

NetBeans™ Ruby and Rails IDE with JRuby i

Contents
Chapter 1: Installing NetBeans IDE with Ruby Support1

Downloading the IDE ... 1
Installing the Java Software Development Kit 2
Installing the IDE ... 3
Adding Ruby to an Existing NetBeans Installation 4
Summary.. 6

Chapter 2: Trying Out the IDE ...7

Creating a Ruby Project.. 7
Creating a Rails Project ..11
Summary..16

Chapter 3: Configuring Your Environment17

Registering Ruby Installations ...17
Managing Gems ..20

Using the Ruby Gems Manager .. 21
Gems Repository Permissions... 22
Using the Gem Tool from the Command Line ... 23
Installing Gems That Have Native Extensions ... 25

Adding Servers ..26
Accessing Databases from the IDE..27

Creating Databases from the IDE.. 27
Registering Existing Databases with the IDE ... 28

ii NetBeans™ Ruby and Rails IDE with JRuby

Working with Databases from the IDE... 30

Summary..32
Chapter 4: Working with Ruby Projects.......................................33

Setting Up Ruby Projects ..33
Using the Project and Files Windows ..36
Adding Files ..38
Running Ruby Applications..40
Running Rake Tasks ...43
Using Interactive Ruby (IRB)...44
Summary..46

Chapter 5: Working with Rails Projects47

Setting Up Rails Projects ..47
Working with Databases ...51

Setting Database Configurations... 51
Using Databases with JRuby... 55
Creating Databases .. 57
Creating and Changing Tables .. 58

Working with Generators..60
Adding Files ..62
Running Rake Tasks ...62
Adding Plugins ..63
Running Applications ...64
Using the Rails Console..67
Summary..68

NetBeans™ Ruby and Rails IDE with JRuby iii

Chapter 6: Editing Files ...69

Live Code Assistance...69
About Semantic Coloring..72
Using Code Completion ..74
Using Live Code Templates ..77
About Hints and Quick Fixes ...79
Refactoring Code...81
Navigating Code ..86

Navigating Within a File ... 86
Navigating to Members ... 88
Navigating to Files .. 89

Viewing RDoc..96
Working with Task Lists ...98
Viewing Recent Changes ..99
Keyboard Shortcuts ...100
Summary..102

Chapter 7: Testing and Debugging Projects 105

Creating Tests..105
Creating Unit Tests.. 106
Adding Fixtures... 109
Creating RSpec Tests .. 109

Running Tests and Specs..112
Using Autotest ...115
Debugging Applications..116

Running the Debugger... 117

iv NetBeans™ Ruby and Rails IDE with JRuby

Working with Breakpoints .. 119
Using the Debugger Window.. 122

Using the Local History Feature..123
Viewing Log Files ...124
Summary..125

Chapter 8: Working with JRuby.. 127

Creating JRuby Projects ...127
Adding Java Libraries to JRuby Projects ..129
Using Java Classes and Methods in JRuby Projects.........................130
Setting JRuby Runtime Properties ...132
Using JRuby in Java Projects...134
Summary..137

Chapter 9: Deploying Rails Applications 139

Creating WAR Files with the Warbler Plugin...................................139
Installing the Warbler Plugin .. 139
Configuring Warbler ... 142
Creating the WAR File.. 143

Deploying to Application Servers ...143
Deploying to the GlassFish Application Server.. 143
Deploying to Tomcat... 145

Summary..145
Chapter 10: Customizing the IDE ... 146

Working with Editor Options..146
Tuning the Code Completion Pop-Up... 146
Setting Formatting Options ... 148

NetBeans™ Ruby and Rails IDE with JRuby v

Customizing Live Code Templates ...150
Adjusting Hints.. 152
Creating Code Shortcuts.. 153

Changing Fonts and Colors ...155
Modifying Keyboard Shortcuts...158
Modifying File Templates...160

Editing a Template .. 161
Using Template Properties .. 162
Adding Licenses to a Template ... 164

Setting Task List Patterns ...165
Working with Nodes, Files, and Folders..166

Displaying the Physical File Structure in the Projects Window 167
Adding Ruby Script File Extensions... 168
Changing the Location of the Ruby Source Files Folder 168
Editing Hidden Files in the IDE.. 169

Tweaking Under the Hood..169
IDE Options... 170
Editor Options ... 172

Troubleshooting the IDE..173
Summary..174

NetBeans™ Ruby and Rails IDE with JRuby 1

Chapter 1: Installing NetBeans IDE with
Ruby Support
Installing the NetBeans IDE is fairly easy. Depending on your operating
system, it may be as simple as running a command to fetch the IDE from a
repository. Otherwise, you simply download the installation package from
the NetBeans web site, ensure that you have the necessary Java
Development Kit (JDK) software on your system, and run the IDE’s
installer. If you already have a 6.5 version of the IDE and want to add
Ruby support, skip to the section titled "Adding Ruby to an Existing
NetBeans Installation," later in this chapter.

Downloading the IDE
To get the NetBeans software, go to the NetBeans download page at
http://www.netbeans.org/downloads and click the Download
NetBeans IDE button. Choose a language and a platform, then click the
Download button for either the Ruby bundle or the All bundle (see Figure
1-1). Because the Ruby download has a small footprint, it is the best option
to choose if you are only doing Ruby programming. If you plan to use the
IDE to develop programs with the other supported languages, the All
download bundle is the better choice. You can also choose a different
download, such as the Java bundle, and add Ruby support after you install
the download. Alternatively, look farther down the web page for the link to
the MySQL GlassFish Bundle, which adds the MySQL database server to
the download.
Be sure to install version 6.5 or later. Several of the features described in
this book do not exist in earlier versions.

2 NetBeans™ Ruby and Rails IDE with JRuby

Figure 1-1. The NetBeans Download Page

Tip You can download and install the IDE and its JDK software
dependencies in a single step on an OpenSolaris system using the Package
Manager GUI, or from a terminal window using the following command:
pkg install netbeans. For Linux systems, you might want to check the
Linux repositories to see if they offer NetBeans IDE 6.5 packages.

Installing the Java Software Development Kit
For most of the bundles you must have JDK software on your system
before installing the IDE. The NetBeans download page has a link to the
JDK download page as well as to a NetBeans IDE download that includes
the JDK. On Ubuntu, you can install the JDK 6 package from Multiverse.
If you have Ubuntu 8.04 or later you can also use the Open JDK 6
packages from the Universe repository.

NetBeans™ Ruby and Rails IDE with JRuby 3

Tip If you install the Ruby-only version of the IDE and will not use
any of the IDE’s Java features, you can install the Java Runtime
Environment (JRE) instead of the JDK. However, if you do not have the JDK
you will not be able to use the Warbler plugin to generate WAR files. The
JDK includes the JAR command, which is used by Warbler.

The installation instructions on the download page provide steps for the
various operating systems. For example, on Windows you run the JDK
installer.
Although you can install the IDE using JDK 5.0 software, installing with
the JDK 6 release or later is recommended. For example, the LCD subpixel
antialiasing changes in version 6 greatly improve the way fonts are
displayed in the IDE on Windows. If you are on Ubuntu you should install,
at a minimum, version 6 update 10 of the JDK software due to Abstract
Window Toolkit (AWT) issues with the Beryl and Compiz desktops.

Tip If you are not sure of your JDK version, execute the following in
a command window: java-version.

Installing the IDE
When you have downloaded the NetBeans installer and have the necessary
JDK installed on your system, you are ready to install the IDE. The method
for installing depends on your operating system, as described here:

Windows: Double-click the file that has the .exe extension.

Solaris, OpenSolaris, and Linux platforms (assuming you haven’t
installed from a repository): The installer file has an .sh extension. Before
you run the installer file, execute the following command to make the file

4 NetBeans™ Ruby and Rails IDE with JRuby

executable: chmod +x ./<installer-file-name>. On Ubuntu, make
sure your JDK release is the 6 update 10 release or later. Otherwise you could
get a blank screen.

Mac OS X: The installer file has a .dmg extension. After you run the installer
the panel that opens displays a package icon with an .mpkg extension. Click
this icon to start the installation wizard.

When the installer displays the JDK option, make sure the installer is using
the JDK 6 release or later. If the installer cannot locate the JDK installation
you want to use, try starting the installer again, but this time pass
–-javahome <path-to-jdk> to the installer.
The Ruby, Java, and All bundles include the GlassFish V3 server. The
default username is anonymous and the password is blank. The Java and
All bundles also include the GlassFish V2 server. The default username
and password for the V2 server are admin and adminadmin.
The download instructions on the NetBeans download page provide more
detailed instructions for each operating system.

Tip If you upgrade the JDK after you install the IDE, you might want
to open the netbeans-install-dir/etc/netbeans.conf file and edit
the netbeans_jdkhome property to point the new installation.

Adding Ruby to an Existing NetBeans Installation
If you have a NetBeans IDE 6.5 installation without Ruby support (that is,
there is no Ruby category when you go to create a new project), you can
easily add Ruby support to the IDE by doing the following:
1. If your network uses a proxy, choose Tools Options from the main menu,

select Manual Proxy Settings, type the HTTP Proxy and Port for your proxy,
and click OK.

NetBeans™ Ruby and Rails IDE with JRuby 5

2. Open the Plugins manager by choosing Tools Plugins from the main menu.
3. Click the Available Plugins tab and click the Category header to sort the list.
4. Select the check box next to the Ruby modules of interest (see Figure 1-2). At

a minimum, select Ruby and Rails, which provides all of the NetBeans
support for Ruby and Ruby on Rails (projects, editing, and so forth).

5. Unless you already have a Ruby or JRuby runtime installed, you will also
want to select JRuby and Rails Distribution.

6. The other plugins in the Ruby category are optional, but there's really no
reason not to install them as well, especially the GlassFish V3 JRuby
Integration plugin.

7. Click the Install button to launch the Plugin Installer.
8. Accept the license and click Install to complete the installation.

Figure 1-2. Plugins Manager

6 NetBeans™ Ruby and Rails IDE with JRuby

Summary
In this chapter, you learned how to obtain and install the NetBeans 6.5 IDE
with Ruby support, as well as the JDK software. The installation process is
fairly automated, regardless of whether you are developing on Windows,
Mac, Solaris, or some flavor of Linux. In addition, the IDE enables you to
install a Ruby-only version or a different configuration with added Ruby
support.

NetBeans™ Ruby and Rails IDE with JRuby 7

Chapter 2: Trying Out the IDE
At this point you are probably anxious to give the IDE a test run. Since the
NetBeans IDE provides everything you need to create Ruby and Rails
applications out of the box, we thought we’d take you for a quick test drive
before we dive into the details. As we go along through this chapter, we’ll
reference the chapters that go more in-depth on various topics.

Creating a Ruby Project
Follow these steps to create a new Ruby project:
If you haven’t done so already, start the IDE by clicking the NetBeans icon.
1. To create a project, select File New Project from the main menu. A New

Project wizard appears from which you specify the type of project you want
to create.

2. Select Ruby in the Categories list, select Ruby Application in the Projects list
(see Figure 2-1), and click Next.

3. For this tour, use all the default settings. Note the assigned Project Name and
Project Location and click Finish. You will learn more about using the New
Project wizard for Ruby projects in Chapter 4.

8 NetBeans™ Ruby and Rails IDE with JRuby

Figure 2-1. Choosing the Project Type

4. On the left side of the IDE is a panel that contains tabs for the Projects, Files,
and Services windows. You will work in the Projects window (see Figure 2-
2). If you don't see the Projects window click the Projects tab to display it, or
select Window Projects from the main menu. You should now see your
Ruby project in the Projects window, with the main.rb node nested under the
Source Files node.

NetBeans™ Ruby and Rails IDE with JRuby 9

Figure 2-2. Projects Window

Note The Projects window shows a project's logical view; its pop-up
menu contains actions you typically use to develop applications. The Files
window shows the project's physical structure and has a pop-up menu for
managing files.

5. In the main section of the IDE is the editor window. After the IDE creates the
project it opens the main.rb file in this window (see Figure 2-3). The code
in this file calls the puts method to display the string “Hello World.” You
will learn how to use the editor in Chapter 6.

10 NetBeans™ Ruby and Rails IDE with JRuby

Figure 2-3. Editor Window

6. To run the application, right-click the project’s node in the Projects window
and choose Run from the pop-up menu. The IDE displays the output in the
Output window at the bottom of the IDE (see Figure 2-4).

Figure 2-4. Output Window

7. You can delete this project by right-clicking the project’s node in the Projects
window, then choosing Delete from the pop-up menu, selecting the Also
Delete Sources check box, and clicking Yes.

NetBeans™ Ruby and Rails IDE with JRuby 11

Creating a Rails Project
Now follow these steps to create a Rails project:
1. Select File New Project from the main menu.
2. Select Ruby on Rails Application from the Projects list and click Next.
3. The New Project wizard for a Rails application has more steps, which you

will learn about in Chapter 5, but we will skip them for this project. As you
did when creating the Ruby project, make note of the Project Name and
Project Location and click Finish. As part of the project creation process, the
IDE runs the rails command to create a new Rails project and displays the
output in the Output window (see Figure 2-5). The output shows the names of
the created files as links. You can open any of these files in the editor by
clicking the file's link.

Figure 2-5. Rails Command Results in the Output Window

12 NetBeans™ Ruby and Rails IDE with JRuby

4. For this project you need to edit the environment.rb file to remove the
Active Record framework from the environment configuration. Because you
are not using a database in this application, you need to prevent Rails from
trying to access the database specified in the database.yml file. Scroll
through the Rails output until you see the line that says create
config/environment.rb and then click the line to open the file in the
editor window. Scroll to the following line in the source (around line 21):

config.frameworks -= [:active_record,
:active_resource,
:action_mailer]

Tip To display line numbers, right-click in the left margin of the
editor and choose Show Line Numbers from the pop-up menu.

5. Click the config.frameworks line and click the Uncomment button on the
editing tool bar to remove the # character from that line.

6. An asterisk (*) on the tab indicates the file has been modified. Click the Save
All button on the main toolbar to save your changes.

7. If you are using a Rails 2.1 version, which is the case with the bundled JRuby
software, you must also remove the Active Record references in
new_rails_defaults.rb. Scroll through the Rails output until you see
that line that says create config/initializers/
new_rails_defaults.rb, then click that line to open the file in the editor
window. Select each of the two ActiveRecord::Base settings and click
the Comment button to comment out the lines, as shown here:

#ActiveRecord::Base.include_root_in_json = true
#ActiveRecord::Base.store_full_sti_class = true

8. Click the Save All button on the main toolbar.
9. Now look at the Projects window, which shows a logical view of the Rails

project, as shown in Figure 2-6.

NetBeans™ Ruby and Rails IDE with JRuby 13

Figure 2-6. Rails Project in the Projects Window

10. For this simple project you will create a controller and a view. In the Projects
window, right-click the Controllers node and choose Generate from the pop-
up menu. The IDE displays the Rails Generator dialog box with controller
selected in the Generate drop-down list (see Figure 2-7). Set the Name to
Welcome, set the Views to index, and click OK. The Rails Generator dialog
box is a GUI interface to the Rails generate command. You will learn more
about the Rails Generator in Chapter 5.

14 NetBeans™ Ruby and Rails IDE with JRuby

Figure 2-7. Rails Generator

11. The IDE opens the welcome_controller.rb file in the editor. Right-click
in the file's source and choose Run File from the pop-up menu. The IDE starts
the server, runs the index action in the controller, and displays the index view
in your browser. You should see a page that looks similar to Figure 2-8.

NetBeans™ Ruby and Rails IDE with JRuby 15

Figure 2-8. Index View in a Browser Window

Note If you get a database access error you might not have saved the
changes you made to the environment.rb and new_rails_defaults.rb
files. To resolve this problem click the Save All button on the main toolbar,
then stop the server by clicking the X button on the left side of the server’s
tab in the Output window and try running the controller file again.

12. You can delete this project by right-clicking the project’s node in the Projects
window and choosing Delete from the pop-up menu. Then select the Also
Delete Sources check box and click Yes.

16 NetBeans™ Ruby and Rails IDE with JRuby

Summary
This quick tour introduced some NetBeans basics. The workflow in the
IDE is based on projects. You use the New Project wizard to create projects
and you use the Projects window to manage your projects. The pop-up
menu in the Projects window gives you access to most of the actions you
perform on a project. The Output window displays the results of an action.
The Files window shows the physical view of your files, and you can use
the pop-up menu in this window to manage files. When you open a file, the
IDE displays the file’s content in the editor. The pop-up menu in an opened
file gives you access to common editing tasks for that file’s type.

NetBeans™ Ruby and Rails IDE with JRuby 17

Chapter 3: Configuring Your Environment
As you learned in the previous chapter, the NetBeans Ruby support works
out of the box. You can immediately create a Ruby application or a Ruby
on Rails application without having to install a Ruby interpreter, the Rails
framework, or a Rails server. This is because the Ruby package includes
the JRuby platform, the Rails gem, and both the WEBrick server and the
GlassFish V3 server.
If you are already working on Ruby projects you probably want to use your
own tools. This chapter shows you how to configure the IDE so you can
use different Ruby interpreters, gem repositories, and Rails servers.
In addition, this chapter talks about registering your databases with the
IDE. You don’t need to register a database in order to use it in a Rails
project; however, the IDE provides many helpful database features that you
might want to take advantage of.

Registering Ruby Installations
When you installed the IDE (or when you added Ruby support to an
existing installation of the IDE), the IDE looked on your system for
existing JRuby, MRI Ruby, and Rubinius interpreters and automatically
registered them with the IDE.
To view and add to the list of registered interpreters, open the Ruby
Platform Manager (see Figure 3-1) by choosing Tools Ruby Platforms
from the main menu. If you install Ruby after installing the IDE, click the
Autodetect Platforms button to add the new Ruby interpreter to the list. If
the IDE doesn’t find your installation, you can add it manually by clicking
the Add Platform button. When the file browser appears, navigate to the
installation’s bin folder and select the Ruby interpreter (such as ruby.exe
or jruby.bat).

18 NetBeans™ Ruby and Rails IDE with JRuby

Figure 3-1. Ruby Platform Manager

Tip Even though the IDE comes bundled with JRuby, you might want
to download and install a separate distribution that is not located under the
NetBeans installation folder. That way, if you update the IDE you will not
need to change the location of the JRuby interpreter. Nor will you have to
copy over or reinstall gems into the subfolders of the newer version of the
IDE.

When you create a new Ruby project or Ruby on Rails project you can
choose which of the registered platforms to use for the project (you will
learn more about creating projects in Chapters 4 and 5). After you create a
project you can easily change the project’s interpreter by right-clicking the
project’s node, choosing Properties from the pop-up menu, and choosing a
new Ruby Platform from the drop-down list in the Project Properties dialog
box (see Figure 3-2).

NetBeans™ Ruby and Rails IDE with JRuby 19

Figure 3-2. Project Properties Dialog Box

Note When you change a project’s interpreter you probably need to
make other changes to the project to make the application run with the new
interpreter. For example, the new interpreter’s gem repository might not
contain all the gems the application depends on. If the new interpreter is
using a different Rails version you will likely have to run the rails:update
task or edit the RAILS_GEM_VERSION in the environment.rb file. When
switching from a Ruby interpreter to a JRuby interpreter you might need to
add a statement to the environment.rb file to require the JDBC Adapter.
Also, when switching from a Ruby interpreter to a JRuby interpreter, or the
other way around, you might need to change the configurations in the
database.yml file. See Chapter 5 for more information.

20 NetBeans™ Ruby and Rails IDE with JRuby

Managing Gems
The IDE provides the Ruby Gems Manager, which is a GUI wrapper for
the Ruby gem command (see Figure 3-3). This manager comes in handy for
plain-vanilla gem management tasks such as viewing the repository
contents and installing and updating the latest version of a gem.

Figure 3-3. Ruby Gems Manager

Tip Two JRuby gems you might want to install right away are the
JRuby OpenSSL gem and the Active Record JDBC Adapter for your database
server.

NetBeans™ Ruby and Rails IDE with JRuby 21

You cannot use this GUI to perform some repository actions, such as
uninstalling a specific version of a gem. In these cases you must use the
gem command in a terminal window, as described later in this chapter in
"Using the Gem Tool from the Command Line."

Note If the Gem Home setting says RubyGems are not installed
for this platform, see the instructions at http://www.rubygems.
org/read/chapter/3 to learn how to install the gem tool for that
platform. Also, if the Ruby Gems Manager displays a warning that you have
an old version of RubyGems, see the instructions at http://www.
rubygems.org/read/chapter/3#page14.

Using the Ruby Gems Manager
To access the Ruby Gems Manager, select Ruby Gems from the Tools
menu. Next select the Ruby Platform for the repository that you want to
manage. In the Gem Home text box the IDE displays the path to the
repository that the gem tool uses for adding and maintaining gems for the
selected platform.
The Ruby Gems Manager has four tabs, as shown earlier in Figure 3-3:

Updated. This tab lists available updates for the gems that are installed in
your repository. The list shows the version number of the installed gem and
the latest version that is available. When you select a gem the IDE displays its
details in the right panel, including the description. You can select a gem and
click Update, or you can click Update All to bring all your installed gems up
to date.
Installed. This tab shows you the gems that are installed in the repository,
with a button to uninstall the selected gem.
New Gems. This tab allows you to add new gems to a Ruby installation. This
is best done using the Search text box, which is also available for the Updated
and Installed tabs but is most useful here, where more than 3,600 gems (and

22 NetBeans™ Ruby and Rails IDE with JRuby

growing rapidly) appear in the list. After you type in the Search textbox, the
total in the tab updates to indicate how many gems were found that match
your search criteria, as shown in Figure 3-3. By default, only the most recent
versions are listed. You can change this in the Settings tab. To install a gem,
select the gem, click Install, and then, if prompted, select the version. If you
have already downloaded the gem, click Install Local and then navigate to
and select the downloaded gem.
Settings. This tab allows you to configure proxies. You can also use this tab
to specify whether to fetch all gem versions and whether to fetch detailed
gem descriptions. Turning off these features speeds up gem fetching.

Tip If you get errors using the Ruby Gems Manager, try the
equivalent gem command from the command line. You might get better
diagnostic messages when you use the gem tool directly. See "Using the
Gem Tool from the Command Line" later in this chapter.

Gems Repository Permissions
On most systems other than Windows, the folder that contains the gem
repository is often privileged. When necessary, the IDE invokes the
underlying gem command using gksu or kdesu, if it finds it. If the IDE
reports permission problems with the repository and you are not able to
make the repository writable for the IDE, you will have to manage your
gems from the command line. Alternatively, you can create a folder with
write permissions and make that folder the Gem Home by following these
steps:
1. Choose Tools Ruby Platforms or click the Manage button in the Ruby

Gems Manager to open the Ruby Platform.
2. Click Browse and navigate to where you want to put the gems repository.
3. Click the New Folder button.

NetBeans™ Ruby and Rails IDE with JRuby 23

4. Name the new folder, select it, and click Open.
5. The IDE asks if you want to set up a new repository. Answer OK.

Note Vista users might encounter User Account Control issues. If this
happens see http://wiki.netbeans.org/FaqInstallPluginVista for
help.

Using the Gem Tool from the Command Line
Sometimes you will not be able to use the Ruby Gems Manager to install or
update a gem. When that happens, open a terminal window and invoke the
appropriate command from the command line.

Tip Before running gem commands from the command line you
might want to verify that either GEM_HOME is not set, or that it points to the
desired repository.

Using the Gem Command with JRuby

To invoke the Gem Tool for your JRuby gem repository you must first add
the JRuby installation’s bin directory to your $PATH (%PATH% on
Windows) environment variable. Otherwise you must specify the full path
to the jruby script. To find the path to the jruby script, open the Ruby
Platform Manager, select the JRuby platform, and look at the Interpreter
setting.

Note If you have Ruby installations on your system, the JRuby
documentation recommends that you add the path to the JRuby bin
directory to the end of the PATH environmental variable.

24 NetBeans™ Ruby and Rails IDE with JRuby

To invoke the Gem Tool for JRuby, use jruby –S gem arguments, as
shown here:
jruby –S gem install –v=2.0.2 rails

The -S parameter tells JRuby to look for the script in its bin directory.
For more information see http://wiki.jruby.org/wiki/
Getting_Started.

Note With earlier versions of JRuby you might get an out-of-memory
error when invoking the Gem Tool. If this happens use the Xmx parameter
to increase the memory. Here is an example:

jruby -J-Xmx1024m -S gem arguments

Using the Gem Command with CRuby

As with JRuby, you need to make sure your CRuby (MRI Ruby or
Rubinius) installation’s bin directory is in the PATH environment variable.
To invoke the Gem Tool for CRuby use gem arguments, as this example
shows:
gem install –v=2.0.2 rails

For more information, see Installing a Gem at http://docs.rubygems.
org/read/chapter/10#page33.

NetBeans™ Ruby and Rails IDE with JRuby 25

Installing Gems That Have Native Extensions
Some gems build native C libraries during the install process. These gems
will not work in JRuby applications unless the gem also provides a Java
equivalent to the native library. For example, because the Mongrel gem
builds its native library in a platform-independent manner, it works OK
with JRuby. The following table shows a few examples of replacements for
gems with native C libraries.

NATIVE C GEM REPLACEMENT

RMagic, ImageScience ImageVoodoo

OpenSSL JRuby-OpenSSL

Ruby/LDAP JRuby/LDAP

json json_pure

You can add gems that have native extensions to CRuby repositories on
Linux, Solaris, OpenSolaris, and Mac operating systems, provided you
have the necessary software to enable the gem tool to compile the native
extensions.

Linux. You need the build-essential package as well as the
ruby<version>-dev package, which contains the header files for building
the extension modules for Ruby.

Mac. You need the Xcode developer environment (see http://
developer.apple.com/tools/xcode), which can be found on the Mac
OS installation DVD.
OpenSolaris and Solaris. You need SUNWgcc.

If you are on Windows, check to see if there is an mswin version of the
gem, which has been precompiled.

26 NetBeans™ Ruby and Rails IDE with JRuby

Tip If you are using both CRuby and JRuby you might want to set up
a repository for the gems that you know work with both. Add the path to
the shared repository to the Gem Path in the Ruby Platform Manager. To
install a gem into the shared repository, open the Ruby Gems Manager and
use the Gem Home Browse button to enter the shared repository’s path.
After you install the gem, remember to change the path back to its previous
value.

Adding Servers
The WEBrick runtime server is bundled with Ruby. In addition, the IDE
comes with the GlassFish V3 application server that runs both Rails and
Java applications.
The IDE also provides integrated support for Mongrel, which you can
install using the Ruby Gems Manager. When you install the Mongrel gem,
the IDE adds it to the list of servers in the Services window (see
Figure 3-4).

Figure 3-4. Servers Node in the Services Window

NetBeans™ Ruby and Rails IDE with JRuby 27

When you create a new project, you specify which server to use in step 2 of
the New Project wizard. The default is GlassFish for JRuby projects and
WEBrick for Ruby projects. You can change the project’s server in the
project’s Properties window.
The NetBeans All and Java bundles include the GlassFish V2 application
server. You can also download the GlassFish V2 application server
separately, and then register it with the IDE by right-clicking the Servers
node in the Services window and choosing Add Server. The GlassFish V2
application server is not fully integrated with Ruby support. However, you
can use the Warbler plugin to create WAR files that you can deploy to the
GlassFish V2 application server, as described in Chapter 9.

Note While you do not need the JDK to run the Ruby-only version of
the IDE, you do need the JDK to use the Warbler plugin to create WAR files.

Accessing Databases from the IDE
The IDE makes it easy to work with any database for which JDBC 3.0
drivers are available. The IDE ships with drivers for the MySQL,
PostgreSQL, and Java DB (also known as Derby) database servers, and you
can obtain JDBC 3.0 database drivers for just about any other database.

Creating Databases from the IDE
If your system has MySQL or Java DB, you can create databases directly
from the IDE by completing the following steps. Java DB is bundled with
the JDK 6 software and the GlassFish application server. You can install
MySQL from mysql.com. There is also a NetBeans 6.5 distribution that
bundles MySQL.

28 NetBeans™ Ruby and Rails IDE with JRuby

Follow these steps to create a MySQL or Java DB database:
1. Open the Services window and expand the Databases node.
2. Right-click the MySQL Server or Java DB node and choose Create Database.
3. Type the name of the database you want to create and click OK (see Figure 3-

5). The IDE creates the database, registers it with the IDE, and creates a
connection.

Figure 3-5. Create Database Dialog Box

With MySQL databases you can also create and register a database from
the New Project wizard for a Rails Project, as shown in the following steps:
1. In step 3 of the wizard, click the Create DB button to open a Create MySQL

Database dialog box (see Figure 3-5).
2. Type the name of the database you want to create and click OK . The IDE

creates the database and registers it with the IDE.

Registering Existing Databases with the IDE
As mentioned previously, you can register JDBC 3.0–compliant databases
with the IDE.
The IDE ships with drivers for the MySQL, PostgreSQL, and Java DB
database servers. If you are working with a different database server you

NetBeans™ Ruby and Rails IDE with JRuby 29

first need to make the server’s JDBC 3.0 driver available to the IDE, as
shown in the following steps:
1. Expand the Databases node in the Services window, right-click Drivers, and

choose New Driver to open the New JDBC Driver dialog box (see Figure 3-
6).

Figure 3-6. New JDBC Driver Dialog Box

2. Click Add, navigate to and select the driver’s JAR file, and click Open.
3. When possible, the IDE discovers and enters the values for Driver Class and

Name. If not, you need to type these in.
4. Click OK.

Once the driver is added you can easily register your database with the
IDE.
To register an existing database, follow these steps:
1. Right-click the Databases Node in the Services window and choose New

Connection. The IDE opens the New Database Connection dialog box (see
Figure 3-5).

30 NetBeans™ Ruby and Rails IDE with JRuby

2. Choose the Name of the database driver and provide the requested
information.

3. Click OK. The IDE creates the database and registers it with the IDE.

Working with Databases from the IDE
The IDE provides a Database Explorer for creating tables, populating
tables with data, and running SQL queries on registered databases. You
must connect to the registered database before you can use the Database
Explorer. In the Services window, expand the Databases node, right-click
the node for your database, and choose Connect. After you establish a
connection you can expand the database’s node and perform the following
tasks:

Create Database Tables. Right-click the database’s Tables node and choose
Create Table. Add the desired columns and click OK (see Figure 3-7). You
can also create tables using the SQL Editor, which is explained next.

Figure 3-7. Create Table Dialog Box

Write and Execute Queries. Right-click the database’s Tables node and
choose Execute Command. Type the query, then click the Run SQL button in
the editor’s toolbar or right-click the query and choose Run Statement. Query
results are shown in the SQL Editor output window (see Figure 3-8). If you

NetBeans™ Ruby and Rails IDE with JRuby 31

are unsure of a schema, table, or column name, press Ctrl+Space
(Cmd+Space and Cmd+\ on the Mac) to display the code completion pop-up.
If you right-click and choose SQL History, you can view earlier queries.

Figure 3-8. SQL Editor Output Window

View Data, Insert Records, and Delete Records. Right-click one of the
nodes under Tables and choose View Data. To add a record, click the Insert
Record button in the data output tab. To delete a record, select it and click the
Delete Record button.
Run SQL Scripts. From the main menu, choose File Open File. Navigate
to the script file, select it, and then click Open. The script opens in the SQL
Editor. Set the Connection to the desired database and click the Run SQL
button.

32 NetBeans™ Ruby and Rails IDE with JRuby

Note You do not need to register a database server with the IDE to
use its databases from Rails projects.

Summary
Although NetBeans' Ruby support works out of the box with the JRuby
platform and the GlassFish server, you can easily configure the IDE to use
different interpreters and servers. The Ruby Gems Manager enables you to
quickly view and manage a platform’s gem repository. However, for more
complex actions, you might need to manage the repository from the
command line.
Each project can be configured to use the platform and server of choice,
and it is not too hard to switch a project from one platform to another or
one server to another.
You can register a database with the IDE and take advantage of the
Database Explorer’s GUI tools to aid in working with your data.

NetBeans™ Ruby and Rails IDE with JRuby 33

Chapter 4: Working with Ruby Projects
In Chapter 2 you got a quick tour of working with Ruby projects. This
chapter goes into more details about using the IDE to create and work on
Ruby applications.

Setting Up Ruby Projects
The NetBeans IDE provides four Ruby project types:

Ruby application
Ruby application with existing sources
Ruby on Rails application
Ruby on Rails application with existing sources

In this chapter we talk about the first two project types. We address the
second two in the following chapter.
As the names imply, you can create a Ruby application either from scratch
or from an existing Ruby application that you previously created outside of
the IDE. If you already have Ruby sources lying around, you can easily and
harmlessly work with them in the IDE by choosing to create a new Ruby
application with existing sources. We say “harmlessly” because the IDE
simply adds an nbproject directory to your project, from which it
maintains metadata used by the IDE. Once you delete the folder, it’s no
longer a “NetBeans Project” (and this is exactly what NetBeans does when
you delete a project from the IDE).
As with all NetBeans projects, you use the New Project wizard and follow
these steps to create your projects:

34 NetBeans™ Ruby and Rails IDE with JRuby

1. Select File New Project to open the New Project wizard (see Figure
4-1).

Figure 4-1. New Project Wizard

2. Select Ruby in the Categories list.
3. In the Projects list, select either Ruby Application or Ruby Application with

Existing Sources.
4. Click Next to go to the Name and Location step (see Figures 4-2 and 4-3).

NetBeans™ Ruby and Rails IDE with JRuby 35

Figure 4-2. Name and Location Step for Creating a Ruby Application
from Scratch

Figure 4-3. Name and Location Step for Creating a Ruby Application
from Existing Sources

36 NetBeans™ Ruby and Rails IDE with JRuby

5. Enter the project’s name and location. For Ruby applications with existing
sources, enter the path to the project, then click Next to specify the paths to
the source (lib) and test folders.

6. If you are creating a project from scratch, specify whether to create a main
file (the file that the IDE executes when you run the project). The IDE
suggests the name main.rb, but you can change it.

7. Select the Ruby Platform that you want to use for this project. You can
change this setting at any time using the Project Properties dialog box. If the
desired platform is not in the drop-down list, click Manage to register the
platform with the IDE.

8. Click Finish to create the project.

Using the Project and Files Windows
When you create a project from scratch the IDE creates a fully functional
“Hello World” Ruby application, the Rakefile file, which we address in
the “Running Rake Tasks” section, a README file, which you can use to
provide basic documentation about your project, and a LICENSE file. The
IDE also creates folders for your test files and RSpec files (see Figure 4-4).

Figure 4-4. New Ruby Project in the Projects Window

NetBeans™ Ruby and Rails IDE with JRuby 37

When you build a new project from scratch, the Source Files node maps to
the underlying lib directory, where Ruby source files generally reside (see
Chapter 10 for instructions on how to change the location of the Source
Files directory). The Test Files node and RSpec Files node map to the
underlying test and spec directories, and are the intended locations for
your Ruby tests (see Chapter 7 for more information about testing your
Ruby projects).
If you want to see the physical layout of your project, click the Files tab
(see Figure 4-5). As you learned in Chapter 2, the pop-up menu in the
Projects window contains the actions that you typically use to develop
Ruby applications, while the pop-up menu in the Files window has actions
for managing the file system.

Figure 4-5. New Ruby Project in the Files Window

Tip See Chapter 10 to learn how to make the Projects window
display a physical view of the files instead of a logical view.

38 NetBeans™ Ruby and Rails IDE with JRuby

Adding Files
Now that you have created a project, you most likely need to add new files.
The IDE provides several Ruby file templates (types) to help get you
started, with Ruby File being the most generic, requiring simply a name
and a location. A Ruby Module lets you specify an optional parent module,
while a Ruby Class lets you specify an optional parent module and an
optional parent class. You can use all three file types interchangeably; the
Ruby Module and Ruby Class templates just help you set up the file
structure a bit.
For example, to create a new class, complete the following steps:
1. In the Projects window, right-click one of the project’s nodes, such as the

Source Files node, and choose New Ruby Class to open the New Ruby
Class dialog box (see Figure 4-6).

NetBeans™ Ruby and Rails IDE with JRuby 39

Figure 4-6. New Ruby Class Dialog Box

2. Give your class a name.
3. The IDE suggests a value for File Name but you can change it.
4. You can optionally specify whether your new class is in a module or extends

a class.
5. For the Location value, the IDE suggests Source Files, Test Files, or RSpec

Files, based on the type of file that you are creating. For class files, the IDE
suggests Source Files, but you can choose one of the other options.

6. The IDE suggests a Folder based on the Location. If you want to put the class
in a different folder, type the path to the new folder, or click Browse to
navigate to and select a different location.

40 NetBeans™ Ruby and Rails IDE with JRuby

7. Click Finish. The IDE creates the file and opens it in the editor (see Figure
4-7). You will learn about the IDE’s editing features in Chapter 6.

Figure 4-7. Newly Created Class in the Editor Window

The IDE also provides templates for YAML, Ruby Unit Test, Ruby Unit
Test Suite, and RSpec files, plus several other more generic types of files.
If you want to create a different type of file than the choices offered in the
New submenu, choose New Other to open the New File wizard. The
wizard offers many nonRuby choices, such as HTML and XML
documents. If you don’t see the type that you want, choose Other in the
Categories list, and choose Empty File in the File Types list.

Running Ruby Applications
Following are some ways to run your application from the IDE:

Right-click the project’s node and choose Run from the pop-up menu.
Choose Run Run Project from the main menu to run the current project
(this is the project that you last performed an action on). The menu item
shows the name of the project that the IDE will run.

NetBeans™ Ruby and Rails IDE with JRuby 41

Press F6 or click the Run button that is in the main toolbar to run the current
project (as identified in the IDE’s toolbar).
If a Ruby file (.rb) is open in the editor, you can right-click in the source and
choose Run from the pop-up menu to run that specific file.

Tip There is actually another way to run the project. Choose Actions
from the Quick Search box in the main toolbar so that Search in
Actions appears in the Quick Search text box. Type ru to see all the IDE
actions that have ru in their names. Click Run Project to run the current
project. This search box is a good way to quickly find the action that you
want to perform.

You use the Run category in the Project Properties dialog box to specify
how to run the project. To open the dialog box, right-click the project’s
node in the Projects window and choose Properties. Then select the Run
category (see Figure 4-8), and specify the following settings:

Main Script. This is the class that the IDE executes when you run the
project.
Arguments. Use this text box to pass runtime arguments to the main script
through the ARGV array.
Working Directory. By default, the IDE runs the application in the Source
Files directory. If you want the project to run in a different directory, specify
the path here.
Ruby Options. This is where you pass command-line switches for the Ruby
interpreter. To learn the available switches for your interpreter, enter –h in
the text box and run the application. The Output window lists the switches.
Some commonly used switches are as follows:
-c: Check syntax only
-w: Turn warnings on for your script

42 NetBeans™ Ruby and Rails IDE with JRuby

-d: Set debugging flags
JVM Arguments: For JRuby applications, use this text box to pass options to
the JVM. To learn more about JRuby properties, see Chapter 8.

Note that the Rake Arguments setting does not apply to running projects.
You use this setting for running Rake tasks, which you learn about next.

Figure 4-8. Run Category in Project Properties Dialog Box

Tip You can have multiple Run configurations. To add a
configuration, click New, type a profile name, then click OK. The IDE adds
the configuration to the Configuration drop-down list and makes that the
current configuration. You can quickly change the current configuration
from the Projects window by right-clicking the project’s node and choosing
Set Configuration. Then select the desired configuration.

NetBeans™ Ruby and Rails IDE with JRuby 43

Running Rake Tasks
When you create a new Ruby project, the IDE includes basic Rake tasks
such as clean, clobber, and rdoc. The following steps show how to run
Rake tasks from the IDE.
1. To pass options to the Rake command, such as --dry-run or --trace,

right-click the project’s node and choose Properties from the pop-up menu.
Select the Run catego ry for Ruby projects and select the Rails category for
Rails project, then enter the options in the Rake Arguments text box.

Tip The project node’s pop-up menu has shortcuts to many Rake
tasks such as Build Gem, Clean and Build Gem, Clean, Generate RDoc, and
Test. In addition, the main menu has a Build Gem button and a Clean and
Build Gem button.

2. Right-click the Projects node and choose Run/Debug Rake Task from the
pop-up menu. The dialog box opens with a list of the project’s Rake tasks
(see Figure 4-9).

3. To narrow the list, type a few characters in the Filter text box (you can use
the ? and * wildcards).

4. Use the Parameters text box to pass key/value pairs (for example
RELEASE=2.1) to the Rake task. The IDE reuses the parameters that you
specified the last time you ran the task, so remember to clear out these values
if you don’t want to pass any parameters.

5. If you are having problems using a Rake task, you can select the Debug check
box and debug that task just as you would debug an application. See Chapter
7 for more information about using the IDE’s debugging features.

6. To run the task, double-click it or select the task and click Run. The Output
window displays the results. You can rerun the task by pressing Alt+Shift+R
(Ctrl+Shift+R on the Mac) and then pressing Enter, or by clicking the Rerun
button in the Output window.

44 NetBeans™ Ruby and Rails IDE with JRuby

You can add your own tasks to the project’s Rakefile and they will show
up in the Run/Debug Rake Task dialog box. You might need to click
Refresh Tasks to make your tasks appear.

Note By default, the dialog box only lists the tasks for which there is a
description (for example desc "Build all the packages"). That is, it
runs the rake --tasks command to obtain the list of Rake tasks. If you
also want to see the tasks that do not have desc statements, select the
Show Undocumented Tasks check box. The IDE will then run the
rake --describe command instead.

Using Interactive Ruby (IRB)
The easiest way to test code from the IDE is to type the code into a class
file and run that file by pressing Shift+F6.You can also open the Interactive
Ruby (IRB) console from the IDE, which lets you interactively enter Ruby
statements. You open the console by right-clicking the Ruby project’s node
and choosing Ruby Shell (IRB) from the pop-up menu. The IDE launches
the console from the project’s folder and displays it in the Output window,
as shown in Figure 4-9.

NetBeans™ Ruby and Rails IDE with JRuby 45

Figure 4-9. IRB Console

The IDE looks at the Ruby Platform value in the project’s Project
Properties to determine which interpreter to use. The console tab shows
which interpreter the shell is using.
In order to use gems in the IRB, you have to load Ruby Gems. While some
Ruby interpreters do this for you, the JRuby interpreter does not. Here are a
few ways to load Ruby Gems:

Type require ‘rubygems’ in the IRB console.
Set the Ruby Options text box in the Project Properties dialog box to
-rubygems.

Add an .irbrc file to the project's top-level folder and add
require 'rubygems' to that file. Note that, by default, the IDE does not
show files that begin with a dot (.). See Chapter 10 to learn how to configure
the IDE to display dot files.

46 NetBeans™ Ruby and Rails IDE with JRuby

Summary
Creating Ruby projects is easy from the IDE. The New Project wizard
guides you through the necessary steps, and, for projects that you are
building from scratch, the IDE creates the basic directory structure and files
that you need for a runnable application. You use the New File actions to
add more files to your project, and the IDE provides many Ruby file
templates to choose from. Being an integrated development environment,
you do not need to leave the IDE to run your project or run Rake tasks on
your project. You can even run the IRB console from the IDE.

NetBeans™ Ruby and Rails IDE with JRuby 47

Chapter 5: Working with Rails Projects
Ruby on Rails is an open-source framework for developing web
applications that are built around data sources such as database tables. You
work with Rails projects in the IDE similar to the way you work with Ruby
projects (all project types in the IDE follow similar patterns). However, for
Rails projects, the IDE provides additional features that integrate with the
underlying Rails framework, as you will learn in this chapter.

NETBEANS IDE VS. THE COMMAND LINE
It’s important to remember while working with the NetBeans IDE and
Ruby on Rails that the NetBeans IDE is simply a veneer (albeit a very
powerful one) on top of the existing Ruby on Rails framework. Most
of the actions that are run by the IDE (creating a new project,
running a generator, and so on) are calling out directly to the
underlying Rails tasks and scripts. So the wizards and dialog boxes
that you see in the IDE are nice graphical interfaces to the
parameters and options you’d alternatively have to specify on the
command line. We often find ourselves thinking, “Gee, I wish the IDE
did such and such,” only to realize it’s really the Ruby on Rails script
that we wish had that feature.

Setting Up Rails Projects
Similar to Ruby projects, the IDE enables you to create Rails projects from
scratch as well as from existing sources. Here's how:
1. Select File New Project to open the New Project wizard.
2. Select Ruby in the Categories list.
3. In the Projects list, select either Ruby on Rails Application or Ruby on Rails

Application with Existing Sources.
4. Click Next to go to the Name and Location step (see Figures 5-1 and 5-2).

48 NetBeans™ Ruby and Rails IDE with JRuby

Figure 5-1. Name and Location Step for Creating a Rails Application
from Scratch

NetBeans™ Ruby and Rails IDE with JRuby 49

Figure 5-2. Name and Location Step for Creating a Rails Application
from Existing Sources

5. Enter the project’s name and location. For Ruby on Rails applications with
existing sources, enter the path to the project.

6. Select the Ruby Platform that you want to use for this project. You can
change this setting at any time using the Project Properties dialog box. If the
desired platform is not in the drop-down list, click Manage to register the
platform with the IDE.

7. Select the server to run the application on. You can change this later using the
Project Properties dialog box.

8. If you expect to package your application in a web archive (WAR) file, you
can select the Add Rake Targets to Support App Server Deployment check
box to include the Warbler plugin and to add war Rake tasks to the project. If
you check this box and you don’t have the Warbler gem, the IDE disables the
Finish button. When you get to the final page you can click the Install
Warbler button to install the gem. After you install the gem the IDE enables

50 NetBeans™ Ruby and Rails IDE with JRuby

the Finish button. See Chapter 9 for detailed information about creating WAR
files and deploying to application servers.

9. If you are building a project from existing sources, click Finish. For projects
that you are creating from scratch, you can either click Finish to go with the
default configurations (which would be equivalent to running rails
project-name –d mysql from the command line), or you can continue to
the subsequent wizard steps to complete the following tasks:
Specify database information. By default, the IDE edits the
database.yml file to use the MySQL database server. It sets the
development database name to application-name_development and
sets the database names for test and production using the same pattern. If you
are not using the default database configurations you can specify the
configurations in the “Database Configuration” step of the wizard, or you can
edit the database.yml file after the project is created. See the “Setting
Database Configuration” section for details about using the “Database
Configuration” step in the wizard.
Specify the Rails version. If you have more than one Rails version in the
interpreter’s gem repository, you can choose which Rails version to use in the
“Install Rails” panel.
Install or update the Rails gem. The “Install Rails” panel in the wizard
displays the current Rails version number. You can click the Install/Update
Rails button to install the latest version.
Install or update the JRuby OpenSSL gem. If you're building a JRuby
Rails application that requires a secure sockets layer (SSL), that is, an "https:"
secure login, you'll need to have encryption libraries available. The JRuby
OpenSSL support is not included in the bundled JRuby. You can click the
Install/Update JRuby OpenSSL Support button in the “Install Rails” step to
install the latest version.
Install or update the Warbler gem. You can click the Install/Update
Warbler button in the “Install Rails” step to install the latest version of the
Warbler gem, which you can use to assemble a Rails application into a Java
Web Archive (.war) file.

NetBeans™ Ruby and Rails IDE with JRuby 51

Working with Databases
How you work with databases in Rails applications is largely dependent on
which interpreter you are running. With the CRuby interpreters, you are
pretty much limited to the list of servers for which there are adapters (see
http://wiki.rubyonrails.org/rails/pages/DatabaseDrivers).
However, if you're running on JRuby, you now have access to JDBC, for
which drivers exist for just about every database imaginable. Throughout
the rest of this section we discuss the various options for configuring your
database.

Note When you create Rails projects from the IDE, the database
adapter is set to MySQL by default. Most Ruby platforms, including the
JRuby platform, work out of the box with the MySQL adapter setting. For
other adapter settings, you must install the appropriate gem. If you are
using the gem in a JRuby application, the gem must not use native
extensions. For example, for the PostgreSQL database you can use the
Postgres PR gem with JRuby applications, because it is pure Ruby. If you
cannot find a gem for your database server that does not use native
extensions, you can use the generic Active Record JDBC Adapter or you can
use a database-specific JDBC adapter as explained later in this section.

Setting Database Configurations
When you create a Rails project, the IDE modifies database configurations
in the database.yml file based on your choices and selections in the New
Project wizard (see Figure 5-3). When you create a new project you can
specify the configuration settings in one of these ways:

52 NetBeans™ Ruby and Rails IDE with JRuby

Use the default configurations
Configure the database connections using IDE connections
Specify the database information manually

Figure 5-3. Database Configuration Step in the New Project Wizard

The following sections explain each of these options.

Using Default Database Configurations

If you click Finish without accessing the “Database Configuration” step of
the wizard, or without making any changes in that step, the IDE assumes

NetBeans™ Ruby and Rails IDE with JRuby 53

that you are using the MySQL database server and you are following Rails
conventions for your database names. That is, you have three separate
databases for development, testing, and production purposes, and that the
database names are composed of the project name plus the suffix
_development, _test, and _production. Listing 5-1 shows an example
of a default development configuration.

Listing 5-1. Default Development Database Configuration

development:
 adapter: mysql
 encoding: utf8
 database: cookbook_development
 username: root
 password:
 host: localhost

Note If you don’t want to use root as the username, or if root requires
a password, you need to edit the database.yml file after the project is
created.

If you are using a different database server or different database names,
you can edit the database.yml file after you create the project, or you can
use the “Database Configuration” step to supply the information, as
described next.

Configuring Database Connections Using IDE Connections

If you continue past the “Name and Location” step of the New Ruby on
Rails Application wizard, you are presented with a couple of options for
configuring the database connections. The first option is to use the
connection information from a database that is already registered with the
IDE (you learned how to register databases with the IDE in Chapter 3). To
use this option, choose Configure Using IDE Connections in the “Database

54 NetBeans™ Ruby and Rails IDE with JRuby

Configuration” step (see Figure 5-3), and then select the registered
databases from the drop-down lists. The IDE uses the port, username, and
password that you used when you registered the database.

Tip If you are using a MySQL database, you can create and register
a development, test, or production database directly from the “Database
Configuration” step by clicking the appropriate Create DB button.

Specifying Database Information Manually

You can use the Specify Database Information Directly option in the
“Database Configuration” step to provide information for the
database.yml file. Select the Database Adapter, and enter the Database
Name, User Name, and Password values for the development database.
When you use this option, the IDE sets the adapter (and sometimes host or
port depending on the adapter), username, and password for all three
configurations. The IDE derives the database names for the test and
production configurations from the development database name.

Note SQLite is not a client-server management system. Instead it is
an embedded engine that writes the entire database in a flat file. Therefore,
if you are using a SQLite database and you are running the application on
the GlassFish application server, you must specify the full path to the
database, such as this: database:/sqlite/var/myapp_dev.sqlite3.

NetBeans™ Ruby and Rails IDE with JRuby 55

Using Databases with JRuby
A MySQL database adapter is included with JRuby. For other database
servers, as long as you have a database adapter gem that does not use
native extensions, you can configure your database.yml file just as you
would with CRuby applications. For example, you can use the postgres-pr
adapter because it is pure Ruby. As of the time of this writing, most other
database adapter gems include native extensions. When you try to install
the gem into the JRuby gem repository, you will get the message
ERROR: Failed to build gem native extension. If the only
available adapters for your database server use native extensions, you must
set up your configuration using a JDBC option.

Note For JDBC, you'll find database-specific JDBC adapters specifically
written for JRuby. We list a few in the next section. In the case where a
database-specific JDBC adapter does not exist for your database, you can
optionally use the generic Active Record JDBC Adapter, which we talk about
later in this section.

Using Database-Specific JDBC Adapters

There are several database-specific JDBC adapters available for JRuby,
such as those in the following list. These adapters are convenience
wrappers around the generic Active Record JDBC Adapter, which we talk
about next. The database-specific adapters include the necessary drivers,
and they enable you to specify the database configuration without having to
know the details, such as the JDBC URL and driver class name.

Java DB/Apache Derby. activerecord-jdbcderby-adapter
H2. activerecord-jdbch2-adapter
HSQLDB. activerecord-jdbchsqldb-adapter
MySQL. activerecord-jdbcmysql-adapter

56 NetBeans™ Ruby and Rails IDE with JRuby

PostgreSQL. activerecord-jdbcpostgresql-adapter
SQLite. activerecord-jdbcsqlite3-adapter

Use the middle part of the gem name for the configuration’s adapter
setting. For example, you use jdbcpostgresql as the adapter for
PostgreSQL.

Using the Generic Active Record JDBC Adapter

As mentioned earlier, you can use the Active Record JDBC Adapter gem
(this is already installed with the bundled JRuby) to establish a JDBC
connection with your database. To use this gem, you must put the server's
JDBC 3.0–compliant driver JAR file in your classpath. You can use the
Java category in the Project Properties dialog box to add JAR files to a
project’s classpath, as described in Chapter 8. If you select the Access
Database Using JDBC check box when you create the project, and you
have registered that database server with the IDE, the IDE puts the
appropriate driver in the classpath for you. See Chapter 3 for information
about registering database servers with the IDE.

Note If you are running the application in the GlassFish V3 server,
you might also need to copy the driver JAR files to the lib folder in your
JRuby installation. If you get an error message such as The driver
encountered an error: cannot load Java class
org.postgresql.Driver, copy the driver’s JAR file into the lib folder
and restart the server. This is a known issue that will be addressed in a
patch or future version.

If you are using the generic JDBC adapter, you can configure the
database.yml file in one of two ways:

You can set the adapter to jdbc and specify the driver and URL as shown in
Listing 5-2.

NetBeans™ Ruby and Rails IDE with JRuby 57

Listing 5-2. Development Configuration Using JDBC

development:
 adapter: jdbc
 driver: com.mysql.jdbc.Driver
 url: jdbc:mysql://localhost:3306/cookbook_development
 encoding: utf8
 username: dbadmin
 password: secret
 host: localhost

You can add the statements shown in Listing 5-3 to your environment.rb
file and configure the database.yml file just as you would for CRuby. This
option enables you to run your application with either CRuby or JRuby.

Listing 5-3. JDBC Statements for the environment.rb File

if defined? JRUBY_VERSION
 require 'rubygems'
 gem 'activerecord-jdbc-adapter'
 require 'jdbc_adapter'
end

Creating Databases
In Chapter 3, we showed you how to create MySQL and Java DB databases
directly from the IDE. With Rails 2, you can also use the Rake create:db
task to create databases using the configurations you specified in the
database.yml file. To do this you simply right-click the project’s node,
choose Run/Debug Rake Task, and double-click either of the following
tasks:

db:create. Creates the database for the configuration that is defined by
RAILS_ENV. By default this is the development configuration. To create a
database for a different configuration, set RAILS_ENV in the Parameters text
box (for example, RAILS_ENV=test).

58 NetBeans™ Ruby and Rails IDE with JRuby

db:create:all. Creates all the local databases that are defined in the
database.yml file.

If the task creates the databases successfully, you get no output.
Sometimes, the task does not create the database but does not report any
errors. One way to verify whether the task created the databases is to run
the db:schema:dump task and look for the schema.rb file under the
Database Migrations node.

Note Currently, the db:create tasks might not work when using an
Active Record JDBC Adapter (that is, your adapter setting in the
database.yml file is set to jdbc or jdbc<database>, such as
jdbcmysql).

Creating and Changing Tables
As you learned in Chapter 3, you can create database tables using the
Database Explorer. However, with Rails, migrations are generally used to
achieve this task. Later in this chapter we discuss the Rails generator.
Several of the commands that you execute from the generator, such as
generate model and generate scaffold, create a model class and an
initial migration class. When you execute the migration class it creates a
database table. If you later want to make changes to the database table you
create another migration class that, when executed, modifies the actual
database table. These classes also provide code for backing out the changes
(or deleting the table in the case of the initial migration).
There are several ways to run a migration from the IDE:

NetBeans™ Ruby and Rails IDE with JRuby 59

From the Project’s Pop-Up Menu. Right-click the project’s node and
choose Migrate Database. As shown in Figure 5-4, the submenu contains an
action for migrating to the current version and an action for migrating to
version 0 (which backs out all the migrations). The submenu also lists all the
migration files that exist under the Database Migrations Migrations Node.
Choose the action that you want to migrate up or down to.

Figure 5-4. Migration Choices in the Pop-Up Menu

Using Rake. Right-click the project’s node and choose Run/Debug Rake
Task. Type db:migrate in the Filter text box to list the Rake migration tasks
(see Figure 5-5).

60 NetBeans™ Ruby and Rails IDE with JRuby

Figure 5-5. Rake Migration Tasks

From a Migration File. If the class is open in the editor you can right-click
in the class and choose Run File to run that migration.

Working with Generators
You use the Rails Generator to work with the Rails generate commands
(see Figure 5-6). You can open the generator by right-clicking the project’s
node and choosing Generate.

NetBeans™ Ruby and Rails IDE with JRuby 61

Figure 5-6. Rails Generator Dialog Box

To use the Rails Generator, you first choose which generator to use from
the drop-down list. The IDE then displays the settings you need to provide
for that generator. Fill out the form, specify whether you want to overwrite
existing files, and then click OK.

Tip You can add generators by clicking the Install Generators
button. The Ruby Gems Manager opens and lists the available generators to
install.

62 NetBeans™ Ruby and Rails IDE with JRuby

If you are not sure how to fill out a text box, look at the description panel,
which shows the help text for that generator. You can also do a dry run of
the command by selecting Preview Changes Only and clicking OK. The
output window shows what the command would have done, but doesn’t
actually do it.
Notice that there is a Destroy radio button in the dialog box. As you would
expect, you use this to back out the changes that were originally generated.

Tip You can also open the Rails Generator from the pop-up menu for
the Controllers node, Models node, Views node, and Database Migrations
node. When you open the Rails Generator from these nodes, the applicable
generator is preselected. For example, if you right-click Database Migrations
and choose Generate, the Rails Generator opens with the migration
generator selected.

Adding Files
We pretty much covered what you need to know about adding files in
Chapter 4. About the only difference with Rails is that you can use the
Rails Generator to do a lot of the menial work for you.

Running Rake Tasks
We covered the basics of how to use the Run/Debug Rake Task dialog box
in Chapter 4. You will see a lot more tasks with Rails applications, such as
the db:create task that you learned about earlier. The IDE makes some of
these Rake tasks easier to get at by integrating them into the pop-up menus.
The Migrate Databases action, which is a wrapper for the db:migrate
task, is one example.

NetBeans™ Ruby and Rails IDE with JRuby 63

Adding Plugins
Similar to the Ruby Gems Manager, the IDE provides the Rails Plugins
Manager for working with Rails plugins. To access the Rails Plugin
Manager, right-click the project’s node and select Rails Plugins.
Like the Ruby Gems Manager, it has a tab for viewing installed plugins and
for installing new ones (see Figure 5-7). It also has a tab for specifying
plugin repositories. If you don’t see the plugin you are looking for, go to
the Repositories tab and add the URL for the repository that contains that
plugin.

Figure 5-7. Rails Plugins Manager

To install a plugin, select it in the New Plugins tab and click Install. If you
want to use the Subversion version control to check out the plugin, select

64 NetBeans™ Ruby and Rails IDE with JRuby

the Use Subversion check box and then specify whether to use svn
checkout or svn:externals to get the plugin (see Figure 5-8). You can also
specify a specific revision. When you click OK, the script installs the
plugin in the project’s vendor/plugins folder.

Figure 5-8. Plugin Installation Settings

Running Applications
There are several methods for running a Rails application from the IDE:

Choosing Run from the pop-up menu for a project’s node
Choosing Run Run Project from the main menu
Pressing F6 or clicking the Run button in the main menu
Pressing Shift+F6 from within a controller or view file. Note that within a
controller this option is context sensitive. That is, the IDE attempts to run the
action in which you placed the cursor. If you are using RESTful routes or the
route requires data, the browser might display an error message such as
Couldn’t find Recipe with ID=show. When this happens you must
rewrite the URL. For example, you would change

NetBeans™ Ruby and Rails IDE with JRuby 65

http://localhost:3000/recipies/show to
http://localhost:3000/recipies/1.

You usually do not need to rerun the application when you make changes
to your application. You simply save the changes and refresh your browser.
There are some circumstances where you need to restart the server, such as
when you add JAR files to the classpath. To stop the server, click the red X
on the left side of the server’s Output window (see Figure 5-9). You can
also stop the servers from the Services window. When you next run the
application, the IDE restarts the server.

Figure 5-9. Server Output Window

Tip See “Suppressing Browser Window Startup” in Chapter 10 to
learn how to stop the IDE from opening up a browser window every time
you run the project.

There are three Rails-specific project properties that affect how the IDE
runs the application:

66 NetBeans™ Ruby and Rails IDE with JRuby

Rails Environment. By default, the applications run in development mode
against the development database. If you are using WEBrick or Mongrel and
you want to run in test mode, production mode, or any customer environment
that you have set up in the config/environments folder, open the Project
Properties dialog box and select the desired mode from the Rails
Environment drop-down list. If you do not see the desired choice, you can
just type it in. You must restart the server to make the change take affect.
With NetBeans 6.5 this setting is not passed to the GlassFish V3 server.
Instead, set RAILS_ENV in the environment.rb file, and then restart the
server.
Server. When you create a project you choose which server to run on. You
can change the server in the Project Properties dialog box. When you change
the server setting you must stop all running servers in order for this setting to
take affect. The IDE comes with the GlassFish application server, and
WEBrick is bundled with Rails applications. If you install the Mongrel gem,
it will also appear on the drop-down list. You can use the Server Port Number
text box to specify the starting point for finding a free port for a Mongrel or
WEBrick server. If that port is not available when the IDE starts the server, it
increments the port by one until it finds a free port.
Encoding. The default encoding that is used by the IDE when writing files to
disk is UTF-8. You can change this in the Project Properties dialog box.

NetBeans™ Ruby and Rails IDE with JRuby 67

Note If you have more than one JRuby installation on your system,
you should be aware of how the GlassFish V3 server determines which
JRuby installation to use. If you start the server from the Services window,
the server uses the value in the Default JRuby Platform setting on the JRuby
tab in the server’s Project Properties dialog box. If you start the server by
running a Rails application, the server uses that project’s JRuby platform.
Whichever platform the server is started with is the platform that the server
uses for all the Rails applications until the server is restarted. If you have
problems because of missing gems or libraries, it might be because you are
not running with the project’s JRuby interpreter.

Using the Rails Console
The IDE provides access to the Rails Console, which enables you to test
out snippets of code. To open the console, right-click the project’s node
and choose Rails Console. A Rails Console tab appears in the Output
window, as shown in Figure 5-10.

Figure 5-10. Rails Console

68 NetBeans™ Ruby and Rails IDE with JRuby

Summary
The NetBeans IDE has extensive support for working with Rails
applications. When creating a new project, you can do so quickly by just
providing a project name, or you can work through a series of wizard steps
to customize your project, including which interpreter, web server, and
database to use.
Configuring a database in Rails is typically a trivial operation. However, if
you're using the JRuby interpreter, you now have the option to use JDBC,
which opens up a new realm of possibilities. You'll find JDBC adapters
that are specifically written for the more popular databases, such as
MySQL and SQLite, as well as the option to use a generic JDBC adapter.
Once your database is configured, the IDE can execute the Rake tasks for
creating and running your migrations.
The IDE also provides a nice interface for working with the Rails
generators, including the display of the standard Rails documentation on
how best to use the generators.

NetBeans™ Ruby and Rails IDE with JRuby 69

Chapter 6: Editing Files
Most of a developer’s time is spent editing code, and the IDE is full of
features to make that time more productive. In this chapter, we dive into
the editing features that help you write Ruby and Ruby on Rails
applications.

Live Code Assistance
As you type, the source editor parses your code and works with you to
minimize your efforts.

Delimiter Matching

The IDE automatically adds (and removes) ending delimiters for you, such
as braces, parentheses, quote marks, begin/end, and def/end pairs. If you
get lost in your nested code, place the caret on a delimiter and the IDE
highlights the matching delimiter. If you place the caret on a delimiter and
press Ctrl+[(Cmd+[on the Mac), the IDE jumps to the matching delimiter.
If you select some text in Ruby code and then type (, {, [, ‘, or “, the IDE
wraps the code with the beginning and ending delimiter. If you select some
text in a Ruby comment and type +, _, or “, the IDE wraps the selected text
with that character. To surround a string or regular expression with #{},
select the text inside of the “” or // delimiters and then type #.

70 NetBeans™ Ruby and Rails IDE with JRuby

Tip The IDE has a smart selection feature. If you press
Alt+Shift+Period (Ctrl+Shift+Period on the Mac), the IDE selects the
surrounding expression. For example if the caret is in a string, the IDE
selects the string. Pressing Ctrl+Shift+Period again selects the next
surrounding expression, such as the line, block, method, or group of
comments, and so on, until it eventually selects the whole file. Use
Alt+Shift+Comma (Ctrl+Shift+Comma on the Mac) to reverse (narrow) the
selection.

Error Annotations

The IDE does background error parsing: when you stop typing, the IDE
shows the errors along with descriptions of the errors. The IDE even
models what an embedded Ruby (ERB) file will do in a Rails server and
maps these errors back to the source. For example, it will report code errors
in your scriptlets. The right-hand margin shows a red stripe for each line
that has an error, and a yellow stripe for lines with warnings (see Figure
6-1). Clicking a stripe takes you to the line, and, when you hover over the
error or warning icon in the left margin, the IDE shows a tooltip that
describes the error. Later, you learn about the quick fix feature, which
helps to correct some coding errors, and the Task List, which helps you
track and access errors.

NetBeans™ Ruby and Rails IDE with JRuby 71

Figure 6-1. Error Annotations

With Ruby code, the IDE also identifies unused variables by underlining
them with squiggly gray lines.

Formatting and Smart Indenting

The IDE indents and re-indents lines as you start and end methods and
blocks. If your file’s indentation gets misaligned, such as when you move
around code, you can easily correct the indentation by right-clicking in the
source and choosing Format from the pop-up menu. You can also use the
Shift Line Left and Shift Line Right buttons in the editing toolbar to indent
and unindent selected lines. When you paste a block of code, you can ask
the IDE to automatically format the code you are pasting by using
Ctrl+Shift+V (Cmd+Shift+V on the Mac).
The IDE also offers a feature for formatting comments. If your code
comments are too long or are irregular in length, you can put the caret in

72 NetBeans™ Ruby and Rails IDE with JRuby

the comment section and press Ctrl+Shift+P (Cmd+Shift+P on the Mac) to
rewrap the comments to the line length that is designated by the right
margin (the red line on the right shows the margin). The feature recognizes
RDoc conventions. For example, it leaves preformatted code in RDoc
comments alone and it recognizes and appropriately formats numbered
lists.

Tip To customize how the IDE indents and formats your code,
choose Tools Options, click Editor, click the Formatting tab, and choose
Ruby from the Language drop-down list. You can also customize the
formatting settings for a specific project. Right-click the project’s node and
choose Properties from the pop-up menu. In the Project Properties dialog
box, select the Formatting category.

About Semantic Coloring
The source editor uses semantic coloring to make it easy to identify and
locate the different parts of code. The following tables show what the
different colors and fonts indicate in Ruby code and RDoc comments.

Table 6-1. Ruby Semantic Styles

ELEMENT STYLE

Ruby keywords Blue

Constants Italic

Method calls Bold

Parameters Orange

Symbols Cyan

NetBeans™ Ruby and Rails IDE with JRuby 73

Table 6-1. Ruby Semantic Styles (continued)

ELEMENT STYLE

Regular expressions Purple

Strings Orange

Escapes such as \n and \C-x Bold

Instance variables Green

Class variables Green italic

Unused variables Underlined in gray

Embedded Ruby Green background

Errors Underlined in red

Table 6-2. RDoc Semantic Styles

ELEMENT STYLE

RDoc directive Blue

Underline-surrounded word
(_word_) Italic

Asterisk-surrounded word (*word*) Bold

Plus-surrounded word (+word+) Monospace

References Displayed as links

74 NetBeans™ Ruby and Rails IDE with JRuby

Tip The IDE offers several profiles, which have different semantic
color schemes. Open the Fonts & Colors pane in the Options dialog box to
switch to a different profile, look at the styles for all the elements, or
customize the IDE with your own color schemes. See Chapter 10 to learn
more.

Using Code Completion
The editor provides a context-sensitive pop-up that shows a list of code
completion suggestions (see Figure 6-2).

Figure 6-2. Code Completion Suggestions

NetBeans™ Ruby and Rails IDE with JRuby 75

Note Because Ruby is a dynamic language and types are not declared,
it is a bit harder to come up with this list then with a statically typed
language such as Java, so the IDE looks at the project’s usage patterns to
compile the list of suggestions.

The code completion pop-up appears when you pause after typing a class,
variable, or method followed by a period or double colon. You can also
display the pop-up by pressing either Cmd+Space or Cmd+\ on the Mac or
Ctrl+Space or Ctrl+\ on other operating systems (to minimize repetition we
will just refer to this key combination as Ctrl+Space from here on). You
can select from the pop-up list or continue typing to narrow the
possibilities. The pop-up also shows the documentation, when it is
available.

Tip If you just want to see the documentation, add Shift to the
shortcut. That is, press Ctrl+Shift+Space (Cmd+Shift+\
or Cmd+Shift+Space on the Mac). See “Viewing RDoc” later in this chapter
for more details.

Code completion works for literals just as it does for variables. For
example you can type [1,2,3].ea and press Ctrl+Space to see the suggested
array methods that begin with ea.
When you select a method from the code completion list, you can also fill
in the arguments. After you fill in an argument, press Tab or Enter to go to
the next argument, and then press Enter when you are done. If you are not
sure what to enter for an argument, press Ctrl+Space for suggestions. You
can even ask for suggestions for option arguments. For example, with the
add_column method, you can type :null => and then press Ctrl+Space to
see that the valid values are true and false.

76 NetBeans™ Ruby and Rails IDE with JRuby

If you are editing existing code you can also get parameter hints for a
method (see Figure 6-3). Place the caret either inside the parentheses, just
after the method name if you are not using parentheses, or on a parameter,
and press Ctrl+P (Cmd+P on the Mac) to see the parameters. The current
parameter being edited is shown in bold. Because it is not always possible
to determine the method’s signature, sometimes the tooltip will not appear.

Figure 6-3. Parameter Hints

Tip If you don’t want the code completion pop-up to display
automatically, you can turn it off using the Options manager. Choose Tools

 Options from the main menu, click Editor, click the General tab, and then
clear the Auto Popup Completion Window check box. You can then display
the pop-up on an as-needed basis by pressing Ctrl+Space (Cmd+Space on
the Mac).

In addition to suggesting module names, class names, method names, and
constants, the code completion will, depending on the context, make
suggestions for the following:

NetBeans™ Ruby and Rails IDE with JRuby 77

Local and dynamic variables in the current block
Ruby built-ins such as keywords and predefined constants
Global ($) variables
Regular expression escape sequences
Literal String (%Q) escape sequences
Available imports
Classes to inherit from
Methods to override
Escape codes following a percent sign (%)
Database parameter completion in Active Record calls
YAML special characters

Tip The IDE looks at a project’s migration files and schema to
compile its list of suggested model names and columns. If your project does
not use migration files, you should run the db:schema:dump Rake task to
create a schema.rb file.

Using Live Code Templates
Also known as snippets or abbreviations, live code templates enable you to
type a few characters and then press Tab to expand the characters into a
snippet of code. Some snippets contain logical parameters. Replace a
parameter with the desired value and then press Tab or Enter to move to the
next parameter.

78 NetBeans™ Ruby and Rails IDE with JRuby

Tip The far right column in the code completion pop-up shows the
available triggers. For example, if you type assert_ and press Ctrl+Space,
the pop-up shows that ase is the trigger for assert_equal.

Table 6-3 shows some examples of code templates for Ruby. You can see
the full list at http://ruby.netbeans.org/codetemplates-
ruby.html.

Table 6-3. Examples of Code Templates for Ruby

DESCRIPTION TRIGGER SAMPLE EXPANSION

=> l =>

Hash Pair :key =>
“value” : :parameter1 => "parameter2"

assert(…) ase
assert_equal(parameter1,
parameter2)

belongs_to bt belongs_to :parameter1

collect { |e| …} col collect { |parameter1| }

each { |e| …} ea each { |parameter1| }

flash […] flash
flash[$parameter1] =
"parameter2"

Table 6-4 shows some examples of code templates for ERB and RHTML.
The complete list can be found at http://ruby.netbeans.org/
codetemplates-rhtml.html.

NetBeans™ Ruby and Rails IDE with JRuby 79

Table 6-4. Examples of Code Templates for ERB and RHTML

DESCRIPTION TRIGGER SAMPLE EXPANSION

<% rubycode %> R <% %>

<%= expression %> Re <%= %>

HTML table table
<table
border=”1><tr><td></td></tr><
/table>

Some of the code templates, such as the Begin template, wrap selected
code. In these cases you use the Hints mechanism to do the code
expansion. You learn about Hints next.

Tip Chapter 10 will show you how to add and edit templates.

About Hints and Quick Fixes
The editor checks for common programming mistakes and code
deprecations and provides hints and fixes to correct these errors. When you
see an error or warning annotation for some code, you often see a small
light bulb icon in the left margin. When you hover over the icon, a tooltip
explaining the problem pops up. You can put the caret on the line and press
Alt+Enter to see the suggested fixes (see Figure 6-4). Select the fix that you
want and press Enter. If you are not sure you can select Preview to open a
dialog box that shows what the fix will do.

80 NetBeans™ Ruby and Rails IDE with JRuby

Figure 6-4. Quick Fix Suggestions

As mentioned earlier, the editor also offers to wrap selected code with
common code expansions. Whenever you select code, the light bulb icon
appears. Pressing Alt+Enter displays several Surround with options such
as Surround with do {|e|}, Surround with =begin/=end, and
Surround with if … | else … | end.
The editor offers line-specific quick fixes for the more frequently occurring
hints, such as offers to split single-line method definitions into multiple
lines, or convert from a do/end block to a {} block. Because it would be
messy to make these suggestions all over the file, these suggestions only
appear when the caret is on the line.
To see the complete list of hints, choose Tools Options from the main
menu, click Editor, click the Hints tab, and select Ruby from the Language
drop-down list. You will notice that not all of the hints are enabled. You
can select or clear the check boxes to customize which hints the editor

NetBeans™ Ruby and Rails IDE with JRuby 81

displays. You can also specify which hints should display as warnings,
which should display as errors, and which should not be displayed unless
the caret is on the specific line.
As NetBeans engineers create new hints and quick fixes they add them to
the Ruby Extra Hints plugin. These hints get incorporated into the next
release. You might want to periodically install the Ruby Extra Hints plugin
to pick up any new hints that have been added.

Tip You can use the Task List, which we talk about later, to apply
quick fixes.

Refactoring Code
The IDE supports code refactoring in several ways. It enables you to easily
rename elements, search and replace text, extract code into methods, and
turn strings into constants or variables.

Renaming Elements

The refactoring feature you will probably find the most useful is inline
renaming. You simply place the cursor on a local variable, press Ctrl+R,
and then type the new name. As you type you can see the editor replace all
usages of that variable with the new name (see Figure 6-5). Press Enter
when you are done.

82 NetBeans™ Ruby and Rails IDE with JRuby

Figure 6-5. Inline Renaming

Renaming global variables, instance variables, class variables, and methods
is almost as easy. When you press Ctrl+R on these elements, the IDE
displays a dialog box. After you enter the new name, click Preview to see a
list of places where the change will be made (see Figure 6-6). Click the
Next Occurrence button in the left margin to review the before and after
code for each line in the list. You can clear the check boxes of the lines that
you do not want changed. When you are ready, click Do Refactoring.

NetBeans™ Ruby and Rails IDE with JRuby 83

Note Although the IDE will not confuse local variable references with
method names, it is difficult to detect whether symbols and method names
that occur in multiple places refer to the same method, so the IDE errs on
the side of optimism and presents them all as potential uses.

Figure 6-6. Refactoring Preview Window

Searching and Replacing

The IDE also has the classic search and replace dialog box, which you open
by choosing Edit Replace from the main menu (see Figure 6-7).

84 NetBeans™ Ruby and Rails IDE with JRuby

Figure 6-7. Search and Replace Dialog Box

One advantage of this dialog box is that you can use Java regular
expressions to search for patterns. Following are some examples:

Newline. \n

Alphanumeric character. \w

Beginning of line. ^

End of line. $

One or more. +

Zero or more. *

Delimiters for a set of characters. []

Escape character for matching special characters. \

For the complete list click the Help button in the dialog box.
You can use back references in the Replace With text box to change parts
of the found text. For example you can type (params\[):id(\]) in the Find

NetBeans™ Ruby and Rails IDE with JRuby 85

What box and type $1:calendar$2 in the Replace With box. The editor
finds all occurrences of params[:id] and replaces the text with the first
parentheses grouping (params\[), plus the replacement text :calendar,
plus the second grouping (\]). That is, params[:calendar].

Extracting Methods

Another nice refactoring feature is the ability to extract code into a method.
You simply select the code that you want to extract, press Alt+Enter, and
select Extract Method. The Extract Method dialog box appears. Type the
name of the method and click OK. A dialog box appears asking for the
name of the new method. The IDE creates a new method with the selected
code and places the cursor in the method’s comment. The IDE figures out
which variables are needed by the method and adds method parameters to
pass the values in. The IDE also figures out what variables to pass back.

Tip Before selecting the Extract Method suggestion, you might want
to first choose Preview to make sure you like the change.

Introducing a Constant, Field, or Variable

How often do you have strings or numbers in your code that you decide to
turn into a constant, local variable, or instance variable? All you have to do
is select the number or string (including the quote marks) and press
Alt+Enter. You can then choose Introduce Constant, Introduce Field
(instance variable), or Introduce Variable. A dialog box appears asking for
the name of the constant or variable. If the IDE sees that you use the
selected value more than once, it displays a check box asking whether to
replace all occurrences. When you introduce a constant, the IDE adds a
comment for the constant and places the cursor on that line.

86 NetBeans™ Ruby and Rails IDE with JRuby

Navigating Code
One of the advantages of using the IDE for your projects is that you can
quickly and easily access all of a project’s files. Not only do you have the
Projects and Files windows to view your files in a hierarchical manner, but
you have numerous options for finding and jumping to just the code you
are looking for.

Navigating Within a File
Once a file fills up a screen, you might find yourself often scrolling up and
down to look up a correct name, see where a variable is used, or find some
code you want to copy. When moving about a file you will want to take
advantage of the Navigator window and the bookmarking feature, as
described here, as well as the navigation to member actions that are
described in the next section.

Using the Navigator Window

When you open a file in the editor, the Navigator window (see Figure 6-8)
lists the member modules, classes, fields, methods, and attributes. When
you double-click on a node in this Navigator window, the editor scrolls to
the code for that member. If you start typing in the Navigator window a
Quick Search box appears. You can type the first few characters of a
member name into the box until the desired member is selected in the
Navigator window, then press Enter to navigate to the related source.

NetBeans™ Ruby and Rails IDE with JRuby 87

Figure 6-8. Navigator Window

Jumping to Bookmarks

If you find yourself jumping back and forth between certain lines, you can
press Ctrl+Shift+M (Cmd+Shift+M on the Mac) on each line to bookmark
that line (or remove an existing bookmark). The IDE shows a gray stripe in
the right margin and a blue bookmark icon in the left margin for each
bookmark. To jump to a bookmarked line, click its grey stripe in the right
margin. You can also right-click in the left margin and choose Bookmark

 Next Bookmark, or choose Bookmark Previous Bookmark.

88 NetBeans™ Ruby and Rails IDE with JRuby

Navigating to Members
In addition to the Navigator window, the following features enable you to
navigate to classes, fields, methods, and attributes within the file and within
the project.

Navigate to Declaration

You can Ctrl+Click on a class, field, or method, to navigate to its
declaration. If it is declared in a different file the IDE opens that file. You
can also navigate to the declaration by right-clicking the class, field, or
method and choosing Navigate Go to Declaration from the pop-up menu.
In addition, you can use the Go to Type and Go to Symbol dialog boxes,
which are described in the Finding Files section.

Note When you choose to navigate to the declaration and the IDE
finds multiple possibilities, the IDE displays a list to choose from. It puts
what it thinks is the best choice at the top of the list. The IDE uses factors
such as which classes are directly loaded by your file using require
statements, and what is documented to determine its best choice. The other
entries are listed in alphabetical order, with the :nodoc entries at the end
(shown with strikethroughs). If you want its first pick, just press Enter.
Otherwise, click on the one you want.

Navigate to the Next or Previous Occurrence

When the caret is on a variable or method call, the IDE highlights all
occurrences of that member within the file and displays a yellow stripe for
each occurrence in the right margin. Press Alt+Up Arrow or Alt+Down
Arrow (Ctrl+Up Arrow and Ctrl+Down Arrow on the Mac) to jump from
one occurrence to the next. Alternatively, click a yellow stripe in the right
margin.

NetBeans™ Ruby and Rails IDE with JRuby 89

Find Usages

Right-click on a variable or method and choose Find Usages to see a list of
all the usages in the project (see Figure 6-9). Double-click on a node in the
list to jump to that usage. Click the Previous Occurrence and Next
Occurrence buttons to jump from one usage to the next.

Figure 6-9. Usages Output

Note When you use Find Usages on a class, you can choose to find
the class’s subtypes instead of usages.

Navigating to Files
When working within the IDE, the files that you need are just a click or
two away. In addition to the context-sensitive Go to Declaration menu
action you learned about earlier, you can also Go to Test from most file
types. With controller and view files, the pop-up menu has Go to Action or
View, and with test files, the pop-up menu offers Go to Tested Class.

90 NetBeans™ Ruby and Rails IDE with JRuby

Note If both a unit test and an RSpec test exist for a file, the IDE
takes you to the unit test.

In RHTML and ERB files you can Ctrl+Click on a partial argument in a
render call to open the partial, and you can Ctrl+Click on a controller or
action argument in a link_to call to open the controller file, as shown in
Figure 6-10.

Figure 6-10. Navigating from a link_to to a Controller Action

NetBeans™ Ruby and Rails IDE with JRuby 91

You will usually have several files open in the editor. You can easily
switch from one open file to the next by pressing Ctrl+Tab. When the list
of open documents appears, press Ctrl+Tab repeatedly to go down the list
to select the file to display. You can also display a file by selecting it from
the open documents list (see Figure 6-11). Last, pressing Shift+F4 opens up
a Documents dialog box that enables you to view, switch to, save, and
close open documents.

Figure 6-11. Open Documents List

92 NetBeans™ Ruby and Rails IDE with JRuby

Tip If you have more files open than there is room for their tabs,
use the Scroll Documents Left and Scroll Documents Right buttons in the
editing tool bar to see the tabs for the other open files.

The IDE has four different search mechanisms for finding and opening
files—Go to File, Find in Projects, Go to Type, and Go to Symbol—which
we describe next.

Go to File

To quickly open a file, press Alt+Shift+O (Cmd+Shift+O on the Mac) to
display the Go to File dialog box (see Figure 6-12). Type in the first few
characters of the file’s name to display a list of matching files. As you type,
the list narrows. You can use the * (multiple characters) and ? (single
character) wildcards to find files with names that contain a string or have a
particular suffix. For example you can search for index*erb to find all the
index views. The IDE searches all open projects, so it helps to select the
Prefer Current Project check box to have the IDE list the files in the current
project first.

NetBeans™ Ruby and Rails IDE with JRuby 93

Figure 6-12. Go to File Dialog Box

Find in Projects

The Find in Projects dialog box is another way to find and open files (see
Figure 6-13). Right-click the project’s node, and choose Find from the pop-
up menu. As with Go to File, you can use the * and ? wildcards to find all
files with names that match a pattern. In addition, you can look for files
that contain some specified text. Alternatively, you can use both text boxes
to search for a string in the files that matches the file name pattern, such as
looking for @calendar in all *.rb files. Use the Scope radio buttons to
limit the search to the current project or to extend the search to all open
projects.

94 NetBeans™ Ruby and Rails IDE with JRuby

Figure 6-13. Find in Projects Dialog Box

Tip If you do not know where an open file resides in the project
structure, right-click in the source and choose Select in Projects from the
pop-up menu. The IDE displays the file’s node in the Projects window. You
can also choose Select in Files to see the file in the Files window.

Go to Type and Go to Symbol

To find the file where a method, class, or module is defined, press Ctrl+O
(Cmd+O on the Mac) to open the Go to Type dialog box (see Figure 6-14).
You can use the following shortcuts to search for patterns:

The * (multiple characters) and ? (single character) wildcards.

NetBeans™ Ruby and Rails IDE with JRuby 95

Camel case shorthand. For example, use AR to find ActiveRequest,
ActiveResponse, and ActiveRecord, and use AC::B to find
ActionController::Base.
for methods. For example, #to_x finds all the to_x methods, and A#to_x
finds all the to_x methods in modules that begin with A.

Double-click on a node in the results to open that file.

Tip Another way to quickly access the file is to type the method,
class, or module name into the Quick Search box in the main tool bar.

You can find the files in which a symbol is defined by pressing
Ctrl+Alt+Shift+O (Ctrl+Shift+Cmd+O on the Mac). This shortcut opens a
Go to Symbol dialog box. Go to Symbol works across languages and
searches for elements that are not normally considered to be types, such as
JavaScript functions and Ruby methods. Just as with the Go to Type dialog
box, you can use wildcards and camel case shorthand. Unlike Go to Type,
you do not need to use the # character to search for a method.

96 NetBeans™ Ruby and Rails IDE with JRuby

Figure 6-14. Go to Type Dialog Box

Tip If you can’t remember the shortcuts for Go to Type and Go to
Symbol, simply type go to into the Quick Search box in the main toolbar.

Viewing RDoc
When you use the code completion mechanism, you often see a display of
the RDoc. You can also view the RDoc by placing the caret on the element
that you want to look up and then pressing Ctrl+Shift+Space (Cmd+Shift
+Space on the Mac).

NetBeans™ Ruby and Rails IDE with JRuby 97

If you want to see how your code comments will appear in RDoc format,
just place the caret in your comments and use this same key sequence to
see how your comments will be displayed in RDoc format, as shown in
Figure 6-15. This helps to spot errors in the comments.

Figure 6-15. Displaying Comments as RDoc

98 NetBeans™ Ruby and Rails IDE with JRuby

Working with Task Lists
So far, you have been learning how to find and fix code suggestions and
errors on a file-by-file basis. The IDE has a Task List feature, which is very
useful for getting an overview of all the hints and errors in a file, a project,
or a set of projects (see Figure 6-16). To open the Task List window,
choose Window Tasks from the main menu.

Figure 6-16. Task List Window

Use the top three buttons in the left margin to choose the scope of the list:
file, project, or all projects. Use the Filter button’s drop-down list to either
show all types of tasks or filter out certain types. The bottom button toggles
whether or not to group the items by type. To change the order of the items
in the list, click in a column header. You can also right-click in the window
and choose Sort By to sort the list by description, file, line, or location in
ascending or descending order.
In addition to errors, warnings, hints, and quick fixes, you can have the list
show all the comments that contain the text TODO, @todo, FIXME, XXX,
PENDING, or <<<<<<<. This is useful for making notes to yourself about
changes or fixes that you want to make. If you want to include other types
of comments, open the Options manager by choosing Tools Options

NetBeans™ Ruby and Rails IDE with JRuby 99

from the main menu. Click Miscellaneous, click the ToDo Tasks list, and
click Add to add another pattern.
You can walk through the list and view the code for each entry by pressing
Ctrl+Period (Cmd+Period for the Mac). You can also view the code by
double-clicking an entry in the list. In both cases, the IDE places the caret
in the editor location, so you can immediately press Alt+Enter to show the
quick fixes, if there are any.

Viewing Recent Changes
Even if you are not using source control, you can use the versioning tools
to view the recent changes to your files. This can come in handy when the
code stops working and you want to see what you recently did to break the
code. When you edit your code, the IDE stores recent versions.
To view an earlier version, right-click on the file’s node in the Projects
window and choose Local History Show Local History. A Local History
tab appears in the editor. You can select a version to view the differences
between that version and the current version (see Figure 6-17), or you can
right-click on an entry and choose either Revert from History or Delete
from History from the pop-up menu. If you want, you can label each
version. That enables you to use the pop-up menu item to show only rows
where the label matches a filter.
You can also use the line-item buttons that appear in the comparison
window to insert a deleted line or remove an added one. Click the arrow
button that is between the old and new versions to restore the file to the old
version.
If you have two versions of the same file you can have the IDE display a
line-by-line comparison of the files. In the editor, right-click the file’s tab
and choose Diff To from the pop-up menu. Alternatively, in the Projects,
Files, or Favorites window, use Ctrl+Click to select the two files and then
choose Tools Diff from the main menu to display the differences.

100 NetBeans™ Ruby and Rails IDE with JRuby

Figure 6-17. Local History Tab

Keyboard Shortcuts
If you choose Help Keyboard Shortcuts Card from the main menu, you
can get a PDF file that shows the most commonly used shortcuts. More
complete lists can be found by choosing Help Help Contents, clicking
the Search tab, and then searching on keyboard shortcuts. You will see
shortcut lists for all types of files and windows. On the NetBeans Ruby
Community wiki at http://wiki.netbeans.org/RubyShortcuts is a
list that is maintained by the engineers. You can learn many of these
shortcuts by looking at the menu actions, which show the keyboard
shortcut equivalents for the actions. Table 6-5 shows some common
shortcuts.

NetBeans™ Ruby and Rails IDE with JRuby 101

Table 6-5. Examples of Ruby Keyboard Shortcuts

ACTION SHORTCUT MAC SHORTCUT

Comment or uncomment Ctrl+/ Cmd+/

Delete line Ctrl+E Cmd+E

Duplicate selection (above/below) Ctrl+Shift+Up/Down Cmd+Shift+Up/Down

Expand or complete the current
word by inserting the next
matching word from open buffers
(hit repeatedly to cycle through
matches)

Ctrl+K Cmd+K

Indent or unindent Tab/Shift+Tab Tab/Shift+Tab

Open line under cursor Shift+Enter Shift+Enter

Open type (go to class) Ctrl+O Cmd+O

Open file by name prefix Alt+Shift+O Ctrl+Shift+O

Open Rails code generator (when
cursor is in a .rb file) Alt+Insert Ctrl+Insert

Rename symbol under the caret
(refactor) Ctrl+R Ctrl+R

Select the next enclosing block Alt+Shift+Period Ctrl+Shift+Period

Select progressively smaller blocks Alt+Shift+comma Ctrl+Shift+comma

102 NetBeans™ Ruby and Rails IDE with JRuby

Tip If you are familiar with Eclipse or Emacs keybindings, you can
switch to those bindings by selecting Tools Options from the main menu,
clicking Keymap, and selecting Eclipse or Emacs from the Profile drop-down
list. There is a plug-in for vi from http://jvi.sourceforge.net.

Note Many of the editor shortcuts, such as Ctrl+Delete (Cmd+Delete
on the Mac), work within word boundaries. By default, the editor considers
an embedded capital letter as a word boundary. For example, if the cursor
is in front of ActiveRecord, pressing Ctrl+Delete deletes Active but not
Record. The same is true for underscores. If the cursor is in front of
const_missing, Ctrl+Delete removes const and leaves _missing. See
“Tweaking Under the Hood” in Chapter 10 for how to disable this feature.

Summary
Investing some time to learn the features that are provided by the NetBeans
Ruby editor will greatly enhance your coding productivity. The live code
assistance provides delimiter matching, error annotations, and code
formatting. Semantic coloring gives you a clear visual picture of the
elements that make up your code.
Context-sensitive code completion, including parameter tab completion,
can help keep you focused on your code rather than having to turn to some
external reference resource. In addition to code completion, live code
templates alleviate the need to type boilerplate code over and over again.
As with code completion, many of the live templates are parameterized
(which is what makes them "live"). Finally, as you are coding, the
NetBeans editor is constantly surveying your code for potential mistakes

NetBeans™ Ruby and Rails IDE with JRuby 103

and suggesting improvements. Use the Task List to see all suggestions
across one or more projects.
The IDE supports code refactoring in several ways. It enables you to easily
rename elements, search and replace text, extract code into methods, and
turn strings into constants or variables.
One of the advantages of using the IDE for your projects is that you can
quickly and easily access all of a project’s files. Not only do you have the
Projects and Files windows to view your files in a hierarchical manner, but
you have numerous options for finding and jumping to just the code you
are looking for. When moving about a file you will want to take advantage
of the Navigator window and the bookmarking feature. From within a file
it is also possible to navigate to the declaration or find all usages of a class,
method, or variable. Finally, there are dialogs to find files by name, type, or
even its contents.
The local history feature allows you to easily compare, and if necessary,
roll back to earlier versions of your code.
Getting familiar with the keyboard shortcuts (and not having to move your
hand to the mouse) can really enhance your coding speed.
Finally, just about everything in this chapter is configurable—the
formatting, colors, code hints, live templates, and keyboard shortcuts.
Tailor the NetBeans editor to work in a way that makes you most
productive.

NetBeans™ Ruby and Rails IDE with JRuby 105

Chapter 7: Testing and Debugging
Projects
Test-driven development (TDD) promotes the writing of executable test
cases before you start coding. After you add the desired functionality, you
then run the tests to make sure the new functionality works as expected,
and that the changes don’t break something else. The NetBeans IDE
provides quick access to the TDD support that is provided by Ruby and the
Rails framework through the IDE’s menu actions, keyboard shortcuts, and
Test Results window.
When bugs are discovered, the IDE offers many tools to help you diagnose
and resolve the problems. You can start up the integrated debugger to step
through code, look at current values, watch for value changes, and view the
call stack. To narrow in on your recent changes, which might have
introduced the bug, you can open the Local History window to see the
differences between recent versions. Last, you can easily view both the
server and IDE log files in the Output window.

Creating Tests
The IDE automatically adds test folders when you create your projects.
With Ruby projects you get a Test Files folder and an RSpec folder. With
Ruby on Rails projects, you get folders for Unit Tests, Functional Tests,
and Integration Tests. If the Rails project’s Ruby platform has the RSpec
gem in its repository, you also get the RSpec folder.
When you generate models, scaffolds, resources, and observers in Rails
projects, the generator creates unit tests for you. For example, the controller
generator creates a controller functional test, and the model generator
creates a model unit test. Additionally, you can use the generator to create
integration tests. If you have installed the RSpec and RSpec Rails plugins
into your project, you can use the rspec_model, rspec_controller, and

106 NetBeans™ Ruby and Rails IDE with JRuby

rspec_scaffold generators, which generate RSpec tests instead of unit tests.
The plugin also adds spec tasks.

Tip The IDE associates your tests with the tested classes. You can
quickly navigate from a class to its test by right-clicking in the source and
choosing Navigate Go to Test, and you can navigate from a test to a class
by choosing Navigate Go to Tested Class. If the class is associated with
both a unit test and an RSpec class, the IDE takes you to the unit test.

Creating Unit Tests
The steps for creating unit tests are simple:
1. Right-click a project or folder node in the Projects window and choose

New Ruby Unit Test from the pop-up menu to open the New Ruby Unit
Test dialog box (see Figure 7-1).

2. Name the class, such as TestCalendar. The IDE derives the File Name
from the class name (for example test_calendar), but you can change it.
The File Name should begin or end with test so that it is recognized as a
test.

3. You can specify a module and you can specify a different class to extend,
such as ActiveSupport::TestCase, ActionController::TestCase, or
ActionController::IntegrationTest.

4. If it is a Ruby project, choose Test Files from the Location drop-down list.
For Ruby on Rails projects, you can select Unit Tests, Functional Tests, or
Integration Tests.

5. If you want to put the test in a subfolder you can type it in or click Browse to
navigate to the folder. You can also click Browse to add a subfolder.

6. Click Finish.

NetBeans™ Ruby and Rails IDE with JRuby 107

Figure 7-1. New Ruby Unit Test Dialog Box

The IDE seeds the class with a test method and with a call to assert,
which causes the test to fail. It also provides the alternative flunk call,
which prints out a reminder to write the test (see Listing 7-1). That way,
you can stub out all your desired test classes and depend on the test results
to remind you which tests you need to go back and write. Choose which of
the two lines you want and delete the other. You might want to add a TODO
comment so that the unfinished methods show up in the Tasks window.

108 NetBeans™ Ruby and Rails IDE with JRuby

Listing 7-1. Unit Test Class

To change this template, choose Tools | Templates
and open the template in the editor.

$:.unshift File.join(File.dirname(__FILE__),'..','lib')

require 'test/unit'
require 'calendar'

class Calendar < Test::Unit::TestCase
 def test_foo
 assert(false, 'Assertion was false.')
 flunk "TODO: Write test"
 # assert_equal("foo", bar)
 end
end

With Ruby projects you can also choose New Ruby Test Suite to create a
test suite class (see Listing 7-2).

Listing 7-2. Test Suite Class

To change this template, choose Tools | Templates
and open the template in the editor.

require 'test/unit'

Add your testcases here

require 'tc_1'
require 'tc_2'
require 'tc_3'

Tip If you use certain patterns in your test code, you can modify the
template that the IDE uses to create the mock ups. See “Customizing
Templates” in Chapter 10 for more information.

NetBeans™ Ruby and Rails IDE with JRuby 109

Adding Fixtures
Rails tests often depend upon fixtures for loading the test data. Fixtures can
be in YAML or CSV format.
To add a YAML file, follow these steps:
1. Right-click a project or folder node and choose New Other from the pop-

up menu.
2. Select the Ruby category, select YAML File from the File Types list, and

click Next.

3. Name the file (without the yml suffix).
4. Specify the folder location and click Finish.

Because the IDE does not include support for CSV files, the steps are a bit
different for that file type:
1. Right-click a project or folder node and choose New Other from the pop-

up menu
2. Select the Other category.
3. Select Empty File from the File Types list and click Next.
4. Name the file (including the csv suffix).
5. Specify the folder location and click Finish.

Creating RSpec Tests
RSpec is a framework that supports behavior-driven development (BDD)
through specs and stories. If your project’s platform includes this gem, the
IDE offers RSpec support (the built-in JRuby platform that comes with the
IDE includes the RSpec gem).
To create a spec, follow these steps.

110 NetBeans™ Ruby and Rails IDE with JRuby

1. Right-click a project or folder node in the Projects window and choose New
 RSpec file from the pop-up menu to open the New RSpec File dialog box

(see Figure 7-2).

Figure 7-2. New RSpec File Dialog Box

2. Name the class you are testing. The IDE derives the File Name from the class
name, but you can change it. You should keep the _spec suffix in the File
Name so that it is recognized as a spec.

3. Choose RSpec from the Location drop-down list.
4. If you want to put the test in a subfolder, you can type it in or click Browse to

navigate to the folder. You can also click Browse to add a subfolder.
5. Click Finish.

NetBeans™ Ruby and Rails IDE with JRuby 111

The IDE mocks up some executable code for the test and adds a TODO
comment so that the Tasks window will display a reminder to write the test
(see Listing 7-3).

Listing 7-3. Spec File

To change this template, choose Tools | Templates
and open the template in the editor.

require 'calendar'

describe Calendar do
 before(:each) do
 @calendar = Calendar.new
 end

 it "should desc" do
 # TODO
 end
end

Tip Just as with unit test classes, you can modify the template that
the IDE uses to create the spec mock up. See “Customizing Templates” in
Chapter 10 for more information.

As we mentioned in “Creating Tests,” you can install the RSpec and RSpec
Rails plugins and use the plugins’ generators to create RSpec tests for you.

Note The NetBeans IDE 6.5 does not include support for RSpec
stories.

112 NetBeans™ Ruby and Rails IDE with JRuby

Running Tests and Specs
You have two ways to run the tests in a specific test file:

Right-click in a class’s source and choose Test File from the pop-up menu.
Right-click in the test’s source and choose either Run File, Test File, or
Debug “test-file-name” from the pop-up menu.

Tip Because the Test File action always runs the test, regardless of
whether you are in the class source or the test source, you might want to
get in the habit of using that action. The shortcut for Test File is Ctrl+F6
(Cmd+F6 on the Mac).

Although there are no menu actions available for this, you can click in a
test file and run the specific test that the cursor is in. Press Alt+Shift+F6 to
run the focused test and press Alt+Shift+F5 to debug it. Alternatively, type
test in the quick search text box in the main toolbar, then choose Run
Focused Test or Debug Focused Test from the search results.
To run all the tests for a project, simply right-click the project’s node in the
Projects window and choose Test for unit testing or choose RSpec Test for
spec testing (RSpec Test is available only for projects for which the
platform has the RSpec gem). This causes the IDE to invoke the
corresponding Rake tasks (test tasks for the Test action and spec tasks
for the RSpec Test action).

Note If your Rake files do not have the corresponding test or spec
Rake tasks, the IDE runs all the test files that it finds under the test or spec
test folders, whichever one applies. If you chose Test, it looks for file names
that begin or end with test. If you chose RSpec Test, it looks for file names
that end with spec.

NetBeans™ Ruby and Rails IDE with JRuby 113

You can also use the Run/Debug Rake Task window to run specific test
and spec tasks. Right-click the project node and choose Run/Debug Rake
Task. To see the available unit test tasks, type test in the Filter text box.
Type spec in the Filter text box to see the available RSpec tasks (see Figure
7-3). Note that for Rails applications you must install the RSpec plugin in
order to make the RSpec tasks available to the Rake tool.

Figure 7-3. RSpec Plugin Tasks in the Run/Debug Rake Task
Window

When you run tests or specs, the IDE displays the output in Ruby Test
Results window (see Figure 7-4). You can use the Previous Failure and

114 NetBeans™ Ruby and Rails IDE with JRuby

Next Failure buttons on the left side of the window to step through the
failures and view the corresponding code in the source editor.
Alternatively, you can double-click a test node or an entry in the stack in
the left panel to open the file in the source editor and see the associated
code.

Figure 7-4. Ruby Test Results Window

Tip Type test in the main toolbar’s search text box for quick access
to the test actions.

If you have Rake test task that doesn’t follow the test or spec naming
convention, and you want the IDE to display the task’s results in the Test
Results window, add lines similar to those in Listing 7-4 to either the
project’s nbproject/project.properties file (for shared properties) or
the project’s nbproject/private/private.properties file (for non-
shared properties).

Listing 7-4. Test and Spec Task Properties

test.tasks=test,scene,role
spec.tasks=spec,contract

NetBeans™ Ruby and Rails IDE with JRuby 115

Tip The spec tasks obey the options that are specified in the file
spec/spec.opts. To use a separate set of options when you run the tests
from the IDE, put the options in a file named spec/spec.opts.netbeans.
Because the default options in spec.opts might interfere with the Ruby
Test Results window, it is a good idea to add a spec.opts.netbeans file
that specifies the options that work best with the Ruby Test Results window.
The IDE displays a warning about using spec.opts in the Ruby Test
Results output window. To turn off the warning, pass the
-J-Druby.rspec.specopts.warn=false option to the IDE, as shown in
Chapter 10.

Using Autotest
If the project’s platform has the ZenTest gem in its repository and you have
set up your tests to meet the autotest specifications, you can right-click the
project’s node and choose AutoTest to start the autotester and open a Ruby
Test Results window to display the autotester output. Then, whenever you
edit a class or its test, the autotester runs the class’s test.

Note At the time of this writing, autotest does not work with JRuby
1.1.4.

If you have the RSpec gem installed you need to have the correct
configuration, as described here, in order for autotest to work:

RSpec 1.1.4. If the spec folder exists (RSpec Files in the Projects window),
autotest runs the RSpec tests. If you want to run unit tests instead, you must
either remove the spec folder or uninstall the RSpec gem.
RSpec 1.1.5 through 1.1.8. If you want autotest to run RSpec tests, create an
RSPEC environment variable and set its value to true. One way to do this is
to add the following line to the autotest script: ENV['RSPEC'] = 'true'.

116 NetBeans™ Ruby and Rails IDE with JRuby

If you are using RSpec tests, you should consult the RSpec and ZenTest
web sites to verify whether you have compatible RSpec and ZenTest gems.
As you would expect with Rails projects, your RSpec and RSpec Rails
plugins must be compatible with the ZenTest version.

Tip If autotest does not appear to be working, choose Test or RSpec
Test, whichever is applicable, to make sure that your tests are OK.
Autotest’s diagnostics are not as informative. Also, try running autotest
from the command line to ensure that you have set up your autotest files
correctly.

To stop the autotest process, click the X button that appears to the right of
the AutoTest status at the bottom-right corner of the IDE, or click the X
button in the left margin of the AutoTest tab in the Output window.
For more information about autotest, see http://zentest.rubyforge.
org/ZenTest/.

Debugging Applications
Even when you plan for your application to cover all possible scenarios,
write good tests to cover the functionality and usage, and carefully code to
your tests, bugs are going to happen. Sometimes they even happen in the
tests themselves. Finding the actual code that is causing the bug can be
time consuming. The NetBeans debugger can often help you quickly get to
the cause, make the changes, and verify that you have solved the problem.

NetBeans™ Ruby and Rails IDE with JRuby 117

Running the Debugger
Here are several ways to run the debugger:

Click the Debug Project button.
Press Ctrl+F5 (Ctrl+Cmd+F5 on the Mac).
Choose Debug Debug Project from the main menu, or right-click the
project’s node and choose Debug.
Open the class in the source editor, then right-click in the source and choose
either Debug “file-name” to debug the class or choose Debug Test for “file-
name” to debug the class’s test. If you are in a controller class in a Rails
application and right-click in a method, the debugger attempts to run the
action. With Rails applications, you will often need to correct the URL that is
sent to the browser, especially if you are using RESTful routes. If you are not
sure what the correct URL is for the controller action or view, run the
routes Rake task to find the correct URL for the action. Because the
controller takes care of variables that the views need and often invokes
essential methods from its filters, it is usually better to debug from the action
than from the view.

Note If you are using your own installation of JRuby and not the built-
in JRuby, you must install the JRuby fast debugger manually. Go to
http://wiki.netbeans.org/RubyDebugging#section-
RubyDebugging-JRuby for installation instructions.

When you are in the development stage of a Rails application, you might
find it best to start your application in debugger mode by clicking the
Debug Project button and then just keep it running for the day. You can
then do one of the following actions to get to the page you want to debug:

118 NetBeans™ Ruby and Rails IDE with JRuby

Type the URL of the page you want to test into the browser’s address text
box
Navigate through the application
Use the browser’s history list
Click the browser’s Reload, Back, or Forward button

When you start the debugger for a Rails project, a dialog box opens asking
whether to perform client-side or server-side debugging. You can select the
Do Not Show This Message Again check box to stop the dialog box from
appearing for that project. If you do that, and then you later want to change
the client-side or server-side setting, open the project’s Project Properties
dialog box, choose the Debug category, then clear the check box for client-
side debugging (see Figure 7-5). Client-side debugging enables you to
debug JavaScript. You can learn more about JavaScript debugging at
http://netbeans.org/kb/docs/web/js-debugger-ug.html.

Figure 7-5. Debug Category in Project Properties Dialog Box

NetBeans™ Ruby and Rails IDE with JRuby 119

Working with Breakpoints
Before you run your code in the debugger, you usually want to set
breakpoints where you want the debugger to stop. To set a breakpoint, open
the file, then click in the left margin next to the line that you want the
debugger to stop on. You can also right-click the line and choose Toggle
Line Breakpoint. A salmon-colored box appears in the left margin and the
line is highlighted to indicate that a break point has been set. The right
margin shows a salmon-colored line for each breakpoint. You can click
those lines to jump to the corresponding breakpoint. Figure 7-6 shows a file
with breakpoints.

Figure 7-6. Line Breakpoints

120 NetBeans™ Ruby and Rails IDE with JRuby

To create a conditional breakpoint, first create the breakpoint. Next, right-
click the box that appears in the left margin along side the breakpoint, then
choose Breakpoint Properties. Enter the condition, as shown in Figure
7-7. You can also turn a breakpoint into a conditional breakpoint in the
Breakpoints tab of the Debugger window, which we discuss next, by right-
clicking a breakpoint and choosing Customize.

Figure 7-7. Setting a Breakpoint Condition

You can also set exception breakpoints. You do that in the Breakpoints tab
in the Debugger window, which we talk about in the next subsection.
When the debugger stops at a breakpoint, you can view the value of a
variable or expression in the source by selecting it and then hovering the
cursor over the selection until a tooltip appears showing the value (see
Figure 7-8).

Tip You can also stop execution by clicking the Pause button in the
main toolbar.

NetBeans™ Ruby and Rails IDE with JRuby 121

Figure 7-8. Viewing Values after Debugger Stops at a Breakpoint

You can also use the tabs in the Debugger window, which we discuss next,
to see the values of variables and watched expressions.
To continue executing the application, click one of the following buttons or
choose Debug from the main menu, then choose the equivalent action:

Continue. Resume running the application and continue until the application
reaches the next breakpoint or the application ends.
Step Over. Execute one source line. If the source line contains a call, execute
the entire routine without stepping through the individual instructions.
Step Into. Execute one source line. If the source line contains a call, stop just
before executing the first statement of the routine.

122 NetBeans™ Ruby and Rails IDE with JRuby

Step Out. Execute one source line. If the source line is part of a routine,
execute the remaining lines of the routine and return control to the caller of
the routine.
Run to Cursor. Run the current session to the cursor location in the editor,
then pause the application.

To stop the debugging session, click the Finish Debugger Session button.

Tip If your application uses a database, you might want to open a
query window on the database so you can view and monitor the database
values while executing the code. First you need to register your database
with the IDE, as shown in Chapter 3. Go to the Services window, expand
Databases, and choose Connect. Then expand the node and expand Tables.
Right-click on a Table node and choose View Data to open a SQL Command
tab in the editor. You can repeatedly type in SQL commands and click the
Run SQL button to view the results.

Using the Debugger Window
After you start the debugger, the Debugger window appears with the
following four tabs (see Figure 7-9)

Watches. Lists all variables and expressions for which you have set watches.
A watch enables you to track changes in the value of a variable or an
expression during execution. To set a watch, open the source and select the
variable or expression for which you want to set the watch, then right-click
and choose New Watch.
Local Variables. Lists the local variables that are within the current call. You
can also view the value of a variable or expression in the source by selecting
it and then hovering the cursor over the selection. The IDE displays a tooltip,
which shows the value.
Call Stack. Lists the sequence of calls made during the execution.

NetBeans™ Ruby and Rails IDE with JRuby 123

Breakpoints. Lists the breakpoints that have been set for all the open
projects. You can disable and delete breakpoints in this tab. You can set
exception breakpoints from this tab by right-clicking in the tab and choosing
New Breakpoint. Choose Ruby from the Debugger drop-down list, enter the
Exception Class name, and click OK.

Figure 7-9. Debugger Window

You can optionally open the Sessions window by choosing Window
Debugging Sessions from the main menu. The Sessions window is
helpful for switching sessions when you are debugging more than one
project at the same time. It is also helpful if you are debugging both
JavaScript (client side) and Ruby (server side). You can stop all debugging
sessions from this window by right-clicking in the window and then
choosing Finish All. The Threads window is not applicable to Ruby in the
6.5 release. There is also a Sources window, which is helpful for client-side
JavaScript debugging, but is not applicable to Ruby debugging.

Using the Local History Feature
In Chapter 6 you learned about the Local History feature. This is a great
tool for finding bugs that have been introduced by recent changes. If you
are adding new functionality and your tests start failing, right-click on the

124 NetBeans™ Ruby and Rails IDE with JRuby

file’s node in the Projects window and choose Local History Show Local
History. Select an entry and use the Up and Down keys to view the
sequence of changes that you made to the file. Or perhaps revert to an
earlier version and retest to see if the changes made after that caused the
failures. You can also try out different solutions and use the Local History
feature to revert to the original version after you finish testing the
variations.

Viewing Log Files
With so many layers of software between you and the executing software,
it is sometimes hard to determine if the bug is in your software, the IDE,
the server, the Ruby platform, the Rails framework, a gem, a plugin, or the
Rake software. Sometimes log files help locate the source of the problem.
When you run a Rails application, the IDE opens the server’s log file in the
Output window. You can scroll through this log to get helpful information.
The IDE’s log file shows what it is doing in the back end and reports errors
and warnings. To see the IDE’s log file, choose View IDE Log from the
main menu. The log appears in the Output window as shown in Figure
7-10.

Figure 7-10. IDE Log Output

NetBeans™ Ruby and Rails IDE with JRuby 125

If you enable detailed Ruby logging you can see the exact Ruby, JRuby,
and Rails shell commands that the IDE invokes. You can then try to
execute the command in a shell to see if the error is with the IDE or is due
to some issue caused by the JRuby, Ruby, or Rake tool. See Chapter 10 to
learn how to enable detailed logging.

Tip If the log output is too wide for the window, right-click in the
window and choose Wrap Text from the pop-up menu. If you are only
interested in seeing the output going forward, right-click and choose Clear.

Summary
The NetBeans IDE provides a UI that provides easy access to TDD and
BDD support to help you develop quality code. In addition to Ruby's
default testing framework, the IDE supports RSpec and autotest. In the
cases where your tests (or your customers) do reveal a bug, you can use the
integrated debugger to walk through your code and inspect your variables.
The local history feature can be used to go "back in time" before a potential
bug was introduced. In addition, easy access to log files helps you isolate at
what layer things may be going wrong.

NetBeans™ Ruby and Rails IDE with JRuby 127

Chapter 8: Working with JRuby
The JRuby implementation of the Ruby language brings many benefits to
the Ruby world. Topmost is the ability to leverage the Java technology
stack. Java developers can use the rapid development features of Ruby and
Rails without giving up their existing code base. Conversely, Ruby
programmers can leverage Ruby and Rails functionality in Java
applications though Java’s scripting engine. Another feature that JRuby
adds is native threading.
The JRuby implementation is quickly evolving as JRuby developers work
to provide the best performance and memory utilization, as well make
JRuby a great Java Virtual Machine (JVM) language.
The best place to begin learning about JRuby is at http://wiki.jruby.
org. Here are three good places to start:

http://wiki.jruby.org/wiki/Getting_Started

http://wiki.jruby.org/wiki/Java_Integration

http://wiki.jruby.org/wiki/Calling_Java_from_JRuby

Note The JRuby web site is in the process of moving to http://
jruby.kenai.com.

Creating JRuby Projects
Creating a JRuby project is as simple as choosing a JRuby interpreter from
the Ruby Platform drop-down list when you create a Ruby or Ruby on
Rails application.
If you have an existing project that you want to switch to JRuby, do the
following:

128 NetBeans™ Ruby and Rails IDE with JRuby

1. Right-click the project’s node and choose Project Properties.
2. Select the Run category for Ruby projects, or select the Rails category for

Ruby on Rails projects.
3. Select a JRuby entry from the Ruby Platform drop-down list.

When you create a JRuby Rails project you have several database
configuration options. See the "Setting Database Configurations" section in
Chapter 5 for more information about these options. If you are switching an
existing project to use JRuby, you might want to consult that section to see
what your database.yml configuration options are.
If a Rails project’s database access is through a Java service layer,
remember to edit the config/environment.rb file to remove Active
Record from the frameworks configuration by uncommenting the following
statement and removing the symbols that you do not want to turn off:
 # config.frameworks -= [:active_record,
 :active_resource, :action_mailer]

In addition, if you are using a Rails 2.1 version, which is the case with the
bundled JRuby software, you must also comment out or remove the
following Active Record references in config/initializers/
new_rails_defaults.rb:
ActiveRecord::Base.include_root_in_json = true
ActiveRecord::Base.store_full_sti_class = true

If you have a Rails application that you intend to sometimes run using the
JRuby interpreter and sometimes the CRuby interpreter, you might want to
use code like the following in your environment.rb file:
if defined? JRUBY_VERSION
 #do jruby stuff
else
 #do cruby stuff
end

NetBeans™ Ruby and Rails IDE with JRuby 129

Here is an example of modifying the database.yml file to use the JDBC
MySQL adapter when running with JRuby:
<% jdbc = defined?(JRUBY_VERSION) ? 'jdbc' : '' %>
development:
 adapter: <%= jdbc %>mysql

One problem with switching back and forth is that you need to make the
same set of gems available for both platforms. You can put the gems that
are valid for both CRuby and JRuby (some gems that have native
extensions don’t work with JRuby) in a separate repository and use the
Platform Manager to add that repository to the Gem Path for both
platforms. If you use gems that have native extensions in your CRuby
application, you might not be able to run the application using JRuby.

Tip If you need to run JRuby from the IDE using a different
JDK than the IDE, use the -Djruby.java.home property to pass
the path to the JDK to the IDE, as shown in this example:
-J-Djruby.java.home=/Java/Versions/1.5/Home. See Chapter 10 to
learn how to pass properties to the IDE.

Adding Java Libraries to JRuby Projects
The standard Java classes are included with JRuby. To use third-party Java
libraries or Java technologies such as Java Enterprise Edition (Java EE) in
your JRuby projects, you must make them available to your application.
The easiest way to do that is to use the Project Properties dialog box, as
shown in the following steps, to add the JAR file to the classpath (see
Figure 8-1):
1. Right-click the project’s node and choose Project Properties from the pop-up

menu.
2. Select Java from the Categories list.

130 NetBeans™ Ruby and Rails IDE with JRuby

3. Click Add JAR/Folder.
4. Navigate to and select the JAR file.
5. Click Open.

Figure 8-1. Adding JAR Files to a JRuby Project

Using Java Classes and Methods in JRuby Projects
There are many resources for learning how to use Java classes and methods
in JRuby projects. At the beginning of this chapter we listed some places to
get started. To get you going quickly we will introduce some of the basics,
as of JRuby 1.1.4. Keep in mind that the Java integration with JRuby is
rapidly changing, so this code might be out of date by the time you read
this.
When you use Java in your Ruby class, the first thing you need to do is to
add the following statement, which loads the Java support:
require 'java'

NetBeans™ Ruby and Rails IDE with JRuby 131

Just as with Java code, you can import the Java classes that you will use. If
the class’s top-level package is com, org, java, or javax, the import
statement is just like a Java import statement.
import javax.swing.JFrame

For other Java classes you must put the fully-qualified class name in
quotes, as shown in the following example:
import "myorg.schedule.Event"

Alternatively, you can skip the import statement and just use the fully-
qualified class names in the format shown here:
myEvent = Java::myorg::schedule::Event.new()
label = Java::javax::swing::JLabel.new("Events")

If the top-level package is com, org, java, or javax, you can use this Java-
like format:
label = javax.swing.JLabel.new("Events")

To include a package you must use a module. You then reference a class in
the package by the module name, as shown in the following code example:
module JavaSwing
 include_package "javax.swing"
end
label = JavaSwing::JLabel.new()

Tip There are several package modules already available. For
example you can access javax.swing classes by the JavaxSwing module,
such as Java::JavaxSwing::JLabel.new("Events"). To see the
module name for a Java class, type class.ancestors in a JRuby IRB
console, for example Java::javax::accessibility::Accessible.ancestors.

132 NetBeans™ Ruby and Rails IDE with JRuby

JRuby enables you to use Ruby-like syntax when you reference a Java
class’s methods. For example you can call the JFrame.setVisible
method using setVisible, visible=, or set_visible. To test if the
frame is visible you can use visible, visible?, is_visible?, or
is_visible. To find out the variations of a class’s methods, open an IRB
console and use the class’s methods call to display the list of methods.
Here is an example:
>>Java::javax::swing::JLabel.methods
=> ["get_default_locale", "defaultLocale=",
 "setDefaultLocale", "defaultLocale",
 "getDefaultLocale", …

Setting JRuby Runtime Properties
For Ruby projects you can pass options to the JVM using the JVM
Arguments text box in the Project Properties dialog box (see Figure 8-2). In
addition, you can use this text box to pass JRuby runtime properties for
fine-tuning its performance or compatibility. To learn more about JVM
parameters and runtime properties, go to http://wiki.jruby.org/
wiki/Performance_Tuning. You can also see the list of runtime
properties by typing jruby –properties in a command window.

Note Currently the UI only allows you to specify JVM properties for
Ruby projects. This might change in a future release. In the meantime, if
you want to pass a JVM argument in a Rails project, open the
project-dir/nbproject/project.properties file and add a
jvm.args property, such as jvm.args=-Xmx=1024m.

NetBeans™ Ruby and Rails IDE with JRuby 133

To set the properties, complete these steps:
1. Right-click the project’s node and choose Project Properties from the pop-up

menu.
2. Select Run from the Categories list.
3. Type the property settings in the JVM Arguments text box. Omit the leading

-J. For example, for the property –J-Xmx512m, type –Xmx512m.

Figure 8-2. Setting JRuby JVM Properties

134 NetBeans™ Ruby and Rails IDE with JRuby

Using JRuby in Java Projects
Should you want to leverage JRuby technology in a Java application, you
have a few options for doing so:

JSR 223: Scripting for the Java Platform. JSR 223, which is included in
the Java SE 6 platform release, provides script engine mechanisms for using
scripting language programs in Java applications.
Bean Scripting Framework (BSF). The BSF, which is an Apache Jakarta
Project, provides scripting language support in Java applications. JRuby
offers Bean Scripting Framework (BSF) support in its lib/bsf.jar JAR
file.
Direct JRuby Embedding. You can embed JRuby directly using the JRuby
API. However, the JRuby wiki recommends that you use JSR 223 or BSF
instead.

To learn more about these technologies, see the Java Integration wiki page
at http://wiki.jruby.org/wiki/Java_Integration.
The following three code listings show an example of using the JSR 223
script engine mechanism to access JRuby. Listing 8-1 is a Ruby class that
sets the $current_date_string global variable. Listing 8-2 is a Java
class that evaluates the Ruby script and gets the value of
$current_date_string. The main class in Listing 8-3 displays the
results. This Java application requires two libraries: jruby.jar, which is
in JRuby’s lib folder, and jruby-engine.jar, which is available from
scripting.dev.java.net.

Listing 8-1. time.rb

t = Time.now
$current_date_string = t.strftime("%A, %c")

NetBeans™ Ruby and Rails IDE with JRuby 135

Listing 8-2. RubyCurrentDateString.java

package rubyfromjava;

import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.Reader;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class RubyCurrentDateString {

 private ScriptEngine engine;
 private InputStream iStream;

 public void init() {
 }

 public Object eval() {
 // ScriptEngineManager object can tell you what
 // script engines are available to the JRE
 // It can also provide ScriptEngine objects
 // that interpret scripts written in a specific
 // scripting language.
 ScriptEngineManager manager =
 new ScriptEngineManager();
 // Get the script engine object that interprets
 // Ruby scripts
 // (requires jruby.jar and jruby-engine.jar)
 engine =
 manager.getEngineByName("jruby");
 Object currentDateString =
 new Object();
 ClassLoader loader =
 getClass().getClassLoader();
 iStream =
 loader.getResourceAsStream("scripts/time.rb");

136 NetBeans™ Ruby and Rails IDE with JRuby

 try {
 Reader reader = new InputStreamReader(iStream);
 engine.eval(reader);
 currentDateString =
 engine.getContext().
 getAttribute("current_date_string");
 return currentDateString;
 } catch (ScriptException ex) {
 ex.printStackTrace();
 }
 return currentDateString;
 }
}

Listing 8-3. Main.java

package rubyfromjava;

public class Main {

 public static void main(String[] args) {
 RubyCurrentDateString rubyScript =
 new RubyCurrentDateString();
 Object currentDateString = rubyScript.eval();
 System.out.println(
 currentDateString.toString());
 }
}

Note This example is written for version 6 of the JDK software. If you
are using version 5, you need the JSR-223 API reference implementation
from http://www.jcp.org/en/jsr/detail?id=223.

NetBeans™ Ruby and Rails IDE with JRuby 137

Unfortunately, the NetBeans source editor does not provide the Ruby
editing features when you edit your Ruby code in a Java project, nor will
you be able to test or run the Ruby code. You might want to create a
separate Ruby project, from which you can open an IRB or Rails console,
and from which you can test out your code. Alternatively, you can create a
project for your Ruby code and provide symbolic links from the Java
project to the scripts, or the other way around.

Summary
Part of the IDE’s added value is that it comes bundled with the JRuby
interpreter. Although JRuby is not directly related to the NetBeans IDE,
this chapter introduced the basic JRuby concepts and how its unique
features are supported by the IDE.
For most Ruby and Rails projects, running on the JRuby interpreter will be
transparent to you. However, this chapter provides several
recommendations for optimizing your environment when switching from
Ruby to JRuby. Once your project is running on JRuby, you can easily add
Java libraries to your project and begin using the Java classes from those
libraries. JRuby even lets you call Java methods using the Ruby naming
conventions that you are more familiar with.

NetBeans™ Ruby and Rails IDE with JRuby 139

Chapter 9: Deploying Rails Applications
At some point you might want to deploy your Rails application to a Java
servlet container such as Tomcat or the GlassFish application server. For
example, perhaps your deployment environment doesn’t offer a Ruby
container. Or perhaps you need better scaling.
The Warbler gem packages a Rails application into a WAR file for
deployment to a Java servlet container. In this chapter we show how the
IDE provides integration with Warbler, and how to generate and deploy the
WAR file.
We just touch the surface on how to use Warbler. The best place to begin
learning about Warbler is at http://warbler.kenai.com.

Creating WAR Files with the Warbler Plugin
To use the Warbler gem most effectively from within NetBeans, you'll also
want to install the Warbler plugin into your project. By installing the
Warbler plugin, you will be able to use the IDE's Generator and Rake
dialog boxes to create a WAR file, as we will show here. Without the
Warbler plugin, you'll have to run the Warbler executable from the
command line.

Note You need the JDK to use Warbler.

Installing the Warbler Plugin
The easiest way to install the Warbler plugin is during project creation. On
the first page of the wizard is a check box labeled Add Rake Targets to
Support App Server Deployment. Select this box to add the Warbler plugin
(see Figure 9-1).

140 NetBeans™ Ruby and Rails IDE with JRuby

Figure 9-1. Add Rake Targets to Support App Server Deployment
Check Box

If you have not installed the Warbler gem for the project’s Ruby platform,
the IDE will force you through all the steps in the wizard. If you don’t need
to make changes in the intermediate steps, just click Next until you get to
the last one. On the last step, click the Install Warbler gem and click Finish.

NetBeans™ Ruby and Rails IDE with JRuby 141

Figure 9-2. Install Warbler Button

If your project already exists, follow these steps to add the Warbler plugin
to the project:
1. If you haven’t already, add the Warbler gem to the Ruby platform’s

repository.
2. In a terminal window, change to the project folder.
3. Type the appropriate command and press Enter. If the command fails, verify

that you have installed the Warbler gem into that Ruby or JRuby repository.

142 NetBeans™ Ruby and Rails IDE with JRuby

jruby –S warble pluginize

ruby –S warble pluginize

Tip The jruby executable may not be in your path environment
variable. You can easily copy its full path from the Interpreter field of the
Ruby Platforms dialog box.

When you use Warbler with your CRuby projects, keep in mind that the
packaged WAR file uses JRuby. Therefore, your application cannot use
gems or code that does not work with JRuby. We talked about some of the
issues and workarounds in “Creating JRuby Projects” in Chapter 8.
If you are using a database other than MySQL, make sure that the JRuby
platform has the necessary JDBC adapter gems installed, and that you are
using a JDBC adapter in the production configuration in database.yml.
See “Using Databases with JRuby” in Chapter 5 for more information.

Configuring Warbler
You will most likely need to edit the project’s Warbler configuration, such
as to list gems and libraries to include or to change the number of Rails
instances. To do this you first need to create the configuration file
(Configuration/warble.rb).
1. Right-click the project’s node and choose Generate.
2. Select Warble from the Generator drop-down list, and click OK.
3. You can find the warble.rb file under the Configuration node.

You can also create the configuration file from a terminal window. Change
to the project’s folder and type the following command:
jruby –S warble config

NetBeans™ Ruby and Rails IDE with JRuby 143

The file has lots of comments to show how to configure the WAR file. You
can learn more about configurations at http://warbler.kenai.com.
Don’t forget to add the JDBC adapter gem, if you are using it, as shown in
this example:
config.gems += ["activerecord-jdbcpostgresql-adapter"]

Creating the WAR File
Before you create the WAR file, check the database.yml file to make
sure the production configuration is correct.
To create the WAR file, simply right-click the project’s node and choose
Run/Debug Rake Task. Then locate and double-click the war task. The task
puts the WAR file in the project’s top folder. If you don’t see it from the
Projects window, look in the Files window.

Deploying to Application Servers
Once you have a WAR file you are ready to deploy to a Java servlet
container. Next we show how to deploy to the GlassFish application server
and Tomcat.

Deploying to the GlassFish Application Server
If you have been running your application from the IDE with the project’s
platform set to GlassFish V3 and that is where you want to deploy the
WAR file, you might need to first undeploy the application, as these steps
describe:
1. Go to the Servers window.
2. Expand Servers, GlassFish V3, and Applications.
3. Right-click the deployed application and choose Undeploy.

144 NetBeans™ Ruby and Rails IDE with JRuby

To deploy the WAR file from the IDE, follow these steps:
1. In the Services window, expand Servers.
2. If the server has not been started, right-click the node for the GlassFish server

and choose Start.
3. Right-click the GlassFish node again and choose View Admin Console.
4. You might get a page that says Your Application Server is now

running. When this happens, look for To manage the server from
localhost, click here. Click the "here" link. Select the appropriate
Internet connection and click OK. The browser installs and then opens the
Administration Console.

5. If a login page appears, type anonymous for the login name. Leave the
password blank.

6. In the Common Tasks window, select Applications Web Applications.
7. In the Web Applications window click Deploy (see Figure 9-3).

Figure 9-3. Web Applications Window in the Admin Server Console

8. Select the radio button for Local Packaged File or Directory That is
Accessible from the Application Server.

9. Click Browse Files and then browse to and select the WAR file.

NetBeans™ Ruby and Rails IDE with JRuby 145

10. Click OK.
11. If you want, you can click Launch to run the application. If the page is

cached, you might need to refresh the page to see the newly added entry.

If you want to deploy from the terminal window, you can use a command
like this:
asadmin deploy schedules.war

To redeploy, add –force=true, as shown here:
asadmin deploy –force=true schedules.war

Deploying to Tomcat
You can deploy to Tomcat using these steps:
1. To autodeploy the application, copy the WAR file to the webapps folder

under TOMCAT_HOME. If Tomcat is registered with the IDE, you can find the
value of TOMCAT_HOME by right-clicking the Apache Tomcat node in the
Servers window and choosing Properties. Look at the value in the Catalina
Base field.

2. In the browser, enter the URL http://localhost:8080/application-name. If
Tomcat is registered with the IDE you can also expand the Apache Tomcat
node in the Servers window, expand Web Applications, right-click the
application’s node, and choose Open in Browser. If you do not see the
application’s node, right-click the Apache Tomcat node and choose Restart.

Summary
The Warbler gem and its associated plugin make it possible to package and
deploy your Rails application to a Java servlet container. Once the Warbler
plugin is installed, NetBeans supports generating the Warbler configuration
file and running its Rake tasks to create the deployable WAR file. The
WAR file can be deployed to any Java servlet container, and we concluded
with examples on how to deploy to GlassFish and Tomcat.

146 NetBeans™ Ruby and Rails IDE with JRuby

Chapter 10: Customizing the IDE
Now that you are familiar with using the IDE for Ruby development, you
probably want to tweak the environment to fit the way you are used to
working. For example, you might want to change the shortcuts to match
your previous editor, or perhaps your company has coding standards that
you would like to work into the templates. As you will learn in this chapter,
the NetBeans IDE offers lots of options for configuring the IDE so that it
works best for you.

Working with Editor Options
The Editor panel in the Options dialog box allows you to modify several
editing options. To open the panel, select Tools Options (NetBeans
Preferences on the Mac) from the main toolbar. Then click Editor to
display the Editor panel. Alternatively, type editor in the Quick Search text
box and choose Editor Options from the Options category.

Note See the “Tweaking Under the Hood” section later in this chapter
for more editor options.

Tuning the Code Completion Pop-Up
The General tab in the Editor panel provides several code completion
options (see Figure 10-1):

Turning off the autocompletion pop-up. When you type a period (.) or a
double-colon (::), the IDE automatically opens the code completion pop-up.
To turn this off, clear the Auto Popup Completion Window check box. You
might also want to clear the Auto Popup Documentation check box. After you
turn off autocompletion, you can still display the code completion pop-up by

NetBeans™ Ruby and Rails IDE with JRuby 147

pressing Ctrl+Space (Cmd+Space on the Mac). To display documentation,
press Ctrl+Shift+Space (Cmd+Shift+Space on the Mac).
Turning off autocompletion of single choices. If there is only one possible
completion when you press Ctrl+Space, the IDE automatically completes the
code. For example, if you type “hello”.bytesi and press Ctrl+Space, the IDE
completes the code as "hello".bytesize. If you prefer that the IDE
display the pop-up instead, clear the Insert Single Proposals Automatically
check box.

Making code completion case sensitive. If you type Action_N and press
Ctrl+Space, the code completion pop-up suggests action_name. If you want
the pop-up to be case sensitive, select the Case Sensitive Code Completion
check box.
Turning off the automatic insertion of closing end, bracket, parenthesis,
brace, or quotation mark. If the automatic insertion of ending delimiters
interferes with your workflow, you can turn it of by clearing the Insert
Closing Brackets Automatically check box.
Displaying the documentation below or to the side of the pop-up. By
default, the documentation appears under the code completion pop-up. If you
prefer that it appear to the side of the pop-up, select the Display
Documentation Next to Completion check box.

Note The Show Deprecated Members in the Code Completion check
box and the Guess Filled Method Arguments check box do not apply to Ruby
or Rails projects.

148 NetBeans™ Ruby and Rails IDE with JRuby

Figure 10-1. Code Completion Options

Setting Formatting Options
To modify the tab, indentation, margin, and comment reformatting options,
click the Formatting tab on the Editor panel and then choose Ruby from the
Language drop-down list (see Figure 10-2). Alternatively, type formatting
in the Quick Search text box. These properties are pretty self-explanatory.
The Preview panel shows how your changes affect the code.

NetBeans™ Ruby and Rails IDE with JRuby 149

Figure 10-2. Formatting Options

Tip You can also customize the formatting settings for a specific
project. Right-click the project’s node and choose Properties from the pop-
up menu. In the Project Properties dialog box, select the Formatting
category.

150 NetBeans™ Ruby and Rails IDE with JRuby

Customizing Live Code Templates
In Chapter 6, you learned about live code templates, where you can type a
few characters and press Tab to expand the characters into a snippet of
code. If you want to alter or add templates, go to the Code Templates tab in
the Editor panel. Next, choose a language type from the Language drop-
down list. Figure 10-3 shows the live code templates for the Ruby
language.

Figure 10-3. Ruby Live Code Templates

NetBeans™ Ruby and Rails IDE with JRuby 151

Tip You can access the Code Templates tab by typing template in
the Quick Search text box.

To modify a template, select it from the Templates list and use the
Expanded Text tab to change the text. If you want to add a template, click
New, type an abbreviation, and click OK. Then provide the expanded text.
Table 10-1 lists the parameters you can use in the expanded text. You can
use the Description tab to write an explanation if you want.

Table 10-1. Expanded Text Parameters

PARAMETER EXPLANATION

${parameter-name
[default=”value”]
[editable=”false”]
}

Input parameter. You can optionally specify a
default value or disable the editing of the
parameter.

${cursor} Where to put the caret after expansion.

${selection} Where to paste the contents of the editor
selection.

${class} Name of the class that the template location
is in.

${classfqn} Fully-qualified name of the class that the
template location is in.

${superclass} Fully-qualified name of the superclass of the
class that the template location is in.

${method} Name of the method that the template
location is in.

152 NetBeans™ Ruby and Rails IDE with JRuby

Table 10-1. Expanded Text Parameters (continued)

PARAMETER EXPLANATION

${methodfqn} Fully-qualified name of the method that the
template location is in.

${file} Name of the current file.

${path} Name of the current full file path.

${var unusedlocal
defaults="i,j,k"}

Picks an unused local variable in the current
scope; it tries each default until it finds an
unused one. If all are used, it creates a
unique name.

To learn more about creating and editing live code templates, go to
http://wiki.netbeans.org/RubyCodeTemplates.

Tip The Expand Template On drop-down list offers different key
combinations for expanding the characters into a template. For example,
you can have the characters expand into the template when you press
Shift-Space, instead of when you press Tab.

Adjusting Hints
To customize which hints the editor displays, go to the Hints tab (see
Figure 10-4). To quickly open this tab, type hints in the Quick Search text
box. You can select or clear the check boxes to customize which hints the
editor displays. You can also specify which hints should display as
warnings, which should display as errors, and which should not be
displayed unless your caret is on the specific line.

NetBeans™ Ruby and Rails IDE with JRuby 153

Figure 10-4. Hint Tab

Creating Code Shortcuts
You can create shortcuts for common editing actions. You can use the
Macros tab in the Editor panel to create the shortcut. However, it is easier
to create a shortcut by recording your editing keystrokes, as shown in the
following steps:
1. To start recording, choose Edit Start Macro Recording from the main

menu.
2. In the editor, complete the steps that you want to record.

154 NetBeans™ Ruby and Rails IDE with JRuby

3. Choose Edit Stop Macro Recording.
4. Type a Macro Name and click OK. The macro appears in the Editor Macros

dialog box (see Figure 10-5).
5. Click Set Shortcut.
6. Type the shortcut. For example to set the shortcut to Alt+Shift+N, press the

Alt key and hold it down. Next press the Shift key, and then press the N key.
7. Click OK.

Tip You can use cut-and-paste actions to create a macro that wraps
selected text with characters, such as <%# and %>. Select some text and
start the macro recording. Press Ctrl+X, type the leading characters, press
Ctrl+V, and type the ending characters.

Figure 10-5. Editor Macros Dialog Box

NetBeans™ Ruby and Rails IDE with JRuby 155

After you create your macro you can use the Macros tab in the Editor panel
to edit the macro, remove it, or change its shortcut (see Figure 10-6). To
quickly access this tab, type macro in the Quick Search text box.

Figure 10-6. Editor Macros Tab

Changing Fonts and Colors
In Chapter 6 we talked about semantic styles. As you would expect, you
can change these styles if you are more familiar with a different editor. The
Fonts and Colors panel in the Options dialog box lets you specify the font,
foreground color, background color, and effect (underlined, wave
underlined, or strikethrough) for each category of a specific Language type,
such as Ruby or Embedded HTML (see Figure 10-7). You can quickly
access this tab by typing fonts in the Quick Search text box.

156 NetBeans™ Ruby and Rails IDE with JRuby

Figure 10-7. Fonts and Colors Panel

The IDE offers a few different profiles in addition to the standard NetBeans
profile, such as Norway Today and City Lights. You can try them out and
easily switch back to the standard profile if you don’t like them. Or you can
duplicate a profile and modify it as you wish. There is a problem with the
City Lights profile because the background is black and the foreground
color for class names, superclasses, and constants is black as well. You can
change the foreground or background color for all of these by selecting

NetBeans™ Ruby and Rails IDE with JRuby 157

Ruby from the Language drop-down list and editing the Constant category.
You also need to edit the Global Variable category.
You can get Ruby-specific themes, such as Aloha (see Figure 10-8) and
Ruby Dark Pastels, from the update center by following these steps:
1. Choose Tools Plugins.
2. Scroll to the Ruby category and select Extra Ruby Color Themes.
3. Click Install.
4. Complete the installer steps and restart the IDE.
5. Open the Options dialog box and click Fonts and Colors.
6. Select All Languages from the Language drop-down list or select a specific

Language type.
7. Choose the desired theme from the Profile drop-down list.

Note By the time you read this, these profiles might be part of the
product. There also might be other profiles in the plugin.

158 NetBeans™ Ruby and Rails IDE with JRuby

Figure 10-8. Aloha Theme in the Editor

Modifying Keyboard Shortcuts
If you are used to a different editor’s keyboard shortcuts, you might prefer
to change NetBeans' default shortcuts instead of learning a new set. The
IDE provides shortcut settings for Eclipse and Emacs. You can switch to
those profiles or create your own. You can also change individual keymap
settings. To edit the shortcuts, open the Options dialog box and click
Keymap (see Figure 10-9). To quickly access this tab, type shortcuts in the
Quick Search text box.

NetBeans™ Ruby and Rails IDE with JRuby 159

Figure 10-9. Editor Keymap Panel

Select Eclipse or Emacs from the Profile to switch to that set of shortcuts.
If you want to alter a profile’s settings, you should click Duplicate to create
your own set and modify those settings.
To create a new shortcut, select the action. Then click Add and press the
key sequence. For example, press Alt and hold it down, then press N for
the key combination Alt+N. If the key combination is already used for a
different action, the IDE displays a message.
After you change to a different profile or change individual shortcuts, you
can create a new shortcut cheat sheet. Because there is no menu action or
shortcut to perform this task, you must use the Quick Search feature. Type
export in the Quick Search text box and select Export Shortcuts to HTML.

160 NetBeans™ Ruby and Rails IDE with JRuby

The drop-down list might display (no results), but it still creates the
cheat sheet. You can find the cheat sheet under config in your NetBeans
user directory, for example home/.netbeans/6.5/config/shortcuts
.html. The cheat sheet uses the abbreviations shown in Table 10.2.

Table 10.2. Cheat Sheet Abbreviations

ABBREVIATION EXPLANATION

D Ctrl key (Cmd key on the Mac)

O Alt key (Ctrl key on the Mac)

S Shift key

Tip You can view the shortcut cheat sheet from the IDE by choosing
File Open File from the main menu. Right-click in the open file and choose
View to open the file in a browser. Alternatively, add home/.netbeans to
the Favorites window so you have quick access to the cheat sheet as well as
the other files in your NetBeans user folder.

Modifying File Templates
Whenever you use the New File editor, the IDE uses a file template to
build the file. If you have certain standards or conventions that you want
the templates to follow, you can use the Template Manager to alter the
template’s contents (see Figure 10-10).

NetBeans™ Ruby and Rails IDE with JRuby 161

Figure 10-10. Template Manager

Editing a Template
To edit a template choose Tools Templates from the main menu or type
template in the Quick Search text box and press Enter. In the Template
Manager, expand Ruby, select the template, and click Open in Editor.
Figure 10-11 shows the Ruby Class template in the editor.

162 NetBeans™ Ruby and Rails IDE with JRuby

Figure 10-11. Ruby Class Template

The IDE uses the FreeMarker template engine, which enables you to use a
combination of text, comments, and the FreeMarker Template Language
(FTL) tags to design your template. To learn about FTL markup, go to
http://freemarker.org/docs/index.html.

Using Template Properties
Table 10-3 shows the predefined properties you can use in a template.

NetBeans™ Ruby and Rails IDE with JRuby 163

Table 10-3. Predefined Template Properties

PROPERTY EXPLANATION

${date} Current date, in the format MMM DD, YYYY

${encoding} Default encoding, such as UTF-8

${name} Name of the file

${nameAndExt} Name of the file including its extension

${time} Current time, in the format H:MM:SS PM

${user} User name

When you view the Ruby file templates, you will notice some properties
that are specific to Ruby and Rails projects or specific to that file type, such
as ${indent}, ${modulename}, and ${extend}.
To create new properties or override the values of predefined properties,
follow these steps:
1. Expand the User Configuration Properties node in the Templates list and

select User.properties.
2. Click Open in Editor.
3. Use the following key/value syntax to set a property value: property=value.

Listing 10-1 shows an example of adding and overriding properties.

 Listing 10-1. Contents of User.properties

Overrides current value
user=Alice Timmons
new properties
userEmail=alice@land.com
copyright=2008 Wonderful Ruby Industries, Inc.

If you add the code in Listing 10-2 to the Ruby Class template, new Ruby
Class files will be created with the comments shown in Listing 10-3.

164 NetBeans™ Ruby and Rails IDE with JRuby

Listing 10-2. Comments Added to the Ruby Class Template

TODO Put class definition here
#
Author:: ${user} (mailto:${userEmail})
Copyright:: (c) ${copyright}

Listing 10-3. Output in the New Ruby Class

To change this template, choose Tools | Templates
and open the template in the editor.

TODO Put class definition here
#
Author:: Alice Timmons (mailto:alice@land.com)
Copyright:: (c) 2008 Wonderful Industries, Inc.
class MyClass
 def initialize

 end
end

Adding Licenses to a Template
There are two ways to include a license in a new file: you can modify the
default license or you can add your own licenses and specify which license
to use for each file type.

Modifying the Default License

When a license is not specified the IDE uses the default license. You can
change the wording in this license as follows:

1. Expand Licenses, select Default License, and click Open in Editor.
2. Modify the file to include your license text. All new files will include this

license.

NetBeans™ Ruby and Rails IDE with JRuby 165

Adding Your Own Licenses

You can create license templates and then add user properties to reference
the license templates, as shown here:
1. Expand Licenses, select Default License, and click Duplicate.
2. Click Rename and name the file license-license-name.text. For

example, name it license-ruby.txt.
3. Change the argument in the template’s license include statement to reference

a user property instead of a project property, as shown in the following line:
<#include "../Licenses/${rubyLicense}.txt">

4. Next, add a license property to the User.properties template, as shown in the
following example:

rubyLicense=ruby

Note In a future release, you might be able to set the license on a
project-by-project basis by adding project.license=license-name to a
project’s nbproject/project.properties file.

Setting Task List Patterns
In Chapter 6 we showed how to use the task list feature to quickly view
notes to yourself about changes or fixes you need to make. The IDE lists all
the comments that contain the text TODO, @todo, FIXME, XXX, PENDING, or
<<<<<<<. If you would like to add more patterns, open the Tasks tab in the
Miscellaneous pane in the Options dialog box (see Figure 10-12). You can
change and remove existing patterns in addition to adding new ones. You
can also clear the Show ToDos From Comments Only check box if you
want to search for patterns in the code too.

166 NetBeans™ Ruby and Rails IDE with JRuby

Tip To quickly open the Tasks tab, type TODO in the Quick Search
text box.

Figure 10-12. Tasks Tab

Working with Nodes, Files, and Folders
Here are some options for configuring how the IDE interacts with file
system objects.

NetBeans™ Ruby and Rails IDE with JRuby 167

Displaying the Physical File Structure in the Projects
Window
If you have been working with Ruby and Rails projects for a while and are
accustomed to the Rails directory structure, you might prefer that the
Projects window show the physical file structure instead of the logical one.
You can easily switch to the physical view by opening the Options
window, clicking Miscellaneous, and then clicking the Ruby tab. Clear the
Show Logical Project View check box and restart the IDE. Figure 10-13
shows the Projects window after the check box is cleared. Just as before,
you can right-click on a node to get pop-up menus with development-
specific actions. The pop-up menus in the Files window still offer the file
system actions.

Figure 10-13. Physical Structure in the Projects Window

168 NetBeans™ Ruby and Rails IDE with JRuby

Adding Ruby Script File Extensions
Follow these steps to enable the editor to recognize other file extensions,
such as .red or .sty, as ruby script files:
1. Open the Files tab in the Miscellaneous pane in the Options dialog box.
2. Click New.
3. Type the extension, such as red, and click OK.
4. Select Ruby Files (text/x-ruby) from the Associated File Type (MIME)

drop-down list.
5. Click OK.

Changing the Location of the Ruby Source Files Folder
By default, the IDE puts the source files under the lib folder. When you
create a project from existing sources you can specify the source folder’s
location. If you want to change the location of source files for a project you
start from scratch, follow these steps:
1. Right-click the project’s node and choose Properties.
2. Delete the entry for the lib folder or change its label. To change the label,

click in the Label column and type a new name.
3. Click Add Folder and navigate to the desired folder (you can click the New

Folder icon in the Add Source Folder dialog box to create the folder if it
doesn’t exist).

4. Click Open.
5. Change the entry’s label to Source Files.
6. From now on, when you add a Ruby class, it will go in the new folder by

default. When you run the project, it looks for the main file in the new folder.

NetBeans™ Ruby and Rails IDE with JRuby 169

Editing Hidden Files in the IDE
By default, the IDE does not display hidden files (files with names that
begin with a period) in either the Projects or Files window. To display
these files, open the Options dialog box, click Miscellaneous, and click the
Files tab. Cut the string from the Ignored Files Pattern text box and click
OK. The hidden files now appear. You can replace the string or click
Default to restore to the NetBeans default.

Tip You can also access a hidden file by choosing File Open File
from the main menu, then navigating to the file, selecting it, and choosing
Open.

Tweaking Under the Hood
Some IDE options, such as the IDE’s font size, need to be set at start-up
time. In addition, the engineers often add options for enabling experimental
features. These features usually get incorporated in a later release, but are
not currently available from the user interface. (Some of these experimental
features might already be introduced by the time you read this.)
In this section we talk about the options you might want to use in your
Ruby and Rails development. To enable the features you must pass the
option to the IDE upon startup. There are two ways to do this:
1. Set the option in the configuration file, which can be found at

netbeans-install-dir/etc/netbeans.conf. Add the option to the
space-separated list for the netbeans_default_options switch. You can
also create an etc folder in your NetBeans user directory and put a personal
copy of netbeans.conf in that folder. This is a good way to keep your
configurations when you upgrade the IDE. Your personal configurations
override the global configurations.

170 NetBeans™ Ruby and Rails IDE with JRuby

2. Pass the option to the IDE at the command line. For example when you start
the IDE with the following command, the comment continuation option is
passed to the IDE.

netbeans –J-Druby.cont.comment=true

IDE Options
The following options enable you to configure the IDE look and feel or
behavior in ways that you might find useful.

Change the JDK That the IDE Runs On

If you upgrade the JDK after you install the IDE, you can make the IDE
use the new JDK by passing the following option in the startup command:
--jdkhome path-to-jdk

Alternatively, edit (or add) the following line in the netbeans.conf file:
netbeans_jdkhome="path-to-jdk"

Suppressing Browser Window Startup

Every time you click the Run or Debug button, the IDE opens up a browser
window and navigates to the root page. Next thing you know you have a
bunch of browser windows cluttering your desktop. You might find it
advantageous to use the following option to turn off browser startup. Then,
when you start your work session, open up a browser and type in the URL
for the application. Just keep this browser window open and type in the
URLs as needed. Clicking the Run or Debug button starts a new session;
however, you won’t get a new browser window.
-J-Drails.nobrowser=true

NetBeans™ Ruby and Rails IDE with JRuby 171

Opening a File in NetBeans from the Command Line

The --open option enables you to start up the IDE with the specified file
opened in the editor. You can also use this option from the command line
to open a file in a running IDE (assuming netbeans is in your path).
netbeans –open MyRubyClass.rb

Setting Window, Menu, and Tooltip Font Sizes

Use the --fontsize value option to change the size of the fonts that are
used in the windows and menus. When demonstrating the software on a
projection screen, we like to use --fontsize 18. At that size the
characters have a nice thickness.

Changing the Look and Feel

You can easily switch to the Metal look and feel by using the following
option:
--laf javax.swing.plaf.metal.MetalLookAndFeel

If you have installed the JDK update 10 software and netbeans_jdkhome
points to this installation, you can use the new Nimbus look and feel with
this option:
--laf Nimbus

For more look-and-feel options, go to http://wiki.netbeans.org/
FaqCustomLaf.

Turning on Detailed Ruby Logging

Use the following options to generate more detailed Ruby logging. When
you use these options, the IDE writes all the Ruby and Rails commands
that it sends to the command line to the IDE’s log. If you are having
problems, you can try out the same commands in a terminal window to get

172 NetBeans™ Ruby and Rails IDE with JRuby

further feedback. To see the log file’s contents, choose View IDE Log
from the main menu.
-J-Dorg.netbeans.modules.ruby.level=400
-J-Dorg.netbeans.api.ruby.platform.level=400

Note The parameter values might change in a patch or future release.
You should consult http://wiki.netbeans.org/FaqRubyNBLogging to
verify which values to use.

If you are diagnosing debugger problems, use the following options to
generate detailed Ruby debugger logging:
-J-Dorg.rubyforge.debugcommons.level=300
-J-Dorg.rubyforge.debugcommons.verbose=true

For more information see http://wiki.netbeans.org/
RubyDebugging#section-RubyDebugging-HowToFileABug.

Editor Options
The Ruby engineers have created the following options to give you access
to some experimental features. You can get details about these options and
more at http://wiki.netbeans.org/RubyOptions.

Defining Word Boundaries

Many of the editor shortcuts, such as Ctrl+Delete (Cmd+Delete on the
Mac), work within word boundaries. By default, the editor considers an
embedded capital letter as a word boundary. For example, if the cursor is in
front of ActiveRecord, pressing Ctrl+Delete deletes Active but not
Record. The same is true for underscores. If the cursor is in front of
const_missing, Ctrl+Delete removes const and leaves _missing. If you
prefer that the IDE not use embedded capitals and underscores as word
boundaries, use the following option to turn this off:

NetBeans™ Ruby and Rails IDE with JRuby 173

-J-Dno-ruby-camel-case-style-navigation=true

Automatically Wrapping Comments

If you would like the IDE to automatically wrap your comments as you
type, and place the comment character at the beginning of each new line it
adds, use the following option:
-J-Druby.autowrap.comments=true

Automatically Continuing Comment Lines

When you press Enter at the end of a comment line, the IDE adds a blank
line. If you prefer that it add a line that begins with a comment character,
use the following option:
-J-Druby.cont.comment=true

Excluding Parentheses in Code Completion

Because parentheses are optional, code completion looks at a method’s
documentation to determine if it should surround the arguments with
parentheses when it writes out the method call. If you prefer code
completion to never use parentheses, use the following option:
-J-Druby.complete.spaces=true

Troubleshooting the IDE
If you are unable to start the IDE or you are having serious problems with
the IDE, the cause might be errors in your settings. If you have such
problems, we recommend that the first step you take is to start with a fresh
user directory. You have three ways to do this:

Rename your current NetBeans user directory.
Edit the netbeans_default_userdir property in the
netbeans-install-dir/etc/netbeans.conf file to point to a

174 NetBeans™ Ruby and Rails IDE with JRuby

different folder. For example you might change it to
netbeans_default_userdir="${HOME}/.netbeans/test".

Start the IDE using the --userdir property, as shown here:
netbeans --userdir /tempuserdir

Restart the IDE and see if it corrects the problem.
If restoring the user settings to the initial default values does not fix the
problem, look at the IDE's log file by choosing View IDE Log File from
the main menu. If you are not able to run the IDE, the log file is located in
netbeans-user-dir/var/log. You might want to turn on detailed Ruby
logging, which we talked about earlier in this chapter, to get more details in
the log file.
There are several places to go for assistance. For general IDE issues you
can go to http://forums.netbeans.org. There you will find the
NetBeans Users forum, which is for general questions about the IDE, and
the Ruby Users forum, which is for the Ruby-specific features. Another
place that you might find helpful is http://wiki.netbeans.org/
RubyFAQ. You can also peruse the NetBeans Issues archive or file a bug,
feature request, or enhancement request by going to http://netbeans.
org/community/issues.html.
When asking questions in the forums, it is a good idea to note which
version of the IDE you are using, which interpreter (JRuby or Ruby) and
which version, and what operating system you are on.

Summary
As you gain experience with the NetBeans IDE, you come to learn that it
appears to be endlessly customizable. The NetBeans editor allows you to
customize code folding, code completion, formatting, templates, hints,
fonts, colors, and task list patterns, as well as record your favorite actions
as macros. The existing keyboard shortcuts are all configurable, and you
can easily define new ones to match your favorite actions.

NetBeans™ Ruby and Rails IDE with JRuby 175

The templates that define each new file are also easily accessible and
configurable, including the license that appears in your code.
In addition, it is possible to change how project files are displayed, which
project files are displayed, and their default locations. Finally, this chapter
concludes with a sampling of some of the "under the hood" options you can
use to really fine tune and understand how the NetBeans IDE is working
for you.

