reload()

}

else

{document.write(“”);}

</SCRIPT>

<!-- The following contains the two resize functions and two new

➥window functions -->

<SCRIPT LANGUAGE=”javascript”>

var high = document.thepic.height;

var wide = document.thepic.width;

function newW()

{

a = high;

b = wide;

c = document.calc.h2.value;

d = (b*c)/a;

document.calc.width2.value = Math.round

}

16 0789726122_STO 6 10/2/01 8:39 AM Page 318

319

Script Tip 6 ➤ Image Proportion Script

function newH()

{

a = high;

b = wide;

e = document.calc.wb2.value;

f = (a*e)/b;

document.calc.height2.value = Math.round(f)

}

function newWin()

{

var OpenWindow=window.open(“”, “newwin”, “height=500,width=500”);

OpenWindow.document.write(“<HTML>”)

OpenWindow.document.write(“<TITLE>Image</TITLE>”)

OpenWindow.document.write(“<BODY BGCOLOR=’000000’>”)

OpenWindow.document.write(“<CENTER>”)

OpenWindow.document.write(“<IMG SRC=” +path+ “ HEIGHT=” +c+ “

➥WIDTH=” +d+ “>”)

OpenWindow.document.write(“</CENTER>”)

OpenWindow.document.write(“</HTML>”)

}

function newWin2()

{

var OpenWindow=window.open(“”, “newwin2”, “height=500,width=500”);

OpenWindow.document.write(“<HTML>”)

OpenWindow.document.write(“<TITLE>Image</TITLE>”)

OpenWindow.document.write(“<BODY BGCOLOR=’000000’>”)

OpenWindow.document.write(“<CENTER>”)

OpenWindow.document.write(“<IMG SRC=” +path+ “ HEIGHT=” +f+ “

➥WIDTH=” +e+ “>”)

OpenWindow.document.write(“</CENTER>”)

OpenWindow.document.write(“</HTML>”)

}

</SCRIPT>

<!-- The following contains the two tables on the page -->

<h2>Resize It</h2>

<FORM NAME=”calc”>

16 0789726122_STO 6 10/2/01 8:39 AM Page 319

JavaScript Goodies

320

<TABLE border=”12” cellspacing=”0” cellpadding=”4” bgcolor=”#fdf99d”>

<TR>

<TD align=”center”>Height:
<SCRIPT

LANGUAGE=”javascript”>document.write(“”+high+””)</SCRIPT></TD>

<TD align=”center”>Width:
<SCRIPT

LANGUAGE=”javascript”>document.write(“”+wide+””)</SCRIPT></TD>

<TD align=”center”>Enter New Height:
<INPUT TYPE=”text” SIZE=5

➥ NAME=”h2”></TD>

<TD align=”center”><INPUT TYPE=”button” VALUE=”Solve” onClick=

➥”newW()”></TD>

<TD align=”center”>New Width Equals
<INPUT TYPE=”text” NAME=

➥”width2” SIZE=10></TD>

<TD align=”center”><INPUT TYPE=”button” onClick=”newWin()”

➥VALUE=”Let Me See It”></TD>

</TR>

</TABLE>

<TABLE border=”12” cellspacing=”0” cellpadding=”4” bgcolor=”#fdf99d”>

<TR>

<TD align=”center”>Height:
<SCRIPT

LANGUAGE=”javascript”>document.write(“”+high+””)</SCRIPT></TD>

<TD align=”center”>Width:
<SCRIPT

LANGUAGE=”javascript”>document.write(“”+wide+””)</SCRIPT></TD>

<TD align=”center”>Enter New Width:
<INPUT TYPE=”text” SIZE=5

➥NAME=”wb2”></TD>

<TD align=”center”><INPUT TYPE=”button” VALUE=”Solve” onClick=

➥”newH()”></TD>

<TD align=”center”>New Height Equals
<INPUT TYPE=”text”

➥NAME=”height2” SIZE=10>

<TD align=”center”><INPUT TYPE=”button” onClick=”newWin2()”

➥VALUE=”Let Me See It”>

</TD>

</TR>

</TABLE>

</FORM>

Figure ST6.1 shows the script in action.

To see the effect on your own computer, click Script Tip Six in your download packet, or see
it online at http://www.htmlgoodies.com/stips/scripttip45example.html. When you
are prompted for an image name, enter angel.jpg. Of course, you can always enter the full
URL to one of your own images, too, if you’re connected to the Internet.

16 0789726122_STO 6 10/2/01 8:39 AM Page 320

321

Script Tip 6 ➤ Image Proportion Script

I should point out that the system has a little bug. Because the image you call for might
not be in cache, sometimes the incorrect height and width are displayed. Don’t worry,
though, because you can fix that by simply refreshing the page.

However, even if the displayed height and width are incorrect, the results created from
your entering a new height or width will be correct.

The code is available for copy and paste at http://www.htmlgoodies.com/stips/ script-
tip45script.html or by viewing the source of the page in your download packet.

The script uses a series of steps to complete the effect. Let’s start with the first thing you see
on the page, the prompt. The blip of prompt code asks for the path to the image. Yes, I
know it’s a little wordy and long to read.

After the prompt has the path and name of the image, it uses that to create an image flag
that posts the image to the page. Let’s look at it. Please understand that I have greatly
reduced the amount of text in the prompt box for this example:

<SCRIPT LANGUAGE=”javascript”>

var path = prompt(“Text on the gray”,”Text in the box”)

if(path == “Text in the box”)

{

alert(‘Come on, put in an image name’)

Figure ST6.1
This is the interface of the
image proportion script
with a second window
showing the new propor-
tions of the image entered
into the text boxes.

16 0789726122_STO 6 10/2/01 8:39 AM Page 321

JavaScript Goodies

322

javascript:location.reload()

}

if(path == null)

{

alert(‘Do not click Cancel’)

javascript:location.reload()

}

else

{document.write(“”);}

</SCRIPT>

One of the hardest things to do when writing a script is to guess all the possibilities that
could occur when someone uses your script. When this prompt pops up, I saw four events
that could happen. Here are those events and my solutions:

1. The user enters a correct image name or path.

Solution: The image is posted.

2. The user clicks OK to display the image.

Solution: Create an alert box telling user to enter the image name.

3. The user clicks Cancel.

Solution: Create a prompt box asking for image name.

4. The user enters incorrect information.

Solution: I can’t predict incorrect information, so that results in a broken image,
which gives a 40×40 height and width.

I wrote the previous prompt to cover each of those concerns. If you’d like to go back to the
example and try each event, click here. Otherwise, let’s take it in order:

var path = prompt(“Text on the gray”,”Text in the box”)

This is the basic format of a prompt. Again, I have greatly reduced the text used in the
original, so you’ll get the idea. Whatever the user types in the box is assigned the variable
name path:

if(path == “Text in the box”)

{

alert(‘Come on, put in an image name’)

javascript:location.reload()

}

16 0789726122_STO 6 10/2/01 8:39 AM Page 322

323

Script Tip 6 ➤ Image Proportion Script

The first if statement is used if the user simply clicks OK without changing the informa-
tion in the box.

If the “path” equals “Text in the box” (note the double quotation marks so that ‘Text in
the box’ is seen as a text string rather than code), an alert pops up that reads Come on, put
in an image name. After the user clicks OK in the alert box, javascript:location.reload()
reloads the page and the prompt pops up again.

Here are two things you should notice: the curly brackets around the alert, and the reload.
These are important so that the script understands it should do both if the statement is
true. Also, note that the text string is the same as what is in the text box on the prompt. Be
sure those two are the same when you use the script; otherwise it won’t work.

Here’s the second if statement. The script goes to this one if the first isn’t found to be true.
This is triggered if the prompt data is null. That means the user simply clicked Cancel.
Notice that null is not in quotes. It is not a text string, but rather a literal:

if(path == null)

{

alert(‘Do not click Cancel’)

javascript:location.reload()

}

The same basic format is used if this if statement is true. An alert pops up, the page is
reloaded, and the prompt pops up again. Consider this next bit of code:

else

{document.write(“”);}

If both of the if statements are false, which is what you’re hoping for, a document.write
statement is used to create a basic image flag posting the picture the user has entered.

See the NAME=thepic in the flag? That will become important in the next section of this
Script Tip.

Grabbing and Displaying the Dimensions
You might have noticed that after the prompt, I have placed four functions inside one set
of <SCRIPT LANGUAGE=”javascript”> and </SCRIPT> flags. That’s common; there’s no need to
create a separate set of flags for each function. As long as they don’t share any variable
names, you can just line them up one after the other.

I am concerned with the first two lines, before the functions begin lining up:

var high = document.thepic.height;

var wide = document.thepic.width;

16 0789726122_STO 6 10/2/01 8:39 AM Page 323

JavaScript Goodies

324

Each line assigns a variable name to a dimension of the image. The variable high is pro-
duced from the hierarchy statement document.thepic.height.

See thepic? That’s the name of the image space. That name was put into the image flag cre-
ated from the prompt code. That way these lines of code understand that the height
returned should be from that image space.

The same format is followed to get the width. So, now high and wide represent the image’s
height and width. You want to post that in the table that appears below the image:

<FORM NAME=”calc”>

<TABLE border=”12” cellspacing=”0” cellpadding=”4” bgcolor=”#fdf99d”>

<TR>

<TD align=”center”>Height:

<SCRIPT LANGUAGE=”javascript”>

document.write(“”+high+””)

</SCRIPT>

</TD>

<TD align=”center”>Width:

<SCRIPT LANGUAGE=”javascript”>

document.write(“”+wide+””)

</SCRIPT>

</TD>

<TD align=”center”>Enter New Height:

<INPUT TYPE=”text” SIZE=5 NAME=”h2”>

</TD>

<TD align=”center”>

<INPUT TYPE=”button”

VALUE=”Solve” onClick=”newW()”>

</TD>

<TD align=”center”>New Width Equals

<INPUT TYPE=”text” NAME=”width2” SIZE=10>

</TD>

<TD align=”center”>

<INPUT TYPE=”button”

onClick=”newWin()” VALUE=”Let Me See It”>

16 0789726122_STO 6 10/2/01 8:39 AM Page 324

325

Script Tip 6 ➤ Image Proportion Script

</TD>

</TR>

</TABLE>

</FORM>

What you see in this code is the first table. This is the one that enables you to enter a new
height and get the new width.

This is a table, but it also uses FORM elements so that text can be entered by the user.
Therefore, you need to get a handle on the FORM NAMEs.

The FORM itself is called calc. The first text box, the one that will accept the new height, is
named h2. The second text box, the one that will display the new width, is named width2.
Those two text boxes can now be given attention through hierarchy statements such as
document.calc.width2.value.

There are also two buttons. The first fires a function called newW(). That creates the new
width value. The second triggers a function called newWin(), which produces the new win-
dow showing the image with the new dimensions.

We’re interested in the displays, first off. Here’s the first table cell that displays the image
height:

<TD align=”center”>Height:

<SCRIPT LANGUAGE=”javascript”>

document.write(“”+high+””)

</SCRIPT>

</TD>

Notice an entire script format is used to get the job done. This is common. It adds up to a
bit of text, but you get the display you need. The return from +high+ is bold just for display
purposes. The format is followed again to display the width in the next table cell.

To perform any calculations, you’re going to need three numbers: The old height and
width (you already have that), a new height or width from the user (you can see the box
that will receive that value), and a function that will do the math for you. In this case, that
function is called newW().

New Width
The first table has a button that fires a function named newW(). It looks like this:

function newW()

{

16 0789726122_STO 6 10/2/01 8:39 AM Page 325

JavaScript Goodies

326

a = high;

b = wide;

c = document.calc.h2.value;

d = (b*c)/a;

document.calc.width2.value = Math.round(d)

}

To make the math equation that will figure the new width a little easier, a is assigned to
the image’s current height, which is represented by high. Then, b is assigned to the current
width, represented by wide.

Next, the new height value entered by the user—document.calc.h2.value (the text box)—is
assigned the variable c.

The calculation for the new width is (b*c)/a, and the result of that equation is assigned the
variable d.

Now, you need to display it in the text box document.calc.width2.value. However, very sel-
dom do numbers calculate perfectly, so you need to take d and round it off. You do that
using Math.round(d).

Now the new width displays in the text box. But what of the second table and figuring the
new height? The function is very similar, except for where user input comes from and the
equation. It is called newH() and looks like this:

function newH()

{

a = high;

b = wide;

e = document.calc.wb2.value;

f = (a*e)/b;

document.calc.height2.value = Math.round(f)

}

Now the information from the viewer is coming from a text box called wb2. If you look at
the code for the second table, you’ll see that text box. The calculation for the new height is
(a*e)/b, and that value is sent to a text box named height2. Again, look at the second table
code and you’ll see it.

Because you’re dealing with new numbers here, you must assign new variable names to the
new height and width. Notice that e equals the new width, and f equals the new result.
Notice also that the variable names were changed in the equation. You must make these
changes; otherwise, both equations will use the same numbers, which is not good.

16 0789726122_STO 6 10/2/01 8:39 AM Page 326

327

Script Tip 6 ➤ Image Proportion Script

So far, you’ve grabbed the image’s current height and width and, using that information
plus one value from the user, created a new height or new width. That’s pretty good, but
it’s better if you can then take those values and show the user what the image will look
like.

Let Me See It
In the two table codes, the last button is used to pop up the new window to display the
image with the new height and width. Just as with the two functions that perform the
number calculations, these two display functions are very similar. I’ll walk you through the
first and quickly show you the changes in the second.

Here’s the first display function:

function newWin()

{

var OpenWindow=window.open(“”, “newwin”, “height=500,width=500”);

OpenWindow.document.write(“<HTML>”)

OpenWindow.document.write(“<TITLE>Image</TITLE>”)

OpenWindow.document.write(“<BODY BGCOLOR=’000000’>”)

OpenWindow.document.write(“<CENTER>”)

OpenWindow.document.write(“<IMG SRC=” +path+ “ HEIGHT=” +c+ “

➥WIDTH=” +d+ “>”)

OpenWindow.document.write(“</CENTER>”)

OpenWindow.document.write(“</HTML>”)

}

Because of width concerns, a couple of the lines have been truncated. Please be aware that
each line starts with OpenWindow.document.write, and all that comes before the next should
go on one line.

You should notice immediately that this is the basic format for opening a new window
using a function. The window opens through the window.open, object.method format.

The effect is achieved by assigning the variable OpenWindow to the new window. Notice the
empty quotation marks just inside the parentheses. That forces the script to look to itself
for what will appear in the new window.

Next, the name newwin is assigned to the new window. It will never come into play in this
script, but the format requires you to have it.

Then, the height and width of the new window is offered. I thought about setting up the
script so that the height and width would conform to the new image size, but decided
against it. It was a lot of coding for very little event. Besides, if the user creates an image
that is too large for the 500×500 window, he can always click the maximize button.

16 0789726122_STO 6 10/2/01 8:39 AM Page 327

JavaScript Goodies

328

Now, you begin lining up lines of HTML code to go into the new window. These lines of
code are written to the new window through document.write statements assigned to the
new window through the variable OpenWindow. Each is a new line of code.

As you can see, it’s about as simple an HTML document as you can get. It offers a title,
background color, and centered image. The image is what you’re concerned with now.

I used three variables to create the new image. The first is path. Remember that from way
back in the prompt code? That’s the name and path of the image. Then, c is the new
height, and d is the new width. When the document.write statement writes it to the page, it
appears as inline image code and the image displays in the dimensions set by the math
function from the last tip.

If you recall, you needed to change a couple of variable names to do the math for the sec-
ond table’s results. Well, to get that second table’s results to display, you must use those
new variable names in a new function set up to display the image:

function newWin2()

{

var OpenWindow=window.open(“”, “newwin2”, “height=500,width=500”);

OpenWindow.document.write(“<HTML>”)

OpenWindow.document.write(“<TITLE>Image</TITLE>”)

OpenWindow.document.write(“<BODY BGCOLOR=’000000’>”)

OpenWindow.document.write(“<CENTER>”)

OpenWindow.document.write(“<IMG SRC=” +path+ “ HEIGHT=” +f+ “

➥WIDTH=” +e+ “>”)

OpenWindow.document.write(“</CENTER>”)

OpenWindow.document.write(“</HTML>”)

}

It looks similar, but a few changes have been made. The name of the function is newWin2(),
so it can be called on by the second button. Notice that the name of the window has
changed—it is now newwin2. You can’t have two windows with the same name on the same
page. Because you figured the new height and width using e and f, those are the variable
names used to create the new image.

So, there you go, multiple scripts working together to create one nice effect. I don’t know
that this script is good to put online for others to play with; I see it more as something to
help you when creating your own pages.

16 0789726122_STO 6 10/2/01 8:39 AM Page 328

A Calculator

Script Tip 7

Here we go with a script that has been requested time and time again—a calculator. Here’s
the code. It’s a little long, but after you get into it, you’ll see it could have been three times
as long if it weren’t for some fancy coding tricks:

<HTML>

<HEAD>

<SCRIPT LANGUAGE=”JavaScript”>

<!-- start hiding

function getPi()

{return Math.PI}

17 0789726122_STO 7 10/2/01 8:39 AM Page 329

JavaScript Goodies

330

function getRandom()

{return Math.random()}

function change()

{

var temp = document.calculator.text.value;

if (temp.substring(0,1) == “-”)

{document.calculator.list.value = “”;

document.calculator.text.value = 0 - document.calculator.text.value

➥ * 1}

if (temp.substring(0,1) != “-”)

{document.calculator.list.value =””;

document.calculator.text.value = “-” + temp.substring(0,temp.length)}

}

function recip(x)

{document.calculator.text.value = (1/(x))}

function raisePower(x)

{

var y = 0

y = prompt(“What is the exponent?”, “”)

document.calculator.text.value = Math.pow(x,y)

}

// end hiding -->

</SCRIPT>

<!-- Visible Table Starts Here -->

</HEAD>

<BODY>

<TABLE BORDER=1 CELLSPACING=2 CELLPADDING=3%>

<TR>

<FORM NAME=”calculator”>

<TD COLSPAN=5 BGCOLOR=RED>

17 0789726122_STO 7 10/2/01 8:39 AM Page 330

331

Script Tip 7 ➤ A Calculator

<CENTER>

<INPUT NAME=”list” TYPE=HIDDEN>

<INPUT TYPE=TEXT NAME=”text” VALUE=””>

</TD>

<TD COLSPAN=2 BGCOLOR=RED>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” Backspace “ NAME=”backspace” onClick=”

➥document.calculator.text.value = document.calculator.text.value.substring

➥ (0,document.calculator.text.value.length*1 -1)”>

</TD>

<TD COLSPAN=2 BGCOLOR=RED>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” Clear “ NAME=”clear”

onClick=”document.calculator.text.value=’’”>

</TD>

</TR>

<TR>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 7 “ NAME=”but7” onClick=”

➥document.calculator.text.value+=’7’”>

</TD>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 8 “ NAME=”but8” onClick=”

➥document.calculator.text.value+=’8’”>

</TD>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 9 “ NAME=”but9” onClick=”

➥document.calculator.text.value+=’9’”>

</TD>

<TD BGCOLOR=YELLOW>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” + “ NAME=”add” onClick=”

➥document.calculator.text.value+=’+’”>

</TD>

<TD BGCOLOR=YELLOW>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” - “ NAME=”subtract” onClick=”

➥document.calculator.text.value+=’-’”>

</TD>

<TD BGCOLOR=LIME>

17 0789726122_STO 7 10/2/01 8:39 AM Page 331

JavaScript Goodies

332

<CENTER>

<INPUT TYPE=”BUTTON” VALUE=” 1/x “ NAME=”reciprocal” onClick=”

➥recip(document.calculator.text.value)”>

</TD>

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=”BUTTON” VALUE=” x^y “ NAME=”power” onClick=”

➥raisePower(document.calculator.text.value)”>

</TD>

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” sin “ NAME=”sin” onClick=”

➥document.calculator.text.value= Math.sin(document.calculator.text.value*

➥3.141592653589793/180)”>

</TD>

</TR>

<TR>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 4 “ NAME=”but4” onClick=”

➥document.calculator.text.value+=’4’”>

</TD>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 5 “ NAME=”but5” onClick=”

➥document.calculator.text.value+=’5’”>

</TD>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 6 “ NAME=”but6” onClick=”

➥document.calculator.text.value+=’6’”>

</TD>

<TD BGCOLOR=YELLOW>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” * “ NAME=”multiply” onClick=”

➥document.calculator.text.value+=’*’”>

</TD>

<TD BGCOLOR=YELLOW>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” / “ NAME=”divide” onClick=”

➥document.calculator.text.value+=’/’”>

</TD>

<TD BGCOLOR=LIME>

17 0789726122_STO 7 10/2/01 8:39 AM Page 332

333

Script Tip 7 ➤ A Calculator

<CENTER>

<INPUT TYPE=BUTTON VALUE=” | x | “ NAME=”absolute”

➥onClick=”document.calculator.text.value=Math.abs(

➥document.calculator.text.value)”>

</TD>

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” exp. “ NAME=”exp” onClick=”

➥document.calculator.text.value+=’E’”>

</TD>

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” cos “ NAME=”cos”

➥onClick=”document.calculator.text.value=Math.cos(

➥document.calculator.text.value*3.141592653589793/180)”>

</TD>

</TR>

<TR>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 1 “ NAME=”but1” onClick=”

➥document.calculator.text.value+=’1’”>

</TD>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 2 “ NAME=”but2” onClick=”

➥document.calculator.text.value+=’2’”>

</TD>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 3 “ NAME=”but3” onClick=”

➥document.calculator.text.value+=’3’”>

</TD>

<TD BGCOLOR=YELLOW>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” (“ NAME=”leftbracket” onClick=”

➥document.calculator.text.value+=’(‘“>

</TD>

<TD BGCOLOR=YELLOW>

<CENTER>

<INPUT TYPE=BUTTON VALUE=”) “ NAME=”rightbracket” onClick=”

➥document.calculator.text.value+=’)’”>

</TD>

17 0789726122_STO 7 10/2/01 8:39 AM Page 333

JavaScript Goodies

334

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” x? “ NAME=”square” onClick=”

➥document.calculator.text.value= document.calculator.text.value

➥* document.calculator.text.value”>

</TD>

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” round “ NAME=”round”

➥onClick=”document.calculator.text.value=Math.round(

➥document.calculator.text.value)”>

</TD>

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” tan “ NAME=”tan”

➥onClick=”document.calculator.text.value=Math.tan(

➥document.calculator.text.value*3.141592653589793/180)”>

</TD>

</TR>

<TR>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 0 “ NAME=”but0” onClick=”

➥document.calculator.text.value+=’0’”>

</TD>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” . “ NAME=”decimal” onClick=”

➥document.calculator.text.value+=’.’”>

</TD>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” +|- “ NAME=”sign” onClick=”change()”>

</TD>

<TD COLSPAN=2 BGCOLOR=BLACK>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” = “ NAME=”equals”

➥onClick=”document.calculator.text.value=eval(

➥document.calculator.text.value)”>

</TD>

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” x? “ NAME=”sqrt”

17 0789726122_STO 7 10/2/01 8:39 AM Page 334

335

Script Tip 7 ➤ A Calculator

➥onClick=”document.calculator.text.value=Math.sqrt(

➥document.calculator.text.value)”>

</TD>

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” rand “ NAME=”random” onClick=”

➥document.calculator.text.value = getRandom()”>

</TD>

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” pi “ NAME=”pi” onClick=”

➥document.calculator.text.value+= getPi()”>

</TD>

</TR>

</TABLE>

</FORM>

</BODY>

</HTML>

You can see it in action in Figure ST7.1.

Figure ST7.1
The calculator after figur-
ing a stunningly difficult
equation that apparently
added up to 48.

17 0789726122_STO 7 10/2/01 8:39 AM Page 335

JavaScript Goodies

336

To see the effect on your own computer, click Script Tip Seven in your download packet or
see it online at http://www.htmlgoodies.com/stips/scripttip52effect.html.

The code is available for copy and paste at http://www.htmlgoodies.com/stips/
scripttip52script.html or by viewing the source of the page in your download packet.

Okay, the overriding first concern is the display. The calculator face is nothing more than a
big table, five cells tall by eight cells across. You’ll notice that some of the cells span multi-
ple cells. The display, for instance, rolls across five cells. The Backspace and the Equals but-
tons both span two. See that?

You’ll find as you get into the calculator that the vast majority of the calculations are done
inside the table using onClick event handlers. Only a few functions are involved for some
of the larger returns.

Let’s get into it and attack the first line of cells in the table. This is the line that includes
the display, backspace, and clear buttons. This line is quite different from the others, so
let’s examine it by itself:

<TABLE BORDER=1 CELLSPACING=2 CELLPADDING=3%>

<TR>

<FORM NAME=”calculator”>

<TD COLSPAN=5 BGCOLOR=RED>

<INPUT NAME=”list” TYPE=HIDDEN>

<INPUT TYPE=TEXT NAME=”text” VALUE=””>

</TD>

<TD COLSPAN=2 BGCOLOR=RED>

<INPUT TYPE=BUTTON VALUE=” Backspace “ NAME=”backspace” onClick=”

➥document.calculator.text.value = document.calculator.text.value.substring(

➥0,document.calculator.text.value.length*1 -1)”>

</TD>

<TD COLSPAN=2 BGCOLOR=RED>

<INPUT TYPE=BUTTON VALUE=” Clear “ NAME=”clear”onClick=”

➥document.calculator.text.value=’’”>

</TD>

</TR>

17 0789726122_STO 7 10/2/01 8:39 AM Page 336

337

Script Tip 7 ➤ A Calculator

The Display
The display is created through the use of form commands that create a simple text box.
The code looks like this:

<FORM NAME=”calculator”>

<TD COLSPAN=5 BGCOLOR=RED>

<INPUT NAME=”list” TYPE=HIDDEN>

<INPUT TYPE=TEXT NAME=”text” VALUE=””>

Wait! There are two text boxes, but I only see one!

That’s because one is hidden. See how the TYPE is set to HIDDEN? That’s a great way to have
a couple of boxes and display only one. Later in the script, we’ll talk about the button that
changes the number in the display from positive to negative, or back again. To do that,
you must exchange data back and forth. By using this hidden text box, you have a place to
set the data before you move it back. Stay tuned; we’ll get to that button soon enough.

The name of the form itself is calculator, and the name of the display text box is text. In
addition to a name, the box is also given a value set to nothing. See the empty quotation
marks? That’s to ensure there’s nothing in the display to start with.

Now, you know that any time you want to send something to the display, you use the hier-
archy document.calculator.text.value.

The Backspace Button
The backspace button is next. The code looks like this:

<INPUT TYPE=BUTTON VALUE=” Backspace “ NAME=”backspace”

➥onClick=”document.calculator.text.value =

➥document.calculator.text.value.substring(

➥0,document.calculator.text.value.length*1 -1)”>

This button is a bit of a code monster. Before getting into it, let’s stop and think about
what it’s supposed to do. By clicking the Backspace button, you want the last number in
the display to be eliminated. To do that, you need to make the JavaScript see that what is
in the display text box is individual numbers in a string. If you do that, you can then set it
so the last number of the string is eliminated with a click of the button.

Notice the button has a name and then a value so that it displays correctly, but it’s the
onClick event handler that does the dirty work. When clicked, the value found in the
display (document.calculator.text.value) is set to a substring. See how the command
substring is added after the equal sign? In the instance (the parentheses) then, a compari-
son is set up. Remember that in a substring instance, the larger of two elements is per-
formed. In this case, there’s zero and then a calculation.

17 0789726122_STO 7 10/2/01 8:39 AM Page 337

JavaScript Goodies

338

The calculation is the length of what appears in the display, times one, minus one. It’s that
minus one that does the trick. By taking one away, you clip off the last item in the sub-
string (that’s the last number); then by clicking the Backspace button, you clip off the last
number. Clever, no?

The Clear Button
This works much the same way as the Backspace button using an onClick to enact an effect
upon the display:

<INPUT TYPE=BUTTON VALUE=” Clear “ NAME=”clear”

➥onClick=”document.calculator.text.value=’’”>

This has a name, then a value attached for display, and then the magic of the onClick. By
clicking the button, you’re setting the value of the display box to … well, nothing. See the
empty single quotation marks? No matter what has come before or what is presently in the
display text box, by clicking the Clear button, you set it to nothing, thus you clear it.

Next, let’s start on the numbers and the calculator functions. From here on, the buttons all
pretty much work the same way. The hard part is keeping them in the correct order so the
table display is correct.

The Other Buttons
Let’s get into the buttons you find past the top row. Each of these buttons works in basical-
ly the same onClick way. It’s the format of the table that will probably be most confusing.

If you’ve looked at the code, you might wonder why the keypad numbers are not all in a
row. This is because the author has opted for this calculator to sit inside a table, so he had
to set up all the buttons in the order that would display them in the table. If you follow it
along, it goes something like this:

Numbers 7, 8, 9, plus, minus, reciprocal, power, sine

Numbers 4, 5, 6, times, divide, absolute, exponent, cosine

Numbers 1, 2, 3, left par., right par., square, round, tangent

Zero, decimal, +|- sign, equals, square root, random, Pi

Let’s examine that first line. It’s a good representation of the next two lines:

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 7 “ NAME=”but7” onClick=”

➥document.calculator.text.value+=’7’”>

17 0789726122_STO 7 10/2/01 8:39 AM Page 338

339

Script Tip 7 ➤ A Calculator

</TD>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 8 “ NAME=”but8” onClick=”

➥document.calculator.text.value+=’8’”>

</TD>

<TD BGCOLOR=BLUE>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” 9 “ NAME=”but9” onClick=”

➥document.calculator.text.value+=’9’”>

</TD>

<TD BGCOLOR=YELLOW>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” + “ NAME=”add” onClick=”

➥document.calculator.text.value+=’+’”>

</TD>

<TD BGCOLOR=YELLOW>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” - “ NAME=”subtract” onClick=”

➥document.calculator.text.value+=’-’”>

</TD>

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=”BUTTON” VALUE=” 1/x “ NAME=”reciprocal” onClick=”

➥recip(document.calculator.text.value)”>

</TD>

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=”BUTTON” VALUE=” x^y “ NAME=”power” onClick=”

➥raisePower(document.calculator.text.value)”>

</TD>

<TD BGCOLOR=LIME>

<CENTER>

<INPUT TYPE=BUTTON VALUE=” sin “ NAME=”sin” onClick=”

➥document.calculator.text.value= Math.sin(document.calculator.text.value*

➥3.141592653589793/180)”>

</TD>

17 0789726122_STO 7 10/2/01 8:39 AM Page 339

JavaScript Goodies

340

It’s fairly obvious that the lines are a bit convoluted due to the space restrictions on this
page. Please make a point of following the form shown in the code link for this script; oth-
erwise, you’re sure to get errors.

Let’s discuss them one at a time, but let’s do it by only showing the button code. There’s
no need to continue displaying all the table code. This is a JavaScript Script Tip, right?
Right.

Seven
This button represents the number 7:

<INPUT TYPE=BUTTON VALUE=” 7 “ NAME=”but7” onClick=”

➥document.calculator.text.value+=’7’”>

The Value “ 7 “ is on the face of the button, and the Name given is “but7” (as in button
seven). When the button is clicked, a 7 is placed in the display window denoted by docu-
ment.calculator.text.value. See that in the previous onClick statement?

Please note: The operator += acts to add or concatenate two text strings. By using the +=, the
display is not replaced with the number, but rather the number is placed at the end of the
display. So, when you click 7, a 7 displays. If you then click again, the += places the next 7
after the first rather than simply replacing it. That way, every time you click, that value is
added to the display rather than replacing what is already in the display. Later, after all the
numbers and operators are lined up, you’ll figure the equation.

Got it? Good. Moving along ….

Eight
The same holds true for the number 8. An onClick puts the number 8 in the display
window:

<INPUT TYPE=BUTTON VALUE=” 8 “ NAME=”but8” onClick=”

➥document.calculator.text.value+=’8’”>

Nine
The same goes for the number 9:

<INPUT TYPE=BUTTON VALUE=” 9 “ NAME=”but9” onClick=”

➥document.calculator.text.value+=’9’”>

17 0789726122_STO 7 10/2/01 8:39 AM Page 340

341

Script Tip 7 ➤ A Calculator

Add
Now we get into the actual format of how the calculator works. This is the addition but-
ton:

<INPUT TYPE=BUTTON VALUE=” + “ NAME=”add” onClick=”

➥document.calculator.text.value+=’+’”>

Note the format is the same as the number buttons except this button places a plus sign in
the display window. This button simply sets a plus sign in place so that an addition can
occur; it doesn’t actually do the addition. That occurs when the equal button comes into
play.

Subtract
Take a look at this:

<INPUT TYPE=BUTTON VALUE=” - “ NAME=”subtract” onClick=”

➥document.calculator.text.value+=’-’”>

Look familiar? Again, the button does not perform any subtraction. It simply places a
minus so that later, when the equal button is clicked, a subtraction can occur.

Reciprocal
Here’s an interesting piece of code:

<INPUT TYPE=”BUTTON” VALUE=” 1/x “ NAME=”reciprocal” onClick=”

➥recip(document.calculator.text.value)”>

Do you know what this is? Me neither, so I looked it up. It is a function that figures a pair
of numbers that has 1 as its product. That is, what number, when divided into the number
in the display, produces the number 1?

Okay, I don’t really get it either, but if you’re a math person I’m sure it makes perfect sense
to you. I’m only here to show you how to do it. This is the first button in this row that
actually must have a number posted in the display to function.

When the onClick is enacted, it appears as if a JavaScript command called recip is enacted.
Nope. recip is actually the name of a function found between the HEAD commands. It looks
like this:

function recip(x)

{document.calculator.text.value = (1/(x))}

function raisePower(x)

17 0789726122_STO 7 10/2/01 8:39 AM Page 341

JavaScript Goodies

342

{

var y = 0

y = prompt(“What is the exponent?”, “”)

document.calculator.text.value = Math.pow(x,y)

}

When you click, the x is replaced with the value inside the display. See that in the previous
onClick: recip(document.calculator.text.value)? That value is then set into a fraction
with 1 as the denominator.

Next, another function named raisePower() is brought into work. A variable—y—is set to
0. Then, y gets a value from the user through a prompt. That value acts as the exponent or
power. Finally, the display receives the number it originally had raised to the power the
user offered through the use of the Math.pow(#,#) format. The first # is the number, and
the second # is the power it will be raised to.

If nothing is written inside the display then the math acts on nothing and nothing is
returned.

Power
The code for the power button is as follows:

<INPUT TYPE=”BUTTON” VALUE=” x^y “ NAME=”power” onClick=”

➥raisePower(document.calculator.text.value)”>

It uses the same format as the previous code, except here the JavaScript command
raisePower is set to act on what is inside the display and raise it to the first power.

Sine
Sine is the ratio of the side opposite the angle of the hypotenuse. Here is the code:

<INPUT TYPE=BUTTON VALUE=” sin “ NAME=”sin” onClick=”

➥document.calculator.text.value=

Math.sin(document.calculator.text.value*3.141592653589793/180)”>

Now we get into another format of finding the answer. Again, a number must be shown in
the display for this to work. When the button is clicked, the value of the display is created
through the Math object setting a sine (Math.sin) by multiplying the number displayed by
Pi (3.141592653589793) and then dividing that by 180. Even though you might not under-
stand the math, do you see how it works?

17 0789726122_STO 7 10/2/01 8:39 AM Page 342

343

Script Tip 7 ➤ A Calculator

The Next Two Lines
The next two lines of code are as follows:

Numbers 4, 5, 6, times, divide, absolute, exponent, cosine

Numbers 1, 2, 3, left par., right par., square, round, tangent

These work exactly the same way. The numbers post to the display using the same formats
as shown previously. The multiply and divide do not perform the action; they simply place
the correct character so that the math can be done later. The square, round, tangent,
absolute, exponent, and cosine math is done basically the same way as shown previously,
using JavaScript commands and short math equations just like the previous one. You might
not understand the math, but you can understand this format:

Absolute: Math.abs(document.calculator.text.value)”

Exponent: onClick=”document.calculator.text.value+=’E’

Cosine: Math.cos(document.calculator.text.value*3.141592653589793/180)

Square: document.calculator.text.value * document.calculator.text.value

Round: Math.round(document.calculator.text.value)”

Math.tan(document.calculator.text.value*3.141592653589793/180)”

Next, let’s get into actually how the calculator works and the final line of buttons. They get
a little tricky.

The Last Row of Buttons
OK, we’re on to the last line of buttons. This one gets a little tricky, so let’s take it by itself.

The last line of buttons look like this:

Zero, decimal, +|- sign, equals, square root, random, Pi

Here are the actual button codes without all the table coding:

<INPUT TYPE=BUTTON VALUE=” 0 “ NAME=”but0” onClick=”

➥document.calculator.text.value+=’0’”>

<INPUT TYPE=BUTTON VALUE=” . “ NAME=”decimal” onClick=”

➥document.calculator.text.value+=’.’”>

<INPUT TYPE=BUTTON VALUE=” +|- “ NAME=”sign” onClick=”change()”>

<INPUT TYPE=BUTTON VALUE=” = “ NAME=”equals”

➥onClick=”document.calculator.text.value=eval(

17 0789726122_STO 7 10/2/01 8:39 AM Page 343

JavaScript Goodies

344

➥document.calculator.text.value)”>

<INPUT TYPE=BUTTON VALUE=” x1/2 “ NAME=”sqrt”

➥onClick=”document.calculator.text.value=Math.sqrt(

➥document.calculator.text.value)”>

<INPUT TYPE=BUTTON VALUE=” rand “ NAME=”random” onClick=”

➥document.calculator.text.value = getRandom()”>

<INPUT TYPE=BUTTON VALUE=” pi “ NAME=”pi” onClick=”

➥document.calculator.text.value+= getPi()”>

Allow me to discuss these a little out of order. You’ve seen some of the formats before, so
I’ll talk about them first.

Zero and Decimal
Does this look familiar:

<INPUT TYPE=BUTTON VALUE=” 0 “ NAME=”but0” onClick=”

➥document.calculator.text.value+=’0’”>

<INPUT TYPE=BUTTON VALUE=” . “ NAME=”decimal” onClick=”

➥document.calculator.text.value+=’.’”>

It should. Both of these buttons act like the other number buttons 1–9. You click, and a 0 is
placed in the display. You click, and a decimal point is placed in the display.

Again, notice the use of += to add the number to the display rather than replacing what is
already displayed.

Square Root
Here is the code for the Square Root button:

<INPUT TYPE=BUTTON VALUE=” x1/2 “ NAME=”sqrt”

➥onClick=”document.calculator.text.value=Math.sqrt(

➥document.calculator.text.value)”>

Just as before, the number displayed is acted on through the Math object and the command
sqrt to create the result.

In case you’re wondering, x½ is the ASCII code to display x1/2. Cool, huh?

Random
<INPUT TYPE=BUTTON VALUE=” rand “ NAME=”random” onClick=”

➥document.calculator.text.value = getRandom()”>

17 0789726122_STO 7 10/2/01 8:39 AM Page 344

345

Script Tip 7 ➤ A Calculator

For this random button, and the Pi button that follows, the author decided to use a func-
tion. Note in the code how the display (document,calculator.text.value) is created by
going to the function getRandom(), which looks like this:

function getRandom()

{return Math.random()}

The function simply returns (return) a random number (created through Math.random) to
the display. It seems simple enough, but you might ask why not just follow the same for-
mat for putting it all in the onClick? I guess you could, but I would think the author set
this aside as a function because the random number had nothing to do with the display.
By setting it in a function, he separated it from any other numbers, which is probably a
good idea.

Pi
This is the same as the previous one:

<INPUT TYPE=BUTTON VALUE=” pi “ NAME=”pi” onClick=”

➥document.calculator.text.value+= getPi()”>

The number for Pi is returned from a function that looks like this:

function getPi()

{return Math.PI}

Again, could the author have simply done it inside the button itself? Yes. This, I think, is
just a cleaner method of doing it. Plus, pi has a decimal point in it, and that’s tough to get
into a simple display. Doing this solved that problem pretty quickly.

Equals
Ah, now you get to the meat of the calculator function—the equal button. If you click this
one, you get the answer. How you get the answer is a matter of how the author set up the
script:

<INPUT TYPE=BUTTON VALUE=” = “ NAME=”equals”

➥onClick=”document.calculator.text.value=eval(

➥document.calculator.text.value)”>

Remember earlier in the script, the majority of the buttons simply set numbers or operators
(+, -, /, *) into the display? You clicked the numbers and they displayed one right after the
other so that when you were done putting in all your numbers, the equation you entered
appeared there in the display.

17 0789726122_STO 7 10/2/01 8:39 AM Page 345

JavaScript Goodies

346

The equal button simply says “Do it!” after you’ve entered the numbers. There in the dis-
play is a math equation. Click the equal button, and that equation is evaluated (eval) and
the result is placed in the display. Poof! Your answer! And you thought it was hard ….

There’s one more button to worry about. It’s the one that changes a number from negative
to positive or the other way around. It’s clever and is a Script Tip unto itself.

Positive to Negative
There’s one more thing to worry about in this calculator script—the button that changes
numbers from negative to positive. At the beginning of this Script Tip, you saw two text
boxes, one of which was hidden. Now that hidden text box comes into play.

Three codes are used here. The first is the button that triggers the function that changes a
number from positive to negative or back again. It has the value of +|- on the front, and
the code looks like this:

<INPUT TYPE=BUTTON VALUE=” +|- “ NAME=”sign” onClick=”change()”>

The button itself isn’t all that hard to understand; all it does is enact a function called
change(). That function looks like this:

function change()

{

var temp = document.calculator.text.value;

if (temp.substring(0,1) == “-”)

{document.calculator.list.value = “”;

document.calculator.text.value = 0 - document.calculator.text.value

➥ * 1}

if (temp.substring(0,1) != “-”)

{document.calculator.list.value =””;

document.calculator.text.value = “-” + temp.substring(0,temp.length)}

}

Now, remember, that the previous display is a little cramped. Make sure the function is in
the format shown in the script code.

Let’s take a look at what happens. When the button is clicked, the value that appears in
the display (document.calculator.text.value) is assigned the variable name temp.

Next, the script tests to see whether the value is already negative. An if statement asks if
the text.substring’s first character is equal to the minus sign. Remember that any time
you set a substring, you must set up a comparison where the larger number wins. In this

17 0789726122_STO 7 10/2/01 8:39 AM Page 346

347

Script Tip 7 ➤ A Calculator

case the two numbers are 0 and 1. The one is bigger, so it wins and the first character in
the substring is checked.

Notice the two equal signs: That means “is equal to.”

If the first character is equal to the minus sign, the hidden text box comes into play. Here’s
that code:

<INPUT NAME=”list” TYPE=HIDDEN>

<INPUT TYPE=TEXT NAME=”text” VALUE=””>

I have listed the hidden box and then the display text box. Both of them come into play
here. The hidden text box is given the name list. Now you can get at the box using the
hierarchy statement document.calculator.list.value.

So, back to “If the first character is the minus sign.” If it is, the hidden text box is given a
value of nothing. By doing that, it brings it into play. That hidden box is then set to 0, the
value in the display is taken away, and the result is multiplied by 1. That sets the same
number to a positive value.

If the first character is not a minus sign, the second if statement comes into play. This
statement asks if the first character is not equal to a minus sign. (!= is the operator for “is
not equal to”).

If this if statement is true then, again, the hidden box is given a value of nothing to bring
it into play. The value of the hidden box is then set to a minus sign plus the full length of
the temp variable substring.

I know that seems a bit much, but by adding the value through a substring, the value
remains the same. Rather than the entire thing being seen as one entity, which it is not, it
remains a string of characters, which it is.

And that wraps up the calculator. It is quite involved and sometimes a little rough to get
hold of, but now that you’re through it, I think you’ll agree it was a manageable project.

17 0789726122_STO 7 10/2/01 8:39 AM Page 347

17 0789726122_STO 7 10/2/01 8:39 AM Page 348

Placing a Cookie

Script Tip 8

Ever since HTML Goodies was created, the cookie has been the one thing that people either
hated or couldn’t wait to get on their Web pages. I have a tutorial on what a cookie actually
is on the HTML Goodies site at http://www.htmlgoodies.com/tutors/cookie.html. It’s a lot
of reading, but basically a cookie is a text file—less than 4K—a server places on your com-
puter to track or remember things for you.

Whatever you think about cookies, there’s no denying they’re popular. In this Script Tip,
we’ll get into how you can set, and retrieve, cookies for your visitors.

The script was originally sent to be posted on HTML Goodies by Giedrius. Usually, I alter
the scripts for these tips a bit. Not this one; I barely touched it, except to change a display. I
like it just how the author put it together. I also made a point of keeping his name in the
code as author. I would ask you do the same.

18 0789726122_STO 8 10/2/01 8:39 AM Page 349

JavaScript Goodies

350

First, let’s get into how this specific script works; then we’ll talk about how you can use the
format to create larger, more useful effects. For instance, I altered the script to show two
separate messages depending on whether this is the user’s first time receiving a cookie. One
reads Nice to meet you, and the other reads, Welcome back. I’ll show you how to do that
after you get through the script in its current state.

Here’s the script:

<SCRIPT language=”JavaScript”>

<!--

//This script was made by Giedrius

cookie_name = “NameCookie2010”;

var GuestName;

function putCookie()

{

if(document.cookie)

{ index = document.cookie.indexOf(cookie_name);

}

else { index = -1;}

if (index == -1)

{

GuestName=window.prompt(“Hello! What’s your name?”,”Nobody”);

if (GuestName==null) GuestName=”Nobody”;

document.cookie=cookie_name+”=”+GuestName+”; expires=Tuesday,

➥05-Apr-2010 05:00:00 GMT”;

}

else

{

namestart = (document.cookie.indexOf(“=”, index) + 1);

nameend = document.cookie.indexOf(“;”, index);

if (nameend == -1) { nameend = document.cookie.length;}

GuestName = document.cookie.substring(namestart, nameend);

if (GuestName==”Nobody”)

{

GuestName=window.prompt(“Hello again!!!”+”\n”+”Last time you didn’t

➥tell me your name. Maybe you want to do it now?”,”Nobody”);

if ((GuestName!=”Nobody”)&&(GuestName!=null))

{document.cookie=cookie_name+”=”+GuestName+”; expires=Tuesday,

➥05-Apr-2010 05:00:00 GMT”;}

if (GuestName==null) GuestName=”Nobody”;

}

}

18 0789726122_STO 8 10/2/01 8:39 AM Page 350

351

Script Tip 8 ➤ Placing a Cookie

}

function getName()

{

if(document.cookie)

{

index = document.cookie.indexOf(cookie_name);

if (index != -1)

{

namestart = (document.cookie.indexOf(“=”, index) + 1);

nameend = document.cookie.indexOf(“;”, index);

if (nameend == -1) {nameend = document.cookie.length;}

GuestName = document.cookie.substring(namestart, nameend);

return GuestName;

}

}

}

putCookie();

GuestName=getName();

//STOP HIDING THE SCRIPT-->

</script>

<!-- What is below will appear on the page itself -->

<SCRIPT>

document.write(“Hello, “+GuestName+”, nice to meet you!!!”);

</SCRIPT>

You’ll feel better if you have a cookie, which is shown in Figure ST8.1.

To see the effect on your own computer, click Script Tip Eight in your download packet, or
see it online at http://www.htmlgoodies.com/stips/scripttip60effect.html. Please
note that you will get the prompt only the first time you use it. Past that, there’s already a
cookie set, so there’s no need to ask for your name again.

The code is available for copy and paste at http://www.htmlgoodies.com/stips/
scripttip60script.html or by viewing the source of the page in your download packet.

The script, actually scripts, isn’t very threatening in the present form. The code first checks
to see whether it has already set a cookie. If not, it sets one. It then checks to see whether
the person entered her name the last time. If not, it requests the name again. If a cookie
has already been set, it simply displays the name. All these checks means you’re bound to
have quite a few conditional statements checking things for you.

18 0789726122_STO 8 10/2/01 8:39 AM Page 351

JavaScript Goodies

352

There’s no simple way to attack this script, so let’s just get started from the top down. First,
you set a couple of variables and check to see whether a cookie exists:

cookie_name = “NameCookie2010”;

var GuestName;

function putCookie()

{

if(document.cookie)

{

index = document.cookie.indexOf(cookie_name);

}

else { index = -1;}

The first line sets a text string value to the variable name cookie_name. Usually, I put var
before each of these types of statements, but not now. I left it out to be able to make the
point that when setting variable names, the command var isn’t necessary because the sin-
gle equal sign implies that that one item is to be representative of the other.

Yes, you could write this as

var cookie_name = “NameCookie2010”;

but you don’t have to. As the author wrote it is sufficient.

Figure ST8.1
The prompt is asking for
the user’s name. That
information is sent to a
cookie by the script.

18 0789726122_STO 8 10/2/01 8:39 AM Page 352

353

Script Tip 8 ➤ Placing a Cookie

The next line does use the var command because in this case, the variable name is only
being brought into play for later, but as of yet it does not have a value assigned to it. You
just want to have it in the JavaScript’s memory for when you need it later. The function
putCookie() is actually a little mis-named. This function does not put any cookie; it checks
to see whether a cookie already exists:

if(document.cookie)

The if statement asks for the document.cookie. Although the text is confusing, remember
that cookie is actually a property of document. Yes, I know that the cookie does not reside in
the document, but rather in a file in another part of the hard drive. That doesn’t matter to
JavaScript. cookie is a property and simply saying document.cookie starts the process of
looking for one. For once, something that should be difficult is easy. Go figure. So, is there
a cookie? You need to find out.

Now, here’s the rest of the if statement:

{

index = document.cookie.indexOf(cookie_name);

}

else { index = -1;}

It attempts to set index (a property, the index of something) to equal
document.cookie.indexOf(cookie_name). Remember that cookie_name is NameCookie2010. You
set that first thing in the script, remember?

Notice how you grabbed the cookie. You know that cookie is a property of document just as
any form elements would be. That’s why you get to use a hierarchy statement format when
going after the cookie.

The command indexOf() is a method that returns the location of a text string. Basically,
the line looks to see whether a text string named NameCookie2010 appears on this computer.
If it does appear, the statement is already true. So, nothing needs to be set because index is
already equal to NameCookie2010. Let’s move on to what follows in the else statement.

The else statement says to set the index to -1 if the other can’t be found. You might
remember that -1 is used in JavaScript to indicate a string is not found because JavaScript
counts 0 as a viable number. This command sets the cookie index to null.

Why? Why not set the cookie right then and there?

Because it’s not that easy. Besides, the author is not really going to set the index to -1—he
set it there to indicate that the named cookie has not yet been set for this document.

18 0789726122_STO 8 10/2/01 8:39 AM Page 353

JavaScript Goodies

354

Setting the Cookie
Okay, this is a little backward so I’m going to describe how it runs. In the previous code
you set up a test that looked for a cookie named NameCookie2010. If the cookie was found
then the variable index was given the value of the location of the cookie. If there was no
cookie, index was given the value of -1. So what happens if index is -1? Well, this:

if (index == -1)

{

GuestName=window.prompt(“Hello! What’s your name?”,”Nobody”);

if (GuestName==null) GuestName=”Nobody”;

document.cookie=cookie_name+”=”+GuestName+”; expires=Tuesday,

➥05-Apr-2010 05:00:00 GMT”;

}

else

{

namestart = (document.cookie.indexOf(“=”, index) + 1);

nameend = document.cookie.indexOf(“;”, index);

if (nameend == -1) { nameend = document.cookie.length;}

GuestName = document.cookie.substring(namestart, nameend);

{

It’s yet another if statement, but look at how it’s constructed. If there is not a cookie, or if
there is not but one of the named value, the first part is enacted and a cookie is set. If there
is, the cookie is read and a certain part of it is assigned to the variable GuestName.

It’s backward from the first if statement that checks first and then sets to place a cookie.
This if statement places first, and if it doesn’t need to place, it reads the cookie. Let’s place
it first:

if (index == -1)

{

GuestName=window.prompt(“Hello! What’s your name?”,”Nobody”);

if (GuestName==null) GuestName=”Nobody”;

document.cookie=cookie_name+”=”+GuestName+”; expires=Tuesday,

➥05-Apr-2010 05:00:00 GMT”;

}

Let’s say index is equal to -1. First, the variable GuestName is given the value of a prompt. As
you can see, the prompt pops up and asks for a name. In the text box, though, is the text
Nobody. See that in the previous code? It’s important.

The next line checks the variable value. If GuestName equals (double equal sign) null, mean-
ing nothing, GuestName is set to Nobody. Now you have a safety net in case the user just

18 0789726122_STO 8 10/2/01 8:39 AM Page 354

355

Script Tip 8 ➤ Placing a Cookie

simply presses Enter, thus entering Nobody. You also have it set up so that if the user
blanked the text box and pressed Enter, the variable is set to Nobody anyway.

Finally, you actually set the cookie. The hierarchy statement document.cookie followed by
an equal sign sets. You have the text of the cookie to be set first with the name of the
cookie itself, then the text the user entered, and then an expiration date. Notice the format
for the date. You must follow that just as you see it.

Here’s the text as it appears in the cookie set on my system: NameCookie2010. Here’s the
code:

Joe

~~local~~/E:\HTML Goodies\Scripttips\

0

3625486336

30069884

1906963680

29301170

*

First is the name of the cookie and then the word I entered, Joe. Next is the location—
notice it’s local. Last is the expiration date in milliseconds because JavaScript counts time
in milliseconds.

So the cookie is set; at least what you wrote to the cookie is set. But what if there already is
a cookie? Well, you need to grab what the user wrote. You already know by looking that
the text the user wrote is second in the run of text. So, you need to grab just that. Here’s
the code that does it:

}

namestart = (document.cookie.indexOf(“=”, index) + 1);

nameend = document.cookie.indexOf(“;”, index);

if (nameend == -1) { nameend = document.cookie.length;}

GuestName = document.cookie.substring(namestart, nameend);

{

As you can see, the document.cookie is acted on by using the method indexOf. That com-
mand returns a location of a string depending on two arguments within the instance
(parentheses). In this case, you are interested in the text string set by the cookie.

First, the variable namestart is assigned the index of an equal sign and the text of the
string. Remember that in this case, a text string’s first character is always given the value
of 0 and the last character is given the value of -1. If you think about it for a moment,
you’ll realize that that’s JavaScript for beginning and end, and JavaScript sees 0 as a viable
number.

18 0789726122_STO 8 10/2/01 8:39 AM Page 355

JavaScript Goodies

356

So, you have a method of grabbing the beginning of the string plus one (the +1). The equal
sign is not shown in the string, but it’s implied as the name jumps to the next line; there-
fore, you’re looking for something that starts with an equal sign in the length of the text
string. That’s the word Joe in the previous code.

Next in the script, nameend is given the index of a semicolon and the length of the text
string. A semicolon is seen as the end of a line in JavaScript, so this denotes the end of the
line after the word Joe.

The next line states that if the end of the text is the end of the line of text (nameend = -1)
then make nameend equal to the entire remainder of the text string. This would come into
play if no expiration date were in place and Joe ended the line of text.

Finally, the variable GuestName is given the value of what is contained between namestart
and nameend. That’s the text entered by the user. That text is assigned as a text string to a
variable and can be used and posted anywhere on the page, or any other page for that mat-
ter because the cookie never goes away.

Next, let’s look into what happens if GuestName actually represents the default—Nobody. We
can’t just let that lie now, can we?

What About Nobody?
If a user comes to your page and doesn’t play nice with this script, allowing it to simply
read Nobody by pressing Return, you should make a point of showing that person the error
of his ways and give him a second chance.

Here’s the code you’re interested in:

if (GuestName==”Nobody”)

{

GuestName=window.prompt(“Hello again!!!”+”\n”+”Last time you didn’t

➥tell me your name. Maybe you want to do it now?”,”Nobody”);

if ((GuestName!=”Nobody”)&&(GuestName!=null))

{document.cookie=cookie_name+”=”+GuestName+”; expires=Tuesday, 05-Apr-2010

➥05:00:00 GMT”;}

if (GuestName==null) GuestName=”Nobody”; }

This little blip of code is the annoyer. It comes into play only if a cookie has been set and
the person is returning. The script never incorporates this code if there is no cookie
because of the code’s placement. Let’s see how it works.

Let’s start with another familiar if statement asking if the value of GuestName is equal to
Nobody. If so, a prompt is fired up and the user is again asked to put in his name.

18 0789726122_STO 8 10/2/01 8:39 AM Page 356

357

Script Tip 8 ➤ Placing a Cookie

Notice the \n in the window.prompt. That represents a new line to JavaScript, so this won’t
all be run together.

Again, the default is set to Nobody.

Now you need to set the cookie off of what the user did. The next line tests for that. The
double ampersands (&&) means “and”. So, you’re testing whether the value of GuestName is
not equal (!=) to Nobody and not equal to nothing (null). If that’s the case—meaning at
least something was put in the text box—then it is set to a cookie.

The next line is the catchall if the user blanks the text box and goes on. The code tests if
GuestName is equal to null. If it is, the value is reset to Nobody. You can now be pretty sure
that the user will get this warning again when he stops back.

That’s the extent of what you need to do to set the cookie. Next, we talk about grabbing it
and posting it to the page.

Displaying Cookie Contents
The cookie is set, so now you need to use coding to go get it. In the case of this script, the
display is immediately after setting the cookie. Keep in mind that that doesn’t always have
to be the case. You easily can split this code and set on one page but grab and display on
another. That’s the purpose of these cookies—to carry information across pages.

This blip of code looks very similar to the one you looked at previously. The reason is
because the two perform the same duties, except the first one grabs the text string from the
cookie to assign it to the variable GuestName, whereas this one grabs it so it can be dis-
played. Here’s the code:

function getName()

{

if(document.cookie)

{

index = document.cookie.indexOf(cookie_name);

if (index != -1)

{

namestart = (document.cookie.indexOf(“=”, index) + 1);

nameend = document.cookie.indexOf(“;”, index);

if (nameend == -1) {nameend = document.cookie.length;}

GuestName = document.cookie.substring(namestart, nameend);

return GuestName;

}

}

}

18 0789726122_STO 8 10/2/01 8:39 AM Page 357

JavaScript Goodies

358

putCookie();

GuestName=getName();

This is a function, so there has to be something to trigger it. Look at the last line of the
script. GuestName is equal to the function getName—that’s what starts it. The entire script
must be put into the browser memory; then the last line fires this function by calling for
its output.

So here we go. If there is a document.cookie (which you know exists, at least in this format),
index equals what is contained in the cookie NameCookie2010.

If the index is non-existent (-1), namestart is equal to the equal sign plus one to the
length.

Consequently, nameend is equal to the rest of that line until the end, which is represented
by the semicolon. Remember all of this two tips ago?

If there is no end to the string (nameend==-1) then nameend is equal to the full length of the
cookie. This occurs if no expiration date is set. GuestName then must be given the value of
what is between namestart and nameend, which is what the user entered.

Finally, the script is told to return that value.

The next line is what started the entire process in the first place, triggering the first func-
tion you looked at, putCookie(). You know the next line—it fires up the function you just
looked at.

Displaying It
After GuestName is given the value of what is contained in the cookie, you can place it any-
where on the page using document.write statements. Here’s what the author used:

<SCRIPT>

document.write(“Hello, “+GuestName+”, nice to meet you!!!”);

</SCRIPT>

The text appears and the name is displayed.

So, there you go: A cookie is set and retrieved. It’s a great script, but I do see one problem
with it. After a cookie is set, the text always reads Nice to meet you. Well, after 10 visits,
you’re not “meeting” your user anymore.

I took the script, altered it a bit, and got it to display the Nice to meet you greeting the
first time it displayed. Each time after that, it reads Welcome back. Here’s how.

18 0789726122_STO 8 10/2/01 8:39 AM Page 358

359

Script Tip 8 ➤ Placing a Cookie

Two Different Welcomes
If you want to see this new coding in action, point your browser to http://www.
htmlgoodies.com/stips/scripttip64effect.html.

The new code, including the text denoted in the following, can be found at
http://www.htmlgoodies.com/stips/scripttip64script.html.

When I set out to do this, I knew the answer was going to be a conditional statement of
some kind. I also knew it would say something such as, if the user is a first-timer,
use this greeting. If not - use this.

The question then becomes what would you use to check? The answer is a new variable I
named FirstTime. The variable is inserted into the script in specific places so that if the
user receives a cookie for the first time, her FirstTime variable is set to “y”. All times after
that, the variable is set to “n”. Then, you could do a simple check to see whether the vari-
able is “y” or “n” and set the document.write as you see fit.

Notice the n and y are in quotes. That sets them aside as text strings rather than values.

Placing the Variable
Here’s the top of the script. Look for the FirstTime variable:

cookie_name = “NameCookie2010”;

var GuestName;

var FirstTime

function putCookie()

{

if(document.cookie)

{

index = document.cookie.indexOf(cookie_name);

FirstTime = “n”

}

else

{

FirstTime = “y”

index = -1;

}

Notice first that var FirstTime is set so it will be recognized the rest of the way through the
script. I often refer to this as putting the variable into play.

18 0789726122_STO 8 10/2/01 8:39 AM Page 359

JavaScript Goodies

360

Strange as it might seem, the first thing you check is whether a cookie exists; therefore, the
first setting FirstTime could receive is “n”, meaning it isn’t the user’s first time. See the
placement? It’s just after the index of the cookie is found and set to a variable name.

The reason for the placement is because after that point in the script, the majority of
things are meant to set new cookies, right? If that’s true, somewhere in the new cookies
you need to insert the line that sets FirstTime to “y”. Look at the previous code, and you’ll
see it. It’s in the first else function.

It’s there because of the structure of the script. You want the placement so that when
FirstTime is given a value, at no other time in the script would the value change. By
putting it in the first if and else statements, you can be assured that if there is a cookie,
FirstTime will be set to “n”. Also, because else is skipped if the original statement is true,
you know you can safely place the second FirstTime there.

If there is a cookie, the script sets it to “n” and skips the else. If not, the else comes into
play and sets FirstTime to “y”.

That’s the hard part; now we get to the fun. This little piece of code posts a greeting
depending on which value was assigned:

<SCRIPT LANGUAGE=”JavaScript”>

if (FirstTime == “y”)

{document.write(“Hello, “+GuestName+”, nice to meet you!!!”);}

else

{document.write(“Hello, “+GuestName+”, welcome back!!!”);}

</SCRIPT>

It’s another if statement that tests only whether FirstTime is equal to “y”. If it isn’t then
you know it has to be “n” and the else statement will take it from there.

You should be able to take it from here. If it’s “y” then the greeting reads Nice to meet
you. But if it’s “n” then the greeting reads, Welcome back.

18 0789726122_STO 8 10/2/01 8:39 AM Page 360

A 16.7 Million-
Color Script

Script Tip 9

Please Note! This script was written specifically to work on MSIE browsers. If you try to
run this on Netscape, it will throw errors. After going through this script, you’ll rewrite it
and get it to work on Netscape Navigator.

Take a look at the code, and we’ll get started. I know, it’s a long code so we’ve shortened it
here. Be sure to check out the entire version online:

<SCRIPT LANGUAGE=”javascript”>

// This javascript is property of the Silicon Valley Garage.

function mix()

{

if (document.all)

19 0789726122_STO 9 10/2/01 8:40 AM Page 361

JavaScript Goodies

362

{

document.all(“box”).style.background =

➥”#”+document.ColorMix.red.options[document.ColorMix.red.selectedIndex]

➥.value+document.ColorMix.green.options[document.ColorMix.

➥green.selectedIndex].value+document.ColorMix.blue.options[

➥document.ColorMix.blue.selectedIndex].value;

➥document.ColorMix.code.value = “#”+document.ColorMix.red.options[

➥document.ColorMix.red.selectedIndex]

➥.value+document.ColorMix.green.options[

➥document.ColorMix.green.selectedIndex].value+document.ColorMix.blue.

➥options[document.ColorMix.blue.selectedIndex].value;

}

else

{

alert(“Sorry, your browser does not support the programming needed to run this

➥script.”);

}

}

if (document.all)

{

var menu = “

<OPTION VALUE=\”ff\”>255</OPTION>

<OPTION VALUE=\”fe\”>254</OPTION>

<OPTION VALUE=\”fd\”>253</OPTION>

<OPTION VALUE=\”fc\”>253</OPTION>

<OPTION VALUE=\”fb\”>252</OPTION>

<OPTION VALUE=\”fa\”>251</OPTION>

<OPTION VALUE=\”f9\”>250</OPTION>

<OPTION VALUE=\”f8\”>249</OPTION>

<OPTION VALUE=\”f7\”>248</OPTION>

<OPTION VALUE=\”f6\”>247</OPTION>

<OPTION VALUE=\”f5\”>246</OPTION>

<OPTION VALUE=\”f4\”>245</OPTION>

<OPTION VALUE=\”f3\”>244</OPTION>

<OPTION VALUE=\”f2\”>243</OPTION>

<OPTION VALUE=\”f1\”>242</OPTION>

<OPTION VALUE=\”f0\”>241</OPTION>

<OPTION VALUE=\”ef\”>240</OPTION>

<OPTION VALUE=\”ee\”>239</OPTION>

<OPTION VALUE=\”ed\”>238</OPTION>

...

19 0789726122_STO 9 10/2/01 8:40 AM Page 362

363

Script Tip 9 ➤ A 16.7 Million-Color Script

<OPTION VALUE=\”12\”>018</OPTION>

<OPTION VALUE=\”11\”>017</OPTION>

<OPTION VALUE=\”10\”>016</OPTION>

<OPTION VALUE=\”0f\”>015</OPTION>

<OPTION VALUE=\”0e\”>014</OPTION>

<OPTION VALUE=\”0d\”>013</OPTION>

<OPTION VALUE=\”0c\”>012</OPTION>

<OPTION VALUE=\”0b\”>011</OPTION>

<OPTION VALUE=\”0a\”>010</OPTION>

<OPTION VALUE=\”09\”>009</OPTION>

<OPTION VALUE=\”08\”>008</OPTION>

<OPTION VALUE=\”07\”>007</OPTION>

<OPTION VALUE=\”06\”>006</OPTION>

<OPTION VALUE=\”05\”>005</OPTION>

<OPTION VALUE=\”04\”>004</OPTION>

<OPTION VALUE=\”03\”>003</OPTION>

<OPTION VALUE=\”02\”>002</OPTION>

<OPTION VALUE=\”01\”>001</OPTION>

<OPTION SELECTED VALUE=\”00\”>000</OPTION>”;

document.write(“<TABLE BORDER=\”0\” CELLPADDING=\”0\” CELLSPACING=\”0\” WIDTH=\

➥”100%\”>”);

document.write(“<FORM NAME=\”ColorMix\”>”);

document.write(“<TD BGCOLOR=\”#000000\” HEIGHT=\”25\” ID=\”box\”

➥COLSPAN=\”4\”></TD><TR>”);

document.write(“<TD WIDTH=\”25%\”><FONT COLOR=\”#ffffff\”

➥FACE=\”arial, geneva, times new roman\” SIZE=\”2\”>Red:

➥ <SELECT NAME=\”red\” ONCHANGE=\”mix();\” SIZE=\”1\”>”

➥+menu+”</SELECT></TD><TD WIDTH=\”25%\”><FONT COLOR=\”#ffffff\”

➥FACE=\”arial, geneva, times new roman\” SIZE=\”2\”>Green:

➥<SELECT NAME=\”green\” ONCHANGE=\”mix();\” SIZE=\”1\”>”

➥+menu+”</SELECT></TD><TD WIDTH=\”25%\”><FONT COLOR=\”#ffffff\”

➥ FACE=\”arial, geneva, times new roman\” SIZE=\”2\”>Blue:

➥<SELECT NAME=\”blue\” ONCHANGE=\”mix();\”

➥SIZE=\”1\”>”+menu+”</SELECT></TD><TD WIDTH=\”25%\”>

➥<INPUT NAME=\”code\” MAXLENGTH=\”7\” SIZE=\”10\”

➥TYPE=\”text\” VALUE=\”#000000\”></TD><TR>”);

document.write(“</FORM>”);

document.write(“</TABLE>”);

}

</SCRIPT>

Figure ST9.1 shows the script in action.

19 0789726122_STO 9 10/2/01 8:40 AM Page 363

JavaScript Goodies

364

To see the effect on your own computer, click Script Tip Nine in your download packet, or
see it online at http://www.htmlgoodies.com/stips/scripttip65effect.html.

The code is available for copy and paste at http://www.htmlgoodies.com/stips/
scripttip65script.html or by viewing the source of the page in your download packet.

If you didn’t take it from the code, this is a table format. The table is four cells wide with
one cell spanning across all four. That spanning cell is the one that receives the color.

The red, green, and blue settings are all drop-down select box form elements. As you have
probably noticed, there are 256 choices in each drop box, 000–255.

What the script does is offer the viewer the ability to choose the RGB values and in turn
changes them to the more Web-friendly hex values. It does this through the three drop-
down boxes. Let’s start with those.

The drop-down box code looks like this:

<OPTIONVALUE=\”ff\”>255</OPTION>

<OPTIONVALUE=\”fe\”>254</OPTION>

<OPTIONVALUE=\”fd\”>253</OPTION>

<OPTIONVALUE=\”fc\”>253</OPTION>

<OPTIONVALUE=\”fb\”>252</OPTION>

<OPTIONVALUE=\”fa\”>251</OPTION>

<OPTIONVALUE=\”f9\”>250</OPTION>

Figure ST9.1
Set each of the Red, Green,
and Blue sections to a
stronger or weaker setting;
the bar across the top
shows the color.

19 0789726122_STO 9 10/2/01 8:40 AM Page 364

365

Script Tip 9 ➤ A 16.7 Million-Color Script

Many items have been deleted here to save space:

<OPTION VALUE=\”05\”>005</OPTION>

<OPTIONVALUE= \”04\”>004</OPTION>

<OPTIONVALUE= \”03\”>003</OPTION>

<OPTIONVALUE= \”02\”>002</OPTION>

<OPTIONVALUE= \”01\”>001</OPTION>

<OPTION SELECTEDVALUE=\”00\”>000</OPTION>

It’s a little backward from how I do my boxes. I always have the option selected choice
first. This author decided to go the opposite way and put it at the bottom. No problem, it
works just as well.

Now, let’s talk a little about colors so you get the concept of this box. You probably know
that in Hex code, FFFFFF equals white and 000000 equals black.

The concept of a hex code is two characters representing a level of red, green, and blue.
The levels are 1–9 and A–F. The higher the number or letter, the more intense the color. So,
FF is the highest saturation of color, and 00 is the lowest saturation.

In the case of white, FF FF FF means the highest saturation of red, green, and blue. That’s
white. When you’re dealing with light, mixing all the colors together gives you white.
Don’t believe me? Grab a crystal glass and shine white light into it. All the colors con-
tained in that white light will show on the wall.

In the case of black, 00 00 00 means no saturation of color at all because black is the
absence of color. If I wanted red, I could set the hex to FF 00 00. That’s a ton of red, no
green, and no blue. Are you getting my drift here?

Now let me throw a monkey wrench into the mix. That hex code I was just talking about
is actually a representation of a three-digit, or decimal, code used to make color. It works
the very same way. 000 is equal to no color saturation at all, and 255 is equal to complete
saturation.

Now at the code for the drop-down menu, previously in the chapter. Start at the bottom.
You can see that the choice 000 has a value of 00 in hex. The next choice is 001, which has
a value of 01 in hex. If you continue up the menu, you’ll see the hex gradually getting
stronger as the three-digit number increases. Basically, what you have here is all 256 num-
bers in a drop-down box and their hex counterparts as the values for the choices.

With that in mind, we can begin to describe how this script functions. When the script
first loads, zero values are shown in the R, G, and B drop boxes. That’s equivalent to black,
so black is shown in the table cell. In addition, the hex #000000 is shown in the text box.

19 0789726122_STO 9 10/2/01 8:40 AM Page 365

JavaScript Goodies

366

Each time a new value is selected, both the table cell and the text box are updated, so a
function that alters them both must be involved.

If you’ve looked at the code, you can see the table being constructed in the document.write
statements, but you might also have noticed that only one drop-down box is in the code,
yet three show up on the page. It’s a clever trick we’ll get to as the tip goes on.

What Are All Those Back Slashes for?
So glad you asked. The backslash is what’s known as an escape sequence. It basically enables
you to type in data that shows as text or that alters the text around it. In this case, the
author is using (\”):

<OPTION VALUE=\”05\”>

That backslash followed by a double quotation mark allows a double quotation mark to
appear on the page. You could probably guess that if you stuck a double quotation mark in
there, the script would think you were ending the line and errors would fall all over the
place. The author could have simply written the code without any quotation marks, but he
wanted quotation marks around the attribute when the page compiled, so the backslash,
double quotation mark combination was used to get them.

You’ll see this all the way through the script. Don’t think it means anything more than a
simple double quotation mark.

Building the Table
The code for the table is written to the page through JavaScript document.write commands.
It looks like this:

document.write(“<TABLE BORDER=\”0\” CELLPADDING=\”0\”

➥CELLSPACING=\”0\” WIDTH=\”100%\”>”);

document.write(“<FORM NAME=\”Color\”>”);

document.write(“<TD BGCOLOR=\”#000000\” HEIGHT=\”25\” ID=\”box\”

➥COLSPAN=\”4\”></TD><TR>”);

document.write(“<TD WIDTH=\”25%\”><FONT COLOR=\”#ffffff\”

➥FACE=\”arial, geneva, times new roman\” SIZE=\”2\”>Red:

➥ <SELECT NAME=\”red\” ONCHANGE=\”mix();\” SIZE=\”1\”>”

➥+menu+”</SELECT></TD><TD WIDTH=\”25%\”><FONT COLOR=\”#ffffff\”

➥FACE=\”arial, geneva, times new roman\” SIZE=\”2\”>Green:

➥<SELECT NAME=\”green\” ONCHANGE=\”mix();\” SIZE=\”1\”>”

19 0789726122_STO 9 10/2/01 8:40 AM Page 366

367

Script Tip 9 ➤ A 16.7 Million-Color Script

➥+menu+”</SELECT></TD><TD WIDTH=\”25%\”><FONT COLOR=\”#ffffff\”

➥ FACE=\”arial, geneva, times new roman\” SIZE=\”2\”>Blue:

➥<SELECT NAME=\”blue\” ONCHANGE=\”mix();\”

➥SIZE=\”1\”>”+menu+”</SELECT></TD><TD WIDTH=\”25%\”>

➥<INPUT NAME=\”code\” MAXLENGTH=\”7\” SIZE=\”10\”

➥TYPE=\”text\” VALUE=\”#000000\”></TD><TR>”);

document.write(“</FORM>”);

document.write(“</TABLE>”);

You see how messed up it looks. But let’s take it step-by-step, and you’ll quickly see how it
works.

To begin with, the table is created:

document.write(“<TABLE BORDER=\”0\” CELLPADDING=\”0\” CELLSPACING=\”0\” WIDTH=\

➥”100%\”>”);

The table has no border, has no cell padding or spacing, and spans the width of the page
(100%).

Next, a form is started. Remember that you’re going to use drop-down boxes and they are
form elements, so you need a form:

document.write(“<FORM NAME=\”ColorMix\”>”);

The name of the form is Color.

Next, the first table cell—the one that will span the others—is written to the page:

document.write(“<TD BGCOLOR=\”#000000\” HEIGHT=\”25\” ID=\”box\”

➥COLSPAN=\”4\”></TD><TR>”);

The cell has a black background, is 25 pixels high, has the ID name box, and spans the next
four columns. Now let’s look at the three drop-down menus.

You might notice that the next line is much longer than it has to be. This could be written
with multiple document.write statements, but the author chose to put it all on one line. No
sweat. It works just the same. Let’s take just the first part of it:

<TD WIDTH=\”25%\”><FONT COLOR=\”#ffffff\” FACE=\”arial, geneva,

➥times new roman\” SIZE=\”2\”>

Red:

<SELECT NAME=\”red\” onChange=\”mix();\”SIZE=\”1\”>”+menu+”

➥</SELECT></TD>

19 0789726122_STO 9 10/2/01 8:40 AM Page 367

JavaScript Goodies

368

This is the first of four table cells. The background color is white, the font face is Arial, and
it will contain the Red drop-down menu. Now for the clever part.

Notice that contained within the table cell are the beginning commands for a select box.
The NAME will be red, and when something changes within the box (onChange), a function
named mix() will be called into play.

Then, a variable named mix is called for, and the select box is ended. But what is mix?

Look at the full script again. Menu is a text string made up of the entire drop-down menu
discussed in Script Tip 8, “Placing a Cookie.” That’s the reason you see only one drop-down
menu in the code, but three pop up in the browser window. The author set the box to a
variable name and then called for it three times. Why not? All three menus are the same,
and it saves typing time.

If you continue through the table code, you’ll see the next two cells being created exactly
the same way, except the next one has the NAME “green” and the third has the NAME “blue”.

The last blip of code in that long run creates the text box that will receive the hex code. It
looks like this:

<TD WIDTH=\”25%\”><INPUT NAME=\”code\” MAXLENGTH=\”7\” SIZE=\”10\”

➥TYPE=\”text\” VALUE=\”#000000\”></TD><TR>”);

The text box is given the name code and a value of #000000 that displays when the page is
first loaded. That’s what the three drop-down menus will read, so that’s what is displayed.

Finally, a /FORM and a /TABLE are written to complete the table.

Now you have a table with parts you can grab through hierarchy statements. The text box
is reachable through document.ColorMix.code.value, and each drop-down menu reads the
same, except the color appears where “code” is in the statement:
document.ColorMix.red.value, document.ColorMix.blue.value, and
document.ColorMix.green.value.

The box that receives the color is a little different; it carries an ID and is affected by a func-
tion discussed in the next section.

The mix() Function
The engine that makes this script run is a simple function named mix().

The mix() function performs the same maneuver twice sending the same result to two dif-
ferent places. One result goes to the table cell to display the color, while the other goes to
the text box to display the hex code. The function looks like this:

19 0789726122_STO 9 10/2/01 8:40 AM Page 368

369

Script Tip 9 ➤ A 16.7 Million-Color Script

function mix()

{

if (document.all)

{

document.all(“box”).style.background =

“#”+document.ColorMix.red.options[document.ColorMix.red.selectedIndex]

➥.value+document.ColorMix.green.options[document.

➥ColorMix.green.selectedIndex].value+document.

➥ColorMix.blue.options[document.ColorMix.blue.selectedIndex]

➥.value;

document.ColorMix.code.value = “#”+document.ColorMix.red.options[

➥document.ColorMix.red.selectedIndex].

➥value+document.ColorMix.green.options[

➥document.ColorMix.green.selectedIndex]

➥.value+document.ColorMix.blue.options[

➥document.ColorMix.blue.selectedIndex].value;

}

else

{

alert(“Sorry, your browser does not support the programming

➥needed to run this script.”);

}

}

The function begins like all other functions do, but the command function, the name of
the function, mix, the instance, and then a curly bracket encase what the function will do.

The first line of the function is the reason this will not run on Netscape Navigator
browsers. The if statement begins with the command if(document.all).

That is a proprietary command understood by IE4 and above browsers. By attaching all to
a document, you basically set it up to be a representation of all the elements in the HTML
document. It helps you attach style attributes to elements of the page.

For now, its usage in the if statement basically asks if the browser can support the com-
mand all. If it can’t, an alert pops up telling the user he doesn’t have a browser powerful
enough to run the script. Bummer.

But let’s stick with what happens if the document.all is recognized and the mix() function
runs.

Remember that each of the drop-down menus carries with it an onChange event handler.
That way, any time the user alters the display of the menu, the function is triggered to run.
No matter what change is made, the script responds. Pretty slick.

19 0789726122_STO 9 10/2/01 8:40 AM Page 369

JavaScript Goodies

370

The first item you’re interested in altering is the long table cell. This is the line that attach-
es the function to it:

document.all(“box”).style.background =

Now document.all is carrying arguments. See the parentheses after all? In this case, all is
being used as an array representing all the elements on the page. What is in the instance is
box—the ID name given to the table cell. So now you’re focusing right on that specific ele-
ment of the page.

But what will you do to it? You’ll work with the background style. See the format? You’re
going to set a background style color for that specific element, box.

This is the reason the script doesn’t function properly in Netscape Navigator. This format is
MSIE only.

Next, you need to set the background style to some color. That color is formed by taking
the value selected by the user from the Red, Green, and Blue drop-down menus. Here’s the
first blip of code:

“#”+document.ColorMix.red.options[document.ColorMix.red.selectedIndex]

The color code begins with a pound sign (#). It’s in quotation marks and is attached to the
front of the hex code. Next, you grab the red code. The item comes from the first drop-
down box denoted by document.ColorMix.red.options. Exactly what hex was chosen is rep-
resented by [document.ColorMix.red.selectedIndex].

selectedIndex is the value of the item chosen; those values are hex codes. So, if the user
selects 255, the value FF is returned to this run.

Now look at the code again. The same thing happens when grabbing the value from the
Green and then the Blue drop-down menus. When those three hex values are put together,
you get a hex code. That hex code is assigned to the table cell, and the background color
changes. In the next full line of the function, the exact same thing occurs. The choices the
user made are pulled together to create a hex code; however, in this line of code, the hex is
sent to the text box for display:

document.ColorMix.code.value =

So, each time a new value is selected in any of the boxes, the mix() function is triggered.
That function firsts tests the browser; then it grabs the choices the user made, changes the
table cell background, and sends the hex to a text box for display.

It’s a great script, but as I said, it works only in MSIE 4.0 and above. I took some time to
play with the code and got it to work in Netscape (and of course MSIE also).

19 0789726122_STO 9 10/2/01 8:40 AM Page 370

371

Script Tip 9 ➤ A 16.7 Million-Color Script

Making It Work in Netscape
Okay, let’s just stop and think it through. For this script to run in Netscape Navigator (NN),
you must eliminate all the commands NN doesn’t understand. Therefore, document.all and
document.all(“box”).style.background must be eliminated.

You have to flip the script upside down for NN to run it. For NN to run hierarchy state-
ments, the elements must already be loaded into the browser memory. In the case of the
MSIE-only script, the commands came first and then the table was built. It’s opposite here:
First, you have to build the table, and then you can post the function.

Finally, in NN, table cells are not seen as individual items. You can’t change a specific cell
in a dynamic fashion. You can, however, change the page background. You’ll do that next.

Changing that background is shown in Figure ST9.2.

Figure ST9.2
It’s basically the same
script, except the entire
background changes rather
than just a bar of color. I
actually like the effect
much better because I can
see a bigger patch of the
color.

To see the effect on your own computer, click Script Tip NineB in your download packet, or
see it online at http://www.htmlgoodies.com/stips/scripttip68effect.html.

The code is available for copy and paste at http://www.htmlgoodies.com/stips/script-
tip68script.html or by viewing the source of the page in your download packet. I don’t
know that such a long script needs to be reposted here for just a few changes.

19 0789726122_STO 9 10/2/01 8:40 AM Page 371

JavaScript Goodies

372

Losing the MSIE-Only Commands
The biggest thing is to find an equivalent to the way the original author worked with docu-
ment.all. It was basically a line of code that had to be true for the function to work. So, I
set up an if statement that will always be true. The code is at the top of the script:

var zork = 1

if (zork==1)

I created a variable named zork and set it to 1. Next, I asked if zork was equal to 1. It is, of
course, so the script goes on. The drop-down menu is assigned the entire run of hex codes.

Flipping the Table and Function
Note the script. I just copied and pasted the document.write statements above the function.
It was a simple cut and paste.

Changing the Page Background
Step three is to set up the script so that the background is being changed rather than the
table cell. The first line of code in the function is now set up to alter document.bgColor—
the background of the page. The user’s choices are gathered just the same way as before; I
didn’t change that at all.

One More Slight Change
Instead of having the page background appear white, I had it appear black because that’s
what the drop-down menus read when the page is first loaded. I did that by adding a
BGCOLOR attribute in the <BODY> flag.

Now the script will run in Netscape as well as MSIE. This is actually a good way to help you
learn JavaScript. Find a script that will run only in one browser or another; then take the
time to find out why and alter the script so it will run in both.

Because of the makeup of the browsers, I wasn’t able to get the effect exact, but I got pretty
close, don’t you think?

19 0789726122_STO 9 10/2/01 8:40 AM Page 372

A Digital Clock
with Image
Display

Script Tip 10

In lesson 40 in Chapter 7, “Clocks, Counts, and Scroll Text,” I told you that I had a digital
clock that runs displaying numbers. This is it. You need a lot of little parts to make in run.
First, let me show you the code; then we’ll get to where you can grab the parts you’ll need.

Here’s the script:

<HTML>

<HEAD>

<SCRIPT LANGUAGE=”JavaScript”>

<!--

var d=new Array();

for(i=0;i<10;i++) {

d[i]=new Image();

d[i].src=”dgt”+i+”.gif”;

}

var pm=new Image;

pm.src=”dgtp.gif”;

20 0789726122_STO 10 10/2/01 8:34 AM Page 373

JavaScript Goodies

374

var am=new Image;

am.src=”dgta.gif”;

var dates,min,sec,hour;

var amPM=”am”;

function clock() {

dates=new Date();

hour=dates.getHours();

min=dates.getMinutes();

sec=dates.getSeconds();

if(hour < 12) {

amPM=am.src;

}

if(hour > 11) {

amPM=pm.src;

hour=hour-12;

}

if(hour == 0) {

hour=12;

}

if(hour < 10) {

document[“tensHour”].src=”dgtbl.gif”;

document[“Hour”].src=d[hour].src;

}

if(hour > 9) {

document[“tensHour”].src=d[1].src;

document[“Hour”].src=d[hour-10].src;

}

if(min < 10) {

document[“tensMin”].src=d[0].src;

}

if(min > 9) {

document[“tensMin”].src=d[parseInt(min/10,10)].src;

}

document[“Min”].src=d[min%10].src;

if(sec < 10) {

document[“tensSec”].src=d[0].src;

}

if(sec > 9) {

document[“tensSec”].src=d[parseInt(sec/10,10)].src;

}

document[“Sec”].src=d[sec%10].src;

document[“amPM”].src=amPM;

20 0789726122_STO 10 10/2/01 8:34 AM Page 374

375

Script Tip 10 ➤ A Digital Clock with Image Display

setTimeout(“clock();”,100);

}

//-->

</SCRIPT>

</HEAD>

<BODY BGCOLOR=”ffffff” onload=”clock();”>

<center>

➥

➥

➥

➥

➥

</CENTER>

</body>

</HTML>

Here’s the clock. You’ll get something that looks similar to Figure ST10.1.

Figure ST10.1
A screen capture from the
Script Tip showing the
clock and the images you
must download to install
the clock on your page.

To see the effect on your own computer, click Script Tip Ten in your download packet or see
it online at http://www.htmlgoodies.com/stips/scripttip84.html.

20 0789726122_STO 10 10/2/01 8:34 AM Page 375

JavaScript Goodies

376

The code is available for copy and paste at http://www.htmlgoodies.com/stips/
scripttip84script.html or by viewing the source of the page in your download packet.

The images you’ll need are available through a Zip file found in your download packet or
online at http://www.htmlgoodies.com/JSBook/digitalclockface.zip.

You also can grab the images individually if you want. They are online at

http://www.htmlgoodies.com/stips/dgt0.gif through
http://www.htmlgoodies.com/stips/dgt9.gif

http://www.htmlgoodies.com/stips/dgta.gif

http://www.htmlgoodies.com/stips/dgtp.gif

http://www.htmlgoodies.com/stips/dgtbl.gif

http://www.htmlgoodies.com/stips/dgtcol.gif

They are also in the download pack under the previously mentioned names without the
domain and directory.

The names of the numbers speak for themselves. The A and the P are for a.m. and p.m.,
respectively, and the dgtcol image is the colon column. The dgtbl is the blank image that
shows up when nothing is called for—it’s also the default image. It shows up even if the
script doesn’t run. You’ll see that in the image code.

And speaking of that code, here it is:

Now, you might have noticed that I have listed them vertically, but in the code on the
page they’re all in one long line. When you put this on your page, use the long line. The
reason is that browsers often mistake a carriage return for a space. If that happens, a space
will exist between each number and the effect will die.

You’ll notice I’ve broken out the dgtcol images. They never change, so at this point, you
need not worry about them.

20 0789726122_STO 10 10/2/01 8:34 AM Page 376

377

Script Tip 10 ➤ A Digital Clock with Image Display

The two hour numbers are broken down into tensHour and Hour. The minutes are done the
same way (tensMin and Min), as are seconds (tensSec and Sec).

The final digit is the amPM image.

Now that you have the image code down, let’s load them.

Loading All the Images
One of the main concerns about running a digital clock like this one is getting all those
images into the browser’s memory cache. If you have to wait for a download every time a
new number is needed, the effect will die. You want all those images loaded when they’re
called for, so you should preload them. Here’s the code that does it:

var d=new Array();

for(i=0;i<10;i++) {

d[i]=new Image();

d[i].src=”dgt”+i+”.gif”;

}

This is a very clever piece of script. Ten images must load: the numbers 0–9. There are
other images, yes, but it’s the numbers we’re concerned with right now.

You begin by setting up an array, but the array doesn’t exist yet. You’ll build it in a
moment, and it will be named d.

This code forms a loop. Remember that from lesson 35 in Chapter 6, “Mathematics,
Random Things, and Loops?” In this case it’s a for loop with three conditions, and i
equals 0. As long as i is less than 10, it will loop through. If i isn’t yet 10, you add 1 to it
(++). Therefore, i will eventually equal 10 and the loop will stop.

Whatever is between the curly brackets ({ }) following the loop is done every time the loop
flows through.

Notice the square brackets ([]). That’s JavaScript for a number replacement. The variable i
is sitting in there. Each time the script loops through, i is replaced with the number it rep-
resents set by the previous loop.

So, the first time the loop executes, this is created:

d0=new Image();

d0.src=”dgt0”.gif”;

The next time, you get this:

d1=new Image();

d1.src=”dgt1”.gif”;

20 0789726122_STO 10 10/2/01 8:34 AM Page 377

JavaScript Goodies

378

Following the process through, the script runs 10 times. Recognize the format? The codes
it’s creating are preloads. By looping through, the digit images are preloaded.

What about the other images? Here you go:

var pm=new Image;

pm.src=”dgtp.gif”;

var am=new Image;

am.src=”dgta.gif”;

var dates,min,sec,hour;

var amPM=”am”;

Okay, they’re in the cache. Let’s post them, correctly, to the page.

Displaying the Images
Let’s begin playing around with replacing those image tags with the correct numbers,
depending on what time it is.

The time is grabbed from the user’s browser, so there’s no need to worry about daylight
savings time or time zones. As long as the viewer has her browser set correctly, you’re good
to go. If she doesn’t, well, you can’t help that.

Let’s start at the top of the script just below the loading loop and code:

function clock() {

dates=new Date();

hour=dates.getHours();

min=dates.getMinutes();

sec=dates.getSeconds();

if(hour < 12) {

amPM=am.src;

}

if(hour > 11) {

amPM=pm.src;

hour=hour-12;

}

if(hour == 0) {

hour=12;

}

if(hour < 10) {

document[“tensHour”].src=”dgtbl.gif”;

document[“Hour”].src=d[hour].src;

}

if(hour > 9) {

20 0789726122_STO 10 10/2/01 8:34 AM Page 378

379

Script Tip 10 ➤ A Digital Clock with Image Display

document[“tensHour”].src=d[1].src;

document[“Hour”].src=d[hour-10].src;

}

if(min < 10) {

document[“tensMin”].src=d[0].src;

}

if(min > 9) {

document[“tensMin”].src=d[parseInt(min/10,10)].src;

}

document[“Min”].src=d[min%10].src;

if(sec < 10) {

document[“tensSec”].src=d[0].src;

}

if(sec > 9) {

document[“tensSec”].src=d[parseInt(sec/10,10)].src;

}

document[“Sec”].src=d[sec%10].src;

document[“amPM”].src=amPM;

setTimeout(“clock();”,100);

}

Don’t get put off by its size. It’s basically the same thing again and again after you get to
the numbers.

Now … from the top!

The function is named clock(). You might have noticed that it’s called for by an onLoad
event handler in the <BODY> tag. If you didn’t notice, well, it is.

First, you get to some basic clock-building JavaScript. Hopefully, you remember this from
Chapter 7:

dates=new Date();

hour=dates.getHours();

min=dates.getMinutes();

sec=dates.getSeconds();

The variable dates is given the value new Date(). Date() is a JavaScript method that con-
tains all the elements of the current date and time. Remember?

See all the separate elements? Now, you need to use some more code to simply suck out
the parts you want. In this case, you want the hour (getHours()), minutes (getMinutes()),
and seconds (getSeconds()).

The three items are assigned the variable names hour, min, and sec, respectively.

20 0789726122_STO 10 10/2/01 8:34 AM Page 379

JavaScript Goodies

380

Now that you have the elements, let’s test them:

if(hour < 12) {

amPM=am.src;

}

if(hour > 11) {

amPM=pm.src;

hour=hour-12;

}

if(hour == 0) {

hour=12;

}

Let’s start with the hour: If it’s less than 12, the image tag named amPM receives the am.src.
If you remember the preload commands, that would be dgta.gif.

If the hour is greater than 11, you put the pm.src (dgtp.gif) into the tag amPM, and you take
the number represented by hour and subtract 12. That’s because JavaScript works in mili-
tary time. If the time is 20, you take away 12, and get 8 p.m. Get it?

Finally, what if hour is equal to 0 (midnight)? The code says to make hour 12. Now that
that’s all fixed, let’s place the hour:

if(hour < 10) {

document[“tensHour”].src=”dgtbl.gif”;

document[“Hour”].src=d[hour].src;

}

if(hour > 9) {

document[“tensHour”].src=d[1].src;

document[“Hour”].src=d[hour-10].src;

}

You’re worried about two numbers here: If the hour is 10 or greater, you need to place a 1
in the first image and then whatever the hour is in the next. If the hour is 9 or less, you
need a blank in the first digit space and whatever the number is below.

It works through a series of if statements. You start by asking whether the hour is less than
10. If so, the tenHour image tag gets the dgtbl.gif—that’s the blank image. The second
image, Hour, gets the digit equal to the hour (1–9). It’s done by using the square brackets
and allowing the variable inside the square brackets to be replaced by the variable value.
Make sense?

If the hour is greater than 10, the first image (tensHour) gets the number one image and the
second number is created by the hour minute ten. Remember that the hour returned is in
military time, but in the previous code, you took 12 away from any number greater than

20 0789726122_STO 10 10/2/01 8:34 AM Page 380

381

Script Tip 10 ➤ A Digital Clock with Image Display

12. If the hour returned is 2300 hours, you subtracted 12, resulting in 11. Then, you took
away 10 here, resulting in 1. 1 is then used to post the image.

The minutes and seconds are also done through some fancy mathematical fun.

Minutes and Seconds
You’re in the home stretch now. You’ve grabbed the time, configured the returns into num-
bers you can play with, and used those numbers to post the a.m./p.m. image and the two
hour images. Now, you’ll set the minutes and seconds.

Here’s the code:

if(min < 10) {

document[“tensMin”].src=d[0].src;

}

if(min > 9) {

document[“tensMin”].src=d[parseInt(min/10,10)].src;

}

document[“Min”].src=d[min%10].src;

if(sec < 10) {

document[“tensSec”].src=d[0].src;

}

if(sec > 9) {

document[“tensSec”].src=d[parseInt(sec/10,10)].src;

}

document[“Sec”].src=d[sec%10].src;

document[“amPM”].src=amPM;

setTimeout(“clock();”,100);

The script plays with the minutes and seconds in the same way it did the hours, through
if conditional statements.

If the minute returned is less than tensMIN (the first minute image), it is set to d0.src. If
you look at the previous script, you’ll see that is the dgt0.gif.

If the minute is more than 9, you must get the correct 10 number in the tensMin position.
You already know that the minute returned is 10 or above, so you need 1, 2, 3, 4, or 5. The
little math equation parseInt(min/10,10) does the trick.

parseInt is a JavaScript function that turns a text string into an integer and returns that
integer. Let’s say that the minute returned is 43. If you divide 43 by 10, you get 4.3. The
second number allows you to set the base of the integer returned. In this case, 10 is the
base. That gets rid of whatever comes after the decimal point (3 in this example). The
number returned is therefore 4.

20 0789726122_STO 10 10/2/01 8:34 AM Page 381

JavaScript Goodies

382

Now that you have the first minute image, you need the second. That is done, again, by a
quick mathematic equation. The value assigned to Min is arrived at by taking the minute
returned, dividing it by 10, and returning the remainder. That’s what the percentage sign
does.

For example, say the minute returned is 36. If you divide that by 10, you get 3.6. The
remainder is 6, which is what’s returned.

The seconds are done exactly the same way, following the same math and using the sec-
onds returned.

Finally, the amPM flag is given the value represented by the variable amPM from the previous
code. Remember that? It was almost the first thing you set in the script.

Okay, you’ve posted all the images. The problem is that the second changes, well, every
second. You need to get this script to run again and again to repost again and again. The
effect is a running digital clock.

The setTimeout() method does that; it’s set to run the function clock() every 100/1000ths
of a second.

That should do it.

20 0789726122_STO 10 10/2/01 8:34 AM Page 382

JavaScript Basic
Concepts

Appendix A

This appendix contains the following:

Literals

Boolean Literals

Comments

Document Object Model

Event Handlers

Literal Integers

Methods

Objects

Operators

Properties

String

Variable

Literals
A literal is a name assigned to a variable. It is an unchanging title that remains throughout
the script. Here’s an example:

var browser = navigator.Appname

21 0789726122_APP A 10/2/01 8:30 AM Page 383

JavaScript Goodies

384

This has created a variable called browser that is now equal to the browser name.

A literal string is any set of characters with quotation marks around it. This set of characters
doesn’t change. For example, in this code

document.write(“Hello there”)

“Hello there” is a literal string.

Boolean Literals
Boolean literals are literals that have only two values, 1 and 0. The Boolean literal often is
used to represent true (1) and false (0). It helps to think of the true and false as yes and no.
Consider this example:

window.open(“” NAME=”newwindow” HEIGHT=300,WIDTH=300,TOOLBAR=1;)

The toolbar=1 is a Boolean literal that means yes, you want a toolbar.

Comments
Comments are lines of text that are written to the page but do not affect the script’s work-
ings. The most common use is to add lines into a script along the way as a description of
what is happening:

<SCRIPT>

//This prompt requests user name and assigns it the variable ‘username’

var username = prompt(“What is Your Name?”)

</SCRIPT>

In the previous code you see the double slash comment command. The double slash (//)
comments out everything that follows it as long as it stays on the same line. If you allow
the text to go to another line without another set of double slashes, the script will think
the comment is part of the code and will most probably throw an error.

Multiple-line comments can be created using this format:

/*In between the slash and star, you can have

multiple lines of text. As long as the code is surrounded

it will all comment out.*/

Rule of thumb: Keep the asterisk on the side of the slash closest to the text.

21 0789726122_APP A 10/2/01 8:30 AM Page 384

385

Appendix A ➤ JavaScript Basic Concepts

Document Object Model
The concept of hierarchy is of the utmost importance to JavaScript. An example is writing
a line to denote a specific text box HTML form element. Let’s say the form itself is named
FormA and the text box is named Tbox.

The HTML code would look like this:

<FORM NAME=”FormA”>

<INPUT TYPE=”text” NAME=Tbox”>

</FORM>

If you were to write a line of JavaScript representing the text that a user might type into
that text box, the code would look like this:

window.document.FormA.Tbox.value

That statement shows the hierarchy of the page. The browser window, window, is the largest
overriding element in the statement. All events will happen within the browser window.
The document (document) is the next largest, and then the form itself (FormA). Next is the
text box (Tbox), and finally value, which represents what the user has typed into the text
box.

The concept of hierarchy is consistent throughout JavaScript and is known as the
Document Object Model (DOM).

The name DOM, however, is not very descriptive. So, throughout this book, the term hier-
archy statement is used to represent the DOM in any JavaScript.

Event Handlers
An event handler is a command that sits inside an HTML flag and does not require the
beginning <SCRIPT> flag to work. An example is using an onClick event handler inside the
HTML code for a button. When the mouse clicks on the button, the event handler per-
forms the event it’s set up to do. Here’s an example:

<FORM>

<INPUT TYPE=”button” VALUE=”Click For An Alert”

onClick=”alert(“Thanks for clicking!”)”>

</FORM>

When the button is clicked, the alert button pops up. You can get a complete list of event
handlers in Appendix B, “JavaScript Command Reference.”

21 0789726122_APP A 10/2/01 8:30 AM Page 385

JavaScript Goodies

386

Literal Integers
A literal integer is any whole number. For instance, 9 is a literal integer, whereas 9.23 is not.
Literal integers can also be hexadecimal notation employing the numbers 1–9 and the let-
ters a–f. This hex color code for purple is an example of a literal integer: 800080.

Methods
A method is any function that acts on an object. The command window.open() is used to
open a new browser window. In this case, window is the object and open() is the method
acting on the object.

Methods can be easily recognized by the two parentheses immediately following them.
Sometimes those parentheses are given certain parameters by putting those parameters
between the parentheses. When the parentheses are empty, the method acts fully on the
object it follows.

Objects
Objects are items that already exist to JavaScript, such as Math or Date or are created
through JavaScript code. Objects are items that either can be acted on or have certain
properties or characteristics attached to them.

Operators
Think of an operator as something that connects or works between two literals. The binary
operators shown in Table A.1 are the most common.

Table A.1 Binary Operators
Operator Meaning
+ Add
- Subtract
* Multiply
/ Divide
% Divide and return remainder

The operators in Table A.2 test the relationships between literals.

21 0789726122_APP A 10/2/01 8:30 AM Page 386

387

Appendix A ➤ JavaScript Basic Concepts

Table A.2 Operators Testing Relationships Between Literals
Operator Meaning
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
= Assignment
== Equal to
!= Not equal to
|| Or
& And (adding JavaScript commands together)
&& And (literal)
?: Conditional

The operators in Table A.3 are used to separate and end JavaScript commands and lines.

Table A.3 Operators That Separate and End JavaScript Commands
Operator Meaning
, Separates commands
; Ends a line of JavaScript

Properties
A property is a characteristic or portion of a larger object. An example of a property is the
status bar of the browser window written this way: window.status (object.property).

String
A string is any number of characters inside double or single quotation marks. Here’s an
example:

document.write(“This is a string”)

This example simply writes that string to the HTML document.

Variable
The ability to assign variable names to lines of code is paramount in JavaScript. Except for
JavaScript commands themselves and an additional short list of unacceptable variable

21 0789726122_APP A 10/2/01 8:30 AM Page 387

JavaScript Goodies

388

names in Appendix C, “JavaScript Reserved Variable Words,” a variable can be any series of
letters or numbers, or a combination of both.

JavaScript allows for two levels of variables, local and global.

Local variables are variables that are viable only within a function. JavaScript understands
that whenever a variable is encased within a function, that variable name is viable only
inside that function. That way, if you copy and paste a script onto a page that already has
a script on it, any variables that are equally named will not clash as long as that variable
name is found within a function.

Global variables are variables that are not found within functions, and therefore they can
clash with the variables on the same page.

Here’s an example:

<SCRIPT LANGUAGE=”javascript”>

var joe = 12

function writeit()

{

var joe = “Joe Burns”

document.write(joe)

}

</SCRIPT>

The variable joe is used twice, but because one occurrence is found outside the function—
the global variable—and one is found inside the function—the local variable—the two will
not clash.

Now, with all that said, it is not a good idea to follow this format and use similar variable
names within your scripts. The purpose of the local variables being hidden is far more for
protection against clashes with other scripts on the same page than with variable names
within the same script.

21 0789726122_APP A 10/2/01 8:30 AM Page 388

JavaScript
Command
Reference

Appendix B

This appendix is arranged in alphabetical order. It covers the commands found in this
book, plus commands that can be substituted in some of the scripts in this book.

Please note that JavaScript is case sensitive. The capitalization pattern used in this appendix
is how the commands must appear in your scripts; otherwise, they will not work.

action Property
An action works with the return of an HTML form. It works the same as the value you
assign to the ACTION attribute when you define a form, and it’s primarily used to call server-
side CGI scripts. It’s used to actually do something with the form information. Let’s say you
have a form you have named forma. It would look like this:

<FORM NAME=”forma”>

<INPUT TYPE=”text” NAME=”Tbox”>

</FORM>

You could send the output of that form to an e-mail address by using the following com-
mand:

<FORM NAME=”forma”>

<INPUT TYPE=”button”onClick=”forma.action=’mailto:jburns@htmlgoodies.com’”>

</FORM>

22 0789726122_APP B 10/2/01 8:30 AM Page 389

JavaScript Goodies

390

alert Method
The alert method displays a JavaScript modal dialog box containing the text noted in the
command. The alert box offers only an OK button—unlike the confirm box, which offers
both an OK and a Cancel button. Follow this format to have an alert box open upon the
loading of the page:

<BODY onLoad=”alert(“This is an Alert Box!”)”>

The alert box is shown in Figure B.1.

Figure B.1
An alert box.

You can find alert used as part of a JavaScript example in Lesson 6 in Chapter 2, “Popping
Up Text with Mouse Events.”

See also: confirm and prompt

alinkColor Property
You use alinkColor to return the active link color using a document.write statement:

<SCRIPT LANGUAGE=”javascript”>

document.write(“The active link color “ +document.alinkColor+ “.”)

</SCRIPT>

22 0789726122_APP B 10/2/01 8:30 AM Page 390

391

Appendix B ➤ JavaScript Command Reference

You can find alinkColor used as part of a JavaScript example in Lesson 3 in Chapter 1,
“The Basics.”

See also: bgColor, fgColor, linkColor, and vlinkColor

appCodeName Property
The appCodeName property returns the codename string of the browser. The command uses
this format:

<SCRIPT LANGUAGE=”javascript”>

document.write(“You are using “ +navigator.appCodeName+ “.”)

</SCRIPT>

You can find appCodeName used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: appName, appVersion, navigator, and userAgent

appName Property
This returns the official name of the browser string:

<SCRIPT LANGUAGE=”javascript”>

document.write(“You are using “ +navigator.appName+ “.”)

</SCRIPT>

You can find appName used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: appCodeName, appVersion, navigator, and userAgent

appVersion Property
This command returns the browser version number string:

<SCRIPT LANGUAGE=”javascript”>

document.write(“You are using “ +navigator.appVersion+ “.”)

</SCRIPT>

You can find appVersion used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: appCodeName, appName, navigator, and userAgent

array Method
Arrays are variables. For the most part, variables have only one value. However, an array is
a variable with multiple values. An array can be an ordered collection of many numbers,
letters, words, or objects, or a combination of those four.

22 0789726122_APP B 10/2/01 8:30 AM Page 391

JavaScript Goodies

392

When you create an array, the items are assigned a number, starting at 0 and counting up:

var NewArray=(“item0”, “item1”, “item2”, “item3”)

You can also set up arrays of literals by numbering them in this fashion:

var dayName=new Array(7)

dayName[0]=”Sunday”

dayName[1]=”Monday”

dayName[2]=”Tuesday”

dayName[3]=”Wednesday”

dayName[4]=”Thursday”

dayName[5]=”Friday”

dayName[6]=”Saturday”

After creating an array, you can call for only one item of the array by calling for the item
by number. Using the previous array of the days of the week, this code would return
Friday:

<SCRIPT LANGUAGE=”javascript”

document.write(dayName[5])

</SCRIPT>

You can find array first used as part of a JavaScript example in Lesson 15 in Chapter 3,
“Manipulating Data and the Hierarchy of JavaScript.” Chapter 8, “Arrays,” is devoted to
arrays.

back Method
The back method is used in conjunction with the history object to move throughout the
browser’s history list:

<SCRIPT LANGUAGE=”javascript”>history.back() //one page back in history

history.back(-3) //moves three pages back in history

</SCRIPT>

You can set the number so the back command moves as many pages as you want. Be care-
ful, though, that the user actually has as many pages in his history as you call for.

Please note that if back is used within a frameset, the entire frameset will not reload. Each
frame that was changed loads the page that came before it.

You can find back used as part of a JavaScript example in Chapter 2, Lesson 9.

See also: forward, go, and history

22 0789726122_APP B 10/2/01 8:30 AM Page 392

393

Appendix B ➤ JavaScript Command Reference

bgColor Property
This sets or returns the document background color. Here, bgColor is used inside an HTML
radio button and the onClick event handler to set the background color:

<FORM>

<INPUT TYPE=”radio” onClick=”document.bgColor = green”>

</FORM>

You can find bgColor used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: alinkColor, fgColor, linkColor, and vlinkColor

big Method
The big method is used to alter a text string. It sets the string to print to the document
one font size bigger than the default:

<SCRIPT LANGUAGE=”javascript”>

var textString = “Hello there!”

document.write(textString.big())

</SCRIPT>

See also: blink, bold, fixed, fontcolor, fontsize, italics, small, and strike

blink Method
The blink method sets a text string to blink on and off in the browser window:

<SCRIPT LANGUAGE=”javascript”>

var textString = “Hello there!”

document.write(textString.blink())

</SCRIPT>

This is a Netscape Navigator–only command. Internet Explorer will not recognize it.
Besides, this is an unwelcome command. For the most part, people do not like blinking
text, so use it sparingly if at all.

See also: big, bold, fixed, fontcolor, fontsize, italics, small, and strike

22 0789726122_APP B 10/2/01 8:30 AM Page 393

JavaScript Goodies

394

bold Method
The bold method sets a text string to appear in bold text font:

<SCRIPT LANGUAGE=”javascript”>

var textString = “Hello there!”

document.write(textString.bold())

</SCRIPT>

See also: big, blink, fixed, fontcolor, fontsize, italics, small, and strike

close Method
The close method acts on its object—window or self—to close the window. The following
code shows how a button can close the main window using an onClick event handler:

<FORM>

<INPUT TYPE=”button” VALUE=”Close the Window” onClick=”self.close()”>

</FORM>

See also: clear, open, window, write, and writeln

confirm Method
The confirm method displays a dialog box that offers both an OK and a Cancel button.
Refer to the section “The alert Method” earlier in this appendix for a different type of
box. This script uses a function to offer a confirm box as a test when entering a page. The
confirm method returns either true or false, depending on the user’s choice of button:

<SCRIPT LANGUAGE=”javascript”>

function confirmit()

{if (!confirm (“Are you sure you want to enter?”))

history.go(-1);return “ “}

</SCRIPT>

The confirm box is shown in Figure B.2.

You can find confirm used as part of a JavaScript example in Lesson 21 in Chapter 4,
“Flipping Images and Opening Windows with Mouse Events.”

See also: alert and prompt

22 0789726122_APP B 10/2/01 8:30 AM Page 394

395

Appendix B ➤ JavaScript Command Reference

Date Object
Date is an object that contains all date and time information, allowing for the return of
both specific date and time strings. This is the simplest use of the object to return a full
date and time string:

<SCRIPT LANGUAGE=”javascript”>

var dayandtime = new Date()

document.write(“It is “ +dayandtime+ “.”)

</SCRIPT>

You can find Date used as part of a JavaScript example in Chapter 3, Lesson 12.

See also: getDate, getDay, getFullYear, getHours, getMinutes, getMonth, getSeconds,
getTimezoneOffset, and getYear

defaultStatus Property of window
The defaultStatus property of the window object is used to display a string message in the
browser’s status bar. You use defaultStatus when you want an event to occur in the status
bar requiring no loading. For example, a scroll would be placed in the status bar through a
defaultStatus. A text rollover, which requires loading, should use “status” (covered later in
the Appendix):

Figure B.2
The confirm box.

22 0789726122_APP B 10/2/01 8:30 AM Page 395

JavaScript Goodies

396

<SCRIPT LANGUAGE=”javascript”>

defaultStatus = “This page’s title is “ +document.title+ “.”

</SCRIPT>

You can find defaultStatus used as part of a JavaScript example in Chapter 3, Lesson 14.

See also: status and window

document Object
The document object represents the current HTML document loaded into the browser. Here,
document is acted on by a write method to post text to the page:

<SCRIPT LANGUAGE=”javascript”>

document.write(“Hello there!”)

</SCRIPT>

You can find document used as part of a JavaScript example in Chapter 1, Lesson 1.

See also: write and writeln

document Property
document is both an object and a property. The document property is part of the window
object. You don’t see window a great deal because the window object is often implied, as it is
in this example:

document.bgColor = red

The technically correct method of writing the previous line is

window.document.bgcolor = red

However, because window is the overriding, highest-level object in JavaScript, window is not
required at the beginning of hierarchy statements. It is simply implied.

See also: alinkColor, anchor, bgColor, cookie, fgColor, lastModified, linkColor, location,
referrer, title, and vlinkColor

eval Method
eval is a method that forces a string value to evaluate to a string expression. Here’s an
example:

22 0789726122_APP B 10/2/01 8:30 AM Page 396

397

Appendix B ➤ JavaScript Command Reference

<SCRIPT LANGUAGE=”javascript”>

document.mypic.src=eval(“img”+num+”.src”)

</SCRIPT>

You can find eval used as part of a JavaScript example in Lesson 36 in Chapter 6,
“Mathematics, Random Things, and Loops.”

fgColor Property
The fgColor property represents the foreground color (actually the text color) of the cur-
rent HTML document. You could return the fgColor color (text color) using a
document.write statement:

<SCRIPT LANGUAGE=”javascript”>

document.write(“The text color “ +document.fgColor+ “.”)

</SCRIPT>

You can find fgColor used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: alinkColor, bgColor, linkColor, and vlinkColor

fixed Method
The fixed method sets a string to a font much like the typewriter text <TT> font in HTML:

<SCRIPT LANGUAGE=”javascript”>

var textString = “Hello there!”

document.write(textString.fixed())

</SCRIPT>

See also: big, bold, fontcolor, fontsize, italics, small, and strike

fontcolor Method
fontcolor works similarly to the flag in HTML. It sets a string to a specific
color:

<SCRIPT LANGUAGE=”javascript”>

var textString = “this will be red text”

document.write(textString.fontcolor(“red”))

</SCRIPT>

See also: big, bold, fixed, fontsize, italics, small, and strike

22 0789726122_APP B 10/2/01 8:30 AM Page 397

JavaScript Goodies

398

fontsize Method
fontsize sets a text string to a relative sized font much like the HTML flag:

<SCRIPT LANGUAGE=”javascript”>

var textString = “this will be red text”

document.write(textString.fontsize(“4”))

</SCRIPT>

See also: big, bold, fixed, fontcolor, italics, small, and strike

for loop
The for loop is used to run a group of code statements repeatedly, by setting a series of
parameters that have to be true for the looping to stop. Traditionally, for loops are used
when you know how many times you want a loop to run. This is the format for a for loop:

<SCRIPT LANGUAGE=”javascript”>

for (i=1; i<=5; i=i+1)

{

JavaScript event

}

</SCRIPT>

The event loops as long as i is less than or equal to 5. Notice that each time the loop runs,
i has one added to it; therefore, this script loops five times.

You can find the for loop used as part of a JavaScript example in Chapter 6, Lesson 35.

See also: while

forward Method
forward is used with the history object to move through the browser’s history list:

<SCRIPT LANGUAGE=”javascript”>

history.forward() //moves one page forward in the history

history.back(-3) //moves three back in the history

</SCRIPT>

You can set the number of pages higher or lower than 1, but remember that the user might
not have visited enough pages for the button created by this code to work. It’s best to just
use 1.

You can find forward used as part of a JavaScript example in Chapter 2, Lesson 9.

See also: back, go, and history

22 0789726122_APP B 10/2/01 8:30 AM Page 398

399

Appendix B ➤ JavaScript Command Reference

frame Property
The frame property is used to denote a specific frame window, usually in terms of a hyper-
text link. Frames are given a numeric order, starting with 0, in the order they appear on
the HTML document. This example loads page.html into the second frame in the list of
frame commands:

<FORM>

<INPUT TYPE=”BUTTON” OnClick=”parent.frames[1].location=’page.html’”>

</FORM>

frame can also be written as an object representing a portion of the browser window set
aside through HTML FRAMESET flags. The frame itself is named in the HTML as shown in
the following code:

<FRAMESET COLS=”50%,50%”>

<FRAME SRC=”page1.html” NAME=”frame1”>

<FRAME SRC=”page2.html” NAME=”frame2”>

</FRAMESET>

After it is named, each frame window is an object and can be targeted to receive a hyper-
text link output through JavaScript, as shown in the following code:

parent.frame1=page3.html

function Object
The purpose of the function command is to both combine and name a group of JavaScript
events specifically to create a single event. By assigning a function name to a set of
JavaScript commands, the entire group of events can be called later in the script by using
just the function name.

The format for creating a function is shown in the following code. This function will be
named bob:

<SCRIPT LANGUAGE=”javascript”>

function bob()

{

JavaScript commands and statements

}

</SCRIPT>

The function can be triggered to run in different ways. The following format calls the
function when the HTML document loads into the browser window. Note the parentheses

22 0789726122_APP B 10/2/01 8:30 AM Page 399

JavaScript Goodies

400

following the function name. It’s the same format used with a method to act on an
object—that’s because a method is a function applied to an object.

<BODY onLoad=”bob()”>

You can find function first used as part of a JavaScript example in Chapter 3, Lesson 14.

getDate Method
The getDate method returns the numeric integer of the day of the month (1–31, if the
month has that many days):

<SCRIPT LANGUAGE=”javascript”>

RightNow = new Date();

document.write(“Today’s day is “ + RightNow.getDate()+ “.”)

</SCRIPT>

You can find getDate used as part of a JavaScript example in Chapter 3, Lesson 12.

See also: getDay, getFullYear, getHours, getMinutes, getMonth, getSeconds,
getTimezoneOffset, and getYear

getDay Method
The getDay method returns the numeric integer of the day of the week, where Sunday is 0
and Saturday is 6:

<SCRIPT LANGUAGE=”javascript”>

RightNow = new Date();

document.write(“Today’s day is “ + RightNow.getDay()+ “.”)

</SCRIPT>

This numeric representation is not very helpful. You’ll need to write a script to change the
number into a day text string using an array.

You can find getDay used as part of a JavaScript example in Chapter 3, Lesson 12.

See also: getDate, getFullYear, getHours, getMinutes, getMonth, getSeconds,
getTimezoneOffset, and getYear

getFullYear Method
The getFullYear method returns a four-digit integer (rather than two) representation of the
current year:

22 0789726122_APP B 10/2/01 8:30 AM Page 400

401

Appendix B ➤ JavaScript Command Reference

<SCRIPT LANGUAGE=”javascript”>

RightNow = new Date();

document.write(“The hours is “ + RightNow.getFullYear()+ “.”)

</SCRIPT>

This command was created as a repair to the Y2K bug.

You can find getFullYear used as part of a JavaScript example in Chapter 3, Lesson 12.

See also: getDate, getDay, getHours, getMinutes, getMonth, getSeconds, getTimezoneOffset,
and getYear

getHours Method
The getHours method returns the numeric integer of the current hour in military format,
0–23:

<SCRIPT LANGUAGE=”javascript”>

RightNow = new Date();

document.write(“The hours is “ + RightNow.getHours()+ “.”)

</SCRIPT>

You can find getHours used as part of a JavaScript example in Chapter 3, Lesson 12.

See also: getDate, getDay, getFullYear, getMinutes, getMonth, getSeconds,
getTimezoneOffset, and getYear

getMinutes Method
The getMinutes method returns the numeric integer of the current minute, 0–59:

<SCRIPT LANGUAGE=”javascript”>

RightNow = new Date();

document.write(“The minute is “ + RightNow.getMinutes()+ “.”)

</SCRIPT>

You can find getMinutes used as part of a JavaScript example in Chapter 3, Lesson 12.

See also: getDate, getDay, getFullYear, getHours, getMonth, getSeconds, getTimezoneOffset,
and getYear

getMonth Method
The getMonth method returns the numeric integer of the current month. In one of the
more interesting JavaScript quirks, this method is actually always off by 1 because it sees

22 0789726122_APP B 10/2/01 8:30 AM Page 401

JavaScript Goodies

402

January as 0. To fix that, you should always add 1 to the output of the method. Here’s the
format:

<SCRIPT LANGUAGE=”javascript”>

RightNow = new Date();

NewMonth = [RightNow.getMonth+1]

document.write(“The Month is “ + NewMonth + “.”)

</SCRIPT>

You can find getMonth used as part of a JavaScript example in Chapter 3, Lesson 12.

See also: getDate, getDay, getFullYear, getHours, getMinutes, getSeconds,
getTimezoneOffset, and getYear

getSeconds Method
The getSeconds method returns the numeric integer of the current second, 0–59:

<SCRIPT LANGUAGE=”javascript”>

RightNow = new Date();

document.write(“The seconds are “ + RightNow.getSeconds()+ “.”)

</SCRIPT>

You can find getSeconds used as part of a JavaScript example in Chapter 3, Lesson 12.

See also: getDate, getDay, getFullYear, getHours, getMinutes, getMonth, getTimezoneOffset,
and getYear

getTimezoneOffset Method
The getTimezoneOffset method returns the number of minutes difference between your
user’s computer and Greenwich mean time (GMT):

<SCRIPT LANGUAGE=”javascript”>

RightNow = new Date();

document.write(“The minutes offset is “+ RightNow.getTimezoneOffset()+ “.”)

</SCRIPT>

See also: getDate, getDay, getFullYear, getHours, getMinutes, getMonth, getSeconds, and
getYear

getYear Method
The getYear method returns a two-digit representation of the year, created by taking the
current year and subtracting 1900:

22 0789726122_APP B 10/2/01 8:30 AM Page 402

403

Appendix B ➤ JavaScript Command Reference

<SCRIPT LANGUAGE=”javascript”>

RightNow = new Date();

document.write(“The year is “ + RightNow.getYear()+ “.”)

</SCRIPT>

You can get the full four-digit year representation by using the getFullYear method or by
re-adding the 1900.

For years after 1999, getYear returns a three-digit value instead of a two-digit value.

You can find getYear used as part of a JavaScript example in Chapter 3, Lesson 12.

See also: getDate, getDay, getFullYear, getHours, getMinutes, getMonth, getSeconds, and
getTimezoneOffset

go Method
go works with the history object to load pages from the user’s history file:

<SCRIPT LANGUAGE=”javascript”>

history.go(-2) // Go back two pages in the history

</SCRIPT>

You can find go used as part of a JavaScript example in Chapter 2, Lesson 9.

See also: forward and history

history Object
history is an object representing the browser’s history file, which is the list of pages the
viewer has visited during the current session. The following example returns the number
of items listed in the history file. The command value is used to retrieve the number:

<SCRIPT LANGUAGE=”javascript”>

document.write(“You’ve been to “ + history.length + “pages.”)

</SCRIPT>

You can find history used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: back and forward

host Property
The host property returns the name of the user’s host and the port being used to connect
to the Internet. If no port is specified, just the host name is returned:

22 0789726122_APP B 10/2/01 8:30 AM Page 403

JavaScript Goodies

404

<SCRIPT LANGUAGE=”javascript”>

document.write(“You’re from “ +location.host+ “.”)

</SCRIPT>

The line might return www.joe.com:80.

You can find host used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: hostname, href, location, and protocol

hostname Property
The hostname property returns the user’s host in the same manner as host, but without the
port number attached:

<SCRIPT LANGUAGE=”javascript”>

document.write(“You’re from “ +location.hostname+ “.”)

</SCRIPT>

The line might return www.joe.com.

You can find hostname used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: host, href, location, and protocol

href Property of location
href is used to denote a string of the entire URL of a specified window object. Using this
property, you can open a specified URL in a window:

<FORM>

<INPUT TYPE=”button” onClick=”location.href=’page.html’”>

</FORM>

You can find href used as part of a JavaScript example in Chapter 2, Lesson 6.

See also: host, hostname, location, and protocol

if/else
The if/else structure is a conditional statement. The format states that if something is
true, enact a specified JavaScript event. If not, enact a different JavaScript event.

The format follows this pattern:

<SCRIPT LANGUAGE=”javascript”>

if (condition to be met)

{JavaScript event}

22 0789726122_APP B 10/2/01 8:30 AM Page 404

405

Appendix B ➤ JavaScript Command Reference

else

{some other JavaScript event}

</SCRIPT>

If the condition following the if condition is met, the function in the first set of braces is
enacted. If not, the function in the second set of braces runs.

In addition, you can set up a series of if conditions with no else. You would write one if
statement after another, as shown in the following code:

<SCRIPT LANGUAGE=”javascript”>

if (condition to be met)

{JavaScript event}

if (condition to be met)

{some other JavaScript event}

if (condition to be met)

{some other JavaScript event}

if (condition to be met)

{some other JavaScript event}

</SCRIPT>

However, if you follow this format, you should ensure that one of the if statements will be
true every time, even if it means adding a condition that acts as a catchall if all your con-
ditions are false. By setting up your if/else statements so that each time the script runs, at
least one of them is true, you have control over whatever input the user or the script itself
offers.

You can find if/else first used as part of a JavaScript example in Chapter 4, Lesson 21.

indexOf Method
The method indexOf returns the numeric location of a specific string or character. Because
JavaScript counts everything and begins counting at 0, every string has an ordered set of
letters.

In addition, indexOf can be used to check whether something does not appear in a string
through the use of the -1 condition. Here’s an example:

<SCRIPT LANGUAGE=”javascript”>

if (document.TheForm.email.value.indexOf(“@”)==-1)

{alert(“there’s no @, this is not a valid email address”)}

else

{alert(“Go on”)}

</SCRIPT>

22 0789726122_APP B 10/2/01 8:30 AM Page 405

JavaScript Goodies

406

This code checks to see whether the text string entered in the text box e-mail includes an
@. You use -1 because 0 is actually an index number in the mind of JavaScript. Therefore,
you can’t ask whether there are 0 instances of @. If an @ appears in the text box, there is a 0
index number. The -1 format checks for no instances.

You can find indexOf used as part of a JavaScript example in Lesson 43 in Chapter 7,
“Clocks, Counts, and Scroll Text.”

italics Method
The italics method is used to make a string print to a document in italics:

<SCRIPT LANGUAGE=”javascript”>

var textString = “Hello there!”

document.write(textString.italics())

</SCRIPT>

See also: big, bold, fontcolor, fontsize, small, and strike

lastModified Property
When a document is altered and saved, or placed on a server, a date is recorded. The
lastModified method returns that date to the current document:

<SCRIPT LANGUAGE=”javascript”>

document.write(“I updated this page on “ +document.lastModified+ “.”)

</SCRIPT>

But remember that lastModified depends on the server’s records. It isn’t always accurate,
so use it as a guide, rather than as an end-all for the last updated date.

You can find lastModified used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: alinkColor, anchor, bgColor, cookie, fgColor, lastModified, linkColor, location,
referrer, title, and vlinkColor

length Property
The length property returns a number representing the number of items that appear with-
in the object it is attached to. The following example returns the number of pages the user
has visited by returning the length of the history object:

<SCRIPT LANGUAGE=”javascript”>

document.write(“You’ve been to “ +history.length+ “pages”)

</SCRIPT>

22 0789726122_APP B 10/2/01 8:30 AM Page 406

407

Appendix B ➤ JavaScript Command Reference

This property can also be used to return the number or characters in a string or HTML
form text box.

You can find length used as part of a JavaScript example in Lesson 24 in Chapter 5,
“Forms: A Great Way to Interact with Your Users.”

See also: array and history

linkColor Property
The linkColor property denotes or returns the color of the links within the current
document.

You could return the linkColor, in hexadecimal form, using a document.write statement:

<SCRIPT LANGUAGE=”javascript”>

document.write(“The link color “ +document.linkColor+ “.”)

</SCRIPT>

You can find linkColor used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: alinkColor, fgColor, and vlinkColor

location Object
location represents Internet address information about the current HTML document. You
can use the current location to jump to another location. The event will look similar to a
simple hypertext link being clicked:

<FORM OnSubmit=”location.href = ‘page.html’”>

<INPUT TYPE=”text”>

<INPUT TYPE=”submit”>

</FORM>

You can find location used as part of a JavaScript example in Chapter 2, Lesson 6.

See also: host, hostname, href, location, pathname, port, and protocol

location Property
The location property represents the location of the current document. Use it to return
the page’s URL:

22 0789726122_APP B 10/2/01 8:30 AM Page 407

JavaScript Goodies

408

<SCRIPT LANGUAGE=”javascript”>

document.write(“You’re looking at “ +document.location+ “.”)

</SCRIPT>

You can find location used as part of a JavaScript example in Chapter 1, Lesson 3.

Math Object
Note the capitalization: The M is uppercase. Math is an object, but by itself it means noth-
ing other than that it represents mathematics. But after you attach a method to Math, it
can represent a number or a method of manipulating numbers. Table B.1 lists many of the
Math object’s methods and properties. You’ll be able to tell the methods because they are
followed by parentheses—the properties are not. Again, notice the capitalization.

Table B.1 Math Object Methods
Method Return Value
Math.abs(argument) The absolute value of an argument
Math.acos(argument) The arc cosine of the argument
Math.asin(argument) The arc sine of the argument
Math.atan(argument) The arc tangent of the argument
Math.atan2(argument1, argument2) The angle of polar coordinates x and y
Math.ceil(argument) The number 1 larger than or equal to the argu-

ment
Math.cos(argument) The cosine of the argument
Math.exp(argument) A natural logarithm
Math.floor(argument) The number 1 less than or equal to the argu-

ment
Math.E Base of natural logarithms
Math.LN2 Logarithm of 2 (appx. 0.6932)
Math.LN10 Logarithm of 10 (appx. 2.3026)
Math.log Logarithm of positive numbers greater than 0
Math.LOG10E Base-10 logarithm of E
Math.LOG2E Base-2 logarithm of E
Math.max(arg1,arg2) The greater of the two arguments
Math.min(arg1,arg2) The lesser of the two arguments
Math.PI The value of pi
Math.pow(arg1, arg2) arg1 raised to the arg2 power
Math.random A random number between 0 and 1
Math.round Rounds to the nearest number

22 0789726122_APP B 10/2/01 8:30 AM Page 408

409

Appendix B ➤ JavaScript Command Reference

Table B.1 continued
Method Return Value
Math.sin(argument) The sine of the argument
Math.sqrt(argument) The square root of the argument
Math.SQRT1_2 The square root of 1/2
Math.SQRT2 The square root of 2
Math.tan(argument) The tangent of the argument

The previous arguments are put together using these mathematics operators:

+: Add

–: Subtract

*: Multiply

/: Divide

For example

<SCRIPT LANGUAGE=”javascript”>

Math.square(2*2) //will return 2, the square root of four (2*2)

</SCRIPT>

Many of the preceding Math.methods that represent numbers can be used together to create
mathematical equations. This code returns a random number between 1 and 50:

<SCRIPT LANGUAGE=”javascript”>

Math.round(50 * Math.random());

</SCRIPT>

You can find Math, and some of the preceding methods, used as part of a JavaScript exam-
ple in Chapter 6, Lesson 33.

navigator Object
navigator is the object containing all the information regarding the user’s browser:

<SCRIPT LANGUAGE=”javascript”>

document.write(“You’re using “ +navigator.appName+ “.”)

</SCRIPT>

You can find navigator used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: appCodeName, appName, appVersion, and userAgent

22 0789726122_APP B 10/2/01 8:30 AM Page 409

JavaScript Goodies

410

onBlur Event Handler
onBlur is enacted when the form item loses focus, meaning cursor attention has moved
away from the element:

<FORM>

<INPUT TYPE=”text”onBlur=”alert(‘Stop! Did you fill in your name?’)”>

</FORM>

You can find onBlur used as part of a JavaScript example in Chapter 2, Lesson 6.

onChange Event Handler
onChange occurs when data in a form item is changed and focus is moved off that item:

<FORM>

<TEXTAREA onChange=”alert(‘Something wrong?’)”></TEXTAREA>

</FORM>

You can find onChange used as part of a JavaScript example in Chapter 2, Lesson 6.

onClick Event Handler
When the mouse is clicked on a particular element identified by the event handler,
onClick is enacted:

<FORM>

<INPUT TYPE=”submit” onClick=”location.href=’page.html’”>

</FORM>

You can find onClick used as part of a JavaScript example in Chapter 2, Lesson 6.

onDblClick Event Handler
onDblClick is new to the HTML 4.0 code and can be used in a range of elements, including
forms, tables, and the command that can encompass any item. The event handler
is performed when the mouse is clicked twice. This example shows the use of the
flag:

The command is only there to carry the onDblClick. It alters the image in no other
way.

You can find onDblClick and used as part of a JavaScript example in Chapter 2,
Lesson 8.

22 0789726122_APP B 10/2/01 8:30 AM Page 410

411

Appendix B ➤ JavaScript Command Reference

onFocus Event Handler
onFocus occurs when focus is placed on a form item, meaning it was clicked or moved to
by pressing the Tab key:

<FORM>

<INPUT TYPE=”text” onFocus=”window.status=’Fill in your name’”

</FORM>

You can find onFocus used as part of a JavaScript example in Chapter 2, Lesson 6.

onKeyDown Event Handler
onKeyDown is enacted when the user presses a key:

<FORM>

<INPUT TYPE=”text” onKeyDown=”alert(‘Filling in the form yet??’)”>

</FORM>

onKeyUp Event Handler
When the user releases the key, onKeyUp is enacted:

<FORM><INPUT TYPE=”text” onKeyUp=”alert(‘Thanks, that hurt.’)”>

</FORM>

onLoad Event Handler
onLoad appears in the BODY flag of the HTML document:

<BODY onLoad=”function()”>

Its purpose is to act as a trigger for a function, or the JavaScript code that is attached to it,
when the page loads.

You can find onLoad used as part of a JavaScript example in Chapter 2, Lesson 6.

onMouseDown Event Handler
onMouseDown is new with HTML 4.0, so not all browsers support it yet. This event occurs
when the mouse button is clicked down:

You can find onMouseDown used as part of a JavaScript example in Chapter 2, Lesson 8.

22 0789726122_APP B 10/2/01 8:30 AM Page 411

JavaScript Goodies

412

onMouseMove Event Handler
onMouseMove occurs when the user moves the mouse:

<BODY onMouseMove=”function()”>

onMouseOut Event Handler
onMouseOut is usually used in conjunction with the onMouseOver event handler to create an
image flip effect:

<A HREF=”http://www.cnn.com”

onMouseOver=”document.pic1.src=’menu1on.gif’”

➥onMouseOut=”document.pic1.src=’menu1off.gif’”>

You can find onMouseOut used as part of a JavaScript example in Chapter 2, Lesson 7.

onMouseOver Event Handler
When the mouse passes over the top of the item, onMouseOver occurs:

<A HREF=”http://www.cnn.com”

onMouseOver=”document.pic1.src=’menu1on.gif’”

onMouseOut=”document.pic1.src=’menu1off.gif’”>

You can find onMouseOver used as part of a JavaScript example in Chapter 2, Lesson 5.

onMouseUp Event Handler
onMouseUp takes place when the user releases the mouse button and is often used in con-
junction with onMouseDown to create an effect of two events with one mouse click:

<A HREF=”http://www.cnn.com”

onMouseDown=”document.pic1.src=’menu1on.gif’”

onMouseUp=”document.pic1.src=’menu1off.gif’”>

You can find onMouseUp used as part of a JavaScript example in Chapter 2, Lesson 8.

22 0789726122_APP B 10/2/01 8:30 AM Page 412

413

Appendix B ➤ JavaScript Command Reference

onSelect Event Handler
onSelect is enacted when some, or all, of the form element is highlighted:

<FORM>

<INPUT TYPE=”text” onSelect=”alert(‘function()’)”>

</FORM>

onSubmit Event Handler
The onSubmit event occurs when the form is submitted. This event handler goes best in the
submit-button portion of the HTML form:

<FORM>

<INPUT TYPE=”submit” onSubmit=”document.bgColor=’red’”>

</FORM>

You can find onSubmit used as part of a JavaScript example in Chapter 2, Lesson 6.

onUnload Event Handler
Like the onLoad event handler, onUnload is often found in the BODY flag:

<BODY onLoad=”function()” onUnload=”alert(‘bye!’)”>

It is enacted when the user moves to another page or unloads the current page.

You can find onUnload used as part of a JavaScript example in Chapter 2, Lesson 6.

open Method
You can use open to open a new browser window, in which you can load a whole new
HTML document, or to create a second window from the original page. This code opens a
new browser window and loads page.html into it:

<SCRIPT LANGUAGE=”javascript”>

window.open(‘page.html’)

</SCRIPT>

This example creates a new browser window and fills it with the text from the
document.write statements:

<SCRIPT LANGUAGE=”javascript”>

function openWindow()

22 0789726122_APP B 10/2/01 8:30 AM Page 413

JavaScript Goodies

414

{

OpenWindow=window.open(“”, “newwin”, “height=250,width=250”)

OpenWindow.document.write(“<HTML>”)

OpenWindow.document.write(“<TITLE>Welcome</TITLE>”)

OpenWindow.document.write(“<BODY BGCOLOR=’pink’>”)

OpenWindow.document.write(“<H1>Welcome to my page!</H1>”)

OpenWindow.document.write(“</BODY>”)

OpenWindow.document.write(“</HTML>”)

}

</SCRIPT>

This code sets the new window’s HEIGHT and WIDTH to 250 pixels. The open method also
allows you to set the window elements shown in Table B.2.

Table B.2 Window Elements That Can Be Set with the open Method
Window Element Can Be Set to…
Toolbar Yes or no
Menu bar Yes or no
Scrollbars Yes or no
Resizable Yes or no
Location Yes or no
Directories Yes or no
Status Yes or no

You can find open, and the commands listed previously, used as part of a JavaScript
example in Chapter 4, Lesson 19.

See also: window

parent Property of frame and window
parent is used in hierarchy statements to denote the document in a frame situation or the
document that spawned the new window:

<FORM>

<INPUT TYPE=”button” onClick=”parent.location.href=’page.html’”>

</FORM>

See also: frame and window

22 0789726122_APP B 10/2/01 8:30 AM Page 414

415

Appendix B ➤ JavaScript Command Reference

pathname Property
The pathname method is used to return the path portion of a URL without the root of the
server:

<SCRIPT LANGUAGE=”javascript”>

document.write(“You’re at www.joe.com/” +location.pathname+ “.”)

</SCRIPT>

See also: host, hostname, href, port, and protocol

port Property
port returns the port the user is attached to during her Internet session:

<SCRIPT LANGUAGE=”javascript”>

document.write(“You’re using port: “ +location.port+ “.”)

</SCRIPT>

See also: host, hostname, href, pathname, and protocol

prompt Method
prompt is used to display a JavaScript dialog box in order to gather information from the
user. The prompt is always assigned a variable. The information offered by the user then
takes on that variable name. If the user offers no information, the value for the variable is
entered as null.

In the following example, the text in the first set of quotation marks appears on the
prompt box. The text in the second set of quotation marks appears in the text area on
the prompt box. If you do not want text in the text area, leave the quotation marks
empty:

<SCRIPT LANGUAGE=”javascript”>

var name = prompt(“This is a Prompt Box”, “write your name here”)

</SCRIPT>

Figure B.3 shows what the prompt box looks like.

You can find prompt used as part of a JavaScript example in Chapter 3, Lesson 11.

See also: alert and confirm

22 0789726122_APP B 10/2/01 8:30 AM Page 415

JavaScript Goodies

416

protocol Property
protocol is the set of rules used by the browser to deal with the currently loaded page or
the file the hypertext link is pointing at:

<SCRIPT LANGUAGE=”javascript”>

document.write(“This document is displayed using “+location.protocol+ “.”)

</SCRIPT>

Returned strings might include http, ftp, mailto, news, file, or JavaScript.

See also: host, hostname, href, pathname, and port

referrer Property
referrer returns the URL of the document visited just before the current document:

<SCRIPT LANGUAGE=”javascript”>

document.write(“You just came from “ +location.referrer+ “.”)

</SCRIPT>

You can find referrer used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: document

Figure B.3
The prompt box.

22 0789726122_APP B 10/2/01 8:30 AM Page 416

417

Appendix B ➤ JavaScript Command Reference

self Property
self denotes the current window. This example creates a button that closes the current
window:

<FORM>

<INPUT TYPE=”button” onClick=” self.close()”>

</FORM>

selectedIndex Property
selectedIndex is used to return the number representing the index of a select item. For
example, the following HTML form drop-down menu box is a series of select items:

<FORM NAME=”FormA”>

<SELECT NAME=”SelectBox”>

<OPTION> Red

<OPTION> Green

<OPTION> Blue

</SELECT>

</FORM>

The options Red, Green, and Blue are numbered 0, 1, and 2, respectively. To return that
index number to a JavaScript, you would use this hierarchy statement:

document.FormA.SelectBox.selectedIndex

You can find selectedIndex used as part of a JavaScript example in Chapter 5, Lesson 27.

setDate Method
The method setDate is used to set a number representing the day of the month, 1–31,
through the Date object:

<SCRIPT LANGUAGE=”javascript”>

var Millenium = new Date ()

var pointintime = Millenium.setDate(“January 1, 2005”)

</SCRIPT>

The date January 1, 2005 is now a set point in the future and can be used to figure the
amount of time between a point in time and January 1, 2005.

See also: setHours, setMinutes, setMonth, setSeconds, setTime, setTimeout, and setYear

22 0789726122_APP B 10/2/01 8:30 AM Page 417

JavaScript Goodies

418

setHours Method
setHours is used to set the current hour from 0 (midnight) through 23 (military format) as
a specific point in time. The format is

<SCRIPT LANGUAGE=”javascript”>

var Millenium = new Date ()

var pointintime = Millenium.setHours(“January 1, 2001”)

</SCRIPT>

The format can be used to figure the number of hours until the specified date.

See also: setDate, setMinutes, setMonth, setSeconds, setTime, setTimeout, and setYear

setMinutes Method
setMinutes is used to set the minute, 0–59, as a specific point in time. The format is

<SCRIPT LANGUAGE=”javascript”>

var Millenium = new Date ()

var pointintime = Millenium.setMinutes(“January 1, 2001”)

</SCRIPT>

The format can be used to figure the number of minutes until the specified date.

See also: setDate, setHours, setMonth, setSeconds, setTime, setTimeout, and setYear

setMonth Method
setMonth is used to set the current month, 0 (January) through 11 (December), as a specific
point in time. The format is

<SCRIPT LANGUAGE=”javascript”>

var Millenium = new Date ()

var pointintime = Millenium.setMonth(“January 1, 2001”)

</SCRIPT>

The format can be used to figure the number of months until the specified date.

See also: setDate, setHours, setMinutes, setSeconds, setTime, setTimeout, and setYear

22 0789726122_APP B 10/2/01 8:30 AM Page 418

419

Appendix B ➤ JavaScript Command Reference

setSeconds Method
setSeconds is used to set the current second, 0–59, as a specific point in time. The format is

<SCRIPT LANGUAGE=”javascript”>

var Millenium = new Date ()

var pointintime = Millenium.setSeconds(“January 1, 2001”)

</SCRIPT>

The format can be used to figure the number of seconds until the specified date.

See also: setDate, setHours, setMinutes, setMonth, setTime, setTimeout, and setYear

setTime Method
setTime is the base of the Date object. It returns the number of milliseconds since
January 1, 1970 until the point in time set by you. The format is as follows:

<SCRIPT LANGUAGE=”javascript”>

var Millenium = new Date ()

var pointintime = Millenium.setTime(“January 1, 2001”)

</SCRIPT>

The format can be used to figure the total time until the specified date.

See also: setDate, setHours, setMinutes, setMonth, setSeconds, setTimeout, and setYear

setTimeout Method
The setTimeout method is used to fire a function after a set amount of down time. The
method should be used inside the function it will affect. The format is

<SCRIPT LANGUAGE=”javascript”>

function joe()

{

JavaScript events

var timer = setTimeout(“joe()”, 1000)

}

</SCRIPT>

22 0789726122_APP B 10/2/01 8:30 AM Page 419

JavaScript Goodies

420

This format loops the function joe repeatedly, waiting 1 second before starting the loop
the next time. Remember that JavaScript counts time in milliseconds, so 1000 is equal to 1
second.

You can find setTimeout used as part of a JavaScript example in Chapter 7, Lesson 42.

setYear Method
setYear is used to set the current year, minus 1900, as a two-digit representation. The for-
mat is

<SCRIPT LANGUAGE=”javascript”>

var Millenium = new Date ()

var pointintime = Millenium.setYear(“January 1, 2001”)

</SCRIPT>

The format can be used to figure the number of years until the specified date.

See also: setDate, setHours, setMinutes, setMonth, setTime, and setTimeout

You can find setYear used as part of a JavaScript example in Chapter 7, Lesson 41.

small Method
small is used to alter text strings to display one size smaller than the browser default:

<SCRIPT LANGUAGE=”javascript”>

var textString = “Hello There”

document.write(“textString.small()”)

</SCRIPT>

See also: big and fontsize

status Property
The status area is the lowest portion of the browser window. It’s where Document Done
appears when a page has finished loading. You can direct and alter the display in this
space using this format:

link

You can find status used as part of a JavaScript example in Chapter 2, Lesson 5.

22 0789726122_APP B 10/2/01 8:30 AM Page 420

421

Appendix B ➤ JavaScript Command Reference

strike Method
strike is used to create a strikethrough effect on a text string:

<SCRIPT LANGUAGE=”javascript”>

var textString = “Hello There!”

document.write(textString.strike())

</SCRIPT>

See also: big, bold, italic, and small

sub Method
sub is used to create a subscript, such as the 2 in H2O:

<SCRIPT LANGUAGE=”javascript”>

var textString = “2”

document.write(“H”)

document.write(textString.sub())

document.write(“O”)

</SCRIPT>

See also: big, bold, italic, small, and sup

substring Method
The method substring is used to return a portion of a text string between two indexes.
Here’s an example:

<SCRIPT LANGUAGE=”javascript”>

var TextString = “Merry Christmas”

var TheString = TextString.substring(1,0)

</SCRIPT>

This JavaScript returns the first letter of the text string because the number 1 is the greater
of the two indexes.

sup Method
sup works the same way as the sub method. It’s used to create superscript text, such as the
st in 1st:

<SCRIPT LANGUAGE=”javascript”>

var textString = “st”

22 0789726122_APP B 10/2/01 8:30 AM Page 421

JavaScript Goodies

422

document.write(“1”)

document.write(textString.sup())

</SCRIPT>

See also: big, bold, italic, small, and sub

title Property
title refers to the title of the HTML document. Used with document, you can return the
page’s title:

<SCRIPT LANGUAGE=”javascript”>

document.write(“The Title is “ +document.title+ “.”)

</SCRIPT>

You can find title used as part of a JavaScript example in Chapter 1, Lesson 3.

toLowerCase Method
toLowerCase is used to change a text string to all lowercase letters:

<SCRIPT LANGUAGE=”javascript”>

var textString = “Hello There!”

document.write(textString.toLowerCase())

</SCRIPT>

You can find toLowerCase used as part of a JavaScript example in Chapter 5, Lesson 24.

See also: toUpperCase

toUpperCase Method
toUpperCase is used to change a text string to all uppercase letters:

<SCRIPT LANGUAGE=”javascript”>

var textString = “Hello There!”

document.write(textString.toUpperCase())

</SCRIPT>

The toUpperCase and toLowercase methods are good for case-insensitive string compar-
isons.

You can find toUpperCase used as part of a JavaScript example in Chapter 5, Lesson 24.

See also: toLowerCase

22 0789726122_APP B 10/2/01 8:30 AM Page 422

423

Appendix B ➤ JavaScript Command Reference

userAgent Property
userAgent returns the HTTP protocol header used to load the current HTML document:

<SCRIPT LANGUAGE=”javascript”>

document.write(“The header reads “ +document.userAgent+ “.”)

</SCRIPT>

You can find userAgent used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: appCodeName, appName, and appVersion

value Property
value represents the text that is written, or given, to an HTML form item. The value of a
text box or text area is the text the user has typed in. The value of a radio button or check
box is a simple 1 (yes) or 0 (no), depending on whether the user has clicked the element.

In the following code

<FORM NAME=”FormA”>

<INPUT TYPE=”text” NAME=”Tbox”>

</FORM>

the text a user typed into the form’s text box is represented by

document.FormA.Tbox.value

You can find value used as part of a JavaScript example in Chapter 5, Lesson 23.

var Variable
var is used to assign a variable name to a string or set of JavaScript commands. The tradi-
tional method follows this pattern:

<SCRIPT LANGUAGE=”javascript”>

var navapp = navigator.appName

document.write(navapp)</SCRIPT>

Now you can call for navigator.appName throughout the remainder of the script with just
the variable name navapp.

Actually, the single equal sign is enough to set a variable name. The var isn’t required, but
it’s still a good idea to use it to help yourself when writing scripts.

You can find var first used as part of a JavaScript example in Chapter 3, Lesson 11.

22 0789726122_APP B 10/2/01 8:30 AM Page 423

JavaScript Goodies

424

See also: the descriptions of local and global variables in Appendix A, “JavaScript Basic
Concepts”

vlinkColor Property
vlinkColor is used to return the current HTML document’s visited link color:

<SCRIPT LANGUAGE=”javascript”>

document.write(“The link color is “ +document.vlinkColor+ “.”)

</SCRIPT>

You can find vlinkColor used as part of a JavaScript example in Chapter 1, Lesson 3.

See also: alinkColor, bgColor, fgColor, and linkColor

while Loop
The while loop is a format that enables a JavaScript—or a set of JavaScript statements—to
run again and again as long as a condition has not been met. Traditionally, while loops are
used when you do not know how many times the script will loop. This is a possible format
for a while loop:

<SCRIPT LANGUAGE=”javascript”>

var loops=input from a prompt or other method within the script

var num=1

while (num <= loops)

{

JavaScript event

}

</SCRIPT>

Because the number that will be assigned to the loops variable is unknown, a while loop is
used with a condition so that when the loop’s variable number equals the number
returned from the script (num <= loops), the looping will stop.

You can find the while loop used as part of a JavaScript example in Chapter 6, Lesson 36.

See also: for loop

window Object
The window is the browser window. This is the highest-level object accessible in the
JavaScript hierarchy (DOM).

You can find window used as part of a JavaScript example in Chapter 2, Lesson 5.

22 0789726122_APP B 10/2/01 8:30 AM Page 424

425

Appendix B ➤ JavaScript Command Reference

For examples of its use, see the frame, parent, self, status, and top properties.

See also: alert, close, confirm, open, prompt, and write methods, and the onLoad and
onUnload event handlers

write Method
write is used with the document object to write lines of text to an HTML document. Those
lines appear on the pages just as written, carrying no effects from the script. In this
instance, the command is simply a delivery device:

<SCRIPT LANGUAGE=”javascript”>

document.write(“Hello There!”)

</SCRIPT>

You can find write used as part of a JavaScript example in Chapter 1, Lesson 1.

See also: writeln

writeln Method
The writeln method works much the same way as the write method. Using writeln affects
how the document looks in its source code, breaking lines where the next writeln method
starts. It does not alter the look of a document in the browser window—only in the source
code:

<SCRIPT LANGUAGE=”javascript”>

document.writeln(“Hello There!”)

</SCRIPT>

You can find writeln used as part of a JavaScript example in Chapter 1, Lesson 1.

See also: write

22 0789726122_APP B 10/2/01 8:30 AM Page 425

22 0789726122_APP B 10/2/01 8:30 AM Page 426

JavaScript
Reserved
Variable Words

Appendix C

When naming variables or functions, you must be careful not to use a word that already
exists in the JavaScript language. The command words found in Appendix A, “JavaScript
Basic Concepts,” and Appendix B, “JavaScript Command Reference,” are all off-limits.

You’ll do yourself a world of good if you start following a variable-naming convention. For
example, you could start naming all your variables starting with your initials or your first
name. I use the names of my family. I never run into trouble that way.

In addition, here is a list of off-limits words. Although they might not be currently in use
in the JavaScript language, they are reserved for later versions of JavaScript:

abstract default goto native

break do if new

byte double implements null

case extends import package

catch false in private

char final instanceof protected

class finally int public

const float interface return

continue for long short

23 0789726122_APP C 10/2/01 8:30 AM Page 427

JavaScript Goodies

428

static this transient void

super throw true while

switch throws try with

synchronized

And, of course, var and function are off-limits.

23 0789726122_APP C 10/2/01 8:30 AM Page 428

Scripts Available
on htmlgoodies.
com

Appendix D

This appendix contains the following scripts:

Alert Scripts

Button, Links, and E-mail Scripts

The Three Cs: Clocks, Calendars, and Calculator Scripts

Color Scripts

Game Scripts

HTML and Developer Scripts

Image Scripts

Scrolling Scripts

Text-Based Scripts

Miscellaneous Scripts

The http://www.htmlgoodies.com/JSBook/ site offers more than 500 JavaScripts from many
great authors. Each script is available for you to test, download, and use. Try your hand at
altering some of these scripts. Make them better, change where the output appears in the
browser window, or just use them as they are. They’re ready to go.

24 0789726122_APP D 10/2/01 8:31 AM Page 429

JavaScript Goodies

430

The scripts are loosely broken into the following categories:

Alert scripts—Such as button, link, and e-mail scripts; these all produce alert,
prompt, or confirm boxes.

Buttons and e-mail scripts—These deal with buttons and e-mail scripts.

Clocks, calculators, and calendar scripts—These deal with numbers, times, or
dates.

Color scripts—These deal with color.

Game scripts—These either play games or deal with them as their topics. Also,
some scripts deal with leisure activities, such as music.

HTML and developer scripts—These deal with HTML and the development of
Web pages. A lot of these scripts work “behind the scenes” to create a look or an
event to help your Web pages or Web site. This is also where you’ll find all the
password-protection scripts.

Image scripts—These deal with, display, manipulate, or create image animation.

Scrolling scripts—These scroll text in the document window, text boxes, and the
status bar, among other places.

Text-based scripts—These all have one thing in common: They produce text and
manipulate text on the HTML document.

Miscellaneous scripts—These don’t fit anywhere else.

Without further ado, here’s the list of scripts.

Alert Scripts
These scripts all use alert, prompt, or confirm boxes.

No Clicking!: This script disables the user’s ability to click the page. Requires Microsoft
Internet Explorer 4.0.

Alert Page Verification Form: This script posts a new page when a part of the form
has not been filled out or has not been filled out correctly.

How Long Load?: How long did it take your page to load? This script tells you.

Screen Rez: Do you have the correct screen settings for this page? Use this script to alert
your users.

800×600 Alert: This script pops up an alert box if the user has his settings at 800×600,
but you can change it to whatever settings you want.

24 0789726122_APP D 10/2/01 8:31 AM Page 430

431

Appendix D ➤ Scripts Available on htmlgoodies.com

Web-TV User Alert: This script pops up an alert box when a Web TV user stops by.

Update Alert: When someone enters the page, this script pops up an alert with the date
and time of the page’s last update.

No Go IE: This script tells the user that he is not using Internet Explorer and that the fol-
lowing page has some IE-only elements. A choice to enter is then offered.

Multiple Alerts: That’s what you get when you click.

Three Choices: This script provides an alert box that offers three choices to the viewer
before entering your site.

Coming From?: This script produces an alert that welcomes the user from the page he
just left.

Are You 18?: If the user is, he can enter—if he’s not, he can’t.

Chooser Script: This script gives you a list of pages to choose from. Choose one, and tell
the browser what to do with it.

Yes, No Script: Do you enter? Yes or no.

Thank You Link: This one gets your name and then sends you to the link of your choice
with an alert message.

Personalized Welcome: As is, this script asks for your domain and then gives you a nice
greeting. You can change it to ask for anything, and then give the same greeting.

Pop-Up Box: When someone logs into your page, an alert box pops up. He sees the page
no matter what button he clicks.

A Better Pop-Up Box: This script works the same way as the previous one, but it won’t
allow the viewer in the page if he clicks Cancel.

Insert Name: This script pops up a prompt box asking for the viewer’s name. What he
enters is posted throughout the page.

Coming and Going: This script posts an alert when the person enters and again when
he leaves.

Anonymous Name: This script asks for the name the same as the previous script.
However, this script enables the viewer to remain anonymous if he so chooses.

Mouse-Over Alert Box: This script produces an alert box when the mouse passes over a
link.

Advanced Mouse-Over Alert Box: This script pops up a prompt box asking for the per-
son’s name. After the user types it in, an alert box pops up saying “Hi.”

24 0789726122_APP D 10/2/01 8:31 AM Page 431

JavaScript Goodies

432

Click For Alert Box: Clicking the link brings up an alert box.

First/Last Name: This script pops up a prompt box that asks for the viewer’s first and last
names and then posts them where you want them in the document.

Answer to Page: This script pops up a prompt box and asks a question. Depending on
the answer, the viewer is sent to a specific page.

A Confirm Box: This script works a lot like the previous ones, except this is a confirm
box. It has a question mark rather than an exclamation point.

Button, Links, and E-mail Scripts
These scripts employ buttons, create links to other pages, or deal with e-mail.

Click N’ Go #2: This is a basic, well-written, drop-down link menu.

Guest Book Prompt: This script prompts you for a name and then creates a guestbook
for that name and associated e-mail address.

Rotating Text Links: Text links rotate in a text box.

HotMail Fetch: This script grabs your HotMail e-mail in the background while you do
other things. (Contents are in a Zip file.)

E-mail Button with Subject: You get a button that asks for a subject line. You then get
an e-mail with that subject.

A Drop-Down Menu Script: With a GO! button. Woohoo!

See Source: Here’s a button that enables you to see the source of a page.

Link Message: This sends users a message when they click.

Link Search: This script enables the user to enter a word and then click a link to choose
which search engine gets the honor.

Drop-Down Link Menu in Frames: This script is what many have been asking for—a
drop-down link menu that works with frames. (Contents are in a Zip file.)

No Click Links: This script creates a link that works with no click; you just pass the
mouse over it.

AOL Style Keyword: This script acts like the AOL keywords by taking a user to a new
page depending on the word she enters.

Link of the Minute: Depending on the minute, you get a link.

Highlight Button: Pass your mouse over the button, and it lights up. Requires Microsoft
Internet Explorer 4.0.

24 0789726122_APP D 10/2/01 8:31 AM Page 432

433

Appendix D ➤ Scripts Available on htmlgoodies.com

Menu Links: This is a combination script of image flips and OnMouseOver that creates a
nice navigation panel. See it in action. (Contents are in a Zip file.)

Navigation Panel: This is a menu of links. Just click once to go.

Get a Cursor: This script is used with form commands. Use it and your first form element
will get a cursor in the text box without having to be clicked.

Go Box: This is a great script. This one allows for a description of the link and then the
ability to see the page code.

New Window Search: This script enables the search of multiple search engines. Results
are posted on separate pages in new windows.

Mailto: Alerts: This script works with the basic mailto: forms. When the user clicks to
send the mail, the script first asks whether everything is okay, and it then says thanks.

Total Cost Form: This script enables your users to choose from a list of priced items. The
script tallies the items, adds the tax, and sends the information to you.

MouseOver Color Buttons: These are link buttons that change color when you move over
them. Requires Microsoft Internet Explorer 4.0.

Search Box: This is a nice copy-and-paste item that enables your users to search multiple
search engines from your page.

Linker: This script enables the user to select a series of links. It then creates a page using
just those links.

& Script: This script tells you the & ASCII commands required to place nonletter and
nonnumber characters on your page.

Layered Search Window: This script creates a layer window using a mouse-over. The
new layer is the search window. Requires 4.0 browsers.

Three Step Go Window Link: You’ll need to see it to understand the goofy title I gave
it.

Scared Button: The button does not allow you to click it.

Radio Button Links: Clicking the radio buttons sends you to a new link.

Scrolling Buttons: This script enables you to list multiple buttons that scroll through—
it’s a neat effect.

Plug-In Script: This script tells which plug-ins a person has on her browser. Requires
Navigator 4 or better.

24 0789726122_APP D 10/2/01 8:31 AM Page 433

JavaScript Goodies

434

Big Plug-In Script: This does the same as the previous script, but offers more informa-
tion about the plug-ins. Requires Navigator 4 or better.

Running IE4 or better?!?!: Are you? This script tells you.

HREF Script: You enter the URL, and off you go.

Fill All for Guest Books: This script does not let the user submit the guestbook form
without filling in all the offered fields.

Fill All with Alert: This is the same as the previous script, but it offers an alert on sub-
mit that asks for verification.

Multiple Form Check: This is a series of scripts that check guestbook form fields for
many items, including all fields being filled in, letters or numbers, too many spaces, capi-
talization, and more.

Multiple Random E-mailing: One button chooses a random e-mail address to send a
letter to.

Status Bar Button: This is a button that posts text in the status bar. It doesn’t have
much worth, but it’s great fun.

Headliner!: This is a button with text scrolling across it. Each text scroll is different, and
each scroll carries its own URL. It is currently set up to run with frames.

Go There Button: This is a menu of links with a button that activates the browser.

Link Info: This is a great, great script. When the mouse passes over the link, information
is posted in form boxes. Check it out.

Great Place: Here’s a two-step link taking you to a great place.

Info Mail: This script gathers the user’s name, e-mail address, and URL and sends them to
you with the click of a button.

E-mail Checker: This script works with the simple guestbook format.

Webring: This script allows you to start your own Webring using another site’s power.

Targets in Pull-Down Menus: This is how you add TARGET commands to frame page
pull-down menus so the links you offer can change specific frames.

Blinker Button: One link—blinking text.

Static Words Link Button: Four links, static words.

Scrolling Link Button: This is a link button that scrolls the text.

One Button—Many Links: This is a link button with four links.

24 0789726122_APP D 10/2/01 8:31 AM Page 434

435

Appendix D ➤ Scripts Available on htmlgoodies.com

Mailto: Script Verification: This script acts like a CGI-based guestbook sending the
viewer to another page when she submits the form to your e-mail.

Check E-mail Address: This script allows you to enter an e-mail address and verify
whether it is a true address.

I Sent It Already!: This script displays a personalized message telling the user that her
mailto: guestbook data has been sent.

Random Link Pages: This script asks a couple of questions and takes you to a page
based on your answers.

Browser Detector Buttons: This script tells all about the browser a viewer is using.

Scrolling Link Buttons: You get a scrolling list of links—choose one and click to go.

Random Link Generator: This script produces five random links.

Explorer Only!!!—Link Buttons: This script uses ActiveX technology to produce
Explorer links.

Random Link Buttons: This script produces a random link.

Drop-Down Link Menu: This script does what the others do, but it flips around. Try it.

Two Images/Two Links: This script flips between two images. Depending on which one
is up, that’s the one that works when clicked.

Color Buttons: Click the button, and change the color.

New Window Button: This is a button that opens a new browser window with a new
page.

BACK and FORWARD Buttons: These buttons act just like the buttons at the top of the
browser.

Jump Buttons: These buttons enable you to jump around within a page.

Link Reads Along Bottom: This script enables you to change what text appears in the
status bar when the mouse pointer passes over the link.

Erase Status Bar: When words appear in the status bar, they tend to stay there until new
words are called for. This script sets it so the words erase within two seconds after appear-
ing.

Questions, Then Send: This script asks questions. Depending on your answers, you are
sent to an appropriate page.

Countdown to Page Change: This is a counter that counts until a preset time. At that
time, that page changes.

24 0789726122_APP D 10/2/01 8:31 AM Page 435

JavaScript Goodies

436

Wait for Page Change: This script waits a preset amount of time and then changes to a
page depending on your browser type.

Choose Link Destination: This script posts radio buttons underneath an HREF link. You
click the button and the link becomes that destination.

Jump Box: This is a pull-down menu that enables you to choose a link and jump to it.

Another Jump Box: This is a different script version of the previous one.

Another Jump Box: Ditto above.

Another Jump Box: Ditto, ditto.

E-mail: This is a button that produces an e-mail window addressed to you.

E-mail with Subject and CC: This script creates an e-mail button with the subject box
and the CC box already filled out.

E-mail with Subject: Ditto for the previous one, but only the subject line is filled out.

E-mail with CC: Ditto, but only the CC box is filled out.

E-mail Has Been Sent Alert: You attach this script to a simple guestbook form, and it
alerts the viewer that the e-mail is being sent.

Button Box: This is a button that produces an alert box when clicked.

Reload Button: Here’s a button that reloads the current page when clicked.

Auto Back and Forward: Using this script automatically sends people forward or back-
ward one page, depending on how you set it up.

Radio Button Color Changer: Click the radio button, and the background changes
color.

Color Button: Click the button, and the background changes color.

Question/Color Button: This button asks two questions. Depending on the answers, the
background color changes.

The Three Cs: Clocks, Calendars, and Calculator Scripts
These scripts all deal with numbers, times, or dates.

Quadratic Equation: This script does just what it says. Requires Microsoft Internet Explorer.
(Contents are in a Zip file.)

Time Zone Buttons: This script uses your computer’s time to figure six other major time
zones.

24 0789726122_APP D 10/2/01 8:31 AM Page 436

437

Appendix D ➤ Scripts Available on htmlgoodies.com

Calendar and Datebook: With one script, you get both. (Contents are in a Zip file.)

Today Calendar: This script gets the date and posts the current month’s calendar. It’s a
great script.

Square Root in the Status Bar: This script figures a square root and posts the answer
in the status bar.

Loan Amount: This is a great math script. Use this script to know what your payments
will be before the guy at the bank tells you.

Digital Clock: This one is exactly what it says. (Contents are in a Zip file.)

Slope: You give this script four input points, and it figures the slope of the line.

The Areas: Need to find an area? This is your script.

DHTML Clock: It is what it says—in big blue letters no less. Requires Microsoft Internet
Explorer 4.0 or better.

Tangent: All you triangle fans out there will love this one.

Sine: Ditto.

Cosine: Ditto. Ditto.

Count It!: You put in a number and the script counts up to it. It’s useless but fun.

The Pythagorean Theorem: A squared plus B squared equals C squared. This little
script will bear me out.

Circle Circumference: This one uses pi. Mmmmmm … pie.

Parameter of a Quadrilateral: Please have the width and length ready.

Area of a Quadrilateral: Ditto the same information—different equation.

Another Great Science Calculator: Enough said.

Digital Clock: Three items displayed—time, AM/PM, and date.

Number of Letters: This script is basically useless but fun. You put in a sentence, and it
counts the number of letters.

Money Conversion Script: Pick from a long list of currencies. The conversion is done
for you.

Area of a Triangle: Use this script to get through that math class.

Multiple Java Calendar: This script is a real work. Take a look at all the functions.

Running Calculator: How far—how fast?

24 0789726122_APP D 10/2/01 8:31 AM Page 437

JavaScript Goodies

438

World Clock—Daylight Savings Time: Just as it says ….

Circle Calculator: This script helps a great deal with finding the area and other measure-
ments of a circle.

Math Check: How good are your math skills? This script checks you over four levels.

College Tuition Chooser: Choose a college based on the money you’ll spend.

The Super Calculator: The author claims it’s the greatest JS calculator yet! Please note,
though, it will not work on Microsoft Internet Explorer. Maybe it isn’t that great.

Percentage Calculator: Find the percentage of any number from another.

Power Calculator: Figure the power of any number.

Solve for X: This one will get you through high school algebra.

Nautical Calculator: This is a great script that figures a lot of stuff you’ll need to know
next time you take the boat out.

Celsius to Fahrenheit: And back again.

JavaScript Clock Fix: This is a fix for some JavaScript clocks that are displaying the
wrong month.

Click Through Rate Calculator: This figures the percentage for you.

Another Calculator: This has plus, minus, and divide. You get the idea.

Another Calculator: Another version of the old favorite.

Graphic Enhanced Calculator: You have to see this script to believe it. You’ll need to
grab the script and a ton of little graphics to get it to function.

Another Calculator: This one has a pi key.

Celsius to Fahrenheit: That’s what it does … differently from the previous one.

Date and Time: This script puts up the date and time someone entered your page.

Tells Time, Begs You to Stay: That’s what it does when you try to leave.

Java Alarm Clock: You tell the script when you want to be alerted. It keeps track of the
time, and a box pops up when it’s time.

Body Mass Calculator: Are you in good shape? Do you really want to know?

Simple Calculator(s): This can be one large calculator or four small ones. Take a look.

Your Age in Dog Years: Woof.

24 0789726122_APP D 10/2/01 8:31 AM Page 438

439

Appendix D ➤ Scripts Available on htmlgoodies.com

A Great GPA Calculator: This one recognizes + and –.

Basic Calendar: This script is just what it says.

Entire Year Calendar: It takes up space, but you get the entire year.

Entire Year Calendar: This script does what the previous one does, but it also highlights
the current date.

Calendar/Datebook: This script displays a calendar-type datebook you can fill in with
your appointments.

Entire Year Calendar: What sets this script apart is that every day is a link to a different
page.

A Calculator: Figure out math equations to your heart’s content.

Another Clock: This is a basic digital clock.

Java Clock: This is a digital clock that displays the time plus AM or PM inside a small
frame.

Click Displays Date and Time: This script produces a button. Click it and you get the
date and time.

Single Function Calculator: This script does only one function. You can change what
that function is, but it still does only the one.

Equation Helper: This script takes just about any equation and solves for X.

Count Up: You set the length of time. This script then counts up and displays a message
when time’s up.

Count Down: Ditto, but this one counts down.

Countdown to Page Change: A timer is set up that changes the page when a predeter-
mined time is reached.

GPA Calculator: Figure out your grade right from the Web. This script takes your final
marks and shows you your all-important grade point average.

Conversion Calculator: This one deals with distances.

Conversion Calculator: This one deals with weights.

Conversion Calculator: This one deals with volume measurements.

A Stopwatch: This is nothing fancy. It just counts up until you say stop or reset.

24 0789726122_APP D 10/2/01 8:31 AM Page 439

JavaScript Goodies

440

Color Scripts
These scripts display or manipulate color in some fashion.

Color Box: You can see boxes of color, click boxes of color, and get hex!

Color Gradient Test: You choose the color, and this script shows it from dark to light
and back again.

Show Color Cube: This is a great script! It lets you enter the word, hex, or RGB code of a
color. It then posts a small cube showing the color.

Get the Lights: This is a simple game where clicking the correct radio button “turns on”
the lights.

Red to Black … and Back: This script is annoying. Maybe that’s why I like it. It flashes
red to black a few times—and then posts the page.

Light Switch: This script is useless but really fun. It goes from light to dark with a
switch.

Lights Out!: Click the button and the lights go out.

Color Wait: This script rolls colors when someone logs in to the page—but what’s more,
it posts text along the bottom of the page while the person is waiting.

Background Roller: This script rolls through a series of colors again, and again, and
again, until you go nuts.

Background Flasher: Go easy or go silly. This is a fun script.

Random Background Colors: This adds a little random color to your page.

Background Color Prompt: This allows your user to choose the background color
before entering.

Hex to RGB and Back Again: Put in the hex code and get the red, green, and blue, and
vice versa.

Background Table Color: Use the table to choose a color for the page depending on
what mood you’re in.

Color Change with Display: This script slowly fades in a background color. But while it
is fading, the color codes display. Take a look. I like this one.

Color Start: This script tells you to wait for the page to load while you watch a color dis-
play.

Color Cube: You have to try it to believe it. You’ll see many colors as you roll your
pointer along.

24 0789726122_APP D 10/2/01 8:31 AM Page 440

441

Appendix D ➤ Scripts Available on htmlgoodies.com

Hex Coder: This is a great script. You type in the color name, and it gives you the hex
code. It’s great for page development.

Large Color Script: This is a very useful script. This script gives hex codes and color
combinations.

All Colors: This one asks you about all the different things you can do with colors. It
then posts your answers. It’s great for seeing how colors work together before using them
on your page. Netscape Navigator browsers only.

Color Code Verify: Enter a color code, and a window pops up showing you what it looks
like.

Background Color Log: Try to get the last background color. This script plays along.

Background Color with Alert: That’s what it does.

Chat Room Color Prompt: Do you go into chat rooms? Take this script with you.

Word = Background Color: A prompt box asks for a word and changes the background
color by what you type. Any word seems to work.

Color = Hour: This script produces a different background color depending on the time
of day.

Pull-Down Color Menu: Use the menu to change the background color.

New Color Every 5 Seconds: Enough said.

New Color Every Second: Ditto.

An Interview for a New Color: This one takes time, but it’s fun.

Color Buttons: Click the button, and change the color.

Pull-Down Colors: This is a pull-down menu of colors.

Background Color Changer: Using this script will make your page’s background roll
through colors of your choice before posting the text.

B&W Background: This script fades the background from black to white before the text
appears.

Mouse-Over Color Change: You will offer color names. When the mouse passes over the
name, the background changes to that color.

Mouse-Over Color Changer: This script changes the page to blue when the mouse
passes over.

Text Color Changer: This script changes color depending on what the viewer types to
the page.

24 0789726122_APP D 10/2/01 8:31 AM Page 441

JavaScript Goodies

442

Radio Button Color Changer: Click the radio button, and change the color.

Button Color Changer: Click the button, and change the color.

Questions then Color: This button asks you two questions. Depending on your answers,
it changes the background color.

Day/Night Script: During the morning hours, your page is black text on white; at night
it turns to white text on black. It’s a day/evening effect.

Game Scripts
These scripts either play or deal with games as their topics. Also, some scripts deal with
leisure activities, such as music.

Ships at Sea: This is a two-player version of a sinking game.

Peg Solitaire: Jump over one, and take it out. You’ve played this before—now try it on
your computer. (Contents are in a Zip file.)

Bridge: This script will help your game.

NBA Totals Projection: How will your favorite player do?

Magic Eightball: Remember that water-filled eight ball that would tell you your fortune?
Here it is in Java form.

Magic Eightball Two: This is another version of the magic eight ball with a whole lot
more graphical support.

Roundball: This is a basketball animation. You can play college or pro.

Field Goal: Line it up and hopefully kick it through. Requires Netscape Navigator 4.0.

The Right Button: Can you find the button that will light when you click it? No fair
looking at the code.

Point Guard Stats: How’s your favorite player doing? How are you doing? This script
tells you.

Super Bowl Game: Can you tell me who won, and who lost, the last 31 Super Bowls?
(Posted before Super Bowl XXXII.)

Chinese Zodiac: What was the Chinese animal zodiac sign the year you were born?

Frame-Based Quiz with Timer: You’re under the gun on this one.

Basketball Champ Quiz: How well do you know the champs from seasons past?

24 0789726122_APP D 10/2/01 8:31 AM Page 442

443

Appendix D ➤ Scripts Available on htmlgoodies.com

Social Security State: Enter the first three numbers of your SS number, and this script
will tell you the state that issued it. There is no concern about giving the number. The
script is self-contained, and the first three numbers are basically worthless without the
other six.

Jay’s Game: Play this! It’s a speed game where you try to check off numbers before time
runs out. It’s tougher than you think.

The Maze: You have to play it to believe it.

Text-Based Quiz: This quiz is more text-based than the other form-based quizzes.

Random Number Entry: The script picks a random number between 1 and 10. You
guess at it. When you get it right—or after three tries—you get to enter.

Get to See Hanson: … or any other rock group. This is a game where you move forward
to meet the group.

Graded Multiple Choice Quiz: This is a quiz that grades itself and places a check or an
X if the answer is right or wrong. The only downfall is that the answers are pretty easy to
locate before taking the quiz.

Slots: Play with someone else’s money.

Insult Machine: Tell people what you think. Choose one of four insults, and the script
delivers it.

Brick: This is a great copy of the old brick game.

Tic Tac Toe: This has two players and one screen.

Middle School Quiz: This is a simple quiz game. You can change it to include your own
questions, answers, and responses.

Football: Play football online.

Baseball: Ditto with baseball.

French Translator: Use this script to translate a phrase from English to French.

A Quiz: This is a four-question quiz that grades you. Welcome to high school.

Find Me!: This is a fun game created by a 12-year-old JavaScript wizard. Find the only
working link!

Blackjack-21: Play the game. I like this script because it calls the dealer “The Idiot.” Ever
played and felt that way?

Backspace Race: See whether you can get rid of the text before the computer does.

24 0789726122_APP D 10/2/01 8:31 AM Page 443

JavaScript Goodies

444

Find Mr. Hockey: This is a simple seek-and-find–type game.

Check’s Out!: Try to get rid of all the checks. I couldn’t do it.

What’s Your Sign?: Enter your birthday, and you get your sign.

Lottery Number Picker: Why play birthdays—use this script!

Golf Handicapper: This script figures the USGA handicap index.

A Mad Lib Game: Try playing!

Russian Roulette: Someone wins—someone loses … with a bang.

HTML and Developer Scripts
These scripts deal with HTML and the development of Web pages. A lot of these scripts
work “behind the scenes” to get a look or an event to help your Web pages or Web site.
This is also where you’ll find all the password-protection scripts.

Got Frames?: This script goes into your page’s BODY command and performs a redirect if
the user tries to look at the page outside of the frame setting.

Monitor Detect: This is a redirect script that deals with the monitor settings set by the
user. (Contents are in a Zip file.)

Tag Pad: This is an HTML editor that works a lot like using Notepad.

Open C Drive: Click the button and get the contents of the C drive.

See Size Window: The user enters the height and width of a new window and clicks a
button, then a new window pops up. It’s great for page development.

PC/MAC Detect Script: Depending on which operating system the viewer is using, this
script sends the user to a specific page best viewed with that type of system.

Every Other Password: This is a pretty good password script that takes every other let-
ter of the password and creates the page name. See it for yourself. (Contents are in a Zip
file.)

JavaScript Redirect: This script acts like a meta refresh in JavaScript.

The Same Size: This script opens a window the same size as the current window.
Navigator browsers only.

A Good HTML Editor: Enough said ….

Please Wait Script: This script posts a message telling the user to wait because the page
is being loaded.

24 0789726122_APP D 10/2/01 8:31 AM Page 444

445

Appendix D ➤ Scripts Available on htmlgoodies.com

Version 4 or Not: This script recognizes the user’s browser version number. If it’s version
4, a specific page is brought up. Anything else goes to another page.

Stay Alive: If your server kicks you off after a couple of minutes of inactivity, download-
ing gives you headaches, right? This script makes sure you have activity within the time-
frame so you do not get kicked off.

Remote Control Window: The little one works the big one.

Password 33 Script: You can password-protect your pages. See it in action.

Immediate Page Load: This script enables the user to load two pages at once so the sec-
ond comes in very quickly when called for.

Transport or Password: This script enables the person to type in a word. If the word is
a page, the user is transported. It also works pretty well as a password script.

Page Depending on Browser: This script notes the browser and sends the viewer to the
page best suited for him.

PageMaker Clone: Make your own page with this one.

Multiple Search Engines: Search multiple Internet search engines with one click.

Remote Surfs Four Sites: This script enables you to surf four sites at once.

Four Search: This script enables you to search four search engines at once, all on one
screen.

onMouseOver Layers: This script uses layer commands with the onMouseOver commands.
Requires Netscape 4.0.

onMouseOver Layers Menu: This script uses layer commands with the onMouseOver com-
mand to create a pull-down menu. Requires Netscape 4.0.

Layer Toggle: This script uses JavaScript to toggle between layers. Requires Netscape 4.0.

HTML Editor: This JavaScript helps with HTML page construction.

3-Step Password: This is a pretty good password script that does its best to protect the
password and the link it is going to. It’s tough to figure out from the script.

Password Script: This is yet another nice password script.

Remote Control Window: This script pops a window up that enables you to control the
first window.

Page of the Day: This script sets up a page of the day. You get 31 at the most—until they
invent a month with 32 days.

24 0789726122_APP D 10/2/01 8:31 AM Page 445

JavaScript Goodies

446

Random Page: This script posts a page stating that a random page is to come, and then
it goes to the random page from the list you offer.

Two Number Password: This script is great because it is difficult to grab the password
from the script. Give it a try.

Simple Password: It doesn’t get easier than this one.

Searchable Database: This is a script that acts as a search engine. It basically searches
itself, but if you take the time to enter all the titles and descriptions of your pages, it
searches just like a personal search engine.

Who Came—And When: This script is a personalized counter.

Stops onMouseOver Text from Hanging Around: Use this script to ensure that the
onMouseOver text you use doesn’t stay on the status bar after the user has moved on.

Verification of Guestbook Data: This script posts a virtual page when someone uses
your simple mailto: guestbook.

Random Image Plus Link: This script produces a random image plus a link associated
with that image.

Stops New Browser Windows: This script enables you to target to the same browser
window to stop new windows from opening in your image maps and frames.

A Great HTML Editor: What more can I say?

Password: This script requires a password be typed in to enter a specific page. The pass-
word is the page’s name.

Keypad Password: This script produces a key pad. The viewer enters a password number
to get to the next page. The password is the name of the page. You can change the pass-
word number.

A Counter: This is a simple counter that produces an alert box count each time you enter
the page. It also administers a greeting depending on the number of times. However, it
only counts up to 10.

Cookie Counter: This is a fully functioning counter that uses the viewer’s cookie to post
a count on the page.

An HTML Editor: Now you can create your HTML documents right to your browser
window.

Another HTML Editor: Choose your favorite.

24 0789726122_APP D 10/2/01 8:31 AM Page 446

447

Appendix D ➤ Scripts Available on htmlgoodies.com

Image Scripts
These scripts deal with, display, or manipulate images, or set images into motion.

Smooth Stop: This is an animation than brings images to a smooth stop, as if on ice.
Netscape Navigator 4.0 only.

Page Branding: This is a Geocities-style page brand.

Three to One Image Flip: This script is very clever. Three images sit on top of one
another. When the mouse passes over one of them, it “blows up” to fill the space of all
three. (Contents are in a Zip file.)

Triple Flip Button: This script is a triple image, image flip.

Show Active Channel: This script looks at the user’s browser. If it’s an Explorer browser,
the Active Channel image is posted to the page.

Multiple Image Flip: Three images are used to create one pretty cool flip.

DHTML Christmas Countdown: This is a clock that counts down to Christmas with a
flying Santa. Microsoft Internet Explorer 4.0 only.

Image Toggle: This is a basic image flip, except the flip is enacted by the user clicking
buttons.

Image Browser: Use this script to enable users to scroll through a list of images.

Stay Flipped Image Flip: After it’s flipped, it stays.

Dual Image Flip: Not only do you get an image flip, you also get a secondary image
popping up. (Contents are in a Zip file.)

Image Option: Select an image from a pull-down list. Click the button and it displays.

Background Time: This script posts a different background color and image, plus a dif-
ferent image on your page, depending on what time of day it happens to be.

Flip Flap Image Script: This is a great multiplatform, image-flipping script.

Move the Image: This script enables you to make an image interactive. Your viewers can
move it anywhere they want. Microsoft Internet Explorer 4.0 only.

An Image Depending on the Date: Want a specific image on only a certain date or
dates? This script will do it for you.

Floating Apple: This script employs layering to enable the Apple logo to break apart and
fly around the screen. Netscape 4 versions only.

Black Hole: An image MouseOver starts a multiple-page slide show.

24 0789726122_APP D 10/2/01 8:31 AM Page 447

JavaScript Goodies

448

Image Map Status Bar Message: This script uses mapping commands to make mes-
sages on different sections of an image map.

Multiple Image Flipping: This is a great script and great effect. Take a look.

Image Mover: This is another image-moving script using Netscape 4.0 layer commands.
Requires Netscape Navigator 4.0.

Image Search: This employs multiple images with a flip script to enable your readers to
search five different search engines.

Four Movers: This script enables four images to basically fly all over your page. Requires
Netscape Navigator 4.0.

Image Mover: This is a great script. The active image rolls all over the screen no matter
what text is in its way. Requires Netscape Navigator 4.0.

Image Display JavaScript: This script enables your user to click a link and see a picture
pop up in a new, framing browser window.

Stop the Picture: If you have a large image downloading, this script enables your viewer
to click a button and stop it.

Client-Side Image Map Script: This script works a lot like a client-side image map,
except it displays sections in a text box rather than the status bar.

Image Flipping Link: People have been asking for this one. On the MouseOver, the
image changes, plus different text appears in the status bar. Really slick.

MouseOver for Image Maps: This script enables you to place text in the status bar for your
image maps.

New Image GIF: This script places a new .GIF image where you want it—what’s more, it
keeps an eye on the date. When you want the image to come down, it removes it for you.

Random Image Plus Link: This script produces a random image plus a link associated
with that image.

Random Number Generator—with Images: This script produces a random number
that is displayed with images.

Random Pictures: This is an improvement over my script.

Another Random Picture Script: Ditto above.

Picture in Black: This script displays a chosen image surrounded by black in its own
window.

24 0789726122_APP D 10/2/01 8:31 AM Page 448

449

Appendix D ➤ Scripts Available on htmlgoodies.com

Picture Changer: This script produces a picture change when the mouse moves across.
Use small images.

Random Picture Display: This is a random picture generator. You will need 60 pictures
to make it work correctly.

New Image Each Month: Depending on the month, this script displays another picture.

New Image Each Hour: Depending on the hour, this script displays another picture.

New Image Each Day: Depending on the date, this script displays another picture.

Scrolling Scripts
Scrolling text is very popular. These scripts scroll text in the document window, text boxes,
and the status bar, among other places.

Left Right Scroller: This script scrolls text in from the left and the right inside a text
box.

Easy Status Bar Scroll: This script does just what it says.

Bounce Scroll: This script bounces scrolling text all over the page. It’ll get attention if
nothing else. Netscape 4.0 required.

Super Scroll: This is a scroll that sizes itself to your page and then gives the user a few
options to play with.

Dual Scroll: Why did I post this script? I don’t know—it just looked cool to me.

Letter by Letter Scroll: This script scrolls along letter by … oh, you know the rest.

Multiline Scroll: This script posts a message depending on the time of day and then
runs a multiple-line scroll message.

Active Scroll: This script produces a scroll that is also an active link.

Netscape Marquee: This is a Netscape version of the Microsoft Internet Explorer
Marquee. Requires Netscape 4.0.

Scroll to the New Century: Here’s a countdown scroll to the year 2000 … or to what-
ever date you want.

Scroll in Spanish: This is a scrolling JavaScript—in Spanish.

Spanish Form Scroll: This is a form scroll—in Spanish.

Spanish Backward Scroll: This is a scroll that goes the wrong way. It’s also written in
Spanish.

24 0789726122_APP D 10/2/01 8:31 AM Page 449

JavaScript Goodies

450

Controlled Scroll: This is a scroll your viewers have some control over.

Four Scroll: This is a scroll employing four lines.

Ping Pong Visual: This is a ping pong visual you can control.

Prompting Scroll: This script asks you for some text and then scrolls it for you.

Replace Scroll: Take a look; this replaces letters in a scroll.

Flashing Words: This isn’t exactly a scroll, but it’s close. Words flash in the status bar
along the bottom. It’s useless but fun.

Little Scroll: This script produces a scroll along the bottom, but only a tiny one.

Pong Scroll: It’s too hard to describe—just go see it.

Roll Scroll: The scroll comes in one letter at a time.

Scroll on Status Bar: This script produces a scroll down in the status bar, where it reads
“Document Done.”

A Basic Scroll: This script produces a scroll on the document window.

One-At-A-Time Scroll: One-letter-at-a-time scroll across the status bar at the bottom of
the browser.

Small Scroll: Here is a quick, easy-to-understand, on-page scroll.

Another Small Scroll: Ditto above, but with different scripting.

A Large, Involved Scroll: This script is a big pup. It allows modification on every aspect
of the text and the scroll. Detailed instructions are included.

Capital Scroll: This isn’t a scroll per se, but it fits here. It takes a line of text and changes
each letter from lowercase to uppercase. It looks like a wave.

Text-Based Scripts
These scripts all have one thing in common: They produce text on the HTML document.

Random Up to 50: This script produces a random number between 1 and 50, but you
can set it to any upper limit you want.

Netscape Low Version: If your user is running Navigator version 2.0 or less, this script
pops up text that offers a link to upgrade.

Status Scroll Count: The length of time you’ve been in a page just scrolls right by.

Add from Prompt: This script calls for information through a prompt and then enables
you to post it in a text box through the use of a button.

24 0789726122_APP D 10/2/01 8:31 AM Page 450

451

Appendix D ➤ Scripts Available on htmlgoodies.com

Post Next Holiday: This script does what it says.

Hello in Bar: This throws up a prompt for the user’s name and then offers a greeting in
the status bar.

New Array Text Pages: This is a series of five scripts that create “… Of the Day” type
events wherein something happens each day or at a specific time of day. Where this script
is different is that it uses a new type of array programming to get the effect in a simpler
fashion.

Fun Text: It’s like a Mad Lib game that plays for you.

Meta Tags: This script uses a prompt command to gather information to create your
page’s meta tags.

Headline Linker Script: This script is a little hard to explain. The idea is that you can
get three headlines in a text box. Each is its own location, too. You click the box to make it
work. Go see it—it’ll be easier than me explaining it.

Text Fader 1.3: This script is sooooo cool.

Transfer Data: Use this script to transfer data across pages. This is currently set up to
transfer data from a form from one page to another.

Super Script Date: This script posts the date but also adds either the “st” or “th” after
the day number.

Message Plus Date: This is two scripts in one. This script is offered in two formats.

Remind Me: This script sits quietly in your browser until a specific date. Then, it pops up
telling you the time has come.

Tip Box: This script pops up a Tool Tip–style box when the mouse passes over text.
(Contents are in a Zip file.) Requires Microsoft Internet Explorer 4.0.

Make Me a Password: This is a great script. Need a password? This script generates a
random letter and number password at whatever length you require.

Mad Libber: This is a basic Mad Lib game.

Full Text Date: Just copy and paste, and it’s all yours.

Just the Date: This script posts the month (in text form) and the day.

Color Gradient Text: This is a great script that “rainbows” your text.

Highlighter: This script enables an onMouseOver to highlight a link. Requires Microsoft
Internet Explorer 4.0.

Text Fader: This script is great. You’ll have to see it to get the full effect.

24 0789726122_APP D 10/2/01 8:31 AM Page 451

JavaScript Goodies

452

You Came in …: This script tells the user something he already knew—when he came
into the page. But it does so in such grand fashion that I had to post it. Requires Microsoft
Internet Explorer 4.0.

The Updater: This script posts the date the page was last updated.

Pop-Up Tables: As your mouse passes over text, a table pops up to tell you more. It’s
DHTML and has to be seen to be believed. Requires Microsoft Internet Explorer 4.0.

Flashing Warning: Just what it says. Requires Navigator 4.0.

Proclaim It!: This script posts two large lines of text to tell the world … something.
Requires Netscape Navigator 4.0.

Personal Title Bar: This script prompts the user for a name and then uses that to post
the title command for the page.

Date and Time in Status Bar: This script posts the date and time in the status bar.

Quote in New Window: This does just what it says.

Follow the Moving Mouse: This script creates a block of color and text that follows
your mouse around the screen. Think of it as a pet. Requires Netscape Navigator 4.0.

Hello in the Status Bar: This script asks for the user’s name and then posts it in the sta-
tus bar.

Layer Click: Click and the text follows you—a great effect. Requires Netscape Navigator 4.0.

Place the Message: This is a great script for developers to have around. It enables you to
enter coordinates and then see where they fall on the page. Requires Netscape Navigator 4.0.

Moving Block of Text: This script gives you a colored block of text that flies around
your screen. And who wouldn’t want that? Requires Netscape Navigator 4.0.

Count the Seconds: This script counts the seconds a user has been in your page. It also
posts alerts at certain times.

Random Link Script: This script posts a random link to follow.

Age Update Script: This script posts an age and automatically updates it when the birth-
day passes.

Status Bar Clock: Tell your users what time it is—in the status bar.

Link Change: Run your mouse over the link, and it changes. Requires Microsoft Internet
Explorer 4.0.

Get Back to Frames: This script displays a message that the page the viewer is looking at
should be in a frame setting and will not run by itself.

24 0789726122_APP D 10/2/01 8:31 AM Page 452

453

Appendix D ➤ Scripts Available on htmlgoodies.com

Bigger Text: This makes text jump out when the mouse moves over it. Requires Microsoft
Internet Explorer 4.0.

Flipping Burst: The text becomes much more brilliant when your mouse moves over it.
Requires Microsoft Internet Explorer 4.0.

Multicolored Text: Every letter is a different color. It’s very Saturday morning.

Copyright and Last Updated: This is a good, quick script you can paste onto your doc-
uments to provide a bit of good information.

Fade Out: This script fades text in and out. You have to see this! Requires Microsoft Internet
Explorer 4.0.

Many, Many Quotes: 160 sayings to get you started on your day.

Random Fact: Useless knowledge finally has a home.

Everyday Script: You get a different color scheme and message every day of the week.

All About: This script tells the user all about her machine and browser.

Goodbye Window: This script posts a goodbye window with links when your user leaves
the page.

Sesame Street: This script makes your page brought to you by a random letter and a ran-
dom number.

Which President?: You need this script for high school. Pick a number between 1 and
42, and this script tells you which president it was.

World Time: This script displays the current time and times for multiple locations
around the world.

Time Stamp: This time stamp is an update of earlier versions. Here you get a 12 at mid-
night instead of a 0.

How Many Days Until Christmas?: This script tells you.

Browser and More: This script posts your browser and operating system and tells you
whether an update is available to you. If one is, you get a link to it.

Tips for the Day: This is a script that offers your viewers some tips. You choose the
topic.

Lots of Stuff Script: Take a look at this one. It posts all kinds of stuff about your visit.

Pass the Text: This script is really silly, but you can’t seem to stop doing it.

Date/Time in Spanish: This script posts the correct time and date in Spanish.

24 0789726122_APP D 10/2/01 8:31 AM Page 453

JavaScript Goodies

454

Rainbow Text: Enter your text, and this script makes it a rainbow color.

James Bond: Use this script, answer the questions, and you’ll get the famous James Bond
quote.

Update Message: This script displays the last time the page was updated and then a mes-
sage to the viewer.

Day-to-Day Message: This script displays a different message depending on the day of
the week.

Java or Not?: This script displays whether the browser is JavaScript-enabled.

Microsoft Explorer 4.0 Link Color: This script changes the link color on MouseOver.
Requires Microsoft Internet Explorer 4.0.

Post the Date in Numbers: That’s what it does.

Coming from Display: This script displays the page that referred the user to your page.

Who Came—and When?: This script prompts the viewer and then tells her how many
times she has been to the page before.

Text in Status Bar Delay: This script enables the text in the status bar to stay for a
short time—about a second—and then goes away.

Lose Text in Status Bar: This script makes status bar text go away quickly.

Text in Status Bar: This script puts text in the status bar when the mouse goes over a
link. Use it to announce your home page.

Displays Date and Time of Arrival: Enough said.

Displays Family: This script is good for small children. It enables them to answer ques-
tions about their families and then posts their answers, equaling a happy family.

A Mad Lib Game: Try playing!

Stops onMouseOver Text from Hanging Around: Use this script to make it so that the
onMouseOver text you use doesn’t stay on the status bar after the user has moved on.

Last Modification: This script posts when the page was last modified.

Date Page: This is a great script that creates a link to a page depending on the date. You
could write pages forever … but don’t.

Blinking Greetings: This script posts a greeting depending on the time of day. Plus, it
blinks! Woohoo!

Display a Message Depending on the Time: That says it all. You can change the
messages displayed.

24 0789726122_APP D 10/2/01 8:31 AM Page 454

455

Appendix D ➤ Scripts Available on htmlgoodies.com

Displays the Browser Version: Post this script, and the user will see what type of
browser (Netscape or Explorer) she is using.

Displays More Browser Info: This script does the same as the previous one, but it also
displays browser type, browser version, and a few other items.

Get Name, Post Name: This script ask for the viewer’s name and then posts it anywhere
you want throughout the document.

Get Name, Post Name, 2: This is a different look from the previous one.

Date Stamp: This script posts the date on the page showing the last time the page was
modified.

New Message at Bottom: This script displays a new message along the bottom of the
browser.

Cleans Up URL: This script breaks the URL reading along the bottom of the page into
Domain: and Page:.

Message Depending on the Date: You set the messages and, depending on the date,
one pops up.

Animated Text on Status Bar: What more can I say?

Mouse Produces Words: You can set the words that appear when the mouse moves over
a link on your page.

First/Last Name Post: This script asks for the viewer’s first and last names and then
posts them anywhere in the document.

Do You Have JavaScript Capabilities?: This script posts a message to the page
whether or not the browser has JavaScript capabilities.

Random Sentence Generator: This is more like a random story generator. This script
creates a new story every time someone logs in to the page.

New Greeting: Depending on the time of day, this script produces a new greeting.

Miscellaneous Scripts
These didn’t really fit in any of the other categories.

Script Tester: Use this script to paste in and then test your scripts.

Something of the Day: This is a great joke-of-the-day script that you can change to be
“anything” of the day.

24 0789726122_APP D 10/2/01 8:31 AM Page 455

JavaScript Goodies

456

No Right Click: This script disallows the right-click properties while the viewer looks at
your page.

Holiday MIDI: This script lies in wait until a specific date arrives. Then, it pops to life,
posts a message, and plays a MIDI. Requires Microsoft Internet Explorer 4.0.

Build Your Own Computer: This script was built for a site that builds computers. That
site was nice enough to allow me to post it here. (Contents are in a Zip file.)

No Tripod Banner: The author claims this script will rid you of them.

Random MIDI Player: Try this one.

Guitar Notes: You enter the string and fret, and this script tells you the note.

A Constant MIDI: Want a MIDI to keep playing whether or not the user stays in the
frames of your page? This script will do it.

Digital Clock Jumpers: This script sets up a table that shows you how to configure the
jumpers in a PC case to adjust the LCD digits for the proper clock speeds.

Same Size Window: This script opens a window the exact same size as the viewer’s
screen.

Multi-Button/Multi-Platform Sound Player: The author claims it’s the only one of
its kind. See it work.

Hello and Goodbye: This script pops up a window that disappears on its own.

Quick Window: This script pops up a window using a MouseOver command.

Cross-Browser Sound Script: This script sees the browser and then chooses the EMBED or
the BGSOUND option for the user—no more soundless pages.

Show Me the MIDI!: This is a random MIDI player that also posts the name of the MIDI
being played.

Embed Sounds Through Java: This is an onLoad script that works across platforms to
embed a sound.

Another Random MIDI Script: It does just what it says ….

Two Frames at Once with Radio Buttons: You are offered eight choices in two
columns. Select one from each, click the button, and the two pages you chose load in two
frames at once.

Download Script: Here’s a button that starts an FTP download for you.

Adding Choices Script: This script enables your user to select from a list of items; it
then adds them up.

24 0789726122_APP D 10/2/01 8:31 AM Page 456

457

Appendix D ➤ Scripts Available on htmlgoodies.com

Chi-square: For all the statistics people out there, use this script to figure a 2×2 Chi-
square.

Date Verification: Enter a date, and this script tells you whether it exists.

Learning Tool: This script enables you to click boxes and then shows you the JavaScript
to create what you did.

Random MIDI: This script plays a random MIDI file.

Chat Room Scripts: I have no idea how these work. There are seven of them, and they
do things in chat rooms.

Guitar Chord Chart: This is another great guitar chord chart.

A Chord Finder: This script is great for guitarists trying to find that darn chord.

Sees Browser: This script tells you about your browser.

Age Verification: This script is not very functional. It simply asks your age and lets you
in. It might scare off younger viewers, though.

Play a Music File: This script calls for, and plays, a .WAV file.

Auto Reload: This script reloads the page automatically.

Guitar Chord Chart: This is a script that shows the fingering of a chord you select. The
root of the chord blinks.

24 0789726122_APP D 10/2/01 8:31 AM Page 457

24 0789726122_APP D 10/2/01 8:31 AM Page 458

459

Index

16.7 million colors script,
361–372

A
action property, 389

addition, 149, 386

after-effect event handlers,
41–44

alert boxes, 41, 44, 54–57

escape characters and,
54–57

forms and, 122–123

alert function, 117–118

alert method, 35, 51, 106,
390

alert scripts on HTML
Goodies Web site, 430–432

alinkColor, 23, 25, 390–391

AM and PM for clocks, 183

anchors, 23

AND, 387

angle brackets, 77

animation, 93, 244–250

appCodeName, 24–25, 391

appName, 23, 25, 391

appVersion, 23, 25, 391

arguments, math operator,
159

arithmetic operators,
148–149

array method, 391–392

arrays, 59, 80–83, 209–241,
391–392

combining user input
using, 215–220

commas in, 82

creating, 82

formats for, 210–215

grading a test using,
239–240

Guessing Game using,
223–227

index number in, 212

literals in, 82, 212

multiple, 212–214

ordering items in,
210–215

parentheses in, 82

Passwords using, 227–232

plus signs, 82

pulling information
from, 219

Quiz Form using,
232–241

quotation marks, 82

random banner ad script,
291–294

random numbers and,
222

random quotes as,
220–223

25 0789726122_index 10/2/01 8:25 AM Page 459

JavaScript Goodies

460

returning from, 213–214

showing results on page,
222–223

asterisks, 63, 384

B
Back button, 48–50, 53, 392

back method, 392

background color, 23,
33–34, 84–86, 126–127,
393

banner ad script, random
text, 291–294

bgColor, 23, 25, 33–34, 393

big method, 393

binary operators, 148, 151,
386

blink method, 393

blur, 37–38

BODY flag, 59, 77–78,
83–86, 105

bold method, 22, 394

bookmarks, 100

Boolean literals, 384

borders, 88

 flag, 166

braces, 105, 109, 166

Browser Detection script,
171–174

browsers, 8, 10, 19, 23–24,
391

error messages and, 14–16

buttons

with frames, 303–304

scripts on HTML Goodies
Web site, 432–436

C
cache, 90–92

calculators, 329–347

scripts on HTML Goodies
Web site, 436–439

calendar scripts on HTML
Goodies Web site, 436–439

calling functions, 95

calls

getting a window using,
106

opening a window using,
102–103

Cancel buttons, 106–110,
394

capitalization, 60

case sensitivity, 8, 60

check boxes, 74

in search script, 312

limiting choices in,
256–261

check mechanism,
onChange, 38–39

clocks, 176–179

digital, with image
display, 373–382

scripts on HTML Goodies
Web site, 436–439

close method, 394

closing a window, 102, 394

colors, 13, 23, 33–34, 84–86,
126–127, 393, 397, 407

fonts, 13

rainbow text, 273–282

scripts on HTML Goodies
Web site, 440–442

16.7 million colors script,
361–372

command reference,
389–425

commas, 82, 387

comments, 63, 67, 77, 384

conditional statements,
169–170, 387

config commands, 99–100

confirm method, 106–110,
394

Console, JavaScript, 14–16

cookie, 23

placement script,
349–360

countdowns, 175

Count Down delay script,
167

to a date, 194–197

to an event, 201–207

counts, 175

Java counts by 1000, 196

current date, 196

25 0789726122_index 10/2/01 8:25 AM Page 460

461

Index

D
Date method, 125

date object, 65, 395

variables for, 69

dates and times, 59, 65–71,
395, 400

current date, 196

digital clock with image
display, 373–382

full-text dates, 283–290

plus sign to correct, 70

random numbers using,
154–157

debugging, 16

defaultStatus property, 78,
395–396

delivery device, SPAN flag
as, 45–47

developer scripts on HTML
Goodies Web site, 444–446

digital clock, 179–186,
373–382

directories command, 100

division, 149, 386

document object, 11, 19–21,
25, 73–74, 90, 396

forms and, 119

properties of, 23

Document Object Model
(DOM), 72–73, 385

document property, 396

document.write example,
56–57

double slash, 67, 384

down function, 95

drop down boxes, 36

question/answer box, 145

E
e-mail scripts on HTML

Goodies Web site, 432–436

else statement, 107–110,
164, 404–405

equal sign, 31, 60, 163,
169–170, 387

error messages, 3, 8, 13–19

browser display of, 14–16

Console, 14–16

debugging, 16

forms and, 133

line number in, 17

multiple, 18

Not Defined errors, 18

runtime errors, 16, 18

syntax errors, 16, 17

escape characters, 54–57

eval method, 396–397

event handlers, 385

after effect, 41–44

Browser Detection script,
172–173

countdown to an event
using, 201–207

functions triggered by, 75

image flip and, 88

key press events, 47

onBlur, 37–38, 51, 410

onChange, 38–39, 51,
410

onClick, 35–36, 49, 51,
53, 126, 253, 410

onDblClick, 47, 51, 410

onFocus, 36–37, 51, 253,
411

onKeyDown, 47, 51, 411

onKeyPress, 47, 51

onKeyUp, 47, 51, 252,
411

onLoad, 40–41, 51, 75,
78, 105, 265, 411

onMouseDown, 47, 51,
411

onMouseMove, 47, 51,
412

onMouseOut, 41–44, 88,
412

onMouseOver, 29–35,
87–92, 412

onMouseUp, 47, 51, 412

onSelect, 413

onSubmit, 39–40, 51, 413

onUnload, 41–44, 413

25 0789726122_index 10/2/01 8:25 AM Page 461

JavaScript Goodies

462

posting descriptions to
indicated links in,
140–145

random quotes using,
220–223

examples and assignments,
4

exclamation point, 77

F
Fahrenheit to Celsius con-

version box, 154

fgColor, 23, 25, 397

fields, in form, 127–129

fill-in forms, onChange,
38–39

fixed method, 397

focus, 36–37

jumping focus between
form elements using,
250–256

FONT, 11, 12, 53

fontcolor method, 397

fonts, 397–398

rainbow text, 273–282

fontsize method, 398

for loop, 164–167, 178, 253,
398

foreground color, 23, 397

Form button, 112–113

FORM element, 118

form fields, 74

FORM flags, 128–129, 138

Form object, 36, 49, 53, 74

form property, 74

forms, 23, 115–145

alert boxes in, 122–123

alert function in, 117–118

arrays in, for user selec-
tion, 215–220

background color selec-
tion for, 126–127

button click and, 119

calling functions using,
123–127

case change for inputted
data in, 122–123

displaying information
on, 116

document object in, 119

drop down
question/answer box in,
145

errors in, 133

extracting text box con-
tents from, 116–119

fields in, 127–129

focus jumping between
elements in, 250–256

FORM element in, 118

FORM flags in, 128–129,
138

Gofindit function in, 128

greeting in, 122

guest book, 134–140

hierarchy statement in,
117–119, 128

image flips in, 142–144

input button for, 121

length of inputted data
for, 122

limiting check box
choices in, 256–261

link properties in,
132–133

LinkUp function in,
131–132

literals in, 125, 129

mailto format scripts in,
115–116

mathematics in, 151–154

NAME attribute in,
117–118

name of form in,
118–119, 121

passing information to
the function in,
120–121

posting descriptions to
indicated links in,
140–145

prompts for, 123, 136

pull-down menu of links
in, 129–134

readit function in,
117–118

25 0789726122_index 10/2/01 8:25 AM Page 462

463

Index

readitagain function in,
120–121

receiver text box in, 121

selectedIndex in, 132

sending information
from, 116

strings in, 125, 129

Submit button in, 139

tables in, 143

text box in, 119, 121

TEXTAREA element in,
139

VALUE attribute in,
118–119, 127–129

variables in, 128

verification window in,
136–138

writing to text box in,
123

Forward button, 48–50, 398

forward method, 398

frame property, 399

frames, 295–305

full-text dates, 283–290

function command, 94

function object, 399–400

function() header, 126

functions, 75–80

braces in, 105

calling, 95

event handler-triggered,
75

forms used to call,
123–127

function() header for, 126

image flip using, 92–97

literals in, 125, 129

naming, 95

opening a window using,
103–106

passing information from
form to, 120–121

strings in, 125, 129

G
game scripts on HTML

Goodies Web site, 442–444

getDate, 65–67, 400

getDay, 65–67, 70, 82, 400

getFullYear, 66, 400–401

getHours, 65–67, 178, 180,
182–183, 186, 192–193,
401

getMinutes, 65–67, 178,
180, 182, 184, 187, 401

getMonth, 65–70, 401–402

getSeconds, 65–67, 70, 178,
180, 182, 185, 402

getTime, 194–197

getTimezoneOffset, 402

getYear, 65–67, 402–403

GIF images, 244

global variables, 79, 388

go method, 48–51, 403

Gofindit function, 128

grading a test using arrays,
239–240

greater than/greater than
equal to, 169–170, 387

greeting window on form,
122

Growny, Andree, 2

Guessing Game using ran-
dom arrays, 223–227

guest book, 50, 134–140

H
HEAD command, 78, 105

height of window, 99–100

hierarchy of objects, 59,
71–75, 385

hierarchy statement, 73, 385

forms and, 117–119, 128

image flip using, 90

history object, 19, 21, 25,
49, 53, 403

properties of, 24

host, 24–25, 403–404

hostname, 24–25, 404

href, 39–40, 404

swapping pictures using,
92–97

HTML, 8

scripts for, on HTML
Goodies Web site, 430,
444–446

25 0789726122_index 10/2/01 8:25 AM Page 463

JavaScript Goodies

464

HTML Goodies web site, 1,
429–457

hypertext links. See links

hypertext transfer protocol
(HTTP), 24

I
if statement, 107–110, 164,

172–174, 404–405

Image Clock that Runs, 193

Image-Driven Clock,
186–194

image flip, 87–92

animation and, 93,
244–250

cache and, 90–92

calling functions in, 95

clock using (Image
Driven Clock), 186–194

event handlers and, 88

forms and using, 142–144

function included with,
92–97

hierarchy statement for,
90

image space (IMG SRC)
in, 88

Jumping Jacks image,
110–114

multiple times, 95–96

NAME attribute in,
80–90, 95

onMouseOver for, 87–92

pic object in, 90

plus sign in, 95–96

preloading images for,
90–92, 96–97

proportioning image in,
317–328

random image generator
for, 161–164

sources of images for, 97

src property in, 90

swapping pictures using
href, 92–97

image proportion script,
317–328

image rollover. See image
flip

image space (IMG SRC),
88–89

images, 73

scripts on HTML Goodies
Web site, 447–449

IMG SRC tag, 88–89

index number, 212

indexOf method, 405–406

input button for forms, 121

instances, 11

integers, literal, 386

Internet Explorer, 8, 10

italics method, 406

J
Java vs. JavaScript, 7

JavaGoodies web site, 2, 5

JavaScript define, 7–9

JPEG images, 244

Jumping Jacks image,
110–114

K
key press events, 47

L
LANGUAGE attribute, 10

lastModified, 23, 25, 406

learning JavaScript, 3

length of inputted data, 122

length property, 25,
406–407

less than/less than equal to,
166, 169–170, 387

lesson format, 4

line breaks, 8, 12, 51–52

line numbers, error
messages and, 17

linkColor, 23, 25, 407

links, 23, 407, 424

colors for, 23, 25, 407

creating, 26

25 0789726122_index 10/2/01 8:25 AM Page 464

465

Index

href property of, 39–40

mouse events and, 43–44

onMouseOver and, 30–33

open windows and, 98

posting descriptions to
indicated links in,
140–145

properties for, 132–133

pull-down menu of,
129–134

scripts on HTML Goodies
Web site for, 432–436

SPAN flag and, 45–47

LinkUp function, 131–132

lists. See arrays

literal integers, 386

literals, 81, 125, 129, 212,
383–384

loading a page

onLoad, 40–41

onUnload, 41–44

local variables, 79, 388

location bars, 100

location command, 100

location object, 19, 21, 23,
25, 407

href and, 39–40

properties of, 24

location property, 407–408

location.host, 24

location.hostname, 24

loops, 164–170, 178, 253,
398, 424

Lotto Games, 157, 174

M
Mad Lib game, 86

mailto format scripts,
115–116

Main window, 101

margins, 9

Math object, 159–160,
408–409

math operators, 148–151,
408–409

arguments in, 159

calculator script using,
329–347

Fahrenheit to Celsius
conversion using, 154

forms using, 151–154

Math object and,
159–160

random number genera-
tion using, 154–161

menubar command, 100

menus, pull-down menu of
links, 129–134

methods, 11, 21, 31, 73, 386

miscellaneous scripts on
HTML Goodies Web site,
455–457

misspellings, 17

modulus operators, 149

mouse events, 29–57. See
also popping up text with
mouse events

image flip, 87–92

posting descriptions to
indicated links in,
140–145

mouse rollover. See image
flip

multiple errors, 18

multiplication, 149, 386

N
NAME attribute, 80–90, 95

forms and, 117–118

navigator object, 19, 21, 25,
409

properties of, 23–24

Netscape, 7, 8, 10

Not Defined errors, 18

NULL, 125, 129

null ports, 24

O
objects, 11, 19–25, 386

hierarchy of, 59, 71–75,
385

OK buttons, 106–110, 394

onBlur, 37–38, 51, 410

onChange, 38–39, 51, 410

25 0789726122_index 10/2/01 8:25 AM Page 465

JavaScript Goodies

466

onClick, 35–36, 49, 51, 53,
126, 253, 410

onDblClick, 47, 51, 410

onFocus, 36–37, 51, 253,
411

onKeyDown, 47, 51, 411

onKeyPress, 47, 51

onKeyUp, 47, 51, 252, 411

onLoad, 40–41, 51, 75, 78,
105, 265, 411

onMouseDown, 47, 51, 411

onMouseMove, 47, 51, 412

onMouseOut, 41–44, 88,
412

onMouseOver, 29–35, 412

image flip using, 87–92

onMouseUp, 47, 51, 412

onSelect, 413

onSubmit, 39–40, 51, 413

onUnload, 41–44, 413

open method, 413–414

opening a new window,
97–103

closing, 102

config commands for,
99–100

configuration of, 99

directories command in,
100

function for, 103–106

getting a window on a
call, 106

height attribute for,
99–100

links in, 98

location command in,
100

Main window, 101

menubar command in,
100

multiple open commands
in, 101

opening on a call,
102–103

organization of com-
mands for, 99

pop-under window cre-
ation for, 264–265

positioning the window,
261–265

resizable command in,
100

scrollbar command in,
100

status command in, 100

tags in, 100–101

target command in, 101

title bar in, 100

toolbar command in, 100

URL for, 99

width attribute, 99–100

operators, 386

OR, 387

ordering items in array,
210–215

P
parameters, 11, 94

parent property, 414

parentheses, 11, 17, 22

array use of, 82

functions and, 94

mathematics using, 150

multiple, 109

passing information from
form to function, 120–121

passing parameters, 94

passwords using arrays,
227–232

pathname property, 415

percent, 149, 153–154

pic object, 90

placement of scripts on
page, 174

plus sign, 64, 70

arrays and, 82

image flip using, 95–96

in search script, 312–314

properties and, 22

pop-under window, 264–265

popping up text with mouse
events, 29–57. See also
event handlers; mouse
events

after effect event handlers
in, 41–44

alert method in, 35

25 0789726122_index 10/2/01 8:25 AM Page 466

467

Index

background color
changes using, 33–34

escape characters and,
54–57

link creation, 43–44

onBlur, 37–38

onChange, 38–39

onClick, 35–36

onDblClick, 47

onFocus, 36–37

onKeyDown, 47

onKeyPress, 47

onKeyUp, 47

onLoad, 40–41

onMouseDown, 47

onMouseMove, 47

onMouseOut, 41–44

onMouseOver, 29–35

onMouseUP, 47

onSubmit, 39–40

onUnload, 41–44

quotation marks and,
31–32, 34, 40, 43, 44

return true statement in,
32–33

semicolon in, 32–33

URLs, 31

port property, 24, 415

positioning a window,
261–265

preloading images, 90–92,
96–97

prompt method, 61,
415–416

prompts, 59, 60–65, 71

forms and, 123

for guestbook form, 136

properties, 19–25, 31, 33–34,
73, 387

document object, 23

history object, 24

link, 132–133

location object, 24

navigator object, 23–24

parentheses and, 22

plus signs and, 22

proportioning an image,
317–328

protocol property, 416

pull-down menu of links in,
129–134

Q
question/answer box, drop

down, 145

quiz form, 232–241

quotation marks, 11–12, 17,
22, 53

arrays and, 82

empty, 105

event handlers and,
31–32, 34, 40, 43–44

numbers and, 151

R
radio buttons, 74

rainbow text, 273–282

random banner ad script,
291–294

random image generator,
161–164

random number generators,
154–161

arrays and, 222

random quotes, 220–223

random statement genera-
tor, 161–164

readit function, 117–118

readitagain function, 120

receiver text box, forms and,
121

referrer, 23, 25–26, 416

relationship testing, 387

Reload button, 54

remainder, 149, 386

reserved variable words,
427–428

resizable command, 100

return true statement, 32–33

runtime errors, 16, 18

S
<SCRIPT> tag, 10, 77, 88,

105

scripts, 3

25 0789726122_index 10/2/01 8:25 AM Page 467

JavaScript Goodies

468

scripts available on HTML
Goodies Web site, 429–457

scrollbar command, 100

scrolling credits, 269–272

scrolling text, 175, 197–201

scripts on HTML Goodies
Web site for, 449–450

scrolling credits as,
269–272

Self Typing Typewriter as,
265–269

search multiple search
engines, 307–316

Search Yahoo form, 127–129

selected indexes, 132

selectedIndex, 132, 417

self property, 417

Self Typing Typewriter,
265–269

semicolon, 32–33, 64, 166,
387

servers, 24

setDate, 417

setHours, 418

setMinutes, 418

setMonth, 418

setSeconds, 419

setTime, 419

setTimeout, 179, 185–186,
201, 253, 419–420

setYear, 420

slash delimiters, 67, 384

small method, 420

spaces, 8

SPAN flag, 44–47, 51–53

src property, 74, 90

statement terminator (semi-
colon), 32–33

status bar, 41, 44, 100

color in, 86

text in, 113

status command, 100

status property, 31, 420

strike method, 421

strings, 125, 129, 387, 421

random quotes using,
220–223

random statement gener-
ator and, 161–164

sub method, 421

Submit button, 41, 139, 413

onSubmit, 39–40

subscripts, 421

substring method, 201, 421

subtraction, 149, 386

Sun Microsystems, 7

sup method, 421–422

Super Math script, 149–151

superscripts, 421

syntax errors, 16–17

T
tables, 143

target command, 101

temperature conversion box,
154

text, 11

color of, 84–86

rainbow text, 273–282

text area boxes, 36

text-based scripts on HTML
Goodies Web site, 450–455

text boxes, 36, 74

forms and, 119, 121

writing text to, 123

TEXTAREA element, 139

thank-you pages, 50

time, 59, 65–71. See also
clocks

digital clock with image
display, 373–382

in running clock, 178

title, 23, 25, 422

toLowerCase method, 123,
422

toolbar command, 100

toUpperCase method, 122,
422

truncated lines, 8, 17

25 0789726122_index 10/2/01 8:25 AM Page 468

469

Index

U
unloading a page,

onUnload, 41–44

up function, 95

URLs, 19, 23–24, 73, 105

event handlers and, 31

open windows and, 99

user entry fields, 61

userAgent, 24–25, 423

username, 60

V
VALUE, 74, 119, 127–129,

423

forms and, 118

var variable, 60, 423–424

variables, 59, 60–65, 78,
387–388, 423–424

creating, 60–61

Date object, 69

equal sign in, 60

forms and, 128

global, 79, 388

local, 79, 388

naming, 61

plus sign to correct, 71

reserved words for,
427–428

verification window,
136–138

version numbers, 23, 391

vlinkColor, 23, 25, 424

W
Web page design, 244

link creation for, 26

writing text to page in, 9

while loop, 165, 167–170,
178, 253, 424

width of window, 99–100

window object, 31, 73–74,
90, 424–425

defaultStatus property of,
78

opening, 97. See opening
a new window

write method, 11, 25, 51,
53, 56–57, 69, 73, 425

writeln method, 425

writing text to a Web page,
9

X
X axis, in window place-

ment, 263

Y-Z
Y axis, in window place-

ment, 263

25 0789726122_index 10/2/01 8:25 AM Page 469

	00000___90984a11822690b6fecaf3e57ef5a610
	00001___d1c4d9df00119be9de35e840ec1b186c
	00002___ac9fcb400437b44eecf531bc290a6ed0
	00003___1bd73e1d44d8896416d12826c7f0e99d
	00004___bc74eedd0021f6942f63e3fd0b1dda7e
	00005___4f6182bce264617d70a14a22a8481b7f
	00006___dc28da4a68f3c40cf127f30f28325b1f
	00007___113850a717a04200bf325042ee5e16f3
	00008___82b0f5fa6543a1ee5b4563fb20a1f31d
	00009___cedbbf87d52b7cf088dad7a14c4d1ed6
	00010___10220760f03177e4bb15a81964cd8779
	00011___2ed95c145289a04120d3127653127556
	00012___b67039931d8e462176fa70019db7fc44
	00013___a1cc43853c7b84d386c2b7da5683dca3
	00014___c5898171bf2075015bdd4b4e6823944f
	00015___feda115a1e1a1008fbb98dad2fdc2025
	00016___f16d50e135eb330ef0a42598c8307450
	00017___f841a9f27eba5b1ce33d210d3e0d68ce
	00018___ed3df088bcda2ea4e78099b2254431df
	00019___ab5f4ea331025457f09641ffb365f0cf
	00020___02f0af2389fcafb84763be4dce628d59
	00021___301735920493fe9da8e987a164973e72
	00022___377fa71b536679325c2709f1a1cc7c9b
	00023___d4be1d4f6dc9313870e7b0f4a6709e7a
	00024___076d2c48ee871a1743633b5375e64a0f
	00025___b6b425d246c2c332a2162119ae2cb777
	00026___f3204913d93100a9af5e4db26a5e2499
	00027___7a1dc1e8bc8ddedb711bbe7b7b9c128c
	00028___546eda8193447799fa0e241d5d7c8f1c
	00029___f94d740e7fefba8e9f99c8183cd3105f
	00030___87841138785f5694baa172e78e5b9066
	00031___c15db6d6b36c13b32892f770aabe2a83
	00032___d0aed4b78f26000add6e3f90e66ba7d4
	00033___39eab637bf465d8372dfd26564abc0da
	00034___5c04c333d6162ae05516a6b2beba4213
	00035___98064d6a0da26350d1b643db467558fe
	00036___c3d2a65f10a80128a04874afc15068c6
	00037___838027346b0b4bcef9aeb9b7a80e1bf3
	00038___80bbc579934260b23f935a119bce8bcd
	00039___3cf4a55812cba1d402bee76f79c751ce
	00040___45faefb0c4a0ee67edb5333db2f56fc9
	00041___109cb621becd1a7a9896b20f86118852
	00042___a4a3bae1607fb982f4337518fb22dba8
	00043___132cf2423a48a0f0c55ca8ddb5781a1a
	00044___9067d625a1b0c025f4994b5bd579f290
	00045___aeb399db718e0ab9a3d136611c8f040e
	00046___daa98ef3d2bc1887a5d6c120160af339
	00047___d0ed496c7e3378a9c0bccc2a253219bb
	00048___f9580579023d8047480a03b46f45e446
	00049___582cb421b9e37234da9ab1290a308e8e
	00050___16f9cce137465e01c969bb7b1485d5f5
	00051___fe757e4d6bfbfb9bb2152ac59b0927bf
	00052___bf6c3d02e141f2e36f9288647b09dd06
	00053___5b87a246889849254ca01f6af972afc5
	00054___8a54dae6ff190c9a398456298139a2f3
	00055___1e8b36265ad71c1ba5ded04c0f19204d
	00056___42f22588c26143a1d33ba9a8b9ff984c
	00057___7c9d9ffeaed9abf40e595b077801b9bc
	00058___20adc47f1f941bb5eb41739338052668
	00059___32a03e9f765b1dc712fbc85c30426901
	00060___5437a1588788d7cea6e0b38a41b860f4
	00061___d24797094c7fe2d3fe6cd17491c52aaf
	00062___ec51ab7a236a95f018ca2c370f355d6c
	00063___de844a3d4f8545b12bf35e4a879107b0
	00064___9480a3cb22ceb54e2ac06686a0c2141a
	00065___02e49917b0147a279432bcb4fcf845f4
	00066___738e56f2677b2c0cd82c814b23772e63
	00067___20953630516cbf83f469e6d48c13c8cd
	00068___12471b6b68e97e902c60c21ae29180ee
	00069___8ceaaa41d681f6732242207522dab02c
	00070___c240194cf1d68a34f8f8d0f13556c8d2
	00071___9de0b59ba184878f4cf3f2389df302f9
	00072___768bacb83a8e164d8150bf3231376d93
	00073___fa515ea04595890f8c9801471d5dd6c2
	00074___fbc495c37e75bd2e59a003dc7015403a
	00075___bdd74aafe6912db605bbaf90dcde1a4c
	00076___78ea1ecb2d94017f203d38f81086ac99
	00077___3cff4dc04fe23a8c424b49b8ca6064e5
	00078___0d1afb82518827f580cb85a865d46513
	00079___c1f3266ee0fac143d72a0043040e9e25
	00080___39d29c371147d3fb5ff704f6a0258e3d
	00081___e90b5b6ac7cb98115e602d860a90088e
	00082___5f408afbc95c92e5c7e022941abdc577
	00083___d4f16242df4f504ba20aa520a29c4d6a
	00084___24e8a5cb3b5195055e4d52997261daf6
	00085___24e55e59be8a80f6d71ee9283548bc64
	00086___5b8c759728e738e568d70648807d2002
	00087___64e897a5b1d6f6959024517c63768cf0
	00088___ccf8e57ef6ecdbf19fc669fc2dfe6475
	00089___004155248e1bad90b19708d3da206951
	00090___8fee415b7d74726fae008af20858444b
	00091___b480fc4a0e1e6fdcbc5188901894f90c
	00092___56b2127031aee1af4ace79de7a287c11
	00093___7d29c78628964ad71e53e1997d13fe51
	00094___da3ec1e74b7ed68aa1c36d2a0d010e0c
	00095___4110aeb0633bb652b0119412bb668c79
	00096___455c0a137d212bb78e764e941f20b4b6
	00097___09f5ff60114fc27de6abcbafa81df34d
	00098___579cceacc7d9ddc29c152c67ec36e8e2
	00099___5afd56bafa3f8e5f8d4bf9fbf781cb53
	00100___b1b99bf00aa8e063b85157b2cd656f80
	00101___94659f67da68af426ac5918fc6d2c04e
	00102___2e2b0aec79e11c8dc9eeacaeae09f648
	00103___1fe8d02eafd910590d1ec144de7cbed3
	00104___585cc79789e042c9cc4cfae7630e9593
	00105___6fcce273e28f98c922e57ed5e051415d
	00106___d097e91bdd27608ee279028d7f5b715a
	00107___69ab2c89c202e564434396168e799a08
	00108___02f26d726ad635d4810d21200c3a2a33
	00109___70fb50407eeb732bc6aad43b0e4fc89e
	00110___1a8b869c6a558afb35699edb0586b72f
	00111___479cdbd523ef8fb370af6ed5bad5a505
	00112___04274db3de98d977622db7becb2765f5
	00113___6b6dca1a4c4af687fbe70ae65c367282
	00114___205dcb60c994f31c4fec68887fb163d9
	00115___b9242fb794fef4b76c167ae7506fb786
	00116___7470806de69edccbb3f0af4f67229cea
	00117___fe134ef70c1cf1a6dac6bc0e85a5948d
	00118___110dc25c6d312f05539ff8d2bc508d36
	00119___160eeb4efa1d36c6b8ce6ed8912fd54d
	00120___04d52ebd82835e327dadf097b0a8ce66
	00121___b2da9e085e22d3cb4467121d5e322014
	00122___26da642ca22b223573d318f772272c7a
	00123___927bfdf3550f0bd071d859b86b1ae9fc
	00124___16edc51107c03b78c94aac9d88b3678f
	00125___b85357483d14035646438d24eff88340
	00126___b9d84bb739de490da9bb6c8739cc51c1
	00127___eda16dbec068331ff07116d7dc5fbb08
	00128___dee63964056a4e66bbbbd80ff0c6ec8d
	00129___aa14e0ffe2f4540e720f8cf4d82f2782
	00130___a22deda698f05ff3c5cf8d1a3f54faa3
	00131___5e63fcdb273cf160fe97dc8a027f48cf
	00132___e11cc59fde6f88ca3a96287a1131f4e4
	00133___d741158249939ea8fbe4854bb8d140e0
	00134___7e0bb3b548d357d0653d6ad01c4ffe7e
	00135___a7f27ad99d155aa6e354c4dba1c12d69
	00136___9071fafdd04e252351317c51a5bd08b4
	00137___7b07f3ed5e6ac144f12139006268bd17
	00138___a0793d0858cdd4ca2892d82a884ef90d
	00139___619a9dc8a8911935f92016a4464387cf
	00140___96c994f9f48e834fa33b2f04e9d9f96c
	00141___fbfa98bb4ee8b62f62b34fa1ea8d54ac
	00142___cd2bb53807b16c5ae72542a05ee6dbe9
	00143___c76621a8dd5f88ec12e6c57812d6db0d
	00144___4d1882a8106d54b4d6fca6552c5bacc7
	00145___3688caaa0ea37f9809fa91b34223dbc2
	00146___8ced78faf76b7a733275e8d4b9806a4d
	00147___a98f12f192be0fbcb6d8972cb9bc2e6a
	00148___b7d788de3cb279001d424a330543ef51
	00149___915e51f555f503dcce3cc1cd2e3fb365
	00150___a47265c5c2b9a25db476fdc46375de07
	00151___5e636c04326a599cdc292a9f0eeb7281
	00152___1a74d1713d7be48d62bd3ed7b299c8ec
	00153___54582b4a0a401976446f140f3ad57ab9
	00154___9acc5ec94b2d887212d8c673867d0bdb
	00155___de6c2a15e026a286b2c3afba67f052a2
	00156___3055c2daadd1bf78a7de46bc1d9e1a33
	00157___19aa020ea2110c1693f46d61d011a06d
	00158___649e53105632ededf6d8480db2db4dd4
	00159___5c52a442111c30d5a6e968c205f71599
	00160___78350d16166fc92d4fafcbcce24ecd01
	00161___19ac26459f37ba6df5f7fc8ee4749523
	00162___d10e56797993043536a85111b1918827
	00163___0d447abdc1936748a21fc3b27f52e2de
	00164___3eda60f28bf95b6ab3de620e68f9052c
	00165___493045487494923b0d23c0870ac4842f
	00166___3d5bc62966187d08bc261a25b537075d
	00167___3cd46dafaafe56b2065e64e132ae6433
	00168___3a5849738964e97c5b9839ece7901c17
	00169___807b130ba43f6f3c47af0b53e38882ac
	00170___a9b16067fb842c1013cb57139bc743a1
	00171___c5815d4fa544d7f02543629db280efba
	00172___fdf74f20bd77e531c44e119a295d376a
	00173___ebedf86b6ae3051bc0548210c89b5f1c
	00174___f1ff5686e39020ded67a5328fbcc8e16
	00175___7f6589a2f5fe178864f72dce9ceef966
	00176___38cd99212e0e059f291ba864374a2494
	00177___301f70d3fe52c2b8bd20cf76f9e15f63
	00178___4f3e35ded8c4f9b3927dace117f61436
	00179___323209057a9a663a129bb7792a4cbd64
	00180___16c40d06c0fabb20ea3c090dc80017aa
	00181___7031c39d639a884dda38c6cc2264c647
	00182___cd19a36c92f073c1cb82bd51c4ecebcb
	00183___7a649bf68a6af0b4a3237982e4ca6273
	00184___f5d2dde50345ff60e14b171a05202f97
	00185___723324cb49c7248be5b36df3c7a83cdc
	00186___b27f4a458f015b39152e67dac8a6f0dc
	00187___0364290c93159db37add58bc85e544b4
	00188___d2c0951724ea59742c24d72a83a1ef89
	00189___b9f097fbef74a077f0e9132e019375f8
	00190___e4e9a8752074c1c8bfe816849a37c101
	00191___adefc887fa7ce651395234f71fb4bfb4
	00192___6dfd7592f0547b280679731312e8db07
	00193___11d2a98a8b2d32c36d769a170a96b70c
	00194___29c53c3e76550f84331fe92a72097811
	00195___4ab3107d20ce69566f00dd5eb1ad4a18
	00196___a5c7bb8e6acfed9f92db4fdbe4db631b
	00197___a10e143e15eb251cc09aea5ca9020b73
	00198___25abf8ff284437da15ad43a2c479df8d
	00199___fa093ec9dacb9dcf09c70ab9d665383b
	00200___3c7a44ba3e96582385fac9f99d54a7cb
	00201___3110313aab32ebb237dc21a4978adfd8
	00202___46fd23a13bfa14ef4b08f24ef9a375f6
	00203___1dc9363af62451a484168e0c0d02d7af
	00204___281fa4fb68d2c47ae8f9266ba02305de
	00205___356e7ead845f454c64dd48afc008be7b
	00206___0aaf52659f28678633990cff97989c63
	00207___0d8ceba083ee691f64b0ae20bcb3f5b6
	00208___06f27410d5c08fd62e2a0f29d13b577b
	00209___b6cf884a4eaf5077e3e46e1ce398438f
	00210___2f9ae2cf906545ce30385c036c7bf04b
	00211___4401ddbf5904b927e8f366c633ec8729
	00212___a0800838f9fd3135bfa72f118e671f0e
	00213___ba96278b586f9d3662f3181e9ed0a94b
	00214___fbefb7964f0476bb44a8041dded8a8bf
	00215___488f58e6ccb96df151ef41b3242dfbd6
	00216___ef628a70522cc84069a27cf26daeece8
	00217___f0b18f841ca51a4e130c4e1b82dcc646
	00218___c7e7afe1a51d2994a691abba38c7d4c6
	00219___a6064fccb582b4863650f66906a51ecb
	00220___00f4a28fe01897135750229d8d763648
	00221___b7dca4230757ee8c3242ed9075ba1ed7
	00222___da8596c475b29d0037f621fc3f388ad1
	00223___eba476ef54f502cc492d811ca3aa832a
	00224___a9c5bbe7d4db0eabceba71f46cb99c8b
	00225___e7d43f7e38e2bdf56621ec93fc816f39
	00226___65adfbd7e7739b73b07ae221d62725c4
	00227___5dc3b16a303e2a8a4502b036ab25f29f
	00228___8f1320d9839c76b7a21bd2c226daf63a
	00229___1b383a0753dac74ecc591832bc9dd520
	00230___d7f482a86a75b279b450b631d71086d6
	00231___11baae4748d0b3d28914824f6d629cad
	00232___ea852eff08907f969a2b40ce4619a5d6
	00233___67d6d8c0e0568d781c248f0f8d0d9d13
	00234___d740b1676e70d741a31a0eda453c06b0
	00235___8520fb00f3dc1bd48f95d6a20a0d25e5
	00236___9e89d10f655c38ca795d36fad8a340e5
	00237___46111c45fdcae46fbb481b99e8bada32
	00238___697ad198f14d51153e14bf4721509b49
	00239___ef52acf7820e431a63adc23597e0edfc
	00240___a91061d14429f116d4771010af385d53
	00241___e13bd3351f909593eafd04abece395f8
	00242___af952ca2d51bc582f1cfa6fcd7f1f065
	00243___8b8917183ecadb409420108a4aca3de2
	00244___f86cf3a6f1b70cc8fa113a624e34aadb
	00245___0600503cdae15f8b7e50a5a51efa59dc
	00246___480678722344823e48d3a3ce7a00f3c4
	00247___bfb3cde488c38f7d8dffc9d5a8e2f896
	00248___29a6b54fd03b91d274db354d67e43940
	00249___fd87babe8bee4c0986d2e6c30ad701c2
	00250___652670ec772b0aff893bed27e96ada85
	00251___0f9bb8c0030921657b545e6ca4da4727
	00252___791fbca18d5c7195dfb2c16a8c1a7e2d
	00253___a022ffd9692e6b2a0eca1e1ebe5e07cd
	00254___94d2784c0e3bb011ad7f10cc7133706a
	00255___9978191f6740db70074a6ca999578131
	00256___f0b34ccd79d673fbb8e8c04da25e23fb
	00257___a83be9a46696d28af025680c0f0e0474
	00258___18e8474c9a59c9a68bcd8129e2c991a1
	00259___4b387ee207b6df0f0191b5b6ef93f9c4
	00260___467b9736d938cc537bd37cae66660093
	00261___c0543e0525bbdcf42cd0f617c721a8db
	00262___23689c4897d46baeb3d2690c3d9c1f1a
	00263___3d4dcabf06fd7103835fb2b5f2b5c8d6
	00264___832592e475567f944936cd1770aea4a1
	00265___dca9faa7629a57c06e14d1adea77b968
	00266___524fdf1bc1757f02af50165d2ad662b1
	00267___7445e9d9ee47ffa0d8e8233653c95282
	00268___f3629997dafc27b5cfb6434d23e4292a
	00269___a204cb36bf77046c9e08f22c508a1f1e
	00270___e34f6edd399b5a38a6bf57b9c6f1d375
	00271___5a30fb72ee78f0046f604ecf4cb9239b
	00272___c4494cd354f5ca4e4b3fcce692946219
	00273___992e238757cc58b5d624e650a261bb53
	00274___1ab8040a6d084547ff2f64f105f25d02
	00275___1d7d18c5458b8ab50ab28bfd129f3bd4
	00276___40fe636d1c92df83075cbea989cba876
	00277___1e0a68a7420513c6044f7069f631e2d3
	00278___41b87f5f0df4660fc64d43b21942b4d1
	00279___57530020aa4405b83460fe57b369e80d
	00280___2371c61fcbf67cf720821fa8f008e77b
	00281___205f473af81dbf5c0b78a93a40438cc6
	00282___ec1392338c8a52e84e38d88ffd3f30fa
	00283___2f8cd5e35a9848166112d4940dda0dbb
	00284___3527895ad89657bedd8787d5f415388b
	00285___3951d074ce5f838d1aee801e670a0cee
	00286___5ef5f45d384e4cbbd927d19e01ad32bd
	00287___984dc216aa84f56e6a928175eefb0d87
	00288___e117544fdcd78ddbfdf91de06c54cdbc
	00289___a41adb3e95793a9a228a91f900b2bc34
	00290___5d62ffbf5a5721aa5df2543599da615e
	00291___2515766c05e060d8b461dddb3360408f
	00292___0d99f784558697308c91abe69357bced
	00293___3fc6ff748a06bbe24421731ba91543b6
	00294___fd11a13357c01bf588a0611273e3f335
	00295___95dbe0cba31b42623fbd61892a01fa04
	00296___03a5b67adee398f49d5ba1d5f3c0d3e1
	00297___0248fb438c6c72b4ab5e06c1c786913c
	00298___59779f6fd780d5ea0bdbc581f4ae66ea
	00299___45cd4516b95a426543378ba2eef10883
	00300___528f2fa8dd09249cc6eaa83680383b8c
	00301___62206c804db865d6ecaead66b5510890
	00302___537043772f764e1f7280552c7514dcb3
	00303___7221d56bfd2640d823bbf69ac0b2e827
	00304___d5abab21099427f0c60c23b419936f45
	00305___f117a70c45837dee24ef4e406a4f916e
	00306___20ec156830332c6038350f2e1db451d8
	00307___b6c1943ca5e6b8801a4fc3b977c31071
	00308___921a94a46bb74df7ac4533820cf5306f
	00309___d8a027bc3f1be6ffac6ac4ad1ea4f06c
	00310___5ac540e0283b40426baa045331134855
	00311___50bc33aac37a85358409a5a62300272f
	00312___5763e2145d956fc844538ab2c17fbe21
	00313___cb4aca016f675f1f1be0b5ebb5dfa58f
	00314___0cb98d471d4d14e1eefab9c5a579c772
	00315___359bd628fc501d791d940af3bd007ec1
	00316___b1a424e0b5293d466d4a7db04ac51cc9
	00317___3ef734ae28465e0b4e14ddac038285f4
	00318___1597f394b1725c385d926bd9f73333fe
	00319___0703e27db094822c705338f3fc8a87ca
	00320___61cb9f24f8e43f43f9282982ffc2328b
	00321___13c3442e4e25cebecfab521d527f3ed2
	00322___d839d2bb3d875e578ffa2df06e9c69a6
	00323___5f1ab5ae934b6c31e04216746ac19837
	00324___58856d000865d187fc11b1bc96e57766
	00325___aa5df2f56bb2340bb4120166d1c7bba9
	00326___57b2b6bd38d7e8f59d9e88a249a8c2bf
	00327___1ca41a8e6389a184fd609c208c2c2384
	00328___d8e276cf3f9cb7bb82c88bcc1d79bddf
	00329___ad2e97a7472ec6441844b1cacce8fb66
	00330___c0937c63bdcef1f67ee633180e5e2b9f
	00331___94c5cb370c4fa86ff783a08ee8951840
	00332___59f2400a88b8100833597bf35b04f9bf
	00333___e7080fe2f94fcd3fda694da98088a002
	00334___cf02d114cb511161e323312a6a25ece4
	00335___301579cd5442b7d13cd6d4a918613753
	00336___93da47959e2fd10a02a72a1f4c3f9202
	00337___b21b5498b500d9b543b3ec724ac5f6f3
	00338___83cc652d8d316cfe307ba8b44e92afac
	00339___cea546cfd8199dd3f4b29a0842d7981c
	00340___818eae5b90f8209e48a90be478d3e167
	00341___e64ee7f5839b32ccc3b8bfaddf62f40a
	00342___58e5f8b1b21cde2c1d0b6f688c40610a
	00343___0a50371c81a45d08610be43abdcd595d
	00344___733d07b532d93f4f7a53bb9ef83b34c5
	00345___311abe6964ea358bf97cc716f5db9266
	00346___37f6bc487f3e356c8680c64aac9d95af
	00347___855e19e2ddd20b8b90853163b9a2d2cc
	00348___483c90e44a6b0691a62c23d89c3b595c
	00349___55c1dfb998f8fa045f251c8364c55bfe
	00350___5bdf988a1d4c5de5c0a0e23bff10b88d
	00351___b9333dc07fa9e3c771f50287e6cad560
	00352___8066551614f1b19482f6da214c5a59aa
	00353___079e8ce8ea561dcdc2f0695ec90d7587
	00354___4d95d0d2c679f6b0ab0c23c5968ef244
	00355___e199b053a8c3e30ed046d013d7c1273b
	00356___93dd210a88a6995912508c253ed14ddc
	00357___9d88358de8a9b2ba89b23ed0956e87d8
	00358___12d087d0785ba5c017ee6cc2c0564ba6
	00359___39584603d0a884415d55ce86b4d05cec
	00360___5682f3ce42b369be2e68056886986c27
	00361___a9d17acbf7e24223b6c39620ec5ffda5
	00362___2d9a3cb4c717ad2007ac3e7916845231
	00363___5552580001305dab1fb13904de44da25
	00364___9a8ed469a16bf8f9d7a9238c5cb01e0c
	00365___eae4ad70cc638f42c7b1e24fca39691c
	00366___71e4768a784749cdb7613c6151e35f2a
	00367___4a5bf081cf25fe204fb6fb1c8dd4f221
	00368___69f571bd04454b5f583da34573c819b4
	00369___81ab0747529a1a7e710e3dfd7959780a
	00370___deb4bfec29568e6ec8d18653afb82e04
	00371___815f1a903579ab308453623a525f703b
	00372___a6f2ec049d26a5f9f0d488ac62f5ef97
	00373___ab2f27d7fb74a03371a71dbc613c74f4
	00374___3fedcab4281b43188e9bd92cca6c8870
	00375___4a9b330f3c52c9c8ca87d03b11c571bd
	00376___59457b04b51e0f360e14b05c66391214
	00377___6eefd0a97d2b8ad49faa405fee11a71d
	00378___c1c56b49342e023ccda3d7113f50d49d
	00379___4815362e8599691266500d84711b9c02
	00380___4bd8671c6575ea0f2f693d8f1758ba25
	00381___518ee40ebd2e01d1de3d407cca46c3c9
	00382___d7cbd5c50af3db747b3bd085e43983ec
	00383___323394a93efc4773cd59f371c0ff56fa
	00384___53fd2fa4be1aacd0a41a8e209e44fd00
	00385___87596e266242c10a258f5df5f0788dbb
	00386___38686f7deb534af0ba6d9a47b4cd0315
	00387___a22cf0a02d578d5d5fe7d6883564f991
	00388___48a794308a79ee95e2fc21bf7c3bd99b
	00389___33702edd8f3ddd5fe245b0439493eab4
	00390___c21a7ffdb1595e1bf5dd4e56b236edbf
	00391___20eddd75a7f0e99d272462ae62add7fb
	00392___4c328204170f428823abf799ab8979a0
	00393___52a2a9398bd4b0ea01d6f45ea8644233
	00394___71c3f3d203108f082825f48279d5212b
	00395___6ed978203aa550c1b96a35d7572c3618
	00396___2a94ebb9bb6fab5e9d24651ce5f2a264
	00397___7dc68ac0b26a97dedcceb6568076b004
	00398___bb78f94bbf9cf41d8c77846e09f1dddc
	00399___207cfa85ca6898d8c79224d6e62a0ef8
	00400___66cb778d9abf9b3736e3b771989c752d
	00401___ca8f69984c52e719c5f4aaa56770c8a6
	00402___d85d6aba4fa7fc4a5a0c1d20f6920e5c
	00403___8b8ac29836713bd06f71d7e35ca92dd2
	00404___f9a796778dc1731f1013c519320e873c
	00405___7cf2ba6532d0547d793e1327b98dfbf0
	00406___53c0f3a4a538713f47a7d9ee98b47531
	00407___17eb75222240750bcc09c74a205c984b
	00408___531e3073ba5c674363a5d95aad522cb1
	00409___a2a45282554f5a93b11a599aa3cdd4ab
	00410___600a2fff4b1254899ee7ee9f5bc34ccf
	00411___21234fe3de603fcf221696c23e55a62f
	00412___55f9edd7e3753b65f2d90c1683b5390c
	00413___43984d6d77b4864d6b08019335b30509
	00414___6564850391527ab5c1556fcf32b1815b
	00415___25ebed6b1186279e311ab437634686a1
	00416___b53a29c6486ee577add8488b853f599f
	00417___aa4b56fee3c723195174594a6296e524
	00418___b6545f6d6f41236ddef2348d733572ef
	00419___cbc6caa1b99bf14fe6b8db171e3b645b
	00420___4498954a52de4cbaeb977dc26e673fd6
	00421___a476e0400ed499bc5db87f08b2e50efc
	00422___8231d17ca245a32352cc33d6021b4b18
	00423___c0bf561f3bb6f36f7abb40da740eaa3c
	00424___59cb4b280394d7f22d2cfaef3a14b239
	00425___9a92e6b5201c0485edc8b3b1841d445e
	00426___c19ca72fd783fdefffbec231bc73fba1
	00427___937b3b909e8749824668c2201835d6d2
	00428___39587c5d7d9f12d2f2235d83a6252ad8
	00429___df946f4306e7bbd3aee0a3278ee4b1c1
	00430___b3e71e217cea822a07dd5aa6eb3e549e
	00431___605f43826d87ac243316ea1d32728829
	00432___d6ea45cc9a7861a9749e055a2650d2a4
	00433___4bf8bb37fc70e1868433389465fa3042
	00434___535d925bec6611c3f4890bb198858917
	00435___c6bb2356a0ac5f8f468c8eefbf719817
	00436___7be1556953f4b69189c5cb0760c126e8
	00437___d6470f45d3b880e34bc29fc506f01c74
	00438___08ea6770bea7f4ec9516d2c2660646b8
	00439___b2d1d4f4d38c735e2bec94493dafec56
	00440___8062ffd8126963e194a058e0e3a8492c
	00441___7a3bac17a5a4fc4fbdf8f2d905990016
	00442___f70fcee9a9749f812ec74c79604f21ae
	00443___62170c10e89ab5f5b1739b44d3990f66
	00444___9f869e34e338e37b0c0e0ce7ad9a66c5
	00445___b377923f2c7177517f307b0a7e25de8d
	00446___4879db0aac7c9081f4d5aaf48914b2b7
	00447___c05d4a0f07b836d8819f30787b61a5a6
	00448___93db804e7bdf41758f12559ccf7a07cd
	00449___8fc643913a1824711c915d9ab980ddfa
	00450___10dc1dfea8b92d11bc63ebdf696d97e8
	00451___ee97b68ac3d07562b2177891cdd569c1
	00452___85cc6265a59059444cc1987f2848a5cb
	00453___d3fae82046b4afb9c23fdbd501b919a5
	00454___df89529efb973d2450a0a75440249f10
	00455___a8c13dff3e839739a42db949e8e472e1
	00456___370f7d0a3b091d50100257d3ff16c4b2
	00457___3f2a6aef9ce8a900d40b84628ead8737
	00458___83e37771eacc8b6b24c23d7e1d7006cf
	00459___5cc3ecdbd1b5866c00e82828277a7016
	00460___3f29986890682ed4aeb94def3e5df96c
	00461___1909b35e4e0868d5f8c169b706409dca
	00462___09c70c5d05303173c43babd293cf45b4
	00463___2062366579af2a55018a84923e3d2ed7
	00464___219fe73bac6123d640effd03be7dd4fc
	00465___f474efba65e69af4cdbddb6c441d0f8a
	00466___d225fd0e0359e6fdf2e5dd257d01060c
	00467___8899cf59602348292d1da34cfca1237d
	00468___c819f9dcf2ac0b65c7bd28a08c71f743
	00469___2bc8786259ba0533bbf6e106a2f497f0
	00470___b7e2337877e72928e5f0e2f0f63f918f
	00471___f42f24eeb92acddf7268ab31756b4b88
	00472___57b1748a0f9249d5b0fb402347cfc42c
	00473___54f7553f5299aaed5422f3013b5bc740
	00474___76f6bff015f1dd2371a6607550c7cf07
	00475___7c3e0937ca18300cf7ce62915b60d6ad
	00476___ad761be4d6601ff3bdc3778e62953d68
	00477___0a97e72642a3193540e5b24bc3d41951
	00478___406c368f320198684d9378d25ebabc1a
	00479___aef5eb94f9fd7ee0f08d2e60455a626a
	00480___ab0f36d79a0cbce1c48b34355bda179f
	00481___0435f2929d81e7a13c1d7566ddfc3dee
	00482___d1fb9d6328b246726c77b7a8b82ee192
	00483___ee42b545a7843eb6c573ac3ada71cb36
	00484___c00c6e11216b326ca089fcf5ee8960f3
	00485___775f9614d9dd75bd992f6513b7f563d9
	00486___ca65ea1f80fd3604c43588508d98eb75
	00487___3b65a5f8f356a5f142f000a486a90951
	00488___d147a55a779f921b7a3bc19c96730f04
	00489___7ace5befc9e55aacefc0d705a192306b
	00490___a89840542fd485279f676c3eca9844c9
	00491___9302e27a4699c72b6fbb8ed4e1cb355e
	00492___114dbff12802371ccaf9a930b5e4e5fa
	00493___59b674426ac357931dc8470e6dc2e78f
	00494___70a0c8bdd5d3b53afe5fc38463318619
	00495___46f7450d6879722128dad3119a54d9d5

