

Ruby in Practice

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Ruby in Practice

JEREMY McANALLY
ASSAF ARKIN

with YEHUDA KATZ, DAVID BLACK,
GREGORY BROWN, PETER COOPER,

and LUKE MELIA

M A N N I N G
Greenwich
(74° w. long.)

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor: Nermina Miller
Manning Publications Co. Copyeditor: Andy Carroll
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 9781933988474
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

www.manning.com

 For my wife, family, and God.
Thanks for not abandoning and/or smiting me,

depending on the case.
 —J.M.

 To my wife, Zoe.
 You’re the bestest!

 —A.A.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

brief contents
PART 1 RUBY TECHNIQUES.. 1

1 ■ Ruby under the microscope 3

2 ■ Testing Ruby 25

3 ■ Scripting with Ruby 54

PART 2 INTEGRATION AND COMMUNICATION 75

4 ■ Ruby on Rails techniques 77

5 ■ Web services 90

6 ■ Automating communication 126

7 ■ Asynchronous messaging 140

8 ■ Deployment 160

PART 3 DATA AND DOCUMENT TECHNIQUES 181

9 ■ Database facilities and techniques 183

10 ■ Structured documents 208

11 ■ Identity and authentication 233

12 ■ Searching and indexing 253
vii

13 ■ Document processing and reporting 278

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

contents
preface xv
acknowledgments xvii
about this book xix

PART 1 RUBY TECHNIQUES ... 1

1 Ruby under the microscope 3
1.1 Why Ruby now? 4

Optimizing developer cycles 4 ■ Language features 6

1.2 Ruby by example 6
1.3 Facets of Ruby 10

Duck typing 12 ■ Simplicity 14 ■ DRY efficiency 14 ■ Functional
programming 15

1.4 Metaprogramming 16
Getting started with metaprogramming 17 ■ Domain-specific
languages 21 ■ Refining your metaprogramming 22

1.5 Summary 24
ix

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

CONTENTSx

2 Testing Ruby 25
2.1 Testing principles 26

Why bother with testing? 26 ■ Types of testing 27 ■ Testing
workflow 28

2.2 Test-driven development with Ruby 29

2.3 Behavior-driven development with RSpec 34

What is behavior-driven development? 35 ■ Testing with RSpec 36

2.4 A testing environment 41

Setting up a baseline with fixture data 41 ■ Faking components with
stubs 44 ■ Setting behavior expectations with mock objects 46

2.5 Testing your tests 49

Testing code coverage 49 ■ Testing quality with Heckle 51

2.6 Summary 53

3 Scripting with Ruby 54
3.1 Scripting with Ruby 55

3.2 Automating with OLE and OSA 59

Automating Outlook with Ruby 59 ■ Automating iCal with Ruby 61

3.3 Using Rake 64

Using tasks 65 ■ File tasks 69

3.4 Summary 73

PART 2 INTEGRATION AND COMMUNICATION 75

4 Ruby on Rails techniques 77
4.1 Extending Rails 77

Using helpers to expose Ruby libraries 78 ■ Metaprogramming
away duplication 82 ■ Turning your code into reusable
components 84

4.2 Rails performance 86

Benchmarking a Rails application 86 ■ Profiling a Rails
application 88

4.3 Summary 89
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

CONTENTS xi

5 Web services 90
5.1 Using HTTP 91

HTTP GET 91 ■ HTTP POST 93 ■ Serving HTTP requests 97

5.2 REST with Rails 101
RESTful resources 101 ■ Serving XML, JSON, and Atom 109
Using ActiveResource 114

5.3 SOAP services 117
Implementing the service 117 ■ Invoking the service 123

5.4 Summary 125

6 Automating communication 126
6.1 Automating email 127

Automating sending email 127 ■ Receiving email 130 ■ Processing
email 132

6.2 Automating instant communication 134
Sending messages with AIM 134 ■ Automating Jabber 136

6.3 Summary 139

7 Asynchronous messaging 140
7.1 Open source messaging servers 140

Using ActiveMQ 141 ■ Using reliable-msg 145

7.2 WebSphere MQ 149
Queuing messages 149 ■ Processing messages 155

7.3 Summary 159

8 Deployment 160
8.1 Creating deployable packages with RubyGems 161

Using RubyGems in your organization 161 ■ Setting up a
RubyGems repository 164

8.2 Deploying web applications 167
Simplifying deployment with Capistrano 167 ■ Tailing remote logs
with Capistrano 170 ■ Deploying with Vlad the Deployer 171

8.3 Monitoring with God.rb 173
A typical God setup 173 ■ Notifications 176

8.4 Summary 178
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

CONTENTSxii

PART 3 DATA AND DOCUMENT TECHNIQUES 181

9 Database facilities and techniques 183
9.1 Using plain-text files for data persistence 184
9.2 Using the (g)dbm API 189
9.3 The MySQL driver 197
9.4 Using DBI 204
9.5 Summary 207

10 Structured documents 208
10.1 XML in practice 209

Using XML to read configuration files 209 ■ Writing configuration
data to disk 212

10.2 Parsing HTML and XHTML with Hpricot 214
Post-processing HTML output 215 ■ Reading broken HTML 216

10.3 Writing configuration data: revisited 220
10.4 Reading RSS feeds 221
10.5 Creating your own feed 225
10.6 Using YAML for data storage 230
10.7 Summary 231

11 Identity and authentication 233
11.1 Securely storing a password 234

Authenticating against LDAP 237

11.2 Authenticating against Active Directory 238
11.3 Adding authentication to your Rails application 240
11.4 Semi-private, personalized feeds 243
11.5 HTTP Basic Authentication 246
11.6 Integrating OpenID into your application 247
11.7 Summary 252

12 Searching and indexing 253
12.1 The principles of searching 254
12.2 Standalone and high-performance searching 254

Standalone indexing and search with Ferret 255 ■ Integrating with
the Solr search engine 259 ■ Ultrafast indexing and searching with
FTSearch 263 ■ Indexing and searching Rails data with Ferret and

Solr 267 ■ Searching in Rails with Ultrasphinx 270

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

CONTENTS xiii

12.3 Integrating search with other technologies 273
Web search using a basic API (Yahoo!) 273 ■ Web search using a
scraping technique (Google) 275

12.4 Summary 277

13 Document processing and reporting 278
13.1 Processing CSV data 279
13.2 Generating and emailing daily reports 283
13.3 Comparing text reports to well-formed data 289
13.4 Creating customized documents for printing 295
13.5 Reporting against large datasets 301
13.6 Summary 306

appendix A Installing Ruby 307
appendix B JRuby 312
appendix C Deploying web apps 316

index 325

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

preface
Between us, we speak a lot about Ruby at conferences and to user groups, and it’s inev-
itable that at some point, whether after a talk (if we’ve given one) or when we’re just
hacking on something, someone will approach with a problem along the lines of, “I
know Ruby, but I really don’t know how to work with XML very well.” “I know Ruby,
but I can’t really figure out how to get it to talk to our web service.” “I know Ruby, but
I’m having a problem getting it to integrate with our single-sign-on system.” We wel-
come these questions and answer them gladly, because at least we know people are try-
ing to use Ruby in the real world. But these questions also expose an information
trend that this book aims to curb.

 Many Rubyists have been worried for a while that because Ruby found a niche on
the web with Ruby on Rails, this would become its only niche. Don’t let us mince words
here: Rails is a fantastic framework, but it certainly doesn’t represent everything that
Ruby can do. When we were given the chance to write this book, we were very excited
about the opportunity to share our experience working with Ruby in environments
outside (or at least on the edge of) the web. It’s a wide area to cover, but it’s one that a
lot of people are working in and making progress in; at the same time, only limited
information about it is generally available.

 We’ve been using Ruby for a while now. It’s been a long, wild road that we’ve
driven down! Sometimes we’ve skidded off the side, sometimes we’ve dangerously
strayed into other lanes, but we’ve driven forward—occasionally blazing new paths
and at other times following the tracks of those before us. We’ve used Ruby in a lot of
exotic places, and we couldn’t have done it without the help of a lot of people.
xv

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

PREFACExvi

 Now it’s our turn to pay it forward and to share what we have learned. This book
has gone through many incarnations, authors, Rails versions, and revisions, but finally
you hold in your hands the culmination of approximately 20 years of combined Ruby
experience, 2 years of writing and revising (we Rubyists tend to be busy, slow people),
and innumerable conversations. Enjoy.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

acknowledgments
We would like to offer our deepest thanks to Manning Publications and their team:
Michael Stephens, Nermina Miller, Megan Yockey, our copy editors, proofreaders, pro-
duction team, and everyone else who had a hand in making this project happen. We
know it’s been a long road, and we deeply appreciate your bearing with us.

 We’d also like to thank our contributors who collaborated with us on six chapters:
Yehuda Katz, chapters 8 and 10; David Black, chapter 9; Gregory Brown, chapter 13;
Peter Cooper, chapter 12; and Luke Melia, chapter 11. Their contributions have
been invaluable.

 The reviewers who took time out of their busy schedules to read the manuscript in
its many iterations deserve special recognition. They are Pete McBreen, David Black,
Greg Donald, Mike Stok, Phillip Hallstrom, Jason Rogers, Bill Fly, Doug Warren, Jeff
Cunningham, Pete Pavlovich, Deepak Vohra, Patrick Dennis, Christopher Haupt,
Robert McGovern, Scott Shaw, Mark Ryall, Sheldon Kotyk, Max Bolingbroke, Marco
Ughetti, Tom Werner, Rick Evans, Chukwuemeka Nwankwo, and Bob Hutchinson.

 We would thank our technical editor, Yossef Mendelssohn, except that he’s proba-
bly too busy putting the hurt on some code or something. Also, for keeping us in
check, Nick Sieger and Hamish Sanderson.

 Jeremy would like to thank his wife (for not killing him, even though sometimes
he’s sure she wanted to during this whole process), his family (for not forgetting who
he was, even though he rarely had time to visit), his coworkers (for not making fun of
him for taking two years to write a book), and God (for the whole giving-him-life
thing). He would also like to give a shout-out to his dogs, since they can’t read.
xvii

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

ACKNOWLEDGMENTSxviii

 Assaf would like to thank his wife for putting up with “Weekend plans? What
weekend plans? I have some chapters to edit!” as well as his friends and coworkers for
asking politely about the book but understanding that these things take time. Ruby,
for bringing the fun back to programming. And the many people who wrote the
libraries, tools, and blog posts that helped Ruby come this far. Without you, this book
would not be possible.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

about this book
Welcome to Ruby in Practice! This book is geared toward software developers who know
Ruby or who are starting with Ruby and want to put their skills to use solving real soft-
ware-development problems. We’ll walk you through a series of common software sce-
narios, such as authenticating against LDAP or parsing XML, and show you how to
approach and easily solve them using Ruby.

 These solutions (and the chapters themselves) are discrete units that can be read
in any order. If you’re not interested in the web-related chapters, feel free to skip
them. If you really want to learn all about reporting, skipping past the other chapters
shouldn’t affect your ability to understand that one. While we do suggest that you read
them in order (because some chapters will make at least a little more sense after read-
ing others), you don’t have to. And, fear not: if a concept is discussed elsewhere in the
book, it is noted so that you can find it easily enough.

Who should read this book

Ruby is gaining steam both on and off the web. This book is geared toward developers
who want to explore using Ruby in environments that aren’t necessarily “database-
backed web applications.” Experience in Ruby is assumed (and is fairly essential to get
the maximum value from most of the discussions), but you don’t need to be an expert
to get started with this book. Even beginners will find their place, learning from exam-
ples that range from practical solutions to development challenges.
xix

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

ABOUT THIS BOOKxx

What this book doesn’t include

This book isn’t an introduction to the Ruby language. While it does discuss a number
of language techniques, these discussions assume a working knowledge of Ruby.
There is very little hand-holding when it comes to understanding the fundamentals of
the code examples, so you would do well to either learn Ruby or at the least pick up a
book to refer to when you come to something you don’t understand.

 This book also does not contain much introductory information on Rails. It is dis-
cussed in a few chapters (specifically in chapter 4), it’s used as an example for various
techniques, and it’s often referred to in relation to web applications with Ruby, but this
book will not teach you Ruby on Rails. Of course, it’s not essential to know Rails to enjoy
this book; you can read the whole book blissfully unaware of what alias_method_chain
is. But if you are interested in learning it, we recommend you get one of the many books
on the topic, since they cover it better than we could in the small space we devote to it.

How this book is organized

Ruby in Practice is composed of 13 chapters divided into 3 parts.

■ Part 1—Ruby techniques
■ Part 2—Integration and communication with Ruby
■ Part 3—Ruby data and document techniques: Working with some form of data

is the fundamental task of any application.

Part 1 (chapters 1-3) discusses techniques that will be useful when you start applying
what you learn in the rest of the book. Techniques include metaprogramming and
DSLs, testing and BDD, scripting and automating tasks.

 Chapters 4-8 (part 2 of Ruby in Practice) are arranged in a problem/solution/
discussion format, covering topics related to systems integration and communications.
We discuss web services, messaging systems, e-mail and IM, and so on, and we show you
how to put these technologies to use in your Ruby applications.

 Part 3 (chapters 9-13) follows the same format, but focuses on data, presentation,
and security. We discuss databases, parsing and generating XML, reporting, authenti-
cation, and so on. These chapters will equip you to work in a data-driven environment
using Ruby as your primary tool.

 The appendices cover topics related to the book, but they’re not specific to any
particular chapter. Appendix A is a quick treatise on getting a good Ruby environ-
ment set up on your system. Appendix B covers JRuby: how to install it, how to use Java
with Ruby, and how to deploy Rails applications as WAR files. Appendix C discusses
deploying Ruby web applications.

Code conventions

All source code in the book is in a monospace font, which sets it off from the surround-
ing text. For most listings, the code is annotated to point out key concepts, and num-
bered bullets are sometimes used in the text to provide additional information about
the code. Sometimes very long lines will include line-continuation markers.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

ABOUT THIS BOOK xxi

 In the text, names of Ruby methods, classes, modules, and constants are also in a
monospace font. Names of programs, such as ruby and java, are monospace when refer-
ring to the program executable or command-line usage; otherwise, they appear in reg-
ular type. Book and article titles, and technical terms on first mention, appear in italics.

Code downloads

The complete source code for the examples in this book is available for download
from the publisher’s web site at http://www.manning.com/RubyinPractice. This
includes any code used in the book, with accompanying tests or spec files. A more fre-
quently updated and forkable version of the code (meaning that you can clone your
own version and make changes to be pushed back to our mainline version) is available
at http://www.github.com/assaf/ruby-in-practice/.

Author online

The purchase of Ruby in Practice includes free access to a private forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and other users. You can access and subscribe
to the forum at http://www.manning.com/RubyinPractice. This page provides infor-
mation on how to get on the forum once you’re registered, what kind of help is avail-
able, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contributions to the book’s forum remain voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration

The illustration on the cover of Ruby in Practice is taken from a collection of costumes
of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond
Street, London. The title page is missing from the collection and we have been unable
to track it down to date. Each illustration bears the names of two artists who worked
on it, both of whom would no doubt be surprised to find their art gracing the front
cover of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://www.manning.com/RubyinPractice
http://www.github.com/assaf/ruby-in-practice/
http://www.manning.com/RubyinPractice

ABOUT THIS BOOKxxii

the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Part 1

Ruby techniques

In these first three chapters, we’ll look at techniques and tools we’ll be using
throughout the remainder of the book and that you’ll be using throughout your
Ruby career.

 We’ll cover advanced and essential language constructs, strategies (like test-
and behavior-driven development), and Ruby tools to put these strategies to use
in your applications. We’ll round out this part with a thorough introduction to
Rake, a useful Ruby tool for transforming database schemas, bootstrapping
applications, running tests, and automating nearly any other task.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Ruby under
 the microscope
Often people, especially computer engineers, focus on the machines. They
think, “By doing this, the machine will run faster. By doing this, the machine
will run more effectively. By doing this, the machine will something something
something.” They are focusing on machines. But in fact we need to focus on
humans, on how humans care about doing programming or operating the
application of the machines. We are the masters. They are the slaves.

 —Yukihiro Matsumoto, creator of Ruby

You’ve heard it all before, right? A new language or framework becomes the flavor
du jour, and everyone starts talking about it. First there’s a low rumble on websites,
then someone gets ahold of it and does something cool, and out comes the marketing

This chapter covers
■ Minimizing developer cycles
■ Loading a lot of features in a little code
3

speak. I’m sure you can imagine Dave from marketing barking at you about another

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

4 CHAPTER 1 Ruby under the microscope

amazing technology: “You’ll be more productive! Our synergistic approach to dynamic,
domain-driven development will allow you to get to market quicker and get a better
return on investment! Get a lower TCO and higher ROI over J2EE with our XP-driven
Scrum model based on XML! Take apart your FOB and overhaul your BOB with our easy-
to-use turnkey solution!” To some in the world of software development, it sounds like
Ruby is all hype and buzz, but this book will show you that you can develop “real” soft-
ware with Ruby.

 Maybe you have heard the accolades and decided to read this book to find out if
Ruby is right for you. Maybe you know Ruby already, and you chose this book to pick
up practical techniques you can take back to the workplace. Whatever your reason for
picking up our book, we’re glad you did and we hope that we can help you learn more
about using Ruby in the real world. But before we get down to the nuts and bolts, let’s
take a step back and gain some perspective.

1.1 Why Ruby now?
Here’s a fact that surprises many people: Ruby came to the world the same year as
Java—1995. Like many other open source technologies (such as Linux and MySQL) it
took its time to mature and get noticed. So what happened in those 10 years that
turned Ruby from a little-known language into a hot ticket item without the help of a
big-vendor marketing machine? The adoption of Ruby on Rails, Ruby’s premier web
development framework, is the obvious answer, and it has without a doubt skyrocketed
Ruby’s popularity. It brought on hordes of developers who use Ruby exclusively with
Rails, and even more developers who came for Rails, but stayed for Ruby.

 Although Rails played a major role in getting Ruby into the mainstream, it still
doesn’t explain why it happened only recently, and not earlier. One thing that can
help explain Ruby’s meteoric rise is the recent rise in software complexity.

 If you work for a big company, chances are you have to deal with complex prob-
lems. Sales across different channels, multiple products and markets, suppliers and
distributors, employees and contractors, accounting and SOX compliance, market
dynamics and regulations, and on and on. It’s unavoidable: the problems of running
any sizable business are complex. What about the solutions? You’re probably thinking
that there are no simple solutions to complex problems, and complexity is the nature
of any real business. But do solutions have to be unnecessarily complex?

 Given the complexity that naturally arises from these business problems, you don’t
want the technology you use to solve them to be unnecessarily complex. The more
technology you throw at the problem—web servers and databases, online and batch
processing, messaging protocols and data formats—the more complexity you add.
The only way to alleviate this complexity conundrum is to look for simpler solutions to
existing problems, efficiently using the developer cycles you have available.

1.1.1 Optimizing developer cycles

There has been a growing realization that software companies are targeting these busi-
ness problems (one might call it the “enterprise” space) by offering overly complex

solutions. We can’t blame them. Complex solutions sell better. It’s easier to obfuscate

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

5Why Ruby now?

the solution and abstract the problem or to design a solution that solves every conceiv-
able problem (even problems that the client doesn’t have yet!) than to design a solid,
simple solution that fits the problem domain. But as more developers realize that these
“silver bullet” solutions create more problems than they solve, the momentum is shift-
ing toward simpler, lightweight technologies.

We like to talk about large-scale systems, thousands of servers, petabytes of data, bil-
lions of requests. It’s captivating, the same way we could talk about horsepower and 0
to 60 acceleration times. But in real life we often face constraints of a different scale.
Can you do it with a smaller team? Can you get it done tomorrow? Can you add these
new features before we go into beta? Most often businesses have to optimize not for
CPU cycles, but developer cycles. It’s easy to scale out by throwing more hardware at
the problem, but, as many businesses have found out, throwing more people at the
problem just makes the project late. That knowledge was captured years ago in Fred
Brooks’ Mythical Man-Month, but our bosses just decided to prove it empirically.

 Minimizing developer cycles is probably the single most attractive feature of
dynamic languages, and Ruby in particular. Simplifying software development has
been the holy grail of the software industry. Say what you will about COBOL, it’s much
better than writing mainframe applications in assembly language. And believe it or
not, productivity was a major selling point for Java, in the early days when it came to
replace C/C++. It’s the nature of software development that every once in a while we
take a leap forward by changing the way we write code, to deal with the growing com-
plexity that developed since the last major leap. And it’s not the sole domain of the
language and its syntax. One of the biggest criticisms against J2EE is the sheer size of
its API, and the complexity involved in writing even the simplest of programs. EJB is
the poster child of developer-unfriendly technology.

 The true measure of a programming language’s productivity is how little code you
need in order to solve a given problem. Writing less code, while being able to do the
same thing, will make you far more productive than writing a whole lot of code with-
out doing much at all. This is the reverse of how many businesses view productivity:
lines of code produced. If simple lines of code were the metric, Perl would win every
time. Just as too much code can make your application unmaintainable, so can terse,
short code that’s “write only.” Many of Ruby’s language features contribute to creating
short, sane, and maintainable code.

OPEN SOURCE
Open source, with its organic development model, is able to adapt to this changing
of tides better. For example, in the Java space, one can see a strong bias toward
Spring and Hibernate as opposed to EJB. Many developers are defecting from a lot
of spaces to Rails. Why? Those projects aren’t afraid to reevaluate their approaches
to accommodate current developer attitudes, because these sorts of projects are de-
veloped by the developers who use them every day in their own work.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

6 CHAPTER 1 Ruby under the microscope

1.1.2 Language features

Ruby seems to hit the sweet spot and appeal to developers who value natural inter-
faces and choose to migrate away from languages that inherently promote complexity.
But why? Why would developers move away from “proven” technologies to Ruby,
which is, arguably, the “new kid,” regardless of its positive aspects? Primarily because
Ruby is a dynamic language that works well for applications and scripting, that sup-
ports the object-oriented and functional programming styles, that bakes arrays and
hash literals into the syntax, and that has just enough metaprogramming features to
make building domain-specific languages fun and easy. Had enough marketing? Of
course, this laundry list of buzzwords is not as important as what happens when you
combine all these features together. In combination, the buzzwords and abstract con-
cepts become a powerful tool.

 For example, consider Ruby on Rails. Rails is one incarnation in a long series of
web application frameworks. Like so many web application frameworks before it, Rails
deals with UI and remote APIs, business logic, and persistence. Unlike many web appli-
cation frameworks before it, it does so effortlessly, without taxing the developer. In its
three years of existence, it leapfrogged the more established frameworks to become
the benchmark by which all other frameworks are judged.

 All that power comes from Ruby. The simplicity of mapping relational databases to
objects without the burden of XML configuration results from Ruby’s combination of
object-oriented and dynamic styles. The ease with which HTML and XML templates
can be written and filters can be set up comes from functional programming. Magic
features like dynamic finders and friendly URL routing are all forms of metaprogram-
ming. The little configuration Rails needs is handled effortlessly using a set of
domain-specific languages. It’s not that Rails (or really Ruby) is doing anything new;
the attractiveness comes from how it does things. Besides being a successful framework
on its own, Rails showed the world how to use Ruby’s combination of language
features to create applications that, quite frankly, rock. Dynamic features like
method_missing and closures go beyond conceptual curiosity and help you deliver.

 So, why is Ruby popular now? This popularity can, for the most part, be traced to
developers growing weary of complex, taxing development tools and to the emergence
of Rails as a definite, tangible project that shows how Ruby can be used to create pro-
duction quality software that’s still developer friendly. Once you start working with
Ruby, you’ll probably realize this too. It takes about the same amount of effort to work
with flat files, produce PDFs, make SOAP requests, and send messages using WebSphere
MQ as it does to map objects to databases, send email, or parse an XML file. Wrap that
into a nice, natural syntax, and you have a potent tool for software development.

 Let’s jump right into some Ruby code.

1.2 Ruby by example
We think the best way to illustrate Ruby’s capabilities and features is by example, and

what better way than by diving into some code? Let’s take a fairly typical situation: you

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

7Ruby by example

need to pull data from a database and create graphs with it. Perhaps you need to trace
the sales performance of a range of products across all of your sales locations. Can we
keep it simple?

 First, we’ll need to install three libraries: Active Record (an object-relational map-
per for databases), Scruffy (a graphing solution for Ruby), and RMagick
(ImageMagick bindings for Ruby, required by Scruffy). Let’s do that using the Ruby-
Gems utility:

gem install active_record
gem install rmagick
gem install scruffy

Assuming you have all the system prerequisites for these packages (for example,
ImageMagick for RMagick to bind to), you should now have all you need.

TIP RMagick can be a beast to set up.
We suggest checking the project’s
documentation, the mailing list, and
your favorite search engine if you
have problems.

Now, let’s set up our database. Figure 1.1
shows our schema diagram for the database.

 You can use figure 1.1 as a model to cre-
ate the tables (if you prefer to use some sort
of GUI tool), or you can use the SQL in list-
ing 1.1.

CREATE DATABASE ̀ paper`;

CREATE TABLE ̀ products` (
 ̀ id` int NOT NULL auto_increment,
 ̀ name` text,
 PRIMARY KEY (`id`)
);

CREATE TABLE ̀ purchases` (
 ̀ id` int NOT NULL auto_increment,
 ̀ product_id` int default NULL,
 ̀ store_id` int default NULL,
 PRIMARY KEY (`id`)
);

CREATE TABLE ̀ stores` (
 ̀ id` int NOT NULL auto_increment,
 ̀ location` text,
 PRIMARY KEY (`id`)
);

Now, let’s set up ActiveRecord to work with the database. ActiveRecord is typically

Listing 1.1 SQL for graph example database

Figure 1.1 For our graph, we will build a
simple domain model: products will have
purchases, which belong to the stores
where they happened.
used inside of a Rails application, and because we’re not using it in that environment,

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

8 CHAPTER 1 Ruby under the microscope

it takes a few more lines of configuration. See our configuration and implementation
code in listing 1.2.

require 'rubygems'
require 'activerecord'

Begin ActiveRecord configuration
ActiveRecord::Base.establish_connection(
 :adapter => "mysql",
 :host => "localhost",
 :database => "paper",
 :username => "root",
 :password => ""
)

Begin ActiveRecord classes
class Product < ActiveRecord::Base
 has_many :purchases
end

class Purchase < ActiveRecord::Base
 belongs_to :store
end

class Store < ActiveRecord::Base
end

Begin logic
myproducts = Product.find(:all)

require 'pp'
pp myproducts

As you can see, it doesn’t take a lot of code to get a full object-relationally mapped
database connection. First, we import the RubyGems library B, so we can then import
ActiveRecord. Next, we establish a database connection with ActiveRecord C. Nor-
mally this configuration data would live in a database configuration file in a Rails
application (such as database.yml), but for this example we chose to run outside
Rails, so we’ve used establish_connection directly. Next, we create ActiveRecord
classes and associations to map our database D. Finally, we execute a query E and
output its results using Pretty Printing (pp) F.

 Just fill in some testing data (or download the script from the book’s source code
to generate some for you), and run the script. You should see something like the fol-
lowing output:

[#<Product:0x639e30 @attributes={"name"=>"Envelopes", "id"=>"1"}>,
 #<Product:0x639e08 @attributes={"name"=>"Paper", "id"=>"2"}>,
 #<Product:0x639c00 @attributes={"name"=>"Folders", "id"=>"3"}>,
 #<Product:0x639bb0 @attributes={"name"=>"Cardstock", "id"=>"4"}>]

Our database is set up and our query works, so let’s move on to generating a graph
from the data. First, remove those last two lines from listing 1.2 (they’ll be superfluous

Listing 1.2 Setting up our database with ActiveRecord

Requires RubyGemsB

Configures
ActiveRecord

C

D
Builds ActiveRecord
classes

Searches for
all products

E

Uses Pretty Printing
to output collection

F

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

9Ruby by example

by the time we’re done). Now let’s take the data we retrieved, process it, and build the
graph using Scruffy. In listing 1.3, you’ll see how to do that.

graph = Scruffy::Graph.new
graph.title = "Comparison of Product Sales"

stores = Store.find(:all, :select=>"id, location")

myproducts.each do |product|
 counts = stores.collect do |store|
 Purchase.count("id", :conditions => {
 :store_id=>store.id,
 :product_id=>product.id
 })
 end

 graph.add :line, product.name, counts
end

graph.point_markers = stores.map {|store| store.location}
graph.render :as => 'PNG', :to => 'productsales.png',
 :width => 720,
 :theme => Scruffy::Themes::Keynote.new)

First, we create a Scruffy::Graph instance and do a little bit of setup B. Next, we iter-
ate through the products we found earlier and calculate the sales counts for each
store location C. Then we add a line on the graph showing the sales trends for that
product across the stores D. Before we render the graph, we need to add the markers
to indicate which sales location we’re looking at E. Finally, we render the graph to a
PNG file using one of Scruffy’s built-in themes F.

 If you open the graph and look at it, you can see that it is polished (ours looks like
figure 1.2).

Listing 1.3 Generating a graph with Scruffy

Creates new Scruffy
object, gives it a title

B

C Iterates through products

Adds a line to
graph for each

D

Puts in point
markers

E

Generates graph
with a theme

F

Figure 1.2 Our finished graph: in about 40 lines of code, we pulled data from

the database, processed it, and graphed it in a rather attractive fashion.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

10 CHAPTER 1 Ruby under the microscope

Not bad for 40 lines of code, including whitespace, comments, and more verbose than
required constructs. Sure, this example isn’t representative of every situation—you
can’t develop a full CRM solution in Ruby with 40 lines of code—but it speaks volumes
about the expressiveness of the language and the power of its toolkit.

 In the next section and subsequent chapters, we’ll look at a lot of the concepts that
power this example, so you can start building applications and tools that take full
advantage of Ruby’s features.

1.3 Facets of Ruby
Now that we’ve discussed the “why” of Ruby, let’s look at the “how.” One of the goals of
this book is to make you into a truly effective Ruby developer; we want you to be able
to use Ruby to reframe problems and craft solutions. In this section, we’ll discuss Ruby
concepts and unique “Rubyisms” that will help you do this and that will power the
examples and libraries you’ll see throughout the rest of the book. We intend that
you’ll come away with a grasp of these advanced concepts and know how to craft code
that is readable, expressive, and “good” (by whatever subjective method you use to
measure that). If we’re successful, you’ll be able to use Ruby to do your job more
effectively and develop more maintainable applications.

 But what do we mean when we talk about reframing problems in Ruby? Every pro-
gramming language has its own set of idioms and best practices. Once you’re comfort-
able with the syntax and know your way around the libraries, you start to explore that
which makes the language unique. You explore the character of the language, if you
will: the way it promotes a certain style of programming and rewards you for following
it. If you work with the language, it will work for you.

 Object-oriented languages, for example, ask you to encapsulate behavior and data
into objects, and they reward you for that in reuse. If you’re coming from Java, you
know the value of using JavaBeans and the standard collections library, of throwing
and catching exceptions, and so on. Today we take those for granted, but in the early
days of Java development, many developers would use Java as if it were C or Visual
Basic. They wrote code that didn’t follow Java idioms, which made it harder to main-
tain and use.

 Like Java, Ruby has its own set of idioms. For example, in Ruby you often use blocks
to keep your code simple and readable. You can write methods that extend classes
with new functionality (metaprogramming). You enrich classes with common behav-
ior by mixing in modules, fondly known as mixins. You can use blocks to abstract loops
and even extend methods and reduce code duplication.

 Let’s say you were writing a script to interface with an old legacy server. It accepts
TCP connections and operates on simple commands like LOGIN, GET, DELETE, and so
on. Each time you start a session with the server, you need the same setup and tear-
down, but you want to do different things during the socket’s connection each time.
You could write a number of methods for each sequence of events, duplicating the
setup and teardown code in each one, or you could use a block. Listing 1.4 shows a

simple implementation of this script.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

11Facets of Ruby

def remote_session
 config = get_configuration_information
 sock = TCPSocket::new(config.host, config.port)
 yield sock
 sock.close
 log_results
end

Send some data
def send_login
 remote_session {|sock| sock.send('LOGIN')
end

A little more advanced
def login
 remote_session do |sock|
 sock.send('LOGIN')
 received = sock.recv(128)
 received == 'OK'
 end
end

First, we create a method to execute our setup and teardown, with a yield statement
inside B. That yield statement tells Ruby to execute the block that is fed to the
method as a parameter. Next, we create a simple method to send the LOGIN command
to our server C. Note that a block is fed to this method as a parameter. The sock
parameter is the socket from our setup method (remote_session) that is given to the
block to use. We do the same for the login method D, but this time we send the login
and do something with the returned data E. Notice the code duplication we’ve elimi-
nated by putting all of our setup and teardown into a separate method; this is just one
of the many facets of Ruby that make development with it that much cleaner and easier.

 Ruby is a dynamic language, and as you get to explore that facet of Ruby, known as
duck typing, you’ll notice that you don’t need to use interfaces and abstract classes as
often. The way Ruby allows you to extend objects and use constructors relieves you
from juggling factories. Iteration is often done with blocks and functions, whereas in
nonfunctional languages you tend to use for loops and define anonymous classes.

 Once you get the hang of all these ideas, you’ll start reframing problems in terms of
Ruby, rather than thinking out a solution in a language you’re more familiar with, and
writing it in the Ruby syntax. You will often find that reframing problems changes the
way you think about code, and you’ll discover new ways to become a better developer.

 Imagine a method that queries the database for products based on different crite-
ria. You could call the method with any number of arguments. But it’s hard to under-
stand exactly what criteria it’s using if your code looks like this:

find_products nil, nil, nil, nil, 5, 50, 250

What does the 5 stand for? What about the 50? Some languages promote the idiom of
method overloading, creating several methods with different signatures, depending

Listing 1.4 Using blocks to reduce code duplication

B

C

D

E

on the expected call. But overloading doesn’t always work if all the arguments are

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

12 CHAPTER 1 Ruby under the microscope

integers. In that case you’ll want to follow a different idiom, creating an object, popu-
lating its fields, then passing it to the method. Those are all good idioms, but not the
ones you’ll likely use with Ruby.

 Ruby has a convenient syntax for handling hashes, which you can use to simulate
named arguments. Instead of method overloading and populating objects, you can
write something like this:

find_products :category => 5, :price => 50..250

Duck typing even makes it possible to call the following line and let the method
extract the identifier from the storage object:

find_products :category => storage, :price => 50..250

As you practice these idioms, you’ll notice certain things change. For one, you’ll have
fewer methods in your objects, making your APIs easier to understand. In fact, you’ll
have fewer classes to deal with. In this example, we’ve eliminated an object to hold all
the properties and a class to define it. With fewer classes and methods, it’s easier to
understand the overall design of your software and how all the pieces fit together.

 This discussion has barely scratched the surface. This book is not a walkthrough of
the Ruby language; we only wanted to give you a taste for the language’s features. We
could go on and on about all of the dynamic features of Ruby, but it would ultimately
be redundant. We’ll cover some of these concepts, features, and practices in this chap-
ter, but throughout the book you’ll see these and other Ruby idioms in practice,
which is where real education happens: when you use your knowledge in practice. We
hope that we can help you learn those mostly by example, with some explanations
along the way. The more you invest in learning the language, the better a developer
you’ll be. There’s always a learning curve, but fortunately there’s not a lot to it with
Ruby. You’ll see the benefit of Ruby while you’re learning and practicing the lan-
guage, but you’ll want to take that information and go deeper to get even better.

 One of the killer apps for Ruby is the Ruby on Rails web application framework.
Developers are attracted to the magic of Rails and the productivity gains therein, but,
in reality, most of the magic is good Ruby programming applied to web applications.
Think about this: what if you could make the same magic work for you in other
domains, to make you a better developer for any problem you need to solve? What if
you could take those same productivity gains and magic methods, and use them in
your code? Let’s look at some of the facets of this gem we call Ruby that can make this
possible: duck typing, simplicity, efficiency, and functional programming.

1.3.1 Duck typing

Ruby uses dynamic typing rather than static typing, and Ruby’s brand of dynamic typ-
ing has been dubbed duck typing. It’s not so much that Ruby’s typing behaves differ-
ently than most dynamically typed languages; it’s merely that one thinks about objects
based on behavior rather than type: if an object walks like a duck and quacks like a

duck, then it must be a duck.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

13Facets of Ruby

 In a static typing system, an object’s type is determined by its class definition at
compile time. Static typing forces each object to declare its heritage, so you’re always
asking, “where are you coming from?” In dynamic languages, behavior is captured by
the object, not the interface. Dynamic typing only cares about merits, so the question
to ask each object is, “what can you do?”

 You can do the same with reflection in Java or C#, but reflection hides your busi-
ness logic in a haystack of type-bypassing code. With dynamic typing, you don’t have to
declare so many interfaces and abstract classes in anticipation of reuse, you don’t have
to write adapters and decorators as often, and you don’t need to choose between read-
ability and functionality. All these help you reuse code more often.

 A byproduct of duck typing is that method calls do not check their recipient’s type
beforehand. Your code calls a method, and if it fails, it raises an exception. This con-
cept sounds a little cloudy, so let’s look at a piece of code to explain it. Let’s say we
have a method that calls size and returns it in a friendly message.

def print_size(item)
 puts "The item's size is #{item.size}."
end

Our method calls size on the object without regard for its class, so if you feed it an
object that responds to the size method, it will work.

mystring = "This is a string."
print_size(mystring) # => The item's size is 17.
myarray = [1,2,3,4,5]
print_size(myarray) # => The item's size is 5.
myfile = File::Stat.new("readme.txt")
print_size(myfile) # => The item's size is 432.

This is a perfect illustration of duck typing: all three objects walk and talk like ducks.
We’re expecting the object to do something, and we only have to ask: does it do that?

 Duck typing is a trade-off. You no longer have a compiler that will catch type errors
upfront, but you do have fewer opportunities for errors. In a statically typed language,
you’ll repeat the type declaration in multiple places: class definition, variable declara-
tion, constructor, method arguments, and so on. If you need to refactor code, perhaps
splitting a class into an interface and separate implementation, maybe adding a fac-
tory or writing a decorator, you end up making type changes in multiple places, and
you’ll want a type-checking compiler to help you minimize errors.

 That’s not a problem with Ruby. As you grow more familiar with Ruby, you’ll notice
that you don’t have to declare types that often, or repeat them all over the place. You
rarely need to separate interfaces and implementation classes, or conjure factories
and decorators. When you have fewer types to deal with, type checking is less of an
issue. What you get in return is being able to do more with less code, which means
fewer places for bugs to hide. Give it a shot. We doubt you’ll miss type checking.

 If you do end up needing a way to assert that an object at least responds to a
method, every object defines a method named respond_to? that will respond true or

false depending on whether or not that object will respond to the method indicated:

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

14 CHAPTER 1 Ruby under the microscope

3.respond_to?(:to_s) # => true
3.respond_to?(:im_fake) # => false
"string".respond_to?(:gsub) # => true

This isn’t type checking, but it’s a pretty good indicator of an object’s identity if you
need it. This is also useful if you want to branch depending on the parameter given to
the method:

if param.respond_to?(:convert)
 param.convert
else
 MyClass.from_object(param)
end

This technique can help make your API simpler, and, depending on how the code is
written, make your code shorter.

1.3.2 Simplicity

Ruby values simplicity. To be fair, all programming languages do, each striving for sim-
plicity in its own way. But they don’t all achieve it in the same way. A language cannot
enforce simplicity any more than it can keep your code bug free, but it can certainly
reward you for keeping things simple. Or, it can reward you for making things com-
plex, often in the form of over-engineering.

 As much as we hate to admit it, once we write a piece of software and release it to
the world, the software becomes harder to change. Yet, it often needs to change to
add new features, switch databases, support more protocols, or integrate with other
systems. And so we plan for change.

 Each language has its own patterns that deal with change. In a statically typed lan-
guage like Java, you need to think about these requirements upfront: once the imple-
mentation has been fixed, it is hard to change. You tend to figure out the interfaces
upfront, use factories liberally, allow for decorators, and so on. Because those changes
are hard to make later on, you’re better off doing them up front, just in case, even for
cases that will never happen. In their own way, statically typed languages reward you
for over-engineering.

 In contrast, you’ll find that it’s much easier to make local changes with Ruby without
affecting the rest of your code because it’s a dynamic language. When change is easy to
make, you don’t have to plan as much for every eventuality. In dynamic languages,
there’s less need to design interfaces that are separate from the implementation,
because it’s possible to refactor the implementation without breaking code all around.
You won’t need to bury the business logic in layers of factories, decorators, listeners,
and anonymous classes. That might seem hard to imagine if you have a strong back-
ground with statically typed languages, but as you get comfortable with Ruby, you’ll
notice it too. Ruby will reward you for keeping things simple, and saying no to code you
don’t need will reward you with quicker development and easier maintenance.

1.3.3 DRY efficiency

Ruby is a DRY language. DRY stands for: Don’t Repeat Yourself. Syntactically, it’s an

efficient language: you can express the same thing with fewer lines of code. As we

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

15Facets of Ruby

know, computers are fast enough that more lines of code do not slow them down, but
what about you? When it comes to debugging and maintaining, the more code you
have to deal with, the harder it is to see what it does and find the problems that need
fixing. Ruby helps you keep your code short and concise.

 Listing 1.5 shows this with a simple example. The first style is Ruby, but you’ll
notice that it looks similar to many other programming languages. The second style is
the preferred way of doing it in Ruby: shorter and less repetitive (and if this is the last
value in a method, the return is superfluous). There’s not a lot to this example, but
imagine that you could do this throughout your code, eliminating thousands of lines
of unnecessary cruft.

The long way
record = Hash.new
record[:name] = "Dave"
record[:email] = "admin@net.com"
record[:phone] = "555-1235"
return record

The Ruby way
return { :name=>"Dave", :email=>"admin@net.com", :phone=>"555-1235" }

Though this example is a bit contrived, it illustrates part of a consistent effort to make
Ruby’s syntax efficient without being unreadable. Ruby’s syntax has a lot of little fea-
tures like this that end up giving you huge gains: blocks, iterators, open classes, and
more. And many of these features are due to Ruby’s ties to functional programming.

1.3.4 Functional programming

Ruby is an object-oriented language: it is objects all the way down. Like many other
dynamic languages, functions are also first-class citizens. Couple that with outstanding
support for closures, and it’s easy to adopt a functional style of programming. But unlike
more traditional functional programming languages, like LISP or Haskell, Ruby is easier
to pick up, and it can let you enjoy both worlds of functional and procedural style.

 Why is functional programming so important? For one, it helps you write shorter
and more concise code, and some things are easier to express in functional style. For
another, the functional style leads to code that doesn’t depend on state and has fewer
side effects. Code like that is much easier to mold and refactor, and it gives you more
opportunities for reuse. It also makes it easier to build applications that scale.

 The easiest way to build software that scales is using the “shared nothing” architec-
ture. The less shared state you have to deal with, the easier it is to scale. Although
Ruby comes with modern libraries that support threads, locks, mutexes, and other
concurrency mechanisms, it helps that you don’t have to use them often.

 We’re sure a lot of this discussion sounds like academia mixed with astronaut buzz
talk. Functional programming hasn’t yet hit the big time in the world of software
development, but perhaps you’re familiar with the Google MapReduce algorithm,
which achieves unparalleled scalability by running tasks independently of each other.

Listing 1.5 A small example of DRY syntax
Its efficiency is achieved through two main algorithms or methods: map and reduce.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

16 CHAPTER 1 Ruby under the microscope

You can see Ruby’s “map” in listing 1.6 as the obviously named map method; the
“reduce” part in Ruby is most often done using the inject method.

Code that iterates in order to map one array to another
application_names = []
for application in applications
 application_names << application.visible_name
end

Code that maps one array to another
applications.map { |application| application.visible_name }

An even shorter way to express it in Rails and Ruby 1.9
applications.map &:visible_name

Code that has fewer dependencies is easier to run in parallel, taking advantage of
modern multicode CPUs, or when deploying on a cluster of servers. There are other
ways to do it, but functional programming makes it extremely easy.

 Now let’s look at one of the most attractive features of Ruby. In covering these fac-
ets of Ruby, we’ve been working our way toward one of the biggest features of the lan-
guage: metaprogramming.

1.4 Metaprogramming
We talked in the beginning about reframing
solutions in terms of Ruby. Software develop-
ment bridges the gap between your ideas and
applications you can use. The smaller that gap,
the more quickly you can cross it. We’re going to
stop the analogies here, but the point is that you
want to translate your ideas into code quickly
and easily. The language you choose can
increase or reduce this distance between ideas
and your implementation (see figure 1.3).

 But as you progress and become an expert with the tools of your trade (regardless
of which language you use), this gap will slowly close. You’ll be able to frame things in
terms of a language’s idioms, keeping the language’s limitations, strengths, and so on,
in the back of your mind. Your ideas are
then much closer to real code (figure 1.4
illustrates this).

 Most programming languages are con-
tent being what they are. Some languages
are more generic, but they force you to deal
with more details. Other languages help
you deal with a specific domain problem

Listing 1.6 Map is one way Ruby uses functional programming for parallelism

Figure 1.3 Some languages create a gulf
between your ideas and working code.

Figure 1.4 Ideas can more closely match the
resulting code if your expertise and perspective
create an overlap between the framing of an
idea and the real code that will execute it.
but tend to be simple and inflexible, such as

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

17Metaprogramming

SQL, RuleML, XML Schema, Ant, and CSS. Through
metaprogramming, Ruby allows you to have a mixture of
both. You can extend Ruby with mini-languages that
can get you closer to the problem you’re solving, and
you can still use all the expressive power of Ruby (see
figure 1.5).

 This book isn’t focused on teaching much Ruby
“teachnique” in the sense of the core language, but
there are a couple of powerful tools that will let you
crank your developer volume all the way to 11 and give
you the ability to solve problems with ease. We think it’s worthwhile to spend a few min-
utes introducing you to these tools: metaprogramming and domain-specific languages.

1.4.1 Getting started with metaprogramming

The software industry always looks for that one silver bullet that can turn ideas into
code without the “overhead” of software developers. We’re not too worried about los-
ing our jobs, but software that writes software is a wonderful tool, even if it only takes
on part of the workload. Compilers that turn source code into machine code do
that—they let us work with higher-level languages. Source code generators and IDE
wizards give us a head start by writing boilerplate code and skeletons. And even fur-
ther up the ladder, there’s metaprogramming, writing code that writes code.
Methods that define methods
If you come from a background in Java or C#, you learned that objects and classes are
different in one fundamental way. Objects are mutable, so you can change them by
calling methods on them, but classes are immutable: their definitions are written
down, and once compiled, cannot be changed. In Ruby, classes, like objects, are muta-
ble. You can call a method on a class that will change the class definition.

 Let’s look at a simple example. Suppose we have a Project that has an owner, an
attribute you can both get and set. Listing 1.7 shows two ways to express that. We can
write a couple of methods, or we can call attr_accessor. By calling this method on
the class, we allow it to change the class definition and essentially define a method for
getting the value of the instance variable @owner, and a method for setting it.

class Project
 def owner()
 @owner
 end

 def owner=(who)
 @owner = who
 end
end

class Project
 attr_accessor :owner

Listing 1.7 Using attr_accessor to define accessor methods on your class

B

C

Figure 1.5 Ruby can be bent to
your problem domain, making the
overlap between your problem
domain and real code significant.
end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

18 CHAPTER 1 Ruby under the microscope

The class definitions in listing 1.7 both do the same thing: define an attribute owner
that you can get and set. The first version is rather explicit B, but the second version
uses a lot less code C. This seems a little contrived now, but imagine having 12 or 15
attributes in a class. Then you’re going from 40 or 50 lines of code down to 1. That’s a
huge spread across an entire application. Even better, you describe the intent of what
needs to happen (accessing an attribute) without having to be totally verbose about it.

 But how does it work? Let’s take a look at an implementation of attr_accessor in
Ruby in listing 1.8. This is not the implementation from Ruby, but it has the same effect.

class Module
 def attr_accessor (*symbols)
 symbols.each do |symbol|
 class_eval %{
 def #{symbol}
 @#{symbol}
 end

 def #{symbol}=(val)
 @#{symbol} = val
 end }
 end
 end
end

Using Ruby’s open classes, we reopen the class definition of the Ruby core class Mod-
ule B and add a method, attr_accessor, to it. This method takes each provided
symbol and executes a code block in the context of the class definition using
class_eval C. You will become familiar with the *_eval family of methods in your
metaprogramming. Check out table 1.1 for a summary of their usage.

Listing 1.8 A reimplementation of attr_accessor

Table 1.1 The eval family of methods

Method Usage

eval(str) Evaluates a string of code:

eval("puts 'I love eval!'")

instance_eval(str)
instance_eval { }

Evaluates a given string of code or a code block, changing the
receiver of the call to self:

class Hider
 def initialize
 @hidden = "Hello, world!"
 end
end

my_hidden = Hider.new
my_hidden.instance_eval { puts @hidden }
=> Hello, world!

B

C

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

19Metaprogramming

Now that we have added our method to the class definition, every instance of a Module
or Class object has this method available to it.

 Now let’s look at a more complex example. We’re further along in the develop-
ment of our application, and we realize there will be a lot of projects to manage. We
want to help users by giving them a way to tag projects, so they can then find projects
through tags and through related projects. We need a separate table to hold the tags,
and we need to add methods to retrieve projects by tags, to delete tag associations
when a project is deleted, and so forth.

 That’s quite a lot of work: a lot of database work for inserting new tags, editing and
deleting tags, not to mention searching. We decide to reinvent the wheel some other
time, and instead we download a plugin called ActsAsTaggable. Listing 1.9 shows how
we use it.

class Project < ActiveRecord::Base
 acts_as_taggable
end

Why is this a more complex example when it’s no longer than the previous one?
Because acts_as_taggable adds a lot of functionality to our Project model that
would take us several days to do otherwise. Now our Project model has access to a set
of tags in the database and has methods to search with baked right in (such as
find_tagged_with). We can call Project.find_tagged_with(:all => 'ruby') and
get an array of models that have the tag ruby. It required little code on our part: that is

class_eval(str)
class_eval { }

Evaluates a given string of code or a code block in the context of a
class’s definition:

def printable_attribute(attr)
 class_eval %{
 def p_#{attr}
 puts attr.to_s
 end
 }
end

class Printer
 attr_accessor :name
 printable_attribute :name
end

my_printer = Printer.new
my_printer.name = "LaserPrint 5000"
my_printer.p_name # => LaserPrint 5000

Listing 1.9 Using ActsAsTaggable to get a lot of features in one line of code

Table 1.1 The eval family of methods (continued)

Method Usage
the power of metaprogramming.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

20 CHAPTER 1 Ruby under the microscope

 Ruby is flexible enough that in addition to defining new methods, you can extend
existing methods. Think of this as aspect-oriented programming baked into the lan-
guage. It can also let you define complete classes, from the simple Struct, which
declares a JavaBean-like class in one method call, to more complicated mechanisms,
such as creating a collection of model classes from your database schema.

 Now let’s look at dynamic method definition.
Implementing methods dynamically
This style of metaprogramming happens at class definition, but metaprogramming
can also be used to dynamically alter objects. With languages that have static (or
early) binding, you can only call a method if that method is part of the class defini-
tion. With languages that have dynamic (or late) binding, you can call any method
on an object. The object then checks its class definition to decide how to respond to
the method call.

 This means that in Ruby, if the method is not part of the class definition, the object
calls method_missing. Typically, method_missing will throw an exception, but you can
override it to do more interesting things. Let’s try to create an XML document (an RSS
feed for our projects) using XML::Builder. Take a look at listing 1.10.

xml = XML::Builder.new
xml.rss "version"=>"2.0" do
 xml.channel do
 xml.title "Projects"
 xml.pubDate CGI.rfc1123_date(Time.now)
 xml.description "List of all our projects"
 for project in projects do
 xml.item do
 xml.title project.name
 xml.guid project_url(project), :permalink=>true
 xml.pubDate CGI.rfc1123_date(project.created_on)
 xml.description project.details
 end
 end
 end
end

If you’re looking for the step where we use a DTD or XML Schema to generate source
code, you won’t find it. Builder uses method_missing to create elements based on
the method name, attributes from the method arguments, and text nodes from the
first argument, if it’s a string. So a simplified version of that method might look like
listing 1.11.

def method_missing(sym, *args, &block)
 root_element = sym

Listing 1.10 Building an RSS feed for our projects

Listing 1.11 A simplified look at XML::Builder’s use of method_missing

B

 args.each do |arg| C

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

21Metaprogramming

 case arg
 when Hash
 build_elements(root_element)
 when String
 add_element(root_element)
 end
 end
end

Using Ruby’s open classes, Builder overrides the method_missing method. Builder
takes the name of the missing method that is called B, and the value provided C,
and makes elements out of them depending on the value’s type D. You’ll likely find
coding like this sprinkled throughout your favorite and most-used libraries, includ-
ing ActiveRecord.

 Builder is one of those staple libraries you’ll use quite often in your projects, and
it’s an interesting library to analyze if you’re curious about metaprogramming. If you
learn enough about it, metaprogramming can help you build mini-languages that you
can use to reframe business logic in terms of the problem domains, rather than in
terms of a language’s syntax. We’re talking about domain-specific languages.

1.4.2 Domain-specific languages

Functions, objects, libraries, and frameworks all help you work at a higher level of
abstraction, closer to the problem. If you look at the software landscape, you’ll see a
lot of different specialty domains. You can imagine languages, each of which is
designed to solve a specific set of problems by expressing solutions in a way that’s easy
and natural for that specific domain. Perhaps you hadn’t heard of domain-specific
languages (DSLs) before reading this book, but you certainly have used them. Do any
of the following names sound familiar: SQL, regular expressions, HTML, Make, WSDL,
.htaccess, UML, CSS, Ant, XSLT, Bash? These are all domain-specific languages.

 Within the domain of relational databases, there needs to be a way to define new
tables. There needs to be a way to query these tables and return the results, to create
new records, to update and delete existing records. You could do those things by delv-
ing into low-level database APIs, creating the table structures directly, iterating over B-
tree indexes to fetch records, performing joins in memory, and sorting the data your-
self. In fact, many system developers used to do just that. Nowadays, we use SQL.

 But DSLs have a limit: it’s hard to create a programming language that has good
support for variables, expressions, functions, objects, and all the tooling around it. So
DSLs tend to be simple, static, and inflexible. HTML, for example, can express rich
multimedia content, including text, images, audio, and video. But if you want to do
anything dynamic, like pull-down menus, partial updates, or drag and drop, you need
a more generic programming language. You’ll want to use JavaScript. On the other
hand, because JavaScript is a generic programming language, it will take a mountain
of statements to create a page using the DOM API. But what if you could mix a generic
programming language with a domain-specific language?

D

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

22 CHAPTER 1 Ruby under the microscope

 Let’s look at XML Schema definitions, for example. The XML Schema language
was originally designed to validate XML documents. With it, you can express what a
valid XML document looks like, so you can check XML documents against these rules
before deciding whether or not to process them. It’s much easier to use than iterating
over the DOM and checking whether the current element is allowed to follow the pre-
vious element, and whether it has all the right attributes.

 But, like most DSLs, XML Schema has its limits. For example, you can check that a
customer element has optional contact data, such as email, phone, or IM handle, but
there’s no easy way to require that at least one of these elements exists. There’s no
easy way to validate that all U.S. addresses have a state, or that the ZIP Code matches
the address. But if we created a DSL using a powerful host language (like Ruby), we
could come up with something that looks like listing 1.12.

contact_information_verification do |the_persons|
 the_persons.name.is_required

 the_persons.address.is_required
 the_persons.address.must_be(10).characters_long

 the_persons.phone.must_be(10).characters_long

 the_persons.im_handle.must_not_be(in_existing_accounts)
end

This gives us a nice set of readable rules that can be updated by anyone (probably
even your secretary), which will generate or execute the validations we need. DSLs can
bring the same simplicity and abstraction to a lot of your specific problems.

NOTE What we’ve created here is not technically a DSL in the purest sense, but
an embedded DSL (EDSL)—a domain-specific language that’s embedded
inside a host language, in this case Ruby. Throughout this book, we’ll
show different Ruby libraries and tools that include their own mini-lan-
guages, all of which are EDSLs.

Think about code that expresses business rules or composes tasks, and you’ll find
many opportunities to simplify and reduce noise. DSLs don’t just help your secretary
or business manager keep your code up, they can also help you as a developer keep
yourself sane. Using Ruby’s metaprogramming capabilities, you can build these sorts
of solid, literate tools and fluent interfaces.

1.4.3 Refining your metaprogramming

If you’ve never built a DSL, it can be slightly daunting to make sure your implementa-
tion stays flexible yet still clean. Even the masters have to take a step back to rethink
things every once in a while. (For example, Rspec, a popular Ruby testing library,
changed its DSL numerous times before settling on the current implementation.) But

Listing 1.12 A validation domain-specific language example
there are steps you can take to make sure that you’re approaching the right problems

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

23Metaprogramming

the right way with metaprogramming, and to ensure that you aren’t carrying around a
hammer looking for a nail to hit.

 The place to start is with the problem you solve over and over again. When you see
a lot of repetition in your code, or when you find yourself getting bogged down by
details, that’s the right time to simplify things. Metaprogramming helps you simplify
by creating an easier, more expressive way to write code. There’s no point in writing a
DSL that you will only use once, but it pays several times over if you use it repeatedly.

 You could let your imagination run wild and use metaprogramming to solve prob-
lems you think you’ll have someday, but you’ll quickly realize that those are just men-
tal exercises. Instead, look for patterns you have in your code right now, for practices
and idioms you use often, and use metaprogramming to simplify those. This process is
called extraction, and it’s based on what you need and use, not what you could imagine
doing some day. You’ll notice that Rails, Rake, RSpec, and many of the other frame-
works we cover in this book all came from extractions, from looking at existing solu-
tions and finding better, easier ways to write those.

 The best way to write a DSL is to practice intentional programming. Step away from
the code and ask yourself, “if I were not limited by the language I use right now, if I
could express the solution itself in some other language, what would my code look
like?” Try to write that code as if that language already exists. You’ve just defined a
DSL. Now you have to go and implement it, but the hardest part is behind you.

 So how do you know you’re successful? A good DSL has two interesting qualities.
The first is that you’ll want to use it. You know you’re successful when, out of all the
possible things you can do that day, just after coffee, you decide to write code using
that DSL.

 The second quality of a good DSL is that you can throw away the documentation
and still use it, or you might say it follows the “the rule of least surprise.” When the
code comes naturally to you, it’s easier to write and less painful to maintain. When we
work with Rails, we never have to stop to ask, “how do we access the order_on field?”
We know that in Rails it’s accessed with the order_on method. We know that to find an
employee record by their name, we use find_by_name. The rule of least surprise is
one of those, “I’ll know it when I see it” guidelines. Just ask your teammates what they
expect to happen, and if you’ve followed the rule closely enough, they should be able
to tell you.

 Using method_missing and a few other fun metaprogramming tricks, you may
work yourself into a position where you have a lot of methods that aren’t explicitly
defined. The Rails API is much larger than the API documentation indicates because
there is so much runtime code generation that goes on. How do you make sure that
your users and coworkers know what your code can do, that your code is testable, and,
above all, that your intentions are clear (even six months from now)? You docu-
ment, of course. And if you follow the rule of least surprise, you have little to worry
about: other developers will intuitively know which methods to expect when it all
makes sense.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

24 CHAPTER 1 Ruby under the microscope

 But what about testing? Don’t the dynamic features make it harder to test? Testing
metaprogramming is no different from testing any other piece of code. There’s noth-
ing magical about it, no hidden traps. You can use any tool available for testing, and,
in fact, in the next chapter we’re going to talk about testing at length.

1.5 Summary
Ruby has gained a lot of popularity in recent times because it’s a simpler, expressive
alternative to other contemporary languages. This success is partially due to the emer-
gence of Rails as a tangible tool that developers can use to develop production-quality
software that’s still developer friendly. Rails owes this friendliness to Ruby, which offers
a lot of features, such as metaprogramming, that make Ruby more expressive and
even fun.

 As more and more developers pick up Ruby, they will want to use their current pro-
gramming paradigms, like aspect-oriented programming or declarative program-
ming, and development practices such as Scrum or test-driven development. Ruby has
a number of libraries to help bring these old practices into your new environment
(such as Ruleby or AspectR). In the next chapter, we’ll concentrate on the most preva-
lent of these—test-driven development—and we’ll look at testing Ruby code using the
built-in testing library and some related third-party tools and libraries.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Testing Ruby
How do you currently test your code? From what people tell us, it seems the most pop-
ular testing methodology is “works now, works later”: they test their software by play-
ing around with it, and if it works now, they assume it always will. If this is your
approach, you’ve surely encountered many of the problems we did when we used that
method: changes to one part of the system breaking another, unexpected edge cases
(or non-edge cases!) causing the software to behave unexpectedly, and so on. Then
comes the inevitable debugging. The whole business is a huge time and effort sink.

 You can avoid this entire situation and gain more assurances along the way by
using automated testing. Ruby makes it easy by including a unit-testing library with
its standard distribution (and more tools are available via third-party libraries). But
before we use that library, let’s take a look at the basics of software testing.

This chapter covers
■ Testing principles
■ Test-driven development
■ Behavior-driven development
■ Using stubs and mocks
■ Testing your tests
25

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

26 CHAPTER 2 Testing Ruby

2.1 Testing principles
Automated testing is a process in which code is written to test the behavior of other
code. For example, if you wrote a shopping cart web application, you would write code
that would call the various pieces of the application and verify its results (to ensure the
calculate_total method gave you a correct total), test all the “moving parts” of your
application (by calling a piece of code that uses the database to ensure your database
code is behaving properly), and so on. These sorts of tests are called automated
because, well, they are. You write the test code, you run it (typically inside a container
specifically meant for testing), and it tests the code it’s written to test. This means no
more clicking around on your application for 10 minutes to ensure that one feature is
functioning properly; no more writing that fake input file and hoping it treats other
input files the same way; and no more wasting hours of time trying to nail down what
part of your big system is causing that little error to pop up. (OK, so maybe not “no
more,” but at least a lot less!)

 So what exactly do we mean by a test? A test at its core is a piece of code that
ensures that another piece of code does what it’s supposed to. In testing, you’re seek-
ing to set up a test state in your application and check for (the right) changes to that
state after the tests run. You write tests that will verify the results of a method or other
value-bearing code to ensure that, in most cases, the input is handled properly.

 If you wanted to write tests for your method get_results_as_string, you would
write a test to ensure it returned a string. You would also write a test that made sure it
raised exceptions with the wrong input as a safeguard: you want it to complain when
it’s improperly used (you want to test what works, and what doesn’t). You are testing
the behavior of your code in an isolated environment to ensure it behaves as it should.
This may sound abstract now, but we’ll take a look at what these tests look like in Ruby
later in this chapter.

2.1.1 Why bother with testing?

Many developers avoid testing because of all that extra code, and we’ll certainly give it
to you honestly: testing creates more code. But don’t let that scare you. Although test-
ing may cost you some keystrokes, you’ll appreciate it later when it saves brain power
and time. Testing keeps your other code in line; it lets you know if your code is still
behaving the same way, rather than your having to think hard about whether or not it
is, or, even worse, finding out it’s not when you’ve deployed it and it crashes hard.

 So, the first benefit of testing is obvious: you know that the code works. You could
just run the code and see for yourself—there’s no need to write automated test cases.
But consider the huge time sink that would become: spending hours a day poking at
your application, making sure each piece is working properly. Using automated tests
gives you peace of mind and a productivity boost because if the tests pass (and if
they’re well-written tests) you can be assured your code is behaving properly.

 As we all know, code has a sensitive personality: you fix things in one place, and it

may get upset and break in another place. Testing helps you maintain the behavior of

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

27Testing principles

your application; if you add code or refactor it, how can you be sure that your applica-
tion will behave the same way unless you test it? And what better way to test it than
with consistent, automated tests? Let’s say you refactor a class’s methods and cut them
down from 13 to 6. Can you be sure that the methods that are exposed to the rest of
the application still behave the same? If you’ve written a solid test suite, it should be
easy. Just run the tests, and if they all pass, it should presumably work in the same fash-
ion as it did before.

 Another benefit of automated tests is that they help with debugging. Some bugs
are notoriously hard to find when you have to repeatedly run the code, each time
going through manual steps like creating and deleting data to make the bug surface,
fixing and testing it again to see if you got to the root of the problem. Test cases are
more granular, and they tell you exactly what they’re doing, so by running the test
cases you can find bugs and fix them easily.

Now that we’ve covered the basic principles of testing, let’s look at testing in Ruby.
The “burden” of testing is much lighter in Ruby, thanks to its built-in testing libraries
and third-party tools. In this section, we’ll take a look at these tools and how they can
help you effectively write tests and code faster and easier.

2.1.2 Types of testing

When people refer to testing, they are usually talking about unit tests. Unit tests test
your code in small, discrete units: methods or classes or whatever small units of code
you care to test. These tests are the core of all testing, because they test your code at its
lowest level and verify its basic behaviors. Unit tests are the bread and butter of testing;
typically these will be the first tests you write and will act as the foundation that other
test types are built from. You wouldn’t want to write tests for a database application
and all of its queries without first writing a test to ensure it can connect and make a
query, right?

 Unit tests should be concentrated. They should test the smallest unit possible: a
single method at a time, a single call signature at a time, a single class at a time, a sin-

Testing and dynamic languages
Many critics of dynamic typing say that debugging dynamic languages is harder be-
cause the compiler doesn’t help you with debugging through type checking, but test-
ing can help you get over a dependence on this static compiler behavior. Because
Ruby objects are defined by behavior rather than a static definition, you can use tests
to verify their behavior more effectively than by relying on the compiler. Compilers
don’t test for nulls, string values, integers out of range, or partially constructed ob-
jects, and they are easily fooled by type casting. Testing gives you the same level of
granularity with a much wider test spectrum, and as such, more information when try-
ing to debug.
gle module at a time, and so on. In doing this, you create a set of tests that depends

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

28 CHAPTER 2 Testing Ruby

only on what’s being tested, making their results more accurate. This way the foo
method can’t make the test for bar fail.

NOTE Most developers initially have difficulty gaining this separation of con-
cerns. Don’t worry! There are plenty of techniques and libraries to help
you out. Further on in this chapter, we discuss some of these strategies.

Higher up in the architecture we find integration tests. These tests involve larger pieces
of code, and you can think of them as being something like compound unit tests. As
the name suggests, they test the integration of your application’s pieces. For example,
Rails’s integration tests allow you to test an entire application flow, from logging in,
through filling a form, to getting a page with search results. Other integration tests
could test a full application operation, like an e-commerce transaction or a sequence
of actions like downloading, extracting, and using data. Their purpose is to make sure
that all of the moving parts of your application, like your code, the database, any third-
party code, and so on, are all moving in the right direction.

 There are many other types of testing (functional tests, acceptance testing, regres-
sion testing, and so on), but these are beyond the scope of this book (and you may
never need to write any of these sorts of tests if you have a testing/QA team). The
remainder of this chapter will show you how to unit test your code using Ruby and its
libraries, and we’ll start by walking through a basic testing workflow.

2.1.3 Testing workflow

Developers typically don’t test as much as they should. The excuses usually range from
“It’s too much code!” to “We don’t have time for tests!” This temptation to skip testing
is especially prevalent when tests are an afterthought to development. This tendency
to ignore testing (along with a few more reasons we’ll discuss a little later) is why we
advocate a test-first approach to development. In a test-first approach, you write your
tests before you write your code, using your tests as a way to describe the behavior of
the code you will write. For example, if you were writing an application to process
XML files, you would want to write tests that describe how the application would
behave when fed a valid XML file, when fed an invalid XML file, when the process is
complete, and so on, and then you would go back and write the code to make those
tests valid.

 The test-first methodology can follow one of two paths: test-first development or test-
driven development. We’ve described test-first development above: write your tests, and
then write your code to make the tests pass. Test-driven development (TDD) is the same
idea, except that it adds an element of code refactoring to the mix. The basic process
can be broken into five steps: add, fail, code, test, refactor (as shown in figure 2.1).

Figure 2.1 Test-driven development is
a five-step process: add, fail, code, test,

refactor.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

29Test-driven development with Ruby

In the first step, you add tests for any new code you want to write before you write the code.
You write a test that tests for the right behavior of the method; if the method takes a
string and returns its length, write a test that calls the method with "hello" and test
for a return value of 5; if it should raise an exception when you pass it a nil, test for
that. As tests are added, you create a specification of the behavior that your code
should conform to.

 Once the specification is laid out, you move on to the fail step. In this step you run
the tests and ensure they fail. And for a reason. We use tests to deal with errors we make
in the code, but we can make errors while writing test cases. We can set up an object with
all the right values, but forget to call the method we’re supposed to test, or call a
method but forget to check its result, and such a test will always pass. Until you can make
the test fail at least once, you have no certainty it’s actually testing your code.

 Next, you write code to make the tests pass: you implement the specification you’ve
created with the tests. Write the method, module, or class, and if the tests pass, great!
If the tests fail, go back and debug your code to make them pass. When they all pass,
go back and refactor your tests and code so they’re more effective (shorter but accom-
plish just as much or more).

 But why bother with all this business?

2.2 Test-driven development with Ruby
The built-in Ruby testing library is similar to the
libraries of other languages, such as Java and
Python. The general architecture consists of
test suites, built from methods, which make
assertions about your code. These test suites are
run by test runners, which invoke the tests and
report the results. As shown in figure 2.2, a
single runner may invoke a number of suites,
which may hold a whole lot of tests (the
ActiveRecord tests for mySQL have 1,035 tests
with 3,940 assertions!).

 So, let’s get going on writing some tests.
We’ll start with a basic test: testing the length of
a string. First, we’ll need to create a test harness,
which in Ruby is a class that inherits from
Test::Unit::TestCase. Listing 2.1 shows our
test case.

require 'test/unit'

class MyFirstTest < Test::Unit::TestCase
 def test_length

Listing 2.1 A simple test using Test::Unit

Requires Test::Unit libraryB

Figure 2.2 Test suites are composed of a
collection of unit tests that are run one by
one by a test runner.
Defines test case C

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

30 CHAPTER 2 Testing Ruby

 my_string = "Testing is fun!"
 assert_equal 15, my_string.length
 end
end

First, we need to require the Test::Unit library B and create a class that inherits
from Test::Unit::TestCase. We can then create methods that test the code C.
Within these methods, we will make assertions D about the code. Save this code to a
file (for example, my_first_test.rb) and run it. You should see output that looks some-
thing like this:

Loaded suite my_first_test
Started
.
Finished in 0.00058 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

You can see that we had one test (one method that contained tests), one assertion,
and no failures. We had one assert_equal statement that evaluated to true, so we
had no failures. The assert_equal method isn’t the only assertion available; there are
a number of assert methods, which are listed in table 2.1.

Table 2.1 Ruby’s built-in testing library offers a large number of assertions baked right in.

Assertion Description

assert(boolean) Passes if boolean (that is, a boolean expres-
sion) is true.

assert_equal(expected, actual)
assert_not_equal(expected, actual)

Passes if expected == actual or
expected != actual.

assert_nil(object)
assert_not_nil(object)

Passes if object == nil or object != nil.

assert_match(pattern, string)
assert_no_match(pattern, string)

Passes if string matches or doesn’t match
pattern (such as a regular expression).

assert_raise(exception...) {block}
assert_nothing_raised(exception...) {block}

Passes if the block raises or doesn’t raise the
provided Exception(s)

assert_same(expected, actual)
assert_not_same(expected, actual)

Passes if actual.equal?(expected) or if
!actual.equal?(expected).

assert_respond_to(object, method) Passes if object can respond to the given
method.

assert_throws(expected_sym) {block}
assert_nothing_thrown {block}

Passes if the block throws the provided symbol;
assert_nothing_thrown passes if the pro-
vided block doesn’t throw any symbols.

assert_instance_of(class, object) Passes if object.class == class.

D
Proves code works,
or fails the test
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

31Test-driven development with Ruby

Using these assertions, you can build sets of tests that check your code effectively, but,
like your code, tests don’t run in a vacuum. Often you need a little bit of setup before
execution, or some teardown afterwards, such as reading in files or creating objects.
Test::Unit provides a way to do that using the xUnit architecture. For example, if we
wanted to test our string for length, emptiness, and hash value, it wouldn’t make sense
to instantiate the string in each method; instead we would use the setup method.
Take a look at listing 2.2 to see what we mean.

require 'test/unit'
class MyFirstTest < Test::Unit::TestCase
 def setup
 @my_string = "Testing is fun!"
 end

 def test_length
 assert_equal 15, @my_string.length
 end

 def test_emptiness
 assert_equal false, @my_string.empty?
 end

 def test_hash
 assert_equal "693492896", @my_string.hash.to_s
 end

 def teardown
 @my_string = nil
 end
end

We start out the same way as last time: require the library and create a class that
inherits from TestCase B. But this time, we do something a little different. We create
a setup method that creates an instance variable to hold our string C. Now we refer
to my_string as an instance variable throughout our tests (D and other places).
Finally, we (superfluously) set my_string to nil in teardown E. The teardown

assert_operator(first, operator, second) Passes if the first object compared to the sec-
ond object is true when using the provided
operator.

assert_kind_of(class, object) Passes if object.kind_of?(class).

assert_in_delta(expected, actual, delta) Passes if actual - expected <= delta.

assert_send(send_array) Passes if method sent to object returns true.

Listing 2.2 Using setup and teardown to prepare tests

Table 2.1 Ruby’s built-in testing library offers a large number of assertions baked right in. (continued)

Assertion Description

Requires Test::Unit libraryB

Sets up context in
which tests run

C

D
Proves code works,
or fails the test

Tears down context
in which tests run

E

method is special, like setup, and it’s run after tests. Yes, this example is a little

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

32 CHAPTER 2 Testing Ruby

contrived (especially because we didn’t do the whole testing cycle), but it’s important
to understand the concept before we take it into practice. Now that you have the con-
cept, let’s move on to an example that’s a little more real world.

 Let’s say you’re building an application to grab some XML reports from a remote
server, pull some data out, then process the data you pull out. The reports, which are
output from your payroll server, are catalogs of employees and hours worked; they are
used by the application you’re building to generate departmental expense reports.
One of these reports might look something like this:

<payroll-report>
 <department name="Graphics">
 <employee name="Janice Partridge">
 <week id="1">40</week>
 <week id="2">38</week>
 <week id="3">30</week>
 <week id="4">40</week>
 </employee>
 <employee name="James Jones">
 <week id="1">33</week>
 <week id="2">23</week>
 <week id="3">30</week>
 <week id="4">25</week>
 </employee>
 </department>
 <department name="IT">
 <employee name="Andrea Lantz">
 <week id="1">40</week>
 <week id="2">41</week>
 <week id="3">45</week>
 <week id="4">39</week>
 </employee>
 </department>
</payroll-report>

Fairly simple, right? Departments have employees, which have weeks and hours.
That’s simple enough to implement, and we’ll get to it soon, but first let’s write the
test cases. Take a look at listing 2.3.

require 'test/unit'
require 'payroll_reporter'

class PayrollReporterTest < Test::Unit::TestCase
 def setup
 @my_reporter = PayrollReporter.new('test.xml')
 end

 def test_department
 assert_equal nil, @my_reporter.department(1234)
 assert_equal nil, @my_reporter.department("Development")
 expected = {"Andrea Lantz"=>
 {"week"=> [{"id"=>"1", "content"=>"40"},

Listing 2.3 Tests for our to-be-implemented XML reporter

Creates a
PayrollReporter
that tests can use

B

Tests
department
data parsed
from XMLC
 {"id"=>"2", "content"=>"41"},

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

33Test-driven development with Ruby

 {"id"=>"3", "content"=>"45"},
 {"id"=>"4", "content"=>"39"}]}}
 assert_equal expected, @my_reporter.department("IT")
 end

 def test_employee
 assert_equal nil, @my_reporter.employee(234323)
 assert_equal nil, @my_reporter.employee("Mr. Mustache")
 expected = {"week"=> [
 {"id"=>"1", "content"=>"40"},
 {"id"=>"2", "content"=>"41"},
 {"id"=>"3", "content"=>"45"},
 {"id"=>"4", "content"=>"39"}]}
 assert_equal expected, @my_reporter.employee("Andrea Lantz")
 end

 def test_get_hours_for
 assert_equal nil, @my_reporter.get_hours_for("Miguel de Jesus")
 assert_equal 165, @my_reporter.get_hours_for("Andrea Lantz")
 end
end

First, we create an instance of the PayrollReporter class B in the setup method. The
constructor takes a path to an XML file (we’ll feed it a test file here). Next, we create a
test for a method named department, which will retrieve the details (employees, for
example) of a department C. We follow this with a test for a method named
employee, which will do the same thing but for employees (it will retrieve a hash of
their work hours) D. The last test we create is for a method named get_hours_for,
which retrieves the total hours worked by an employee E. Then we run the tests and
get a load of errors. If we create a stub file (a file that has all classes and methods
defined but with no method bodies), we should see failures rather than errors.

 We’ve added some tests and they are properly failing, so let’s implement the code
(which you can see in listing 2.4).

require 'rubygems'
require 'xmlsimple'

class PayrollReporter
 def initialize(report_path = 'foo.xml')
 @report = XmlSimple.xml_in(report_path, { 'KeyAttr' => 'name' })
 end

 def department(name)
 if @report['department'].keys.include?(name)
 @report['department'][name]['employee']
 end
 end

 def employee(name)
 my_person = nil
 @report['department'].keys.each do |dept|
 if @report['department'][dept]['employee'].keys.include?(name.to_s)

Listing 2.4 Our PayrollReporter implemented

Tests employee data
parsed from XML

D

ETests that work hours
were parsed and

calculated correctly

B
Uses the XmlSimple
library

Parses report from
XML document

C

D
Returns the named
department

Returns the
named employee

E

 my_person = @report['department'][dept]['employee'][name.to_s]

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

34 CHAPTER 2 Testing Ruby

 end
 end

 return my_person
 end

 def get_hours_for(name)
 my_employee = employee(name)
 return nil if my_employee == nil

 total_hours = 0
 my_employee['week'].each do |week|
 total_hours += week['content'].to_i
 end

 total_hours
 end
end

We’ll talk more about using and manipulating XML data later in this book, but for
now we’ll use a library named XmlSimple to do basic data extraction B. We imple-
ment each piece of the code individually. First the constructor, which takes a file path
and opens it for parsing C. Then a department method to get the employees in a
department D, and an employee method to get the work hours of an employee E.
Last, a get_hours_for method to get the total work hours of an employee F. Now we
need to run the tests to ensure they pass.

Loaded suite payroll_reporter_test
Started
...
Finished in 0.028279 seconds.

3 tests, 8 assertions, 0 failures, 0 errors

Excellent! Now that all of our tests pass, we can move on and refactor the current
code and add new code (maybe a method to get an employee’s work hours for a cer-
tain week or a whole department’s work hours). As we add this code, we’ll use the tests
to ensure that the application’s behavior is consistent. If the language of assertions
and tests doesn’t appeal to you, there is an alternative testing method.

2.3 Behavior-driven development with RSpec
Test cases help you ensure the code behaves as it should, but how do you know what it
should behave like? We like to base our development on a written specification, which
tells us what the code should do. The tests measure whether the code behaves accord-
ing to the specification, and the code itself implements the expected behavior. A writ-
ten specification makes it easier to work as a team, to work against in-development
libraries and services, to communicate to stakeholders what the software does, and to
track progress as the features are implemented.

 In this section we’ll talk about behavior-driven development, an approach that
focuses on specifying, testing and implementing behavior (in that order), and we’ll

Calculates work
hours for employee

F

show you how to do that using RSpec.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

35Behavior-driven development with RSpec

2.3.1 What is behavior-driven development?

Specifications take many forms, from high-level architecture diagrams through story-
boards and screen mocks, all the way down to capturing the behavior of each functional
unit. The high-level specification is most likely to remain accurate because it doesn’t cap-
ture a lot of details, and wholesale changes to the architecture and major components
don’t happen frequently. It’s much harder to keep a functional specification synchro-
nized with the code. If you have ever developed against a specification written as a Word
document, you’ll know what we’re talking about. The specification starts out as the best
ideas about the software to be written, and it’s only during development that you find
it contains wrong assumptions, which must be fixed in code. In a matter of days, the code
starts to diverge from the document, and the document turns into a work of fiction.

 Behavior-driven development (BDD) was conceived by Dan North to address this
issue. To do BDD right, you start by writing a specification of the code, but instead of
creating a static document, you create it in the same repository that holds the source
code. The specification forms a template that describes the expected behavior, which
you then fill up with test cases. As you make changes, you reflect those back into the
specification and tests, changing them alongside the code. The process is illustrated
in figure 2.3.

If this sounds a bit conceptual, don’t worry. In practice, it’s easy to do. A specification
document may initially look something like this:

describe "A new string" do
 it "should have a length of zero."
 it "should be empty."
end

This is Ruby code, and we’ll explain what it does in just a moment. It’s also a specifica-
tion that’s easy to read and understand. The behavior stands out, so we don’t have to
guess it from the code. When we run it through a tool, we get a report that looks the
one shown in Figure 2.4. The report we generate has three colors: green for test cases
that pass, identifying behaviors we implemented correctly; red for failing tests; and
yellow for anything we specified but haven’t implemented yet. It tells us where we
stand so we can track progress on our project.

 To go from the specification to working code, we’ll start by adding test cases (see
listing 2.6). From here on, we’re following TDD practices: write a test that fails, then
write the implementation to make the test pass.

 We’ll encounter the difference between BDD and TDD again when we decide to
make a change to our specification. Perhaps we will realize we need to use a different

Figure 2.3 The behavior-driven
development process starts with
specification, adds tests, and builds
an implementation that matches the
specification and passes the tests.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

36 CHAPTER 2 Testing Ruby

message format, present a task to the end user in a different way, or simplify a set of
methods that are part of the public API. Whatever the reason, we’re going to return to
this file, change the specification to describe the new behavior, fill it up with a test case
to check the new behavior, and work out the implementation to conform to both. BDD
gives us a way to manage change, keeping the code and specification synchronized.

 Now that we have covered the basics of BDD, let’s look at a particular frame-
work—one that’s used extensively in the Ruby world and that also influenced BDD
frameworks for languages as diverse as Java and FORTRAN. We’re talking about RSpec.

2.3.2 Testing with RSpec

Let’s build a suite of BDD tests using RSpec as we look at a simple spec for a class we’ll
create. We’ll start by installing RSpec (gem install rspec), which provides us with the
spec library we need to require in our code and the spec command-line tool we’ll use
to run these specification files. You can also use the command-line tool to generate
reports like the one in figure 2.4 and to repeatedly run only failing tests. In chapter 3
we’ll talk about Rake, and we’ll show you how to set up your environment to automate
these tasks.

 Let’s return to our previous string-testing example to get a grasp on BDD; listing 2.5

Figure 2.4 An HTML report showing successful, failing, and pending specifications
shows a basic spec for a new string object.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

37Behavior-driven development with RSpec

require 'rubygems'
require 'spec'

describe "A new string" do
 # Our specs will go here
end

First, we require the needed libraries B, which make available the methods that we
must have. Then we create a context C for our string object: “A new string.” This con-
text will describe the expected behavior of a new string. We can list those behaviors
without writing any code to test them yet, or we can go straight ahead and start adding
code that will test these behaviors. Because this is a trivial example, we’ll go ahead and
add some real test cases, which you can see in listing 2.6.

describe "A new string" do
 before do
 @my_string = ""
 end

 it "should have a length of zero." do
 @my_string.length.should == 0
 end

 it "should be empty." do
 @my_string.should be_empty
 end

Listing 2.5 A context for an empty queue string

Listing 2.6 A few specs for a string object

The role of specification in agile development
Agile development practices put emphasis on progress through small, incremental it-
erations, with a close feedback loop between developer and end users. Agile devel-
opment is the antithesis of BDUF (Big Design Up Front) and the waterfall model. What
agile practitioners discovered is that having one stage to cement the specification,
followed by a marathon to implement it, led to disaster. No matter how good your in-
tentions, it’s impossible to predict everything up front. Business needs may change
as you’re building the software, technical difficulties require adjustments, and your
customer may realize he needs something different when he sees the working code.
To create software successfully, you need the ability to evolve its design as you’re
building it, working closely with end users to make sure it meets their expectations.

To make agile practices work, you still need a specification. What you don’t need is
a specification that’s cast in stone before the first day of development. It has to be
a living, changing document that can adapt to evolving requirements. It’s even better
when it documents not what the software should have looked like, but what the de-
livered software actually does, and when it can be used to track progress. That
makes BDD an important tool for agile development.

Requires RSpecB

C
Establishes a
new context

Sets up context
before running
tests

B

Tests length
method

C

Tests empty
method

D

end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

38 CHAPTER 2 Testing Ruby

The general setup of the contexts and specifications may look familiar to you,
because they are somewhat similar to those in the TDD library. First, we specify a
before block B, which will create an instance variable for us to use in our specifica-
tions (cleaning up after a test is done using an after block). Next, we create a specifi-
cation that a new string should have a length of 0 C.

 Note the use of the method should; the should and should_not methods are the pri-
mary verbs used in RSpec. These methods, combined with predicates (like empty D),
allow you to specify various conditions. You use these predicates to describe how the
object being tested should behave (should throw_symbol), exist (should be_
instance_of), respond (should respond_to), and so on. Check out table 2.2 to see a
list of the specification predicates that are available. You can find more details on the
RSpec website (rspec.info).

Table 2.2 RSpec has numerous specifications you can use to verify the behavior of
 your application.

Specification Description

should be_predicate [args]
should_not be_predicate [args]

Uses the question mark form of the method pro-
vided as the predicate (e.g., simple_object.
should be_empty calls empty? on the
simple_object).

should be_close(val, tolerance)
should_not be_close(val, tolerance)

Allows a value tolerance for floating-point
specifications.

should have_something [args] Calls has_something? on the receiver (e.g.,
should_have_key calls has_key?).

should <operator> value
should_not <operator> value

Uses Ruby’s operators to test (e.g., should_be
< 3 or should_be =~ /hi/).

should include(item)
should_not include(item)

Specifies that a collection should or should not
include item.

should match(regex)
should_not match(regex)

Specifies that the receiver should or should not
match the provided regular expression.

should be_an_instance_of(class)
should_not be_an_instance_of(class)

Uses instance_of? to test the receiver’s
class.

should be_a_kind_of(class)
should_not be_a_kind_of(class)

Uses kind_of? to test the receiver’s class
ancestry.

should respond_to(symbol)
should_not respond_to(symbol)

Tests whether the receiver responds to the given
symbol using respond_to?.

should raise_error([ex], [mesg])
should_not raise_error([ex], [mesg])

When called on a Proc, specifies that a given
exception should or should not be raised; if no
exception is given, checks for any exception
thrown. The parameter for mesg is a string or reg-
ular expression that is matched against the

exception’s message.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

39Behavior-driven development with RSpec

Getting back to our example, you can run the specs and make sure they pass (which
they should!).

 Now let’s look at BDD with something a little more realistic. Let’s say you want to
test an IntranetReader object, which is a wrapper for your intranet’s RSS feed. We’ll
create a spec for all the behaviors of the library. Remember, because we’re using
behavior-driven development, we want to start with a spec, and we need to specify
behavior for whether or not the object has stories in it, whether it properly connected,
whether the RSS is parsed correctly, and so on, rather than asserting values and condi-
tions. Let’s start with the most basic spec, which you can see in listing 2.7.

require 'rubygems'
require 'spec'
require 'intranet_reader'

describe "A new IntranetReader" do
 before do
 @my_rss = IntranetReader.new ('sample_feed.rss')
 end

 it "should be empty." do
 @my_rss.should be_empty

should throw_symbol [:symbol]
should_not throw_symbol [:symbol]

When called on a Proc, tests whether a given
symbol was thrown; if no symbol is given, tests
for any symbol.

should change(receiver, :method)
should change { block }

When called on a Proc, tests whether the value
of receiver.method has changed after the
Proc has executed; this method has a number
of forms (check the latest documentation to see
them all).

should have(number).things
should_not have(number).things
should have_at_least(number).things
should have_at_most(number).things

Tests the receiver’s count (should_have),
lower limit (should_have_at_least), and
upper limit (should_have_at_most) of the
collection named for things (e.g., my_array.
should have(3).items).

should eql(arg)
should_not eql(arg)
should equal(arg)
should_not equal(arg)

Specifies that the receiver should or should not
be equal to arg in object identity (eql) or merely
value (equal).

should satisfy {|arg| block }
should_not satisfy {|arg| block }

Tests whether the block evaluates to true when
the receiver is passed as the only argument.

Listing 2.7 A basic spec for our IntranetReader class

Table 2.2 RSpec has numerous specifications you can use to verify the behavior of
 your application. (continued)

Specification Description

Requires RSpecB

Specifies
behavior for empty
IntranetReader

C

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

40 CHAPTER 2 Testing Ruby

 end

 it "should not have entries." do
 @my_rss.entries.should be_nil
 end

 it "should not have 'raw'." do
 @my_rss.raw.should be_nil
 end
end

describe "A populated IntranetReader" do
 before do
 @my_rss = IntranetReader.new ('sample_feed.rss')
 @my_rss.process
 end

 it "should not be empty." do
 @my_rss.should_not be_empty
 end

 it "should have entries." do
 @my_rss.entries.should_not be_nil
 end

 it "should have 'raw'." do
 @my_rss.raw.should_not be_nil
 end
end

This is similar to our specification in listing 2.6, except this time we’ve specified two
contexts. First, we require our essential libraries B, and then we proceed to create a
context for an empty IntranetReader C. Inside the context, we have specifications to
check for the emptiness of the new object we’ve created. A second context holds spec-
ifications for a populated IntranetReader D. These specifications ensure that the
object was populated properly.

 If you run these specifications now (using the spec command like this: spec
intranet_reader_spec.rb), you will get some errors (especially if you don’t create an
intranet_reader.rb file to require). It should look something like the following when
they’re failing “correctly.” (The actual output includes stack traces of all failing tests,
which we haven’t included here.)

FFFFFF

...

Finished in 0.002936 seconds

4 specifications, 4 failures

Once you’ve reached this point, all you have to do is go back and implement code to
make the tests pass, just like in test-driven development. Listing 2.8 shows our imple-
mentation using the SimpleRSS gem, but yours may look somewhat different.

Specifies
behavior for empty
IntranetReader

C

Specifies behavior
for populated
IntranetReader

D

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

41A testing environment

require 'rubygems'
require 'simple-rss'
require 'open-uri'

class IntranetReader
 def initialize(url)
 @feed_url = url
 end

 def process
 @raw = open(@feed_url).read
 @rss = SimpleRSS.parse @raw
 end

 def entries
 @rss.items if @rss
 end

 def empty?
 @rss.nil? ? true : @rss.items.empty?
 end

 def raw
 @raw
 end
end

If you run the specifications and there are no failures, it’s time to add and refactor
tests, code, or both. Perhaps you’d like to implement a method to validate the RSS
input before it’s processed, or maybe you’d like to allow the user to search the RSS
feed. Whatever you add, just remember: specify, code, test, refactor.

 But what if your testing environment doesn’t have access to the RSS feed? How do
you mimic your production environment for testing? The next section will discuss a
few strategies for dealing with this problem and a few techniques for setting up an
environment for your tests.

2.4 A testing environment
As you read this chapter and start playing with tests, you may be wondering, “What if
my test environment doesn’t have access to certain parts of my application, like net-
worked components or third-party services?” Fortunately for us, the pioneers of soft-
ware testing devised a number of techniques to handle this sort of thing. In this
section, we’ll take a look at three of these techniques: fixtures, stubs, and mocks.

2.4.1 Setting up a baseline with fixture data

One of the earliest difficulties you’ll encounter with testing is replicating the environ-
ment in which your code will run. Often the problem is not so much replicating the
relationship among your code, but the external environment from the OS or network.
Many developers use fixtures as a first crutch to get this sort of environment up and

Listing 2.8 Our implementation of IntranetReader
going. Fixture data (or fixtures) create a fixed, baseline environment for your tests to

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

42 CHAPTER 2 Testing Ruby

run in. For example, as with Ruby on Rails, you might use a YAML file to set up the
database with an initial set of products so you can test your inventory management
code against known data. Or, you might create a few data files that are prepopulated
with data that would normally be generated by another application so you can test
how your code reacts to existing data.

NOTE In the Ruby development realm, you will probably most often hear the
term “fixture” applied to Rails and its testing fixtures for databases. Don’t
be confused: the concept of a fixture existed before Rails was around and
is useful outside of Rails.

There is no special technique necessary to use fixtures because you are simply con-
structing a baseline environment for testing. For example, let’s say you were testing a
component of your application that received the output from ps to check for the exis-
tence of a process. Listing 2.9 shows the original class and test.

require 'test/unit'

class ProcessChecker
 def initialize
 @ps_output = ̀ ps -A`
 end

 def rails_server?
 @ps_output =~ /ruby script\/server/
 end

 # Other process-checking methods…
end

class TestProcessChecker < Test::Unit::TestCase
 def test_initialize
 my_checker = ProcessChecker.new

 assert my_checker.instance_variables.include?('@ps_output')
 end
end

As you can see, we have a ProcessChecker class that grabs the output from ps, stores it
in an instance variable B, and checks that variable for various processes (in this case,
we just check that the Rails server script is running) C. We then create a test that
ensures that variable is actually set when the object is instantiated D. But now we’re at
a testing impasse. How do you test the results of the ps call? Will you have to start the
Rails server script every time this test is run? What if the deployment environment
doesn’t even have Rails installed?

 This is one situation where implementing a fixture makes sense. If you create stan-
dard data for the object to use instead of making a call to ps every time, you can
ensure your tests will run the same everywhere (even on Windows!). Take a look at the
revised version of the test in listing 2.10.

Listing 2.9 A process checker class and test

Gets output
from ps

B

Checks for Rails
server script

C

Asserts output is in
an instance variable

D

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

43A testing environment

class TestProcessChecker < Test::Unit::TestCase
 def test_initialize
 my_checker = ProcessChecker.new

 output = <<PS
PID TT STAT TIME COMMAND
 1 ?? S<s 0:06.84 /sbin/launchd
 21 ?? Ss 0:13.90 /sbin/dynamic_pager
 25 ?? Ss 0:05.37 kextd
 35 p1 S+ 0:06.21 ruby script/server
PS

 my_checker.instance_variable_set('@ps_output', output)

 assert my_checker.instance_variables.include?('@ps_output')
 end
end

In this instance, we fill in some fixture data, which has static output from a run of the
ps command B. This data is then fed into the object via instance_variable_set C.
Now we can run this test on any platform (even though Windows will complain that it
can’t find ps) and it should behave the same way, because we now have a set of fixture
data to work from.

NOTE We are injecting the data in a way that makes our test case fragile C. We
recommend adding methods to your classes and modules that will assist
in testing. We wanted to show what’s possible when you don’t have full
control of the objects you’re testing.

You could then go back to your tests to refactor or add to them, as in listing 2.11.

class TestProcessChecker < Test::Unit::TestCase
 def setup
 @my_checker = ProcessChecker.new

 output = <<PS
PID TT STAT TIME COMMAND
 1 ?? S<s 0:06.84 /sbin/launchd
 21 ?? Ss 0:13.90 /sbin/dynamic_pager -F /private/var/vm/swapfile
 25 ?? Ss 0:05.37 kextd
 35 p1 S+ 0:06.21 ruby script/server
PS

 @my_checker.instance_variable_set('@ps_output', output)
 end

 def test_initialized
 assert @my_checker.instance_variables.include?('@ps_output')
 end

 def test_rails_server
 assert @my_checker.rails_server?
 end

Listing 2.10 A revised test with fixture data

Listing 2.11 Our refactored and expanded tests

Creates fixture dataB

Sets data in
the object

C

B
Uses setup method to
create an object to test

Tests for the
check method

C

end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

44 CHAPTER 2 Testing Ruby

Now that we’ve refactored to use the setup method B, it’s trivial to add tests for the
methods on the class C.

 Fixtures make it easy to set a baseline environment for your tests, but they can’t
cover everything. For example, if you’re using a database, fixtures often don’t scale
easily and become a hassle to maintain (you can find plenty of blog posts about the
subject on Google). If you plan on running your software on multiple platforms, you
may have to maintain a fixture for each platform in cases like the preceding example.
There are alternative methods to get around these problems, and with a little work
and abstraction we can take advantage of them. We can use fixtures to rake data, as
discussed earlier, and we can use stubs and mocks to fake methods and components.
Let’s start with stubs.

2.4.2 Faking components with stubs

Stubs are “fake” objects or methods that mimic the behavior of “real” objects. A stubbed
object creates a facade of a real object, seemingly behaving like the real object, but in
actuality faking the real object’s logic. This technique is useful for mimicking parts of
your application that may not be available or that are performance intensive.

 For example, let’s say you have an application that orders products from one of
your suppliers, but you don’t want to order a room full of products while running
your tests. In that case, you would create stubbed objects to fake the supplier service so
your tests can still be run without buying anything. These objects would act like,
expose the same API as, and return the same
values as the real objects that interact with the
remote service, except they wouldn’t be inter-
acting with the remote service. For a visual of
the concept, see figure 2.5.

 Let’s look at this example in code. Let’s say
the supplier exposes a web service API to you
and has included a natural Ruby wrapper for
this service. The API exposes a search method
for finding products, an add_to_cart method
for adding products to your cart, and a pur-
chase method for finishing your order. Your
application receives the purchasing data in
XML form, which is parsed and then given to
the supplier object to execute the purchase.
The supplier class has an execute_purchase
method, which takes an array of product
names and quantities from the XML purchas-
ing data. Our test for a simple purchase is
shown in listing 2.12.

Figure 2.5 A stubbed class will seem to
act like the real object but won’t actually
behave like it. In this case, the stub doesn’t
grab data from a remote service, but to the
code consuming the API, it appears to.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

45A testing environment

class TestSupplierInterface < Test::Unit::TestCase
 def test_execute_purchase
 data = [
 {:item_name => 'Red Rug', :quantity => 2},
 {:item_name => 'Set of Pens', :quantity => 17}
]

 my_supplier = MaterialSupplier.new
 assert my_supplier.execute_purchase(data)
 end
end

As you can see, we instantiate our class, call the execute_purchase method, and
assert returns the truth value. If you run the tests, it should fail, so we’re ready to
implement the class. The class implementation for this particular supplier is shown in
listing 2.13.

class MaterialSupplier
 def execute_purchase(purchase_data)
 purchase_data.each do |purchase|
 product_id = SupplierInterface.search(purchase[:item_name])
 SupplierInterface.add_to_cart(product_id, purchase[:quantity])
 end

 SupplierInterface.purchase
 end
end

As we mentioned, the execute_purchase method takes purchasing data from another
part of your application B. The data is then iterated, the product name is searched
for, its id is found, and it is added to the cart C. After the cart has been populated, we
finalize the purchase D.

 Now that we have a test and a class, how do we reliably test this? We can use the
remote system to implement it, but we shouldn’t depend on that all the time, espe-
cially if we want our tests to be consistent and reliable in every environment. Even if it
is available, you probably don’t want to (or shouldn’t) send real requests to the
remote server. So, we need to stub it.

 To stub the SupplierInterface class, we need to create a class of the same name
with input methods that return the right results (without making any requests to the
remote service). Because we only use this class for testing, we’ll include it in the same
file as our test case (listing 2.12). Listing 2.14 shows the stubbed SupplierInterface.

class SupplierInterface
 @@products = {
 1234 => 'Red Rug',

Listing 2.12 Building tests for our supplier class

Listing 2.13 A class for handling purchasing from a supplier

Listing 2.14 A stubbed SupplierInterface

Takes purchasing dataB

Iterates
through
data

C

Finalizes purchaseD

Specifies
initial data

B

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

46 CHAPTER 2 Testing Ruby

 5678 => 'Ergonomic Chair',
 9012 => 'Set of Pens'
 }

 @@cart = {}

 def self.search(product_name)
 @@products.index(product_name)
 end

 def self.add_to_cart(id, quantity)
 @@cart[id] = quantity
 end

 def self.purchase
 true if @@cart.length > 0
 end
end

We’ve created a stubbed version of SupplierInterface that works from data that
we’ve statically created B. We use class-level hashes to implement searching (using
the index method) C and adding to a cart D. Because all we are testing at this point
is whether we can add items to the cart and purchase them, we can just have the pur-
chase method mimic the remote system and return true if the order is successful (if
there are items in the cart) E. Now our tests should execute in the same manner,
except using our local stubbed class instead of the remote service interface.

 Stubbing is a useful technique for getting your tests up and running, but at the end
of the day, stubs are still dumb objects. They pass back the value you ask for, but they
don’t verify that the right method calls are being made to them. This deficiency can
make your tests weaker than they would be if you were to test those calls to the objects
you’re stubbing, because you could be missing out on a missed method call or a wrong
parameter. Now let’s take a look at another technique: mocks.

2.4.3 Setting behavior expectations with mock objects

Mock objects are similar to stubs, except they set expectations about your code’s interac-
tions with them. In our previous example, a mock object wouldn’t have just stupidly
taken the input for the search or add_to_cart methods—it would have verified that
it received the right parameters or that the method was called in the first place. In
doing this, it not only tests your code’s actions on the returned values, it also tests your
code’s interactions with these objects: parameters passed, methods called, exceptions
raised, and so on.

 In this section, we’ll look at a couple of ways to create mock objects. The first
method we’ll discuss is creating your own mock object patterns, no library required.
We’ll then take a look at using libraries such as Mocha to create mock objects.
Creating custom mocks
Before there were fancy mocking libraries, developers had to get their hands dirty and
build their own mock objects. Unlike programming on punch cards, creating your

Specifies
initial data

B

Searches for
products by name

C

Adds to @cartD

Finishes the purchaseE
own custom mock objects is still a valid practice. Sometimes there is a specific order or

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

47A testing environment

logic to how your application runs, and trying to shoehorn that into some mocking
libraries’ interfaces can sometimes be awkward. Building your own mock objects is
simply easier.

 Let’s continue with our previous example. If we take our stubbed class and add
expectations for each method, we can make it into a mock object. Listing 2.15 shows a
revised version of the SupplierInterface stubbed class from listing 2.14.

class SupplierInterface
 @@products = {
 1234 => 'Red Rug',
 5678 => 'Ergonomic Chair',
 9012 => 'Set of Pens'
 }

 @@cart = {}

 def self.search(product_name)
 $expectations[:search] = true if product_name.is_a?(String)
 @@products.index(product_name)
 end

 def self.add_to_cart(id, quantity)
 $expectations[:add_to_cart] = true if id.is_a?(Integer) &&

quantity.is_a?(Integer)
 @@cart[id] = quantity
 end

 def self.purchase
 $expectations[:purchase] = true
 true if @@cart.length > 0
 end
end

Here we have created expectations about parameters (B and C) and an expectation
that the purchase method will be called D, setting global variables appropriately.
(This is not the best practice, but for the sake of brevity we’ll keep it simple.) These
expectations can then be evaluated in an updated test, as shown in listing 2.16.

class TestSupplierInterface < Test::Unit::TestCase
 def setup
 $expectations = {}
 end

 def test_execute_purchase
 data = [
 {:item_name => 'Red Rug', :quantity => 2},
 {:item_name => 'Set of Pens', :quantity => 17}
]

 my_supplier = MaterialSupplier.new

Listing 2.15 Tests for shipping components

Listing 2.16 An updated test to use our custom mock

Expects
a string
argument

B

C Expects two integers

D
Expects this method
to be called
 assert my_supplier.execute_purchase(data)

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

48 CHAPTER 2 Testing Ruby

 [:search, :add_to_cart, :purchase].each do |meth|
 assert $expectations[meth],
 "#{meth} was not called or not called properly."
 end
 end
end

As you can see, we have added a small piece of code B to the end of the method that
iterates over our known expectations (one for each method we expected to be called)
to make sure they were set. If they weren’t, the test fails. This technique makes our
tests more robust, and, if used consistently, can make full test coverage a lot quicker
than using simple stubs or nothing at all.

 The only problem with custom mocks is they aren’t formal, and, as a result, they
are time-consuming to maintain. Fortunately there are a few libraries to formalize
your mocks and speed up the development of your tests.
Creating mocks with Mocha
As mocking has become more popular, a number of libraries has been created that
make the process much easier. In this section, we’re going to discuss Mocha, one of
the newer mocking libraries. Its mocking interface is much more intuitive and power-
ful than those of some other mocking libraries, so it’s the one we’d recommend, were
you to ask (and you are asking, because you are reading this book!).

TIP If you find that Mocha doesn’t work with your testing practices, or that it
is “too magical,” you may want to look into FlexMock, Jim Weirich’s
mocking library, or RSpec’s mocking capabilities.

Mocha works via a mechanism it calls expectations (which is why we called our hash
$expectations in the earlier examples). Mocha sets expectations on object behavior;
so, for example, you might set an expectation that an object will have its process
method called or that an object’s save method will be called and it should return
true. This is just like what we did before, except that Mocha makes the process much
cleaner. Mocha expectations are defined by a single method, expects, and they can
be attached to any object. When an expectation is attached to an object, a stub is auto-
matically created and an expectation is set up. Listing 2.17 shows our example (from
listing 2.16) refactored to use Mocha.

require 'rubygems'
require 'test/unit'
require 'mocha'

class SupplierInterface
end

class TestSupplierInterface < Test::Unit::TestCase
 def test_execute_purchase
 data = [
 {:item_name => 'Red Rug', :quantity => 2},
 {:item_name => 'Set of Pens', :quantity => 17}

Listing 2.17 The previous mocking example, rewritten using Mocha

Testing our
expectations

B

Specifies an
empty class

B

]

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

49Testing your tests

 my_supplier = MaterialSupplier.new

 SupplierInterface.expects(:search).with('Red Rug').returns(1234)
 SupplierInterface.expects(:add_to_cart).with(1234, 2)

 SupplierInterface.expects(:search).with('Set of Pens').
 returns(9012)
 SupplierInterface.expects(:add_to_cart).with(9012, 17)

 SupplierInterface.expects(:purchase).returns(true)

 assert my_supplier.execute_purchase(data)
 end
end

In this version of the code, we still verify behavior, but we don’t have to spend the
time to implement an entire class, and we get the benefit of being able to verify spe-
cific calls to a method. We first create a blank class, because all we’re doing is attach-
ing stubs to a dummy class B; in a real-world setting, this would be unnecessary,
because there would be a real class to attach the stubs to. Next, we define expecta-
tions for each method and for calls to that method C. The final expectation is then
set and the method tested D. When this test suite is executed, you should see some-
thing like the following:

Loaded suite purchasing
Started
.
Finished in 0.001637 seconds.

1 tests, 6 assertions, 0 failures, 0 errors

As you can see, assertions are created for each expectation that we set. These asser-
tions verify the behavior of your code when calling the stubbed methods.

 Ruby offers a number of utilities to take all sorts of measurements of your testing
code. Now that we’ve taken a look at testing, specifying, stubbing, and mocking, we
need to look at a few techniques that test your tests.

2.5 Testing your tests
No one is perfect. If testing helps to smoke out your imperfections, who’s to say you
won’t create some in the process of writing test code? In other words, “Who’s testing
the testers?” In this section, we’ll look two metrics for evaluating your testing code’s
coverage and quality.

2.5.1 Testing code coverage

As your applications grow in size, so will your test suites, and as your test suites grow in
size, so will the chances that you’ll miss testing a method or class here or there.

 Typically, there isn’t an issue with skipping a test here or there unless it’s an important
method that you forgot to test or a class that is used quite often. But Ruby offers a couple
of tools that can help you ensure your code is covered with good quality tests 100%, and

Sets up
expectations
for methods

C

D
Expects purchase
will complete
we’ll look at them next.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

50 CHAPTER 2 Testing Ruby

TIP The ZenTest tool from Ryan Davis is another way to avoid skipping tests.
If you run it over your code, it will generate stubs for code that you’ve
written tests for or generate tests for code that doesn’t have any. It’s
excellent if you’re writing tests for the existing code or if you’re doing
TDD and want to exert less effort.

Testing coverage with rcov
The rcov utility from Mauricio Fernandez allows you to test the C0 coverage of your
code (coverage of method and statements, but statements with conditions will not test
fully). It can be installed using RubyGems (for example: gem install rcov) and exe-
cuted using the rcov command. When executed with a test file as a parameter, it will
crawl through the code and look at the test coverage for each class. Rcov collects this
data and produces HTML/XHTML (or, optionally, text).

TIP Rcov can show your results in a simple text format if you feed it the -T
option on the command line.

Rcov works by running over test suites and checking the line coverage of the code. You
run it by invoking the rcov command followed by the list of files to test. As an example,
we’ll run rcov on a portion of Rails using the command rcov test/*.rb -o coverage/
(the -o option allows you to specify an output directory). Figure 2.6 shows the gener-
ated HTML page.

Figure 2.6 The rcov tool presents its results as HTML or text; the HTML view has nice graphs that
illustrate code coverage and individual pages for each file tested.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

51Testing your tests

As you can see, a percentage is given for each code file, along with a small bar graph.
Running this on a smaller codebase will yield less spectacular results, but it’s still a use-
ful tool for making sure your code is completely covered.

 Once you’ve mastered code coverage, it may beneficial to ensure your tests are of
good quality and coverage; Heckle is a tool for testing just that.

2.5.2 Testing quality with Heckle

Heckle, from Ryan Davis, is a different kind of tool. Think of Heckle as your tests’
worst nightmare. It tests the quality of your tests using a technique called fuzz testing.
The problem with test cases is that merely passing doesn’t guarantee you’re putting
the code to the test. Perhaps you’re calling one method, but not testing for the
changes it makes to the object. These kinds of errors happen on occasion, and you’ll
notice them when you change the test code slightly and the test still passes. Heckle
takes your tests, messes with the test code, then runs them again to ensure that they
fail when they should. If your tests don’t notice crazy changes to your code, then
either that code isn’t covered or it isn’t covered well.

TIP Heckle also supports RSpec. All you have to do is invoke RSpec with the
--heckle option.

Think of Heckle as a way of testing your tests—checking them for coverage and qual-
ity. Let’s say you have the class in listing 2.18.

class Customer
 def initialize(name = nil)
 @name = name
 end

 def tag
 tag = "Customer: "
 tag += @name.nil? ? "<unknown>" : @name
 tag
 end
end

This class will create a pretty simple object to represent customers and hold their
names. Listing 2.19 shows a test for this class.

require 'test/unit'
require 'customer'

class TestCustomer < Test::Unit::TestCase
 def test_tag
 @customer = Customer.new('Mike Stevens')
 assert_equal 'Customer: Mike Stevens', @customer.tag
 end

Listing 2.18 A simple class to Heckle

Listing 2.19 Our tests to Heckle
end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

52 CHAPTER 2 Testing Ruby

For an example’s sake, we have one test that tests the value returned by the tag
method. If we were to run rcov on this, it would tell you that we have 100 percent cov-
erage, but if we run Heckle, we’ll see a different story:

Initial tests pass. Let's rumble.

**
*** Customer#tag loaded with 3 possible mutations
**

3 mutations remaining...
2 mutations remaining...
1 mutations remaining...

The following mutations didn't cause test failures:

def tag
 tag = "Customer: "
 tag = (tag + if @name.nil? then
 "\037B\e|H\020B\027\022W3_q\027\025G\f?bZHJ&p/P&\nP\016\036-#\031"
 else
 @name
 end)
 tag
end

One mutation that Heckle ran didn’t cause a test failure when it should have. Note
that it changed the value that is returned from tag from <unknown> to a long string of
text. Because we didn’t test for this, it didn’t fail. So now we need to go back and add
or refactor tests to catch the mutation. Listing 2.20 shows how we did it.

class TestCustomer < Test::Unit::TestCase
 def test_tag
 @customer = Customer.new('James Litton')
 assert_equal 'Customer: James Litton', @customer.tag
 end

 def test_tag_empty
 @customer = Customer.new
 assert_equal 'Customer: <unknown>', @customer.tag
 end
end

We added a test to test for an empty name attribute, and if we run Heckle again, we
should see a different result:

Initial tests pass. Let's rumble.

**
*** Customer#tag loaded with 3 possible mutations
**

3 mutations remaining...
2 mutations remaining...
1 mutations remaining...

Listing 2.20 Our updated tests that can stand up to even a strong Heckling!
No mutants survived. Cool!

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

53Summary

No mutants survived! Great! So we’ve fixed our tests to stand up even to fuzz testing.
Now it’s time to go back and create more tests, more code, and heckle again and
again. Even though Ruby makes this cycle easier, it can get annoying to make a
change, run the tests, make a change, run the tests, and so on ad nauseum.

2.6 Summary
Ruby’s testing facilities almost make it too hard not to test! In this chapter, you’ve
been exposed to TDD and how to do it with Ruby. You should be able to build test
suites for new and old code and expand those tests over time. You were also shown
how to do BDD using the RSpec library, starting with the specification and working
your way through to implementation.

 We also discussed how to mimic a production environment while testing, using
techniques like fixtures and fake objects. You learned how to build stubs and mocks
(both from scratch and using Mocha) in order to mimic code functionality. In the last
stretch, we looked at a couple of secondary tools that can help you out when writing
tests. The rcov tool will ensure your code is covered, and the Heckle tool will help you
ensure your code is covered well.

 In the next chapter, we’ll start looking at using Ruby with other technologies. The
rest of this book is about practical techniques, many of them using other technologies,
but before we dig into that content, we need to take a look at the basics of integration
and automation with Ruby.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Scripting with Ruby
One of the greatest assets of Ruby is its ability to scale small. As a software devel-
oper, you have learned about the difficulties of scaling large: applications with mil-
lions of lines of code, handling terabytes of data and serving billions of hits a day,
taking advantage of multicore architectures and server farms. The rest of this book
is about working with big services: messaging, web services, databases, and so on.
Scaling up and scaling out are tough challenges that excite the imagination, but
they’re not all that software can do for you. We thought it would be prudent to take
a chapter and show you how Ruby can help you out doing everyday “stuff.”

 In our daily lives, there are a lot of small problems waiting to be solved. Some solu-
tions take a minute to develop and may fit in a single line, yet are just as important
as much larger, attention-grabbing problems. Consider a commit hook that runs the
test suite before allowing a commit, attaches the commit message to an open ticket,
and sends a notification to the development team. It’s not rocket science, nor an

This chapter covers
■ Reading and writing CSV data
■ Generating daily reports
■ Producing a comparison report
■ Generating customized printable reports
54

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

55Scripting with Ruby

opportunity for the next billion-dollar company, but it makes life easier. Simple solu-
tions like that automate repetitive tasks, double-check what we’re doing, and smooth
our workflow so we can get more done without spending the night at the office.

3.1 Scripting with Ruby
If you talk to developers proficient with scripting languages—command-line lan-
guages like bash, or programming languages like Ruby, Perl, and Python—you’ll learn
that their environment is full of little scripts. Each script on its own does very little, but
in combination they cut down on unnecessary workload and help us concentrate on
the truly creative tasks.

 In practice, scripts come in all shapes and forms. You can write a trivial Grease-
monkey script to change the color scheme of a website or remove intrusive ads and
annoying sidebar widgets. A lot of build systems use fairly complex scripts to build
complex applications targeting multiple platforms. System administrators rely on an
arsenal of scripts that run in the background, on a schedule or from the command
line, doing everything from deploying to monitoring to controlling and alerting.

 In this chapter, we’ll show you some simple, even throw-away, scripts. Not because
we have limited space, but because we think writing such scripts is a good habit to pick
up. There’s always room in your life for little scripts that do dumb work so you don’t
have to.

 To illustrate, we’re going to pick a fun project for our very first solution. We’re
going to inflict our recent travel photos on all our friends. Instead of inviting them
over to watch a slide show (we know they’d have an “emergency” at home that night),
we’ll serve those photos one by one using Twitter.
Problem
You need to take a collection of high-resolution images, and scale them down to show
fully in the browser, looking like Polaroid pictures. Next, you’ll make them available
on the web for everyone to see (using our Amazon S3 account), and announce each
image to the world using your Twitter account.
Solution
We’re going to write two different scripts:

■ The first will scale down and add a Polaroid effect to our images, upload them
to our Amazon S3 account, and write list of URLs (one for each image) so we
can check the images before unleashing them on the world.

■ The second will pick one image and post a link for that image to our Twitter
account. We’re going to schedule this script to run once an hour, Twittering a
different image each time it runs.

We’re going to need two Ruby gems for that, so let’s start by installing them:

$ gem install aws-s3
$ gem install twitter
We’ll start with the first script, shown in listing 3.1.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

56 CHAPTER 3 Scripting with Ruby

require 'rubygems'
require 'aws/s3'
require 'yaml'

fail "Usage:\n ruby prepare_image.rb <bucket name>\n" unless ARGV.first

puts "Processing images"
for jpg in Dir['*.jpg']
 png = jpg.sub(/jpg$/, 'png')
 puts "#{jpg} => #{png}"
 ̀ convert #{jpg} -resize 800 -bordercolor white

➥ -polaroid #{rand(20) -10} #{png}`
end

config = YAML.load(File.read(File.expand_path('.amazonws', ENV['HOME'])))
puts "Connecting to Amazon S3"
AWS::S3::Base.establish_connection!(
 :access_key_id=>config['key_id'],
 :secret_access_key=>config['key_secret']
)

AWS::S3::Bucket.create(ARGV.first)
bucket = AWS::S3::Bucket.find(ARGV.first)

upload = Dir['*.png']
for image in upload
 puts "Uploading #{image}"
 AWS::S3::S3Object.store image, open(image),
 bucket.name,
 :content_type=>'image/png',
 :access=>:public_read
end
urls = upload.map { |image|
 AWS::S3::S3Object.url_for(image, bucket.name, :authenticated=>false) }
File.open 'images', 'w' do |file|
 file.write urls.join("\n")
end

puts "Completed. Check the file images for list of URLs."

First, we need images that are just big enough to show fully in a web browser. Our pho-
tos are high resolution, so we need to scale them down to 800 pixels wide. We also
want to make them look like Polaroid pictures, with a white border, and tilt them ran-
domly between -10 and 10 degrees. We’re going to use the convert program to do
that transformation B.

 We connect to our Amazon S3 account C, and since Amazon S3 stores files in
buckets, we start by making sure we have a bucket ready D. Next, we upload these
images one by one (for simplicity, the originals are JPEG and the Polaroids are PNG),
and tell Amazon to make them publicly readable E. We get the URL for each of these
images F and store them in a file called images G.

 To use the script, we first need to supply our Amazon Web Services account cre-
dentials. We’ll put those in a separate file, so we can reuse them with different scripts,

Listing 3.1 Turn our photos into smaller, Polaroid-like images, and upload to Amazon S3

Scales down and
transforms images

B

Connects to
Amazon S3 account

C

D
Creates bucket
for photos

E Uploads a publicly
accessible image

Creates list of URLs for imagesF

G Stores all URLs in a file
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

57Scripting with Ruby

and so we can share this script without sharing our account information. You’ll need a
file called .amazonws in your home directory that looks like this:

key_id: <your AWS access key id>
key_secret: <your AWS secret access key>

This is the command to run the script and tell it which bucket to use:

$ ruby upload_images.rb ruby_in_practice

Now let’s turn to the second script, shown in listing 3.2.

require 'rubygems'
require 'twitter'
require 'yaml'

fail "Usage:\n ruby twitter_image.rb <message>\n" unless ARGV.first
file_name = File.join(File.dirname(__FILE__), 'images')
images = File.readlines(file_name)
fail "No images to twitter, images file is empty" if images.empty?
message = "#{ARGV.first} #{images.first}"

config = YAML.load(File.read(File.expand_path('.twitter', ENV['HOME'])))
twitter = Twitter::Base.new(
 config['email'],
 config['password']
)
puts "Posting #{message} to twitter"
twitter.post(message)

File.open file_name, 'w' do |file|
 file.write images[1..-1].join("\n")
end

We start by reading all the URLs from the images file B, but we’re only going to Twit-
ter the first image, so we’ll create a message for only one image C. Next, we connect
to our Twitter account D and post that message E. Finally, we’ll write the remaining
URLs back to the file F, so we can process the next URL when the script runs again.

 As before, we’re going to use a configuration file that lives in the home directory.
The .twitter file looks like this:

email: <email>
password: <password>

We’re not going to run this script from the command line. Instead, we’ll schedule it to
run once an hour using cron:

$ echo "0 * * * * $(pwd)/twitter_image.rb \"Check out this photo \"" > jobs
$ crontab jobs

Discussion
There are several libraries we could use to resize images and apply interesting trans-
formations. The first that comes to mind is RMagick. RMagick is a Ruby wrapper

Listing 3.2 Twitter a link to an image

BReads all image
URLs from file

C
Creates message
for first image

Connects
to Twitter
account

D

Posts messageE

Writes remaining
URLs to file

F

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

58 CHAPTER 3 Scripting with Ruby

around the excellent ImageMagick processing library. It has everything we need to
create fun images for our project, yet we decided not to use it. The trick to scaling
down is always looking for the simplest, shortest solution to the problem.

 A true script ninja will get the job done with the minimum amount of effort. Not
that RMagick is all that complicated, but we decided to do something else instead. We
typed convert --help on the command line, scanned the help page for the three set-
tings we wanted to use, tested them (again, from the command line) against a couple
of images, and pasted the command into our Ruby script. The convert program is a
command-line interface to ImageMagick, and for our case it was simpler and faster to
use than opening up the RMagick API documentation.

 We didn’t build any sophisticated error handling into either script. The first one
we’re going to run from the command line, and if it fails, we’ll just run it again. The
second script runs as a background job, and because we don’t want to miss posting any
image, we made sure it only discards an image’s URL after posting a message about
that image. If it fails, it will pick up where it left off the next time it runs.

 Eventually, it will run out of images to post and start failing. We’re going to notice
that no new images appear on our Twitter stream, check that the images file is empty,
and remove the cron job. If we wanted to be smarter, we could also build an auto-
remove feature into the script itself.

 You probably noticed that we took other shortcuts as well. We placed the original
photos, the PNG Polaroids, the list of URLs, and the two scripts all in the same direc-
tory. We mixed code with data, original content with temporary files. That’s not mod-
ular or organized as you’d expect a large-scale application to be. Then again, this is
not a large-scale application that will keep on running into the next millennium. It’s
the simplest script we could write in the least amount of time; we’re going to use it
once and discard it.

 If this is your first foray into scripting, we do hope you’ll think this example is inel-
egant, maybe downright ugly. Like we said, scripts come in all shapes and forms. Some
scripts manage critical systems and others are integral parts of larger applica-
tions—you’ll want to use your best development skills to write those. There’s a place
for writing scripts that are well thought out, easy to maintain, thoroughly docu-
mented, tested, and tested some more.

 But we also wanted to introduce you to a different world of scripting. One that’s more
focused on getting mundane tasks out of the way by automating them. There are times
when investing less is the best course of action, and simple is the best way to start.

 We also showed you how easy it is to glue things together with Ruby. We kept things
simple by using an image-transformation program instead of diving headfirst into an
API, and by keeping our authentication credentials in a text file. Instead of using a
database server, we stored state in a text file, and we used cron to schedule our tasks
instead of using a scheduling component. Of course, we benefited from the simplicity
of AWS-S3 and the Twitter gem.

 In the next section, we’re going to take another look at scripting, this time scripting

Windows applications using OLE Automation and Mac OS X applications using OSA.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

59Automating with OLE and OSA

3.2 Automating with OLE and OSA
Scripting languages are easier to program with than low-level programming lan-
guages. If you’ve ever written an Excel macro, created a workflow using Word and
Outlook, or programmed with AppleScript, you know what we’re talking about. Appli-
cation scripting—desktop and server applications alike—is done through APIs
designed specifically for the task at hand, and is simplified to work from any program-
ming language. In this section, we’re going to take a look at automating applications
on the Windows platform using OLE Automation, and Mac OS X applications using
Open Scripting Architecture (OSA).

 OLE Automation provides scripting support for Windows applications. Microsoft
Office is a set of desktop applications that use OLE Automation, typically in combina-
tion with the Visual Basic for Applications (VBA) scripting language. OLE is just as easy
to use from Ruby programs running on the Windows platform, as we’ll demonstrate
by using Ruby and Microsoft Outlook.

 OSA provides scripting support for applications running on Mac OS X. It was
designed specifically for AppleScript, so some experience with AppleScript is helpful,
but it is easy enough to use from the more powerful Ruby language. We’ll use the
same example to automate Apple’s iCal calendar application.

 Let’s start with OLE Automation and Microsoft Outlook.

3.2.1 Automating Outlook with Ruby

The example we’ll use is a fairly trivial one, but one that would be easier to develop in
Ruby than either VBA or AppleScript.

 During development we often have to take shortcuts to get something done.
Maybe we’re trying to get a demo running, or giving other developers a piece of code
so they can start working again. We mark those things we haven’t finished with com-
ments that say TODO or FIXME. And as much as we hate to admit it, we don’t always go
back and fix that code—mostly we forget about it. So we’re going to create a simple
script that will read these comments from the source code and adds tasks in Outlook
or To Do items in iCal to remind us about them.
Problem
Given a directory containing Ruby source files, find all the TODO and FIXME com-
ments buried in the source code, and create a task item for each one in Outlook.
Solution
You can see the entire script in listing 3.3.

require 'win32ole'

outlook = WIN32OLE.new('Outlook.Application')

Dir.glob('**/*.rb').each do |f|
 lines = File.readlines(f)

Listing 3.3 Turn TODO and FIXME comments into Outlook tasks

Accesses the Outlook
Application object

B

C
Iterates over all
files in project
 matcher = /#\s*(TODO|FIXME):?\s*(.*)\s*$/

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

60 CHAPTER 3 Scripting with Ruby

 lines.each_with_index do |line, n|
 if match = line.scan(matcher).first
 task = outlook.CreateItem(3)
 task.Subject = "%s: %s" % match
 details = []
 details << "%s, line %d:\n" %
 [File.join(Dir.pwd, f),
 n + 1]
 sel = [n - 5, 0].max...[n + 5, lines.size].min
 details.push sel.map do |i|
 "%5d: %s" % [i + 1, lines[i]]
 end

 task.Body = details.join
 task.Save
 end
 end
end

We start by obtaining the Outlook Application object using the Ruby-OLE bridge B.
We’ll need that object later on, to create Outlook tasks. Next, we use the Dir.glob
method to iterate through all the Ruby files in the current directory and each subdirec-
tory and read each file C. We need the line number of each comment, so we use each_
with_index to iterate through each line while keeping track of the line number D.

 Using a regular expression, we match each line containing a TODO or FIXME com-
ment E. Some people put a colon after the TODO/FIXME, and some don’t, so our
regular expression handles both cases. For each comment, we create an Outlook task
using the comment text as the task subject F. Next, we add the filename, line num-
ber, and a code snippet to the task body G, before saving the task in Outlook H.

 Try running this script on your project’s directory and watch as all TODO and
FIXME comments show up in your Outlook tasks list.
Discussion
The Ruby-OLE (win32ole) bridge is part of the Ruby standard library when running
Ruby on the Windows platform, so there’s no need to install anything else. You only
need to require win32ole in your code.

 The translation between OLE and Ruby objects is straightforward, but it uses OLE
naming conventions. If you read the documentation for Outlook OLE objects, you’ll
notice that we’re using the same methods (CreateItem, Save) and properties (Sub-
ject, Body) documented there.

 In this example, and the next one, we use the glob pattern **/*.rb to match any
Ruby file in the current directory and any of its subdirectories. You can easily extend
this to match other file types; for example, to search for Ruby and eRuby files, you can
write **/*.{rb,erb}. To keep the example simple, we wrote it to look only for Ruby
comments based on the hash sign, so you’ll want to change that if you’re searching for
other types of comments.

 If you’re familiar with C’s versatile printf function, you’ll be happy to know Ruby
includes both printf and sprintf in the core library (scanf is also available in the stan-

E

Matches each
TODO/FIXME
comment

D

Iterates
through
source code
keeping
track of line
numbers

Creates new task
object from comment

F

Adds
filename and
code snippet

G

H
Saves task to
Outlook tasks list
dard library, so you need to require it explicitly). The percent operator (%) is a shortcut

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

61Automating with OLE and OSA

for sprintf; when the left-side expression is a string, that string is used to format the
arguments provided by the right-side expression. So, for example, the expression

"%s: %s" % match

is shorthand for

sprintf("%s: %s", match[0], match[1])

The task subject is short and concise. We basically copy the comment text over, but it’s
not all that useful if we can’t tell which line of what file it comes from, so we use the
task body to convey that information, adding the filename and line number.

 If we have to deal with a lot of TODO/FIXME tasks—and we often do—we’d want
some way to prioritize which task to do first, so the more information we get, the bet-
ter. You’ll notice we added a snippet of the source code surrounding the comment to
the body of each task:

sel = [num - 5, 0].max .. [num + 5, lines.size].min
details.push sel.map { |i| "%5d: %s" % [i + 1, lines[i]] }
task.Body = details.join("\n")
task.Save

We used the current line number to create a range of lines, up to five lines before
and five lines after. So if the comment appears on line 7, our selection would be the
range 2..13. All we have to do then is transform each integer in that range into the
text of that line, and join the lines together.

 We’re going to use most of this code in the next section, only changing it to deal
with iCal instead of Outlook.

3.2.2 Automating iCal with Ruby

Now let’s turn our attention to Mac OS X and write the same example to automate iCal.

Slash and backslash
You’ll notice throughout this book that our examples use forward slashes as directory
separators (/, also known as slashes). Most Windows applications use backward
slashes by convention (\, also known as backslashes), although the Windows APIs
work equally well with both slashes and backslashes. The DOS command line is one
application that doesn’t; it only accepts backslashes in command-line arguments,
leading many developers to believe that Windows doesn’t support slashes at all.

Since slashes are supported on Windows, and are used as path separators on *nix
operating systems and in URLs, we recommend using slashes as a matter of prac-
tice. The Ruby standard library uses slashes as the default separator, and some
methods, like Dir.glob, only work with slashes. You can find out if your platform sup-
ports an alternative path separator by looking at the value of File::ALT_SEPARATOR,
but using File::SEPARATOR or just /, will make your code run on different operating
systems and support more third-party libraries.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

62 CHAPTER 3 Scripting with Ruby

Problem
Given a directory containing Ruby source files, find all the TODO and FIXME com-
ments buried in the source code, and create a To Do entry for each one in iCal.
Solution
For this solution, we decided to access iCal’s scripting objects using the Appscript
library. We explain why in the discussion, so for now, let’s get Appscript installed. The
gem name is actually rb-appscript:

$ sudo gem install rb-appscript

You can see the entire script in listing 3.4. You’ll notice it’s similar to the Outlook
script in listing 3.3. The main difference is using a method call to create the To Do
item and set all the relevant properties.

require 'rubygems'
require 'appscript'

ical = Appscript.app('iCal')
cal = ical.calendars['Work'].get
fail "No work calendar!" unless cal
Dir.glob('**/*.rb').each do |file|
 lines = File.readlines(file)
 matcher = /#\s*(TODO|FIXME):?\s*(.*)\s*$/
 lines.each_with_index do |line, n|
 if match = line.scan(matcher).first
 summary = "%s: %s" % match
 details = []
 details << "%s, line %d:\n" %
 [File.join(Dir.pwd, file),
 n + 1]
 sel = [n - 5, 0].max...[n + 5, lines.size].min
 details.push sel.map do |i|
 "%5d: %s" % [i + 1, lines[i]]
 end

 ical.make :new=>:todo, :at=>cal.end,
 :with_properties=>{
 :summary=>summary,
 :description=>details.join("\n")
 }
 end
 end
end

We start by obtaining the iCal application object B. There are several calendars, and
we want to add To Dos to the Work calendar, so we look it up C.

 We use the Dir.glob method to iterate through all the Ruby files in the current
directory and each subdirectory and read each file D, matching lines that contain a
TODO or FIXME comment E. For each comment, we create a summary from the com-

Listing 3.4 Turn TODO and FIXME comments into iCal To Dos

Connects to the
iCal application

B

Finds the Work calendarC

Iterates over all files in projectD

Matches each TODO/
FIXME comment

E

Creates To Do summaryF

Creates To Do
description

G

Adds To Do
item to end
of calendar

H

ment text F. We collect the filename, line number, and a code snippet to provide

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

63Automating with OLE and OSA

more details G. Then it’s just a matter of creating a new todo item at the end of the
calendar with these two properties H.
Discussion
To understand this example in full, you need to understand a bit about how Apple-
Script works, so let’s start with a simple AppleScript example in listing 3.5.

tell application "iCal" to
 make new todo at end of calendar "Work"
 with properties {summary:"FIXME now"}

AppleScript was designed to simplify scripting by using an English-like syntax. Some of
that syntax comes directly from the API, so understanding the syntax helps in under-
standing how to use the relevant APIs.

 The example in listing 3.5 loosely translates into a method call (make) with one
anonymous argument (todo) and two named arguments (at end and with proper-
ties). The value of the first named argument is an object reference; it doesn’t point
to an actual object but denotes a location—the end of a list. Since we’re adding a To
Do item, iCal will use that reference to plant the new item at the end of the To Do list.
The second named argument is similar to a Ruby hash. These arguments are then
used to call the make method on the iCal application.

 The Ruby equivalent, using the Appscript library, would look like listing 3.6.

ical = Appscript.app('iCal')
ical.make :new=>:todo, :at=>ical.calendars['Work'].end,
 :with_properties=>{ :summary=>'FIXME now' }

There are two libraries you can use to automate Mac OS X applications. Appscript
(from appscript.sourceforge.net) is based on the AppleScript model and so supports
all the flexibility and capabilities of scripting OSA (Open Scripting Architecture)
applications. The other one is RubyOSA (from rubyosa.rubyforge.org), which makes
OSA feel more Ruby-ish. If you want to get a feeling for RubyOSA, check out listing 3.7.

`open -a iCal`
ical = OSA.app('iCal')
cal = ical.calendars.find { |cal| cal.name == 'Work' }
position = if cal.todos.empty?
 cal.todos.last
 else
 cal.todos.last.after
 end

ical.make OSA::ICal::Todo, :at=>position,
 :with_properties=>{ :summary=>'FIXME now' }

Listing 3.5 AppleScript example for adding a To Do item to iCal

Listing 3.6 Ruby example for adding a To Do item to iCal using Appscript

Listing 3.7 Ruby example for adding a To Do item to iCal using RubyOSA

Finds iCal application
Creates new To Do
item in Work calendar

Starts iCal running
before we can call its APIFinds iCal application

Finds last item
in To Do list

Adds new To Do
item to calendar
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

64 CHAPTER 3 Scripting with Ruby

 Unfortunately, some things get lost in translation, and a few automation tasks we
worked on could not be done in RubyOSA. If you want to master a single library, we
recommend picking up Appscript.

 Another way of adding To Do items to your calendar is by using the Cocoa API to
create them in the calendar store. You can do a lot more things using the Cocoa APIs
than is possible with the OSA APIs; in fact, you can build an entire native application
using the Ruby/Cocoa bridge. For our example, this would be overkill, and we don’t
have room in this book to cover Ruby/Cocoa in full. But to whet your appetite, we’ll
look at a simple example. Listing 3.8 uses the Cocoa API to talk to Growl. Add it to the
end of listing 3.5, and the script will show a Growl notification when it completes.

require 'osx/cocoa'
dnc = OSX::NSDistributedNotificationCenter.defaultCenter
dnc.postNotificationName_object_userInfo_deliverImmediately(
 :GrowlApplicationRegistrationNotification, nil,
 { :ApplicationName=>'TODO/FIXME', :AllNotifications=>['Completed'] },
 true)
dnc.postNotificationName_object_userInfo_deliverImmediately(
 :GrowlNotification, nil,
 { :ApplicationName=>'TODO/FIXME', :NotificationName=>'Completed',
 :NotificationTitle=>'TODO/FIXME comments added to iCal' }, true)

Next, we’re going to look at a different kind of automation, using Rake to automate
multiple tasks and their dependencies.

3.3 Using Rake
Rake is a build tool similar in principle to Make. Briefly, it allows you to define tasks,
establish dependencies between tasks, and execute those tasks (and their dependen-
cies) from the command line. In chapter 8, we’ll look at Ruby Gems and show you
how to use Rake to build and package your gems.

 Since Rake tasks are written in Ruby, Rake is flexible enough that you can use it to
automate different types of tasks. Rails and Merb are two web application frameworks
that use Rake for development tasks; Vlad the Deployer, which we also cover in chap-
ter 8, uses Rake for deployment tasks. In fact, Rake has become such an indispensable
tool that it’s now included in most distributions of Ruby 1.8 (such as One-Click
Installer, for Mac OS X) and it’s available as part of Ruby 1.9. You can read more about
Rake at rubyrake.org.

 In this section, we’re going to cover the basics of Rake, and we’ll do that through
two examples that build on each other, to create a template Rakefile that you can eas-
ily apply to your own applications.

 If you don’t already have Rake installed, start by installing it:

$ gem install rake

Now let’s get started.

Listing 3.8 Growl notification using Cocoa API
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

65Using Rake

3.3.1 Using tasks

Rake is all about tasks, so we’ll start by looking at the very basics of working with tasks:
how to use Rakefile to define tasks, how to invoke tasks from the command line, and how
to use tasks as prerequisites of other tasks. Rake’s dependency mechanism takes care of
executing all the necessary tasks, and only those. If you don’t get it on the first read, don’t
despair; use Rake a few times in your own projects, and you’ll quickly pick it up.
Problem
You’re starting a new project, and you plan to use RDoc to generate documentation
and RSpec for behavior-driven development. These commands require specific com-
mand-line options, which are not the same for every project and can be run in differ-
ent ways. How can you make it less painful by automating these tasks?
Solution
Rake will look for a file called Rakefile (or rakefile). It’s a regular Ruby file, but it has
a specific name and is loaded by Rake so Rakefile can make use of methods like task
and file that are part of the Rake API. We’ll create it in the root directory of our proj-
ect and add all the necessary tasks to use RDoc and RSpec effectively. Listing 3.9 shows
what our Rakefile looks like.

require 'rake/rdoctask'
require 'spec/rake/spectask'

Rake::RDocTask.new('rdoc') do |rdoc|
 rdoc.title = 'myapp'
 rdoc.main = 'README'
 rdoc.options << '--line-numbers'
 rdoc.rdoc_files.include 'lib/**/*.rb', 'README', 'LICENSE'
end

desc 'Run all specs'
Spec::Rake::SpecTask.new('spec') do |task|
 task.spec_files = FileList['spec/**/*_spec.rb']
 task.spec_opts << '--loadby' << 'mtime' <<
 '--backtrace' <<
 '--format' << 'progress' <<
 '--format' << 'failing_examples:failed'
end

desc 'Run all failing examples'
Spec::Rake::SpecTask.new('failed') do |task|
 task.spec_files = FileList['spec/**/*_spec.rb']
 task.spec_opts << '--loadby' << 'mtime' <<
 '--backtrace' <<
 '--format' << 'progress' <<
 '--format' << 'failing_examples:failed' <<
 '--example' << 'failed'
end

task 'default'=>'spec'

Listing 3.9 Rakefile for creating RDoc documentation and running RSpec tests

Generates
documentation
using RDoc

B

Runs all specsC

Runs only
failing specs

D

Runs spec task
by default

E

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

66 CHAPTER 3 Scripting with Ruby

desc 'Clean temporary directories and files'
task 'clobber' do
 rm_rf 'tmp'
 rm_f 'failed'
end

We start out by using Rake::RDocTask to configure the documentation tasks B.
There are three—rdoc, rerdoc, and clobber_rdoc—all created together using the
same configuration. Next, we define two tasks for running specs (we’ll explain more
about them in the discussion that follows). The first task (spec) runs all our specs C,
while the second task (failed) runs only those examples that failed in the previous
run D. We’re strong believers in behavior-driven development, so we run spec as part
of the default task E. Last, we use the clobber task to clean up F all the temporary
files and directories created by the other tasks.
Discussion
Let’s start by finding out which tasks we just defined:

$ rake --tasks
rake clobber # Clean temporary directories and files
rake clobber_rdoc # Remove rdoc products
rake failing # Run all failing examples
rake rdoc # Build the rdoc HTML Files
rake rerdoc # Force a rebuild of the RDOC files
rake spec # Run all specs

RDoc is a tool for generating API documentation from comments found in Ruby
source files. You can run it from the command line using the rdoc command. It’s a
simple command to use, but when working with multiple projects, it’s easy to forget
which options to use with what project. Do we include the license file on this project?
Which file is the main documentation page? What else should we include besides the
lib directory?

 That’s the first thing we’re going to automate. Instead of having to remember
which command-line options to use, we’ll create one task to take care of all that. We’ll
use Rake::RDocTask for that, so to generate documentation for the current project,
all we need to do is run rake rdoc.

 We do the same for RSpec (we covered RSpec in chapter 2). We use
Spec::Rake::SpecTask to define a task that runs all the specification files it finds in
the spec directory, and we set it up to use our preferred options. In fact, we have two
tasks for RSpec. The first, called spec, runs all the specs and uses two formatters. One
formatter, progress, shows a progress bar so we get an indication of its location. You
can also pick other options, such as --format specdoc to have all the specifications
listed to the console, --colour to add a touch of color, --format html:specs.html to
generate an HTML report.

 Specifications are collections of examples, and examples are much like tests in that
they either fail or pass. The second formatter, failing_examples, logs all the failed
examples into the failed file. If there are any failures after running rake spec, they’re

F Cleans up at end
all collected in that file. Now we can go and fix the code, but instead of running all the

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

67Using Rake

specifications over again (which is time-consuming!) we’re going to run the few exam-
ples that failed in the previous run, using rake failed. We fix anything that’s still bro-
ken and keep repeating until there are no more failing examples left to run.

 If you run the rake command without giving it a task name, Rake will attempt to
run the default task. And by default, there is no default task, so we created one. We
like the practice of testing the code as often as possible, so we made the default task
run the spec task. We did that by adding it as a prerequisite.

 Rake allows you to invoke a given task any number of times, but it will only attempt
to execute the task once—the first time it’s invoked. That makes tasks different from,
say, Ruby methods. You can reference the rdoc task from as many places in the Rake-
file as you want, and all of these can trigger it, but it will only execute once. This is
fine, because we only need to generate the documentation once. This feature is par-
ticularly useful for complex Rakefiles, where the same task may be referenced from
multiple places. For example, we might want to generate the documentation on its
own, so we can access it during development, but also as part of a task that creates a
zip package of our project, and as part of another task that generates the documenta-
tion and uploads it to a website. We may also have a fourth task that goes through the
whole release process, directly depending on the package and site update tasks; effec-
tively depending on the rdoc task twice (once in the documentation task and once in
the release task). Since Rake will invoke the rdoc task once, on first use, we can use
these transitive dependencies liberally.

 Some tasks never execute. Tasks have prerequisites and actions, so when Rake
invokes a task, it starts by first invoking all the task’s prerequisites, which must come
before any of the task’s own actions. It then asks the task whether or not it should
execute, and if the task responds positively, Rake goes and executes all the actions
in sequence.

 When would a task not execute? Let’s see what happens when we run the rdoc task
twice in a row. We’re going to use the --trace flag, so Rake will report every task
invoked and executed. You can see the result of running rake rdoc --trace twice in
listing 3.10.

$ rake rdoc --trace
(in /Users/assaf/Ruby In Practice/CH3/3.3)
** Invoke rdoc (first_time)
** Invoke html/index.html (first_time)
** Invoke README (first_time, not_needed)
** Invoke LICENSE (first_time, not_needed)
** Invoke Rakefile (first_time, not_needed)
** Execute html/index.html

 README:
 LICENSE:
Generating HTML...

Listing 3.10 Listing 3.10 Running rake rdoc twice with --trace
Files: 2

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

68 CHAPTER 3 Scripting with Ruby

Classes: 0
Modules: 0
Methods: 0
Elapsed: 0.148s
** Execute rdoc
$ rake rdoc --trace
(in /Users/assaf/Ruby In Practice/CH3/3.3)
** Invoke rdoc (first_time)
** Invoke html/index.html (first_time, not_needed)
** Invoke README (first_time, not_needed)
** Invoke LICENSE (first_time, not_needed)
** Invoke Rakefile (first_time, not_needed)
** Execute rdoc

Both times, Rake starts by invoking the task rdoc. It then invokes all its prerequisites
(in this case, html/index.html), and finally executes the task, which by itself doesn’t
do anything interesting. All the work is actually done by the html/index.html task.
You can see from listing 3.10 that this task executes on the first run, but not on the sec-
ond one.

 Rake invokes the html/index.html task by first invoking all its prerequisites
(README, LICENSE, and rakefile). It then asks the task if it needs executing. In the
first run, there is no html/index.html file in the current directory, so the task exe-
cutes, generating all the documentation into the html directory, and with it the html/
index.html file. In the second run, the file already exists, so the task has nothing to
do. Rake calls the needed? method on the task, and the method returns false, so
Rake doesn’t execute any of its actions.

 That works out quite nicely. If the documentation already exists, the task doesn’t
do anything, and the whole process completes quickly by skipping unnecessary tasks.

 Rake allows you to define file tasks (using Rake::FileTask or simply with the file
method). You use file tasks to create or update files, and the task name is the same as
the file it represents. A file task will execute in two cases: if the file does not already
exist, or if any of its prerequisites are newer than the file itself.

 The html/index.html task is a file task. We know it will execute if the file does not
already exist, and it will also execute if any of the prerequisites are newer than the file.
So if we updated the README file, it would detect that the file is newer and generate
the documentation all over again. What if we change the title option by updating
the Rakefile? The Rakefile is also a prerequisite, and being newer than html/
index.html will force it to regenerate the documentation. So there you have it. A very
simple mechanism for tracking transitive dependencies that makes sure tasks execute,
but only when they’re needed.

 The tasks we have covered so far, documenting and running the specs, all generate
files in our working directory. All these files are generated by tasks, so we don’t have to
keep them around. If you like to keep your desk clean and tidy, you’ll want to do the
same with your working directory. We’re going to use the clobber task for that.

 You can see, at the end of listing 3.9, that we defined the clobber task to remove

the failed file and the tmp directory, both of which are generated by the spec/failed

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

69Using Rake

task. We don’t have to worry about the html directory, because Rake::RDocTask took
care of that. It defined one task called clobber_rdoc specifically to remove the html
directory, and you can use that task to clean up after the rdoc task. Separately, it
defined the clobber task to invoke the clobber_rdoc task.

 Yes, you can define the same task multiple times. In fact, when you call methods
like task or file, Rake first looks to see if a task exists, and if not, creates it. Then it
tasks any prerequisites or actions, and adds those to the existing task. So one thing we
can do is write different tasks that create temporary files in the working directory, and
next to each of these tasks, enhance the clobber task to clean up only those files and
directories. Rake also allows us to create composite tasks, like Rake::RDocTask, with-
out regard for the order in which tasks are defined.

 You might be asking how we know clobber uses clobber_rdoc? We used the
--prereqs option to list all the tasks and their dependencies, as shown in listing 3.11.

$ rake --prereqs
(in /Users/assaf/Ruby In Practice/CH3/3.3.1)
rake clobber
 clobber_rdoc
rake clobber_rdoc
rake default
 spec
rake failed
rake html
rake html/index.html
 README
 LICENSE
 Rakefile
rake rdoc
 html/index.html
rake rerdoc
 clobber_rdoc
 rdoc
rake spec

Check out the rerdoc task, which always recreates the documentation: it first cleans
up the documentation directory, then runs the rdoc task.

 We’re almost done with our introduction to Rake. Before we move on, we want to
add one more useful tip. Notice how we cleaned up an entire directory by calling
rm_rf? This method is defined by FileUtils, a standard library that’s part of Ruby
and provides a lot of convenience methods for copying, removing, linking, and other-
wise working with files. Usually you would have to require 'fileutils', but Rake
makes these methods directly accessible in your Rakefile.

3.3.2 File tasks

In this section, we’re going to expand on file tasks and show you how to use three fea-

Listing 3.11 Listing all the tasks and their prerequisites
tures of Rake that will help you automate tasks that deal with and process files. We’re

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

70 CHAPTER 3 Scripting with Ruby

going to use the file task to create first a file and later a directory from a list of prereq-
uisites. We’ll use FileList to manage lists of files and show you how it’s easier to use
and more powerful than a simple array. And we’ll use rules to tell Rake how to convert
a file of one type into another.
Problem
To get your code ready for release, you need to perform two additional tasks. You kept
your code modular by writing several JavaScript files, but for performance reasons you
want to serve a single JavaScript file to your users. You want to automate a task that will
merge these JavaScript files into a single file. You also wrote your documentation
using Textile, a lovely markup language, but you’re going to serve HTML pages to your
users. You want to automate a task that will convert your Textile files into HTML.
Solution
We started building our Rakefile in the previous section (see listing 3.9), and in this
section we’re going to add tasks to it. You can see those additional tasks in listing 3.12.

require 'redcloth'

desc 'Prepare application for distribution'
task 'prepare'=>['spec', 'rdoc', 'js/all.js', 'html']

file 'js/all.js'=>FileList['js/*.js'].exclude('js/all.js') do |task|
 combined = task.prerequisites.
 map { |prereq| File.read(prereq.to_s) }.join("\n")
 File.open task.name, 'w' do |file|
 file.write combined
 end
end

task 'clobber' do
 rm_f 'js/all.js'
end

rule '.html'=>'docs/%n.textile' do |task|
 mkdir_p File.dirname(task.name)
 textile = File.read(task.source)
 File.open task.name, 'w' do |file|
 file.write RedCloth.new(textile).to_html
 end
end

file 'html'=>FileList['docs/*.textile'].
 pathmap('html/%n.html')

We start by defining one task, prepare, that will invoke all the tasks we want to auto-
mate B. Some of these were defined before (see listing 3.9), and the other two we
define now. We start with a task to create the js/all.js file by merging all the
JavaScript files found in the js directory C. We also enhance the clobber task to
clean up by discarding js/all.js D. Next, we teach Rake how to convert any Textile
file it finds in the docs directory into an HTML file, using the RedCloth library E.

Listing 3.12 Tasks to merge JavaScript files and create HTML from Textile documents

Invokes all
preparation tasks

B

Combines multiple
JavaScript files
into oneC

Cleans up by removing
generated file

D

Creates HTML file
from Textile file

E

Creates html
directory and its files

F

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

71Using Rake

This is just a rule, it doesn’t process any specific file, but it sets the stage for the next
task that will find all the Textile files in the docs directory and use them to generate
HTML files in the html directory F.

 To run this Rakefile, first install the RedCloth gem (gem install redcloth) and
invoke the prepare task:

$ rake prepare

Discussion
Let’s start with the file task that creates the combined js/all.js. A naïve implementa-
tion would just iterate over a list of files, read the contents of each one, merge them,
and create a file from the result. We could write it like this:

file 'js/all.js' do |task|
 combined = ['js/utils.js', 'js/effects.js'].
 map { |prereq| File.read(prereq.to_s) }.join("\n")
 File.open task.name, 'w' do |file|
 file.write combined
 end
end

As we learned in section 3.3.1, this task will create the scripts/all.js file when it
executes, but it will not execute if the file already exists. We can make it execute each
time, but what we’re really interested in is making it execute whenever one of the
source files (utils.js or effects.js) changes. We do that by specifying these two
files as prerequisites, so that our task executes whenever one of the prerequisites is
more recent than the file created by the task.

 We want to keep our Rakefile DRY, so in addition to specifying the prerequisites
once, we’re going to use the prerequisite list from within the task definition. Our
revised task looks like this:

file 'scripts/all.js'=>['js/utils.js', 'js/effects.js'] do |task|
 combined = task.prerequisites.
 map { |prereq| File.read(prereq.to_s) }.join("\n")
 File.open task.name, 'w' do |file|
 file.write combined
 end
end

Now all we have to do is add new prerequisites to the task definition whenever we add
new files in the js directory. Simple, and so easy to forget, so let’s instead ask the task
to pick up all the files in the js directory and process them.

 Rake has a powerful tool for dealing with lists of files called, not surprisingly,
FileList. It’s very similar to Ruby’s Array, and it implements all the same methods, so
you can use a file list just like an array. We can list each file individually, but FileList
can also use file patterns (aka glob patterns). Instead of listing each individual file,
we’ll use FileList['js/*.js'] to pick up all the JavaScript files in the js directory.

 Can you spot the bug? Once we create the js/all.js file, the glob pattern will pick

it up as well, and our task will merge all the files including js/all.js itself, doubling

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

72 CHAPTER 3 Scripting with Ruby

its size. It will keep doubling each time we run the task. Oops! Fortunately, we can also
tell FileList to exclude files that match a certain pattern, so we’ll change our definition
to use FileList['js/*.js'].exclude('js/all.js'). You can see the final version in
listing 3.12.

 We’ll explore another way to use FileList in a moment, but first, let’s talk about
rules. We decided to write our documentation using Textile (http://www.tex-
tism.com/tools/textile/), a very simple markup language. Textile documents are very
easy to write with a text editor, and they easily convert into HTML. A Textile document
would look something like listing 3.13.

h1. Welcome

Myapp is *the best* something something.

New features in Myapp 2.0:
* Super fast
* Never breaks
* Saves kittens

Hear what other people have to say:

bq. Myapp has totally changed my life!
-- Anonymous

Developed for: "Ruby in Practice":http://www.manning.com/mcanally/

To turn Textile documents into HTML, we’re going to use RedCloth (for documenta-
tion, see http://redcloth.org). We can tell Rake how to convert any Textile file into
any HTML file by writing a rule. Let’s say we use rule '.html'=>'.textile'. We don’t
have a task to create the welcome.html file, but we’re still going to ask Rake to invoke
that task. Rake will look for a matching rule that can pair the target file (the file we
want to create) with an existing source file, and if it finds a match, it will use the rule
to create a new file task.

 Because our rule applies to any file with the .html extension, it will match against
the target file. The rule also tells Rake how to convert the target filename into a
source filename, which, in this example, involves a simple substitution of filename
extension. Since the source file exists, Rake will create a new file task with the name
welcome.html, the source welcome.textile, and the action specified by the rule.

 The example we gave in listing 3.12 is a bit more complicated. It uses a pathmap to
convert one filename to another: docs/%n.textile replaces the filename extension
with .textile and prefixes it with the docs directory. That way, we can use our rule to
convert the docs/welcome.textile file into html/welcome.html.

 But first, we need to know all the HTML files we want to create. Remember that at
this point, we only have Textile files to work with, so we’ll use FileList to list all the
Textile files in the docs directory, and pathmap to convert that to a list of the HTML
files we want to create:

Listing 3.13 Example Textile document that we’ll convert to HTML
file 'html'=>FileList['docs/*.textile'].pathmap('html/%n.html')

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://www.textism.com/tools/textile/
http://www.textism.com/tools/textile/
http://redcloth.org

73Summary

This one line is responsible for generating the html directory and all its files, only
when necessary, while still updating the generated files when we modify the corre-
sponding Textile documents. It’s this combination of simplicity and power that makes
Rake what it is.

3.4 Summary
In this chapter, we took a look at Ruby from a slightly different perspective: from that
of a scripting language. We showed how to use Ruby to automate everyday tasks and
drive other applications and services. In our first solution, we looked at simply using
Ruby to interact with Twitter. Then we turned to platform-specific scripting with OSA
and OLE and showed you how to drive applications using each of these technologies.
Finally, we showed you how to use Rake to automate everyday tasks cleanly.

 This foray into “scaling small” was fun, wasn’t it? In the next part of the book,
we’ll turn our attention to working with “bigger” technologies: databases, web appli-
cations, and so on. The next two chapters will take a look at working with the Web
and Ruby, specifically advancing your Rails knowledge and then applying that to cre-
ating Web services.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Part 2

Integration and
 communication

More and more applications need to perform some type of communica-
tion with the outside world, and even more applications are required to inte-
grate with existing legacy technologies. In chapters 4 through 8, we’ll look at
how you can expose your application’s functionality to the outside world and
how to hook into existing interfaces and services. We’ll end this segment by
looking at Ruby deployment options, including gems and automated deploy-
ment with Capistrano.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Ruby on Rails techniques
“Another Ruby book that teaches Rails?” No, we’re not going that far! This chapter
is not an introduction or tutorial on Rails; rather, it is a discussion of techniques
related to Ruby on Rails. There’s a middle-documentation problem that’s arisen in
the Rails community, and this chapter is meant to fill a few of the gaps that many
other books and documentation sources leave open. We’ll cover extending the Rails
framework, through library code, plugins, and more, and we’ll finish by talking
about profiling your Rails code. Let’s start by looking at Rails’ helper mechanism.

4.1 Extending Rails
A lot of Rails developers see the magic going on in Rails and wonder how to cap-
ture that same simplicity in their own helpers or other Ruby scripts. As we’ve found
out, using metaprogramming (remember that from chapter 1?) along with a few of
Rails’ built-in mechanisms will give you maximum syntactic sugar while also making
it easy to develop.

This chapter covers
■ Using third-party libraries with helpers
■ Keeping code DRY using metaprogramming
■ Sharing code using plugins and gems
■ Benchmarking and profiling Rails applications
77

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

78 CHAPTER 4 Ruby on Rails techniques

 There are three essential types of extensions to Rails: helpers, libraries, and plug-
ins. Helpers are view-specific extensions that expose new functionality to views or
expose deeper functionality from controllers or models to views. Libraries are just
that: they are part of your overall application, but separate from its models, views, and
controllers. Plugins are essentially libraries that are in a redistributable format.

4.1.1 Using helpers to expose Ruby libraries

Surprisingly, many new Rails developers misunderstand the relationship between
Ruby and Rails. Rails is written in Ruby, and as such can take advantage of any library
that Ruby can. Some libraries are written specifically for, or with support for, Rails
applications. Most libraries are general-purpose—they’re still fully functional inside
Rails, but we wish they would be as easy to use as the rest of Rails: using convention
over configuration, keeping code simple and DRY, and so forth. In this section, we’ll
take one such general-purpose library and make it more Rails-friendly using helpers.
Problem
You have an existing Ruby library that you would like to expose to a Rails application
in a natural way.
Solution
There are three main types of libraries or components we can create for Rails: a
helper that lives in app/helpers, a library that lives in lib/, and plugins. In this
instance, let’s say we want to build a source-code browser and employ syntax highlight-
ing. We’ll create a helper to expose the Ultraviolet syntax highlighting library to a
Rails application.

 Ultraviolet’s syntax is pretty nice, but we don’t want to put something like the fol-
lowing in our views or controllers if we can help it:

result = Uv.parse(code, "xhtml", "ruby", false, "amy")

The first parameter is the code we want to parse, followed by the format to output, fol-
lowed by the syntax file to use (Ultraviolet lets you use TextMate syntax and theme
files), followed by true or false to indicate whether we need line numbers, followed,
finally, by the name of the theme we want to use. Putting all that through an applica-
tion will not only junk up the code, it will also cause a lot of duplication. (Most likely,
three of these arguments are always the same in a given application, and repeating
them all through the codebase makes it hard to change the code when you decide to
switch themes, or maybe to turn line numbers off throughout your application.) We
need to figure out a way to make it friendlier.

 To get started, we’ll first install Ultraviolet using RubyGems with a command some-
thing like the following:

gem install ultraviolet

Now we need to consider what a call to Ultraviolet would ideally look like when we call
it from a view. We want to simplify as much as possible; perhaps it would be best to

require only the code and make the other parameters optional. Of course, we’ll want

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

79Extending Rails

it to be semantically correct, so the Uv.parse call has to go in lieu of a better-named
method, like highlighted_code or simply code. Perhaps it should look something like
the following:

code("puts 'hello!' if code.ruby?")

So how do we do it? First, we need to either create a helper by creating a new file (we
recommend something like uv_helper.rb or edit application_helper.rb in the app/
helpers directory). Inside we need to define a code method (shown in Application-
Helper here):

require 'uv'

module UvHelper
 def code(code)
 end

end

Next we need to look at putting the call to Ultraviolet in place. We could take the
code as the sole argument and hard-code the other values, but it would be pretty nice
to be able to specify a different theme or syntax if we ever needed to (and it’s trivial
to add).

 Let’s create a method that requires just the code argument, but accepts all the

Using Gems With Rails 2.1 or later
Rails 2.1 adds support for using Ruby gems as plugins and libraries. If you upgraded
to Rails 2.1 or later, or you are starting a new project, we recommend using this fea-
ture to manage your gems. Your config/environment.rb file will look like this:

Rails::Initializer.run do |config|
 config.gem 'ultraviolet', :lib=>'uv'
 ...
end

Most times, Rails can infer which file to require by default. For some gems, we have
to specify the library’s main file explicitly, as we do here. If you’re using configuration
to load gems, you don’t need to use require in your source code.

Now you can ask Rails to install the application’s gem dependencies by running
Rake:

rake gems:install

This task installs system-wide gems that all your applications can use when running
on the current machine. When deploying, it’s easier to deploy the application along
with all its dependencies. You can do that by unpacking the gem dependencies into
the application’s vendor/gems directory, using this command:

rake gems:unpack
remaining optional arguments:

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

80 CHAPTER 4 Ruby on Rails techniques

def code(code, format='xhtml', syntax='ruby',
 line_numbers=false, theme='amy')
 Uv.parse(code, format, syntax, line_numbers, theme)
end

As you can see, we give default values to the parameters that won’t change often, so
when it’s called in a view, the only required argument will be the code we want to
highlight.

 Now we need to create a controller, an action, and a view and place the following
code inside the view.

<html>
 <head><title>Syntax highlighting!</title></head>
 <body>
 <%= code('@items.each {|item| puts item }') %>
 </body>
</html>

If you view the action in a browser, you should see that the code is monospaced, but it
doesn’t have any color! That’s because we didn’t tell Ultraviolet to copy its CSS and
other related files to the right place, or tell our view to include that CSS file.

 To do that, we’ll add a method to copy the CSS files from Ultraviolet to our applica-
tion’s public/stylesheet directory:

def copy_files
 Uv.copy_files 'xhtml', "#{RAILS_ROOT}/public/stylesheets"
 File.rename "#{RAILS_ROOT}/public/stylesheets/css/",
 "#{RAILS_ROOT}/public/stylesheets/syntax/"
end

Here, we first tell Ultraviolet to copy the files to our stylesheets directory, and we then
rename the directory it creates to something more sensible.

 Now we need to go back and add a few lines to our code method. It should look
something like the following:

def code(code, format='xhtml', syntax='ruby',
 line_numbers=false, theme='amy')
 unless File.exist?("#{RAILS_ROOT}/public/stylesheets/syntax")
 copy_files
 end

 Uv.parse(code, format, syntax, line_numbers, theme)
end

Now the helper checks for the existence of the theme CSS files, and if they aren’t
there it copies them. This may not be necessary if you don’t plan on sharing this
helper at all, but if you do, this copy should happen only once, so the performance hit
is negligible.

TIP If you develop this code into a full plugin, you can use the plugin’s
install.rb file to copy over the CSS files during installation.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

81Extending Rails

Now we need to create a method to include the stylesheet in our view. We could use
stylesheet_link_tag directly, but then we’d have to worry about which theme we
were using. In the interest of abstraction and making our lives easier, we’ll create a
custom method:

def theme_stylesheet(theme='amy')
 stylesheet_link_tag "syntax/#{theme}"
end

Now, if we add that to the <head> of our view, the code in the view should be properly
highlighted, and look something like what you see in figure 4.1.

 The final version of our syntax highlighting helper is shown in listing 4.1.

require 'uv'

module UvHelper
 def code(code, format='xhtml', syntax='ruby',
 line_numbers=false, theme='amy')
 unless File.exist?("#{RAILS_ROOT}/public/stylesheets/syntax")
 copy_files
 end

 Uv.parse(code, format, syntax, line_numbers, theme)
 end

private

 def copy_files
 Uv.copy_files 'xhtml', "#{RAILS_ROOT}/public/stylesheets"
 File.rename "#{RAILS_ROOT}/public/stylesheets/css/",
 "#{RAILS_ROOT}/public/stylesheets/syntax/"
 end

 def theme_stylesheet(theme='amy')
 stylesheet_link_tag "syntax/#{theme}"
 end
end

Our helper should be complete and ready to use in our application. No syntax is safe
from our highlighting now!

Listing 4.1 The whole Ultraviolet helper

Figure 4.1 The output from
our syntax highlighting library
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

82 CHAPTER 4 Ruby on Rails techniques

Discussion
Helpers are a great way to expose third-party functionality to your application or to
abstract your own logic to avoid duplication or a lot of unnecessary code. In this
instance, we could potentially be saving ourselves a lot of keystrokes while also preserv-
ing the flexibility of the original API from Ultraviolet. We built in the most common
use case for our needs, and left the rest to be explicitly specified. This “operation by
common convention” is how Rails manages to stay so simple and useful: the most com-
mon usage is dead simple. Think about how easy it is to map a database to a class or to
create really nice AJAX effects.

 Of course, this isn’t the only Ruby library you could expose to Rails, nor are help-
ers only useful for exposing Ruby libraries to Rails. There are a great number of Ruby
gems that would be (or are) very helpful to a Rails application when exposed prop-
erly: RedCloth, which parses Textile into HTML; any of the loads of time-handling
libraries such as Chronic; and the list goes on. Helpers are also useful for abstracting
away parts of your views that are common: setting a special page title on each page,
building your navigation menu, common layouts and widgets, and so on.

 But helpers are only really useful to your views; what about the rest of your applica-
tion? This is where other options, such as library code that lives in lib/ and plugins
come in. These mechanisms can help deal with duplication in a number of other
places in your application.

4.1.2 Metaprogramming away duplication

A big part of the Rails design philosophy is DRY—Don’t Repeat Yourself—but it’s very
easy to repeat yourself in a Rails application: putting the same validation in a number
of models, repeating that bit of markup on nearly every page, using that same idiom
over and over in your controllers. It takes a keen eye to see when to extract pieces of
code into reusable elements, but once you see what needs to be extracted, you need to
know what to do with it.
Problem
You have a lot of code that is very similar in structure and function that you would like
to consolidate as much as possible.
Solution
When you are building more complex models, validations and other related calls can
become quite large. One of Jeremy’s recent projects sported some models whose vali-
dations, plugin calls, and callbacks added up to over 30 lines at times. One way to
shorten a lot of the code that builds up in models is to enact metaprogramming and
abstract it away.

 For example, let’s say you were working on a project that had a lot of URL fields: links
for feeds, links for web pages, links for product pages. Your models just have a lot of fields
that are URLs, and you need to validate the fields, so you write something like this:

validates_presence_of :url
validates_length_of :url, :minimum => 12

validates_format_of :url, :with => /^((http|https):

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

83Extending Rails

➥ (([A-Za-z0-9$_.+!*(),;\/?:@&~=-])|%[A-Fa-f0-9]{2}){2,}(#([a-zA-Z0-9]
➥ [a-zA-Z0-9$_.+!*(),;\/?:@&~=%-]*))?([A-Za-z0-9$_+!*();\/?:~-]))/,
 :message => "isn't a valid URL."

As you can see, there are only a few simple validations for the field. This doesn’t seem
major, until you take a step back and realize that you’re doing these validations 25
to 30 times in your application on differently named attributes, sometimes two or
three times per model. If you decide to add to one of them or remove one of them,
that’s a lot of unnecessary work.

 The better way is to metaprogram a little library to help you clean them up. List-
ing 4.2 shows one such library. Place the code in a file (ours is named validates_url.rb)
in the lib/ folder.

module ValidatesUrl

 def validates_url(attribute = :url)
 validates_presence_of attribute
 validates_length_of attribute, :minimum => 12
 validates_format_of attribute, :with => /^((http|https):

➥ (([A-Za-z0-9$_.+!*(),;\/?:@&~=-])|%[A-Fa-f0-9]{2}){2,}(#([a-zA-Z0-9]
➥ [a-zA-Z0-9$_.+!*(),;\/?:@&~=%-]*))?([A-Za-z0-9$_+!*();\/?:~-]))/,
 :message => "isn't a valid URL."
end

end

ActiveRecord::Base.send(:extend, ValidatesUrl)

Basically, what we’ve done in listing 4.2 is to wrap the validations in a method, so we
can simplify our code and call validates_url on each attribute B we want to vali-
date. And since most often we’ll want to validate an attribute called url, we made that
the default attribute name.

 Finally, we extend ActiveRecord::Base with our method so it’s available to all of
our models C. We extended the class, adding a new method we can call on the class
itself. Specifying validation rules in Rails is done by calling methods on the class dur-
ing its definition.

 Extending classes is one of the metaprogramming techniques that makes Rails so
easy and powerful to use. This is different from adding methods to a class, methods we
can then call on objects of that class: we can do that as well, but we would use include
instead of extend.

 So, the validates_url method is now available to our models. Of course, we’ll
remove the older validations so they don’t look like the model in listing 4.3.

class Blog < ActiveRecord::Base
 validates_presence_of :url
 validates_length_of :url, :minimum => 12

Listing 4.2 A URL validation library

Listing 4.3 Our model, pre-metaprogramming

Validates the
record’s attribute

B

Adds validates_url method
to ActiveRecord::Base

C

 validates_format_of :url, :with => /^((http|https):

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

84 CHAPTER 4 Ruby on Rails techniques

➥ (([A-Za-z0-9$_.+!*(),;\/?:@&~=-])|%[A-Fa-f0-9]{2}){2,}(#([a-zA-Z0-9]
➥ [a-zA-Z0-9$_.+!*(),;\/?:@&~=%-]*))?([A-Za-z0-9$_+!*();\/?:~-]))/,
 :message => "isn't a valid URL."
 validates_presence_of :feed_url
 validates_length_of :feed_url, :minimum => 12
 validates_format_of :feed_url, :with => /^((http|https):

➥ (([A-Za-z0-9$_.+!*(),;\/?:@&~=-])|%[A-Fa-f0-9]{2}){2,}(#([a-zA-Z0-9]
➥ [a-zA-Z0-9$_.+!*(),;\/?:@&~=%-]*))?([A-Za-z0-9$_+!*();\/?:~-]))/,
 :message => "isn't a valid URL."
end

Instead, they’re cleaner and read much better, as you can see in listing 4.4.

class Post < ActiveRecord::Base
 validates_url
 validates_url :feed_url
end

Using this sort of metaprogramming can shear off tons of code cruft that’s floating
around in your applications.
Discussion
Metaprogramming in Ruby is a powerful concept, and it’s metaprogramming that
gives Rails its real power. Methods like acts_as_list, ActiveRecord’s attribute map-
ping, and nearly every model-related plugin, depend on metaprogramming to func-
tion. In this example, we’ve only shown one side of metaprogramming. There are
many more techniques we can use, some of which we’ll show later in this book.

 Now let’s look at taking this sort of code and making it reusable.

4.1.3 Turning your code into reusable components

After a while, you will build a considerable toolkit of helpers and libraries, but what if
you want to share those with your friends, family, fleeting acquaintances, and business
colleagues? The easiest way to do that is to extract the code into a plugin.
Problem
You’d like to share your recently metaprogrammed code with others as a plugin.
Solution
In this section, we’ll extract the URL validation library into a plugin that we can
distribute.

 First, generate a plugin using script/generate.

$ script/generate plugin validates_url

 create vendor/plugins/validates_url/lib
 create vendor/plugins/validates_url/tasks
 create vendor/plugins/validates_url/test
 create vendor/plugins/validates_url/README
 create vendor/plugins/validates_url/Rakefile
 create vendor/plugins/validates_url/init.rb

Listing 4.4 Our metaprogrammed model
 .

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

85Extending Rails

 .
 .
 create vendor/plugins/validates_url/test/validates_url_test.rb

It should have generated a number of files for you, including a Rake file, a code file,
and a few installation necessities. Next, copy the code from your library in lib/ to the
validates_url.rb file in the plugin’s directory.

 Now that the code is basically in the right place, we need to move some of the
pieces around. Pull the call to extend out from the bottom of the main code file and
place it in init.rb. The code in your init.rb file is executed in order to initialize the
plugin and execute any code hooks (such as extending a class) that your plugin needs
to work. Then fill out the README with some basic information, and you’ve just writ-
ten your first Rails plugin!

Discussion
As you can probably tell, Rails plugins are basically libraries and helpers that have
explicit places for code hooks, an install/uninstall script, and a README. Their simplic-
ity, though, makes them very easy to write while still being useful. This example covers
the core of writing a plugin, but there are a few little pieces that it doesn’t cover.

 First, plugins are given install and uninstall scripts, which should be used for any sort
of setup/teardown that your plugin needs to do. For example, if we were to port our
Ultraviolet helper to a plugin, we would probably want to call copy_files in the install
task and delete the copied files in the uninstall task rather than doing it on the first

Using gems to distribute Rails plugins
You can also use gems to distribute Rails plugins (Rails 2.1 or later). We’ll discuss
gem packaging and distribution in chapter 8, but let’s look at the difference between
gems and non-gem plugins.

You can install gems system-wide and use them across all your applications, or un-
pack gems into the application directory and distribute them alongside the applica-
tion. You’ll find unpacking easier to use when deploying Rails applications. Gems
unpack into the vendor/gems directory, and if you want to develop the gem alongside
your application, you can start by creating it in a directory under vendor/gems.

By convention, you use the lib directory to hold the Ruby files that make up your gem.
Any Rails-specific initialization goes in the rails/init.rb file.

Configuring your Rails application to use a system-wide gem is done in the config/
environment.rb file. Rails uses that information to list (rake gems), install (rake
gems:install), and unpack (rake gems:unpack) gems.

Each environment has a separate configuration file, and you can use these files to
specify gems that are only used in a specific environment, such as gems used for
development or testing but not in production.
request. This would not only knock down the small performance hit that you take from

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

86 CHAPTER 4 Ruby on Rails techniques

doing it on the first request, but you can also deal with any errors that might arise before
your application is running rather than after. Many plugins use the install hook to show
further instructions for installation, like the restful_authentication plugin that
shows you the README file with further installation and generation instructions.

 Plugins also have their own sets of Rake tasks, which can be used to do repeated
tasks related to the plugin. For example, if you had a plugin that worked with Ama-
zon’s S3, and you wanted to clear off your testing bucket, you might have a
rake:bucket:clear task. These tasks sit right alongside Rails’ tasks in the rake -T list-
ing, so they’re easily accessible to developers using your plugin.

 Now let’s turn our attention to Rails performance.

4.2 Rails performance
One of the sticking points for some developers, when it comes to Rails, is the perfor-
mance. Of course, performance is a rather relative term when you have so many mov-
ing parts in a framework: database performance, rendering performance, dispatch
performance, and so on. Any or all of these can play a part in your performance prob-
lems, but you can’t fix the problem until you know what it is. In this section, we’ll look
at how to profile a Rails application and find your problem spots.

 The simplest way to do it is to take a look in your log files. When you see something
like the following, you can pretty much guarantee it’s a problem area:

Processing HomeController#home (for 127.0.0.1 at 2007-08-31 10:15:30) [GET]
 Session ID: 39ba59dc6b7a6eb672cf3a0e89bdc75d
 Parameters: {"action"=>"home", "controller"=>"home"}
Rendering home/home
Completed in 26.39205 (1 reqs/sec) | Rendering: 0.09310 (1%) | 200 OK
[http://localhost/home/home]

If you don’t see anything that apparent, or if there are a lot of code branches in that
method, you’ll have to dig a little deeper into the workings of your code. Rails pro-
vides a benchmarking helper just for this purpose, which is a really handy tool for sim-
ple analysis of pain points in your code.

4.2.1 Benchmarking a Rails application

Benchmarking is a really easy way of getting a lot of data about the performance of
your Rails applications. Rails offers two ways of getting benchmark data. The first is to
use script/performance/benchmarker, which takes a line of code on the command
line, benchmarks it, and report back.

 Let’s say you thought your Order model’s cancel! method was getting out of hand.
You could do something like this to find out:

$ script/performance/benchmarker 'Order.find(:first).cancel!'

As a result, the script will give you a simple report of the measurements it took.

user system total real

#1 0.000000 0.000000 0.000000 (0.017904)

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

87Rails performance

Of course, if you actually had problematic code, it would return much larger num-
bers. This is great for testing things outside the context of your application, but Rails
also offers a simple helper for benchmarking inside your application.
Problem
You need to benchmark your Rails inside your application.
Solution
Rails offers a single method named benchmark that allows us to benchmark blocks of
code throughout an application. Let’s say we have a model method that looks like this:

def create_council_members(members)
 members.each do |member|
 new_member = Member.create(member[:attributes])

 new_member.association = Club.find_by_associate(member[:friend])
 new_member.unverified! if new_member.association.unverified?
 end
end

We’re having trouble telling which part of the code is causing the problem, but we
know it’s in this method because of the log files. If we were to wrap that segment of
code into a benchmark block, we could get a better idea of what’s going on:

def create_council_members(members)
 members.each do |member|
 Member.benchmark("Creating a member") do
 new_member = Member.create(member[:attributes])
 end

 Club.benchmark("Associating a member") do
 new_member.association = Club.find_by_associate(member[:friend])
 new_member.unverified! if new_member.association.unverified?
 end
 end
end

If we make a few requests and look inside the log file, we will see something like the
following snippet:

Creating a member (0.34019)
Associating a member (0.90927)
[...]
Creating a member (0.29010)
Associating a member (0.90902)
[...]
Creating a member (0.35069)
Associating a member (1.0937)

The time measurements are in parentheses and are usually quite telling. In this case,
associating a member takes a lot longer!
Discussion
Benchmarking models is great, but if you find yourself seeing high render times in
your logs, you can benchmark blocks of code in views in a similar manner. Views also
have a benchmark method, as you can see in the following code.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

88 CHAPTER 4 Ruby on Rails techniques

<% benchmark "Content tree menu" do %>
 <%= build_content_tree %>
<% end %>

This helper is great if you’re rendering a menu or complex trees of content and can’t
seem to nail down the performance problem. If you find you need more data than
either of these provides, perhaps you need to look into profiling.

4.2.2 Profiling a Rails application

Profiling offers runtime analysis of your Rails applications, breaking down each
method call and showing its share of the execution time. Profiling is a very useful way
to get in-depth information on your Ruby code in general, but it’s usually a little less
friendly than the way Rails provides.
Problem
You are having performance issues with a Rails application and would like to find your
application’s trouble spots.
Solution
Rails offers a script that lives in performance/ named profiler, which will use the
Ruby profiler to profile your Rails application. You invoke it in basically the same man-
ner as you invoke the benchmarker.

 For example, let’s say you wanted to profile the confirmation of reservations in
your hotel-booking application. The following line would invoke the profiler with
your confirm! method:

$ script/performance/profiler 'Reservation.confirm!'

Rails then produces a report to the console that includes a lot of information, some of
which is actually useful:

Loading Rails...

Using the standard Ruby profiler.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 12.20 0.10 0.10 188 0.53 0.64 Array#select
.
.
.
 5.12 0.82 0.04 1 1.00 0.98 Reservation#done!
.
.
.
 0.00 0.82 0.00 17 0.00 0.00 Proc#new
 0.00 0.82 0.00 1 0.00 820.00 #toplevel

We’ll say it again: the profiler produces a lot of data. Some of it is interesting (who
knew Array#select was the worst offender?), some of it is useless (of course #top-
level doesn’t have a performance hit!), and some of it is useful (the done! method
appears to be what’s killing the performance in this case). The important thing to

analyze here is not only the percentages and times, but the calls (in the fourth

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

89Summary

column). We would worry about Array#select if the 12 percent it takes up weren’t
spread across 188 calls; on the other hand, the done! method on our model eats up 5
percent in one call. That’s where a performance problem lies.
Discussion
If you’d like to get more information and fancier reporting on your Rails application,
a library called ruby-prof can help you out. It’s written in C, it’s much faster, and it
integrates directly with the Rails profiler script (which will automatically use ruby-prof
if it’s available). For example, if you want to generate an HTML report for a graph pro-
file, you can do this:

$ script/performance/profiler 'Reservation.confirm!' graph_html

The ruby-prof library is available as a Ruby gem and you can check out its RDoc at
http://ruby-prof.rubyforge.org/.

4.3 Summary
In this chapter, we looked at a number of techniques that Rails developers should be
employing. First, we looked at adding your own extensions to Rails and building reus-
able components from your own code. We then looked at gauging the performance of
your Rails application, and suggested a few practical tools and tips to get you started.
In the next chapter, we’ll take a deeper look at Ruby and web services, including an in-
depth look at REST and REST clients.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://ruby-prof.rubyforge.org/

Web services
Throughout this book, we show you ways of integrating Ruby with different applica-
tions and services. Some scenarios depend on a particular protocol or architecture,
such as using Lightweight Directory Access Protocol (LDAP), sharing data through
a relational database, or moving messages around with WebSphere MQ (WMQ). In
this chapter, we’ll explore the web architecture and look at how we can use web ser-
vices across language, platform, and application boundaries.

 To this end, we’ll focus on Service Oriented Architecture (SOA) with Ruby. SOA
is not a particular product, technology, or protocol—it’s an architecture for build-
ing services with the intent to reuse them in different contexts and combine them
into larger applications. In this chapter, we’re going to choose common protocols
and message formats and discuss three common styles for building web services:
plain HTTP, REST, and SOAP.

 First, we’ll cover the foundation and show you how to use HTTP and URLs. Then
we’ll venture into the world of RESTful web services and show you how to handle

This chapter covers
■ Using HTTP from Ruby
■ Building REST services with Rails
■ Using REST services with ActiveResource
■ Using SOAP with SOAP4R
90

resources, representations, and the uniform interface. Finally, we’ll talk about

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

91Using HTTP

SOAP and using SOAP4R as a means for integrating with services developed around
the SOAP stack, and in particular J2EE and .Net applications.

5.1 Using HTTP
The basic building blocks of the web are the HTTP protocol and the use of URLs for
addressing, and the content is mostly HTML and various media types like images,
music, and video. In this chapter, we’re going to focus on the programmatic web,
which is all about machines talking to machines and application-to-application inte-
gration. As a result, we’ll pay much more attention to structured data formats like
XML, JSON, and even CSV.

5.1.1 HTTP GET

We’re going to start with the simplest scenario and show you how to retrieve data from
a remote web service and then how to parse the resulting document into structured
data that you can process with Ruby. For this example we picked CSV. Although most
people equate web services with XML, there’s a surprising abundance of structured
data out there that is not XML. In this section, we’ll take the opportunity to show you
how easy it is to use non-XML data, delivered over the web.
Problem
You’re building a market intelligence application that needs to retrieve historical
stock prices about various public companies. That information is publicly available on
the web, but you need to retrieve it and parse it into data you can use.
Solution
For this example, we’re going to use Google Finance to get historical stock prices for
Google itself. Google Finance has a URL you can use without registering or authenti-
cating. It provides historical data in the form of a CSV document.

 Ruby provides two libraries for working with HTTP. For full HTTP support, we’ll
turn to Net::HTTP, which we cover in the next section, but for the common use case of
reading data from a web service, we’ll use the more convenient open-uri.

 So, to start, we’re going to construct a URL and use the open method to create a
connection and read the data:

url = "http://finance.google.com/finance/historical?q=NASDAQ:#{symbol}&

➥ output=csv"
data = open(url).read

Not all data on the web is HTML or XML, and in this example we retrieve a CSV docu-
ment. We’re going to use FasterCSV to parse the document (you will learn more about
FasterCSV in chapter 13). Let’s parse the document into a set of rows, and convert
each row into a hash:

csv = FasterCSV.parse data, :headers=>true, :converters=>:numeric
csv.map { |r| r.to_hash }

Now we’re going to roll all of this into a single method called historical_
stock_prices, so we can use it to read historical stock prices in our applications.

We’re also going to follow another Ruby idiom that allows us to either require the

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

92 CHAPTER 5 Web services

file as a library or run it from the command line as a script. Listing 5.1 shows the
entire program.

require 'rubygems'
require 'open-uri'
require 'faster-csv'

def historical_stock_prices(ticker)
 url = "http://finance.google.com/finance/historical

➥ ?q=NASDAQ:#{ticker}&output=csv"
 data = open(url).read
 csv = FasterCSV.parse data, :headers=>true,
 :converters=>:numeric
 csv.map { |r| r.to_hash }
end

if __FILE__ == $0
 pp historical_stock_prices(ARGV.first)
end

Here’s what we get when we run the program from the command line, showing one
line from the actual result:

$ ruby historical.rb GOOG
=> {"High"=>522.07, "Open"=>521.28, "Close"=>514.48, "Date"=>"10-Sep-07",
"Volume"=>3225800, "Low"=>510.88}

Discussion
Using the open-uri library is the easiest way to GET content from an HTTP server. It’s
designed to be simple to use and to handle the most common cases.

 Our example was simple enough that we could treat the URL as a string. In more
complex use cases, you will want to use URI objects instead. URI is a library that can
parse a URI into its components, like host, path, and query string. You can also use it
to construct URIs from their component parts and manipulate them. It includes
classes for supporting HTTP and FTP URLs, email (mailto:), and LDAP URIs, and is
easily extended.

 The open-uri library adds a read method to HTTP and FTP URIs, so let’s see how
we would use it:

uri = URI("http://finance.google.com/finance/historical?output=csv")
uri.query << "&q=NASDAQ:#{CGI.escape(ticker)}"
data = uri.read

Note that we’re using CGI.escape to properly escape a value before including it in the
query string. It’s not necessary for our example, since all the stock-ticker symbols we
want to deal with are ASCII characters, but it’s generally a good idea to deal with spe-
cial characters like = and & appearing in query string parameters.

 The read method returns the content of the HTTP response as a String. Most
times that’s all we care for, and we like the convenience of it. Occasionally, however,

Listing 5.1 Get historical stock prices from Google Finance

Constructs URL
from stock ticker

Retrieves
data from
web server

Parses CSV
document
using
FasterCSV
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

93Using HTTP

we’ll want more information from HTTP headers; for example, to determine the con-
tent type of the response, or to handle redirects.

 In Ruby, each object implements a single class, but you can also add methods to an
object instance, in addition to those provided by its class. There are several ways of
doing this.

 First, open-uri uses the extend method to add metadata methods to the String
object it returns. We can use that to access various HTTP headers, like this:

puts "The actual URL after redirection: #{data.base_uri}"
puts "Content type: #{data.content_type}"
puts "Last modified: #{data.last_modified}"
puts "The document: #{data}"

If you access the web from behind a proxy server, you can tell open-uri to use that
proxy server using the :proxy option. You can set the HTTP_PROXY environment vari-
able and open-uri will pick it up by default. So let’s use that to run our example from
behind a proxy server:

$ export HTTP_PROXY="http://myproxy:8080"
$ ruby historical.rb GOOG

In the next example, we’ll use open-uri to access a local server, bypassing the proxy,
and using HTTP Basic Authentication:

open(url, :proxy=>nil, :http_basic_authentication=>["john", "secret"])

For downloading larger documents, open-uri will also allow you to use a progress bar.
Check the open-uri documentation for more details.

 Now that we have covered retrieving data from a web server, let’s see how we can
send data to a web server by making an HTTP POST request.

5.1.2 HTTP POST

The previous section was a simple scenario using GET to access publicly available infor-
mation. In this section, we’ll turn it up a notch and use HTTP POST to submit data, add
authentication for access control, and handle status codes and errors.
Problem
In your network, you have an existing service that can receive and process orders. You
need a way to turn orders into XML documents and send them over to the order-
processing service.
Solution
Let’s start with the data. To make this solution easy to use, we’re going to support
two types of arguments. The XML document can be passed directly, in the form of a
string, or the data can be passed as a Hash, with the method converting it into an
XML document.

 For this simple example, we’re going to use the XmlSimple library, so let’s install it
first:
gem install xml-simple

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

94 CHAPTER 5 Web services

We will use XmlSimple to convert a hash into an XML document:

if Hash === data
 data = XmlSimple.xml_out(data, 'noattr'=>true, 'contentkey'=>'sku',
 'xmldeclaration'=>true, 'rootname'=>'order')
end

The XML document we’re going to create will look like this:

<?xml version='1.0' standalone='yes'?>
<order>
 <item>
 <quantity>1</quantity>
 <sku>123</sku>
 </item>
 <item>
 <quantity>2</quantity>
 <sku>456</sku>
 </item>
</order>

Now that we have the data, it’s time to create an HTTP connection. We’ll start by pars-
ing the URL string into a URI object, and set up Net::HTTP to use either the HTTP or
HTTPS protocol:

uri = URI.parse(url)
http = Net::HTTP.new(uri.host, uri.port)
http.use_ssl = true if uri.scheme == 'https'

Next, we’re going to set the HTTP headers. We don’t want the server to accept partial
documents, which could happen if the connection drops, so we’re going to tell it
exactly how long the document is. And for extra measure, we’re going to use an MD5
hash to make sure the document is not corrupted:

headers = { 'Content-Type'=>'application/xml',
 'Content-Length'=>data.size.to_s,
 'Content-MD5'=>Digest::MD5.hexdigest(data) }

In this example, we make a single request, so we’ll let Net::HTTP deal with opening
and closing the connection:

post = Net::HTTP::Post.new(uri.path, headers)
post.basic_auth uri.user, uri.password if uri.user
response = http.request post, data

We send the request, and we don’t expect any data in the result, but we do want to know
if our request was successful, so the last thing we’ll do is look at the status code returned
by the server. A successful response is anything with a 2xx status code. Some services
return 200 (OK), but others may return 201 (Created), 202 (Accepted), or 204 (No
Content). In this case, we expect 201 (Created) with the location of the new resource,
but we’ll also respond favorably to any other 2xx status code. All other responses are
treated as error conditions:

case response

 when Net::HTTPCreated; response['Location']

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

95Using HTTP

 when Net::HTTPSuccess; nil
 else response.error!
end

Listing 5.2 shows all these pieces merged into a single file.

require 'rubygems'
require 'uri'
require 'net/https'
require 'xmlsimple'
require 'md5'

def send_order(url, data)
 if Hash === data
 data = XmlSimple.xml_out(data, 'noattr'=>true,
 'contentkey'=>'sku',
 'xmldeclaration'=>true, 'rootname'=>'order')
 end

 uri = URI.parse(url)
 http = Net::HTTP.new(uri.host, uri.port)
 http.use_ssl = true if uri.scheme == 'https'

 headers = { 'Content-Type'=>'application/xml',
 'Content-Length'=>data.size.to_s,
 'Content-MD5'=>Digest::MD5.hexdigest(data) }

 post = Net::HTTP::Post.new(uri.path, headers)
 post.basic_auth uri.user, uri.password if uri.user
 response = http.request post, data

 case response
 when Net::HTTPCreated; response['Location']
 when Net::HTTPSuccess; nil
 else response.error!
 end
end

Now let’s see how we can send a new order with three lines of code (four if you count
the print statement):

order = { 'item'=>[{ 'sku'=>'123', 'quantity'=>1 },
 { 'sku'=>'456', 'quantity'=>2 }] }
url = send_order('https://order.server/create', order)
puts "Our new order at: #{url}" if url

Discussion
Ruby has several libraries for dealing with XML, and which one you choose depends
on the use case. When you need maximum flexibility and the ability to handle ele-
ments, attributes, and text nodes, you can use REXML to work with the XML document
tree. For performance-intensive applications, you can use libxml, a native XML library.
If you have data that you need to convert into an XML document, you can use Builder
instead (we’ll look at using it later in this chapter). Some XML documents map nicely

Listing 5.2 Using HTTP POST and XmlSimple to send a document to the web server

Converts Hash to
XML document

Creates new
Net::HTTP object

Sets headers
for content
type and size Creates new

POST request

Uses HTTP Basic
Authentication

Checks response
into a hash, in which case XmlSimple is true to its name. For this particular example,

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

96 CHAPTER 5 Web services

we chose XmlSimple because it fits nicely with what we wanted to do, but throughout
this book we will use different XML libraries, always choosing the one that’s best for
the task at hand.

 Some developers prefer to write or use APIs where authentication information is
passed as a separate argument on each method call, or stored once in an object. We
prefer to pass authentication information in the URL itself. You’ll notice that the pre-
vious example takes the username and password from the URL and applies it to the
POST request, using HTTP Basic Authentication. Since HTTP Basic Authentication
passes the username and password as clear text, we’ll use that in combination with
HTTPS to encrypt the request from snooping eyes. A URL with authentication infor-
mation in it will look like https://john:secret@example.com/create.

 HTTP is a connectionless protocol; it handles each request individually. The server
doesn’t care whether we send each request in a separate connection or send multiple
requests in a single connection. HTTP 1.1 provides keep-alive connections that we can
use to open a connection once and send multiple requests—the benefit is that we
don’t have to create a TCP connection for each request, and it gives us better latency.
We can do this:

http.start do |conn|
 response = conn.request post, data
end

Our example makes a single request. We could have opened the connection, made
that one request, and closed it. In fact, we did just that when we called the request
method on the Net::HTTP object; it was just masked behind a single method call. If
your code is making several requests to the same server, consider explicitly opening a
connection and using the connection object to make those requests.

 As you’ve seen, the Net::HTTP library covers all the features of the HTTP protocol,
from one-line requests all the way to persistent connections, from GET requests to
documents and forms, with support for HTTPS and HTTP Basic Authentication. It
supports all the common HTTP verbs like GET and POST, the less common ones like
HEAD and OPTIONS, and even the WebDAV headers. It supports all the HTTP headers,
and response codes help you distinguish between successful response codes, redi-
rects, and errors.

 Keep in mind, though, that Net::HTTP is a low-level library. Unlike open-uri, it will
not set the proxy server for you; you’ll need to do that yourself when creating connec-
tions. Most often, we use Net::HTTP for one-off tasks, or to write more convenient
libraries. In section 5.2.3, we’ll talk about one such library called ActiveResource that
provides RESTful access to remote resources, built from Net::HTTP.

 Before we do that, let’s look at the other side of HTTP—the server side. We
showed you how a client can retrieve data from and send data to a web server. Next
we’ll show you how to implement a simple web server that client applications can
retrieve data from.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

97Using HTTP

5.1.3 Serving HTTP requests

Now that we know how to access a web service, let’s build a simple service. In the pre-
vious chapter, we talked about Rails, and as you’ll see later in this chapter, Rails is a
great framework for building web services. Yet, not all web services need a full-fledged
framework, and sometimes working close to the protocol (HTTP) is better, so in this
section we’ll show you a simple service built straight into the HTTP server.
Problem
You have an analytics console that you could use to monitor traffic across all servers in
the network. It works by pulling log files from each server and batch processing them.
To make it work with your server, you need to set up a simple service that provides all
the log files for a given day.
Solution
Ruby comes with a built-in web server called WEBrick, a simple and lightweight server
that is an adequate choice for development and prototyping. For production, though,
we recommend using Mongrel or Thin. Both are faster and more stable than WEBrick,
and you can use them as standalone servers, or to deploy a cluster of load-balanced
application servers behind Apache or Nginx.

 In this example, we’ll use Mongrel as a standalone server, and we’ll start by install-
ing it:

gem install mongrel

Next, we’ll define the LogService, which needs to implement a single method called
process, which handles the HTTP request and sets the response:

class LogService < Mongrel::HttpHandler
 def process(request, response)
 ...
 end
end

A request that ends with /YYYY-MM-DD retrieves all the log files for that particular day.
A request that ends with /last retrieves the last set of log files, which happens to be
yesterday’s date:

case request.params['PATH_INFO']
 when /^\/(\d{4}-\d{2}-\d{2})$/
 package $1, response
 when '/last'
 package (Date.today - 1).to_s, response
 else
 response.start 404 do |head, out|
 head['Content-Type'] = 'text/html'
 script = request.params['SCRIPT_NAME']
 out.write "<h1>Request URL should be #{script}/last "\
 " or#{script}/[yyyy]-[mm]-[dd]</h1>"
 end
end
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

98 CHAPTER 5 Web services

If we get a request we cannot process, we return the 404 (Not Found) status code, but
we also include a short HTML snippet explaining the correct URL format. We do that
to help our users, since getting the request URL wrong is a common mistake.

 The package method will handle all valid requests, so let’s look at it next. We’re
going to use the RubyZip library:

gem install rubyzip

Strictly speaking, we want to create an empty zip file, add all the log files into it, use
default compression, and return that file to the client. We’re going to decide on the
zip filename first, and we’ll make sure to use a distinct filename for each day:

zip_filename = "logs-#{date}.zip"

We’re not going to create a file with that name. Imagine two requests coming at the
same time, attempting to write into the same zip file at once. Not good. So instead,
we’ll create a temporary file:

tmp_file = Tempfile.open(zip_filename)

Next, we’ll use RubyZip to add the log files:

Zip::ZipOutputStream.open(tmp_file.path) do |zip|
 Dir.glob("#{@path}/*-#{date}.log").each do |filename|
 zip.put_next_entry File.basename(filename)
 zip << File.read(filename)
 end
end

The glob method is named after the glob pattern, which we can use to match any
number of files. An asterisk (*) matches any filename or partial filename, a question
mark (?) matches any single character, and a double asterisk (**) matches directories
recursively. You can find a few more options in the Dir.glob documentation. Here
we’ll find all filenames that contain the date and end with the extension log, such as
errors-2007-10-05.log.

 Once we have created the zip file, we’ll return it to the client:

response.start 200 do |head, out|
 head['Content-Type'] = 'application/zip'
 head['Content-Length'] = File.size(tmp_file.path)
 head['Content-Disposition'] = %{attachment; filename="#{zip_filename}"}
 while buffer = tmp_file.read(4096)
 out.write buffer
 end
end

It’s a simple matter of returning the status code 200 (OK) and copying the file over to
the Mongrel response, which we do one block at a time to keep the service from eat-
ing up all available memory.

 We’re just about done. We have a Mongrel HttpHandler that responds to GET
requests by returning a zip file with all the log files for a given date, and we can use

that as a building block for a larger application that includes several services by simply

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

99Using HTTP

registering the handler on a given URL. We’re not going to show you a larger applica-
tion here. Instead we’ll make it possible to run this service from the command line:

service = LogService.new(path)
puts "Starting Mongrel on port #{port}, serving log files from '#{path}'"
mongrel = Mongrel::HttpServer.new('0.0.0.0', port)
mongrel.register '/logs', service
mongrel.run.join

We set up the server to listen on IP 0.0.0.0, which means any network card including
localhost. You can also specify a specific IP address or host name, or only allow
requests from the same machine by listening to localhost (127.0.0.1).

 Let’s run the server:

ruby log_service.rb ~/logs
Starting Mongrel on port 3000, serving log files from '/home/assaf/logs'

To retrieve all the latest log files, simply open your browser and head over to http://
localhost:3000/logs/last.

 Now let’s merge all that code into a single file, shown in Listing 5.3.

require 'rubygems'
require 'mongrel'
require 'zip/zip'

class LogService < Mongrel::HttpHandler

 def initialize(path)
 @path = path
 end

 def process(request, response)
 unless request.params['REQUEST_METHOD'] == 'GET'
 return response.status = 405
 end
 case request.params['PATH_INFO']
 when /^\/(\d{4}-\d{2}-\d{2})$/
 package $1, response
 when '/last'
 package (Date.today - 1).to_s, response
 else
 response.start 404 do |head, out|
 head['Content-Type'] = 'text/html'
 script = request.params['SCRIPT_NAME']
 out.write "<h1>Request URL should be #{script}/last"\
 " or #{script}/[yyyy]-[mm]-[dd]</h1>"
 end
 end
 end

private

 def package(date, response)

Listing 5.3 A service for packaging log files and serving them as a zip file

Accepts only
GET requests

Determines
resource from
request path

Returns 404 if
resource not found
 zip_filename = "logs-#{date}.zip"

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

100 CHAPTER 5 Web services

 tmp_file = Tempfile.open(zip_filename)
 begin
 Zip::ZipOutputStream.open(tmp_file.path) do |zip|
 Dir.glob("#{@path}/*-#{date}.log").each do |file|
 zip.put_next_entry File.basename(file)
 zip << File.read(file)
 end
 end
 response.start 200 do |head, out|
 head['Content-Type'] = 'application/zip'
 head['Content-Length'] = File.size(tmp_file.path)
 head['Content-Disposition'] = %{attachment;

➥ filename="#{zip_filename}"}
 while buffer = tmp_file.read(4096)
 out.write buffer
 end
 end
 ensure
 tmp_file.close!
 end
 end

end

if __FILE__ == $0
 unless path = ARGV[0]
 puts "Usage:"
 puts " ruby log_service.rb <log_dir> [<port>]"
 exit
 end
 port = ARGV[1] || 3000
 service = LogService.new(path)
 puts "Starting Mongrel on port #{port}, serving log files from '#{path}'"
 mongrel = Mongrel::HttpServer.new('0.0.0.0', port)
 mongrel.register '/logs', service
 mongrel.run.join
end

Discussion
This example shows you how to set up a simple web service without going the route of
a web framework. We do advocate using web frameworks when they help you get bet-
ter results with less work, and in the next section we’ll delve into RESTful services
using Rails. Sometimes, though, a web framework just gets in the way, and we wanted
to make you feel comfortable using the simplest solution for each situation.

 Another thing web frameworks do is hide, or abstract away, the HTTP protocol. In
our experience, you’ll do better if you learn how to use HTTP with all its richness,
whether you’re writing the code yourself, learning how to use a web framework, or
evaluating a library for use in your application. Our service only supports GET
requests, so we used the status code 405 (Method Not Allowed) to deny all other
HTTP methods. That status code tells the client exactly why his request was rejected.

 Along with the response, we sent three headers. The first, Content-Type, tells the cli-

Creates a temporary file

Uses RubyZip to
compress files

Returns successful
(200) response

Streams file
to the client

Discards
temporary file

Handles
command-line
arguments

Starts a new
Mongrel server
ent the file type, and a web browser can use this information to open the file with the

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

101REST with Rails

right application. The second, Content-Length, tells the client how long the response
is, which is particularly useful for large responses, and for showing a progress bar of the
download. The HTTP protocol allows the server to close the connection once it’s done
sending the request, but if the connection drops (and sometimes it does), the client
doesn’t know whether or not it received the full response. The Content-Length header
gets around that problem. We also used the Content-Disposition header to suggest a
filename. Without this header, a request to /logs/last would attempt to download and
save a file called “last.” With this header, the browser will offer to save the file under a
name like logs-2007-10-05.zip.

 The last thing we did was send the request progressively, in blocks of 4,096 bytes.
That allows the client to start reading in, and if necessary, to start saving the response,
without waiting for the server to be done reading the file. It also saves the server from
loading the entire file, which could well be gigabytes of data, into memory. Paying
attention to these details will improve the performance and scalability of your applica-
tions, and the responsiveness of your web servers.

 Now that we have covered the basics of HTTP, we’re going to go one step further
and explore the REST style. We’ll show you how to create resources, handle multiple
representations, and use the uniform interface to build RESTful web services.

5.2 REST with Rails
So far, we’ve shown you how to build services and clients that use the HTTP protocol.
We’ll take this a step further now and show you how to build RESTful services using Rails.

 The Representational State Transfer (REST) architectural style is modeled after the
web. Basically, it codifies the principles and methods behind web servers that lead to
the creation of the largest distributed system ever built. For some people, “distrib-
uted” is about the plumbing—sending messages to remote servers. However, we’re
also thinking of the way large-scale systems emerge from smaller services built
independently by different groups of people—systems that are distributed in design
and in implementation.

 When we follow the REST style, we follow those same web principles: modeling our
services in terms of resources, making sure they are addressable as URLs, connecting
them by linking from one resource to another, handling representations based on con-
tent type, performing stateless operations, and so forth. In the following sections, we’ll
show an example using Rails. You’ll also quickly realize why we picked Rails for this task.

5.2.1 RESTful resources

Besides being the largest collection of useless information, personal opinions, and
short video clips, the web is also a large-scale system built from resources. Each page is
a resource identified by its URL. We use links to navigate from one resource to
another, and forms to operate on those resources. Applying these same principles, we
can build web services that are simple for both people and applications to use, and we
can wire them together to create larger applications.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

102 CHAPTER 5 Web services

Problem
You’re designing a task manager that your employees will use to manage their day-to-
day assignments. You’re also planning several applications and workflows that will cre-
ate and act upon these tasks. How can you design your task manager as a web service
that both people and applications can use?
Solution
Obviously one part of the solution is supporting programmable web formats like XML
and JSON, which we’ll handle in the next section. Before we get to deal with that, we
need to understand how to structure our resources so we can consume them from
web browsers and client applications.

 When we develop a web service, our aim is to build the service once and support
any number of clients that want to connect to it. The more client applications that can
reuse our service, the more we get out of the initial effort that goes into building that
service. We’re always on the lookout for those principles and practices that would
make our service loosely coupled and ripe for reuse. In this section, we’re going to do
just that by applying REST principles to a task manager.

 We’ll start by identifying the most important resources we need to provide. We
have one resource representing the collection of tasks, which we’ll make apparent by
using the URL path /tasks. And since we also plan to operate on individual tasks, we’ll
give each task its individual resources, and we’ll do so hierarchically by placing each
task in a resource of the form /tasks/{id}.

 We’ll handle all of these through the TasksController, so the first thing we’ll do is
define the resource so Rails can map incoming requests to the right controller. We do
that in the config/routes.rb file:

ActionController::Routing::Routes.draw do |map|

 # Tasks resources handled by TasksController
 map.resources :tasks
end

Retrieving the list of all tasks in the collection is done by the index action:

class TasksController < ApplicationController
 # GET on /tasks
 # View: tasks/index.html.erb
 def index
 @tasks = Task.for_user(@user_id)
 end

 ...
end

For individual tasks, we’re going to use the show action when the client asks to retrieve
that one task:

GET on /tasks/{id}
View: tasks/show.html.erb
def show
 @task = Task.find(params[:id])

end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

103REST with Rails

What else would we want to do with a task? We’ll want to change (update) it, and we’ll
need to offer a way to delete it. We can do all three on the same resource. We can use
HTTP GET to retrieve the task, PUT to update the task, and DELETE to discard it. So let’s
add two more actions that operate on a member task:

PUT on /tasks/{id}
def update
 @task = Task.find(params[:id])
 @task.update_attributes! params[:task]
 respond_to do |format|
 format.html { redirect_to:action=>'edit', :id=>task.id }
 format.xml { render :xml=>task }
 end
end

DELETE on /tasks/{id}
def destroy
 Task.find (params[:id]).destroy

 head :no_content
end

We got a bit ahead of ourselves. Before we can do all these things with a task, we need
some way to create it. Since we have a resource representing the collection of tasks,
and each task is represented by its own resource, we’re going to use HTTP POST to cre-
ate a new task in the collection:

POST on /tasks
def create
 task = Task.create!(params[:task])
 respond_to do |format|
 format.html { redirect_to:action=>'show', :id=>task.id}
 format.xml { render :xml=>@task, :status=>:created,
 :location=>url_for(:action=>'show', :id=>task.id) }
 end
end

We can now start to write applications that create, read, update, and delete tasks.
The beauty is that we’ve done it entirely using one resource to represent the collec-
tion and one resource to represent each member, and we’ve used the HTTP meth-
ods POST (create), GET (read), PUT (update), and DELETE (delete). When it comes
time to develop another service, say for managing users or orders, we can follow the
same conventions, and we can take what we learned from one service and apply it to
all other services.

 We’re not done, though. We want to expose this service to both people and appli-
cations. Our employees are going to use a web browser; they’re not going to send a
POST or PUT request, but do that using forms. So we need two forms: one for creating a
task, and one for updating an existing task. We can place those inside the task list and
individual task view respectively. For larger forms—and our tasks will require several
fields, taking up most of the page—we want to offer separate pages linked from exist-

ing view pages, so we’re going to offer two additional resources.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

104 CHAPTER 5 Web services

 From the tasks list, we’re going to link to a separate resource representing a form
for creating new tasks, and following our hierarchical design, we’ll assign it the URL
path /tasks/new. Likewise, we’ll associate each individual task with a URL for viewing
and editing it:

GET on /tasks/new
View: tasks/new.html.erb
def new
 @task = Task.new
end

GET on /tasks/{id}/edit
View: tasks/edit.html.erb
def edit
 @task = Task.find(params[:id])
end

Now it’s becoming clearer why we choose to lay out the resources hierarchically. If
you like tinkering with the browser’s address bar, try this: open the edit form for a
given task, say /tasks/123/edit, and change the URL to go up one level to the task
view at /tasks/123, and up another level to the tasks list at /tasks. Besides being a nice
browser trick, this setup helps developers understand how all the resources relate to
each other. This is one case where picking intuitive URLs is worth a thousand words
of documentation.

 So let’s pause and review what we have so far:

■ GET request to /tasks returns the list of all tasks.
■ POST request to /tasks creates a new task and redirects back to the tasks list.
■ GET request to /tasks/new returns a form that we can use to create a new task; it

will POST to /tasks.
■ GET request on /tasks/{id} returns a single task.
■ PUT request on /tasks/{id} updates that task.
■ DELETE request on /tasks/{id} deletes that task.
■ GET request on /tasks/{id}/edit returns a form that we can use to update an

existing task; it will PUT these changes to /tasks/{id}.

We didn’t get here by accident. We intentionally chose these resources so that we need
to keep track of only one reference (URL) to the tasks list and one reference to each
individual task. Helping us was the fact that we can use all four HTTP methods, which
already define the semantics of operations we can do against these resources. Notice
that while adding more actions to our controllers, we made no change to our routing
configuration. These conventions are a matter of practical sense, and Rails follows
them as well, so our one-line definition of the resource captures all that logic, and all
we had to do was fill in the actions.

 Next, we’re going to add a couple of actions that are specific to our task manager
and extend our resource definition to cover those.

 The first resource we’re going to add is for viewing the collection of completed

tasks. We can follow the same rules to add resources for viewing pending tasks, tasks

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

105REST with Rails

scheduled to complete today, high-priority tasks, and so forth. We’re going to place it
at the URL path /tasks/completed.

 The second resource we’re going to add will make it easier to change task priority.
Right now, making a change to the task requires updating the task resource. We want
to develop a simple AJAX control that shows five colored numbers and sets the task
priority when the user clicks on one of those numbers. We’ll make it easy by providing
a resource to represent the task priority, so we can write an onClick event handler that
updates the resource priority directly. We’ll associate the priority resource with the
URL path /tasks/{id}/priority.

 Let’s add these two resources together and create the routes shown in listing 5.4.

ActionController::Routing::Routes.draw do |map|

 # Tasks resources handled by TasksController
 map.resources :tasks,
 :collection => { :completed=>:get },
 :member => { :priority=>:put }
end

Next, let’s add the controller actions to TaskController:

GET on /tasks/completed
View: tasks/completed.html.erb
def completed
 @tasks = Task.completed_for_user(@user_id)
end

PUT on /tasks/{id}/priority
def priority
 @task = Task.find(params[:id])
 @task.update_attributes! :priority=>request.body.to_i
 head :ok
end

Will it work? We certainly hope so, but we won’t know until we check. Rails resource
definitions are easy to work with, but we still occasionally make mistakes and create
something different from what we intended. So let’s investigate our route definitions
using the routes task:

$ rake routes

The output should look something like listing 5.5.

completed_tasks GET /tasks/completed {:action=>"completed"}
 tasks GET /tasks {:action=>"index"}
 POST /tasks {:action=>"create"}
 new_task GET /tasks/new {:action=>"new"}
completion_task PUT /tasks/:id/completion {:action=>"completion"}
 edit_task GET /tasks/:id/edit {:action=>"edit"}

Listing 5.4 Defining our task manager resources in config/routes.rb

Listing 5.5 Routes for our RESTful tasks list
 task GET /tasks/:id {:action=>"show"}

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

106 CHAPTER 5 Web services

 PUT /tasks/:id {:action=>"update"}
 DELETE /tasks/:id {:action=>"destroy"}

The actual output is more verbose; we trimmed it to fit the page by removing the con-
troller name (no surprise, it’s always “tasks”) and the formatting routes, which we’ll
cover in the next section. You can see how each HTTP method (in the second col-
umn) and URL template (third column) map to the correct controller action (right-
most column). A quick peek tells us all we need to know.

 The leftmost column deserves a bit more explanation. Rails creates several friendly
looking routing methods that we can use instead of the catch-all url_for. For example,
since our tasks list needs a link to the URL for the task-creation form, we can write this:

<%= link_to "Create new task",
 url_for(:controller=>'tasks', :action=>'new') %>

Or, using the named-route method, we can shorten it to this:

<%= link_to "Create new task", new_task_url %>

Likewise, we could have the task list link to each task’s individual page:

<%= link_to task.title, task_url(task) %>

Or we can include a link for the task-editing form:

<%= link_to "Edit this task", edit_task_url(task) %>

We’re done, so let’s have a look at what our controller looks like with all the actions
brought together in one file. As we write it up, we’re going to make a couple of minor
tweaks. First, we’ll use named routes instead of url_for. Second, we’ll add a filter to
load the task into the controller, for the benefit of actions operating on individual
tasks. Listing 5.6 shows the resulting controller.

class TasksController < ApplicationController
 before_filter :set_task, :only=>[:show, :edit, :update,
 :destroy, :priority]

 def index
 @tasks = Task.for_user(@user_id)
 end

 def completed
 @tasks = Task.completed_for_user(@user_id)
 end

 def new
 @task = Task.new
 end

 def create
 task = Task.create!(params[:task])
 respond_to do |format|
 format.html { redirect_to task_url(task) }

Listing 5.6 Routes for our RESTful tasks list

Filters for actions
on individual tasks

Redirects browser
to task view
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

107REST with Rails

 format.xml { render :xml=>task, :status=>:created,
 :location=>task_url(task) }
 end
 end

 def show
 end

 def edit
 end

 def update
 @task.update_attributes! params[:task]
 respond_to do |format|
 format.html { redirect_to edit_task_url(@task) }
 format.xml { render :xml=>@task }
 end
 end

 def priority
 @task.update_attributes! :priority=>request.body.to_i
 head :ok
 end

 def destroy
 @task.destroy
head :no_content
 end

private

 def set_task
 @task = Task.find(params[:id])
 end
end

Discussion
We showed you how to build a simple RESTful web service using Rails. However, there
are a few more things worth noting about this example and how we used Rails to apply
the principles of REST.

 One of the core principles of REST is the uniform interface. HTTP provides several
methods you can use on each resource; the four we’re showing here are POST (cre-
ate), GET (read), PUT (update), and DELETE (delete). They have clear semantics, and
everyone understands them the same way. Clients know what GET does and how it dif-
fers from DELETE, servers operate differently on POST and PUT, caches know they can
cache the response to a GET but must invalidate it on DELETE, and so forth. You can
also use that consistency to build more reliable applications; for example, PUT and
DELETE are idempotent methods, so if you fail while making a request, you can simply
repeat it. The uniform interface saves us from having to reinvent and document these
semantics for each and every application, and it helps that we can always do the same
thing the same way.

 Unfortunately, while we get this variety for the programmable web, web browsers
have not yet caught up, and some cannot properly handle PUT and DELETE. A common

Returns XML document
for new task

Associates
controller with
task from URL
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

108 CHAPTER 5 Web services

workaround is to use POST to simulate PUT and DELETE by sending the real HTTP
method in the _method parameter. Rails understands this convention, and so do many
AJAX libraries like Prototype.js and jQuery, so you can safely use these with Rails to
keep your resources RESTful.

 You will notice, in our example, that when updating an existing resource (the
task), we respond to the PUT request with the default status code 200 (OK) and an
XML representation of the updated resource. On the other hand, when creating a
resource, we respond to the POST request with the status code 201 (Created), an XML
representation of the new resource, and the Location header. The latter tells the cli-
ent application that we just created a resource and where to find that resource, to
retrieve and update it later on. In both responses, we return a document that may be
different from the one we received, perhaps with added fields like id, version, and
updated_at. Either way, we’re using the full semantics of the HTTP protocol to distin-
guish between creating a resource and updating an existing one.

 People work differently from applications, however, and when responding to a web
browser, we need to consider the user experience. The way browsers work, if we simply
responded to a POST request with a render, and the user then refreshed the page, the
browser would make another POST request—the double-submit problem. We don’t
want that to happen, so we redirect instead. We also don’t need to send back a repre-
sentation of the resource, or its location; instead, we take the user back to the tasks lists.

 You may be wondering, what happens if someone makes a request to /tasks/456, but
there is no such task? Clearly this should return a 404 (Not Found) response, yet we
show no such thing in our example. One way in which Rails simplifies deployment is by
taking care of all these details and applying default behavior, so you don’t have to worry
about it unless you want to change the way it behaves. So we let Rails figure it out.

 When we call Task.find and it can’t find a task with that identifier, it throws an
ActiveRecord::RecordNotFound exception. Rails catches this exception and maps it
to the 404 (Not Found) status code. The default behavior is to send back a static page
that you can find (and customize to your application) in public/404.html.

 Likewise, if we tried to create or update a task by sending a field it doesn’t under-
stand, such as an XML document with the element <address> (our tasks don’t have
an address field), Rails will throw an ActiveRecord::RecordInvalid or Active-
Record::RecordNotSaved exception. It will then catch this exception and map it to
a 422 (Unprocessable Entity) status code.

 Rails similarly deals with unsupported content types by returning 406 (Not Accept-
able), which we’ll put into action in the next section. You can add your own logic for
catching and dealing with these exceptions, and you can introduce your own excep-
tion and handling logic. Have a look at ActionController::Rescue, particularly the
rescue_from method.

 One common mistake web developers make is storing a copy of an object in the
session, like this:
Task.find_by_user(session[:user])

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

109REST with Rails

What’s wrong with this code? Updating the user’s record in the database, or even
deleting it, will not update the session, and the session will keep using stale data. It is
much better to store the record identifier, which doesn’t change, and access the
record as necessary. The common alternative looks like this:

Task.find_by_user_id(session[:user_id])

This code works better, as long as you’re using sessions. When developing applications
that use a web service, it’s much easier to work with HTTP Basic Authentication, as
we’ve shown in the previous sections. It’s easier to use than going through a custom
login form and then carrying the session cookie around.

 Fortunately, it’s a trivial matter to write controllers that support both means of
authentication. Simply add a filter that can use HTTP Basic Authentication or the ses-
sion to identify the user, and store their identifier in the @user_id instance variable.
We recommend doing that in ApplicationController, which is why we’re not show-
ing this filter in our example.

 We talked about the ease of mapping resources for CRUD (create, read, update,
delete) operations. Resource mapping is another area where we encourage you to
explore more. You can take hierarchical resources one step further and create nested
resources, such as /books/598/chapters/5. You can use the to_param method to cre-
ate more friendly URLs, such as /books/598-ruby-in-practice/chapters/5-web-services.
Also, have a look at some of the form helper methods that will generate the right form
from an ActiveRecord object, using the most suitable resource URL. This combination
will not only make it easier to develop web applications, but also help you do the right
thing from the start.

 When building RESTful web services, another thing we have to deal with are multi-
ple content types. We briefly touched upon this, using HTML for end users and XML
for applications, and in the next section we’ll explore it further, adding support for
JSON and Atom.

5.2.2 Serving XML, JSON, and Atom

Every resource has a representation. In fact, a given resource can have more than one
representation. Users accessing our task manager will want to see an HTML page listing
all their tasks, or they may choose to use a feed reader to subscribe to their task list, and
feed readers expect an Atom or RSS document. If we’re writing an application, we
would want to see the tasks list as an XML document or JSON object, or perhaps to pull
it into a calendar application in the form of an iCal list of to-dos and events.

 In this section, we’re going to explore resources by looking at multiple representa-
tions, starting with HTML and adding XML, JSON, and Atom representations for our
tasks list.
Problem
As you’re building your task manager, you realize you need to support a number of cli-
ents, specifically feed readers and programmable clients, by adding XML, JSON, and

Atom representations to the tasks list.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

110 CHAPTER 5 Web services

Solution
One reason we recommend Rails for building web services is the ease of adding differ-
ent representations for the same underlying resource. So let’s start with a simple
action that displays the current task list in one of several formats:

def index
 @tasks = Task.for_user(@user_id)
end

Since most Rails examples look like this and only support HTML, we won’t fault you
for thinking this example shows just an HTML output, but in fact it supports as many
formats as we have views. When you leave it up to Rails to render the response, it tries
to find a suitable view based on the action name and expected format. If we wrote a
view called index.html.erb, Rails would use it to render HTML responses. If we added
a view called index.xml.builder, Rails would use this one to render XML responses. For
Atom, we would use index.atom.builder, and for iCal, index.ics.erb.

 Notice the pattern here? The first part tells Rails which action this view represents,
the second part tells it which format it applies to, and the last part tells it which tem-
plating engine to use. Rails comes with three templating engines: ERB (eRuby), Builder,
and RJS. This is a new feature introduced in Rails 2.0. Earlier versions were less flexible,
and always matched a combination of format and templating engine, so for HTML it
would default to ERB by looking up the view index.rhtml, and for XML it would default
to Builder by looking up the view index.rxml. Rails 2.0 gives you more flexibility in mix-
ing and matching formats and templating engines, and also makes it easier to add new
template handlers (for example, for using Liquid templates or HAML).

 In a moment, we’re going to show you Builder, when we use it to create an Atom
feed for our tasks list. For XML and JSON, we’re not going to go through the trouble of
creating and maintaining a custom view. Instead we’ll let ActiveRecord do a trivial
transformation of our records into an XML document or a JSON object:

def index
 @tasks = Task.for_user(@user_id)
 case request.format
 when Mime::XML
 response.content_type = Mime::XML
 render :text=>@tasks.to_xml
 when Mime::JSON
 response.content_type = Mime::JSON
 render :text=>@tasks.to_json
 when Mime::HTML, Mime::ATOM
 # Let Rails find the view and render it.
 else
 # Unsupported content format: 406
 head :not_acceptable
 end
end

The preceding code shows the long way of doing things. You can see the short way to

respond with different content types in listing 5.7.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

111REST with Rails

def index
 @tasks = Task.for_user(@user_id)
 respond_to do |format|
 format.html
 format.atom
 format.xml { render :xml=>@tasks }
 format.json { render :json=>@tasks }
 end
end

We’re using the respond_to method to match each format we support with the logic to
render it. It’s similar to the case statement in the previous code example, but simpler
to specify and more declarative. We’re also letting the render method do all the hard
work by asking it to convert the array into an XML document or JSON object and to set
the Content-Type header appropriately. It’s shorter to write and easier to maintain.

 Now it’s time to handle the Atom view, for which we’ll create a view file called
index.atom.builder, as shown in listing 5.8.

atom_feed do |feed|
 feed.title "My tasks list"
 feed.updated @tasks.first.created_at

 @tasks.each do |task|
 feed.entry task do |entry|
 entry.title task.title
 entry.content task.description, :type => 'html'
 end
 end
end

The call to atom_feed creates an XML document with the right wrapping for a feed,
including the XML document type declaration, feed element with ID, and alternate
link back to our site. It also creates an AtomFeedBuilder object and yields to the block.
From the block, we’re going to create the feed title, specify the last update, and add
all the feed entries.

 We now have a tasks resource that responds to GET and returns the task list in dif-
ferent content types: HTML for web browsers, Atom for feed readers, and either XML
or JSON for client applications.
Discussion
The HTTP protocol allows clients to request data in a particular format using content
negotiation. When the client sends a request to the server, it uses the Accept header
to indicate all the content types it supports in order of preference. The server can pick
the most suitable content type and use it when responding to the client. If the server
doesn’t support any of the listed content types, it simply responds with 406 (Not
Acceptable). Another status code, 415 (Unsupported Media Type), tells the client that

Listing 5.7 Responding with different content types

Listing 5.8 An Atom feed for our tasks list

Sets instance
variable for use
in templatesRenders HTML/Atom using

appropriate template

Renders XML/JSON
document from object

Sets feed title and
updates timestamp

Produces one
feed entry for
each task
the server does not support the content type of a POST or PUT request.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

112 CHAPTER 5 Web services

 That’s the basic idea behind content negotiation. In some cases, it’s clearly the
right thing to do. We can use one resource URL and send it to all our clients, and each
client can see a different representation of the same resource. A web browser will see
an HTML page, a feed reader will see an Atom feed, and other applications may see
XML or CSV.

 Another approach uses different resource URLs for each representation. Some
people prefer this approach, since it allows you to manage different representations.
For example, if you want to download a CSV document using a web browser, you need
a URL that will always send back a CSV document.

 There is no one best way to construct these URLs, but there are two common con-
ventions. One adds a query parameter that indicates the expected content type. For
example, you can decide to use the format query parameter, and use a URL like
/tasks?format=xml. Another convention is to use an extension suffix on the URL path,
such as /tasks.xml. We recommend using the extension suffix for the simple reason
that saving the document with a web browser will retain the suffix, and a file called
tasks.xml will always open in the right application.

 How does Rails handle this? When we use the built-in mechanism to decide on
the content type, as we did in listing 5.7, Rails picks up the expected format from the
format query parameter, or from the URL path suffix, or from the Accept header, in
order of preference. Which way you request different content types is up to you—a
Rails application can support all three.

 You’ll notice that in listing 5.6, when we wrote an action to create a new task, we
did this:

Task.create!(params[:task])

Multiple representations work both ways. If we can create a response and send back an
XML document, we had better be able to process a request by accepting the same XML
document. When Rails processes an XML request, it converts the XML document into
a Hash, using the document element’s name for the parameter name. The preceding
example expects the document to contain the element <task> and passes the Hash
to ActiveRecord.

 It works the same way for HTML forms, if you follow the simple naming guidelines
set by Rails. In our forms, we will have fields like task[title] and task[priority].
Rails uses this naming convention to figure out how the fields relate to each other,
and turns them into a Hash parameter, so we can use the same line of code to process
an XML document or the submission of an HTML form.

 It helps that we’re using Rails’ form helper methods:

<% form_for @task do |f| %>
 <%= f.text_field :title %>
 <%= f.text_field :priority %>
<% end %>

The form_for creates the <form> element, figures out the action URL, and takes care

to map the field names from title to task[title]. Give it a new record and it will

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

113REST with Rails

point the form to the URL for creating a new resource (tasks_url, POST method);
give it an existing record and it will point the form to the URL for updating an existing
resource (task_url(@task), PUT method). That is why we used Task.new to render
the form in the new action: we can use a single template to both create and update a
record. Rails comes with built-in support for HTML forms, XML, JSON, and YAML, and
if that’s not enough, you can always add custom parameter parsers. Have a look at
ActionController::Base.param_parsers for more information.

 In listing 5.8 we showed you how to use AtomFeedBuilder, a templating mecha-
nism for generating Atom feeds. AtomFeedBuilder itself extends the more generic
XML templating mechanism provided by Builder::XmlMarkup. Let’s take a moment
to look at Builder and what you can do with it.

 Builder is a simple templating mechanism for creating XML documents from Ruby
code. Because it always produces well-formed documents, some developers even use it
to generate XHTML pages. It’s available as a gem you can use in any application that
needs to generate XML, and it’s also included as part of Rails. Builder is very simple to
understand and intuitive to use, and it’s a good example of what can be done with a
little bit of metaprogramming.

 When you call a method on a Builder object, it takes the method name and uses it
to create an XML element with the same name. This is done through method_missing,
and there is no need to specify any of these methods in advance. AtomFeedBuilder
only specifies a few methods that do a lot more than just generate an XML element, so
it defines entry but doesn’t bother to define title or content.

 As you can imagine from this example, passing a string argument to a Builder
object will use that value for the element content, a hash argument specifies the ele-
ment’s attributes, and blocks are used to nest one element within another.

 Besides these, there are some special methods you can call, such as tag! to create
an element with a given name (for example, to handle special characters or
namespaces), text!, cdata!, comment! (each of which do exactly what you think they
would), and instruct! to create the XML declaration at the top of the document.

 We mentioned before that you can use different URLs for the various response rep-
resentations. When we defined the tasks resource, Rails created several named route
methods like tasks_url and task_url. What we didn’t show before is that, in addi-
tion, Rails created named route methods that accept a format and return a URL that
specifies that output format in the form of a path suffix. These method names start
with formatted_ and accept an additional argument that specifies the output format,
and they will show up when you run the rake routes task. Let’s add a link that users
can use to subscribe to the Atom feed, using a named route:

<%= link_to "Subscribe", formatted_tasks_url(:atom) %>

In this section, we showed you how to build a RESTful web service. But what if you
want to access that service from another application? In the next section, we’ll talk
about ActiveResource, Rail’s way of accessing remote resources using an ActiveRecord-

like API.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

114 CHAPTER 5 Web services

5.2.3 Using ActiveResource

We started this chapter by showing you how easy it is to use open-uri and Net::HTTP.
Well, easy is a relative term. Building a client library to access our task manager service
will still require a fair amount of boilerplate code—more than we care to write, test,
and maintain. We also showed you some principles and conventions for designing
RESTful web services. In this section, we’ll take it a step further and show you how we
can use them to develop a client library for the task manager using ActiveResource.
Problem
Now that the task manager service is up and running, you need to develop your work-
flow application. As part of that application, you’ll need to create and manage tasks.
You want to reuse our task manager service, and you want to get it done before the day
is over.
Solution
We’ll build a client application that uses ActiveResource to access the task manager
service. We’ll start by writing a class to represent the resources for handling a task list
and individual tasks:

class Task < ActiveResource::Base
 self.site = 'https://john:secret@taskmanager.example.com/'
end

Remember from section 5.1.2, we’re using the URL to specify the username and pass-
word for accessing the service, and these map to HTTP Basic Authentication, using
HTTPS when we need to access it over public networks.

 We’ve not yet implemented a single method in our new Task class, but let’s first see
what we can do with it. Let’s start by creating a new task:

task = Task.create(:title=>'Read about ActiveResource', :priority=>1)
puts 'Created task #{task.id}'
=> 'Created task 1'

Method_missing and BlankSlate
Builder uses method_missing in an interesting way. Ruby’s objects use method
passing—when you call a method on an object, Ruby first tries to match it against a
known method definition, and if it doesn’t find any method, passes it on to the ob-
ject’s method_missing. The default implementation throws NoMethodError. Build-
er, on the other hand, uses method_missing to catch method calls and convert them
into XML elements, so we don’t need to declare an XML Schema or build any skeleton
objects to get this simple creation of XML documents from Ruby code.

Existing object methods may clash with XML element names; for example, names like
id and type are commonly used as element names. To solve that, Builder uses
BlankSlate, a class that has most of its standard methods removed. (In Ruby 1.9
you can achieve the same using BasicObject.)
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

115REST with Rails

Doesn’t this code look very familiar? We’re using ActiveResource here to operate
against remote resources, but the patterns are the same as in the previous section,
where we used ActiveRecord to access the database.

 Let’s see what happens behind the scenes of the create method:

task = Task.new
task.title = 'Read about ActiveResource'
task.priority = 1
task.save

It starts by creating a new object in memory and setting its attributes, and it saves the
object by making a POST request to the resource /tasks, with an XML document
containing the task definition. Our simple implementation, you may recall from sec-
tion 5.2.1, receives the XML document, parses the attributes, and uses them to create a
record in the database. It then tells the client what the new task resource is, which is
all our ActiveResource needs to know.

 Let’s follow up by updating the task:

task.title << ' and try this example'
task.save

This time, since the task already exists, we make a PUT request to the resource and
updated it. So we can create and update resources. We can also read and delete them:

task = Task.find(1)
task.delete
tasks = Task.find(:all)
Task.delete(tasks.first.id)

All of this is just a matter of conventions. ActiveResource follows the same conventions
we used when we built the task manager service, so we got all this functionality just by
specifying a URL.

 How do we know our Task class sends requests to the right URL? We assumed it
uses XML by default, but is there a way to find out for sure? Let’s try the equivalent of
the rake routes task:

puts Task.collection_path
=> /tasks.xml
puts Task.element_path(1)
=> /tasks/1.xml

We built our task manager around all the common patterns, but we also added two
resources specific to our task manager. We had one resource for listing all the com-
pleted tasks, and we’ll want to use that from our client as well. Let’s list those tasks:

Task.find(:all, :from=>:completed)

As you can guess, this is just a request against the /tasks/completed.xml path. We also
had a resource for quickly updating the task priority, which we designed to support
our AJAX controls. Let’s try to use that as well:
task.put(:priority, nil, 5)

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

116 CHAPTER 5 Web services

This time, the request goes to /tasks/{id}/priority, substituting the task identifier in
the URL template. The put method takes two additional arguments, the first being a
hash that is passed along as query string parameters, and the second being the body of
the message. Remember from section 5.2.1, we’re passing a priority number in the
body of the message.

 As you might expect, there are other custom methods you can use, like get, post,
and delete. We’re going to hide the details of put from the application by wrapping it
in a method; in fact, we’ll add a couple more to create an ActiveResource class that
represents our task manager service. The result is shown in listing 5.9.

class Task < ActiveResource::Base
 self.site = 'https://taskmanager.example.com/'

 def self.completed
 find(:all, :from=>:completed)
 end

 def self.update_priority(id, value)
 Task.new(:id=>id).priority!(value)
 end

 def priority!(value)
 put(:priority, nil, value.to_i)
 end
end

Now let’s try it out by running this snippet using script/console:

Task.site.user_info = 'john:secret'

puts 'Completed tasks'
Task.completed.map { |task| task.id }.to_sentence
=> "1, 2 and 3"

puts 'Changing priority for task 123'
Task.update_priority(123, 5)
Task.find(123).priority
=> 5

Discussion
As you’ve seen from our examples, Rails makes it extremely easy to build web services
that follow the REST principles and work equally well with web browsers and the pro-
grammable web. In fact, a lot of that simplicity comes directly from following these
principles. We didn’t have to tell our client how to create, read, update, or delete the
resource—those all followed from using the proper HTTP methods. All we had to do
is point our client at the right place. Likewise, we didn’t have to build two different
task manager applications for people and for applications. We managed both at the
same time by using different content types.

 If you follow Rails conventions, you get the basic CRUD operations for free. In
practice, that’s often not enough, and you’ll find that you need more specific

Listing 5.9 Using our task manager with ActiveResource

Sets the tasks
service URL

Returns completed tasks

Updates task priority

Updates task priority
on current resource
resources and you’ll need to layer additional actions into your controllers. We showed

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

117SOAP services

you how easy it is to add these custom methods on both the server and the client sides.
There are, of course, other things you’ll need to do. A fully functional task manager
would need to handle deadlines and exceptions, send notifications, and even spawn
workflows that would involve even more tasks and interact with other services. Those
are all possible to do within the constraints of REST; unfortunately, it’s more than we
can show in the limited span of one chapter.

 In the last three solutions, we have talked extensively about Rails, but we want you
to take their general principles home with you even if you use other web frameworks
or programming languages. The first principle was the recommended practice of
building RESTful web services and the benefits that come from following the REST
architectural style. The other was the benefit of picking up on conventions, which can
help you design better, develop faster, and end up with code that’s easier to under-
stand and maintain. If nothing else, there will be less to document. Conventions are
not just for Rails; when you’re building your own applications, think how conventions
could help you work less and get more done.

 The SOAP messaging protocol is another way to harness the HTTP protocol and
build services that cross languages, platforms, and applications. In the following sec-
tions, we’ll turn our attention to SOAP using the built-in SOAP4R library.

5.3 SOAP services
When it comes to talking with J2EE, .Net, and legacy applications, the first option that
comes to mind is SOAP. And yes, Ruby does come with a SOAP stack called, not surpris-
ingly, SOAP4R.

 SOAP4R supports SOAP 1.1 with attachments, and service definitions specified
using WSDL 1.1. Security options include HTTP Basic Authentication, SSL/TLS, and a
separate library that covers WS-Security (WSS4R). SOAP4R participates in interoperabil-
ity testing, and if you’re working at the level of WS-I Basic Profile compliance, you can
expect it to work with the various Java SOAP stacks (Axis, Glue, CXF), .Net, and others.

 In the next two sections, we’ll cover the basics of using SOAP4R as we implement a
simple task manager service and a client application to invoke it.

5.3.1 Implementing the service

The appeal of the SOAP protocol is in crossing language and platform boundaries, so
there’s no need to build the service in Ruby in order to use it from Ruby. We can easily
imagine the task manager being a service implemented in Java and the client applica-
tion in Ruby, or the other way around. Regardless, we want to make this chapter self-
contained, so we’re going to show you how to implement the service in Ruby, and also
how to invoke it using Ruby.

 We’re picking up on the same task manager service we developed in the previous
sections of this chapter, but this time using SOAP instead of REST.
Problem
You need to develop a task manager service that you can use from a variety of client
applications using the SOAP messaging protocol.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

118 CHAPTER 5 Web services

Solution
We recommend contract-first service development. In our experience, it leads to
more robust services that are easier to reuse and maintain. In contract-first, we start by
specifying the functionality offered by the service, typically in the form of human-
readable documentation and a WSDL service definition. Once that’s done, we use the
service definition to start building the service implementation and any applications
that need to invoke the service. In fact, once we have a service definition, we can
branch off to develop both pieces in parallel.

 We also prefer document style with literal encoding, fondly known as doc/lit, which
makes it easier to evolve the service definition over time, so we’re going to use that for
our service definition. Since WSDL is verbose and we only have so much space in this
book, we’ll keep our example to the bare minimum. We’ll build our service to support
a single operation, for creating a new task, and only care about two parameters, the
task title and priority.

Figure 5.1 shows a simple outline of the service definition, visualized using Eclipse
Web Service Toolkit. It was generated from the WSDL document given in listing 5.10.

<?xml version="1.0" encoding="utf-8"?>
<definitions name='taskService'
 targetNamespace='http://example.com/taskManager'
 xmlns='http://schemas.xmlsoap.org/wsdl/'
 xmlns:tns='http://example.com/taskManager'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'>
 <types>
 <xsd:schema elementFormDefault='unqualified'
 targetNamespace='http://example.com/taskManager'>
 <xsd:element name='createTask'>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name='title' type='xsd:string'/>
 <xsd:element name='priority' type='xsd:int' minOccurs='0'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name='createTaskResponse'>
 <xsd:complexType>

Listing 5.10 WSDL describing our task manager service

Figure 5.1 Simple task manager service
 <xsd:sequence>

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

119SOAP services

 <xsd:element name='id' type='xsd:string'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </types>

 <message name='createTask'>
 <part name='task' element='tns:createTask'/>
 </message>
 <message name='createTaskResponse'>
 <part name='task' element='tns:createTaskResponse'/>
 </message>

 <portType name='taskManagement'>
 <operation name='createTask'>
 <input message='tns:createTask'/>
 <output message='tns:createTaskResponse'/>
 </operation>
 </portType>

 <binding name='taskManagementDocLit' type='tns:taskManagement'>
 <soap:binding transport='http://schemas.xmlsoap.org/soap/http'
 style='document' />
 <operation name='createTask'>
 <soap:operation style='document' />
 <input>
 <soap:body use='literal'/>
 </input>
 <output>
 <soap:body use='literal'/>
 </output>
 </operation>
 </binding>

 <service name='taskService'>
 <port name='docLit' binding='tns:taskManagementDocLit'>
 <soap:address location='http://localhost:8080/'/>
 </port>
 </service>
</definitions>

Like any full-featured stack, SOAP4R allows us to work directly with SOAP messages
using the low-level SOAP object model, and to do our own routing between incoming
messages and application components. Even for our simple example, doing that
would be tedious, so instead we’ll use the WSDL service definition to create a service
skeleton and extend it with the application logic.

 We’ll start by creating a working directory for the server side, and run the
wsdl2ruby.rb command-line tool to create the service skeleton files:

$ mkdir server
$ cd server
$ wsdl2ruby.rb --wsdl ../taskService.wsdl --type server --module TaskManager

Now let’s have a look at the generated files.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

120 CHAPTER 5 Web services

 The first file, taskService.rb defines a class called TaskManagement. The name
comes from the portType, and you will notice that SOAP4R capitalizes the first letter,
since Ruby class names are CamelCase. It defines a single operation for creating a new
task. When you look at the source code, you will notice that it specifies the input and
output messages with all their message parts (one each, in this case), the declared
faults (of which we have none), and the document encoding in use. All that informa-
tion comes from the WSDL document and is used to configure SOAP4R.

 The second file, taskServiceMappingRegistry.rb defines mapping between the XML
elements used in the messages and the Ruby classes holding that data. As SOAP mes-
sages come in, they get converted into Ruby objects that our application can easily
handle. In this case, the createTask element is parsed to instantiate a CreateTask
object. Likewise, the CreateTaskResponse object we return from the method will con-
vert into a createTaskResponse element to be sent back in the response message.

 Notice that this file contains two mapping registries, one called EncodedRegistry
(SOAP encoding) and one called LiteralRegistry (literal encoding). Since we specified
doc/lit, only the second mapping is defined and used.

 The third file, taskServiceServant.rb contains the actual service skeleton. SOAP4R
refers to it as “servant,” which simply means the logic behind the service interface.
The file defines a single method in the TaskManagement class that returns a fault. It’s
this skeleton file that we’re going to fill up with application logic to implement the
task manager service.

 We’re going to keep this example very simple. We’ll specify a couple of classes,
CreateTask and CreateTaskResponse, to hold the request and response messages, and
implement the createTask method to create a new task record in the database and
return the task identifier. You can see the full service implementation in listing 5.11.

require 'taskService'

class Task < ActiveRecord::Base
end

module TaskManager

 # {http://example.com/taskManager}createTask
 class CreateTask
 attr_accessor :title, :priority
 end

 # {http://example.com/taskManager}createTaskResponse
 class CreateTaskResponse
 attr_accessor :id

 def initialize(id)
 @id = id
 end
 end

 class TaskManagement

 def createTask(request)

Listing 5.11 Our task manager servant

Represents XML
message as Ruby object

Represents XML
message as Ruby object

Implements
TaskManagement
port type Implements

createTask
operation
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

121SOAP services

 task = Task.create :title=>request.title, :priority=>request.priority
 return CreateTaskResponse.new(task.id)
 end

 end

end

The common practice is building a number of services (or servants) and configuring
a web server to host them all, exposing each one on a different endpoint URL. For this
example, though, we only have one service, so we’ll use the quick prototype stand-
alone server provided by taskService.rb. In addition to the service definition, this file
defines a standalone server application called TaskManagementApp. The only thing we
need to do is start it (see listing 5.12).

$KCODE = 'UTF-8'
require 'rubygems'
require 'soap/driver'
require 'taskService'

Configure ActiveRecord database connection
config = YAML.load(File.read('database.yaml'))
ActiveRecord::Base.establish_connection(config)

Configure the server
server = TaskManager::TaskManagementApp.new 'TaskManager',
 'http://example.com/taskManager', '0.0.0.0', 8080
Shutdown when interrupted (Ctrl-C)
trap(:INT) { server.shutdown }
Start the server
server.start

We’re almost ready to run. We’re using ActiveRecord to access the database, so we also
need to specify the database connection configuration. We’ll do that in a separate file
called database.yaml, which for our database setup looks like this:

adapter: mysql
host: localhost
username: dev
password: dev
database: task

Listing 5.12 A simple task manager SOAP service

Uses UTF-8 all around

Requires SOAP4R

Loads configuration for
ActiveRecord connections

Creates new server,
sets endpoint

Catches Ctrl-C, stops server

Starts processing SOAP requests

Using ActiveRecord outside of Rails
ActiveRecord is a key piece of the Rails puzzle and provides the model part of the
Model-View-Controller (MVC) design pattern, mapping Ruby objects to database tables.
It’s also an outstanding object-relational mapping framework on its own, and you can,
as many developers do, use it outside of Rails. All it takes is installing the ActiveRecord
gem, requiring it from your application, and using establish_connection to configure
the database connection.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

122 CHAPTER 5 Web services

Now let’s start the server:

$ ruby server.rb

We’ll write a client application that uses this service in the next section, so keep the
service running and you can test the client application against it.
Discussion
We showed you how easy it is to get started developing SOAP services with Ruby.
Before we move to the next section, there are a few more things you’ll need to know
when building real live services.

 SOAP4R comes in two flavors. It’s part of the Ruby standard library available in your
Ruby installation, and it is also available as a packaged gem that you can install from
the public gem repository at http://RubyForge.org.

 Like any standard library, SOAP4R gets updated with major releases of the Ruby run-
time, and as we’re writing this book, Ruby 1.8.6 is the predominant runtime shipping
with SOAP4R 1.5.5. The gem version is updated more frequently and is currently at ver-
sion 1.5.8 and pushing toward 1.6. We recommend you stay up with the latest enhance-
ments and bug fixes by installing and using the SOAP4R gem in your environment.

 If your service is sending and receiving text in languages other than English, you
should consider using UTF-8 encoding. In our experience, it is far easier to use UTF-8
encoding all around than to switch encoding for each document or message. The
Ruby global variable $KCODE specifies the default encoding used by the runtime, and
SOAP4R picks up on it as the default encoding, so make sure to set $KCODE to UTF8
before requiring SOAP4R.

 Our example was simple enough that we wrote the XML Schema type definitions
inline, but for larger services you’ll want to create separate type libraries and reuse
these definitions across multiple services. This is fairly easy to do by aggregating them
into XML Schema documents and importing those documents into various WSDLs.
You will also want to use another SOAP4R tool called xsd2ruby.rb to read these XML
Schema documents and create XML/Ruby mapping files, which you can then reuse in
your code.

 We did rapid prototyping by letting SOAP4R create a simple standalone server that
uses WEBrick, the default web server that ships with Ruby. That’s good enough for
development and testing, but for production you should consider using Mongrel
instead. The easiest way is to install the mongrel-soap4r gem, which lets you configure
Mongrel for hosting SOAP4R services.

 We cannot complete this section without mentioning ActionWebService. It’s a
lightweight framework on top of SOAP4R designed specifically for use inside Rails
applications. It’s particularly useful if you want to expose SOAP services as part of a
Rails application, and it lets you implement the service operations inside your control-
lers. You can also use it to invoke SOAP services from within a Rails application.

 ActionWebService is also a good fit if you prefer code-first service development
and want to define your services from working code. It has a simple, declarative

API that feels very similar to the annotations used in J2EE and .Net. We like the

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://RubyForge.org

123SOAP services

ActionWebService API, but we prefer contract-first design, especially when using SOAP
across different languages and platforms, which is why we wrote this example using
WSDL and SOAP4R.

 Now let’s turn our attention to service invocation and write a SOAP client to invoke
the task manager service.

5.3.2 Invoking the service

The promise of services is reuse, which emphasizes the client side of the application. In
this section, we’ll show you how to write a client application to use the task manager ser-
vice, and not surprisingly, it will be easier and quicker to write than the service itself.
Problem
You want to develop a client application that can use the task manager service
described in the WSDL document.
Solution
In the previous section, we showed you how to use SOAP4R and a WSDL file to imple-
ment a simple task manager service. In this section, we’ll use the same WSDL docu-
ment to create two clients for that service.

 SOAP4R refers to client stubs as “drivers,” and for legacy reasons the base class for
all drivers is called SOAP::RPC::Driver. But don’t get confused—that same driver will
also support doc/lit services like the one we’re using here.

 Since we already have a WSDL service definition, we’ll use WSDLDriverFactory to
create a new driver for the task manager service:

wsdl = File.expand_path('taskService.wsdl')
SOAP::WSDLDriverFactory.new(wsdl).create_rpc_driver

The driver reads the WSDL service definition and adds all the operations available to
the service, along with the endpoint URL and protocol bindings, so we can immedi-
ately begin using it. Messages are mapped from their internal SOAP representation to
Ruby hashes:

response = driver.createTask(:title=>'Learn SOAP4R', :priority=>1)
puts "Created task #{response['id']}"

That’s all there is to it. We can start adding more operations to our WSDL, create more
complex message definitions, all the while using the same basic patterns. You can see
the entire client application in listing 5.13.

$KCODE = 'UTF-8'
require 'rubygems'
require 'soap/driver'
require 'soap/wsdlDriver'

wsdl = File.expand_path('../taskService.wsdl')
driver = SOAP::WSDLDriverFactory.new(wsdl).

Listing 5.13 Task manager client using WSDLDriver

Uses UTF-8 all around

Requires SOAP4R
client library

Creates SOAP client
from WSDL file
 create_rpc_driver

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

124 CHAPTER 5 Web services

response = driver.createTask(:title=>'Learn SOAP4R',
 :priority=>1)
puts "Created task #{response['id']}"

SOAP::RPC::Driver can also map SOAP messages to and from Ruby objects, and when
working with larger and more complex operations we prefer that, so the next step is to
generate these mappings. Instead of doing it ourselves, we’ll turn again to the
wsdl2ruby.rb command-line tool:

$ mkdir client
$ cd client
$ wsdl2ruby.rb --wsdl ../taskService.wsdl --type client --module TaskManager

Let’s have a look at the generated files.
 The first file, taskService.rb, defines Ruby classes to represent each element we use

in our messages, so in the source code are ready definitions for CreateTask and
CreateTaskResponse.

 The second file, taskServiceMappingRegistry.rb, specifies the mapping between
XML elements and these Ruby classes. We covered that mapping in the previous sec-
tion, when we showed how it is used by the service.

 The third file, taskServiceDriver.rb, defines TaskManagement, again using the
portType name for the class name, with the single operation we defined in the WSDL.
It also includes a basic driver implementation that loads all the mappings and remem-
bers the default endpoint URL. As before, all that information comes from the WSDL
and is used here to configure SOAP4R, and once we generate this stub, we no longer
need to reference the WSDL file.

 Listing 5.14 shows how we would use the TaskManagement driver with the typed
message parts in place of the WSDL driver and hashes.

$KCODE = 'UTF-8'
require 'rubygems'
require 'soap/driver'
require 'taskServiceDriver'

driver = TaskManager::TaskManagement.new
request = TaskManager::CreateTask.new('Learn SOAP4R', 1)
response = driver.createTask(request)
puts "Created task #{response.id}"

Discussion
There are several strategies for working with SOAP services. If you’re building an infra-
structure piece, you may need to work with the bare metal, using the SOAP object
model (classes like SOAPBody and SOAPString) to create and parse messages directly,
making dynamic invocations using a generic invoke method. If you’re building busi-
ness applications, you’ll want to work at a higher level of abstraction by using WSDL.
WSDL documents help you define the service contract, from which you can quickly

Listing 5.14 Task manager client using generated stubs

Invokes task
manager service

Uses UTF-8 all around

Requires SOAP4R
client library

Creates SOAP client
(driver) using stub

Invokes task
manager service
build client stubs and server skeletons that handle all the details of XML and messaging.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

125Summary

We advocate contract-first design and keeping your services compliant with WS-I Basic
Profile as the way to build services that interoperate across J2EE, .Net, Ruby, and many
other platforms and languages.

5.4 Summary
In this chapter, we’ve shown you what you need to know to get started building web
services with Ruby. We covered the basics of the web architecture using open-uri and
Net::HTTP, how to build RESTful web services using Rails, and how to exchange mes-
sages using the SOAP protocol.

 There are a few more libraries worth mentioning. This is Ruby, after all, and a lot
of developers new to Ruby are surprised to find out how many libraries already exist
for handling common tasks.

 Want to talk to eBay’s web services? eBay4R is the easiest way to get started. How
about Amazon’s on-demand services? Ruby has libraries for using Amazon S3, EC2,
SQS, and SimpleDB. SAP NetWeaver? Have a look at sapnwrfc, optimized for
NetWeaver web services. SalesForce? You can use the low-level RForce, or if you’re
much more comfortable with ActiveRecord, have a look at ActiveSalesForce.

 We’ll show you another example when we talk about asynchronous messaging in
chapter 7 and integrate our internal business application with a web service, using
WMQ and ActiveSalesForce. But first, we’ll talk about automating communication,
starting with e-mail and IM in the next chapter.

Deploying Ruby services on Java/C WS stacks
At the time of this writing, a few alternatives are emerging for building and deploying
SOAP services using Ruby. Unfortunately, these are so new that we did not get a
chance to cover them in this book.

One interesting possibility is to use JRuby and scripting support in Java 1.6 to deploy
Ruby services on any number of Java-based WS stacks. One example we’ve seen is
based on Axis2, another uses the Tuscany project (an SCA container that allows you
to mix services written in different languages). If you prefer using Ruby MRI, have a
look at C-based WS stacks that offer Ruby bindings, such as the Ruby bindings for
Axis/C, provided by WS02, the lead developer of Axis.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Automating
 communication
With the proliferation of communication technologies like the telephone, the
internet, and cell phones, people are more connected than ever before, and recent
software advances have allowed us to automate these communications: electronic
call center menus, widespread email, instant messaging (IM) bots, and so on. This
sort of communications automation software can make your life much easier when
it comes to handling interactions with coworkers, employees, and customers. For
example, you might want to send out an email to 500 customers when their prod-
uct has shipped. As invisible and minor as this software seems, it is a very big piece
of the infrastructure of modern businesses.

 In this chapter, we’ll look at techniques for creating this sort of software, look-
ing at code examples extracted from real systems doing this sort of work every day.

This chapter covers
■ Sending email
■ Processing email
■ Exchanging messages with AIM
■ Exchanging messages with Jabber/XMPP
126

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

127Automating email

We’ll start by looking at email, discussing how to send, receive, and process it. Then
we’ll take a look at some instant communication mediums, such as AOL Instant Mes-
senger (AIM) and Jabber.

6.1 Automating email
Email is one of the most popular technologies on the web today, but, thanks to spam-
mers, the concept of “automated email dispersion” has bad connotations, even
though this sort of mechanism is probably one of the most common internet applica-
tions. It’s often used in consumer applications. Purchased a product from an online
shop? Chances are you’ve received an automatically generated email message. Signed
up for a new service lately? You’ve probably received an activation notice via email.

 But these are all business-to-consumer use cases. What about automating email for
things like your continuous integration server or process-monitoring software? You can
use email as a powerful way to alert or update people about the state of a system. You
could also use automated email reception for tasks like creating new tickets in your
development ticketing system or setting up autoresponders for email addresses (for
example, a user sends an email to autoresponse@yourdomain.com, and then emails
are automatically responded to with the message in the body for that address). Email’s
ubiquity makes it a powerful tool for communication in your Ruby applications, and in
this section we’ll show you how to harness email to do your (Ruby-powered) bidding.
We’ll cover the basics, like sending and receiving, and then look at processing email
with Ruby.

 Let’s first take a look at your options for sending email messages with Ruby.

6.1.1 Automating sending email

Ruby has a few options for sending email messages. First, there’s a built-in library,
Net::SMTP, which is very flexible but also very difficult to use compared with others.
There are also other high-level solutions such as TMail or Action Mailer (built on top
of TMail), which work just fine, but we’ve found that a gem named MailFactory works
the best. MailFactory gives you nice facilities for creating email messages while requir-
ing very little in the way of dependencies.

Problem
You need to automate sending email from your Ruby application to alert your system

Testing SMTP
If you don’t have an SMTP server like Sendmail handy, then Mailtrap is for you. Writ-
ten by Matt Mowers, Mailtrap is a “fake” SMTP server that will write (or “trap”) the
messages to a text file rather than sending them. You can grab Mailtrap via Ruby-
Gems (gem install mailtrap) or download it and find out more at rubyforge.org/
projects/rubymatt/.
administrators when Apache crashes.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

128 CHAPTER 6 Automating communication

Solution
Ruby’s built-in SMTP library is fairly low-level, at least in the sense that it makes you
feed it a properly formatted SMTP message rather than building it for you. MailFac-
tory is a library (available via RubyGems) that helps you generate a properly formatted
message, which you can then send via the built-in SMTP library.

 Creating a message with MailFactory is as simple as creating a MailFactory object,
setting the proper attributes, and then getting the object’s string value, a properly for-
matted SMTP message. Listing 6.1 shows a short example.

mail = MailFactory.new
mail.text = "This is the message!"
mail.subject = "Re: Ruby in Practice"
mail.from = "Jeremy <jeremy@rubyinpractice.com>"
mail.replyto = "Assaf <assaf@rubyinpractice.com>"
mail.to = "You <you@yourdomain.com>"

mail.to_s
=> [Your properly formatted SMTP message]

 As you can see, setting up a MailFactory object is fairly straightforward: instantiate,
populate, and output the message to a string.

 Now, all you need to do is feed the message to Net::SMTP to send it. To send an
email to your system administration team every time your Apache web server process
crashes, you just need to build a MailFactory object, giving it a string of recipients, and
then send it via Net::SMTP. Listing 6.2 shows our implementation.

require 'rubygems'
require 'mailfactory'
require 'net/smtp'

ADMINS = ['jeremy@yourco.com', 'assaf@yourco.com']

Construct our message once since our list of admins
and our message is static.
mail = MailFactory.new
mail.text = "The Apache process is down on #{Socket.gethostname}.

➥ Please restart it!"
mail.subject = "Apache is down on #{Socket.gethostname}"
mail.from = "Apache Notifier <notifier@yourco.com>"
mail.to = ADMINS.join(',')

Is the process running?
while (true)
 unless ̀ ps -A`.include?("apache")
 puts "** Process is down"

 Net::SMTP.start("my.smtp.com", 25, "my.smtp.com",
 "user", "password", :plain) do |smtp|

Listing 6.1 Constructing a basic MailFactory object, attribute by attribute

Listing 6.2 Sending email to administrators

Creates new MailFactory

Sets message
attributes

Converts to formatted
SMTP message

Lists destination
email addresses

B

Creates new
email message

C

Loops
forever

D Checks if
Apache is
still alive

E

Uses Net::SMTP
to alert

F

 smtp.send_message mail.to_s, mail.from.first, administrators

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

129Automating email

 mail.to
 end
 end

 sleep 5
end

First, we build an array of administrator email addresses B. Then we use this and
other information to build the MailFactory object C. Next, we constantly loop like a
daemon D (we could also take this out and run the script in a cron job or something
like that), grabbing the output of ps E and checking it for the term “apache.” If it’s
not found, we send a mail to the administrators using Net::SMTP F. The start
method takes parameters for the SMTP server address and port, the “from” domain,
your username and password, and the authentication scheme (could be :plain,
:login, or :cram_md5). An SMTP object is then yielded to the block, which we can call
methods on to send email messages (e.g., send_message).
Discussion
We like to use MailFactory to build the SMTP message like this, but it’s not required. If
you’re comfortable building properly formatted messages or are grabbing the mes-
sages from another source, MailFactory isn’t required. There are also alternatives to
MailFactory, like TMail, which both generates and parses email messages. You don’t
even have to use the built-in library for sending messages; if you’re really masochistic,
you could just use a TCPSocket and talk SMTP directly!

One thing to note about our example is that it likely won’t work on Windows. The ps
utility is a *nix-specific utility, which means that if you’re on Linux, Solaris, or Mac OS
X, you should be fine, but if you’re on Windows, you’re out of luck. If you really want
to implement something like this on Windows, you can take a few other routes. One is
to use one of the many WMI facilities available, either through the win32 library or
one of the other WMI-specific packages. You could also seek out a ps alternative on
Windows, many of which are available if you just do a web search for them.

 If these approaches strike you as too low-level, then Action Mailer might be for
you. Action Mailer is Ruby on Rails’ email library, and it offers a lot of niceties that
other approaches don’t. This isn’t a book all about Rails, so we won’t go into Action
Mailer here, but if you’re interested, you can check out a book dedicated to Rails or
the Action Mailer documentation at am.rubyonrails.org.

 Now that you’re familiar with sending email with Ruby, let’s take a look at receiv-
ing it.

Uses Net::SMTP to
alert administrators

F

SMS messages
A lot of cell phone carriers let you send SMS messages via email. This is a cheap
and efficient way to reach people instantly when one of the options discussed later
isn’t available.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

130 CHAPTER 6 Automating communication

6.1.2 Receiving email

Ruby has built-in libraries for both POP3 and IMAP reception of messages, but unfortu-
nately they’re not API-compatible with one another. In this section, we’re only inter-
ested in processing incoming emails quickly. We don’t intend to keep them around, so
we don’t need the more advanced IMAP.

 We’re going to concentrate on the POP3 library (Net::POP3), but if you’re inter-
ested, the example is available for the IMAP library in the downloadable source code
for this book.
Problem
You need to perform actions at a distance, like being able to restart the MySQL server
when away from the office. You don’t always have SSH access, but you can always email
from a cell phone.
Solution
Ruby’s POP3 library, Net::POP3, is fairly simple to operate. To grab the messages from
your inbox, you simply use the start method on the Net::POP3 class and manipulate
the object given to its block. Check out the example in listing 6.3.

require 'net/pop'

Net::POP3.start('pop3.myhost.com', 110,
 'ruby', 'inpractice') do |pop|
 if pop.mails.empty?
 puts "You don't have any email!"
 else
 puts "#{pop.mails.size} mails available."
 end
end

Net::POP3, like Net::SMTP and all other Net modules, is part of the Ruby standard
library, which ships with every Ruby implementation. Unlike core library modules
(like String, Array, and File) you have to require standard library modules in order to
use them B. Once you’ve gotten the library properly in place, you can take a few
approaches to getting your mail. You could instantiate an object and work with it, but
we think our approach here (using the class method and a block) is cleaner and more
concise C. The parameters for the start method are the connection’s credentials:
host, port, login, and password. Next, we interact with the object yielded to the block
to see how many messages are present in the current fetch. If there are no email mes-
sages, we output a message indicating as much D, but otherwise we output how many
messages were found E.

 For this problem, we need to set up a system that will restart a MySQL server when a
message is sent to a specific email address with the subject “Restart MySQL.” To build a
system like that, we need to grab the emails from the address’s inbox, iterate through
them, and check each message for “Restart MySQL” in the subject. You can see our

Listing 6.3 Fetching email using POP3

Requires Net::POP3 libraryB

Opens connection
to POP3 server

C

D

Checks if new
messages are
available

E Counts waiting messages
implementation in listing 6.4.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

131Automating email

require 'net/pop'

AUTHORIZED = ['jeremy@yourco.com', 'assaf@yourco.com']
RESTART = '/etc/init.d/mysql restart'

while true

 Net::POP3.start('pop.yourhost.com', 110,
 'cly6ruct1yit2d@yourco.com', 'dbMASTER') do |pop|

 puts "received #{pop.mails.length} messages"
 unless pop.mails.empty?
 pop.mails.each do |mail|
 msg = mail.pop

 # If the subject has the phrase and they're authorized...
 from = msg[/^From:.*<(.*)>\r\n/, 1]
 if (msg =~ /^Subject:.*Restart MySQL.*/i) &&
 (AUTHORIZED.include?(from))
 # ...then, restart MySQL
 ̀ #{RESTART}`
 end

 # Delete the mail message
 mail.delete
 end
 end
 end

 # Don't hammer your POP3 server :)
 sleep 30
end

First, we set up a couple of constants: one for the email addresses that are authorized
to restart MySQL B, and one for the command we’ll use to restart MySQL C. Next, we
output a message telling how many messages we’ve received D. We then iterate
through the messages E, checking for the proper subject F and From address G. If
the sender is authorized and the subject contains “Restart MySQL,” we run RESTART
and MySQL is restarted. Having read the message, we discard it and sleep for 30 sec-
onds before checking to see if another message is waiting for us.
Discussion
The production system that this solution is based on had a few more things that
administrators could do via email, such as managing indexes and creating databases.
It also allowed administrators to send multiple commands per email. But we decided
to strip this solution down to give you a base to work from that you can expand or
completely change to suit your whim. You could change this to manage other long-
running processes, execute one-off jobs, or even send other emails out.

 You’re probably wondering about security. We wanted to make it possible to send
an email from any device, specifically from cell phones. Even the simplest of cell
phones lets you send short emails, usually by sending a text message (SMS) to that
address instead of a phone number. You can try it out yourself if you have any email

Listing 6.4 Restarting MySQL via email

B

Specifies
authorized
email sendersC Restarts MySQL

D

Reports number
of messages
received

E
Processes messages
in the inbox

F
Checks
subject

G

Matches
sender’s
email
address
addresses in your phone book.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

132 CHAPTER 6 Automating communication

 Unfortunately, cell phones won’t allow you to digitally sign emails, so we can’t rely
on public/private key authentication. We can’t rely on the sender’s address either,
because those are too easy to guess and forge. Instead, we used a unique inbox
address that can survive a brute force attack and gave it only to our administrators. We
kept this example short, but in a real application we’d expect better access control by
giving each administrator his own private inbox address and an easy way to change it,
should he lose his phone.

 In spite of that, it’s always a good idea to double-check the sender’s address. We’ll
want our task to send back an email response, letting the administrator know it com-
pleted successfully. And sometimes these responses come bouncing back, so we’ll
need a simple way to detect administrator requests and ignore bouncing messages, or
we’ll end up with a loop that keeps restarting the server over and over.

 POP3 is usually good enough for most instances, but on some networks APOP
(Authenticated POP) is required. If your host uses APOP authentication, you can give
the start command a fifth Boolean parameter to indicate that Net::POP3 should use
APOP. If we wanted to enable APOP on our previous example, the call to the start
method would look something like this:

Net::POP3.start('pop.yourhost.com', 110,
 'cly6ruct1yit2d@yourco.com', 'dbMASTER', true)

In this example, we extracted information from the raw POP message using regular
expressions. This works for simple cases, like what we’ve done here, but as your needs
get more complicated, the viability of this approach breaks down. In the next section,
we’ll take a look at a much more robust solution to email processing: the TMail library.

6.1.3 Processing email

Now that you know how to send and receive email, you can start thinking about how to
leverage these techniques to solve bigger problems. In this section, we’ll combine these
two techniques and take a look at one subsystem in a production ticketing system.
Problem
You have a ticketing system built with Rails. It’s running great, but creating tickets is a
bit laborious, so you want to allow users to open tickets via email. You need to process
and respond to ticket-creation email messages in your Ruby application.
Solution
The smartest flow for the new ticket-creation system seems to be to receive an email,
process its contents, put the relevant data in an instance of your model, and delete the
mail. Then, pull the model on the front end with a web interface. So, we’ll assume you
have a Ticket model like the following:

class Ticket < ActiveRecord::Base
 has_many :responses
end

Listing 6.5 shows our implementation of the mail-handling script. We’ll analyze it

piece by piece.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

133Automating email

require 'net/pop'
require 'tmail'
require 'net/smtp'

while true
 Net::POP3.start('mail.yourhost.com', 110,
 'tickets@yourco.com', 't1xeTz') do |pop|
 unless pop.mails.empty?

 # Iterate each mail
 pop.mails.each do |mail|
 # Parse the email we received
 ticket_mail = TMail::Mail.parse(mail.pop)

 # Create a new Ticket instance
 new_ticket = Ticket.new
 new_ticket.owner = ticket_mail.from
 new_ticket.subject = ticket_mail.subject
 new_ticket.text = ticket_mail.body
 new_ticket.save

 # Create and send the new email
 new_mail = TMail::Mail.new
 new_mail.to = ticket_mail.from
 new_mail.from = 'Jeremy <jeremy@jeremymcanally.com>'
 new_mail.subject = "Ticket Created! :: #{ticket_mail.subject}"
 new_mail.date = Time.now
 new_mail.mime_version = '1.0'
 new_mail.set_content_type 'text', 'plain'
 new_mail.body = "A new ticket has been created for

➥ you.\n===========\n\n#{ticket_mail.body}\n\nThanks!"

 Net::SMTP.start('my.smtp.com', 25, 'my.smtp.com',
 'user', 'password', :plain) do |smtp|
 smtp.send_message new_mail.encoded, new_mail.from,
 new_mail.to
 end

 # Delete the received mail message
 mail.delete
 end

 end
 end

 sleep 30
end

In this implementation, we first receive our email messages using Net::POP3 B. Then
we iterate through the messages C and use TMail’s message-parsing abilities to get a
usable object with attributes D. We then create a new instance of our ActiveRecord
model, Ticket E, and populate it with the data from the email. Finally, we use TMail
to build a new email object (notice the API similarities to MailFactory) F, and send
that email using Net::SMTP.

Listing 6.5 Creating tickets via email

Connects to POP3 serverB

Processes each
new email

C

Parses email
header and body

D

Creates database
record from email

E

Sends response emailF
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

134 CHAPTER 6 Automating communication

Discussion
TMail is available as a standalone gem (gem install tmail), but you’ll also find it as
part of the standard Rails distribution, included in the Action Mailer module. Action
Mailer itself is a wrapper around TMail and Net::SMTP that uses the Rails framework
for configuration and template-based email generation. You can learn more about
Action Mailer from the Rails documentation. In this particular example, the email
message was simple enough that we didn’t need to generate it from a template, and
we chose to use TMail directly.

NOTE Astrotrain Jeremy’s coworkers at entp have written a great tool named
Astrotrain, which turns emails into HTTP posts or Jabber messages for
further processing. You can send an email to my_token_1234@
yourhost.com and get a post to something like http://yourhost.com/
update/?token=my_ token&hash=1234. You can find out more and get
the source at http://hithub.com/entp/astrotrain/tree/master.

Now that you have a solid grasp of automating email, let’s take a look at another prob-
lem domain in communication automation: instant messaging.

6.2 Automating instant communication
Sometimes, email just isn’t quick enough. Thanks to technologies like online chat and
instant messaging, we can now be connected directly with one another, chatting
instantly. And the ubiquity of technologies like AIM, Jabber, and others finally make
them a viable solution for business communication. Automating these sorts of com-
munications opens up interesting possibilities: customer service bots, instant notifica-
tion from your continuous integration system, and so on.

 This section will concentrate on using two of the most popular options for instant
communication: AIM and Jabber.

6.2.1 Sending messages with AIM

Once released independently of the America Online dial-up client, the IM component
of the AOL system quickly became one of the most popular systems for private messag-
ing. It might not have the same tech appeal as Jabber or GTalk, but it’s an instant mes-
saging workhorse that commands half the market share and is used for both personal
and business accounts. Contacting users or employees through AIM is a good way to
make sure your communication is heard as quickly as possible.
Problem
You need to send server information via instant messages using AIM.
Solution
The Net::TOC library (gem install net-toc) provides a very flexible API for interacting
with the AIM service. The first approach you can take to using it is a simple, procedural
connect/send/disconnect approach. Listing 6.6 shows an example of sending an IM.

require 'rubygems'

Listing 6.6 Sending an IM with Net::TOC
require 'net/toc'

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://hithub.com/entp/astrotrain/tree/master

135Automating instant communication

client = Net::TOC.new('yourbot', 'p@$$w0rd')
client.connect

friend = client.buddy_list.buddy_named('youraimuser')
friend.send_im "Hello, from Ruby."

client.disconnect

First, we create an object and connect to the AIM service B. Then we find a user (in
this case, “youraimuser”), send a simple message C, and disconnect from AIM. This
approach works well when you’re simply sending messages, but it gets awkward when
you want to deal with incoming messages.

 Fortunately, Net::TOC has a nice callback mechanism that allows you to respond to
events pretty easily. These events range from an IM being received to a user becoming
available. See table 6.1 for a full listing.

These callbacks make interactions with users much cleaner than if you tried to shoe-
horn them into the sequential method. Let’s say you wanted to get information from a
server simply by sending an IM to an AIM bot. Listing 6.7 shows an implementation
using Net::TOC’s callbacks.

require 'rubygems'
require 'net/toc'

def get_server_information
 <<-TXT
 uptime

 #{`uptime`}

 disk information

 #{`df -k`}\n
 TXT
end

client = Net::TOC.new("youruser", "pa$zWu2d")

client.on_im do | message, buddy |

Table 6.1 A full listing of the Net::TOC callbacks

Callback Description

on_error {|err| } Called when an error occurs. Use this to provide your own
error-handling logic.

on_im {|message, buddy,
auto_response| }

Called when an IM is received; parameters include IM message
and sender. Use this to receive and respond to messages.

friend.on_status(status) { } Called when the given friend’s status changes; the status
parameter should be one of the following: :available,
:online, :idle, :away. Use this to track when friends go
online or offline and to see changes in their status message.

Listing 6.7 Sending the results of uptime over AIM

Connects to AIM serviceB

Sends messageC

Returns information
about server

B

Callback responds C

 friend = client.buddy_list. to new IMs

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

136 CHAPTER 6 Automating communication

➥ buddy_named(buddy.screen_name)
 friend.send_im(get_server_information)
end

client.connect
client.wait

To get the server information, we create a get_server_information method B.
Next, we use the on_im callback to respond to any IMs we receive C. The callbacks
basically function as a declarative way to define behavior when something happens,
and, as you can see here, the block we provide will be called when an IM is received.
When this happens, the buddy is found (to get a Net::TOC::Buddy object) and an IM
is sent via the send_im method. Finally, once the callback is set up, we connect and
wait for IMs to come in to fire the callback D.
Discussion
Little bots and automations like this are becoming more and more popular. Develop-
ers are beginning to realize the potential uses for them: information lookups, cus-
tomer management, workflows, and so on. Many IRC channels for open source
packages (including Ruby on Rails) now have IRC bots that will give you access to a
project’s API by simply sending a message like “api ActionController#render.” Devel-
opers looking for a solution to handle peer and management approval in code reviews
or to alert their coworkers of Subversion activity could use an AIM bot like this one.

 If you’re interested in embedding AIM chat features in a Rails application, your
options are slim and aren’t very slick, but it is possible. We’re not aware of any Rails
plugins that currently handle AIM communications dependably. The best way we’ve
found to handle this is to build an external daemon that you integrate with your Rails
application. For example, you could use the daemons gem to generate a daemon
script, give it full access to the Rails environment by including environment.rb, and
then run it along with your Rails application. This will allow your daemon to have
access to your application’s models, making integration a snap.

 If you find that the people you need to communicate with don’t like AIM, you can
use libpurpl, the library that powers Pidgin, a multiprotocol chat client. There is a
Ruby gem named ruburple that hooks into libpurpl, but many people seem to experi-
ence sporadic success with building it. If you’re able to build it, it’s a great way to
access a number of chat protocols easily. If that doesn’t work for you, you can also use
XMPP and Jabber to access other chat protocols. We’ll talk about Jabber next.

6.2.2 Automating Jabber

Jabber is an open source IM platform. The great thing about Jabber is that you can have
your own private Jabber server, which you can keep private or link with other Jabber serv-
ers. So, you can have your own private IM network or be part of the public Jabbersphere.
In addition, XMPP (the Extensible Messaging and Presence Protocol that Jabber runs
on) offers a nice set of security features (via SASL and TLS). XMPP servers can also bridge
to other transports like AIM and Yahoo! IM. You can learn more about setting up and

Callback responds
to new IMs

C

Starts waiting for new IMsD
maintaining your own Jabber server from the Jabber website at http://www.jabber.org/.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://www.jabber.org/

137Automating instant communication

Problem
You want your administrators to be able to manage MySQL via Jabber messages sent
from your Ruby application.
Solution
Ruby has a number of Jabber libraries, but the most advanced and best maintained is
xmpp4r. In this section, we’ll look at using a library built on top of xmpp4r named
Jabber::Simple, which simplifies the development of Jabber clients in Ruby. You’ll
need to install both gems (xmpp4r and xmpp4r-simple) to use these examples.

The process for interacting with Jabber is very similar to the process for interacting
with AIM, but the API exposed in Jabber::Simple is slightly, well, simpler. Take a look at
listing 6.8 for an example.

require 'rubygems'
require 'xmpp4r-simple'

im = Jabber::Simple.new('you@jabberserver.com', 'p@s$')
im.roster.add('them@jabberserver.com')
im.deliver('them@jabberserver.com', "Hello from Ruby!")

First, we create a new Jabber::Simple object. When creating this object, you must
provide your login credentials, and the account will be logged in. The new object is
essentially an XMPP session with a nice API on top of it. The roster attribute provides
an API to the logged-in account’s contact list, which allows you to add and remove
people. Finally, we use the deliver method to send a message to the person we added
to this account’s contact list.

Jabber::Simple doesn’t implement anything akin to the callbacks in Net::TOC, but the
mechanism for receiving messages is fairly straightforward. As an example, let’s say

Listing 6.8 Building a simple Jabber::Simple object

Jabber and Rails
If you’re interested in using Jabber with Rails, take a look at Action Messenger, which
is a framework like Action Mailer but for IM rather than email. The Action Messenger
home page is http://trypticon.org/software/actionmessenger/.

Connects to
XMPP server

Adds recipient
to roster

Sends IM to
recipient

Contact list authorization
When you add someone to an account’s contact list, the person being added will
have to authorize the addition of her account to your contact list. You can use the
subscript_requests method to authorize requests for adding your bot. See the Jab-
ber::Simple documentation for more information.
you wanted to expand on our earlier MySQL control service (from listing 6.4) to allow

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://trypticon.org/software/actionmessenger/

138 CHAPTER 6 Automating communication

your administrators to stop, start, or restart the server over IM. Listing 6.9 shows one
implementation of this script.

require 'rubygems'
require 'xmpp4r-simple'

AUTHORIZED=['admin@yourco.com', 'admin2@yourco.com']

COMMANDS = {
 'start' => '/etc/init.d/mysql start',
 'stop' => '/etc/init.d/mysql stop',
 'restart' => '/etc/init.d/mysql restart'
}

im = Jabber::Simple.new('user@yourco.com', '%aZ$w0rDd')

puts "Waiting on messages."
while true
 im.received_messages do |message|
 # Build a usable user ID from the message
 from = message.from.node + '@' +
 message.from.domain

 # Are they authorized?
 if AUTHORIZED.include?(from)
 puts "Received message from #{message.from}"

 if COMMANDS[message.body]
 ̀ #{COMMANDS[message.body]}`
 status = "MySQL told to #{message.body}."
 else
 status = "Invalid command!"
 end
 im.deliver from, status
 end
 end

 # Don't want to eat up more CPU than necessary...
 sleep 3
end

We start off by defining a few constants B: AUTHORIZED is an Array of Jabber users that
we permit to issue commands, and COMMANDS is a Hash of command sequences we’ll
use to control the MySQL server. Next, we create our Jabber::Simple object C and
call the received_messages method D. This method gives us an iterator that will
yield each message received since the last received_messages call.

 Now we need to figure out who sent us the message. The message.from attribute
is actually a Jabber::JID object that gives us access to some of the internal Jabber
data. Earlier in the chapter, we used email to administer MySQL, and we had to worry
about spoofing the sender’s address. XMPP uses server-to-server authentication to
eliminate address spoofing, so we can trust the sender’s identity. Since we need to

Listing 6.9 Managing MySQL via Jabber rather than email

Authorizes
administrators
and management
scripts

B

C
Connects to
XMPP server

D

Responds to
each received
message

Builds user ID to
check against

E

Performs
management
command,
sends response

F

know only the username and domain, we extract that and build a usable string E.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

139Summary

Next, we check to see if the user who sent us the message (now in from) is authorized
to be doing so, and if so, we try to issue the command F. If they sent a bad command
(i.e., not “start,” “stop,” or “restart”), we tell them so. Otherwise, we go to the next
message or begin listening for new messages again.
Discussion
The Jabber::Simple library is nice, but if you like to get down to the bare metal, you
could use xmpp4r directly. It offers a higher level API (not quite as high as Jab-
ber::Simple, but tolerable), but it also gives you access to much of the underlying
mechanics. This access could be useful if you’re building custom extensions to XMPP
or you want to do some sort of filtering on the traffic.

6.3 Summary
We’ve taken a look at a few approaches to communication automation in this chapter.
Email automation has been in use for years in certain arenas, but we are seeing it
expand out into more business applications (some of which were discussed here) and
into the consumer world (with things like Highrise from 37signals and Twitter). AIM
bots have been around for years (Jeremy can remember writing one in 1997!), but
they’re no longer exclusively in the territory of 13-year-olds and spammers—they’ve
moved into the business-tool arena. Voice over IP (VOIP) seems to be moving in that
same direction, with technologies like Asterisk and tools like Adhearsion.

 All this is to say that we are beginning to see people use existing methods of com-
munication in new and different ways. Fortunately, the Ruby community is constantly
building new tools to work with these technologies, and many of them, like Adhear-
sion, are pioneers in their field. Another area where Ruby has pioneered is databases,
where ActiveRecord and some of the new ORM libraries are pushing the boundaries
of DSL usage in database programming.

 Now that we have covered the use of email and instant messaging for automation,
we’ll turn our attention to technologies designed specifically for exchanging messages
between applications, and we’ll talk about asynchronous messaging using the open
source ActiveMQ, big-iron WMQ, and Ruby’s own reliable-msg.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Asynchronous messaging
Asynchronous messaging is one of the most effective ways of building a loosely cou-
pled system while maintaining a sense of coherence in the system. Coupling the
publish/subscribe architecture with a reliable delivery broker gives you a solid
architecture for integration with heterogeneous (or homogeneous) systems. In this
chapter, we’ll look at a few options for asynchronous messaging in Ruby, including
how to integrate these solutions with Rails. We’ll start with two open source messag-
ing servers, ActiveMQ and Ruby-native reliable-msg, before moving on to WMQ, the
granddaddy of message-oriented middleware.

7.1 Open source messaging servers
When building an application that requires asynchronous messaging, open source
messaging servers are a compelling option. In this section, we’ll take a look at two
such options. The first, ActiveMQ (available from http://activemq.apache.org) is a
Java-based messaging middleware developed by the Apache Software Foundation.

This chapter covers
■ Using ActiveMQ and Stomp
■ Using reliable-msg
■ Using WebSphere MQ
140

It’s a popular mid-size solution attractive not only for its price tag (free!) but also

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://activemq.apache.org

141Open source messaging servers

for packing the right combination of features and performance while requiring mini-
mal setup and administration. The second, reliable-msg, is a pure-Ruby implementa-
tion suitable for small-scale deployments.

 You can connect to ActiveMQ in a variety of ways, including REST and XMPP, both
of which we covered in previous chapters, or through the JMS API, an option that’s
available when deploying on JRuby (see appendix B). In this chapter, we’re going to
use Stomp, the Streaming Text Orientated Messaging Protocol. It’s an open protocol
that supports a variety of messaging brokers and programming languages, and, in
combination with StompConnect, any messaging broker that supports the Java Mes-
sage Service (JMS) API.

7.1.1 Using ActiveMQ

In this section, we’ll look at using ActiveMQ with the stomp gem, a library that gives
you the ability to interface with services over the Stomp protocol. Stomp offers a light-
weight format for compatible clients to interact with message brokers. This means that
although we’re talking to ActiveMQ in this section, you could just as easily use the
stomp gem with any Stomp-compatible message broker (a list of which is on the
Stomp website at http://stomp.codehaus.org).

 You first need to get your ActiveMQ instance installed and configured (see the
ActiveMQ and Stomp websites for information on how to do that). You’ll want to use
RubyGems to install the stomp library:

$ gem install stomp

Problem
Your Ruby application needs to integrate with a monitoring service that uses a mes-
sage broker to get information from the services it’s monitoring.
Solution
The service we’re integrating with processes error messages from the /queue/errors
queue. It receives XML messages in a simple format:

<?xml version="1.0" encoding="UTF-8"?>
<error>
 <type>StandardError</type>
 <message>Something is broken.</message>
 <backtrace>
 NameError: uninitialized constant X
 from (irb):1
 </backtrace>
</error>

We’re going to generate this XML document using Builder, which is the same library
we used in chapter 5 to generate Atom feeds from a Rails application. Builder is avail-
able as a separate gem (gem install builder). You can see the method generating
this XML document in listing 7.1.

def generate_xml(error_object)

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://stomp.codehaus.org

142 CHAPTER 7 Asynchronous messaging

 payload = ""

 builder = Builder::XmlMarkup.new(:target => payload)
 builder.instruct!

 builder.error do |error|
 error.type error_object.class.to_s
 error.message error_object.message
 error.backtrace error_object.backtrace.join("\n")
 end

 payload
end

Our generate_xml method takes an error_object as a parameter, from which we’ll
grab information to generate the XML. First, we start a new Builder document by cre-
ating an instance of Builder::XmlMarkup and telling it to generate the XML declara-
tion B. Then we build our document using methods on the builder object C.

 Now, what’s the best architecture for our error reporter? Since we’ll be catching
exceptions and reporting them to the error-reporting service, it seems like a good
idea to avoid creating an instance every time. We’ll probably want to build a class and
use class methods to handle the functionality. Listing 7.2 shows our implementation
of this class.

require 'rubygems'
require 'stomp'
require 'builder'

class ErrorReporter
 def self.report!(error_object, queue='/queue/errors')
 reporter = Stomp::Client.new
 reporter.send queue, generate_xml(error_object)
 end

 private
 def self.generate_xml(error_object)
 payload = ""

 builder = Builder::XmlMarkup.new(:target => payload)
 builder.instruct!

 builder.error do |error|
 error.type error_object.class.to_s
 error.message error_object.message
 error.backtrace error_object.backtrace.join("\n")
 end

 payload
 end
end

Listing 7.1 A method that takes a Ruby error object and generates XML from it

Listing 7.2 Implementing our error reporter

Generates
the payload

B

Writes
document
element

C

Pushes message
to queue

B

Uses Stomp client
to queue messageC
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

143Open source messaging servers

Here you can see that we define a method called report! B, which takes an
error_object as a parameter, along with the name of the queue you want to push the
messages to (defaulting to /queue/errors). Next, we create our Stomp::Client ob-
ject C and tell it to send a message to the queue identified in the parameters with a pay-
load containing XML from the generate_xml method we created earlier (listing 7.1).

 Now, we just have to implement this in some code:

def error_method
 FakeConstant.non_existent_method!
rescue StandardError => error_obj
 ErrorReport.report! error_obj
end

When running that code, an error will be raised and reported via our ErrorReporter.
If you check the queues in your message broker’s web interface, you should see a mes-
sage that has XML for the error object. That works great, but let’s build a message con-
sumer so we can test it more easily.

 To consume messages with a Stomp::Client object, you use the subscribe
method, which allows you to define behavior for responding to messages being
pushed to a queue. The behavior is defined by providing a block to the subscribe
method; you can see a primitive example of this in listing 7.3.

client = Stomp::Client.new
client.subscribe('/queue/testing") do |message|
 puts message.body
end

Join the listener thread
client.join

Running the code in listing 7.3, then pushing messages into the /queue/testing
queue will cause the payload of those messages to be printed to the console. The
resulting message object is actually a Stomp::Message object, which also contains a lit-
tle bit more information about the frame if you need it (specifically, the frame head-
ers and command). We also join the thread; otherwise, the script would exit and the
listener thread would be killed off.

 So, to make a consumer for our error reporter, we’ll need to pop the messages off
the queue and process the XML inside of our subscribe call. We’ll use REXML to
parse the XML document and work with the elements tree. Our implementation is in
listing 7.4.

require 'rubygems'
require 'rexml/document'
require 'stomp'

Listing 7.3 Processing all messages from the queue

Listing 7.4 Our testing consumer for the error reporter

Uses Stomp client to consume messages

Subscribes to queue,
consumes each message
client = Stomp::Client.new

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

144 CHAPTER 7 Asynchronous messaging

client.subscribe('/queue/errors') do |message|
 xml = REXML::Document.new(message.body)

 puts "Error: #{xml.elements['error/type'].text}"
 puts xml.elements['error/message'].text
 puts xml.elements['error/backtrace'].text
 puts
end

client.join

We create a Stomp::Client object and invoke subscribe. When a message is received,
we push the message body over to REXML B and pull attributes out to print them to
the console C. If you run this script and throw a few errors to the error reporter, your
console should look something like the following:

Error: NameError
uninitialized constant NonExistentConstant
my_script.rb:3:in ̀ test_call'
my_script.rb:12

Error: NameError
uninitialized constant IDontExist
application.rb:9:in ̀ invoke!'
application.rb:20

Discussion
In these examples, we’ve only shown you a few features of the stomp gem. To keep the
examples short, we left many features out, but the library is actually quite full-featured.

 For example, it supports authentication in the message broker, so if we wanted to
log in as a user on the broker listening on the localhost at port 13333, we’d simply
do something like the following when creating the Stomp::Client object:

client = Stomp::Client.new('username', 'pass', 'localhost', 13333)

The library also supports reliable messaging using client-side acknowledgement. For
example, let’s say you wanted to make sure that your authorization messages were
being received. Your code, at its base level, might look something like the following:

message = nil
client = Stomp::Client.new
client.send '/queue/rb', "Hi, Ruby!"

client.subscribe('/queue/rb', :ack => 'client') { |msg| message = msg }

client.acknowledge message

To learn more about these and other features (like transactional sending), you can
check out the Stomp home page or generate the RDocs for stomp on your local machine.

 If Java and ActiveMQ aren’t available to you, or you don’t want to go through the
effort of setting them up, there is also a pure Ruby Stomp server. It’s available as a gem
named stompserver, which you can install by executing the following:

$ gem install stompserver

Parses the XML
message body

B

Prints text value of
various elements

C

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

145Open source messaging servers

While it’s not production quality, it’s great for testing your application locally without
creating a lot of overhead on your system. Although it is useful, stompserver isn’t the
best pure-Ruby asynchronous messaging solution available. In the next section, we’ll
take a look at the best pure-Ruby option we’ve found: Ruby Reliable Messaging.

7.1.2 Using reliable-msg

If your preference is to stay in Ruby rather than using a tool from another language, or
if your requirements don’t allow for extraneous software installation, perhaps a pure
Ruby solution is in order. Assaf wrote a pure Ruby reliable-messaging library named
Ruby Reliable Messaging. In this section, we’ll take a look at using this library to fulfill
your asynchronous messaging needs in a small setting where no heavy lifting is required.

 To get started, you’ll want to install the Ruby Reliable Messaging gem, which is
named reliable-msg:

$ gem install reliable-msg

Next, you’ll want to start the Reliable Messaging library’s message broker, which is a
daemon that exposes brokering over DRb:

$ queues manager start

Problem
You want to utilize asynchronous messaging, but you need to stay in the Ruby language.
Solution
The Reliable Messaging library functions primarily through the ReliableMsg::Queue
class and its put and get methods. These obviously named methods will put messages

Stomp documentation
The stomp gem doesn’t actually generate its documentation when it installs itself, so
you’ll need to navigate to its directory and run rdoc to generate it yourself. RDocs
aside, we found that the test suite was one of the best locations for information on
how to use the library. The same goes for RubyWMQ and other libraries we cover in
this book. Chalk it up to a developer community devoted to test-driven development.

DRb
DRb (Distributed Ruby) is a standard library that you can use to write distributed ap-
plications. Using DRb, client applications can call Ruby objects that exist on a remote
server using a fast binary protocol over TCP/IP. Similar in nature to RMI and DCOM,
DRb was designed to make RPC calls between objects running on different machines
and for interprocess communication. Because it was only designed to support Ruby
clients and servers, its main benefits are speed and simplicity.
into the queue and get them out. Listing 7.5 shows an example.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

146 CHAPTER 7 Asynchronous messaging

require 'rubygems'
require 'reliable-msg'

queue = ReliableMsg::Queue.new 'ruby'
queue.put "Simple message goes here."

msg = queue.get
puts msg.object
=> "Simple message goes here."

You can see the simple API here. We create a ReliableMsg::Queue object and use the
put method to place an object in the queue B. Next, we use the get method to pop
the first object (the string we just created) off the queue C. Then we use the object
method to get the object from the message and output it to the console (in this case,
we just had a string). This simple API makes it very easy to focus more on the business
logic around your messaging rather than the messaging itself.

 While reliable-msg isn’t meant for heavy-traffic messaging, it does offer one unique
advantage over the other solutions that aren’t Ruby from top to bottom: native object
handling. When you place a message in the queue, the reliable-msg library does this:

message = Marshal::dump(message)

What does that mean for you? It means that you can put any type of object into the
queue and have it serialized natively in Ruby. No more XML serialization, no tiptoeing
around serialization limitations, and no more worrying about serialization problems.
Of course, this means that you can only integrate with Ruby clients, but this section is
all about pure Ruby messaging.

 Let’s say you want to use a queue to pass work-order information from your Rails
application to your Ruby application on a different host that processes and dispatches
work orders. Your WorkOrderMessage class might look something like listing 7.6.

class WorkOrderMessage
 attr_accessor :requester, :requested_work, :date_due

 def initialize(params)
 raise "Invalid arguments provided." unless params.is_a?(Hash)

 @requester = params[:requester]
 @requested_work = params[:requested_work]
 @date_due = params[:date_due]
 end

 def unique_id
 "#{@requester.slice(0,5).strip.upcase}-" +
 "#{@date_due.strftime('%m%d%y')}-#{@requested_work.hash}"
 end

 def report!
 puts "Order #{unique_id} received."

Listing 7.5 Demonstrating the Reliable Messaging library’s core functionality

Listing 7.6 Passing data from a Rails application to a Ruby application

Pushes message
to ruby queue

B

Consumes
message,
prints it

C

 puts "from #{@requester}, due #{@date_due.strftime('%D')}"

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

147Open source messaging servers

 puts "Work requested:"
 puts @requested_work
 puts
 end
end

In the class, we have attr_accessors for various attributes, a couple of methods to
format the information in a variety of ways, and a constructor that takes a Hash as its
single parameter so we can pass from a request action to a create action and to the
constructor directly.

 In our Rails application, we then would have a create action like the one in list-
ing 7.7.

def create
 @work_order = WorkOrder.new(params[:work_order])
 @work_order.save!

 mq = ReliableMsg::Queue.new('orders_queue')
 message = WorkOrderMessage.new(params[:work_order])
 mq.put message

 flash[:notice] = "Work order submitted."
 redirect_to(work_orders_path)
rescue ActiveRecord::RecordInvalid
 render :action => 'new'
end

First, we create an ActiveRecord object (WorkOrder) and save it to the database B. If
that’s successful, we proceed to create our WorkOrderMessage object and place it in
the queue C. The rest of the method will place a confirmation message in the flash
and redirect the user to the index of the work_orders controller.

Now we need to create a message consumer for our Ruby application. Again, we’ll use
the get method to grab the message from the queue and process it. See listing 7.8 for
our implementation of a simple consumer.

require 'rubygems'
require 'reliable-msg'

Listing 7.7 Creating a work order in the database and passing a message

Listing 7.8 Consuming messages from the queue

Stores work order
in database

B

Queues message to
process work order

C

Blocking your Rails application
The only downside to this approach is that it blocks your Rails application when plac-
ing the message in the queue, which means that if you’re moving around big objects
or have a slow or busy queue, your users will have to wait until it’s done (or worse,
the request may time out). See the following discussion section for a few tips on how
to avoid this.

Opens connection B

queue = ReliableMsg::Queue.new 'orders_queue' to orders queue

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

148 CHAPTER 7 Asynchronous messaging

while true
 while true
 break unless queue.get do |msg|
 msg.report!

 # If you had a Processor class...
 Processor.process! msg
 true
 end
 end
 sleep 10 # No messages? Hold on!
end

First we create our Queue object B, and then we start looping so that the consumer is
always available C. When we get a message D, we call its report! method to give us a
report of what its work order contains, then we tell our Processor class (assuming we
have one) to process it.
Discussion
We said that the method we showed for Rails integration may cause problems if you
have high traffic or big message objects. There are two popular options for Rails inte-
grated messaging: AP4R and ActiveMessaging.

 AP4R builds on reliable-msg and offers a number of Rails-specific features that will
make your life much easier when trying to handle messaging. If you’re interested in
the minimal setup and configuration of reliable-msg and want to use it in combina-
tion with Rails applications, we recommend checking out AP4R.

 ActiveMessaging is another alternative for integrating messaging providers into
Rails applications. Its strength is in supporting WMQ, Stomp, JMS, Amazon Simple
Queue Service, and reliable-msg, letting you switch between providers as your project
needs change. It requires more setup than AP4R, but it has the clear advantage of sup-
porting more messaging services.

 If these libraries strike you as too much to set up or too much code to add to your
applications, you could also use something like Spawn or BackgrounDRb to handle
the sending (and optionally consuming) of messages. These options are simpler and
possibly cleaner, but they aren’t as integrated or powerful.

 In our examples, we didn’t cover some of the more advanced features of reliable-
msg. For example, you can specify the delivery method. By default, it’s “best effort”
(:best_effort), which means it will try to deliver the message once, and if it fails, the
message will be discarded. Let’s say you wanted a little more resilience. You decide to
change the delivery behavior to repeat delivery six times, and if it fails, to place the
message in the dead-letter queue:

queue.put message, :delivery => :repeated

You can also set the :delivery argument to be :once, which will try to deliver the
message once, and if it fails, the message will be placed in the dead-letter queue.
These parameters can also be set on Queue objects so that the behavior becomes the
default for any message object passed to it:

Loops foreverC

Processes each
message from queue

D

queue = Queue.new("my_queue", :delivery => :repeated)

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

149WebSphere MQ

This will cause any message put in that queue to be delivered using the repeated
method rather than the default. The reliable-msg library also has a very flexible con-
sumption API and a number of options for persistence. You can read more about
these in RDocs, which are generated when you install the gem.

7.2 WebSphere MQ
What happens when you combine powerful message-oriented middleware with a pow-
erful programming language? In the next two sections, we’re going to look at Ruby-
WMQ, a library for using WMQ from Ruby.

 The best thing about RubyWMQ is how it’s implemented. It’s essentially a thin
wrapper around the WMQ client API, which means you get access to all the WMQ
options and flags, and full control over message descriptors and headers. The get and
put methods work exactly like you expect them to, as do browsing and retrieving
related messages, managing queues, and running WMQ commands. If you know
WMQ, there’s little new to learn here, and you’ll be up and running in a few minutes.

 RubyWMQ also brings with it all the useful Ruby idioms, like using hashed argu-
ments, blocks, and the each method. As you’ll see in the following example, it’s easy to
get productive with RubyWMQ and to write code that’s simple, readable, and reliable.
So let’s get started.

7.2.1 Queuing messages

We’re going to use WMQ for integration, and we’ll start by using Ruby as the message
producer. For the rest of the chapter, we’ll be looking at an environment with several
applications that invite people to register and create new accounts. To capture and
handle all that information, we’re going to use WMQ as a message bus across all these
applications. All our applications will use a common format (using XML) and a queue
to collect all these messages. Now let’s put it to use.
Problem
Your web application allows users to register and create new accounts. Whenever a
user creates an account, you need to capture some of that account information, create
an XML message, and push that message into the ACCOUNTS.CREATED queue.
Solution
Since we covered Rails in previous chapters, we’re going to use it again in this chapter.
We’re doing that so we can focus on RubyWMQ rather than the details of building a web

Viewing gem documentation
If you want to view the documentation for gems on your system, run gem server from
your favorite command line. This script will start a web server on port 8808; you can
navigate to it and browse a list of the gems you have installed and their accompany-
ing documentation.
application. However, what you will learn here is not specific to Rails or web applications.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

150 CHAPTER 7 Asynchronous messaging

Let’s first have a look at our existing AccountsController. It has several actions, but
we’re only interested in the create action that responds to POST requests and creates
new accounts. Listing 7.9 shows what this action looks like.

def create
 @account = Account.new(params['account'])
 if @account.save
 # Created, send user back to main page.
 redirect_to root_url
 else
 # Error, show the registration form with error message
 render :action=>'new'
 end
end

After we create the new account record, and before we respond to the browser, we’re
going to send a new message using RubyWMQ. Let’s keep that code separate and add
a new method called wmq_account_created.

 To start with, this method will need to create an XML document with the new
account information. The actual account record contains more information than we
want to share, such as the user’s password and the record’s primary key, so we’ll be
selective with the few attributes we want to share:

attributes = account.attributes.slice('first_name', 'last_name',
 'company', 'email' }

There’s another attribute we want to share: the name of the application that created
this account. Since we’re very Web savvy, we always refer to applications by their
domain name, so we’ll use the domain name to set the value of this attribute:

Listing 7.9 AccountsController create action for creating a new account

Installing gems with C extensions
RubyWMQ is Ruby code mixed with a native C library. There are other gems that mix
Ruby code with C extensions, some of which we cover in this book: MySQL, Mongrel,
Hpricot, and RMagick.

On Windows, these C libraries are installed as DLLs, but on other operating systems
they download as source code and need to be compiled and linked on your machine.
If you’re curious what C extensions look like, check out one of these gems’ ext/ di-
rectories. Typically gems that use C extensions include an extconf.rb file, which uses
the mkmf library to generate the Makefile. The rest is handled by make and gcc.

To run the examples in this section, you will need to have a development environment
that includes these build tools. Some installations include them by default, but if
yours doesn’t, you will have to install them separately. If, for example, you’re using
Ubuntu, you will need to run this command: apt-get install build-essential
ruby1.8-dev. We talk more about installation and setting up your environment in
appendix A.
attributes.update(:application=>request.host)

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

151WebSphere MQ

Now, let’s turn these attributes into an XML document with the root element “account”:

xml = attributes.to_xml(:root=>'account')

A typical message will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<account>
 <first-name>John</first-name>
 <last-name>Smith</last-name>
 <company>ACME Messaging</company>
 <email>john@example.com</email>
 <application>wmq-rails.example.com</application>
</account>

Next, we’re going to connect to the queue manager. We want to keep the connection
configuration in a separate file, so we don’t have to dig through source code whenever
we need to change it.

 In fact, we want to keep several connection configurations that we can use in dif-
ferent environments. Typically, we’ll use one queue manager that we run locally for
development, another one for testing, and the real deal in production. We’ll even
configure those differently; for example, we’ll use nonpersistent queues for develop-
ment and testing. If you worked with Rails before, you know that it uses a YAML file to
specify the database connection configuration—one for each environment. We’ll use
a similar structure to configure RubyWMQ. Listing 7.10 shows a sample wmq.yml con-
figuration file.

development:
 q_mgr_name: DEV.QM

test:
 q_mgr_name: TEST.QM

production:
 q_mgr_name: VENUS.QM
 connection_name: venus.example.com(1414)
 channel_name: SYSTEM.DEF.SVRCONN
 transport_type: WMQ::MQXPT_TCP

Loading YAML files is a trivial matter (see chapter 11 for a longer discussion about
YAML and configuration). We need to pick the right configuration based on our cur-
rent environment:

config_file = File.expand_path('config/wmq.yml', RAILS_ROOT)
config = YAML.load(File.read(config_file))[RAILS_ENV].symbolize_keys
WMQ::QueueManager.connect(config) do |qmgr|
 ...
end

Now that we have an XML document and an open connection, it’s a simple matter of
putting the message in the right queue:

qmgr.put :q_name=>'ACCOUNTS.CREATED', :data=>xml

Listing 7.10 A config/wmq.yml configuration file

Uses local queue manager
for development

Uses central queue
manager for production
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

152 CHAPTER 7 Asynchronous messaging

One thing we found helpful during development is keeping a trace of all the messages
created by the application. It helps when we need to troubleshoot and look for lost mes-
sages. So let’s expand this single line to create a WMQ::Message object. The message
identifier is set when we put the message in the queue, so we can log it afterwards:

message = WMQ::Message.new
message.data = xml
qmgr.put :q_name=>'ACCOUNTS.CREATED', :message=>message
logger.info "WMQ.put: message #{message.descriptor[:msg_id]} in

ACCOUNTS.CREATED"

Now let’s assemble all these pieces into working code. Since we might use RubyWMQ
elsewhere in our application, we’ll handle the configuration in a single place that is
shared by all controllers. Listing 7.11 shows the ApplicationController and the
method we added to load the right configuration.

require 'wmq'

class ApplicationController < ActionController::Base

 def self.wmq_config
 unless @wmq_config
 wmq_config_file = File.expand_path('config/wmq.yml', RAILS_ROOT)
 @wmq_config = YAML.load(File.read(wmq_config_file

➥))[RAILS_ENV].symbolize_keys
 end
 @wmq_config
 end

end

Listing 7.12 shows AccountsController with an action that creates new messages and
the wmq_account_created method. Controllers expose all their public methods as
actions, and since this method is not an action, we’ll make it private.

class AccountsController < ApplicationController

 QUEUE_NAME = 'ACCOUNTS.CREATED'

 def create
 @account = Account.new(params[:account])
 if @account.save
 wmq_account_created @account
 # Created, send user back to main page.
 redirect_to root_url
 else
 # Error, show the registration form with error message
 render :action=>'new'
 end
 end

Listing 7.11 The app/controllers/application.rb file modified to read WMQ configuration

Listing 7.12 AccountsController queues new accounts in ACCOUNTS.CREATED

Provides WMQ
configuration to
all controllers

Caches configuration
in memory

Loads configuration for
current environment

Creates new account

Validates and stores
account in database

Queues account
creation message
private

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

153WebSphere MQ

 def wmq_account_created(account)
 attributes = account.attributes.

➥ slice('first_name', 'last_name', 'company', 'email')
 attributes.update(:application=>request.host)
 xml = attributes.to_xml(:root=>'account')

 config = self.class.wmq_config
 WMQ::QueueManager.connect(config) do |qmgr|
 message = WMQ::Message.new
 message.data = xml
 qmgr.put :q_name=>QUEUE_NAME, :message=>message
 msg_id = message.descriptor[:msg_id]
 logger.info "WMQ.put: message #{msg_id} in #{QUEUE_NAME}"
 end
 end

end

And we’re done. We just changed an existing controller to create XML messages and
deliver them to other applications using WMQ.
Discussion
Writing the code was easy, but we sometimes make mistakes, and we can’t tell for sure
this will work in production. Not without a test case. So let’s write a test case to make
sure we’re sending the right information on the right queue. We test the controller in
listing 7.13.

module Test::Unit::WMQTest

 # Read the WMQ configuration for this environment.
 def wmq_config
 @wmq_config ||= YAML.load(File.read("#{RAILS_ROOT}config/wmq.yml"))

➥ [RAILS_ENV].symbolize_keys
 end

 # Retrieve last message from the named queue, assert that it exists
 # and yield it to the block to make more assertions.
 def wmq_check_message(q_name)
 WMQ::QueueManager.connect(wmq_config) do |qmgr|
 qmgr.open_queue(:q_name=>q_name,
 :mode=>:input) do |queue|
 message = WMQ::Message.new
 assert queue.get(:message=>message)
 yield message if block_given?
 end
 end
 end

 # Empty queues at the end of the test.
 def wmq_empty_queues(*q_names)
 WMQ::QueueManager.connect(wmq_config) do |qmgr|
 q_names.each do |q_name|
 qmgr.open_queue(:q_name=>q_name,

Listing 7.13 Test case for putting message in ACCOUNTS.CREATED

Collects attributes
we need

Turns attributes
into XML document

Establishes connection
to WebSphere MQ

Creates and
queues message

Reads and caches
WebSphere MQ
configuration

Checks last
message
from queue

Empties queue of
messages (used in
teardown)
 :mode=>:input) do |queue|

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

154 CHAPTER 7 Asynchronous messaging

 queue.each { |message| }
 end
 end
 end
 end

end

class AccountsControllerTest < Test::Unit::TestCase
 include Test::Unit::WMQTest

 def setup
 @q_name = 'ACCOUNTS.CREATED'
 @attributes = { 'first_name'=>'John', 'last_name'=>'Smith',
 'company'=>'ACME', 'email'=>'john@acme.com' }
 end

 def test_wmq_account_created
 post :create, :account=>@attributes
 wmq_check_message @q_name do |message|
 from_xml = Hash.from_xml(message.data)
 app = @account.merge('application'=>'test.host')
 assert_equal app, from_xml['account']
 end
 end

 def teardown
 wmq_empty_queues @q_name
 end

end

The second half of listing 7.13 is our test case, and it’s a very simple one. We POST to
the create action with new account information, which pushes a new message to the
queue. We then ask RubyWMQ to retrieve the new message, assert that the message
exists, then yield to the block. In the block, we specify another assertion, checking the
message content against the expected values.

 We may want to use RubyWMQ in more places, so we abstracted the common fea-
tures into a separate module, Test::Unit::WMQTest, that we can mix into other test
cases. We have one method to return the queue manager configuration
(wmq_config), another to check a message on any given queue (wmq_check_message),
and a third that we use during teardown to empty the queue before running the next
test (wmq_empty_queues).

 If test cases fail, we could end up with messages filling the queue, which would lead
to the wrong result the next time we run the test, so we discard all the messages from
the test queue during teardown. That explains why we need a separate queue man-
ager for running tests.

Empties queue of
messages (used in
teardown)

Tests account creation

Places new
message in
queue

Checks message
existence and contents

Empties queue
before next text

Running WMQ commands
You can also use RubyWMQ to run commands and perform administrative tasks. For
example, if you’re sharing this code with other developers, they will need the
ACCOUNTS.CREATED queue in their development or test queue manager. You can set
it up with a simple script or a Rake task:
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

155WebSphere MQ

So, now that we know the basics of producing messages, let’s look at another form of
integration: consuming and processing messages.

7.2.2 Processing messages

In this section, we’re going to use WMQ for integration by receiving and processing mes-
sages. If you recall from the previous section, we have several applications that push
account-creation messages to a single queue. In this section, we’re going to turn these
messages into sale leads in a customer-relationship management (CRM) database.
Problem
You have several applications through which users can create new accounts, and each
of these applications pushes a message to the ACCOUNTS.CREATED queue. We want to
batch process these messages and use them to create sale leads in our CRM database.
Solution
We’re looking at batch processing messages here, so we’re going to develop a stand-
alone program that we can schedule to run at night.

 We’ll start by reading the connection configuration, using the same YAML configu-
ration file we specified in listing 7.10. This time around, we’re not running inside Rails.
Instead, we’ll pass the environment name using the WMQ_ENV environment variable:

ENV = ENV['WMQ_ENV']
wmq_config = YAML.load(File.read('config/wmq.yml'))[WMQ_ENV].symbolize_keys

Next, we’ll open a connection to the queue manager and open the queue for reading:

WMQ::QueueManager.connect(wmq_config) do |qmgr|
 qmgr.open_queue(:q_name=>'ACCOUNTS.CREATED', :mode=>:input) do |queue|
 ...
 end
end

We need to pick up and process each message from the queue. There are a couple of
ways of doing that. We can call get to retrieve each message and repeat until there are

Running WMQ commands (continued)
namespace :wmq do
 desc 'Creates WebSphere MQ queues on development and test environments'
 task :setup=>:environment do
 wmq_configs = YAML.load(File.read(File.expand_path(

➥ 'config/wmq.yml', RAILS_ROOT)))
 ['development', 'test'].each do |environment|
 config = wmq_configs[environment].symbolize_keys
 puts "Connecting to #{wmq_config[:q_mgr_name]}"
 WMQ::QueueManager.connect(wmq_config) do |qmgr|
 puts "Creating ACCOUNTS.CREATED queue"
 qmgr.mqsc('define qlocal(ACCOUNTS.CREATED) defpsist(no)')
 end
 end
 end
end
no more messages to receive (when get returns false). We showed you how to use

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

156 CHAPTER 7 Asynchronous messaging

the get method when we covered test cases in the previous section. We’re much more
fond of using Ruby idioms, however, so let’s do that instead:

queue.each(:sync=>true) do |message|
 ...
end

The each method iterates over every message in the queue and passes it to the block.
It also makes our code more reliable. The :sync=>true option tells WMQ to use synch-
points. If the block throws an exception and doesn’t catch it, the message goes back to
the queue so we can process it again. WMQ marks the failed delivery attempt and will
decide how long to wait before redelivery and how many failures to tolerate before fil-
ing the message in the dead-letter queue. Meanwhile, even if it failed on one message,
the loop will continue processing the remaining messages. As simple as it is, this code
is fault tolerant and can deal with failures like losing the database connection or some-
one tripping over the power cord.

 This loop terminates once it’s done processing all the messages in the queue, which
is exactly what we wanted it to do. Remember, we’re running this program on a night
schedule to batch process all messages queued during the day. Of course, we could also
run this program continuously and have it pick up messages as they become available,
blocking to wait for new messages. All we need to do is add option :wait=>-1.

 We’re going to use REXML to parse the XML document in the message:

xml = REXML::Document.new(message.data)

There are certain elements whose contents we’re interested in, such as the person’s
name and email address. We want to map those into a Hash and pass that to the
Lead.create method. However, the names don’t exactly match: Lead uses one con-
vention for naming database columns, and the XML message has a different naming
convention for its elements. Then there’s the application name (the application
XML element) that we want to store as the lead source (the lead_source column in
the database). What we need here is a transformation. Let’s define that:

transform = { :first_name=>'first-name',
 :last_name=>'last-name',
 :company=>'company',
 :email=>'email',
 :lead_source=>'application' }

The convention we’re using here is to name the target on the left and its source on
the right, for example, extracting the value of lead_source from application. This
makes it easy to iterate over the transformation and map each value from its XML
source to its Hash target. We’ll use the XML Path Language (XPath) expressions to
extract each value:

attributes = transform.inject({}) { |hash, (target, source)|
 nodes = xml.get_text("/account/#{source}")
 hash.update(target=>nodes.to_s)

}

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

157WebSphere MQ

And create the sale lead record in the database...
Lead.create!(attributes)

Where did Lead come from? We’re using ActiveRecord in this example, so Lead maps
to the database table leads, and since ActiveRecord knows how to extract the class
definition from the database schema, all we need to do is specify the class:

class Lead < ActiveRecord::Base
end

So now let’s wrap this example into a single file we can run from the command line.
Listing 7.14 shows essentially the same code we developed so far, with the addition of
error logging.

 When you look at listing 7.14, you may notice this chapter’s key lesson. There are a
handful of lines dedicated to setting up the environment and to turning an XML doc-
ument into an ActiveRecord. Yet, what we set out to show you in this chapter—how to
easily build programs that can reliably retrieve and process messages—is captured in
two lines of code: each and the following end. It really is that simple.

require 'rubygems'
require 'wmq'
require 'active_record'

WMQ_ENV = ENV['WMQ_ENV']

Set up logging and configure the database connection.
LOGGER = Logger.new(STDOUT)
ActiveRecord::Base.logger = LOGGER
database = YAML.load(File.read('config/database.yml'))

➥ [WMQ_ENV].symbolize_keys
ActiveRecord::Base.establish_connection database

Define the Lead class.
class Lead < ActiveRecord::Base
end

Read the WMQ configuration and open a connection.
wmq_config = YAML.load(File.read('config/wmq.yml'))

➥ [WMQ_ENV].symbolize_keys
WMQ::QueueManager.connect(wmq_config) do |qmgr|
 qmgr.open_queue(:q_name=>'ACCOUNTS.CREATED', :mode=>:input) do |queue|
 queue.each(:sync=>true) do |message|
 begin
 # Parse the document, transform from XML to attributes.
 xml = REXML::Document.new(message.data)
 transform = { :first_name=>'first-name',
 :last_name=>'last-name',
 :company=>'company',
 :email=>'email',
 :lead_source=>'application' }
 attributes = transform.
 inject({}) { |hash, (target, source)|

Listing 7.14 Processing messages from WMQ to create new leads

Sets up ActiveRecord
logging and database
connection

Uses ActiveRecord to
access leads table

Connects to queue manager
per configuration

Processes each
message with
synchpoint

Transforms XML
document into a Hash
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

158 CHAPTER 7 Asynchronous messaging

 nodes = xml.get_text("/account/#{source}")
 hash.update(target=>nodes.to_s)
 }
 # Create a new lead.
 lead = Lead.create!(attributes)
 LOGGER.debug "Created new lead #{lead.id}"
 rescue Exception=>ex
 LOGGER.error ex.message
 LOGGER.error ex.backtrace
 # Raise exception, WMQ keeps message in queue.
 raise
 end
 end
 end
end

Discussion
That’s really all there is to our solution. We wrote a simple program that can batch
process messages and create new records in the database. It’s simple, yet reliable, and
isn’t fazed when the database goes down or it encounters an invalid message.

Transforms XML
document into a Hash

Creates new lead
record in database

Logs errors but
lets WMQ deal
with message

Integrating with WebSphere MQ and SalesForce
Which database are we going to use? Tough call. How about SalesForce? Wouldn’t it
be interesting if we could turn this example into one that uses Ruby to integrate all
our internal applications with SalesForce’s SaaS CRM solution?

We can change out our solution to create a new sale lead in SalesForce with these
three simple steps.

Step 1: install the ActiveSalesForce gem:

$ gem install activesalesforce

Step 2: load the ActiveSalesForce connection adapter by adding this line as the last
require at the top of the file:

require 'activesalesforce'

Step 3: change the database.yml configuration file to use ActiveSalesForce as the
connection adapter. Let’s do that for the development environment:

development:
 adapter: activesalesforce
 url: https://test.salesforce.com
 username: <your username>
 password: <your password>

And we’re done! Now when you run this program, it will process a day’s worth of mes-
sages and turn them into sales leads that will show up in your SalesForce account.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

159Summary

7.3 Summary
Integrating with systems that are totally foreign to your development environment can
be trying, but solutions like asynchronous messaging make it much easier. Fortunately
Ruby has a number of mature libraries that work with a variety of messaging vendors.
In this chapter, we looked at using RubyWMQ to work with WMQ. This solution works
well for large-scale deployments, where WMQ is a requirement.

 We also looked at ActiveMQ (open source high-throughput message-oriented mid-
dleware), using the Stomp protocol. What you learned here will also apply to other
messaging services that support the Stomp protocol, and that includes many of the
JMS providers out there. Last, we looked at a lightweight alternative that requires min-
imum setup and configuration—the Ruby Reliable Messaging library.

 Now that we have talked about developing web applications and using Web ser-
vices and asynchronous messaging, let’s look at some options for deploying Ruby
applications.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Deployment
Much has been written on the topic of deploying applications written in Ruby on
Rails. However, not all Ruby applications are web applications, and not all web
applications use Rails. This chapter will focus on the deployment concerns that
arise when deciding how to create Ruby applications and how to release those
applications into a live environment once done.

 For veteran Rails developers, a lot of this will be familiar: we will discuss using
Capistrano to deploy applications, packaging up reusable components in Ruby
gems, and using God to monitor a deployed application. However, we will go
beyond the common uses of these tools and explain how to customize them for a
variety of server-based applications, beyond Rails.

 Keep in mind that the process of deploying live applications can be complex.
The topic could easily fill an entire book of this size. This chapter will focus on
tools written in Ruby that can help you deploy applications and libraries. If you’re

This chapter covers
■ Using gems to distribute libraries and applications
■ Using Capistrano to deploy and manage servers
■ Using Vlad to deploy and manage servers
■ Monitoring servers with God.rb
160

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

161Creating deployable packages with RubyGems

interested specifically in web applications, you can find setup and configuration
instructions in appendix C.

8.1 Creating deployable packages with RubyGems
When deciding how to structure new Ruby programs, it’s worth taking some time to
decide how you will deploy them. While some of the programs you create will be yours
and yours alone, you may also find yourself creating code for hundreds or even thou-
sands of developers. This may be because you are writing open source software, or
because others will use your code in a large enterprise situation, or even because you
are writing commercial code to be used by those who purchase it.

 In this section, we will look at how to create skeletons for your code that will make
it easy to release and deploy to other developers. Because Ruby’s gem system is
designed to be robust and decentralized, this section will focus on building Ruby gems
and creating your own secure gem repositories.

8.1.1 Using RubyGems in your organization

Suppose we run the IT department of a medium-sized programming firm. Pretty
much everyone’s writing Ruby code, but project groups are having difficulties sharing
code. For instance, one team spent all month writing some code to send alerts out via
AIM, and another team was several days into implementing the same code before they
realized it had already been done. To avoid such problems, we want to provide a cen-

Using the latest version of RubyGems
RubyGems is an extension of Ruby and not part of the official Ruby 1.8 distribution,
although some distributions do contain it. The One-Click Ruby Installer (for Windows
and Mac OS X) includes RubyGems, as do Mac OS X 10.5 (Leopard) and JRuby. Ruby-
Gems will become part of Ruby 1.9 and above.

If you do not have RubyGems installed, we recommend downloading RubyGems 1.2
or later from the RubyForge website and installing it by unpacking the archive file and
running the setup.rb file found there. For example:

$ wget http://rubyforge.org/frs/download.php/38646/rubygems-1.2.0.tgz
$ tar xzf rubygems-1.2.0.tgz
$ cd rubygems-1.2.0
$ sudo ruby setup.rb

If you already have RubyGems installed, we recommend upgrading to 1.2 (which may
require upgrading to Ruby 1.8.6). You can check which version of RubyGems you have
by running the command gem --version. To upgrade to the latest version, use this
command:

$ gem update --system

You can find more information about installing Ruby and setting up RubyGems in ap-
pendix A.
tralized repository of Ruby libraries produced by different teams in our organization.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

162 CHAPTER 8 Deployment

Problem
You want to use the RubyGems system to allow your teams to integrate their packages
into their existing libraries of Ruby code. You want them to be able to use their exist-
ing tools and to have downloaded gems integrate seamlessly into their existing reposi-
tories. Finally, you want to be able to support dependencies and requirements, as well
as provide support for automatically installing C extensions.
Solution
We can use Ruby tools to generate gem skeletons and fill in information about depen-
dencies and C extensions. We can then host these gems on a server and give the devel-
opers a URL that they can use with the gem command-line utility to pull gems from the
company repository instead of from the default RubyForge repository.

 Let’s tackle these problems one at a time. First, let’s take a look at generating
empty gems that you can fill with the appropriate information. We’re going to use the
newgem utility to build the skeleton. It allows you to build a full skeleton, including a
website to upload to RubyForge and automates other gem-related tasks. However,
we’re going to use the --simple switch to tell newgem to generate only enough code
to get us up and running. Here’s the command:

newgem ruby_in_practice --simple

Inside the directory created by this command, you should see a pretty simple structure
containing a series of files at the root level (LICENSE, README, Rakefile, and TODO).
There’s a directory for your library (lib) and one for your tests (spec). There will also
be a folder called script that includes generator scripts for Rubigen (which we will not
be discussing here).

 The main work we’ll be doing here is inside of the Rakefile file, which holds the
configuration for the gem we’ll be building. You’ll want to replace the sample infor-
mation at the top, which will automatically be used further down in the gem specifica-
tion. By default, the created gem will include all of the files in your lib and spec
directories; you can change that by modifying the s.files declaration to include
other files (where “s” refers to the variable that holds Gem::Specification). You can
add dependencies by using s.add_dependency inside the gem specification. For
instance, if you wanted to require hpricot 0.5 or higher, you would add this line:

s.add_dependency "hpricot", ">= 0.5"

You can include dependencies that are private to your organization or common gems
that are on the main RubyForge server.

 Your gem specification should look like the one in listing 8.1.

GEM = "ruby_in_practice"
VERSION = "0.1.0"
AUTHOR = "Sample McSample"
EMAIL = "sample@example.com"
HOMEPAGE = "http://sample.example.com"

Listing 8.1 Gem specification
SUMMARY = "A sample gem for Ruby in Practice"

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

163Creating deployable packages with RubyGems

spec = Gem::Specification.new do |s|
 s.name = GEM
 s.version = VERSION
 s.platform = Gem::Platform::RUBY
 s.has_rdoc = true
 s.extra_rdoc_files = ["README", "LICENSE", 'TODO']
 s.summary = SUMMARY
 s.description = s.summary
 s.author = AUTHOR
 s.email = EMAIL
 s.homepage = HOMEPAGE

 s.add_dependency "hpricot", ">= 0.5"

 s.require_path = 'lib'
 s.autorequire = GEM
 s.files = %w(LICENSE README Rakefile TODO) + Dir.glob("{lib,specs}/**/*")
end

When, later on, we install and use the gem in our application, RubyGems will add the
gem’s lib directory to the LOAD_PATH, so we can easily require these files from our
application. To prevent naming conflicts, by convention we use a file that has the
same name as the gem. You will notice that newgem generated the file lib/
ruby_in_practice.rb. That will be the starting point for loading up the code that makes
up our gem.

 If your gem requires more than one file (and most do), we recommend placing
additional files in a subdirectory that follows the same naming convention. In our case,
that would be the lib/ruby_in_practice directory. Listing 8.2 shows an example of a lib/
ruby_in_practice.rb file that requires additional files from the gem when it loads.

require 'ruby_in_practice/parser'
require 'ruby_in_practice/lexer'
require 'ruby_in_practice/interactive'

Requiring ruby_in_practice from an external file will automatically push the items
under s.require_path (in this case lib) into the load path, so requires like those in
listing 8.2 will work perfectly.
Discussion
The gem tool provides a variety of commands for installing, building, searching, serv-
ing, and performing many other gem-management tasks. You can learn more by run-
ning gem help commands.

 Making a gem release is usually a more involved process. We like to run the full set
of test case on our gem before packaging it for distribution. There are also other
release tasks you may want to automate, like creating a changelog, tagging the release
in source control, uploading the gem to a gem server, and so forth. Instead of running
these tasks manually for each release (and sometimes getting them wrong), it’s easier
to automate the entire process using Rake. If you look into your gem repository, you

Listing 8.2 Requiring Ruby files from a gem
will notice that most gems are built with the help of Rake.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

164 CHAPTER 8 Deployment

 As you get more involved with gem development, you’ll want to explore different
tools that will streamline different parts of the process. Newgem, which we just cov-
ered, takes the pain out of creating a new skeleton library and Rakefile for your gems.
Another such tool is the rubyforge gem, which automates the process of making a new
gem release via the RubyForge website.

 Most gems consist entirely of Ruby code, but some contain portions of C code. C
code is useful for talking to third-party and system APIs (e.g., a graphics or sound
library), and for optimizing sections of critical code. Including C extensions is pretty
simple too, assuming you have a working extconf.rb file already. Create a new direc-
tory called ext inside the gem skeleton, and place your extconf.rb file and any
required C files into it. Then, add the following line to the gem specification:

s.extensions = "ext/extconf.rb"

This tells the gem installer to run extconf.rb and then to make and make install the
generated Makefile. This will produce the same effect as manually installing the
extension.

 Here, too, there are a variety of tools you can use. Ruby can easily call out to C
code, but if you’re wrapping a library with a large C/C++ API, you’ll find it easier to use
tools like SWIG (http://www.swig.org) to generate the wrapper code for you.

 Now that we’ve looked at how to package a gem, let’s distribute it to other develop-
ers in the company by setting up a central gem repository.

8.1.2 Setting up a RubyGems repository

If you have an organization that needs to share Ruby code written by different depart-
ments, or if there’s another reason you’re distributing code to be used by others,
you’re going to want to start by setting up your own repository.
Problem
You need to deploy various software packages to a remote server where it will run, but
managing dependencies has become quite complex. Additionally, it’s difficult to man-
age the process of getting your files to the server and keeping track of which versions
are running. Having already set up a server in the previous section, you want to incor-
porate your newly organized dependency system into your deployments.
Solution
To solve this problem, we’ll package up and version the code into gems, and deploy
the gems onto the server that will be running the code. Using the binary features
of RubyGems, we can create a binary with the package that will run the code and that
we can execute and monitor on the remote server. Because we will be using gems,
we’ll be able to specify both RubyForge dependencies and dependencies on our own
gem repository.

 We’ve already looked at the basics of packaging up code into gems. In order to use
rake package and rake install to test our gem locally, we need to develop our code
inside a gem structure. This means we need to make a few changes to the gem specifi-

cation from listing 8.1 to add support for a binary that will run our code. We’ll add a

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://www.swig.org

165Creating deployable packages with RubyGems

bin directory under ruby_in_practice, and add a file called ruby_in_practice under it.
The binary will typically look something like the one in listing 8.3.

#!/bin/env ruby
require 'ruby_in_practice'
RubyInPractice.start

This binary assumes that you have a module somewhere in your codebase called
RubyInPractice with a class method called start. This is a convenient way to struc-
ture your code—it keeps your binary very simple, and it’s unlikely to need to change
between versions. Keep in mind that in Ruby, Dir.pwd is the directory that the binary
was run from, while File.dirname(__FILE__) is the directory that the code is in. This
allows you to flexibly decide where to store support files like logs and PID files.

 In order to make sure that our binary will get deployed along with our code, we’ll
need to make some changes to the gem specification we put together for listing 8.1.
Let’s take a look at just the gem specification part of the Rakefile in listing 8.4.

spec = Gem::Specification.new do |s|
 s.name = GEM
 s.version = VERSION
 s.platform = Gem::Platform::RUBY
 s.has_rdoc = true
 s.extra_rdoc_files = ["README", "LICENSE", 'TODO']
 s.summary = SUMMARY
 s.description = s.summary
 s.author = AUTHOR
 s.email = EMAIL
 s.homepage = HOMEPAGE

 s.bindir = "bin"
 s.executables = "ruby_in_practice"

 s.add_dependency "hpricot", ">= 0.5"

 s.require_path = 'lib'
 s.autorequire = GEM
 s.files = %w(LICENSE README Rakefile TODO) +

➥ Dir.glob("{lib,specs,bin}/**/*")
end

Now, all we need to do is package up the gem, drop it on our server, and run gem
install on the server. If we have a company-wide gem server, we could drop it on
that server and deploy from there. We can specify dependencies and C extensions just
as before, and our app will gracefully refuse to run if a dependency is not met. Say
goodbye to dependency hell!

 The gem server command will open up a server on port 8808, making the local
repository available to users via the --source parameter to the normal gem command.

Listing 8.3 Deployable binary

Listing 8.4 Gem specification including binary

Specifies binaries
directory

Specifies executables
to install

Adds bin to file list
for gem package
Listing 8.5 shows some examples.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

166 CHAPTER 8 Deployment

gem install rails --source=http://example.com:8808
gem list --source=http://example.com:8808
gem query -nrails --source=http://example.com:8808

Our users will be able to install a gem B, list all available gems C, query the gem list
for those matching a particular pattern D, and use many other commands available
via the gem command. In essence, our server has become an alternative to the canoni-
cal RubyGems server. For more information on the available commands, run the gem
help command from your command line.
Discussion
When you create your repository using gem server, you also have a number of options
that will allow you to customize how you expose your repository to the world. Those
options are detailed in table 8.1.

As indicated in table 8.1, you can specify a location for the gem server that you
expose. Say, for instance, that the server you are using for gems also has its own set of
gems that you do not wish to expose (to make for more readable gem list output, for
instance). You could install the gems you wish to expose in a custom location via
gem install -i, and then use the location parameter to gem server to expose just
those gems.

 Assuming you are in the directory that will contain just the gems you want to
expose, listing 8.6 shows how to do this.

gem install rails -i ./gems
gem server -d ./gems --daemon

Listing 8.6 demonstrates how to install the gems into a new directory B and then call
gem server with the necessary settings C. You don’t need to call the directory gems,
but it’s conventional and good practice to do so.

 Ruby gems are the standard mechanism for deploying libraries, command-line tools,
plugins, and even full libraries like Rails. Deploying web applications involves a different
process. Besides pushing Ruby code, you’ll want to manage the web server, update the

Listing 8.5 Using a custom repository with the gem command

Table 8.1 The available options to the gem server command

Option Effect

--daemon Runs the server in daemon (background) mode.

--p[ort]=PORT Runs the server on the designated port; if you use
port 80, your users will be able to access the gem
server without supplying a port to gem –source.

--d[ir]=LOCATION Specifies the location of the gem repository.

Listing 8.6 Using a custom location for gem server

B
C

D

B
C

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

167Deploying web applications

database schema, and perform other management tasks. In the next section, we’ll talk
about Capistrano and Vlad the Deployer, two tools designed specifically for deploying
and managing web applications.

8.2 Deploying web applications
So now you know how to deploy libraries and simple command-line applications. Web
applications tend to be more complex. Besides the application and libraries, you have
to take care of the web server itself, manage the database, process log files, mount net-
work drives, and so forth. You might be deploying to a cluster of machines and config-
uring and managing multiple servers. These tasks call for a different kind of
deployment and management tool.

 In this section, we’re going to discuss two such tools: Capistrano and Vlad the
Deployer. Capistrano was developed originally for deploying Rails applications, but it
can be used for many other remote deployment and management tasks. We’ll look at
a couple of examples of that. Vlad provides all the same features but is based entirely
on Rake.

8.2.1 Simplifying deployment with Capistrano

Suppose we maintain a daemon written in Ruby that needs to be deployed to four pro-
duction servers. We also need to test it on a staging server before pushing to produc-
tion. We use subversion and release the daemons to the server from trunk when the
release is ready. Our daemon is started and stopped via a shell command (daemon_ctl
start and daemon_ctl stop). The start and stop commands handle cleaning up any
zombie PID files.
Problem
You want to make sure that all four releases of your daemon make it to production,
and that if any of them fail, they silently roll back. You have a production environment
with four servers, and a staging environment with a single server. Both environments
have identical requirements.
Solution
For this task, we’re going to use Capistrano. Before setting this up, however, we’ll need
to gather information. Capistrano requires the username for the remote servers and
subversion repository, the URL for the repository, and the directory the code will be
checked out to.

 Once we’ve gathered all this information, we need to add a file called “Capfile” to
the root of our source tree. Deployment with Capistrano uses recipes, which are simi-
lar to Rake tasks. You’ll find recipes on the web for managing Apache web servers,
deploying Rails applications, using source control, starting and stopping background
processes, migrating database schemas, and much more. These are placed in the Cap-
file and are loaded by the cap command-line tool. The Capfile we’ll need for this
problem is pretty straightforward. Listing 8.7 shows a sample of what we’ll need.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

168 CHAPTER 8 Deployment

load 'deploy' if respond_to?(:namespace)

set :keep_releases, 5
set :application, 'ruby_in_practice'
set :repository, 'http://svn.rubyinpractice.com'
set :scm_username, 'ruby'
set :scm_password, '1npr4ct1c3'
set :user, 'rubies'
set :password, 'pract1cin6'
set :deploy_to, "/deploy/#{application}"
set :deploy_via, :export

ssh_options[:paranoid] = false

task :production do
 role :app, 'http://prod1.rubyinpractice.com'
 role :app, 'http://prod2.rubyinpractice.com'
 role :app, 'http://prod3.rubyinpractice.com'
 role :app, 'http://prod4.rubyinpractice.com'
end

task :staging do
 role :app, 'http://staging.rubyinpractice.com'
end

before 'deploy', 'daemon:stop'
after 'deploy', 'daemon:start'

namespace :daemon do
 desc "Start daemon"
 task :start do
 on_rollback do
 run "cd #{deploy_to} && daemon_ctl stop"
 end
 run "cd #{deploy_to} && daemon_ctl start"
 end

 desc "Stop daemon"
 task :stop do
 on_rollback do
 run "cd #{deploy_to} && daemon_ctl start"
 end
 run "cd #{deploy_to} && daemon_ctl stop"
 end
end

In this relatively simple Capistrano recipe, we set up our environment, set up different
environments for production and staging, and create two new tasks to start and stop
the daemon. In order to be sure that the daemon will be turned off while we deploy
and turned back on after we deploy, we used before and after filters to trigger the
daemon at the appropriate times.

 The most interesting parts of the Capistrano recipe are the on_rollback callbacks.
Capistrano will automatically execute the rollback functions if any of the deployments
fail, allowing you to specify that if the deployments fail, your daemons will turn

Listing 8.7 Capfile for deploying a simple daemon

Sets SSH to be less
strict with trusted
servers

Sets up the
production
environment

Sets up
the staging
environment

Tells Capistrano how
to roll back a change
back on.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

169Deploying web applications

Discussion
As you can see, it’s pretty simple to use the default Capistrano deployment recipe to
deploy non-Rails applications. That’s because Capistrano’s default code mainly han-
dles checking code out of your source control system and deploying it to a remote
location. You can use the run command to call out to shell commands on your remote
servers, and they will be fired on all remote servers.

 If necessary, you can use the sudo command to run the commands with superuser
privileges. This allows you a fair bit of flexibility, effectively allowing you to do any-
thing through Capistrano that you’d be able to do by manually logging in to your
remote servers. Capistrano uses SSH to log into the remote server as the current user;
if you maintain separate accounts, you can tell Capistrano to log in as a different user
by passing USER=name as a command-line argument.

 An important caveat of using run and sudo is that each command is run separately,
and history is not preserved. That’s why we used run "cd #{deploy_to} &&
daemon_ctl stop" in listing 8.7 instead of two separate run calls. That is typically not a
problem, but it sometimes requires the creation of fairly convoluted code. In this
respect, at least, a passing knowledge of the intricacies of bash can be quite helpful.

 It is quite common to use Capistrano to deploy against and manage multiple envi-
ronments. Our example was based on two environments, one for staging and one for
production, and we used Capistrano tasks to configure each of these environments.
For example, to deploy to the staging server, you would run this command:

$ cap staging deploy

To deploy to all the production servers, you’d run this command:

$ cap production deploy

Remember that staging and production are ordinary tasks. You can choose whatever
name suits you. Just remember to run these tasks ahead of any task that requires the
configuration, by placing it first on the command line.

 Next, let’s take a look at using Capistrano to intercept the incoming SSH stream in
order to tail all of our remote logs at once.

Reusing recipes
Don’t have time to reinvent the wheel? A quick search on Google will reveal Capist-
rano recipes that you can copy and paste into your Capfile and get started by building
on other people’s experience.

A great source for recipes is Deprec, available from http://deprec.rubyforge.org.
Deprec is a collection of canned Capistrano recipes for setting up a production Rails
server from scratch. And we do mean from scratch. It will copy SSH public keys over,
install the entire Ruby on Rails stack, set up a working web server (Apache or Nginx),
and get you up and running with minimum fuss.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://deprec.rubyforge.org

170 CHAPTER 8 Deployment

8.2.2 Tailing remote logs with Capistrano

Now that we have our daemon purring away on four remote servers, we might want to
look at the remote logs. Typically, you will want to see the logs from all four servers at
once, with some sort of line-header indicating what server it’s from. Since Capistrano
uses Net::SSH, we can intercept the incoming stream, examine it, modify it, and then
output it.
Problem
You want to connect to all of your remote servers, tail the logs, and have the results
outputted to your local monitor.
Solution
We’re going to use Net::SSH’s incoming stream to get what we need. Capistrano’s run
and sudo commands both take an optional block with three arguments. The first argu-
ment is the channel, which is a Net::SSH::Connection::Channel object. You can get
the full information about the object in the Net::SSH RDoc, but we will mainly use this
object to extract information about which connection is being used. The next argu-
ment is the stream, which will be :err if the SSH connection returns an error. Finally,
the last argument is the data being returned from the remote server.

 This all comes together in listing 8.8, where we add support for tailing remote logs
to our Capistrano recipe.

desc "Tail log file to console"
task :tail do
 run "tail -f #{deploy_to}/log/daemon.log" do |channel, stream, data|
 server = channel[:server]
 puts if @last_host != server

 data.each { |line| puts "#{server}: #{line}" }
 break if stream == :err

 @last_host = server
 end
end

As you can see, the recipe is pretty simple: we run a command on the remote server
and then process it. We use an instance variable called @last_host to track the previ-
ous returned message, so we can put a blank line between messages from differ-
ent servers.
Discussion
There’s not much to say about this recipe because it’s so straightforward. You’ll proba-
bly want to take a look at the Net::SSH documentation, just to satisfy yourself about the
internals (and especially if you want to go further with remote tailing), but the basics
are pretty, well, basic. It’s possible to get more adventurous and make each host use
a different color for output. That’s left as an exercise for the reader, but you might
want to check out the ansi-colors gem, which allows you to do things like

Listing 8.8 Tailing a remote log

Specifies remote server name

Prints data
to screen

Breaks if server
returns an error
"string".red.on_white.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

171Deploying web applications

Another tool for remote deployment and management is Vlad the Deployer.

8.2.3 Deploying with Vlad the Deployer

As promised, let’s dive into using Vlad the Deployer to handle deployment tasks. Cap-
istrano and Vlad fulfill the same role but differ in the way you define and configure
tasks. Vlad is based on Rake, which we covered in chapter 3, and if you’re already
using Rake extensively you may find it more familiar.

 As we write this, Vlad the Deployer is still not quite up to snuff (it wouldn’t be triv-
ial to tail logs with Vlad as we did with Capistrano, for example), but for simple
deployment, it’s certainly a sight to behold.
Problem
As in section 8.2.1, you have a daemon that needs to be deployed to four servers via
subversion. The deployment should roll back if any of them fail.
Solution
Vlad the Deployer is a Ruby package written by the Ruby Hit Squad. It aims to resolve
several perceived core deficiencies with Capistrano. Specifically, it is dramatically
smaller than Capistrano, weighing in at only 500 lines of code. It uses Rake as its core,
so you can leverage your existing Rake knowledge in your deployment process. If you
like using Rake for various development and management tasks, you’ll appreciate
being able to intermix deployment into your existing arsenal (you could force run-
ning all tests before deploying).

 The starting point for Vlad is your existing Rakefile. To make use of Vlad, you must
first require and load it:

require 'vlad'

Interactive tasks using HighLine
When Capistrano needs to prompt you for input, it uses a terminal I/O library called
HighLine. HighLine has a lot of interesting features for writing interactive tasks that
require user intervention. You can use it to create colored output, to ask questions,
to present a menu of choices, and to hide passwords entered on the console. You
can find more about highline at http://highline.rubyforge.org.

We won’t discuss HighLine at length here, but we’ll show you a couple of examples:

task "time" do
 Capistrano::CLI.ui.say("The time is <%= color(Time.now, BOLD) %>")
end

task "nuke_everything" do
 if Capistrano::CLI.ui.ask("Nuke everything!?") == 'yes'
 nuke!
 else
 puts "Better safe then sorry."
 end
end
Vlad.load

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://highline.rubyforge.org

172 CHAPTER 8 Deployment

The load method supports a variety of configuration options for loading different rec-
ipes. For example, listing 8.9 shows a sample Rakefile that loads Vlad along with the
Subversion and Mongrel recipes (these two are provided by Vlad).

require 'vlad'
Vlad.load :scm=>:subversion, :app=>:mongrel

The load method also loads the config/deploy.rb file, where you collect all the
deployment configurations and tasks used by Vlad. Listing 8.10 shows a config/
deploy.rb file that performs the same deployment tasks we used Capistrano for earlier.

set :domain, 'rubyinpratice.com'
set :deploy_to, '/deploy/ruby_in_practice'
set :repository, 'http://svn.rubyinpractice.com'

role :app, "prod1.#{domain}"
role :app, "prod2.#{domain}"
role :app, "prod3.#{domain}"
role :app, "prod4.#{domain}"

namespace 'daemon' do
 desc "Start daemon"
 remote_task 'start' do
 run "cd #{deploy_to} && daemon_ctl start"
 end

 desc "Stop daemon"
 remote_task 'stop' do
 run "cd #{deploy_to} && daemon_ctl stop"
 end
end

namespace 'vlad' do
 task 'update' => 'daemon:stop'

 task 'start' do
 task('daemon:start').invoke
 end

 task 'deploy' => ['update', 'migrate', 'start']
end

Discussion
Since Vlad uses Rake, you can use Rake’s prerequisites and task actions to chain
together tasks and add new behaviors to existing tasks.

 In listing 8.10 we defined two remote tasks, daemon:start and daemon:stop. We
enhanced Vlad’s update task to run daemon:stop as a prerequisite, stopping the dae-
mon before running the actual update. In contrast, we enhanced Vlad’s start task to
include a new action that will run the daemon:start task.

 To trigger a Vlad deploy, run rake vlad:update vlad:migrate vlad:start. Alter-
natively, you can write a simple vlad:deploy task that runs all these tasks in sequence,
as we did in listing 8.10.

Listing 8.9 Rakefile loading Vlad with Subversion and Mongrel recipes

Listing 8.10 config/deploy.rb for Vlad the Deployer
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

173Monitoring with God.rb

 To deploy new code, automatically stopping and starting the daemon as necessary,
run this command:

$ rake vlad:deploy

Now that we’ve covered two ways to get your code onto the server, let’s tackle keeping
your code running once it’s on the remote server. We’ll look at a little Ruby utility
called God that should handle most, if not all, of your monitoring needs.

8.3 Monitoring with God.rb
Once you have your daemon running on the remote server, you’ll want to keep an eye
on it. If it starts consuming too many system resources, you’ll want to restart it; if it
goes down, you’ll want to be notified.

 The tool we’re going to discuss in this section is called God. God’s influence is
monit, a well-known Unix system-management tool. Whereas monit uses its own syn-
tax and miniconfiguration language, God allows you to write notification rules
directly in Ruby, for more flexibility and control. It also solves some of the most annoy-
ing issues that were present in monit, especially when handing daemons and PIDs. In
short, God is everything that monit is as well as everything people wanted monit to be.
You can find God at http://god.rubyforge.org.

8.3.1 A typical God setup

In section 8.2 we deployed a daemon process to our production servers. We’ll con-
tinue with the same scenario, and use God to monitor the daemons running on our
production servers.
Problem
You want to watch your daemon and make sure it stays up. Additionally, you want a
way to gracefully start and stop the daemon, and to make sure it’s not gobbling up all
your system resources.
Solution
In listing 8.11, we’ll use God.rb to set up our monitoring environment, which will
include monitoring, graceful startup and shutdown, and resource-usage monitoring.

GRACE = 10.seconds

[1, 2].each do |number|
 God.watch do |w|
 path = '/releases/daemons'
 w.name = "my-daemon_#{number}"
 %w{ start stop restart }.each do |task|
 w.send("#{task}=", "#{path}/daemon_#{number}_ctl #{task}")
 end
 w.start_grace = GRACE
 w.restart_grace = GRACE
 w.pid_file = "#{path}/logs/daemon_#{number}.pid"

Listing 8.11 Watching daemon processes with God.rb

Loops through
both daemons

B

Loops through
daemon tasks

C

Sets location
of PID file

D

 w.group = 'my-daemons' Groups daemons together

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://god.rubyforge.org

174 CHAPTER 8 Deployment

 w.interval = 30.seconds

 w.behavior(:clean_pid_file)

 w.start_if do |start|
 start.condition(:process_running) do |c|
 c.interval = 5.seconds
 c.running = false
 end
 end

 w.restart_if do |restart|
 restart.condition(:memory_usage) do |c|
 c.above = 50.megabytes
 c.times = [2, 3]
 end

 restart.condition(:cpu_usage) do |c|
 c.above = 30.percent
 c.times = 5
 end
 end

 w.lifecycle do |on|
 on.condition(:flapping) do |c|
 c.to_state = [:start, :restart]
 c.times = 5
 c.within = 5.minutes
 c.transition = :unmonitored
 c.retry_in = 10.minutes
 c.retry_times = 5
 c.retry_within = 2.hours
 end
 end

 end
end

In order to avoid having to type the entire configuration file twice, we loop over the
daemon numbers B. If we add additional daemons, we’ll probably want to add more
daemons to this list. Also note that this God configuration file is appropriate for our
staging environment, where we have both daemons on the same server. We can use
the exact same script on the production environments by removing the daemon num-
bers that will not be run on the server in question.

 We also loop over the start, stop, and restart tasks, so we can easily change the com-
mand that is used to manage the daemons later C without having to change it in three
places. We specify the location of the PID file that will be created by the daemon D,
which, in this particular case, will be inside the log directory in our release directory.

 Because we rely on PID files, we must consider the possibility that our code will be
killed without the opportunity for the PID to be correctly cleaned. This is called a
“zombie PID,” and it can wreak havoc with our daemon start script. That’s why God
provides the :clean_pid_file behavior, which will wipe out existing PIDs before it
attempts to start up your code E.

Cleans zombie
PIDs

E

Starts conditionF

Restarts
conditions

G

Sets lifecycle
conditions

H

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

175Monitoring with God.rb

 We use one rule to monitor each daemon process every 5 seconds and start it if it’s
not already started or if it crashed F. Two additional rules will restart the process if it
runs amok, which we define as eating up 50MB of memory two out of three times, or if
it uses over 30 percent of CPU five consecutive times G. These are checked at the
default 30-second interval.

 Finally, we can set some events to occur across state changes (called lifecycle condi-
tions). In this case, we want to handle the situation where God keeps trying to start the
process, but it keeps failing (the flapping condition) H. We try more frequently early
on, but then taper off as time goes on, and eventually give up. Specifically, if the dae-
mon gets started or restarted five times in five minutes, we stop monitoring for ten
minutes (in case the problem was intermittent and goes away if you leave it alone for a
bit). If the flapping occurs more than five times over two hours, we give up.
Discussion
The configuration file in listing 8.11, while designed to handle the special case we
developed in sections 8.2.1 and 8.2.2, is still very similar to the configuration file that
the creator of God.rb uses to monitor his mongrels at http://en.gravatar.com, and
which he makes available on the God.rb site (http://god.rubyforge.org). Chances are
your configuration file will look similar as well. After all, there’s not much difference
between monitoring one server or another.

 As you noticed, God’s condition syntax is pretty easy to use. For every event (start,
stop, restart), you can specify conditions that should trigger the event. In our exam-
ple, we chose to trigger the start event if the daemon is not running, and check its
status every 5 seconds. We also protect against runaway conditions like memory leaks
and infinite loops by restarting the daemon. In our example, we trigger a restart if
memory usage goes beyond 50MB in two out of the last three times we checked it. We
trigger a restart if CPU usage goes above 30 percent five times in a row.

 Obviously these limits will be different, depending on the application you’re mon-
itoring and the environment it’s running, as would the reaction time. When God
checks the process status, memory consumption may be high because the garbage col-
lector didn’t get the chance to claim unused memory yet. Likewise, CPU usage could
reach 100 percent when running a critical section of code. By telling God to ignore
these momentary spikes, we reduce the chance of false positives.

 In our example, we set the start condition to check every 5 seconds, restarting a
crashed daemon as soon as possible. For the restart tasks, we use a 30-second inter-
val: if our daemon enters an infinite loop, God will notice that within the first 30 sec-
onds, but will take an additional two minutes before making a decision and reacting.
Unfortunately, picking up the right setup is a trade-off between response time and
accuracy, and it’s more art than science.

 Monitoring our servers for failure and overcapacity creates a self-healing environ-
ment. Sometimes, an attempt to recover from a spike in load will create even more
burden on the server, leading to a domino effect of ever-increasing restarts, or flap-
ping. For that reason, we also monitor and react to lifecycle changes; for example,
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://en.gravatar.com
http://god.rubyforge.org

176 CHAPTER 8 Deployment

backing off from restarting a process when it looks like our attempt at recovery leads
to cascading failure.

 Likewise, monitoring for lifecycle changes can alert system administrators to bugs
in the code, areas that need optimization, or the need for a hardware upgrade. We’ll
look at that next.

8.3.2 Notifications

Now that we have an infrastructure for keeping our daemons up and running, we’ll
probably want to be notified if they go down. In particular, when the flapping condi-
tion gives up after two hours of failures, we probably want the entire team to be noti-
fied. On the other hand, more minor issues can be sent to the team lead only.
Problem
You want to set up God.rb to notify the entire team after a flapping failure, but only
the team lead if the process is restarted due to excess CPU or RAM usage.
Solution
Listing 8.12 shows how we can set up God to send emails.

God::Contacts::Email.message_settings = {
 :from => 'daemon_master@example.com'
}

God::Contacts::Email.server_settings = {
 :address => 'daemons.example.com',
 :port => 25,
 :domain => 'example.com',
 :authentication => :plain,
 :user_name => 'daemon_master',
 :password => 't3hm4n'
}

{ 'lead' => 'lead@example.com',
 'joe' => 'joesmith@example.com',
 'john' => 'theman@example.com',
 'mark' => 'marky@example.com' }.each do |name, email|
 God.contact(:email) do |c|
 c.name = name
 c.email = email
 c.group = 'developers'
 end
end

To simplify setting up large numbers of email addresses, we’ve looped through a Hash
and set the emails all at once. If you have a very large number of emails to set up, you
might do something similar but with an external YAML file.

 Now that we have our emails and groups set up, listing 8.13 shows how we can
attach our notifications to the conditions specified in listing 8.11.

Listing 8.12 Telling God.rb how to notify our team members
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

177Monitoring with God.rb

require 'emails.god'

GRACE = 10.seconds

[1, 2].each do |number|
 God.watch do |w|
 path = '/releases/daemons'
 w.name = "my-daemon_#{number}"
 %w{ start stop restart }.each do |task|
 w.send("#{task}=", "#{path}/daemon_#{number}_ctl #{task}")
 end
 w.start_grace = GRACE
 w.restart_grace = GRACE
 w.pid_file = "#{path}/logs/daemon_#{number}.pid"
 w.group = 'my-daemons'
 w.interval = 30.seconds

 w.behavior(:clean_pid_file)

 w.start_if do |start|
 start.condition(:process_running) do |c|
 c.interval = 5.seconds
 c.running = false
 c.notify = 'lead'
 end
 end

 w.restart_if do |restart|
 restart.condition(:memory_usage) do |c|
 c.above = 50.megabytes
 c.times = [2, 3]
 c.notify = 'lead'
 end

 restart.condition(:cpu_usage) do |c|
 c.above = 30.percent
 c.times = 5
 c.notify = 'lead'
 end
 end

 w.lifecycle do |on|
 on.condition(:flapping) do |c|
 c.to_state = [:start, :restart]
 c.times = 5
 c.within = 5.minutes
 c.transition = :unmonitored
 c.retry_in = 10.minutes
 c.retry_times = 5
 c.retry_within = 2.hours
 c.notify = 'developers'
 end
 end

 end

Listing 8.13 Monitoring with notifications

Notifies lead
developer
about restart

B

Notifies all developers
about flapping

C

end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

178 CHAPTER 8 Deployment

For simplicity, we broke the configuration file into two parts. The first specifies the
email addresses to use (listing 8.12). The second (listing 8.13) uses the same monitor-
ing configuration that we explored in section 8.3.1, with the addition of notifications.
We added notification to the lead developer whenever the daemon is restarted after a
crash or is forced to restart due to memory or CPU consumption B. Flapping condi-
tions are typically a sign our code is going out of control, so we notify the entire devel-
opers group C.
Discussion
Now that we have a configuration file, it’s time to use it. We’ll start by testing it out,
and for that we’ll run God in the console:

$ sudo god -c config.god -D

You’ll see messages from God as it’s loading the configuration file and monitoring the
processes. That will help you troubleshoot any problems with your configuration file.
To stop God, press Ctrl-C.

 Once you know the configuration file works, it’s time to deploy God as a back-
ground process. You can do that using init scripts, launchd, or whatever works best in
your environment. Here is an example of a cron task that runs God on every boot:

@reboot god -c /etc/god/config.god

You can then check whether God is running:

$ sudo god status
my-daemons:
 my-daemon_1: up
 my-daemon_2: up

Other commands allow you to start and stop tasks, load new configurations, and ter-
minate god. Run god --help for more information.

8.4 Summary
Deploying Ruby applications is a complex topic. Most people use a mix of Ruby, Unix,
and hand-rolled tools in their full deployment solution. What most people don’t
know, is how mature the existing Ruby tools are. In fact, because Ruby is a flexible and
powerful language for running command-line scripts, you should also consider using
these tools for tasks not specific to Ruby, such as deploying PHP applications or moni-
toring various servers and processes in your environment.

 For automated deployment to a remote server, you can use either Capistrano or
Vlad the Deployer to automate even fairly complex, transactional remote tasks. To
share code within your organization, the RubyGems infrastructure has become
extremely stable with version 1.0, allowing you to create, within your organization, a
repository akin to the one people use for their day-to-day packaging systems.

 For monitoring, you can say goodbye to the arcane monit tool and say hello to the
pure-Ruby God.rb. God.rb even handles emailing and fairly complex monitoring
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

179Summary

rules, so you’ll never need to manually SSH into your server to find out why your app is
down again.

 The landscape is only getting better with time. Capistrano, Vlad, and God.rb get
better with every release, and as Ruby improves, so will these tools. Compared with
old-school Unix utilities that are stuck in the ’90s and require some fairly advanced
system programming knowledge to hack on, the choice is clear. Ruby deployment
tools have arrived.

 We just covered web applications and deployment, and through some of the exam-
ples showed you how to build Ruby applications that use relational databases. In the
next chapter, we’re going to delve deeper into databases and show you more options
for handling data storage from Ruby applications.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Part 3

Data and
 document techniques

Working with some form of data is the fundamental task of any applica-
tion, whether it’s a database, a text file, XML, or JSON.

 In chapters 9 through 13, we’ll show you some Ruby tools for working with
data in the most common formats and environments, from databases to struc-
tured data. Then we’ll show you how to take that data and index, search, and
report on it.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Database
 facilities and techniques
So far we’ve taken a look at a number of technologies and how to use them with
Ruby. This chapter will introduce key database tools available with, and for, Ruby.
We’ll take a broad view of what it means for something to be a database. Our work-
ing definition will be that a database is a storage unit external to your program
where data can be stored. This definition includes highly evolved structures like
relational databases, but also includes, potentially, plain-text files.

 We’ll also stipulate that the stored data has to have some intelligence about
itself. A file containing a stream of words—though it may be loaded into a program
as a string or an array—will not count as a database, because the file itself does not
preserve any information about the structure of the data.

 A flat file in YAML format, however, will count as a database, under our defini-
tion. As you’ll see, it’s possible and not even terribly difficult to wrap a YAML file in

This chapter covers
■ Using plain text data storage
■ Automating contacts in an address book
■ Using Ruby’s API for gdbm
■ Using relational databases
183

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

184 CHAPTER 9 Database facilities and techniques

a workable API and reap the benefits of addressing your data structurally while also
having access to it in text form. Text files are not the whole story, of course. Ruby ships
with several flavors of the Berkeley database (DBM) system. We’ll also look at tools
available for creating and manipulating relational databases in Ruby.

 Throughout the chapter, we’ll work with a specific example: the implementation
of an API for storing personal contacts—an address book. We’re not so much con-
cerned here with implementing the whole address book as with implementing the
programming interface to the database facilities. Examples will include a certain
amount of address-book implementation, but primarily we’ll be looking at how to set
up a database in which contact information can be stored, and how to talk to such a
database in Ruby. We’ll implement the API twice, once for YAML storage and once for
gdbm. We’ll then use the MySQL and database interface libraries (DBI) to move data
from one database format to another.

 We’re going to start with YAML, a data-serialization tool that can, with a little assis-
tance from Ruby, form the kernel of a simple data-persistence library.

9.1 Using plain-text files for data persistence
Using YAML as a data-persistence tool is an example of the more general case of using
plain-text files for this purpose. You’ll find other ways to do this in Ruby, such as the
CSV (comma-separated values) facility in the standard library. XML files fall into this
category, too.

 None of these are full-fledged database systems. What they have in common with
such systems is that they include information about the data, together with the data.
CSV files don’t contain much information about the data, but they do preserve order-
ing and, often, something like column or header information. XML preserves rela-
tionships in and among nested data structures. YAML does something similar with the
avowed goal of being somewhat easier to read than XML, and more suitable for stor-
ing arbitrary Ruby data structures.

 In looking at plain-text data-storage techniques, then, we’ll focus on YAML as the
one that offers the richest combination of complexity on the data end and editability
on the text end.

NOTE This example covers YAML persistence, but we also cover YAML elsewhere
in more depth. See chapter 10 for in-depth coverage of using YAML as a
persistence mechanism.

YAML is a data-serialization format: Ruby objects go in, and a string representation
comes out. The strings generated by YAML conform to the YAML specification. YAML,
itself, is not specific to Ruby; Ruby has an API for it, but so do numerous other lan-
guages. Here’s a Ruby example in an irb session:

>> hash = { :one => 1, :two => 2, :colors => ["red","green","blue"] }
=> {:colors=>["red", "green", "blue"], :one=>1, :two=>2}
>> require 'yaml'
=> true

B

>> puts hash.to_yaml C

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

185Using plain-text files for data persistence

:colors:
- red
- green
- blue
:one: 1
:two: 2

YAML is part of the Ruby standard library. You just have to load it B, and then your
objects can be serialized to YAML using the to_yaml method C.

 Objects serialized to YAML can be read back into memory. Picking up from the last
example:

>> y_hash = hash.to_yaml
=> "--- \n:colors: \n- red\n- green\n- blue\n:one: 1\n:two: 2\n"
>> new_hash = YAML.load(y_hash)
=> {:colors=>["red", "green", "blue"], :one=>1, :two=>2}
>> new_hash == hash
=> true

The YAML.load method can take either a string or an I/O read handle as its argument,
and it deserializes the string or stream from YAML format into actual Ruby objects.

 While objects are in serialized string form, you can edit them directly. In other
words, YAML gives you a way to save data and also edit it in plain-text, human-readable
form. Part of the incentive behind the creation of YAML was to provide a plain-text for-
mat for representing nested data structures that wasn’t quite as visually busy as XML.
Problem
You need a way to automate the storage and retrieval of professional and personal
contacts (an address book), but you want it to be in plain text so that you can edit the
entries in a text editor as well as alter them programmatically.
Solution
We’ll write code that uses YAML, together with simple file I/O operations, to provide a
programmatic interface to a plain text file containing contact entries.

 First things first: let’s start with a test suite. Aside from the merits of writing tests in
general, this will allow us to create examples of how the code should be used before
we’ve even written it. There’s no better way to describe how you want an API to work
than to write some tests that put it to use.

 We’ll create two classes: Contact and ContactList. The initializer for Contact will
take the contact’s name as the sole argument and will yield the new Contact instance
back to the block, where it can be used to set more values. Listing 9.1 shows the class
declaration and setup method for the test suite—you can place this code in a file
called contacts_y_test.rb (the “y” indicates that this is for the YAML implementation).
Our API for the contact code has already started to take shape.

require "test/unit"
require "contacts_y"

Listing 9.1 Class declaration and setup method for testing the contact code

B

class TestContacts < Test::Unit::TestCase

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

186 CHAPTER 9 Database facilities and techniques

 def setup
 @filename = "contacts"
 @list = ContactList.new(@filename)

 @contact = Contact.new("Joe Smith")
 joe.email = "joe@somewhere.abc"
 joe.home[:street1] = "123 Main Street"
 joe.home[:city] = "Somewhere"
 joe.work[:phone] = "(000) 123-4567"
 joe.extras[:instrument] = "Cello"

 @list << @contact
 end
end

In addition to test/unit, we load what will eventually be our implementation file:
contacts_y.rb B. After the loading preliminaries, we instantiate a contact list along
with a filename C, and a contact with a name D. In addition to the name, the contact
has an email address E, and several apparently deeper hash-like data structures: home,
work, and extras F. The ContactList object itself appears, not surprisingly, to have
an array-like interface, judging by the appearance of the append operator (<<) G.

 Now it’s time to write some tests for business logic. The setup method inserts one
Contact object into the list. What about retrieving an object? Listing 9.2 shows a
method that does exactly that.

 def test_retrieve_contact_from_list
 contact = @list["Joe Smith"]
 assert_equal("Joe Smith", contact.name)
 end

 def test_delete_contact_from_list
 assert(!@list.empty?)
 @list.delete(@contact.name)
 assert(@list.empty?)
 end
end

Listing 9.2 includes a method that retrieves a contact B and one that removes a con-
tact from the list C. These two methods go in the test file after the setup method.
We’ll also close out the class so that we can write the implementation and get the test
to pass.

 Let’s start with the ContactList class. We’ll give each ContactList instance an
array, in which it will store the actual Contact objects. The business of the ContactList
class will consist mostly of deciding what, and when, to pass along to this array: inserting
contacts, removing contacts, and, of course, persisting contacts to a YAML file and read-
ing contacts from a file.

 The initial implementation of ContactList is shown in listing 9.3. We’re not using
YAML yet, but we’ll need it, so it’s being loaded. (We’re also not yet using the contacts

Listing 9.2 Testing the removal of a Contact object from a ContactList object

C

D
E

F

G

B

C

accessor methods, but we’ll use it a little later so it’s best to put it in now.) Most of the

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

187Using plain-text files for data persistence

action is in the @contacts array, which is expected to contain Contact objects. The
code in listing 9.3 can be saved to contacts_y.rb.

require "yaml"
class ContactList
 attr_accessor :contacts

 def initialize(file)
 @file = file
 @contacts = []
 end

 def <<(contact)
 @contacts << contact
 end

 def delete(name)
 @contacts.delete_if {|c| c.name == name }
 end

 def empty?
 @contacts.empty?
 end

 def size
 @contacts.size
 end

 def [](name)
 @contacts.find {|c| c.name == name }
 end
end

The @contacts array fields requests for array-like operations. Some of these opera-
tions work the way they do out of the box for any Ruby array (such as empty?, size,
and <<). Others require special implementation to make sure they do the right thing
for a list of Contact objects. Note that delete and [] use a name lookup to figure out
which contact you want to operate on.

 Next comes the implementation of the Contact class, which will be responsible for
storing the contact information itself. We want to be able to store separate contact
info for home and work. Each of these sets of data will be stored as a hash and
accessed as an attribute of the Contact object. The name and email properties will be
separate, stored as individual attributes rather than parts of any of the hashes, as
shown in listing 9.4.

class Contact
 attr_reader :name, :email, :home, :work, :extras
 attr_writer :name, :email
 def initialize(name)

Listing 9.3 Initial implementation of the ContactList class

Listing 9.4 The Contact class we use to store contact records

Creates new
ContactList object

Adds contact to list
via @contacts

Deletes contact
from list

Tests for emptiness
via @contacts

Determines size of list by
taking size of @contact

Fetches contact by
name from @contacts
 @name = name

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

188 CHAPTER 9 Database facilities and techniques

 @home = {}
 @work = {}
 @extras = {}
 end
end

Now, we can run the tests:

$ ruby contacts_y_test.rb
Loaded suite contacts_y_test
Started
..
Finished in 0.000594 seconds.

2 tests, 3 assertions, 0 failures, 0 errors

Success: no failures, no errors.
 Now let’s get to the YAML side of things. We want a ContactList object to know

how to save itself, in YAML format, to a file, and we want the ContactList class to know
how to load a YAML file into a new ContactList instance. Listing 9.5 shows a test for
these functions; you can paste this test into the existing test class.

def test_save_and_load_list
 @list.save
 relist = ContactList.load(@filename)
 assert_equal(1,relist.size)
 contact = relist["Joe Smith"]
 assert_equal("Joe Smith", contact.name)
end

To get these new assertions to succeed, we have to add save and load methods to the
ContactList class, as shown in listing 9.6.

def save
 File.open(@file, "w") do |fh|
 fh.puts(@contacts.to_yaml)
 end
end

def self.load(file)
 list = new(file)
 list.contacts = YAML.load(File.read(file))
 list
end

These two methods can be pasted into the class definition for ContactList. Note that
load is a class method, so it’s defined directly on the ContactList class object (repre-
sented in context by self C).

 It’s in the load and save methods that you can see the use of YAML, and it’s very

Listing 9.5 Saving and loading a ContactList object

Listing 9.6 Second set of methods for the ContactList class

B

C

D

simple. When you want to save the list, you convert its @contacts array to YAML and

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

189Using the (g)dbm API

print the resulting string to the file B. When you want to read the list in, you use the
load class method of YAML, passing it a string consisting of the contents of the file D.
(You can also pass an open File object to YAML.load.)

 The new tests pass. And so, with rather little fanfare, we have data persistence. Run-
ning the tests will create a file called “contacts”, containing the YAML representation
of the Joe Smith contact. This brings us to the other side of the YAML coin: the ability
to edit the YAML file itself. You do have to be a bit careful, because the YAML specifica-
tion has rules you have to follow. But as long as you follow the YAML rules, you can
make as many changes as you want to the file between reads.

 Listing 9.7 shows the contacts file resulting from running the tests for the contact
classes.

- !ruby/object:Contact
 email: joe@somewhere.abc
 extras:
 :instrument: Cello
 home:
 :city: Somewhere
 :street1: 123 Main Street
 name: Joe Smith
 work:
 :phone: (000) 123-4567

You don’t want to touch the first two lines, which are YAML’s business. But you can
change the values of the strings, or add more data, and all your changes will be happily
absorbed into the in-memory Contact objects next time you use the Contact class.
Discussion
YAML provides easy serialization of objects to strings, and it’s not much harder to save
those strings to a file. Whether or not you decide it’s technically correct to call this a data-
base, it certainly has database-like properties. You don’t have to edit your YAML files by
hand; you can treat them as a black box. But it’s nice to know that they’re easy to edit.

 Still, plain-text files are far from the only game in town. We’ll look next at Ruby’s
API for gdbm, the GNU version of the Berkeley DB database system.

9.2 Using the (g)dbm API
Ruby ships with wrappers for the DBM, gdbm, and sdbm database libraries. These librar-
ies are a family, of which the original member is DBM. The GNU Database Manager ver-
sion is gdbm, and sdbm (Substitute DBM) is a public-domain version based on the earlier
ndbm (New Database Manager, a successor to DBM). We’ll focus on gdbm here, though
the examples should work with any of the three *dbm libraries included with Ruby.
Problem
You want a simple contact manager, and you need to share the files with someone who

Listing 9.7 The contacts output file, in YAML format
may not have access to YAML.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

190 CHAPTER 9 Database facilities and techniques

Solution
Our hypothetical YAML crisis provides a chance to look at a gdbm-based solution.
We’ll aim for something that’s as close as possible to the YAML version of the contact
manager, and the best way to guarantee that closeness is to use a similar test suite.

 The tests are shown in listing 9.8. Note that we’re loading contacts_g, implying
that the implementation of the two classes will be in contacts_g.rb.

require 'test/unit'
require 'contacts_g'

Dir.mkdir("gdbm_contacts") unless File.exist?("gdbm_contacts")

class GDBMTest < Test::Unit::TestCase
 def setup
 @list = ContactList.new("gdbm_contacts")
 @contact = Contact.new("Joe Smith")
 @list << @contact

 @contact.home["street1"] = "123 Main Street"
 @contact.home["city"] = "Somewhere"
 @contact.work["phone"] = "(000) 123-4567"
 @contact.extras["instrument"] = "Cello"
 @contact.email = "joe@somewhere.abc"
 end

 def test_retrieving_a_contact_from_list
 contact = @list["Joe Smith"]
 assert_equal("Joe Smith", contact.name)
 end

 def test_delete_a_contact_from_list
 assert(!@list.empty?)
 @list.delete("Joe Smith")
 assert(@list.empty?)
 assert(@list.contact_cache.empty?)
 end

 def test_home
 contact = @list["Joe Smith"]
 assert_equal("123 Main Street", contact.home["street1"])
 end

 def test_email
 contact = @list["Joe Smith"]
 assert_equal("joe@somewhere.abc", contact.email)
 end

 def test_non_existent_contact_is_nil
 assert_equal(nil, @list["Some Person"])
 end

 def teardown
 @list.delete("Joe Smith") if @list["Joe Smith"]
 end

Listing 9.8 The contact application tests

B

C

D

end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

191Using the (g)dbm API

The test suite for the gdbm implementation is similar to the one for the YAML imple-
mentation, but there are a few differences. One extra step here is creating the
gdbm_contacts directory, so that the tests will be able to find it B. Also, some tests have
been replaced to show you some of what you might want to do specifically for gdbm
(though neither test suite is exhaustive). It’s now necessary to add the contact to the list
before setting any of the contact’s properties C. The reason is the hash-to-database magic
only works if the contact’s components—home, work, extras—are gdbm file handles.
And that will only happen when the Contact objects become part of a ContactList; it’s
the ContactList object that knows where the directory of gdbm files is.

 Another tweak is that all keys are now strings, instead of symbols D. gdbm doesn’t
like symbols; it wants everything to be strings. Nonetheless, the goal of preserving the
API in the gdbm reimplementation has been largely met, assuming we can get the tests
to pass. On now to the implementation itself.

 The way gdbm works is very different from the way YAML works. gdbm is definitely
more of a real database, but it is simpler in terms of the kinds of data structures it can
store. gdbm stores key/value pairs. The Ruby gdbm extension is programmed almost
exactly like a hash.

 Here’s a simple example of using gdbm. First, run this code from a file—it will cre-
ate a file called movies.db, so make sure you’re not clobbering one!

require 'gdbm'

movies = GDBM.new("movies.db")
movies.update(
 { "Vertigo" => "Alfred Hitchcock",
 "In a Lonely Place" => "Nicholas Ray",
 "Johnny Guitar" => "Nicholas Ray",
 "Touch of Evil" => "Orson Welles",
 "Psycho" => "Alfred Hitchcock",
 })

movies.close

Notice the use of the update method, which is familiar as a hash operation. Now, go
into irb and do this:

>> require "gdbm"
=> true
>> movies = GDBM.new("movies.db")
=> #<GDBM:0xb7ef12cc>
>> movies.values.uniq

You’ll get a list of all the directors in your database:

=> ["Orson Welles", "Nicholas Ray", "Alfred Hitchcock"]

The gdbm API is designed to be as hash-like as possible, with all the hash operations
automatically writing to, or reading from, the database file.

 The contact data we’re storing isn’t a simple hash, though. A contact has a name and
an email address, which are just strings and could serve as hash keys, but the additional

information, such as the home data, comes in the form of nested or embedded hashes.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

192 CHAPTER 9 Database facilities and techniques

 One way to use gdbm in a situation where you need hashes within hashes is to seri-
alize the inner hashes with YAML, and store them as strings. There’s nothing terrible
about doing that, but we’ve already looked at a YAML solution, so we’ll do it a different
way here. For our gdbm implementation of the contact list, the entire list will be rep-
resented by a directory, and each contact will have its own subdirectory. Inside that subdi-
rectory, there will be individual gdbm files for each of the inner data structures: home,
work, extras.

 In the YAML implementation, a ContactList object was a kind of proxy to the
actual array of Contact objects. In the gdbm implementation, ContactList objects
will be proxies to directories. It’s desirable to keep the API as transparent as possible.
As API users, we don’t want to have to know the details of how the files are being han-
dled, so all of that can be encapsulated in the ContactList class.

 The Contact objects can do their share of the lifting, too. A ContactList is in
charge of a whole directory, and each contact has a subdirectory. It makes sense, then,
for the Contact object to know the name of its directory.

 Let’s start this time with the Contact class. It’s shown in listing 9.9.

class Contact
 COMPONENTS = ["home", "extras", "work"]
 attr_accessor :name, *COMPONENTS
 attr_reader :dirname

 def initialize(name)
 @name = name
 @dirname = @name.gsub(" ", "_")
 end

 def components
 COMPONENTS.map {|comp_name| self.send(comp_name) }
 end

 def open
 COMPONENTS.each do |component|
 self.send(component + "=", GDBM.new(component))
 end
 end

 def close
 components.each do |component|
 component.close unless component.closed?
 end
 end

 def email
 extras["email"]
 end

 def email=(e)
 extras["email"] = e
 end

Listing 9.9 The Contact class for the gdbm implementation of the contacts library

B
C

D

E

F

G

H

I

end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

193Using the (g)dbm API

One addition to the Contact class is the COMPONENTS constant B, which contains an
array of strings corresponding to the nested containers in the Contact objects. The
point of having this constant is to encapsulate these names in one place. That way,
both the Contact and ContactList objects can find all of them easily, and the names
will not have to be hard-coded in specific methods. Moreover, as you’ll see when we
look at the ContactList class, each component is actually going to be the name of a
gdbm database: one each for home, work, and extras.

 We want a read-write attribute for name, and one for each of the components C.
Using the unary * operator on COMPONENTS has the effect of turning the array into a
bare list, so it’s as if we’d written this:

attr_accessor :name, :home, :work, :extras

We also want each Contact object to have a reader attribute in which it can store the
name of its directory D, which will be a subdirectory of the master directory of the
contact list to which the contact belongs.

 The initialize method preserves the name (which is the actual name of the per-
son whose contact information this is), and also stores the directory name E. The cre-
ation of the directory name involves replacing spaces in the name with underscores.
You can adjust this if you prefer a different munging algorithm, as long as the result is
a valid directory name (and preferably a reasonably cross-platform one).

 The components method provides a translation from the component names to the
actual components F. This, in turn, allows the close method to walk efficiently through
all the components, performing a close operation on any that are not already closed.

 Speaking of the close method, the Contact class provides both open and close
methods. The open method creates a new gdbm object for each component G,
assigning that new object to the relevant component attribute of the contact. If there’s
already a file with the appropriate name (for example, “extras”), gdbm will open it for
reading and writing; otherwise, it will be created. (There are some further subtleties
to the way gdbm handles read and write access, but we’ll assume for the purposes of
the contact list that it’s private and only being accessed by one program at a time.)

 The close method goes through the components corresponding to the filenames
in which the data is stored, and performs the gdbm close operation on each one.
This terminates the database connection to each file H.

 Finally, we include special methods for handling the contact’s email address I. The
email address gets stored in, and retrieved from, the extras["email"] slot. The point
of writing these methods is to enable us to set and retrieve the email address as if it were
a simple attribute, even though storing it is a little bit involved. (A contact might have
separate home and work email addresses, of course. But we’ll keep it simple, as we did
in the YAML implementation, and assume that each contact has only one email address.)

 Now, let’s look at ContactList. The specifics of implementing this class derive
partly from the way gdbm works, and partly from the way directories work. We want to
be able to get a contact from a contact list:

contact = @list["Joe Smith"]
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

194 CHAPTER 9 Database facilities and techniques

The list object is going to need to go to the directory, look for a directory with the
right name, and load all the gdbm files into a Contact object. Fair enough, but not
very efficient. It might pay to keep a cache of Contact objects on hand, so the search
doesn’t have to be repeated if the same contact is requested twice.

 With that in mind, look at listing 9.10, which shows the first segment of the
ContactList class, including the initialize method, the [] method (which retrieves
a Contact object by name), and a helper method called populate_contact. You can
add this code to the top of the file containing the Contact class (or the bottom,
though if you do that, it’s best to follow the convention of keeping the two require
lines at the top of the file).

require 'gdbm'
require 'fileutils'

class ContactList
 attr_reader :contact_cache
 def initialize(dir)
 @dir = dir
 @contact_cache = []
 end

 def [](name)
 contact = @contact_cache.find {|c| c.name == name }
 return contact if contact
 contact = Contact.new(name)
 Dir.chdir(@dir) do
 if File.directory?(contact.dirname)
 populate_contact(contact)
 @contact_cache << contact
 else
 contact = nil
 end
 end
 contact
 end

 def populate_contact(contact)
 Dir.chdir(contact.dirname) do
 contact.open
 end
 end

The fileutils extension is loaded for the sake of one or two utility methods to be
used later B.

 Then, upon initialization D, the list stores its directory and creates an array that will
serve to cache Contact objects. That array is available as a reader attribute C. When
you try to retrieve a contact from the list, the list object first checks the cache E. If the
contact is there, it returns it. If the contact isn’t there, the real fun starts.

 First, a new Contact object is created F. Then, the ContactList object switches to

Listing 9.10 The ContactList class for storing contact records

B

C
D

E

F

G
H

I

J

1)
its own directory, where it looks for a subdirectory whose name is the same as the

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

195Using the (g)dbm API

directory name reported by the Contact object—“Joe_Smith” for the contact “Joe
Smith,” for example G. If such a directory exists, the contact’s components get initial-
ized to a new gdbm database object, based on the component name H. The contact is
now added to the list’s contact cache I, so that the whole directory-based instantia-
tion won’t have to be repeated during this session. If, however, the directory corre-
sponding to the requested component name does not exist, the contact variable is
reset to nil. This indicates a request for a nonexistent contact. (Remember, you’re
just trying to fetch an existing contact, not create one.)

 Finally, the value of the contact variable—which is going to be either nil or a
gdbm object—is returned from the method J. If it’s nil, you know that the contact
you requested does not exist on this list. The populate_contact utility method navi-
gates from the top directory of the list down to the specific subdirectory for this con-
tact 1). It then calls the open method on the contact—which, as you’ll recall, calls
GDBM.new on each of the contact’s components, creating database handles on the rele-
vant files.

 Now let’s look at adding an object to a list and removing one from the list. We’re
shooting for the same API as the YAML version:

@list << contact # add a contact
@list.delete(contact) # delete a contact

As listing 9.11 shows, these operations require attention to the filesystem and direc-
tory structure.

def <<(contact)
 Dir.chdir(@dir) do
 Dir.mkdir(contact.dirname) unless File.exists?(contact.dirname)
 populate_contact(contact)
 end
 @contact_cache << contact
end

def delete(name)
 contact = self[name]
 return false unless contact
 contact.close
 Dir.chdir(@dir) do
 FileUtils.rm_rf(contact.dirname)
 end
 contact_cache.delete_if {|c| c.name == name }
 true
end

To add a contact, we need to create a new directory, unless one exists B (which is pos-
sible; there could already be a Contact object corresponding to this directory, even if
it’s not part of a contact list). We also need to go into the directory and populate the
contact’s components based on the gdbm files in the directory, creating them as nec-
essary or just opening them for reading if they’re already there. Finally, we add the

Listing 9.11 Adding and removing a contact

B

C

D
E

F

G
H

contact to the list’s contact cache C.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

196 CHAPTER 9 Database facilities and techniques

 Removing a contact involves several steps. First, we only want to delete contacts we
actually have, so the method returns false if the contact is unknown D. Second, we
ask the contact to close itself, which means walking through the components and clos-
ing each gdbm connection in turn E. Then we use the FileUtils.rm_rf method to
delete the contact’s directory F, remove it from the cache if it’s there G, and return
true to indicate a successful deletion H.

 Arguably, directory removal is a rather harsh step; it means that the information is
really gone, not just hidden from the list. The reasoning, though, is that the list is really
in charge of the contact, and that in practice we’ll always access contacts through their
lists. You can, of course, soften the code, if you want to devise a way to keep the contact
but remove it from the list, or a way to copy contacts from one list to another.

 We can now add, remove, and retrieve contacts from the list. We just need a few
query methods: directory_names (the names of all the list’s directories, which will be
the munged versions of the names of the contacts), empty?, and size. Listing 9.12
shows the remaining code necessary to complete the ContactList class.

 def directory_names
 Dir["#{@dir}/*"]
 end

 def size
 directory_names.size
 end

 def empty?
 directory_names.empty?
 end

end

This class, along with the Contact class, now gives us all the functionality we need to
make our tests pass.

$ ruby contacts_g_test.rb
Loaded suite contacts_g_test
Started
.....
Finished in 0.071413 seconds.

5 tests, 7 assertions, 0 failures, 0 errors

The key, again, is the directory structure, which we have to walk through explicitly, but
which adds an extra level of nesting so that a Contact object can present us with what
amounts to a collection of hashes.
Discussion
The gdbm version of the contact manager is a bit more sprawling, in terms of file
space and directory structure, than the YAML version, and gdbm files, unlike YAML
files, are not human-readable. But gdbm is a real database tool, not a different tool

Listing 9.12 The remaining methods for the ContactList class
being recruited for database-like operations (such as a data-serialization tool, in the

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

197The MySQL driver

case of YAML). In practice, that means gdbm is optimized for database operations.
Furthermore, having the entries spread out over many file directories means that you
don’t have to read them all in at the same time.

 If you’re just dealing with a few contacts or a small amount of data in whatever
domain you’re writing this code for, it’s not going to make any noticeable difference
whether you load in all the data at once or traverse a directory looking for it. If you’ve
got a lot of data, you’ll probably hit a point where splitting the data out into many
gdbm files will speed things up. Of course, as with all performance questions, you
have to try it out and measure for yourself. If you’re using these tools for relatively
small operations, you’ll likely find any of them acceptable in terms of performance.
That’s part of their merit: they’re easy to write and usually fast enough in operation.

 One interesting programming issue arising in connection with the gdbm imple-
mentation of the contact manager is the issue of how much functionality should be
embodied in the Contact objects, and how much should be delegated to the Con-
tactList objects. Notice, for example, that a Contact object does not know how to
populate itself, in the sense of opening connections to all of its gdbm files. The list
handles that, through the populate_contact method. Would it be better to teach a
contact how to populate itself, and then have the list call

contact.populate

instead of calling its own populate_contact method? You could certainly make a case
for that; it puts the knowledge inside the object that’s nearest to the operation. On the
other hand, the contact list is really what we’re modeling here. In a sense, the Contact
class only exists as a convenient way to split out some of the list’s functionality. If that’s
true, then how much functionality we split out is pretty much discretionary. And there’s
certainly no harm in experimenting with different ways of doing the same thing.

 We’ll turn next to the Ruby MySQL module, which takes us into the realm of rela-
tional databases.

9.3 The MySQL driver
We’ve now got enough usable code for manipulating contacts and contact lists to put
it to some use. This will also allow us to delve into the world of relational databases
and the available APIs for Ruby.

 Overall, the story is that there are individual (database) drivers for MySQL, Postgr-
eSQL, SQLite, and others. Any of these can be programmed individually. On top of
these, you can also use the DBI (Database Interface) package, which provides an
abstract API that can serve as a frontend to any of the DBD packages available.

 We’ll look at a use case for the “pure” MySQL driver here, and in section 9.4 we’ll
do something with DBI. Unlike the YAML and gdbm examples, these examples will not
involve writing an API for a contact list but, rather, moving contact list data around: to
a MySQL database first, and from a MySQL database second. It’s not uncommon to use
database tools in situations where you’re moving data from one storage system to
another. The nice thing about the facilities available in Ruby is that you can do quite a

lot of this at a rather high level of abstraction.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

198 CHAPTER 9 Database facilities and techniques

Problem
You’ve got a YAML file of contact information, and you want to store it in a relational
database.
Solution
Let’s tackle this problem by using the MySQL driver. This driver is available as a gem or
as a non-gem Ruby package. To install it as a gem, simply run the following command:
gem install mysql

To get started, take a look at listing 9.13, which shows several Contact objects in the
YAML format.

--- !ruby/object:ContactList
contacts:
- !ruby/object:Contact
 extras:
 :sport: bowling
 :car: Toyota
 :pets: armadillo

 home:
 :postal: "12345"
 :state: NJ
 :country: USA
 :street1: 123 Main
 :city: Somewhere
 name: David Black
 work: {}
 email: dblack@somewhere

- !ruby/object:Contact
 extras: {}

 home:
 :postal: "23456"
 :state: AB
 :country: USA
 :street1: 234 Main
 :city: Somewhere
 name: David Smith
 email: dsmith@somewhere
 work:
 :company: The Somewhere Consultants
 :street1: 234 Main
 :street2: Suite 33943
 :city: Somewhere
 :postal: "23456"
 :state: AB
 :country: USA

- !ruby/object:Contact
 extras:
 :instrument: violin

Listing 9.13 An example of a YAML file for contact records
 :car: Honda

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

199The MySQL driver

 :pets: cat
 home:
 :postal: "00000"
 :state: US
 :country: USA
 :street1: 9393 West Main
 :city: Nowhere
 name: Joe Smith
 email: jsmith@somewhere
 work: {}

- !ruby/object:Contact
 extras: {}

 home:
 :postal: "98765"
 :state: HH
 :country: USA
 :street1: 8 North Main
 :street2: Apt. 3
 :city: Anywhere
 name: John Smith
 email: jsmith2@somewhere
 work: {}

The first step in migrating these contacts to a MySQL database is designing and creat-
ing the database itself. We’ll use the contact’s email address as the primary key for the
contacts table and as the foreign key for all the other tables. Listing 9.14 contains
SQL instructions suitable for creating this database in MySQL. Running listing 9.14 as a
MySQL script, with appropriate permissions, should create the database.

drop database contacts;
create database contacts;
use contacts;

drop table if exists contacts;
create table contacts (
 name varchar(100),
 email varchar(50),
 primary key (email)) ENGINE=INNODB;

drop table if exists home;
create table home (
 street1 varchar(100),
 street2 varchar(100),
 city varchar(50),
 postal varchar(20),
 state varchar(20),
 country varchar(25),
 contact_email varchar(50),
 foreign key(contact_email)
 references contacts(email)
 on delete cascade) ENGINE=INNODB;

Listing 9.14 SQL instructions for creating the contacts database
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

200 CHAPTER 9 Database facilities and techniques

drop table if exists work;
create table work (
 company varchar(100),
 street1 varchar(100),
 street2 varchar(100),
 city varchar(50),
 postal varchar(20),
 state varchar(20),
 country varchar(25),
 contact_email varchar(50),
 foreign key(contact_email)
 references contacts(email)
 on delete cascade) ENGINE=INNODB;

drop table if exists extras;
create table extras (
 label varchar(50),
 description varchar(150),
 contact_email varchar(50),
 foreign key(contact_email)
 references contacts(email)
 on delete cascade) ENGINE=INNODB;

grant all on contacts.* to 'contacter'@'localhost' \
 identified by 'secret'

The last command (grant) gives all the necessary privileges to the “contacter” user. You
can, of course, make up your own username and password for that command. The main
thing is to create a non-root user, since the username and password are going to appear
in a plain-text program file. (Not that you’d be handing the file around anyway, but it’s
always better not to put very important passwords in plain text anywhere.)

 The next step is to create the “glue” program that will take us from YAML to
MySQL. This program is going to read the YAML file in, which will create a Con-
tactList object containing several Contact objects, and write it out again, this time to
the MySQL database. The input, however, isn’t entirely congruent with the output; we
have to do a little work to make it fit.

 Contacts have home and work components, which map very easily from a hash (the
structure by which they’re represented inside the Contact object) to a database table.
In fact, the keys of the home and work tables in the database schema are simply lifted
from the key names in the home and work hashes.

 The extras component is a little different. Here, keys are arbitrary, which means
they cannot match up to database column names, since those names have to exist in
advance. (It’s possible to create columns on the fly using the MySQL API, but that’s just
asking for confusion and trouble.) Instead of storing each value in a column named
for its key, the extras table has two storage columns: label and description. It also
has a contact_email column, where the email address of the contact will be stored.

 What this means is that while there will be one record in the home table and one in
the work table for each contact, there will be one record in the extras table for every
entry in the contact’s extras hash. The key/value combination in the hash becomes

the label/description combination in an extras record.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

201The MySQL driver

 Most of the rest of the work of writing the program involves creating query strings
and shipping them off to the database via the MySQL API. Each Contact object will
trigger a three-part cycle of insertions:

■ The query that creates the entry in the contacts table itself
■ The loop that creates the entries in the home and work tables
■ The loop that creates the entries in the extras table

First things first. Before any of this happens, we need to load in the necessary libraries,
as well as our application code (contact_y.rb), and make connections on both the
YAML side and the MySQL side:

require 'yaml'
require 'mysql'
require 'contact_y'

conn = Mysql.new("localhost", "contacter", "secret", "contacts")
list = YAML.load(File.read("contacts.yml"))

The assignment to conn gives us a new Mysql object—essentially an addressable han-
dle on a database connection B. Note the arguments given to Mysql.new: host, user-
name, password, and database name. The variable list C will contain the
ContactList represented in the YAML file; this contact list, in turn, contains and man-
ages the specific contacts.

 Now, let’s take care of the first of the three major stages: creating the entry in the
contacts table. Just for fun, here’s how to do it using Ruby’s % interpolation operator:

list.contacts.each do |contact|
 conn.query "INSERT INTO contacts (`name`, ̀ email`)
 VALUES ('%s','%s')" % [contact.name, contact.email]

The %s format specifiers work as they do in the sprintf method family: they serve as
placeholders for a string to be determined later. The two necessary strings are pro-
vided in an array after the main string, and between the main string and the array
comes another %-sign—this is what triggers the interpolation operation.

 Amidst all this handy string manipulation, notice what’s actually happening here: a
call to conn.query. We’re using conn, the database connection handle, to send a SQL
query to the database.

 Next up: the home and work components. For each of these, the goal is to send a query
that will insert the right values in the right fields. The fields into which we’ll insert values
are those that have the same names as the hash keys from the YAML structure (“postal”,
“state”, etc.), plus the extra field contact_email—the primary key column in the home
and work tables, which has no corresponding value in the YAML structure.

 We first want to drill down from the contact to its components. Then we want to isolate
each component’s keys and create a query string that uses them as field names, together
with the component’s values as the database values. Here’s the code that will do this:

%w{ home work }.each do |component|

B
C

 data = contact.send(component) B

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

202 CHAPTER 9 Database facilities and techniques

 items = data.keys
 fields = (["contact_email"] + items).map {|field|
 "`#{field}`"
 }.join(",")
 values = [contact.email] + items.map {|field| data[field]}
 values.map! {|value| "'#{value}'"}
 values = values.join(",")
 conn.query("INSERT INTO #{component} (#{fields}) VALUES (#{values})")
end

The data object is the entire component hash; we acquire it by sending the name of
the component (home or work) to the Contact object B. Then we isolate the keys,
which will be things like street1, street2, and phone, as items C. If we add the
string "contact_email" to this list of items, we’ll have all the necessary column names
for the relevant database table. (There’s no contact_email field in the YAML version,
so we have to shoehorn it in to please the MySQL database schema.) These field names
get inserted into backticks and are strung together with commas D. That will give us
something like this for the fields variable:

`contact_email`, ̀ street1`, ̀ street2`, ̀ city`, etc.

Those are the fields we’ll be inserting values into. The values themselves come from a
similar, but not identical, mapping of the actual value for contact.email, plus the
actual values for the items (as retrieved from the data hash). Here, we put the array
together first, because that’s a somewhat longer operation, in this case E. Then the
array gets mapped—map!ped, actually, because the values get changed in place—and
then joined with commas to make a values string out of the array F, G.
The result will be something like this:

'jsmith2@somewhere', '123 Main', '', 'Somewhere', etc.

Thus, the values string lines up nicely with the fields string, ready for insertion into
the appropriate table H.

 You may be wondering why it’s necessary to march through all the keys and dig out
all the values for each hash, when there’s a values method that would do the same
thing in one step. The reason is order—or, rather, lack thereof in a hash. Hashes are
unordered, which means that the order in which their entries are returned is not
guaranteed. While it’s very likely that the keys, when returned separately via the keys
method, will line up with the values as returned by the values method, it’s a good
idea nonetheless to go ahead and retrieve each value explicitly, so as not to depend on
hash ordering in any guise.

 The handling of extras comes next. It’s actually a bit less involved than the handling
of the home and work components, though it does potentially create more records:

 contact.extras.each do |label, description|
 conn.query("INSERT INTO extras (`contact_email`, ̀ label`,
`description`) VALUES ('#{contact.email}', '#{label}',
'#{description}')")
 end

C

D
E

F
G

H

end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

203The MySQL driver

Each entry in the extras hash gets an entry in the database, with its foreign key
(contact_email) set to the current contact’s email field. And that last end tells you
that the big loop—the loop through all the contacts—is finished.
Discussion
The MySQL API may seem a bit raw to you, especially if you’re used to a full-blown
object-relational mapper (ORM) like ActiveRecord or Og. When you use the API
directly, you write a lot of SQL yourself, and that may or may not be to your taste.

 Keep in mind that having the programming interface available can make a big dif-
ference. It gives you all the power of Ruby in front of your SQL generation. You can, of
course, grep through a YAML file and try to piece together queries yourself, but all
you’ll learn by doing that is how much easier it is when you have a programmatic layer,
even if it’s not an ORM.

 If you do have an ActiveRecord-friendly database, you can of course use the higher-
level commands available to you to handle the data more abstractly. It all depends on
what your starting point and goal happen to be in a given project.

 One thing that isn’t covered in the preceding solution is error handling. Our
script will simply die if something goes fatally wrong in a database operation, and that
could leave the database in an inconsistent state. To prevent this, you can wrap each
contact’s set of queries up as a transaction.

 To do this, you first need to turn off auto-commit mode:

...
conn = Mysql.new("localhost", "contacter", "secret", "contacts")
list = YAML.load(File.read("contacts.yml"))

conn.autocommit(false)

Now, you need to put each contact’s worth of querying inside a begin/rescue/end
block, where rescuing from a Mysql::Error will result in a rollback:

list.contacts.each do |contact|
 begin

Encapsulating component references
You’ll recall that for the purpose of the gdbm contracts implementation, we neatened
things up by setting a COMPONENTS constant inside the Contact class, so that it
wasn’t necessary to hard-code the names of the components wherever they were
used. There are a couple of reasons it’s probably not worth doing that here. First, the
extras component has to be split out anyway. Second, the remaining components
have to correspond exactly to table names in the database.

It is possible to query the database for its table names, and if you subtract “extras”
and “contacts” from the list, you’ll have (as it’s currently engineered) the names of
the other components. Still, while it’s great to automate things as much as possible,
you’ll probably find that with more or less one-time conversion scripts, it’s inevitable
that certain things are going to have to be hard-coded, and in some cases will require
individual treatment (like “extras”).
 # rest of code, through the "extras" loop

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

204 CHAPTER 9 Database facilities and techniques

 rescue Mysql::Error => e
 puts "Problem with contact #{contact.name}: #{e}"
 conn.rollback
 next
 end

 conn.commit
end

The commit only happens if no Mysql::Error gets raised along the way. Doing it this
way will help you avoid getting the database into an inconsistent state (such as where a
contact record is saved but the home record is not), and it will also avoid stopping the
whole program just because of one malformed record.

 So far, we’ve looked at sending insert queries to the database, which is important,
but it’s not the whole story. Our next problem will take us in the other direction: start-
ing from a relational database and reading data out in order to store it in a different
format. Moreover, we’ll take this opportunity to turn the corner to DBI, the high-level
Ruby database interface library.

9.4 Using DBI
DBI, Ruby’s database interface library, ships separately, and it provides a high-level
interface that allows you to come about as close as you can to programming different
relational databases with the same programming tools. The goal is to abstract away the
differences between various databases, and focus on what they have in common. At
the same time (though we won’t pursue it in detail here), DBI can also take advantage
of features that one database has but others don’t.

 DBI rests on top of, and needs, one or more database driver (DBD) packages, such
as the MySQL library we used in section 9.3. At time of writing, DBI supports 12 DBDs
(plus a deprecated one). If you learn how to use DBI, it’s almost one-stop-shopping for
database APIs.
Problem
You need to read out some contact records from a relational database and save them
to a gdbm database.
Solution
We’re going to use the MySQL database from section 9.3, but this time we’ll address
the database with DBI. The goal is to migrate the data to the gdbm-style contacts
database. That means we’ll need to load contacts_g.rb, as well as DBI. Loading
contacts_g.rb will in turn cause the gdbm driver to be loaded. We also need to create
the output directory, if it doesn’t exist already.

require 'dbi'
require 'contacts_g'
Dir.mkdir("migrated_contacts") unless File.exist?("migrated_contacts")

Now we need a ContactList object, which will serve as the receptacle for the data
coming in from the MySQL database; the data will be massaged, of course, so as to fit

the shape of Contact objects. (Make sure that the directory you use already exists, or

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

205Using DBI

add something to the script to create it.) We also need a database connection. And,
finally, we need a list of all the tables in the database, except contacts and extras;
those two tables require special handling.

list = ContactList.new("migrated_contacts")
conn = DBI.connect("DBI:Mysql:contacts", "contacter", "secret")
tables = conn.select_all("show tables").
 flatten - %w{ extras contacts }

The first argument to DBI.connect is the name of the database, contacts, qualified
with DBI:Mysql to point DBI to the correct driver. Note that the separators here are
single colons, not the double-colon operator that indicates nested constants in Ruby.
The whole thing is just a string; none of the characters have significance until they’re
scanned and interpreted by DBI itself. The host will default to localhost.

 To get the list of tables, we use select_all to return an array of rows. In this case,
each row is a table name. Rows are returned as arrays inside arrays, and flattening the
array takes out the nesting. Finally, we remove the names of the tables that require
special treatment: extras and contacts.

 The processing of the data from the database consists of a big loop, an iteration
through all the rows of the contacts table. Inside the big loop is another loop, which
handles all the tables in the tables array. Finally, the data from the extras table is read
and transferred.

 Listing 9.15 shows the big loop, and what happens inside it.

select_string = 'select name, email from contacts'
conn.select_all(select_string) do |row|
 name,email = row
 where_clause = "where contact_email = '#{email}'"

 contact = Contact.new(name)
 list << contact

 contact.email = email

 tables.each do |table|
 result = conn.execute(
 "select * from #{table} #{where_clause}")
 record = result.fetch_hash
 record.delete_if {|k,v|
 k == "contact_email" or v.nil?
 }
 contact.send(table).update(record)
 end

 extras = conn.execute("select label,description \
 from extras #{where_clause}")
 extras.each do |label,description|
 contact.extras[label] = description
 end
end

Listing 9.15 The loop through the contacts table

Gets array of
relevant rows

B

C Stores WHERE clauseStores contact’s
email address

D

E Puts new contact in list
Requests row for
current table

F

Fetches row as
column/value hash

G

Removes nils, foreign
key from hash

H

Transfers extras
J

Retrieves relevant
extras record

I Transfers result hash to contact
1)data to contact

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

206 CHAPTER 9 Database facilities and techniques

The table names will match the relevant components of the gdbm contact: specifically,
home and work.

 As with the previous script, where we went from YAML to MySQL, we’re dealing with
three major phases: creating the Contact objects, handling the miscellaneous tables,
and handling the extras table. In preparation, we get hold of all the contact rows B,
and store a WHERE clause that we’re going to use repeatedly C, just to save having to
type it out.

 Creating and storing a new contact is easy D, thanks to the API we’ve already devel-
oped for the gdbm contacts database. After storing the contact, we set its email
address, using the email= method, which transparently puts the email address into
extras["email"] E.

 Then we go through the list of tables. For each table (remembering that we’ve sub-
tracted extras and contacts from the list), we execute a query returning the relevant
row for this contact F. This request returns an object of class DBI::StatementHandle,
which takes requests for actual delivery of the rows. The relevant request here is
fetch_hash G, which returns the next row in the form of a hash of column names
against values. (A certain amount of error-checking has been left to the reader, includ-
ing making sure that there is only one row returned per table for each contact!) We
then cleanse the hash of the irrelevant contact_email key, as well as any entries with
nil values H (which gdbm doesn’t like; it only wants strings, and there’s not much
point storing empty strings for nils). The hash of columns and values is then trans-
ferred to the relevant component of the contact I. The hash update method is effec-
tive because the component is actually a gdbm object, and gdbm objects are
programmed like hashes.

 Next comes the extras special case. Here we get all the extras records belonging
to this contact J, and make the appropriate assignments in the extras component 1).
Discussion
DBI is a great tool for addressing a variety of database systems. Like the individual driv-
ers, it keeps you fairly close to the SQL, and like the MySQL driver, DBI is not as
abstracted or high-level as ActiveRecord or Og. But even if you’re writing the state-
ments mostly by hand, the ability to embed them inside Ruby logic and string han-
dling is extremely valuable.

 In this example, we see again the special casing of the extras table. Going from
YAML to MySQL, the special casing involved the need to create a separate record for
each key/value pair in the extras hash, using the column names label and descrip-
tion, because the keys for extras are arbitrary, and it was impossible to have a sepa-
rate column name for each one. Going the other way, extracting the data from the
MySQL database and putting it back into a Ruby hash structure (which is what gdbm
objects essentially are), it’s possible to shed the label/description wrapper and go
back to having each label be a hash key and the corresponding description its value.

 This kind of massaging of structure is fairly common when you migrate around the
different data-storage facilities available in Ruby (and, of course, not just in Ruby).
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

207Summary

The decisions you make about the shape of the containers are as important as any
other feature of the storage process.

9.5 Summary
In this chapter, we’ve looked at a representative set of database and data-storage facili-
ties in Ruby. We looked at YAML, the data-serialization format, as a kind of database
tool, having the particular dual merit of allowing for direct storage of Ruby data struc-
tures and offering a human-readable, editable text representation of the data it’s stor-
ing. From there we went to gdbm, one of the drivers in the DBM Berkeley database
family. gdbm objects are tied invisibly to files and are programmed like Ruby hashes,
making for another quick and easy data-storage tool.

 In both YAML and gdbm, we developed library code for creating and managing a
list of contacts. The rest of the chapter involved using this code in the service of trying
out the relational database facilities available for Ruby. We undertook the task of
migrating a YAML database of contact objects to a MySQL database, and then we
migrated the same MySQL database back out, into gdbm contact-list format. Both of
these projects were written “script-style” (with no classes, just procedural code), and
both shed some light on the process of formulating and implementing data structures
across different storage systems.

 We haven’t covered everything in the Ruby database realm, by any means, but
you’ve seen enough to give you a toolset for writing your own scripts, and to give you
your bearings as you explore some of the other available tools. You’ll likely find that
these techniques have some very practical uses—if not every single day, then at critical
junctures in data-migration and -reorganization projects. In the next chapter, we’ll
take these ideas further and look at handling structured data files more in depth.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Structured documents
Almost any Ruby program you write will involve either loading data from an exter-
nal source or exporting data produced in your program to an external source,
which will be reloaded later or loaded by another program. You might use a dead-
simple representation like YAML or a more complex one like Atom to store the
data, but the basic principles will remain the same.

 While you’ll have the ability to choose the data format for your configuration
files or external storage, you will often run into situations where you need to use
data produced by someone else, often by programs written in other programming
languages or even created manually by human beings. In these cases, you might
need to be able to read in, and correctly interpret, broken data files. The most
common example of this is reading HTML files from the internet, which are fre-
quently impossible to parse without first repairing the data.

 Thankfully, almost every structured format you might come across has an associ-
ated Ruby library that will make reading in data for use by your program, or writing

This chapter covers
■ Using XML to read configuration files
■ Working with HTML
■ Generating XML with Hpricot
■ Reading RSS feeds
208

out information you’ve collected, a trivial matter. Some of these libraries, like the

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

209XML in practice

Hpricot library that we will discuss later, also specialize in fixing broken input before
giving you a simple API to parse and manipulate the data.

 In this chapter, we’ll look at XML, including specific forms like RSS, Atom, and
XHTML. We’ll also look at YAML, Ruby’s built-in, simple serialization format, and CSV,
which is commonly exported by programs like Microsoft Excel and Outlook.

10.1 XML in practice
The most common data-interchange format is XML. It is used to encode all sorts of infor-
mation from documents produced in Microsoft Word to the votes of members of Con-
gress made available online. Virtually all programming languages have extremely good
support for XML, so it’s virtually guaranteed that information exported by one program
will be easily interpreted by any other. Vendors frequently use XML as a format for con-
figuration files because they have to do little or no custom work to read or write them.

 Because XML is such a common interchange format, there are a number of
extremely common uses, like using XHTML for web pages and RSS or Atom for online
feeds. We’ll get to those cases later, but another extremely common use of XML is for
storing configuration data for applications. Sooner or later, you will likely need to
parse legacy or configuration data in the form of XML, and Ruby has a nice set of XML
libraries to help you out.

 For our first couple of examples, we’ll look at parsing the configuration for a ficti-
tious calculator program that performs similarly to the calculator built into Apple’s
Mac OS X or Microsoft Windows. Let’s assume that the calculator supports two modes,
standard and scientific, and that we’ll store its starting position in our configuration
file. We’ll also store information about the decimal-point precision, as well as the
number currently in memory, if any.

10.1.1 Using XML to read configuration files

One of the most common uses for XML in both development and consumer environ-
ments is storing configuration values. XML is a staple of Java and C# development,
where many project presets are managed by XML files. XML files are an excellent way
to integrate with an existing codebase or to use existing configuration data in a new
Ruby (or other language) application.
Problem
You need to load and parse an XML configuration file for a new application.
Solution
For our calculator, we need to be able to read in the configuration details and instan-
tiate a calculator object with the settings that were previously saved by the user. A sam-
ple configuration file for the calculator is shown in listing 10.1.

<?xml version="1.0" encoding="ISO-8859-15"?>
<calculator>
 <startup mode="standard" precision="2" />

Listing 10.1 Our calculator’s XML configuration file
 <memory type="float">16.24</memory>

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

210 CHAPTER 10 Structured documents

 <keyboard type="Macintosh">
 <numeric-keypad enter="=" clear="C" />
 <max-fkey>F16</max-fkey>
 </keyboard>
</calculator>

This is a very simple configuration file, but it offers enough variance to explore the
features of Ruby’s built-in XML parser, REXML. Figure 10.1 shows the XML repre-
sented graphically as a tree of nodes.

There are a number of libraries that allow us to parse XML in Ruby. For this simple
case, REXML, the XML parser that is built into Ruby, will do the trick. Check out listing
10.2 to see how natural the implementation is.

require 'rexml/document'
include REXML

module Calculator
 class Config
 def initialize(memory, startup, keyboard)
 @memory = memory, @mode = mode, @keyboard = keyboard
 end
 end

 class Keyboard
 def initialize(type, numeric_keypad, max_fkey)
 @type = type, @numeric_keypad = numeric_keypad,

➥ @max_fkey = max_fkey
 end
 end

end

Listing 10.2 Getting our XML into Ruby with REXML

Figure 10.1 A graphical representation of the calculator XML document. Element
nodes are represented by rounded rectangles, attributes by squared rectangles, and
text nodes by bubbles.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

211XML in practice

string = File.read("calculator.xml")
calculator = Document.new(string)
root = calculator.root
memory = root.elements["memory"]
memory = memory.text.send("to_#{memory.attributes['type'][0.1]}")
startup = {:mode => root.elements["startup"].attributes["mode"],

➥ :precision => root.elements["startup"].attributes["precision"]}

keyboard = root.elements["keyboard"]
keyboard_type = keyboard.attributes["type"]
numeric_keypad = keyboard.elements["numeric-keypad"].attributes
max_fkey = keyboard.elements["max-fkey"].text

keyboard = Calculator::Keyboard.new(keyboard_type,

➥ numeric_keypad, max_fkey)

config = Calculator::Config.new(memory, startup, keyboard)

In listing 10.2, we started by producing a hypothetical API for our calculator configu-
ration object. Because, in this example, we are producing both the application and
the XML configuration we’ll read in, we are free to create an API for our application
that closely mirrors the XML format. In this case, we used the simple XML reading
methods of REXML to extract the information we needed from the configuration file
and populate our configuration object. In a real-world scenario, this configuration
object would presumably be passed into the application when it was instantiated.

 For simplicity, we have left out any error handling, but you would probably want to
handle errors caused by incorrectly formatted XML more gracefully than simply
throwing an error and exiting the application, as this example would.
Discussion
Because this example is so simple, there are only a few things that need discussion.
First off, the example uses a common Ruby trick to produce the correct value for the
starting memory value. The XML format can only return strings, but we wanted to be
able to specify that the value in memory was some other type. In our case, we wanted
to allow integers or floats to be loaded in. Because Ruby allows conversion from string
to numeric formats via to_f for floats and to_i for integers, we were able to provide a
single character in the type attribute of memory, and then easily call the appropriate
conversion function by using the send method.

 REXML allows you to use XPath selectors and returns the appropriate node type
based upon the selector. For instance, when getting the precision, we used the object’s
methods: root.elements["startup"].attributes["precision"]. We could have
instead used an XPath attribute selector: root.elements["startup/@precision"].
Because the @ sign indicates that it’s an attribute selector, the expression will return
an attribute’s value. In other cases, if we were to select elements, we could get ele-
ments back.

 Another neat trick is that the attributes method on an element returns a Hash.
As a result, if you structure your API to accept a Hash, you can simply pass in the result
of the attributes method, as we did for numeric_keypad. This allows us to support
an arbitrary (and even changing) set of options for the numeric keypad without hav-

ing to change the way we parse the configuration file.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

212 CHAPTER 10 Structured documents

10.1.2 Writing configuration data to disk

Now that we’ve put together some code for reading in configuration data from an
XML file, what happens if you want to save changes to the XML? Unless you expect
your user to modify the document by hand, you need a way to output any changes
back to the configuration file.
Problem
Now that you’ve read in the configuration file, you need to write an edited configura-
tion file to disk.
Solution
For the purposes of this example, let’s assume that we need to produce a function that
will take a configuration object, as we defined it previously, and serialize it back into
outputtable XML. Because we’re doing more than just pulling in some data from a
file, we’ll get a bit more object oriented this time, and take the opportunity to write
tests proving that our function works.

 In addition to creating a mechanism for outputting our configuration object to
XML, we’ll pull our input conversion into Calculator::Config. We’ll create to_xml
and from_xml methods on the Config class. And to make things even more encapsu-
lated, we’ll create to_xml and from_xml methods on the Keyboard class, which will
allow us to specify how we want keyboard specification objects to be saved and
restored within the larger specification XML. See listing 10.3 for our implementation.

require 'rexml/document'
include REXML

module Calculator
 class Config
 attr_accessor :memory, :startup, :keyboard
 def initialize(memory, startup, keyboard)
 @memory, @startup, @keyboard = memory, startup, keyboard
 end

 def self.from_xml(xml_file)
 string = File.read(xml_file)
 calculator = Document.new(string)
 root = calculator.root
 memory_el = root.elements["memory"]
 memory =

➥ memory_el.text.send("to_#{memory_el.attributes['type'].slice(0,1)}")

 startup = {"mode" => root.elements["startup"].attributes["mode"],
 ➥ "precision" => root.elements["startup"].attributes["precision"].to_i}

 keyboard = Calculator::Keyboard.from_xml(root.elements["keyboard"])

 return new(memory, startup, keyboard)
 end

 def to_xml

Listing 10.3 Reading and writing the configuration

Loads Config
instance from XML

Serializes Config

 doc = Document.new instance to XML

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

213XML in practice

 doc << XMLDecl.new(1.0, "ISO-8859-15")
 root = doc.add_element("calculator")
 root.add_element("startup", @startup)
 root.add_element("memory", "type" =>
 ➥ @memory.class.to_s.slice(0,1).downcase).add_text(@memory.to_s)
 root.add_element(keyboard.to_xml)
 doc
 end
 end

 class Keyboard
 attr_accessor :type, :numeric_keypad, :max_fkey
 def initialize(type, numeric_keypad, max_fkey)
 @type, @numeric_keypad, @max_fkey = type, numeric_keypad, max_fkey
 end

 def self.from_xml(keyboard)
 keyboard_type = keyboard.attributes["type"]
 numeric_keypad = keyboard.elements["numeric-keypad"].attributes
 max_fkey = keyboard.elements["max-fkey"].text
 new(keyboard_type, numeric_keypad, max_fkey)
 end

 def to_xml
 el = Element.new("keyboard")
 el.add_attribute("type", @type)
 el.add_element("numeric-keypad", @numeric_keypad)
 el.add_element("max-fkey").add_text(@max_fkey)
 el
 end
 end

end

All of the code inside the new from_xml method should look very familiar, as it’s basi-
cally cribbed out of our example in section 10.1.1. However, we moved the logic deal-
ing with the Keyboard into a from_xml method on the Keyboard object, which allows
us to pass in the root <keyboard> XML node, and have it return a Keyboard object,
which we can use to instantiate our specification object.

 Note that Keyboard.from_xml is a class method on the Keyboard class, just as Con-
fig.from_xml is a class method on the Config class. There’s a slight incongruity
between the two in that Config takes a filename, while Keyboard takes a DOM node.
This is because of the way we expect to instantiate the objects: Configs will pull in an
external file, while Keyboards will receive part of an existing DOM structure.

 The to_xml function we wrote in the Config class is even simpler to understand
than the original parsing function. First, we create a new XML Document. We then add
an XML declaration (which should appear at the top of the XML files, if we’re follow-
ing good form), and then the root element (<calculator>). The add_element func-
tion has a nice property that makes the next step very simple. It takes an element
name as its first parameter, and an optional Hash object for any attributes you wish to
instantiate. Well, holy attributes, Batman! We already store the startup attribute of

Deserializes Keyboard
instance from XML

Dumps Keyboard
instance to XML
Config as a Hash, so we can simply pass it in. Elegant, huh?

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

214 CHAPTER 10 Structured documents

 We’re not quite as lucky with memory, because we have to reverse the procedure we
used in from_xml to store the number and its type. For type, we slice off the first char-
acter of the memory object’s class, lowercase of course (s for String, i for Integer,
and f for Float). For the value, which we store as text inside the <memory> node, we
use to_s to stringify the value. The real trick, however, comes next, with our encapsu-
lated Keyboard object.

 As you recall from section 10.1.1, we decided to keep the Keyboard information in
its own object, which would encapsulate information about a Keyboard. At the time,
there was very little utility in this decision, but when we made our code more object
oriented, we got to make further use of this encapsulation. Since our Config object
has a Keyboard object in its keyboard attribute, we can simply call keyboard.to_xml to
get the appropriate XML for the keyboard.

 The Keyboard#to_xml function is also pretty simple. We start by creating a new
wrapper element (<keyboard>), and adding the type attribute based upon the
object’s @type instance variable. You might have thought you could use the shortcuts
we use with add_element to add the attributes when you create the elements, but
unfortunately Element.new does not support that shortcut. We then use the shortcut
syntaxes we used earlier to finish up the element, and we return it.
Discussion
The takeaway from all this XML creation is that writing somewhat elegant REXML code
requires a good knowledge of the chaining and shortcut possibilities. Because
add_element returns the element in question, for instance, we can immediately throw
an add_text on top of it. We can also use existing hashes that we have created for our
application for the attributes of any node—a trick we made extensive use of.

 So far, we’ve been parsing and working with plain vanilla XML, but in the next sec-
tion we’re going to look at how to work with a domain-specific variety of XML: HTML.

10.2 Parsing HTML and XHTML with Hpricot
With the explosion of the web more than a decade ago, a tremendous amount of infor-
mation has become available on the internet in HTML form. Unfortunately, that infor-
mation is rarely, if ever, presented in fully valid, parsable form. Since we can’t control
the creation of the data we’ll be reading in, it is important for us to have fast, dead-simple
tools for taking broken markup and converting it into machine-readable content.

 Fortunately, Hpricot, an XML parser written by Ruby luminary “why the lucky stiff”
(http://github.com/why/hpricot/tree/master), provides us with just that. Its most
performance-related features are written in C, so it’s very fast, and it uses CSS3 selec-
tors (plus a number of custom CSS extensions), so finding precisely the nodes you
want, which is very important in massive, markup-heavy HTML pages, is much simpler
than in REXML. Finally, it was born out of the philosophy of the popular jQuery
JavaScript library, so you’ll find that certain common tasks, like adding a class to a
series of elements in a document, become extremely simple.

 In this section, we will explore processing HTML documents that we create, as well

as reading files in from the wild.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://github.com/why/hpricot/tree/master

215Parsing HTML and XHTML with Hpricot

10.2.1 Post-processing HTML output

Suppose you use a Ruby web framework like Ruby on Rails, Merb, or Nitro, and you
have a number of pages that produce tables. You want all of the tables to have zebra-
striping (even numbered rows should be colored light blue) when your pages are ren-
dered by the browser. You’ve already explored a few options, but none of them have
met your needs.

 You’ve tried using client-side JavaScript code, but some of your tables are quite
large, and those pages can take minutes to load with this solution. You’ve considered
manually ensuring that your tables are properly striped, but you have so many differ-
ent mechanisms for creating tables that trying to manually ensure that the striping
occurs has quickly become tedious. That said, it is not difficult for you to ensure that
all tables that need to be striped have a specific class, such as zebra.
Problem
You need to process and transform HTML output from your web application.
Solution
We’ll use Hpricot to post-process the rendered page and set an appropriate style on
every other row. Then, we’ll use a CSS stylesheet to pull in the style. We’ll use Ruby on
Rails for this example, but the general solution is framework-agnostic. As long as you
have access to the rendered response, you can use the technique outlined here to post-
process your HTML. See listing 10.4 for our implementation; the CSS is in listing 10.5.

class ApplicationController < ActionController::Base

 after_filter :zebra

 def zebra
 doc = Hpricot(response.body)
 doc.search("table.zebra tbody

➥ tr:nth-child(even)").add_class("even")
 response.body = doc.to_s
 end

end

.zebra .even {
 background-color: #ddf;
}

First off, note that we kept the example very simple, just to demonstrate the technique
at hand. Later in this chapter, we will explore more features of Hpricot, which you will
be able to use together with this technique to do more advanced postprocessing of
HTML data.

 With that said, let’s look at the example. You can ignore the Rails-specific seman-
tics. All that we’re doing is saying that the postprocessing should occur for all pages in

Listing 10.4 A simple postprocessing filter

Listing 10.5 The associated CSS
the application (by including it in ApplicationController), and specifying that we

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

216 CHAPTER 10 Structured documents

will do the postprocessing via an after_filter. The real action happens in the zebra
method, and you’re probably surprised at how short the code is.

 The first line simply grabs the existing response body and parses it via Hpricot.
Next, we find the rows we want to change. This might look a bit odd, but it’s just
a simple CSS3 selector. We find all tables with the class zebra, which is how we’re
going to specify that we want a table zebra-striped. Then, we’ll jump down to the
<tbody>, because we probably don’t want to be striping our rows in the table head (if
we have any).

 Once we have the tbody, we get all the even-numbered rows, relative to their par-
ent. We need to use :nth-child (rather than the :even selector supported by Hpri-
cot) in case we have multiple tables on the page. If we simply used :even, if the first
table ended on an odd row, the next table would have the striping skewed by one.
Using :nth-child scopes the evenness to the table in question.

 Once we’ve gotten the rows we need, we can use the add_class convenience
method provided by Hpricot to add the even class to every matched row.

 As we’ll see later, Hpricot returns the Elements set that was matched by the origi-
nal selector from add_class, so you can chain further modifications onto the end of
it. Finally, we reset response.body to our modified document, and we’re off to the
races. Simple, huh?
Discussion
While we noted one important difference in behavior between the :even selector and
even, there is another. The :even selector and even also index the rows in the tables
differently. When you use the :even selector, the table is indexed as 0-based, which
causes it to get the first, third, fifth rows, and so on. This differs from even, which
indexes the table’s rows starting with 1, fetching the second, fourth, sixth rows, and
so on.

 In the next section, we’ll look at solving a nearly inevitable problem for developers
working with HTML: fixing a broken HTML document.

10.2.2 Reading broken HTML

Broken HTML is a regular problem for developers who work with HTML for any
period of time. Whether the cause is bad editors or web designers who fail to follow
conventional web standards, there’s a big, busted world of HTML to deal with. Fortu-
nately, parsers have reached a point of reasonable intelligence and can fairly easily
render broken HTML into something usable.

 Let’s say we have an application that reads in data from a series of blogs and aggre-
gates the data for our readers. In most cases, the blogs provide a nice RSS feed, and we
can happily use the feeds to get the data. Unfortunately, a few of them don’t provide
any kind of feed, and the HTML is extremely sloppy. On the bright side, they haven’t
updated their layout in at least a decade or two, and you can be pretty sure that the
template they’re using isn’t going to change any time soon. An example of a typical
post can be seen in listing 10.6.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

217Parsing HTML and XHTML with Hpricot

<h3>Open Thread </h3>

<p class="byline"><i>by</i>
Mr. Foo, Fri Aug 17, 2007
at 11:15:45 PM EST</p>

<div class="story_summary">
<p>Some Text Here</p>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p>

<p>
</div>

<p class="byline story_trail">

Permalink
 :: 5 Comments

Tags:
 foo tag

 (all tags)

</p>

The post in listing 10.6 uses a typical blog engine and includes information about the
person who wrote the article and when it was created, a permalink to the entry, and
some tags, among other things. We want to get the information from the blog entry
into an object we can use elsewhere in our application.
Problem
You need to parse and manipulate chunks of broken HTML.
Solution
Although it would be very common to store the information from the post in an
ActiveRecord object, which is exposed by the Ruby on Rails framework and used on
its own by other applications, we will use a run-of-the-mill class for this example. The
code to accompany this chapter (available at the Manning website) includes an exam-
ple of using ActiveRecord to scrape and store information that is very similar to the
solution we’ll use here.

 First, you’ll notice that there’s a little bit of broken HTML in listing 10.6. While it’s
mostly acceptable, it’s a far cry from perfectly valid XHTML (there’s an open <p> tag
on its own before the close of the <div> tag, and the
 tags aren’t self-closing).

Listing 10.6 A sample blog entry
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

218 CHAPTER 10 Structured documents

Hpricot will attempt to fix these problems when it parses the HTML, so the output
you’ll eventually get will be, at the least, parsable. Listing 10.7 shows how to use Hpri-
cot to implement this.

require 'rubygems'
require 'hpricot'
require 'time'

module RubyInPractice
 class Post

 attr_accessor :title, :body, :by, :posted_on, :permalink, :tags
 def initialize(title, body, by, posted_on, permalink, tags)
 @title, @body, @by, @posted_on, @permalink, @tags = title, body,

➥ by, posted_on, permalink, tags
 end

 def self.from_blog_html(html, base_url)
 doc = Hpricot(html)
 title = (doc/"h3").inner_text
 body = (doc/"div.story_summary").inner_html.gsub(/\n/, "").
 gsub(/<\/p><p>/, "
").gsub(/<\/?p>/, "")
 by = (doc/"p.byline:first a").inner_text
 posted_on = Time.parse(doc/"p.byline:first
 ➥ :last").inner_text.gsub(/^\,\s*/, ""))
 permalink = base_url +
 ➥ (doc/search("a:contains(Permalink)").attr("href")
 tags = (doc/"p.story_trail a:gt(1)")[0..-2].map {|x|
 ➥ x.inner_html}.join(", ")
 new(title, body, by, posted_on, permalink, tags)
 end

 end
end

The example in listing 10.7 is fairly rudimentary, but it allows us to take a look at a
number of techniques you can use with Hpricot to get very specific pieces of informa-
tion quickly and easily. But first, let’s peruse the structure we’re using here.

 As in listing 10.3, where we read and wrote the configuration data, we have sepa-
rated out the initialization of the class from the function that will pull the information
from an external source.

 This is an important technique, because it will allow us to extend this class later with
additional parsers that can scan different types of blog entries. You might have Post.
from_wordpress_entry, Post.from_typo_entry, and Post.from_mephisto_entry

methods (and while all of those methods have RSS feeds, let’s pretend we needed to do
some screen-scraping for the sake of argument). Because we’ve left the initialization
method so generic, we can easily plug into it after doing whatever complex parsing
we need to do. That said, let’s take a look at the actual code we use to get the various
pieces of information out of the HTML fragment in listing 10.6 that we pulled from the

Listing 10.7 Getting the HTML into a Post object

B

C

D

web page.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

219Parsing HTML and XHTML with Hpricot

 The first thing we do, as in listing 10.4, is create an Hpricot object from the
HTML B. To get the title, we simply grabbed the inner_text from the document’s
<h3> element. Marvel at the simplicity of the API before we move on C. The body of
the article was in a <div> with the class of story_summary. All we need to do to get
the contents of that element is to use elementary CSS knowledge: div.story_
summary represents a <div> with the class story_summary, so that’s all we need here.
We do some fancy gsubbing to normalize line spacing, and we’re done.

 Getting the byline is a bit trickier. Examining the HTML, we see that it’s inside a
link that’s inside a <p> element with the class byline. Unfortunately, there are two <p>
elements with that class on the page, but that poses no difficulty for the dexterity of
Hpricot. Using the custom :first extension to the typical CSS3 syntax, we can grab
just the first matched element. Putting it together, p.byline:first a matches the link
we need, and, as before, inner_text will grab the text inside it.

 We then move on to find the date and time the post was created, and we encounter
another difficulty. The time is formatted well enough for our needs, but it’s not sur-
rounded by any tags. That, too, poses no problem for Hpricot. Examining the HTML,
we see that the time is in the first <p> element with the byline class, and that it’s the
very last thing in the <p>. Because all of the text is grouped together, Hpricot consid-
ers it a single text node, so the selector p.byline:first :last matches it. The :last
selector is another one of Hpricot’s custom extensions, and the space in between the
two parts of the selector indicate that Hpricot should find the last child of the first
p.byline. Using Time.parse, which is included from the standard library when we
did require 'time' wraps it all up.

 Getting the permalink proves easy compared to the last two problems. Hpricot
supports the CSS3 selector :contains, which returns all elements whose text contents
match the text passed in to :contains. In this case, the link we want has the text “Per-
malink” helpfully embedded, so we get the element and use the handy attr method
to get its href attribute. We then append the href to the base_url passed in, because
we can see that the permalink provided in the HTML is a relative URL.

 Then we get the tags attached to the article. Looking at the HTML, we can see that
the tags are all enclosed inside links in a <p> element with the class story_trail.
Looking closer, we see that we don’t want to include the first, second, or last links.
Using Hpricot’s :gt selector, we can filter out the first two elements. Once we have
those, we can use Ruby’s Array#[] operator (since an Hpricot element collection is
simply an extension of the base Array class) to remove the last link. We then create
an array containing the inner_text of the links, and join them with a comma, pro-
ducing a nice comma-separated list of tags.

 Finally, we feed all this harvested data into a new object D.
Discussion
All in all, using Hpricot to scrape information from typical HTML sites is a piece of
cake once you learn the supported selectors. But it’s key that you do. Most of the
power of Hpricot comes from being able to drill down into the dark corners of the

document you’re parsing without resorting to manually iterating through them. Since

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

220 CHAPTER 10 Structured documents

Hpricot supports all of the same selectors as jQuery, you can get documentation on
supported selectors by visiting docs.jquery.com/Selectors.

 Now that we’ve learned a bit about Hpricot, let’s take a brief detour to look at how
we could rewrite our configuration example from section 10.1.2 using Hpricot.

10.3 Writing configuration data: revisited
A rare but valid use case for Hpricot is generating XML. It’s not that Hpricot is bad at
generating markup; it’s just that that’s not what it’s built for. Fortunately, because we
have tests for the class we wrote (included in the downloads for this book), we can sim-
ply reimplement our serialization methods and make sure they work.
Problem
You want to use Hpricot to generate the XML configuration file rather than adding
another library to the requirements list.
Solution
We’re going to show only the modified #to_xml methods from Config and Keyboard,
which reflect the usage of Hpricot instead of REXML (which was shown in listing 10.2).
Using the code in listings 10.8 and 10.9, all tests written for section 10.1.2 still pass.

def to_xml
 doc = Hpricot.XML("<?xml version='1.0' encoding='ISO-8859-

➥ 15'?><calculator/>")
 (doc/"calculator").append("<startup/>").

➥ search("startup").attr(@startup)
 (doc/"calculator").append("<memory>#{@memory.to_s}</memory>").
 search("memory").attr("type" => @memory.class.to_s.slice(0,1).downcase)
 (doc/"calculator").append(keyboard.to_xml)
 doc.to_s
end

def to_xml
 el = Hpricot.XML("<keyboard/>")
 (el/"keyboard").attr("type" => @type).
 append("<numeric-keypad/>").
 append("<max-fkey>#{@max_fkey}</max-fkey>").
 search("numeric-keypad").attr(@numeric_keypad)
 el.to_s
end

Using Hpricot for XML creation involves a lot of literal node creation. You create frag-
ments of XML and stick them where they belong, and Hpricot takes care of creating
XML nodes out of them. In listings 10.8 and 10.9, we also used a fair amount of chain-
ing, taking advantage of the fact that Hpricot tends to return the original Elements
array from operations performed on it.

 Quickly looking through Config#to_xml (listing 10.8), you can see that we

Listing 10.8 Redone Config#to_xml

Listing 10.9 Redone Keyboard#to_xml
replaced our individual calls that created the XML document, its root node, and the

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

221Reading RSS feeds

XML declaration with a single call to Hpricot.XML. We use Hpricot.XML rather than
the typical Hpricot call when we want the parser to use strict XML semantics instead
of HTML semantics. We then find the <calculator> node and append the empty
<startup> node. Because the append method returns the original Elements array, we
can then search for the new <startup> node and set its attributes in the same way we
did in the REXML solution (listing 10.2). We use the same techniques until the end of
the method, when we append the XML returned by Keyboard#to_xml.

 Because Hpricot uses string-based manipulation, we put together the XML for the
Keyboard in much the same way that we created the Config’s XML in listing 10.7, but
we return a String so that it can be appended to the <calculator> node in the
Config object. Rerunning the tests gives us solid green, so we’re good to go.
Discussion
The main thing to remember about using Hpricot to produce XML is that you’ll be most-
ly producing XML fragments and using methods like append, inner_html=, and attr
to set up your document. Once you get comfortable with this, it’s extremely powerful.

 Now that we’ve taken a look at HTML and generic XML, let’s take a look at another
form of rich markup: RSS.

10.4 Reading RSS feeds
Over the last few years, RSS has become a common way for content authors to keep
readers updated about the material they are posting. Blog authors use RSS to keep
their readers updated with their freshest content, booksellers use RSS to let people
know about new books they are selling, and podcasters use a specialized form of RSS
to point listeners to their latest episodes.

 Because RSS content is so consistent, it’s very easy to write web applications that take
advantage of its aggregation capabilities. Feed readers galore have popped up, allowing
users to enter their favorite feeds and giving them different ways to view the contents.
We’re going to take a look at how Ruby allows us to read through an RSS document, and
we’ll build a rudimentary feed reader to get information about our favorite feeds.

NOTE While we will not provide details in this book on how to integrate this
solution with a web application framework such as Ruby on Rails, code
samples along those lines are available in the downloadable materials for
this book.

Problem
You want to build a simple feed reader that will allow your users to get the titles, URLs,
brief descriptions, and publication dates for the articles in a feed. You want to be able
to display the data on the command line by accepting command-line arguments, or
on the web, as formatted HTML.
Solution
In this solution, we’ll be using familiar tools, like Hpricot, and some not so familiar,
like open-uri, to parse RSS. Listings 10.10 and 10.11 show our implementation of a

simple RSS feed reader.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

222 CHAPTER 10 Structured documents

require 'rss'
require 'open-uri'
require 'rubygems'
require 'hpricot'

module RubyInPractice
 class RssParser

 attr_accessor :rss
 def initialize(file, options = {})
 f = open(file)
 s = f.read
 @rss = RSS::Parser.parse(s)
 @options = {:truncate => 500}.merge(options)
 end

 def titles
 @rss.items.map {|x| x.title}
 end

 def short_info
 @rss.items.map {|x| [x.title, Hpricot(x.description).
 ➥ inner_text[0..100] + "..."]}
 end

 def details
 @rss.items.map do |item|
 [item.title,
 item.pubDate,
 item.link,
 Hpricot(item.description).

 ➥ inner_text[0..@options[:truncate]] + "..."
]
 end
 end

 def to_html
 @rss.items.map do |item|
 %{
 <h3>#{item.title}</h3>
 <h4>#{item.pubDate}</h4>
 <div class="body">#{item.description}</div>
 }
 end
 end

 end
end

#!/usr/bin/env ruby
require 'optparse'
require 'rss_parser.rb'

Listing 10.10 A simple RSS parser

Listing 10.11 A small command-line script for running the RSS parser
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

223Reading RSS feeds

module RubyInPractice
 class RssRunner

 def self.parse_options
 @config = {}
 OptionParser.new do |opts|
 opts.banner = "Usage: rss_parser [options]"
 opts.separator ""
 opts.on "-f", "--file [FILE]",

➥ "the file or URL you wish to load in" do |file|
 @config[:file] = file
 end
 opts.on "-t", "--titles", "specify titles only" do |titles|
 @config[:titles] = true
 end
 opts.on "-s", "--short",

➥ "show a short version of the feed" do |short|
 @config[:short] = true
 end
 opts.on "-r", "--truncate [NUMBER]",

➥ "the number of characters to truncate the long
➥ version to (defaults to 500)" do |trunc|
 @config[:truncate] = trunc.to_i
 end
 end.parse!
 end

 def self.run
 parse_options
 file = @config.delete(:file)
 r = RubyInPractice::RssParser.new(file, @config)
 if !@config[:titles] && !@config[:short]
 r.details.each do |item|
 puts "\"#{item[0]}\" published at #{item[1]}"
 puts "Available at #{item[2]}"
 puts
 puts item[3]
 puts
 puts
 end
 elsif !@config[:titles]
 r.short_info.each do |item|
 puts "\"#{item[0]}\""
 puts item[1]
 puts
 end
 else
 puts r.titles.join("\n")
 end
 end

 end
end

RubyInPractice::RssRunner.run
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

224 CHAPTER 10 Structured documents

There are two parts to the solution provided here. First up, we created a small class to
read in an RSS feed and extract the useful information into some useful configura-
tions (listing 10.10). Second, we created a command-line script written in Ruby that
accepts a filename and spits out a human-readable version of the feed (listing 10.11),
using the class we created in the previous listing. Before we take a look at the com-
mand-line script, let’s take a look at the class that does the hard work.

 At the very top, we initialize our class with a filename. Because we have required
open-uri, we can provide either a local filename or an internet URL, which makes the
code more versatile than it appears at first glance. We use RSS::Parser.parse to read
the file into an RSS object, which will give us access to its contents. We also provide
default options, which we will allow to be set using command-line switches later on.

 We’ll then create the methods that will aggregate the information from the feeds
that we’ll need later. Pretty much all you need to know here is that the RSS object
exposes an items array, and that each Item has several pieces of information associ-
ated with it, including its title, a link to the URL, the publication date, and a descrip-
tion. The description will frequently have HTML data in it, so we’ll strip that out using
Hpricot if the data is being dumped to the terminal.

 We also create a to_html method, which can be used by web frameworks to take
the RSS feed and produce simple web-ready content. To see how it might be used, look
at the rss_controller.rb file included with the downloadable files for this chapter.
Note that we do not strip out the HTML content in the to_html method, because we
are assuming it provides useful formatting instructions. You could use the techniques
we covered in the previous sections to convert the description HTML into a more
usable format.

 In the command-line script (listing 10.11) we use simple techniques to make the
class we just created produce useful content. It’s not important that you fully under-
stand how it works, but the basic principles should be obvious. We’re using Ruby’s
built-in option parser to accept options to pass into our RSS parsing class. We accept a
file parameter, which will be passed directly into our class (and, as a result, will sup-
port either a local file or a URL). We also support a choice of long, short, or titles-only
display. Finally, we allow the user to specify how many characters to retain when we
truncate the long version’s descriptions.

 Because we are using optparse, we automatically support -h (or --help), which
will provide usage instructions based upon the information we specified. You can see
for yourself by running parse_it.rb, which is provided with the downloadable mate-
rials for this chapter. Try entering the URL to the feed for your favorite blog. If you
don’t have one, check out the official Rails blog’s feed at http://feeds.feed-
burner.com/RidingRails.

 Returning briefly to the command-line script, you can see two main sections:
#parse_options and #run. These names are not required, but they’re conventional.
At the end, you can see that we call RubyInPractice::RssRunner.run, which itself
calls parse_options. The option parser will take apart the arguments you passed in to
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://feeds.feedburner.com/RidingRails
http://feeds.feedburner.com/RidingRails

225Creating your own feed

the function and set up the @config instance variable, which we use in #run to deter-
mine the filename and to pass configuration options to the RSS parser.
Discussion
We used optparse to handle our argument parsing in this section, mostly because it’s
built into Ruby’s standard library, but there are a few libraries out there that handle
the same functionality in a prettier shell. For example, the Trollop library (http://
trollop.rubyforge.org/) offers a much nicer syntax at the cost of a bit of power. Here is
a Trollop version of our arguments code from listing 10.11:

require 'trollop'

opts = Trollop::options do
 banner "Usage: rss_parser [options]"

 opt :file, "the file or URL you wish to load in"
 opt :titles, "specify titles only"
 opt :short, "show a short version of the feed"
 opt :truncate,"the number of characters to truncate
 the long version to (defaults to 500)",
 :type => :int,
 :short => "r"
end

You’ll notice you can’t use a proc like we did in listing 10.11, so if you need to do
any processing other than setting a value, perhaps this isn’t the library for you.
Other libraries include Optiflag (http://optiflag.rubyforge.org/), a very nice library
with a rather powerful syntax, and Choice (http://choice.rubyforge.org/), a con-
cise DSL for handling argument parsing. Any of these will work well; the choice
largely hinges on the sort of syntax and the amount DSL-driven syntactic sugar you
like to work with.

 Now that we’ve taken a look at reading feeds, let’s turn our attention to generating
our own feeds.

10.5 Creating your own feed
Now that you’ve learned how to read feeds from other sites, you might be thinking
that you’d like to create your own feed. Unfortunately, there are a number of feed for-
mats, and creating a program that exports only to RSS1, for instance, will leave some
of your potential readers in the dark. Thankfully, a library called FeedTools will allow
you to create a generic feed and then export it in multiple formats.
Problem
You want to create a feed for your website, but you only want to have to create a single
feed and have it export feeds in the formats you want. Ideally, you would be able to
decide at a later point exactly which feed formats you want to support, so the Ruby
class should be flexible enough to support various formats.
Solution
We’ll create a wrapper around FeedTools that will allow us to easily create a new feed

and export it to whichever format we want. We’ll only wrap a few commonly used

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://trollop.rubyforge.org/
http://trollop.rubyforge.org/
http://optiflag.rubyforge.org/
http://choice.rubyforge.org/

226 CHAPTER 10 Structured documents

functions for demonstration purposes, but it’s trivial to extend this wrapper to provide
additional functionality.

 First, you’ll need to install the feedtools gem:

gem install feedtools

Once you have FeedTools installed, the code in listing 10.12 will implement a feed
generator.

require 'rubygems'
require 'feed_tools'

module RubyInPractice
 module Feeds

 class Feed
 attr_accessor :feed
 def initialize(options)
 @feed = FeedTools::Feed.new
 options.each do |option, value|
 @feed.send("#{option}=", value)
 end
 end

 def to_atom
 @feed.build_xml("atom", 1.0)
 end

 def to_rss(version=2.0)
 @feed.build_xml("rss", version)
 end

 def add_entry(options)
 @feed << Item.new(options).item
 end

 def add_entries(*args)
 args.each do |entry|
 add_entry(entry)
 end
 end

 def set_author(name, email, href=nil)
 a = FeedTools::Author.new
 a.name = name
 a.email = email
 a.href = href if href
 @feed.author = a
 end

 def add_links(hash)
 hash.each do |href, title|
 l = FeedTools::Link.new
 l.href = href
 l.title = title

Listing 10.12 Wrapping FeedTools

Builds Atom feed
based on object

Wraps FeedTools’s RSS
generation method
 @feed.links << l

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

227Creating your own feed

 end
 end

 def method_missing(meth, *args)
 if meth.to_s =~ /=$/
 @feed.send(meth, *args)
 end
 end
 end

 class Item
 attr_accessor :item
 def initialize(options)
 @item = FeedTools::FeedItem.new
 options.each do |option, value|
 @item.send("#{option}=", value)
 end
 end

 def method_missing(meth, *args)
 if meth.to_s =~ /=$/
 item.send(meth, *args)
 end
 end
 end

 end
end

While FeedTools is quite cool, in that it provides a single API for multiple feeds, it suf-
fers from extreme API complexity. Adding an author to a feed, for instance, requires
creating a new FeedTools::Author object (trying to call set_author on a feed with a
String will populate only the name field of the object). To simplify things a bit, we
have created a new class called RubyInPractice::Feeds::Feed, which accepts a series
of fields and instantiates the feed quickly and easily.

 Because most of the fields on the FeedTools::Feed object are set by calling meth-
ods like link=, id=, and copyright=, we’ve instantiated our wrapper object with a
Hash with corresponding values. For instance, to create a new Feed object with the
feed’s ID set to “http://www.manning.com”, you would use this one-liner:

RubyInPractice::Feeds::Feed.new(:id => "http://www.manning.com")

Adding entries is a similarly complex process with FeedTools, so we have created a
similar API for adding new entries. Once you have your wrapper object (let’s call it
feed), you would call add_entry:

feed.add_entry(:id => "http://www.manning.com/foo",
 :title => "NEW!",
 :abstract => "Brand new feed entry",
 :description => "This is the first feed entry for our feed",
 :content => "Some longer content would go here")

If you were creating an iTunes feed, there would be additional properties, like enclo-
sure, itunes_summary, itunes_image_link—more than can be set using this method.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://www.manning.com

228 CHAPTER 10 Structured documents

Keep in mind that Atom feeds require unique IDs; those IDs must be URLs, or you will
not be able to generate an Atom feed.

 Because setting up an author correctly using FeedTools can also be complex, we
have added a set_author method that takes a name, email, and optional href, creates
the required FeedTools::Author object, and associates the object with the wrapped
feed. We do a very similar thing with the add_links method, which allows the creation
of a FeedTools::Link object by simply passing in a hash of href => title pairs. You
would do something like this:

feed.add_links("http://www.manning.com" => "Manning Publications")

To facilitate the creation of RSS and Atom feeds, we have also created two generation
methods: to_rss and to_atom. Both methods simply delegate to the build_xml
method of the underlying FeedTools::Feed object.
Discussion
Listing 10.13 shows an example of the feeds that will be generated using our wrapper
script.

f = RubyInPractice::Feeds::Feed.new(:id =>
 ➥ "http://rubyinpractice.manning.com", :title => "Ruby in Practice Feed",
 ➥ :description => "A sample feed for the Ruby in Practice chapter on Data
 ➥ parsing")
f.set_author "Yehuda Katz", "wycats@gmail.com"
f.add_entry(:title => "NEW!", :abstract => "This is a new feed",

➥ :summary => "This is a new feed for testing", :id =>
➥ "http://rubyinpractice.manning.com/new", :content => "There might
➥ normally be some long content here")

The API using our wrapped set is fairly simple, as you can see. Now, let’s see what hap-
pens when we go to generate the feeds using our to_atom and to_rss methods. List-
ings 10.14 and 10.15 show markup generated by our code.

<?xml version="1.0" encoding="utf-8"?>
<rss xmlns:taxo="http://purl.org/rss/1.0/modules/taxonomy/" xmlns:rdf="http://

www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:itunes="http://
www.itunes.com/dtds/podcast-1.0.dtd" version="2.0" xmlns:media="http://
search.yahoo.com/mrss" xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:content="http://purl.org/rss/1.0/modules/content/"
xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/">

 <channel>
 <title>Ruby in Practice Feed</title>
 <link>http://rubyinpractice.manning.com/</link>
 <description>A sample feed for the Ruby in Practice chapter on

➥ Data parsing</description>
 <managingEditor>wycats@gmail.com</managingEditor>
 <ttl>60</ttl>

Listing 10.13 Creating a new feed

Listing 10.14 Generating RSS 2.0
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

229Creating your own feed

 <generator>http://www.sporkmonger.com/projects/feedtools/</generator>
 <item>
 <title>NEW!</title>
 <link>http://rubyinpractice.manning.com/new</link>
 <description>This is a new feed for testing</description>
 <content:encoded>
 <![CDATA[There might normally be some long content here]]>
 </content:encoded>
 <pubDate>Tue, 28 Aug 2007 13:37:55 -0000</pubDate>
 <guid isPermaLink="true">http://rubyinpractice.manning.com/new</guid>
 </item>
 </channel>
</rss>

<?xml version="1.0" encoding="utf-8"?>
<feed xml:lang="en-US" xmlns="http://www.w3.org/2005/Atom">
 <title type="html">Ruby in Practice Feed</title>
 <author>
 <name>Yehuda Katz</name>
 <email>wycats@gmail.com</email>
 </author>
 <link href="http://rubyinpractice.manning.com/" rel="alternate"/>
 <subtitle type="html">A sample feed for the Ruby in Practice chapter
 ➥ on Data parsing</subtitle>
 <updated>2007-08-28T13:38:09Z</updated>
 <generator>FeedTools/0.2.26 -

➥ http://www.sporkmonger.com/projects/feedtools/</generator>
 <id>http://rubyinpractice.manning.com</id>
 <entry xmlns="http://www.w3.org/2005/Atom">
 <title type="html">NEW!</title>
 <author>
 <name>n/a</name>
 </author>
 <link href="http://rubyinpractice.manning.com/new" rel="alternate"/>
 <content type="html">There might normally be some long content
 ➥ here</content>
 <summary type="html">This is a new feed for testing</summary>
 <updated>2007-08-28T13:37:55Z</updated>
 <id>http://rubyinpractice.manning.com/new</id>
 </entry>
</feed>

As you can see, we get back two very different feeds with all of the required feed-
specific data, even though we were able to create them very simply. As we said previ-
ously, the wrapper API is far from complete, but the code should provide you with
enough to get started adding more functionality for working with RSS. Unfortunately,
the RDoc for FeedTools is not easily available online; however, it is installed with the
gem. The easiest way to take a look at it would be to run gem_server and navigate to
http://localhost:8808/doc_root/feedtools-0.2.29/rdoc/index.html.

 Now let’s take a look at YAML, another markup format that isn’t based on XML at all.

Listing 10.15 Generating ATOM 1.0
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

230 CHAPTER 10 Structured documents

10.6 Using YAML for data storage
We first looked at YAML in chapter 9. It is a lightweight alternative to XML, which, even
in its more structured and parsable forms, requires quite a bit of code to get simple
things done. At first glance, YAML can store and reload simple objects like hashes,
arrays, integers, and strings, which will allow you to develop a serialization and load
strategy for your configuration objects. For instance, Ruby on Rails uses YAML files to
store information about the database it uses in different operating modes.

 YAML is even more powerful, however, in that it is able to do quick-and-dirty serial-
ization of your custom objects, as long as they’re relatively simple. In this section, we’ll
take one final foray into the land of calculator configuration to see how we can use
YAML to make the entire process of serializing a configuration object and reloading it
later absolutely trivial.
Problem
You want to take an existing Calculator::Config object and store it to disk. When
your application starts, you want to load in the file from disk and create a new Calcu-
lator::Config object for use.
Solution
In section 10.1, we looked at how to use XML as a configuration store. Now, we’ll use
Ruby’s built-in YAML functionality to replace our previous XML plumbing. Listings 10.16
and 10.17 show our implementation.

require 'yaml'

module Calculator
 class Config
 attr_accessor :memory, :startup, :keyboard
 def initialize(memory, startup, keyboard)
 @memory, @startup, @keyboard = memory, startup, keyboard
 end

 def save_to(file)
 f = File.open(file, "w")
 f.puts(self.to_yaml)
 end

 def self.get_from(file)
 YAML.load(File.read(file))
 end
 end

 class Keyboard
 attr_accessor :type, :numeric_keypad, :max_fkey
 def initialize(type, numeric_keypad, max_fkey)
 @type, @numeric_keypad, @max_fkey = type, numeric_keypad, max_fkey
 end
 end

end

Listing 10.16 Using YAML to solve the calculator config problem

B

C

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

231Summary

In listing 10.16, you can see that we kept the same API to the outside world but
replaced the guts of our configuration parser with YAML. The API here is beautifully
simple. To save our configuration to a file, we use the to_yaml method and write that
data to the file B. Most of Ruby’s core objects implement to_yaml in one form or
another, so it should work for most values. We also load in the file and get a usable
Ruby object in one fell swoop using the load method C. This process is simple and
straightforward (much like the YAML format itself!). Our class should now behave the
same as before, except that our configuration file will have to be in the YAML format.

 Now that the guts are in place, we need to test and make sure it works. Listing 10.17
shows a short script that does that.

k = Calculator::Keyboard.new("Macintosh", {"enter" => "=",

➥ "clear" => "C"}, "F16")
c = Calculator::Config.new(16.24, {"mode" => "standard",

➥ "precision" => 2}, k)

c.save_to("config.yml")
Calculator::Config.get_from("config.yml")

Using Ruby’s built-in YAML serialization, we are able to take a complex problem that we
previously solved using XML serialization in section 10.1, and convert it to a one-liner.
Discussion
YAML serialization isn’t the solution for every problem, because it can only serialize
data structures, not objects that contain baked-in code (like procs and metaclass
methods). However, for most configuration requirements, simple data structures are
more than adequate. If you’re getting much more clever than this, you’re probably
doing something wrong. Creating a separate Keyboard class to hold keyboard infor-
mation was pushing it for us, but it was useful for the examples at hand.

 For more complex examples, you can configure the YAML serialization. By defin-
ing the to_yaml_properties method to return an array of the properties you wish to
serialize, you can cause YAML#dump to ignore properties that are not appropriate for
serialization. You can also define yaml_dump and yaml_load methods on the object
you are serializing to use a custom serialization strategy. You can get more information
about customizing the default load and dump in the Pickaxe book (Programming Ruby:
The Pragmatic Programmers’ Guide, by Dave Thomas, with Chad Fowler and Andy Hunt).

10.7 Summary
Ruby’s toolset for working with structured documents is excellent. Ruby can handle
any major interchange format: XML, HTML, or YAML.

 XML has bindings for almost any language, and Ruby’s built-in REXML library is
excellent for parsing XML. The Hpricot gem is even better, since it can handle the
rich context of formats like HTML and can generate markup. Paired with the Feed-
Tools gem, Hpricot can even handle RSS.

Listing 10.17 Using the YAML solution in an equivalent manner to our XML solution
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

232 CHAPTER 10 Structured documents

 If YAML is your preference, Ruby’s built-in YAML library is one of the best available.
As such, YAML is used extensively in a lot of Ruby applications; it’s preferred to XML not
only for its superior bindings but also for its low visual noise and human readability.

 In the next chapter, we’re going to take a look at using authentication and authori-
zation in Ruby and Rails applications.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Identity and
 authentication
Trust is the foundation of successful networked systems. If you are providing a per-
sonalized service over a network, you need to be able to trust that your users are
who they say they are, and your users must trust you with their identity and their
personal data. This chapter looks primarily at how you can trust your users—by
implementing a robust authentication mechanism. How well you execute that
authentication will influence how much trust your users will place in your applica-
tion. Your approach to security has a big impact, whether you are ensuring that

This chapter covers:
■ Storing passwords securely
■ Authenticating users against LDAP and Active Directory
■ Authenticating Rails applications using

restful_authentication
■ Authenticating semiprivate personal feeds
■ Authenticating using HTTP Basic authentication
■ Authenticating Rails applications using OpenID
233

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

234 CHAPTER 11 Identity and authentication

users’ passwords are safe, or you are offering an authentication option that involves a
trusted third party.

 In this chapter, we take a look at how to use Ruby and Rails to implement your
own secure authentication schemes as well as integrate with established authentica-
tion mechanisms like Lightweight Directory Access Protocol (LDAP), Active Direc-
tory, and OpenID.

11.1 Securely storing a password
With few exceptions, your users’ passwords should never be persisted in a way that
would allow anyone access to them. For example, if a hacker were to get hold of your
site’s database, he shouldn’t find a column filled with passwords as plain text. Hope-
fully, this is obvious, but enough sites on the web violate this rule that it is worth mak-
ing sure your applications don’t make this mistake.
Problem
You need to store a password for later authentication, and do it securely.
Solution
Securely hash the password using a salt, and store the resulting string. When it is time
to authenticate a user, run the submitted password through the same one-way process
and compare the result to what you stored.

Listing 11.1 shows an example of an ActiveRecord class implementing this approach.

require 'digest/sha1'

table "users"
login, string
secured_password, string(40)

SECRET_SALT = "abracadabra"

class User < ActiveRecord::Base
attr_accessor :password
 before_save :secure_password

 def self.authenticate?(login, pass)
 user = find_by_login_and_secured_password(login, encrypt(pass))
 return !user.nil?
end

Listing 11.1 An ActiveRecord class implementing password hashing

Hashes with salt
A salt is the common term for a secondary input to a cryptographic function. It is typ-
ically used with a hash function, in order to make dictionary attacks on encrypted data
difficult. A good summary of how this works can be found in Philippe Oechslin’s arti-
cle, “Password Cracking: Rainbow Tables Explained” (http://www.isc2.org/cgi-bin/
content.cgi?page=738).

Defines
attribute
accessor for
clear text
password

B

Secures
password before
saving record

C

Authenticates by matching username
and encrypted password
protected D

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://www.isc2.org/cgi-bin/content.cgi?page=738
http://www.isc2.org/cgi-bin/content.cgi?page=738

235Securely storing a password

 def secure_password
 if password
 self.secured_password = self.class.encrypt(password)
 end
 end

 def self.encrypt(password)
 Digest::SHA1.hexdigest("--#{SECRET_SALT}--#{password}--")
 end

end

In this example, the database table has a column named secured_password. This code
supports setting the user’s password, as well as authenticating a user. The password is
assigned as clear text to the password attribute defined using attr_accessor B. The
before_save callback encrypts the value of that attribute and stores it as the
secured_password C, which gets persisted to the database. When it is time to authen-
ticate a given username and password, the authenticate method searches for a match-
ing username and password, using the one-way encrypted password value D.
Discussion
An implementation of the SHA1 algorithm is included in the Ruby standard library—it
was written in C to make it perform as quickly as possible. The properties of this gov-
ernment-standard algorithm make it a great solution to the problem of storing pass-
words. Specifically, it is repeatable and nonreversible. It is important that it be
repeatable so that the same password will always produce the same result, which can be
compared to previous results. It is important that it be nonreversible so that if someone
gains access to the encrypted string, it is computationally infeasible to discover the
actual password.

 The salt makes it more difficult to do a dictionary attack against your encrypted
passwords—computing a list of the encrypted versions of common passwords and
checking them against yours.

 Although the SHA1 algorithm is in wide use, vulnerabilities have been discovered.
The vulnerabilities are not believed to be serious, because to make use of them, an
attacker would need much greater computational power than is typically available.
Still, developers with healthy paranoia would do well to consider the more secure
cousins of SHA1, known collectively as SHA2. The implementations of SHA2 that are
included in Ruby’s standard library are SHA256, SHA384, and SHA512. Here is some
sample usage:

require 'digest/sha1'

puts Digest::SHA256.hexdigest("Please hash me.")
puts Digest::SHA384.hexdigest("Please hash me.")
puts Digest::SHA512.hexdigest("Please hash me.")

There is also an alternate approach to the solution that adds complexity but offers a
more secure system overall. Instead of using a single salt, we will create a salt for each
user and store it as an additional field. This dramatically increases the resources nec-

essary for a dictionary attack. It also means that if two users choose the same password,

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

236 CHAPTER 11 Identity and authentication

the encrypted versions will still be different. If one of them had access to the
encrypted passwords, it could not discover that it was using the same password as the
other user. Listing 11.2 shows an implementation of this approach.

require 'digest/sha1'
require 'openssl'

table "users"
login, string
secured_password, string(40)
salt, string(40)

class User < ActiveRecord::Base

 attr_accessor :password
 before_save :secure_password

 def self.authenticate?(login, pass)
 user = find_by_login(login)
 return false unless user
 return user.authenticate?(pass)
 end

 def authenticate?(pass)
 secured_password == self.class.encrypt(pass, salt)
 end

 protected

 def secure_password
 self.salt = generate_salt if new_record?
 self.secured_password = encrypt(password) if password
 end

 def generate_salt
 Digest::SHA1.hexdigest(OpenSSL::Random.random_bytes(128))
 end

 def encrypt(password)
 Digest::SHA1.hexdigest("--#{salt}--#{password}--")
 end

end

In this version, a row must be retrieved from the database in order to validate a pass-
word. This is because the salt is stored alongside the login and secured password. At
first glance, this seems like it might be insecure, and indeed, the separate location of
the salt and secured password is an advantage of the original implementation. How-
ever, that advantage is outweighed by how much more difficult we are making life for
an attacker by having a unique salt for each user.

 To generate a different salt for each user, we need to pick a random value. Don’t
make the mistake of using the system time—if the attacker can guess when the
account was created, it’s easy for her to generate all the possible salt values and crack

Listing 11.2 Per-user salt for password hashing

Provides cryptographically
secure random numbers

Authenticates
against username and
encrypted password

Generates
new salt from
random string
the password. And quite often, we’ll store the account creation time directly in the

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

237Securely storing a password

users table. Using Ruby’s rand method doesn’t help either, because the random num-
bers it generates are not that random. They’re based on the system clock, and even
though they look secure, they can be cracked in a few seconds with today’s hardware.
Instead, we opted to use the OpenSSL library to generate a cryptographically secure
random number to protect our salt from brute force attacks.

NOTE This use of multiple salts is the approach used by the restful_authentication
Rails plugin, discussed in section 11.3.

If we go through great efforts to avoid persisting our users’ passwords in plain text, it
would be careless to write passwords to our log files. To avoid this in your Rails applica-
tions, add the following code to the controller that handles authentication, where
password is the name of your password parameter:

class UsersController < ApplicationController
 filter_parameter_logging :password
 ...
end

This will replace the value of any parameter whose name contains “password” with the
string [FILTERED].

 Now that we’ve looked at a simple authentication scheme, let’s take a look at
authentication and identity with LDAP.

11.1.1 Authenticating against LDAP

LDAP is an open standard for interacting with hierarchical sets of people, groups, or
resources. Popular open source LDAP servers include OpenLDAP and Fedora Direc-
tory Server (FDS). Commercial offerings include Sun’s Java System Directory and
Novell’s eDirectory.

 LDAP servers are well-suited to hold information about people and their security
credentials. As a result, they are commonly used for authentication purposes. Let’s
take a look at how we can accomplish this with Ruby.
Problem
You need to authenticate users against an LDAP server.
Solution
We can use a Ruby LDAP library like the ruby-net-ldap gem to validate a username/pass-
word pair. Listing 11.3 shows an implementation of LDAP authentication with Ruby.

require 'net/ldap'

def valid_user?(username, password)
 ldap = initialize_ldap(username, password)
 ldap.bind
end

def initialize_ldap(username, password)

Listing 11.3 Authenticating with ruby-net-ldap
 Net::LDAP.new(:base => 'dc=example,dc=com',

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

238 CHAPTER 11 Identity and authentication

 :host => 'your-ldap-server',
 :auth => {:username => "uid=#{username},cn=users",
 :password => password,
 :method => :simple})
end

The method LDAP.bind attempts to connect to the LDAP instance using the creden-
tials we supply. It returns true if successful, and false if not.
Discussion
The primary alternative to the ruby-net-ldap gem used in listing 11.3 is ruby-ldap.
While ruby-net-ldap is a pure Ruby LDAP client implementation, ruby-ldap is a
wrapper around the OpenLDAP C library. As you might guess, this means that
ruby-net-ldap is far more portable and easier to install, though ruby-ldap offers signifi-
cantly better performance.

 Ruby-ldap has an interesting library built on top of it called Ruby/ActiveLdap.
ActiveLdap maps LDAP entries to objects in much the same way that Active-
Record maps database rows to objects. Here is an example of defining a User class
using ActiveLdap:

class User < ActiveLdap::Base
 ldap_mapping :dn_attribute => 'uid', :prefix => 'cn=users',
 :classes => ['top','account']
 belongs_to :groups, :class => 'Group', :many => 'memberUid',
 :foreign_key => 'uid'
end

ActiveLdap is likely overkill if your only use for LDAP is authentication. In that case,
ruby-net-ldap is probably fast enough and your best bet. On the other hand, if your
application is doing a lot with LDAP entries, like queries and read-write operations,
ActiveLdap is definitely worth a look.

 Leveraging a central corporate LDAP directory is a great strategy for applications
being deployed internally. Your users will thank you for not making them create and
remember yet another password!

11.2 Authenticating against Active Directory
Active Directory from Microsoft is used by many businesses for identity management.
Integrating your authentication system with Active Directory is a great way to provide
a good logon experience for internal applications and help the business keep identity
and password management centralized.
Problem
You need to authenticate users against an existing Active Directory installation.
Solution
Fortunately, Active Directory is compatible with the LDAP spec, so we can use a Ruby
LDAP library, like the ruby-net-ldap gem, to validate a username/password pair. See
listing 11.4 for an example.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

239Authenticating against Active Directory

equire 'net/ldap'

def valid_user?(username, password)
 ldap = initialize_ldap(username, password)
 ldap.bind
end

def initialize_ldap(username, password)
 Net::LDAP.new(:base => 'dc=example,dc=corp',
 :host => 'exampledomaincontroller',
 :auth => {:username => "#{username}@example.corp",
 :password => password,
 :method => :simple})
end

Ask your Active Directory administrator for the name of the domain control-
ler—that’s the LDAP host in the case of an Active Directory installation.

 This example takes advantage of a convenience offered by Active Directory: you
can send user@domain as the username for the purposes of binding, and Active Direc-
tory will handle it properly. Normally, LDAP instances expect a distinguished name
(DN) in this spot.
Discussion
The approach in listing 11.4 is suitable for an application that should be available to
any member of the Active Directory instance, but if you need more information about
a user, you can call the search method, which returns a collection of LDAP entries, in
place of the bind method, which simply confirms that the provided credentials are
valid. This would be useful, for example, to validate that a user is not only who she says
she is (via password), but also that she is a member of a particular group. The search
method uses a filter based on the sAMAccountName attribute, which is the closest thing
to a simple username attribute in Active Directory’s schema.

 Here’s an example:

def valid_app_user?(username, password)
 ldap = initialize_ldap(username, password)
 entries = ldap.search :filter => "sAMAccountName=#{username}"
 return false unless entries && !entries.empty?
 return member_of_ad_group?("G-MyAppUsers", entries.first)
end

def member_of_ad_group?(group, ldap_entry)
 group_names = ldap_entry[:memberof] # returns a collection of fully-
 # qualified Active Directory groups
 group_names.any?{|name| name.include? 'CN=#{group},' }
end

The array of groups returned by the :memberof attribute of an Active Directory LDAP
entry contains the distinguished name of the groups. Something like this:

CN=G-MyAppUsers,OU=Groups Security,OU=Example,DC=example,DC=corp

Listing 11.4 Authenticating against Active Directory using ruby-net-ldap
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

240 CHAPTER 11 Identity and authentication

In the member_of_ad_group? method, we’re looking for a match in the first part, the
common name (CN).

 If you want a solution specific to Active Directory, ruby-activedirectory takes all the
features and idiosyncrasies of Active Directory into account. It provides classes for
Users, Groups, and Computers. The ActiveDirectory::User authenticate method
will validate a particular user’s password. Using it is straightforward:

require 'activedirectory'

def valid_user?(username, password)
 user = ActiveDirectory::User.find('jdoe')
 user.authenticate(password)
end

This library depends on ruby-ldap being installed, which can be a little tricky, as it
wraps the OpenLDAP C library. If you can get over that hurdle, ruby-activedirectory is
quite useful in working with an Active Directory installation.

11.3 Adding authentication to your Rails application
Most nontrivial Rails applications offer a personalized experience to each user of the
site. The most common solution to personalization needs is letting users sign up for
an account and authenticating them when they visit the site. While implementing a
username/password authentication system eventually leads to various decisions and
custom code, adding a basic implementation isn’t particularly difficult.
Problem
You need to add authentication to a Rails application...quickly!
Solution
The easiest and most well-trodden route to getting user authentication in a Rails
application is by using the restful_authentication plugin to generate the necessary
code. First, you’ll need to install the plugin:

script/plugin install restful_authentication

You’ll see some text scroll by, and if it’s successful, you should see the plugin’s
README and you’ll have a vendor/plugins/restful_authentication folder in your Rails
application.

TIP You may have to provide the source for the plugin (the plugin’s source
repository). In this case, you’ll need to add --source=http://svn.techno-
weenie.net/projects/plugins/restful_authentication/ to the script/
plugin call.

The next step is generating the code. We need a User model, a UsersController, and
a migration, along with tests and a couple of useful library classes. The plugin rolls all
of these into one convenient generator:

script/generate authenticated User

To get access to all of the helpers and other code, we need to mix the Authenticated-

System module into ApplicationController instead of UsersController, where the

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

241Adding authentication to your Rails application

plugin will place it, so that it is available to all of our controllers. We need to remove
the include AuthenticationSystem line from users_controller.rb:

class UsersController < ApplicationController
 # Be sure to include AuthenticationSystem in
 # Application Controller instead
 include AuthenticatedSystem
 ...
end

We also need to move the AuthenticatedSystem module to ApplicationController
in application.rb:

class ApplicationController < ActionController::Base
 include AuthenticatedSystem
 ...
end

The restful_authentication plugin enforces its authentication through before_filters.
To restrict a controller, we can add before_filter :login_required to its class body,
like this:

class TodosController < ApplicationController
 before_filter :login_required
 ...
end

Next, we’ll need to set up the database tables for users and their sessions. This just
involves running the database migration generated by the plugin.

rake db:migrate

That’s all the setup we need. If you start your application using script/server, you
can create the first account by pointing your web browser to http://0.0.0.0:3000/
users/new.

TIP Rick Olson is a member of the Ruby on Rails core team and is known
online as “technoweenie.” You can find some incredibly useful plugins
(including this one) and learn a lot by browsing his repository at http://
github.com/technoweenie/plugins/.

Discussion
It is easy to assume that authentication on the web is simple because thousands of web-
sites have implemented it. The truth is that the possible variations and nuances are
manifold. Can any visitor sign up and create an account, or are accounts created only
by users with administrative privileges? Does a user log in with her username, or does
she log in with an email address? Perhaps either is possible? What sort of confirmation
or activation step is necessary? The purpose of the restful_authentication plugin is not
to support all these scenarios, but rather to put into place the most common mecha-
nisms for username/password authentication and give you a solid base to build upon.

 Our favorite thing about the restful_authentication plugin is the quality of the tests

(or specs) it adds to a project. Both the generated model and the controller are

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://github.com/technoweenie/plugins/
http://github.com/technoweenie/plugins/

242 CHAPTER 11 Identity and authentication

accompanied by tests that together sport 100 percent code coverage. When you’re
ready to start customizing your application’s authentication logic, start with the
tests—either adding tests to drive new features, or modifying tests to drive changes to
the generated code.

TIP The generator will generate tests and test helpers for you by default, but
you can tell the plugin to give you specs for RSpec instead by giving
it the --rspec option or by simply adding a spec/ directory to your
Rails application.

The restful_authentication plugin also provides very useful helper methods you can use
in your own tests. Inside of your lib directory, you’ll notice that the generation process
has added authenticated_test_helper.rb. It defines a module that is mixed into the two
test classes generated (test/unit/user_test.rb and test/functional/users_controller_
test.rb in the previous example). Let’s look at how to use a few of these helper methods.

 The login_as method takes a symbol (:quentin in the following example) that is
used to look up a user from the YAML fixtures:

def test_index_ok_for_logged_in_user
 login_as :quentin
 get :index
 assert_response :ok
end

It then sets that user as the logged-in user by setting session[:user] to the ID of the
specified user. This helper lets you interact with controllers in your tests as if a user
were logged in to your application. You can also interact as an anonymous user; when
the login_as method is passed nil, it clears any existing value of session[:user],
thereby simulating an anonymous user:

def test_index_not_available_to_anonymous_user
 login_as nil
 get :index
 assert_response 401
end

The power of Ruby’s block syntax is evident in the assert_difference method. In the
following example, the count method of User is called twice. In between, the content
of the block is executed—a POST to the create action, in this case:

def test_create_increments_user_count
 assert_difference 'User.count', 1 do
 post :create, :user => {:login => 'foo', :password => 'test'}
 end
end

The return values of the two calls are compared to verify that the difference is equal to
the value of the second argument to assert_difference: 1 in our example.

 Conversely, assert_no_difference works just like assert_difference but instead
ensures that the return value of the specified method is the same before and after the

block executes:

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

243Semi-private, personalized feeds

def test_create_with_invalid_login_does_not_change_user_count
 assert_no_difference User, :count do
 post :create, :user => {:login => nil, :password => 'test'}
 end
end

If you’re thinking, “Wow! Some of these test helpers are really handy,” you would be
right. It is a good idea to mix this module into the Test::Unit::TestCase class
defined in test/test_helper.rb. You can then remove it from the generated tests and
use it in any of your tests for the rest of your application.

 The restful_authentication plugin consists entirely of code generators, so there’s
really no need to keep it installed once you’re happy with the code you’ve generated.
You can either delete the directory or remove it like this:

script/plugin remove restful_authentication

The code you generated with it will still be present and working, but you won’t be
transferring an extra directory with every deployment for no reason.

 Let’s take a look at putting authentication into action by creating semi-private per-
user feeds.

11.4 Semi-private, personalized feeds
RSS and Atom feeds are a great way for users to keep a connection to your site. In the
case of a data-driven site, the information in a feed is likely unique or at least personal-
ized for each user. Unfortunately, many feed readers don’t support username/pass-
word authentication, or don’t do so securely.
Problem
You need to offer feeds that are personalized and semi-private but that still work with
typical feed readers.
Solution
We’ll create and associate a secret token with each user that can be used to authenticate
for feeds only. Listing 11.5 shows a sample ActiveRecord migration that adds a column
to hold our secret token. In the subsequent listings, we’ll modify the User class to pop-
ulate the token for new users, and demonstrate how to integrate it with a controller.

require 'digest/sha1'
require 'openssl'

class AddUserToken < ActiveRecord::Migration

 class User < ActiveRecord::Base
 end

 def self.up
 add_column :users, :token, :string, :limit => 40
 User.find(:all).each do |user|
 user.token = Digest::SHA1.hexdigest(

Listing 11.5 An ActiveRecord migration to add our token column

B

C

 ➥ OpenSSL::Random.random_bytes(128)) D

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

244 CHAPTER 11 Identity and authentication

 user.save
 end
 end

 def self.down
 remove_column :users, :token
 end
end

We want to work with a clean version of the User class, so that any future changes to the
application code won’t risk breaking this migration B. After adding the column C, the
migration populates it with a random token D. We’ll make use of that in the listings
that follow.

 Next, our User model should automatically create a token when a new user is
added. As such, we’ll need to add a before_create call to generate the token before
the User is created. Listing 11.6 shows our implementation.

require 'digest/sha1'
require 'openssl'

class User < ActiveRecord::Base
 before_create :generate_token
 ...
 def generate_token
 self.token = Digest::SHA1.hexdigest(OpenSSL::Random.random_bytes(128))
 end
end

We are creating a random 40-character token, and using SHA1 is a convenient way to
do that. We will then add these tokens to the personalized feed URLs that our applica-
tion exposes, and use them to associate the incoming requests for feeds with the right
user’s data. If our application’s actions require a login by default (via a filter in Appli-
cationController called login_required), a CommentsController that implements
this concept might look like the one in listing 11.7.

class CommentsController < ApplicationController

 skip_before_filter :login_required, :only => [:index]
 prepend_before_filter :login_or_feed_token_required, :only => [:index]

 def index
 @comments = current_user.comments
 respond_to do |format|
 format.html
 format.rss { render_rss_feed_for @comments }
 format.atom { render_atom_feed_for @comments }
 end
 end

 ...

Listing 11.6 A User model that generates tokens upon creation

Listing 11.7 A comments controller implementing our token authentication
end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

245Semi-private, personalized feeds

Here, for the index action only, the controller will bypass the default login_required
filter, but add a filter that calls the login_or_feed_token_required method. This
method allows the request to proceed if either the user is logged in or the request is for
an RSS or Atom feed and the request params hash contains the correct secret token.

 The following code should be added to our ApplicationController:

def login_or_feed_token_required
 if params.has_key?(:token) &&

➥ (request.format.atom? || request.format.rss?)
 return true if @user = User.find_by_token(params[:token])
 end
 login_required
end

We attempt to authenticate using the token if appropriate, and otherwise fall back to
the login_required method.
Discussion
The solution relies on providing an alternate means of authentication (a secret
token) to each user. This alternate authentication provides only limited rights: read-
only access to XML feeds. In the event that the secret is leaked, this approach limits
exposure. Contrast that with having a user’s password compromised because your
application forced him to embed it in a feed URL used from a web-based feed reader.

 Since we want to support users in keeping their data secure, it is a good idea to
provide a mechanism that allows users to replace their secret tokens on demand. You
can provide this with a Rails controller action like this one:

class UsersController < ApplicationController
 ...
 def refresh_token
 @user.generate_token
 @user.save!
 end
 ...
end

It is important that users realize that changing their tokens will break any externally
stored URLs.

 You might consider using the same token, or a separate one, as an authentication
mechanism for your application’s API. If your API provides both read and write opera-
tions, this would obviously increase risk. Still, your users would probably prefer embed-
ding a randomly generated 40-character string in a script than in their passwords.

 When you detect that you are handling an RSS or ATOM request, you can be fairly
confident that an RSS reader or a script is the requestor. In these situations, you can
more efficiently handle the request by turning off the session for that request, like this:

class CommentsController < ApplicationController
 ...
 session :off, :only => :index,
 :if => Proc.new { |req| is_feed_request?(req) }
 ...

 def self.is_feed_request?(request)

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

246 CHAPTER 11 Identity and authentication

 request.format.atom? || request.format.rss?
 end
end

Note that is_feed_request is defined as a class method of the controller. For the
method to resolve in the session :off statement, it must be a class method.

 If the data in the feeds is not sensitive, keep it simple and skip authentication for
feeds altogether. You could also consider making the feed content a shallow, nonsensi-
tive indicator of the content with links back into the site, where the user would have to
authenticate normally. Another approach you may want to consider is simple, time-
tested HTTP Basic Authentication.

11.5 HTTP Basic Authentication
Sometimes you need some very simple authentication capabilities. HTTP Basic
Authentication is a well-known standard supported by practically every web browser
and web automation library. It offers a simple way to secure an API or application
meant to be consumed by simple scripts.
Problem
You need to access the username and password sent via HTTP Basic Authentication in
a simple Ruby CGI application.
Solution
Listing 11.8 shows how we can extend CGI to allow access to HTTP Basic data.

class CGI
 def basic_auth_data
 user, pass = '', ''
 header_keys = ['HTTP_AUTHORIZATION', 'X-HTTP_AUTHORIZATION',
 'X_HTTP_AUTHORIZATION',
 'REDIRECT_X_HTTP_AUTHORIZATION']
 header_key = header_keys.find{ |key| env_table.has_key?(key) }
 authdata = env_table[header_key].to_s.split if header_key
 if authdata && authdata[0] == 'Basic'
 return Base64.decode64(authdata[1]).split(':')[0..1]
 end
 end
end

Here's an example usage:

cgi = CGI.new
username, password = cgi.basic_auth_data

In this example, we open up the CGI class and add CGI.basic_auth_data, a method
that can extract the relevant HTTP headers according to the HTTP spec. Note how two
of Ruby’s language features (open classes and multiple return values) allow us to cre-
ate nicer usage syntax than we could in less flexible languages.
Discussion
As you can tell from the code in listing 11.8, the username and password is Base64-

Listing 11.8 Authenticating with HTTP Basic using CGI
encoded. This makes the user’s credentials extremely easy for an attacker sniffing

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

247Integrating OpenID into your application

HTTP traffic to access. Ensuring that HTTP traffic occurs over HTTPS is one way to
make this technique more secure.

 While a programmatic web client can be written to always send authorization head-
ers, most graphical web browsers prompt for basic authentication upon receiving a
response with a 401 status code and a WWW-Authenticate header. While testing using a
browser, you may not see any authorization headers until you challenge the browser,
like this:

cgi.out("status" => "AUTH_REQUIRED",
 "WWW-Authenticate" => 'Basic realm="My Application"') { "And you are…?" }

Since most developers use Rails for web development these days, people have port-
ed HTTP Basic Authentication to the framework. Rails 2.0 provides this function-
ality in ActionController::Base, specifically the authenticate_or_request_with_
http_basic method.

NOTE With the release of Rails 2.3, Rails now supports digest authentication in
addition to basic authentication.

11.6 Integrating OpenID into your application
OpenID is an open standard for decentralized single sign-on. It seeks to address the
problem that every internet user is familiar with—too many usernames and passwords.

 If a site supports OpenID, a user can simply enter her OpenID (janedoe.
myopenid.net, for example) and get redirected to her OpenID provider’s website,
where she agrees to allow the originating site to authenticate before being redirected
back to the originating site with a token that proves the user is the owner of the ID.

 Of course, this explanation is a slight simplification of the OpenID protocol. We
recommend you familiarize yourself with the details of the interactions. A great
resource is the documentation embedded in the ruby-openid gem source code. Check
out lib/openid/consumer.rb in particular.
Problem
You need to support single sign-on via OpenID.
Solution
We’re only going to use OpenID in our application, so we can use the ruby-openid
gem to abstract the details of the inter-server communication and initiate and com-
plete the process in controller actions. Listing 11.9 shows a simple controller that han-
dles logging in with OpenID.

require 'openid'

class LoginController < ApplicationController
 def index
 #show the OpenID login form
 end

 def begin

Listing 11.9 A simple OpenID login controller
 openid_url = params[:openid_url]

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

248 CHAPTER 11 Identity and authentication

 response = openid_consumer.begin(openid_url)

 case response.status
 when OpenID::SUCCESS
 #send the user off to the OpenID server
 redirect_to response.redirect_url(
 url_for(:action => :index),
 url_for(:action => :complete))
 else
 flash[:error] =
 "No OpenID server for <q>#{openid_url}</q>"
 redirect_to :action => 'index'
 end
 end

 def complete
 openid_res = consumer.complete(params)
 case openid_res.status
 when OpenID::SUCCESS
 session[:openid] = openid_res.identity_url
 redirect_to url_for(:action => 'index')
 else
 flash[:error] =
 "OpenID auth failed: #{openid_res.msg}"
 redirect_to :action => 'index'
 end
 end

protected

 def consumer
 @consumer ||= OpenID::Consumer.new(
 session[:openid_session] ||= {},
 create_open_id_store)
 end

 def create_open_id_store
 path = "#{RAILS_ROOT}/tmp/openid"
 OpenID::FilesystemStore.new(path)
 end

end

We’ll need a login form, of course, so the view for the index action of the controller
would look like this:

<% form_tag url_for(:action => 'begin') do %>
 <%= text_field_tag 'openid_url' %>
 <%= submit_tag 'Login' %>
<% end %>

Submitting this form results in a request that is handled by our begin action, which
starts the OpenID transaction. Taken all together, this code will allow you to check the
session for an :openid key and use that to determine whether the user is authenticated.

 For a simple, readable way to check whether a user has authenticated, we could
define a helper method like so:

Checks OpenID
credentials

Proceeds if
server exists

Shows error if
server doesn’t exist

Pushes response
into new object

Checks response
from OpenID

Logs in if
successful

Shows error
on failure

Wraps OpenID
consumer

Sets up ID store
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

249Integrating OpenID into your application

class ApplicationController < ActionController::Base
 ...
 def authenticated?
 session.has_key? :openid
 end
 ...
end

You could also have a User model backed by a database table if you need to store per-
user preferences or attributes. You could access it based on the user’s OpenID, like
this:

class ApplicationController < ActionController::Base
 ...
 def current_user
 User.find_by_open_id_url(session[:openid])
 end
 ...
end

Discussion
As one would expect, there are a number of OpenID plugins, the most prominent of
which is open_id_authentication from the Rails core team. There are two major differ-
ences between these plugins and the previous example code. First, the plugins attempt
to encapsulate most of the logic within modules in the plugin, naturally. Second, the
plugins all default to using a database store instead of a filesystem store. For an appli-
cation that is load-balanced across multiple servers, the filesystem store is inadequate.

 A common idiom is to allow users to choose between a username/password login
scheme or OpenID. Integrating open_id_authentication with restful_authentication to
achieve this effect is not very difficult. First, we’ll need to add a field to our user model
and a field to the forms to edit them. Listings 11.10 and 11.11 show a migration and
edited view to allow for this logic.

class AddOpenIdAuthenticationTables < ActiveRecord::Migration
 def self.up
 create_table :open_id_authentication_associations,
 :force => true do |t|
 t.integer :issued, :lifetime
 t.string :handle, :assoc_type
 t.binary :server_url, :secret
 end

 create_table :open_id_authentication_nonces, :force => true do |t|
 t.integer :timestamp, :null => false
 t.string :server_url, :null => true
 t.string :salt, :null => false
 end

 add_column :users, :identity_url, :string
 end

Listing 11.10 A database migration to create the OpenID tables
 def self.down

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

250 CHAPTER 11 Identity and authentication

 drop_table :open_id_authentication_associations
 drop_table :open_id_authentication_nonces
 remove_column :users, :identity_url
 end
end

<% form_tag session_path do -%>

<p><label for="email">Login</label>

<%= text_field_tag 'login' %></p>

<p><label for="password">Password</label>

<%= password_field_tag %></p>

<p><label for="identity_url">Identity URL:</label>

<%= text_field_tag :openid_url %></p>

<p class="submit"><%= submit_tag 'Log in' %></p>
<% end -%>

Next, we’ll need to edit (or basically replace) our controller to allow for OpenID
authentication and non-OpenID authentication. This requires us to add some condi-
tional logic as shown in listing 11.12.

class SessionsController < ApplicationController
 def create
 if using_open_id?
 open_id_authentication
 else
 password_authentication(params[:login], params[:password])
 end
 end

 protected
 def password_authentication(name, password)
 if @current_user = User.authenticate(params[:login],
 params[:password])
 successful_login
 else
 failed_login "Sorry, that username/password doesn't work"
 end
 end

 def open_id_authentication
 authenticate_with_open_id do |result, identity_url|
 if result.successful?
 if @current_user = User.find_by_identity_url(identity_url)
 successful_login
 else
 failed_login "No user with identity (#{identity_url})"
 end
 else

Listing 11.11 Edited view to support OpenID authentication

Listing 11.12 A new SessionsController that supports OpenID

B

Switches between
OpenID and normal
authentication

Performs
authentication
by password

C

Performs
authentication
via OpenID

D

 failed_login result.message

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

251Integrating OpenID into your application

 end
 end
 end

 private
 def successful_login
 session[:user_id] = @current_user.id
 redirect_to(root_url)
 end

 def failed_login(message="Login failed.")
 flash[:error] = message
 redirect_to(new_session_url)
 end
end

In this new controller (listing 11.12), we first need to replace our earlier create method
with one that can differentiate between standard authentication and OpenID B. In this
implementation, we use the plugin’s convenience method using_open_id? (which, in
turn, checks for the presence of a value for params[:identity_url]).

 Next, we need to create two methods for handling the types of authentication:
password_authentication C and open_id_authentication D. The password_
authentication method is basically the previous create method, except renamed and
using calls to our successful_login and failed_login methods. The open_id_
authentication method consists of the logic that we previously wrote in listing 11.9,
except now it’s abstracted away into a plugin and condensed down to a single method.

 Finally, we create two methods that are called when logins succeed E (or fail F),
regardless of authentication type.

 Now we need to add a route to config/routes.rb that the OpenID plugin can use to
handle communication with the OpenID server:

map.open_id_complete 'session', :controller => 'sessions',
 :action => 'create',
 :requirements => { :method => :get }

Now our users should be able to log in with either a username/password pair or their
favorite OpenID provider.

 OpenID is rapidly gaining support in the industry. Companies that provide an
OpenID account to all their customers include AOL, Yahoo!, WordPress, SixApart,
Orange, and France Telecom. Although it is primarily targeted for the public web,
applications for the enterprise are quite interesting. A company could run a public
OpenID server for just its employees, thereby vouching for the identity of anyone with
an OpenID provided by the company. Also, because OpenID libraries are available for
practically every web development platform, it has become an option for single-sign
on in a heterogeneous environment. You might easily layer an OpenID server atop
your Active Directory or proprietary authentication system. If you’re interested in this,
there are several open source OpenID servers, including some written in Ruby cata-
loged on the OpenID website (http://wiki.openid.net/Libraries).

Sets session key
for successful login,
redirects to home page

E

Redirects back to login
screen with error message

F

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://wiki.openid.net/Libraries

252 CHAPTER 11 Identity and authentication

11.7 Summary
Teenagers today are fond of vintage T-shirts, or simply those that appear to be vintage.
This style has been dubbed “authenticitude” by marketing wonks—the attitude of
authenticity. For Rubyists, though, we think “authenticitude” should be the attitude of
treating authentication seriously, and letting your users know that you do.

 Whether your application lives in a corporate environment or on the public web,
whether your users are open standards junkies, newbies, or mindless client applica-
tions, we hope this chapter has what you need to implement a great authentication
system. Take it seriously. Know your users and let them know that their data and iden-
tities are safe with you.

 If you want to wear a faux-vintage T-shirt while you’re coding it, that’s your business.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Searching and indexing
Throughout this book, and throughout your entire programming life, you’ve been
used to dealing with data, because it forms the input and output for all computer
programs. So far, we have mostly looked at transforming data from one state to
another, but in this chapter we’re going to investigate Ruby’s abilities to let you
search through data.

 Unfortunately, as a language that has reached maturity only in the last few years,
Ruby is not blessed with hundreds of search-related libraries. This is not necessarily
a bad thing, as search technologies progress quickly, and most of the available Ruby
search solutions are up to date and ready to use in production immediately.

 In this chapter, we’ll look at Ruby-specific techniques for searching and index-
ing data, and we’ll examine some solutions to common search-related problems.

 We’re going to look at standalone libraries and techniques available to Ruby
developers, and we’ll walk through the process of indexing content using two

This chapter covers
■ Searching databases
■ Indexing content using Ferret and Solr
■ Searching with other technologies
■ The scraping technique
253

Apache Lucene-based libraries, Ferret and Solr, as well as a performance-driven

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

254 CHAPTER 12 Searching and indexing

Ruby-only library called FTSearch. We’ll also look at integrating search features with
other technologies, and at searching the web, searching databases, and adding index-
ing and search features to Ruby on Rails applications.

 First, we’ll define searching and indexing, as well as other related terminology.

NOTE We will only cover search libraries that are under active development and
that have been updated in the last year. There are several older libraries
that you may hear about, but we feel it’s important to focus on up-to-date,
well-supported tools, so that the level of documentation and support you
would expect is still present.

12.1 The principles of searching
Searching refers to the process of taking a collection of data, processing it so that it can
be scanned quickly, then enabling a program or a user to find small elements of data
within the larger set. Google provides the most ubiquitous form of search technology
in our lives today. If you want to find a web page that contains a certain word, or set of
words, you go to http://www.google.com, type in your query, and receive your results
almost instantaneously.

 The amount of data Google can search across is somewhere in the range of billions
of pages, which take up thousands of gigabytes of space. Google, therefore, certainly
can’t scan every page, byte by byte, looking for results to your query. It could take days
(or longer!) to get your search results that way, although it would still, technically, be a
“search engine.”

 The process that allows Google to produce search results in under a second is
indexing, and the performance benefits of indexing are so significant that every search
library or tool must provide indexing services of one form or another.

 Indexing technologies can be extremely advanced, but at their most basic, they
work in the same way as an index in a book. For example, if you turn to the index of
this book and search for a particular term, you know roughly where in the index to
look, because the index is in alphabetical order. Furthermore, once you find your
desired term, you’re provided with a set of page numbers to refer to. This contrasts
significantly with having to read through every page of the book to find something.
Computers use similar techniques. A search engine’s indexer makes a note of words
and phrases on a page, and links those terms (using, for performance and efficiency, a
unique numeric ID that references each distinct term) to the page it is indexing.
When a search is run, the query engine can quickly look up the IDs of pages that
match the terms provided by a user’s search query.

12.2 Standalone and high-performance searching
In this section, we’re going to look at generic, standalone searching and indexing sce-
narios with the simplest problem we can provide: indexing, and then querying, a cor-
pus of documents. This contrasts with the latter half of this chapter, where we will look
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://www.google.com

255Standalone and high-performance searching

at how to use and integrate search techniques in busier situations, such as on the web
or within a database-driven web application.

12.2.1 Standalone indexing and search with Ferret

Ferret is a Ruby implementation of Apache Lucene, an open source search and index-
ing library written in Java. Lucene is incredibly popular in the open source world, and
a significant amount of software, and many libraries, use it for implementing large
and small search systems. Lucene is an indexing and search library, and so does not
include any features relating to obtaining or specially parsing content. These features
are provided by other libraries, or by the software using Lucene. As a Ruby implemen-
tation of Lucene, Ferret shares the same characteristics.

 Ferret will not crawl the web for you, download emails, or index different types of
content in unique ways. Instead, you have to use Ferret from your Ruby programs in a
generic way. Like Lucene, Ferret can deal with different data formats, and as long as
you can extract the textual content of the data you wish to index, Ferret can handle it.
Ferret works with the concepts of documents and fields, where documents represent
individual groups of content to be indexed (such as a single web page, an email mes-
sage, or the lyrics of a song) and fields are more detailed elements of data with docu-
ments (such as dates, author information, and other metadata).

 In this section, we’re going to look at using Ferret to index and search through
documents we provide.
Problem
You wish to be able to index, and then search via query, an arbitrary set of documents
(that may or may not contain multiple fields of metadata, such as titles, descriptions,
and author information) quickly and efficiently. You do not care if the index is usable
only from Ruby.
Solution
We’ll look at three solutions to the problem. The first, in listing 12.1, implements a
basic text-only indexing and searching system. The second, in listing 12.2, looks at
indexing and searching through content that contains metadata and multiple fields.
The third solution, in listing 12.3, looks at storing an index to disk and then loading it
from another program (which allows the index to persist).

 Each solution assumes that you have installed the ferret gem. This is very simple to
do on a system running Ruby and RubyGems; use gem install ferret.

require 'rubygems'
require 'ferret'

index = Ferret::Index::Index.new

index << "This is a test document to test Ferret."
index << "Here is another test document."
index << "And now, for something totally different!"

Listing 12.1 Basic document search

B

C

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

256 CHAPTER 12 Searching and indexing

query = "test"

index.search_each(query) do |id, score|
 puts "Found #{query} in document #{id} (scoring #{score})"
end

require 'rubygems'
require 'ferret'

Begin to build a set of fields for content to use
fields = Ferret::Index::FieldInfos.new(:store => :yes, :index => :yes)

Give a boost to titles, as their content is likely to confidently
reflect the document
fields.add_field(:title, :boost => 10)

No boost for general content
fields.add_field(:text)

Give a big boost to author information in terms of searches

fields.add_field(:author, :boost => 20)

Build a local index object
index = Ferret::Index::Index.new(:field_infos => fields)

Add some example documents to the index
index << { :title => "My Test Document",
 :text => "This is a test to demonstrate Ferret",
 :author => "Fred Bloggs" }

index << { :title => "Irrelevant Title",
 :text => "Another test document",
 :author => "Anon" }

index << { :title => "Third Document",
 :text => "This document contains nothing of interest",
 :author => "Fred Bloggs" }

Perform a query
puts "What do you want to search for?"
query = gets.chomp
search_results = index.search(query).hits

Sort the search results by score descending and show the results
search_results.sort_by{ |h| h.score }.reverse.each do |hit|
 print "Found '#{index[hit.doc][:title]}' by "
 puts "'#{index[hit.doc][:author]}' (score: #{hit.score})"
end

Indexer (file: indexer.rb)
require 'rubygems'
require 'ferret'

fields = Ferret::Index::FieldInfos.new(:store => :yes, :index => :yes)
fields.add_field(:title, :boost => 10)

Listing 12.2 Multifield document search

Listing 12.3 Separate indexer and query client programs

D

E

F

G

H

fields.add_field(:text)

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

257Standalone and high-performance searching

fields.add_field(:author, :boost => 20)

Create an index on the filesystem (stored in /tmp/our_index)
index = Ferret::Index::Index.new(:path => '/tmp/our_index',
 :field_infos => fields)

Add some example documents to the index
index << { :title => "My Test Document",
 :text => "This is a test to demonstrate Ferret",
 :author => "Fred Bloggs" }

index << { :title => "Irrelevant Title",
 :text => "Another test document",
 :author => "Anon" }

Query client (file: query_client.rb)
require 'rubygems'
require 'ferret'

index = Ferret::Index::Index.new(:path => '/tmp/our_index')

Perform a query
puts "What do you want to search for?"
query = gets.chomp
search_results = index.search(query).hits

Sort the search results by score descending and show the results
search_results.sort_by{ |h| h.score }.reverse.each do |hit|
 print "Found '#{index[hit.doc][:title]}' by "
 puts "'#{index[hit.doc][:author]}' (score: #{hit.score})"
end

These three solutions are very similar, but they show different approaches and levels
of complexity. All of them use a Ferret index, with the first two solutions storing the
index in memory for immediate use only, and the final solution storing the index to
and loading it from the disk.

 In listing 12.1, we can see how simple it is to create an index by creating a new
object from the Ferret::Index::Index class B.

 Next, we supply the index with multiple documents to be indexed C. We used
strings, but we could have used almost any form of data in Ruby that can translate to a
string (such as an array or a hash).

 Whether we use an in-memory or on-disk index, “pushing” documents to the index
causes them to be indexed immediately. Finally, we query the index using the
search_each method, which performs a search and iterates over each result, passing in
the document ID of the matching document, along with a quality score, each time D.

 We did not give our documents ID numbers, but Ferret did this for us in the order
that we supplied the documents. For example, the first solution performs a query of
“test”, which nets the following results:

Found test in document 0 (scoring 0.70710676908493)
Found test in document 1 (scoring 0.5)

Because the word “test” wasn’t mentioned in the third document (the document that

I

J

has an ID of 2, due to 0-indexing), it’s not returned as a result.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

258 CHAPTER 12 Searching and indexing

 Listing 12.2 shows how the previous solution can be extended with an option to
include information about a set of fields that exist on the supplied documents. We
define these fields first into a group using class Ferret::Index::FieldInfos, then
pass that composite object through to the index as an option.

 Defining fields to be indexed and managed separately by Ferret is easy. First, we
create the FieldInfos object that will hold all of the information E.

 This constructor takes many different options, but the important ones are :store
and :index. These options act as the default choices for all the fields we define from
here on out. The :store option lets us choose whether the index will store the actual
content of a field (or whether the content should be compressed and/or processed
and then discarded entirely) and :index specifies whether a field should be indexed
at all. In our case, we want the default to be yes for both.

 Next, we define three fields: a “title” field, a “text” or content field, and an author
field F. Adding the fields is as easy as calling add_field on the FieldInfos object.
Then we specify the field name, along with any options. In this case, the default
options of :store => :yes and :index => :yes are used on all of the fields, but on two
of the fields we provide a “boost.”

 Boosting is useful when you have columns that contain data that’s more important
than data in other columns. In this case, for example, we give document titles more
importance in the rankings than the main content (in the text field). We then give
the author name even more importance than the title, so that if one document con-
tains “Fred” in the title, and another was written by someone named “Fred,” the latter
document would probably score more highly.

 Once the fields are defined in the FieldInfo set, we define the index much like in
our first example, but we also pass through the field data G.

 Then, to add documents with defined fields, we use hashes H. Because the fields
are delimited in these sample documents, Ferret knows how to handle them in rela-
tion to the fields defined in the index.

 If we run this example and provide it with a test query, we can see how the boosts
affect the results:

What do you want to search for?
> document
Found 'Third Document' by 'Fred Bloggs' (score: 1.97577941417694)
Found 'My Test Document' by 'Fred Bloggs' (score: 0.922030389308929)
Found 'Irrelevant Title' by 'Anon' (score: 0.065859317779541)

Notice that even though each document contains the word “document,” the docu-
ment that ranks highest is the one with the word in both the title and the content,
whereas the second result lacks the word in the content, and the third document, with
an extremely low score, merely contains it in the text field.

 Listing 12.3 demonstrates how to store and retrieve an index from disk. Ferret
makes it extremely simple; it is only necessary to specify the pathname within the con-
struction of the index object I.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

259Standalone and high-performance searching

 If the directory specified using the :path parameter doesn’t exist, it’ll be created,
as it is in the first example of this third solution. In the second example, the index is
loaded in much a similar fashion J.

 Because the index should already exist, and the field information is predefined, we
don’t need to construct and pass through the field information to Ferret, as it’s
already part of the index’s structure. The rest of the third solution then uses the same
querying code as used earlier.
Discussion
While the queries we performed in the solutions were simple, single-word queries,
Ferret has support for complex queries, as you’d expect from a search tool. You can
search for phrases, perform Boolean operations (“fred OR martha” or “foo AND bar”),
and use wildcards (such as “fre*”).

 You can learn more about the query syntax supported by Lucene at http://
lucene.apache. org/java/docs/queryparsersyntax.html.

 You can also learn more about how to use Ferret by looking at the official tutorial
at http://ferret.davebalmain.com/api/files/TUTORIAL.html.

 Next, we’re going to look at a true Apache Lucene instance, installed and made
available remotely by another Apache product: Solr.

12.2.2 Integrating with the Solr search engine

In the previous section, we looked at using Ferret, a Ruby implementation of Apache
Lucene, to index and search data. As we discovered, Ferret and Lucene are indexing
and searching libraries, and the ability to parse the data to be indexed, as well as to
interpret the results of searches, rests with the client application.

 In this section, we’re going to look at Lucene from a different angle, using the Solr
search server. Solr, another Apache project, is an open source search server that uses
Lucene. Whereas Lucene is only a searching and indexing library, Solr provides
higher-level features such as XML and JSON HTTP-based APIs, replication, caching,
and a web-based administration interface. If Lucene is the guts of a searching and
indexing system, Solr provides the friendly face necessary to use it at a higher level.

 Whether you choose to use Ferret or Solr depends on your preferences and the fit
between your requirements and the pros and cons of each technology. Even though
both provide Lucene-based functionality, their interfaces are so radically different
that careful consideration is required. Solr wins out if you need features like replica-
tion and the ability to rapidly scale or to easily access indexes over a network, or if you
want to provide the same index to multiple applications, including non-Ruby applica-
tions. Ferret wins out if you want a simple, single-machine, Ruby-only solution,
because it can be installed in one step using RubyGems, whereas Solr requires you to
install several pieces of software just to get started.

 The solution covered in this section expects that you have Apache Solr installed
and running correctly. The installation of Solr is beyond the scope of this chapter, but
the official home page is at http://lucene.apache.org/solr/, and information about
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://lucene.apache.org/java/docs/queryparsersyntax.html
http://lucene.apache. org/java/docs/queryparsersyntax.html
http://ferret.davebalmain.com/api/files/TUTORIAL.html
http://lucene.apache.org/solr/

260 CHAPTER 12 Searching and indexing

its dependencies, such as Java 1.5 (or higher), and how to download Solr, is available
in the main tutorial provided on the site.
Problem
You wish to use a Solr installation to index and query a set of documents, whether the
Solr server is local or remote. This will give you the ability to perform searches over
HTTP and to use Solr’s features to gain access to a more robust, scalable, cross-applica-
tion search solution.
Solution
In our solution in listing 12.4, we assume Solr is installed and running, and that access
to the admin interface is possible at http://localhost:8983/solr/admin/. If the server
is running on a different machine or port, replace localhost references in the code
with the relevant hostname, IP address, and/or port.

require 'net/http'
require 'uri'
require 'open-uri'

Very basic client library for Solr
class MySolr
 def initialize(server)
 @server = server
 end

 def <<(doc)
 # Put together the XML for Solr in a basic fashion
 xml = %q{<add><doc>}
 doc.each do |key, value|
 xml << %Q{<field name="#{key}">#{value}</field>}
 end
 xml << %q{</doc></add>}

 # Send the request
 make_xml_request xml
 end

 # Commit any new documents to the index
 def commit
 make_xml_request %q{<commit waitFlush="false"
 waitSearcher="false" />}
 end

 # Delete an item from the index
 def delete(id)
 make_xml_request %Q{<delete fromCommitted="true">
 <id>#{id}</id></delete>}
 end

 # Perform a query / search on the Solr server
 def query(q)
 params = %Q{?q=#{q}&wt=ruby}
 uri = @server + "select/" + params

Listing 12.4 The MySolr class

B

 eval(open(uri).read)['response'] rescue nil C

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

261Standalone and high-performance searching

 end

 private

 # Makes an HTTP POST request to Solr and sends the data we supply
 def make_xml_request(body)
 uri = URI.parse(@server + "update")
 res = Net::HTTP.new(uri.host, uri.port).start do |http|
 http.post(uri.path, body, { 'Content-Type' => 'text/xml' })
 end
 raise "Error - #{res.class}" unless res.class == Net::HTTPOK
 end
end

A class is specially provided here, as current libraries available are focused on integra-
tion with Ruby on Rails, rather than for use directly from Ruby. As such, this basic
library demonstrates how Solr works at a deeper level by making the HTTP requests
directly. Once you become familiar with Solr, you may choose to take a different
approach, or to use one of the Rails/ActiveRecord-based solutions.

 The MySolr class (listing 12.4) is used by the remainder of this solution, so you’ll
need to include it at the top of the code in listings 12.5 through 12.7 or require it in.
These three code examples give demonstrations of some of the most basic functions
provided by both Solr and the MySolr interface class.

Create an index object using the MySolr class
index = MySolr.new("http://localhost:8983/solr/")

Add documents to the index
index << { :id => 1,
 :name => "My Test Document",
 :text => "This is a test to demonstrate Solr" }

index << { :id => 2,
 :name => "Irrelevant Title",
 :text => "Another test document" }

Commit the documents to the index
index.commit

results = index.query('title')

Print the results
puts "#{results['numFound']} result(s) found!"
puts
results['docs'].each do |result|
 puts "Document ID: #{result['id']}"
 puts " Title: #{result['name']}\n\n"
end

Running listing 12.6 after the indexing routine in listing 12.5 should produce a result

Listing 12.5 Adding and indexing documents

Listing 12.6 Querying the index
like the following:

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

262 CHAPTER 12 Searching and indexing

1 result(s) found!

Document ID: 2
 Title: Irrelevant Title

index.delete(1)
index.delete(2)
index.commit

As a search engine system with a network-accessible API, most of the code that makes
up the MySolr library is concerned with making HTTP connections and moving XML
data around. This contrasts with our earlier experiments with Ferret, which work in a
very natural, Ruby-coded way. Solr, on the other hand, accepts XML instructions over
HTTP, although its internal operation is somewhat similar to that of Ferret.

 The MySolr class is not to be considered a particularly reliable Solr client library,
although it works well for our demonstration of how to integrate with Solr at the HTTP
level. One major flaw with the library is that it doesn’t construct XML documents in a
reliable way. (The intricacies of building XML documents is long-winded and beyond
the scope of this chapter.)

 This solution depends on a Solr server being installed and running when MySolr is
used. It also expects you to be using the “example” Solr server that’s built by default
when you install Solr. This example server includes a schema with predefined field
types that we use in the solution (namely, id, name, and text). If you wanted to build
your own schema from scratch, you would need to cater for this in the documents you
index from Ruby, and ensure that they only present the legitimate fields to Solr; other-
wise an error will result.

 From the client’s point of view, using MySolr is similar to using the Ferret library.
In listing 12.5, we create an index and push documents onto it. Querying is quite dif-
ferent, as you can see in listing 12.6. Solr accepts queries over HTTP to a URL like so:

http://hostname:port/solr/select?q=query

If you have Solr running, you can use such a URL and see the results come back in
XML format. For our purposes, we add an extra option that makes Solr return the
results in a Ruby-friendly format, by using a URL like this:

http://hostname:port/solr/select?q=query&wt=ruby

This technique is apparent in the query method of MySolr (listing 12.4) when we put
the URL together B. Solr will return a string that can be evaled by Ruby:

{'responseHeader'=>{'status'=>0,'QTime'=>0,'params'=>{'q'=>'title',

➥ 'wt'=>'ruby'}},'response'=>{'numFound'=>1,'start'=>0,'docs'=>

➥ [{'name'=>'Irrelevant Title','id'=>'2','sku'=>'2','popularity'=>0,

➥ 'timestamp'=>'2007-07-12T03:56:49.618Z'}]}}

We evaluate this and return the relevant section from the query method (C in
listing 12.4). This eval line downloads the results (using open-uri’s convenient

Listing 12.7 Deleting items from the index
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

263Standalone and high-performance searching

technique), evaluates the Ruby-friendly text response, then returns only the
response section, because the responseHeader section only contains information
about the request and how long it took to complete.

 The information that gets returned to the main client is then a hash that looks like
this:

{'numFound'=>1,'start'=>0,'docs'=>[{'name'=>'Irrelevant Title','id'=>

➥ '2','sku'=>'2','popularity'=>0,'timestamp'=>'2007-07-12T03:56:49.618Z'}]}

With this information, it’s rudimentary to walk through the information and present
the results.

 Deleting items indexed by Solr is achieved, again, by a simple HTTP call. The code
in listing 12.7 demonstrates how this feature of MySolr is used, and the code in the
library illustrates the API call at a more direct level.
Discussion
In this section we have interfaced with Solr, a system that provides a network-accessible
API using HTTP to a search indexer and query engine. Ruby is particularly well equipped
to deal with engaging with remote APIs, and Solr is a great example of where using a sys-
tem built upon a non-Ruby technology can still have a good fit with Ruby code.

 Our solution focused primarily on the mundane indexing and querying, but
behind the scenes were many API calls produced by MySolr and delivered using HTTP.

 You can learn more about Solr’s HTTP API calls and how to index data and config-
ure Solr at the Solr Wiki at http://wiki.apache.org/solr/FrontPage.

 Later in this chapter, we will look briefly at how to use Solr from a Ruby on Rails
application, where the acts_as_solr plugin takes care of all of the intricacies of XML
and HTTP.

12.2.3 Ultrafast indexing and searching with FTSearch

The previous two sections have looked at Apache Lucene-based searching and index-
ing tools. In this section, we’re going to look at a more grassroots, specialized, and
high-performance library called FTSearch.

 FTSearch is a performance-focused search library written primarily in Ruby (with a
little C, for performance) by Mauricio Fernandez. FTSearch began its life when Fer-
nandez wanted to create a tool that could search Ruby’s documentation faster than
the existing ri tool. He decided to start by writing a basic suffix-array-based full-text
search engine, and his first pure Ruby implementation—achieved in merely 300
lines—was already many times faster than ri’s existing search.

 With further work, and the addition of a little C code, FTSearch became so fast that
Fernandez began to test FTSearch on the source code for Linux rather than on the
trivial amount of Ruby documentation available. At the end of 2006, Fernandez’s
benchmarks showed that FTSearch was outperforming Ferret (and therefore the
Lucene approach in general) by between 3 and 30 times.

 These characteristics, coupled with FTSearch’s current lack of many features Ferret

and Solr provide, mean FTSearch is ideally equipped for situations where you have a

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://wiki.apache.org/solr/FrontPage

264 CHAPTER 12 Searching and indexing

massive set of text files (such as source code) and all you need to do is index and per-
form queries on their raw contents very rapidly.
Problem
You want to index, and then search via query, an arbitrary set of documents or files
extremely quickly, without using an Apache Lucene derivative. Raw indexing and
query performance are the overriding considerations, as opposed to features.
Solution
We will use an indexer (listing 12.8), which will define the fields, iterate through the
files, and index them. We’ll then use a query script (listing 12.9) to query the index we
created.

Add ./lib and ./ext/ftsearch to the path search for "require"s
$:.unshift *%w{lib ext/ftsearch}

Load the necessary parts of the FTSearch library
require 'ftsearch/fragment_writer'
require 'ftsearch/analysis/simple_identifier_analyzer'
require 'ext/ftsearch/ftsearchrt'

Define a set of fields for the index to use, as with our Ferret example
field_infos = FTSearch::FieldInfos.new
field_infos.add_field(:name => :uri, :analyzer =>
 FTSearch::Analysis::SimpleIdentifierAnalyzer.new)
field_infos.add_field(:name => :content, :analyzer =>
 FTSearch::Analysis::WhiteSpaceAnalyzer.new)

Create an index that uses the fields defined above
index = FTSearch::FragmentWriter.new(:path => "testindex",
 :field_infos => field_infos)

Get a list of files to index
files_to_index = Dir["data/**/*.*"]

Go over each file and add it to the index
files_to_index.each do |file|
 puts "Adding to index: #{file}"
 index.add_document(:uri => file, :content => File.read(file))
end

Write index to disk from memory
index.finish!

Add ./lib and ./ext/ftsearch to the path search for "require"s
$:.unshift *%w{lib ext/ftsearch}

Load the necessary parts of the FTSearch library
require 'ftsearch/suffix_array_reader'
require 'ftsearch/fulltext_reader'
require 'ftsearch/document_map_reader'
require 'ftsearchrt'

Listing 12.8 Using FTSearch to build an indexer

Listing 12.9 Querying the index

B

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

265Standalone and high-performance searching

Set up readers for each stage of the searching and ranking process
fulltext_reader = FTSearch::FulltextReader.new(:path =>
 "testindex/fulltext")
suffix_array_reader = FTSearch::SuffixArrayReader.new(fulltext_reader,
 nil, :path => "testindex/suffixes")
doc_map_reader = FTSearch::DocumentMapReader.new(:path =>
 "testindex/docmap")

Get a query from the user
puts "What do you want to search for?"
query = gets.chomp

Get the raw "hits" for the query in the index
hits = suffix_array_reader.find_all(query)
puts "#{hits.size} found"

offsets = suffix_array_reader.lazyhits_to_offsets(hits)
puts "#{offsets.size} documents found"

Sort the documents based on weights of fields
This gives the first field "uri" more weight than the content
sorted = doc_map_reader.rank_offsets(offsets, [1000000, 10000])

Print the sorted results
puts "Results:"

sorted.each do |doc_id, score|
 puts "Document ID: #{doc_id}"
 puts " Score: #{score}"
 puts " Filename: #{doc_map_reader.document_id_to_uri(doc_id)}\n\n"
end

Before we look at how the FTSearch library is used, it’s necessary to cover its installa-
tion process. As a prerelease library, FTSearch requires a manual installation. The
library, in its current state, can be installed using the Darcs package manager
(darcs.net/), like so:

darcs get http://eigenclass.org/repos/ftsearch/head/

Or, if you don’t want to download and install Darcs, you can mirror or manually down-
load all of the files directly from eigenclass.org/repos/ftsearch/head/.

 Once you have all of the files, the README file explains how to compile the C por-
tion of the library. On most systems, this is as easy as running this command:

cd ext/ftsearch && ruby extconf.rb && make

The FTSearch solution is split into an indexer and a program that performs queries
upon the index. The indexer (listing 12.8) looks very similar to the Ferret indexer.
Fields are defined, again using a FieldInfos class B. Notice that we specify different
analyzers to be used on the two fields. The content is indexed with each word being
parsed once it is broken up by whitespace. But filenames are divided up by other sepa-
rators, and the SimpleIdentifierAnalyzer looks for groups of alphanumeric charac-
ters, whether or not separated by whitespace. This will allow the query client to search
for words within filenames.

C

D

E

F

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

266 CHAPTER 12 Searching and indexing

 The rest of the indexer retrieves a list of files from the data subdirectory and pro-
vides them to the index object to be indexed. Finally, the finish! method is called on
the index to write the data to disk.

 The querying program (listing 12.9) looks a little more complex. Due to
FTSearch’s young age, it’s necessary to do more work than you need to do with Ferret.
We have to require quite a few library files (which, in future, will hopefully be
replaced with a single require "ftsearch"!) and create instances of readers for the
different types of files in the index. Usually these functions would be abstracted away
within a library, and it’s anticipated that this will happen with FTSearch in the future.

 Once the reader objects are prepared and the user has supplied a query, the first
step is to get a list of all of the “raw hits” for the query C. With the list of raw hits in
the bag, it’s time to refer them to the documents D, and then sort our results by the
scores with rank_offsets E. The second argument to rank_offsets is an array with
weights for each field used in the index. Whereas with Ferret the boost values could
be provided up front and stored in the index, with FTSearch it is currently necessary
to provide these figures at the time of search. Therefore, we’re giving words within
the filename a “boost” of 1,000,000, and words within the files themselves a boost of
only 10,000.

 Displaying the sorted results is easy, as rank_offsets returns an array containing
document IDs and scores F.
Discussion
If the source code to the Linux 0.01 kernel (http://www.kernel.org/pub/linux/
kernel/Historic/linux-0.01.tar.gz) is extracted into the “data” directory, the code
in listing 12.9 is run, and a query of “Linus” is supplied, the results should look
like this:

2 found
2 documents found
Results:
Document ID: 68
 Score: 2
 Filename: data/linux/kernel/vsprintf.c

Document ID: 28
 Score: 1
 Filename: data/linux/include/string.h

If you want to run your own tests, make sure you provide a large corpus, such as the
large collection of source code found in the Linux kernel. FTSearch’s techniques are
better suited to indexing and searching large sets of data, not small sets, so it makes
sense to test it out properly!

 The FTSearch installation comes with a README file and several excellent exam-
ples, all of which are more in-depth than the simple solution demonstrated here. By
reading through the examples, the full power of FTSearch becomes apparent. A
FTSearch vs. Ferret benchmarking tool is also included, so you can see FTSearch’s sig-

nificant speed advantages for yourself.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://www.kernel.org/pub/linux/kernel/Historic/linux-0.01.tar.gz
http://www.kernel.org/pub/linux/kernel/Historic/linux-0.01.tar.gz

267Standalone and high-performance searching

12.2.4 Indexing and searching Rails data with Ferret and Solr

When approaching search with Rails, you might be asking, “Why use Ferret or Solr or
Sphinx from Rails? Can’t I search with a database and ActiveRecord?”

 Rails and ActiveRecord provide an abstraction between classes, objects, and data
stored in a database. Rails supports a number of different database systems, such as
MySQL, PostgreSQL, Microsoft SQL Server, and Oracle. Unfortunately all of these
database systems work in different ways.

 Some of the database engines Rails supports include advanced full-text search fea-
tures and others do not. Furthermore, different data and table types within each engine
can have different search characteristics. This has meant that Rails and ActiveRecord
have not been able to provide a generic, easy way to perform full-text searches on tables
within Rails applications, instead leaving users to perform sloppy, non-portable SQL
hacks like this (for MySQL):

results = Post.find(:all, :conditions => "title LIKE '%search phrase%'")

The downside to the preceding code line is that it forces the database to go through
every row in the posts table to find an entry with a title containing the necessary word
or phrase. As we discussed in section 12.1, this is considered to be a search, but without
any indexing process it’s extremely inefficient and slow, particularly on larger datasets.

 To get around the performance problems, it’s possible to use the Lucene-inspired
Ferret library that we looked at in section 12.2.1 to index data that’s in our database,
and then query the index when we want to perform searches, rather than querying
the database directly. Once Ferret returns the correct document IDs, we can use stan-
dard ActiveRecord methods to extract the data from the live database.
Problem
You want to index, then search via query, data stored in a single Rails model using a
Ferret- or Solr-based index.
Solution
We are going to focus on a Ferret-based solution, and then we’ll take a quick look at
how to change the solution to work using Solr. As the interfaces of the two plugins are
so similar, a full, second solution for Solr is not necessary.

 Note that this solution relies on having Ferret installed (as explained in sec-
tion 12.2.1). You will also need the acts_as_ferret Rails plugin, which can be installed
simply:

gem install acts_as_ferret

Once acts_as_ferret is installed, add the following line to the end of your config/envi-
ronment.rb file, and the remainder of the solution will work:

require 'acts_as_ferret'

Once acts_as_ferret is installed and included in our Rails application, using Ferret’s
features on our models becomes extremely trivial. To get started, open your model file

(app/models/post.rb or whichever model you please), and edit it so it looks similar to

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

268 CHAPTER 12 Searching and indexing

listing 12.10. Note the call to acts_as_ferret; this tells the plugin that this model is
searchable.

class Post < ActiveRecord::Base
 has_many :comments
 belongs_to :user

 acts_as_ferret :fields => {
 :title => { :boost => 10 },
 :content => { }
 }
end

Querying the index is very simple and offers helpers that will work from models, con-
trollers, and views:

Post.find_by_contents("test").each do |post|
 result_title = post.title
 result_score = post.ferret_score
end

The acts_as_ferret line throws a whole set of gears into action that take care of
indexing and tracking the title and content fields/attributes on our Post objects.
But a more powerful style to follow is the style shown in listing 12.10 B. This style is
more complex, but it allows us to specify options for each field, much as we did in sec-
tion 12.2.1. Similar to our example in listing 12.2, we apply a boost to a particular
field. This means that words contained within the title of a post are considered
more important than those in the content. Because titles are usually more concise
and targeted than the content of blog posts, this is a good use of the boost technique.

 You can also specify whether or not Ferret should store the data it’s indexing by
using the :store option, much as we did in listing 12.2 (by default, storing is off):

acts_as_ferret :fields => {
 :title => { :boost => 10, :store => :yes },
 :content => { }
 }

Now let’s add posts to be indexed to our database (you can do this using the script/
console tool to make it easier):

Post.create(:title => "Test Post", :content => "A test document!")
Post.create(:title => "Another Post", :content => "More test stuff!")
Post.create(:title => "Third Post", :content => "End of testing")

The acts_as_ferret plugin takes care of the indexing automatically, so we can immedi-
ately start making queries using the find_by_contents method that acts_as_ferret
adds to models it’s supporting:

Post.find_by_contents("test").each do |post|
 puts "#{post.title} - #{post.ferret_score}"

Listing 12.10 A simple search-enabled class using acts_as_ferret

B

end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

269Standalone and high-performance searching

With our example data, we get these results:

Test Post - 1.0
Another Post - 0.025548005476594

Naturally, more complex examples are possible, as you get the full range of Boolean,
wildcard, and other searches that Ferret supports:

Post.find_by_contents("te*").each { |p| puts p.title }

It’s also possible to query the index without returning each matching object. This
could be useful if you just wanted to count the number of results, do pagination, or
get access to the metadata:

Post.find_id_by_contents("test*")

The preceding search results in an array like the following:

[3, [{:score=>1.0, :model=>"Post", :id=>"1", :data=>{}},
{:score=>0.0157371964305639, :model=>"Post", :id=>"2", :data=>{}},
{:score=>0.0157371964305639, :model=>"Post", :id=>"3", :data=>{}}]]

The find_by_contents method also supports the :limit and :offset features that
will be familiar from other finders:

Post.find_by_contents("*", :limit => 1, :offset => 1)

This search will return not the first result, but the second result, and it can also be use-
ful for pagination.

 You can learn a lot more about how acts_as_ferret works from the official wiki at
http://projects.jkraemer.net/acts_as_ferret/wiki.
Discussion
Now that we’ve covered acts_as_ferret sufficiently, let’s look at using the same code
with Solr, a Lucene-based search server. The acts_as_solr plugin provides a very
similar interface to acts_as_ferret, and its API documentation is available at http://
api.railsfreaks. com/projects/acts_as_solr/.

 The acts_as_solr plugin is installed in the same way as most Rails plugins, using the
script/plugin tool (which requires Subversion to be installed):

ruby script/plugin install

➥ svn://svn.railsfreaks.com/projects/acts_as_solr/trunk

The plugin can use a remote Solr install (as we did in section 12.2.2—you should even
be able to use the same example install that we used previously) but it also comes with
its own version of Solr, which makes things easier. To run it, type this:

cd vendor/plugins/acts_as_solr/solr/
java -jar start.jar

Solr will then be running permanently, and you can continue developing on another
shell or terminal.

 Before we change any code in the Rails application, the configuration file in db/
solr.yml must be updated to use the correct address and port number for the cur-

rently running version of Solr. Update this for both production and development

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://projects.jkraemer.net/acts_as_ferret/wiki
http://api.railsfreaks.com/projects/acts_as_solr/
http://api.railsfreaks.com/projects/acts_as_solr/

270 CHAPTER 12 Searching and indexing

environments before continuing, or the acts_as_solr plugin might break in one or
the other environment. The address of the Solr server will have been printed on the
screen when you ran the Solr server.

 Changing the Post model from that in the Ferret example to using acts_as_solr,
results in the following:

class Post < ActiveRecord::Base
 has_many :comments
 belongs_to :user

 acts_as_solr :fields => [{:title => {:boost => 10}}, :content]
end

The syntax is a little different for specifying the boost (and any other options you
might choose to use), but the technique is almost the same as for acts_as_ferret. For
example, querying is very similar:

Post.find_by_solr("test")

Or, if you’d like to get a full set of results:

Post.find_by_solr("test").records.each { |p| puts p.title }

Both of these solutions (Ferret and Solr) are great in themselves, but they can sometimes
suffer from corrupted indexes, complex deployments, or performance problems. The
Sphinx full-text search engine, covered in the next section, isn’t perfect, but it does solve
some of these problems and offers a compelling alternative to Lucene-based solutions.

12.2.5 Searching in Rails with Ultrasphinx

Ferret and the other search options we discuss in this chapter are tested and proven to
work well in most situations, but some environments call for more-performant and
better-scaling solutions. Sphinx, a search daemon written by Andrew Aksyonoff, is a
high-performance full-text search engine that works with MySQL and PostgreSQL. In
this section, we’ll look at using Sphinx in your Rails applications using a plugin.

 Before getting started, you’ll need to install the Sphinx search engine, available
from http://www.sphinxsearch.com/. Once you get it installed, we can look at how to
use it with Ruby.
Problem
You need to do high-performance indexing and searching in our Rails application.
Solution
The Ultrasphinx plugin by Evan Weaver is by far the best Sphinx interface for Ruby. It
supports all the basic features of Sphinx (plus a few extras like spell-checking), and
wraps all this in an incredibly simple API that works with ActiveRecord.

NOTE If the Ultrasphinx syntax doesn’t work for you, try Thinking Sphinx. It
offers nearly the same functionality with a different syntax. You can get it
at http://github.com/freelancing-god/thinking-sphinx

To get the Ultrasphinx plugin working, you’ll first need to install it. Ultrasphinx

requires the Chronic gem, so you’ll have to install it too:

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://www.sphinxsearch.com/
http://github.com/freelancing-god/thinking-sphinx

271Standalone and high-performance searching

sudo gem install chronic
script/plugin install –x

➥ svn://rubyforge.org/var/svn/fauna/ultrasphinx/trunk

After you get that installed, copy the default.base file from the plugin’s examples
directory to your config/ultrasphinx directory. Now we can add the Ultrasphinx calls
to the models we want to index. Listing 12.11 shows a basic indexed model.

class Article < ActiveRecord::Base
 is_indexed :fields => ['title', 'content', 'byline']
end

Note that we specify the fields to index along with the call to is_indexed. Only the
fields we indicate here will be indexed.

 Finally, we need to let Ultrasphinx set up the Sphinx daemon and build the index.
Ultrasphinx encourages you not to edit the configuration files by hand, because they
include a lot of Ultrasphinx- and Rails-specific options that need to stay the way they
are for the plugin to work. To get everything set up, run the following Rake tasks:

rake ultrasphinx:configure
rake ultrasphinx:index
rake ultrasphinx:daemon:start

The Sphinx daemon should now be configured, the models indexed, and the daemon
started.

TIP You can also run rake ultrasphinx:bootstrap to do the same thing as
the Rake commands.

Listing 12.12 shows how to execute a search.

@search = Ultrasphinx::Search.new(:query => 'excellent food')
@search.run
@results = @search.results

After the search in listing 12.12 is run, the @results variable will have an enumerable
collection of ActiveRecord objects returned for “excellent food”, and you can use
them as you would anything else that includes Enumerable (e.g., #each, #[], and
so on).

 When it comes times to rotate your Sphinx index, you can do so by running the
following Rake task:

rake ultrasphinx:index

This will rotate the index leaving the daemon in its current state (started or stopped).
Discussion
We’ve just covered the basic case here, but there are a lot of useful options available in

Listing 12.11 A model that’s indexed with Ultrasphinx

Listing 12.12 Executing a full-text search with Ultrasphinx
Ultrasphinx that go beyond a simple use case.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

272 CHAPTER 12 Searching and indexing

 One great feature of the Ultrasphinx plugin is its built-in support for the de facto
standard pagination plugin: will_paginate from Mislav Marohni? and P.J. Hyett. To get
paginated results from your searches, you’ll first want to install will_paginate:

script/plugin install git://github.com/mislav/will_paginate.git

Then, in your controller, feed a page parameter to the initializer for Ultrasphinx::
Search. In this case, we’ll use params[:p] as the value:

@search = Ultrasphinx::Search.new(:query => @query,:page => params[:p])

Then, in your views, you’ll need to use the will_paginate view helper.

<%= will_paginate(@search) %>

You can then operate on your search results like other collections you previously pagi-
nated using will_paginate.

 If you’d like to have your results highlighted to show matches in the fields, you can
tell Ultrasphinx to highlight matched sections by calling excerpt instead of run:

@results = @search.excerpt

After this, the model instances in @results will be frozen and have their contents
changed to the excerpted and highlighted results.

 If you’d like to weight the results of your search, you can provide a hash with the
field-to-weight ratios in them. For example, if we wanted the title and byline of an arti-
cle to have more weight in the results than the body, we’d do something like this:

@search = Ultrasphinx::Search.new(:query => @query, :weights =>

➥ { [CA]'title' => 2.0, 'byline' => 2.0})

Now the search results will be ordered by the weight of the matches on the indexed
fields.

 You can also provide a number of options for indexing. If you want to cut down on
indexing overhead, you can switch to delta indexing, which lets you provide a con-
straint on what values will be indexed. For example, if we wanted to only index
records that had been changed in the last day, we could do something like the follow-
ing in our .base file in config/ultrasphinx/:

delta = <%= 1.day + 30.minutes %>

To tell Ultrasphinx that models should use the delta index, you’ll need to change the
call to is_indexed slightly to add :delta => true:

is_indexed :fields => ['title', 'body'], :delta => true

The only catch to this is that it builds a separate index. This means you’ll need to
rotate it using a different Ultrasphinx Rake task (rake ultrasphinx:index:delta)
and you’ll need to merge the changes into the main index inside the delta period (for
example, if your delta is one day, you’ll need to do it daily). If you keep this in mind, a
delta index is an excellent way to keep your indexing overhead to a minimum.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

273Integrating search with other technologies

 You can also assign arbitrary conditions to indexing. For example, if you only want
to index videos that have not been marked as “deleted,” you could do something like
the following:

class Video < ActiveRecord::Base
 is_indexed :fields => ['title', 'desc'], :conditions => "deleted = 0"
end

From now on, Sphinx will only index records whose deleted attribute is false (or, in
SQL, 0). This is useful for situations where content may be hidden or otherwise
masked from users and, as such, should not show up in searching.

 Next, we’re going to change gears significantly. We’ll move away from the dry, tech-
nical world of directly interfacing with indexing and querying routines and rely on
more-automated indexing solutions.

12.3 Integrating search with other technologies
So far, we’ve focused on indexing and querying various collections of local data, but
now we’re going to look at how we can use and integrate searching and indexing tech-
niques with other technologies, such as the web and database-driven applications.

12.3.1 Web search using a basic API (Yahoo!)

In the eyes of many, search means Google. We know that there’s a lot more to search
than that, but it’s impossible to escape the fact that, to many people, “search” relates
to the ability to search the web. This isn’t a bad assumption to make, because the web,
coupled with search engines like Google and Yahoo!, provides a relatively device- and
format-agnostic way to search large sets of data. In the rest of this chapter, we’re going
to look at how you can perform your own web searches with Ruby on both Google and
Yahoo! using two different techniques, a search API and “scraping.”

 In this solution, we’ll query Yahoo! and process the results it returns in a basic XML
format, although a similar approach can be used for many systems that provide basic
APIs where the query can be specified on a URL and the results are returned in a struc-
tured format (such as searches made with Amazon.com’s developer APIs).
Problem
You want to perform web searches using search engines, such as Yahoo!, that return
structured data.
Solution
We’ll use the Yahoo! Web Search API to search for the five top results for “ruby”; our
implementation is in listing 12.13.

require 'open-uri'
require 'rexml/document'

Specify some parameters for the search

Listing 12.13 Searching for “ruby” using Yahoo!’s API
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

274 CHAPTER 12 Searching and indexing

results = 5
query = 'ruby'
appid = 'YahooDemo'

Construct the URL using our parameters and retrieve the XML data
url = "http://api.search.yahoo.com/WebSearchService/V1/webSearch"
url += "?query=#{query}&appid=#{appid}&results=#{results}"
xml = open(url).read

Print search results extracted from XML
REXML::Document.new(xml).elements.each('ResultSet/Result') do |result|
 puts result.text('Title') + " => " + result.text('Url')
end

Yahoo! provides access to its Web Search API via simple URLs. The first half of our pro-
gram is concerned entirely with loading up the libraries we need to use (code omitted
below) and building up one of these URLs B.

 The basic parameters required by Yahoo! are the number of results to return (in
this case, 5), an application ID (YahooDemo), and a query (in this case, ruby). There
are about ten other parameters that access advanced features, like removing adult
sites, choosing sites from certain countries, and so forth. They are covered in detail at
http://developer.yahoo.com/search/web/V1/webSearch.html.

 The application ID in our example is YahooDemo, which Yahoo! provides for test
purposes only. It should work for a few queries, but if you want to use the Yahoo! Web
Search API seriously, you’ll need to apply to Yahoo! for your own application ID and
agree to their terms and conditions. You can learn more about this, and the rest of
Yahoo!’s APIs at http://developer.yahoo.com/search/.

 After the URL has been put together, we use open-uri’s useful open method to
download the XML:

xml = open(url).read

The resulting XML is too long and complex to print in this book, but its format
becomes apparent from the code we use to parse it C. This code uses Ruby’s standard
XML process library, REXML, to iterate over each Result element of the XML from
Yahoo!, and then to print out the contents of the inner Title and Url elements in
each case:

Ruby Programming Language => http://www.ruby-lang.org/en
Ruby (programming language) - Wikipedia, the free encyclopedia =>
http://en.wikipedia.org/wiki/Ruby_programming_language
Ruby Central => http://www.rubycentral.com/
Ruby Annotation => http://www.w3.org/TR/ruby/
Ruby Programming Language => http://ruby-lang.org/

Discussion
The Yahoo! Web Search API represents, to us as programmers, an excellent web
search API because the results are returned in a programmer-friendly XML format.
This format has been defined by Yahoo! and will remain consistent and documented
(at Yahoo!’s developer site).

B

C

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://developer.yahoo.com/search/web/V1/webSearch.html
http://developer.yahoo.com/search/

275Integrating search with other technologies

 The results of running this program—a Yahoo! web search using the query
“ruby”—will look something like this:

Ruby Programming Language => http://www.ruby-lang.org/en
Ruby (programming language) - Wikipedia, the free encyclopedia =>
http://en.wikipedia.org/wiki/Ruby_programming_language
Ruby Central => http://www.rubycentral.com/
Ruby Annotation => http://www.w3.org/TR/ruby/
Ruby Programming Language => http://ruby-lang.org/

Next, we’re going to move on to a rougher approach to searching—a Google “screen
scraping” approach.

12.3.2 Web search using a scraping technique (Google)

Let’s face it, Google is the granddaddy of search, so it’s natural to want to be able to
use its results in a programmatic fashion. Or how about other sites, like the Internet
Movie Database (http://www.imdb.com) or a typical e-commerce site? Unfortunately,
we need to resort to the dark magic of scraping.
Problem
You want to perform web searches and extract data from search engines or other web-
sites that don’t present their results in a structured way. This forces you to use a scrap-
ing technique.
Solution
Until the end of 2006, Google provided access to a SOAP-based search API, but this has
been withdrawn from use for all except existing users. As this system is now depre-
cated and closed to the public, we cannot go into its operation. Google replaced the
SOAP-based API with an AJAX-based one to be used directly on web pages, but this API
is not of significant use to us.

 It should be noted that scraping search results in an automated fashion is against
Google’s terms of service, although it is generally allowed for nonautomated, per-
sonal use. We expect you to use any code provided in this section in good faith and
in compliance with Google’s terms of service (or those of any other site you choose
to scrape).

 To start, you need to install the scRUBYt! library. scRUBYt! (http://scrubyt.org/) is
a Ruby library, developed by Peter Szinek, that makes it easy to automate and process
data on the web. It is available as a gem and can be installed as follows:

gem install scrubyt

On some platforms, you may also need to install an extra gem (only do this if there is
an error when running this solution):

gem install ParseTreeReloaded

Now, let’s get down to scraping. Listing 12.14 shows how to fetch a Google results page
and scrape the results from it.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://www.imdb.com
http://scrubyt.org/

276 CHAPTER 12 Searching and indexing

require 'rubygems'
require 'scrubyt'

query = "ruby"

results = Scrubyt::Extractor.define do
 fetch 'http://www.google.com/'
 fill_textfield 'q', query
 submit

 result('/html/body/div/div/div', { :generalize => true }) do
 link_title '/a[1]'
 link_url '/a/@href'
 end
end

puts results.to_xml

The conciseness of the main part of our code emphasizes how easy scRUBYt! makes
processing data on the web.

 The steps involved should be clear. As scRUBYt! features its own domain-specific
language (DSL), we define an extractor through the Scrubyt::Extractor class, and
then the fun can begin.

 The first step of the extraction process is to fetch the http://www.google.com
homepage B. That done, we can fill out the search form with our desired query and
submit the form. In this case, it’s easy to see by looking at the source code that the
Google search form uses a text field with a name of q to accept the user’s query, so we
use fill_textfield to do this job for us, and submit the form C.

 Once the form is submitted, a results page will be returned, and we need to define
a pattern to match against each result. scRUBYt! is powerful enough to allow us to
specify example results, obtained by hand, and then work out the XPath rules to
scrape that data from a page. In this case, to ensure that the example works, I have
specified the XPath rules explicitly D.

 The result block gives us access to each result (found with an XPath query of /html/
body/div/div/div) and allows us to define which elements of the result we want to
extract. In this case, we’re extracting the title and URL of the links, although you could
extract the result descriptions too, with an extra rule. These methods are simple pat-
terns and could use any name, other than link_title and link_url. scRUBYt!’s DSL is
clever enough to work out that these are the names we’re giving to the respective ele-
ments, and it will use these names in the resulting XML. For example, this code is as
valid and would result in XML output using slightly different element names:

result_title '/a[1]'
result_url '/a/@href'

The resulting XML that comes from the final puts line E can then be processed using
any XML library, such as REXML or SimpleXML.

 The results returned by this program, after a whole collection of raw debugging

Listing 12.14 Scraping Google for results for “ruby”

B
C

D

E

information, should look something like this:

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://www.google.com

277Summary

<root>
 <result>
 <link_title>Ruby Programming Language</link_title>
 <link_url>http://www.ruby-lang.org/</link_url>
 </result>
 <result>
 <link_title>Ruby Home Page - What's Ruby</link_title>
 <link_url>http://www.ruby-lang.org/en/20020101.html</link_url>
 </result>
 <result>
 <link_title>
 Ruby (programming language) - Wikipedia, the free encyclopedia
 </link_title>
 <link_url>
 http://en.wikipedia.org/wiki/Ruby_programming_language
 </link_url>
 </result>
 <result>
 <link_title>Ruby - Wikipedia, the free encyclopedia</link_title>
 <link_url>http://en.wikipedia.org/wiki/Ruby</link_url>
 </result>

 [.. extra results removed to preserve space ..]

</root>

Discussion
As Google doesn’t supply a programmer-friendly API, we had to resort to scraping
Google’s data from the regular HTML pages. As explained earlier, automating this
process on a mass scale is against Google’s terms and conditions, so tread with cau-
tion. That said, you will be able to use this same technique with other websites and
search engines, and the scraping library, scRUBYt!, comes with many examples of
using the library to scrape sites like IMDB, Yahoo! Finance, Amazon.com, and so on.

12.4 Summary
This chapter has covered a tight niche, in terms of Ruby. As we’ve seen, only a handful
of search libraries and techniques have been developed in Ruby so far, but all of them
are reasonably powerful and ready to be used in production scenarios.

 We first looked at the general principles of searching and indexing, and then looked
at some high-performance, standalone solutions in the guises of Ferret, a Ruby Apache
Lucene port, Solr, an HTTP-based search server and interface to Lucene, and FTSearch,
a high-performance suffix-array-based indexer and search library. We then discussed
how to search in your Rails applications using solutions like acts_as_ferret, acts_
as_solr, and Ultrasphinx—plugins that bridge the gap between Rails applications and
search libraries.

 Finally, this chapter has shown you how to get your bearings with the search tech-
nologies available to you in Ruby. It’s also shown you some further technologies and
libraries you can explore and look out for in the future.

 In the next chapter, we’re going to move on to document processing and report
generation.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Document
 processing and reporting
Though we’d all love to be video game programmers or lead developers for the
Next Big Web 2.0 multimedia experience, most programmers have less glamorous
problems to solve. This inevitably includes processing documents exported from
sources, ranging from legacy systems to industry-standard SQL databases. Of
course, collecting the data and translating it into a useable form is only half the
challenge. Aggregated data then needs to be manipulated, analyzed, and formatted
in ways that clearly communicate what that data represents. The field of reporting
ranges from quick sales reports for a small business to massive statistical analyses for
the enterprise.

 There are numerous canned solutions for processing one form of document
and translating it to another, or for running standard reports against data. For

This chapter covers
■ Reading and writing CSV data
■ Generating daily reports
■ Producing a comparison report
■ Generating customized printable reports
278

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

279Processing CSV data

many uses, these applications are the way to go. However, these solutions aren’t
golden hammers. When developing custom software, it’s often desirable to get exactly
the kinds of results you’re looking for, instead of using prebuilt solutions that may or
may not be what you need. For this kind of problem, Ruby shines.

 In this chapter, we’ll be looking at several solutions to common reporting prob-
lems. We’ll cover processing and formatting libraries such as FasterCSV, and we’ll look
at the lightweight reporting system, Ruport. Through these solutions, you’ll be able to
see how rolling your own solutions isn’t as scary as it sounds. By providing a solid but
malleable foundation to work from, Ruport provides a way to quickly build your own
customized reporting applications.

 We’ll start with simple CSV processing to show off FasterCSV’s feature set, then
show how to use Ruport’s code generator to trivially script a database-backed report
that automatically emails its results when run. We’ll then show how you can use Ruby’s
text-processing capabilities to compare a CSV file to a nonstandard data format. After
covering the ins and outs of data manipulation, we’ll dive into printable documents,
showing how you can leverage Ruport and PDF::Writer to generate attractive custom-
ized PDF reports. Finally, we’ll talk about how to optimize for performance when deal-
ing with large datasets in Ruport.

13.1 Processing CSV data
One of the most common tasks in document processing is handling CSV data. Used as
a generic text format for tabular data from any range of sources, the CSV format is sim-
ple and fairly easy to process. However, Ruby’s standard library for handling CSVs is a
bit awkward, and also very slow. Luckily, James Edward Gray II’s FasterCSV library has
become the de facto standard for CSV processing in Ruby. We’ll take a look at a simple
example to show the library in action, and then we’ll go over some of the key features
that you might find useful.

 To install FasterCSV, simply install the gem:

gem install fastercsv

Since FasterCSV is pure Ruby, it should work without modification on all platforms.
Problem
You need to read and write CSV data efficiently in Ruby via FasterCSV.
Solution
We’re going to implement a simple currency conversion tool to show FasterCSV in
action. The CSV data we will use for this example is quite simple:

Currency,Code,USD/1 Unit,Units/1 USD
Andorran Franc,ADF,0.1339,7.4659
Andorran Peseta,ADP,0.005372,186.167
Utd. Arab Emir. Dirham,AED,0.2723,3.6741
Afghanistan Afghani,AFA,0.01998,50.25
Albanian Lek,ALL,0.01136,91.678
Armenian Dram,AMD,0.002895,345.41

NL Antillian Guilder,ANG,0.5682,1.8

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

280 CHAPTER 13 Document processing and reporting

The small utility shown in listing 13.1 performs conversions to and from any of the
currencies listed in the CSV file, using USD as the base currency for interchange.

require "rubygems"
require "fastercsv"

class CurrencyConverter

 def self.load_data(file,currency="USD")
 @to_us = {"USD" => 1}
 @from_us = {"USD" => 1}

 FasterCSV.foreach(file, :headers => true,
 :converters => :numeric) do |r|
 @from_us[r["Code"]] = r["Units/1 USD"]
 @to_us[r["Code"]] = r["USD/1 Unit"]
 end
 end

 def self.convert(amount,options={})
 from = options[:from] || "USD"
 to = options[:to] || "USD"

 amount * @to_us[from] * @from_us[to]
 end

 def self.high_low_report
 high, low = @from_us.partition { |code,ratio| ratio < 1 }
 write_file high, "high.csv"
 write_file low, "low.csv"
 end

 private

 def self.write_file(data,filename)
 FasterCSV.open(filename,"w") do |csv|
 csv << ["Code","USD/1 Unit"]
 data.each { |record| csv << record }
 end
 end

end

As you can see, nothing about the implementation is particularly surprising. Two
lookup tables are generated for rates when CurrencyConverter.load_data() is
called. It is then possible to make arbitrary currency conversions. For example, you
could convert 100 USD to Andorran francs:

CurrencyConverter.convert 100, :to => "ADF"

You can go in reverse as well (back to USD):

CurrencyConverter.convert 12240.0, :from => "ADF"

The implementation also allows for non-U.S. to non-U.S. conversion:

Listing 13.1 Currency converter
CurrencyConverter.convert 100, :from => "ADF", :to => "AMD"

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

281Processing CSV data

In addition to this conversion feature, you can see that this little utility also offers a sim-
ple reporting facility. It will determine which currencies are higher and which are lower
in value than the USD and generate two CSV files, high.csv and low.csv. Providing that
you have loaded a CSV file with the exchange ratios, generating this report is easy:

CurrencyConverter.high_low_report

We end up with two output files:

high.csv:

 Code,USD/1 Unit
 XPT,0.0007819
 OMR,0.386
 GRD,0.7345
 ITL,0.7345
 DEM,0.7345

low.csv:

 Code,USD/1 Unit
 XCD,2.725
 SAR,3.7509
 RUB,25.6764
 NOK,5.8243
 NIO,18.743

As you can see, FasterCSV makes the task of CSV processing nearly trivial. Of course,
it’s worth discussing in a little more detail how the library works, as well as the advan-
tages it offers over Ruby’s built-in CSV standard library.
Discussion
As the name implies, FasterCSV is much faster than Ruby’s standard CSV processor. In
most cases, it is about 800 percent faster. Plus, it has more advantages than speed
alone. If we look back at the currency conversion code, the CSV processing seems to
take a back seat, letting us focus on the actual problem we’re trying to solve. It seems
this way because there are a lot of nice things that FasterCSV is handling for us.

 If you work with Ruby’s standard CSV processor, there is no direct support for CSV
headers. This means that instead of saying r["Code"], you’d be saying r[2] in our
example, or rolling your own mapping of names to indices. Whenever you give any of
FasterCSV’s reading methods the option :headers => true, it will try to use the first
line of a CSV file as the headers, and will automatically allow you to refer to cells by
column name in addition to their ordinal position.

 Because CSV files might have nonunique column names, FasterCSV supports mini-
mum ordinal indices. The following simple Interactive Ruby (IRB) session shows how
a row with two a columns can still be nicely handled using this feature:

>> a = FasterCSV.read("simple.csv", :headers => true)
>> a[0].to_a
=> [["a", "1"], ["b", "2"], ["c", "3"], ["a", "4"]]
>> a[0]["a"]
=> "1"
>> a[0]["a",1]

=> "4"

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

282 CHAPTER 13 Document processing and reporting

Rubyists often enjoy using symbols for keys rather than strings. FasterCSV allows arbi-
trary conversions of data and has a built-in converter, which makes this trivial:

>> a = FasterCSV.read("simple.csv", :headers => true,
?> :header_converters => :symbol)
>> a[0].to_a
=> [[:a, "1"], [:b, "2"], [:c, "3"], [:a, "4"]]
>> a[0][:a]
=> "1"
>> a[0][:a,1]
=> "4"

In addition to header conversions, FasterCSV allows you to do conversions on your
entire dataset, which we’ll now take a look at. One thing you’ll notice from our calcu-
lations is that we never explicitly converted the ratio fields to Float objects. However,
it’s pretty clear why we didn’t have to, if you look at the main loading code in listing 13.1:

FasterCSV.foreach(file, :headers => true, :converters => :numeric) do |r|
 #...
end

The :converters => :numeric code tells FasterCSV to use a built-in formatter to
inspect the fields and convert numeric values to their proper Ruby objects (Fixnum,
Float, etc.). This comes in handy, as it prevents us from having to do explicit to_f
calls for each field that needs to be converted. Other built-in converters are available,
such as :date, :datetime, :integer, and :float.

 It is also quite easy to build your own converters, if needed. The process is essentially
as simple as passing Proc objects that accept a field as an argument and do any necessary
manipulations. You might have noticed in listing 13.1 that FasterCSV.open() looks a
whole lot like File.open(). Listing 13.2 shows this method in use again.

FasterCSV.open(filename,"w") do |csv|
 csv << ["Code","USD/1 Unit"]
 data.each { |record| csv << record }
end

The primary difference is that instead of a File object, a FasterCSV object is yielded.
This object will automatically convert arrays into CSV rows, doing any necessary escaping.

 If we had wanted to output to a string instead of a File object, you can use Fast-
erCSV.generate. Our original code could be rewritten as follows:

csv_string = FasterCSV.generate do |csv|
 csv << ["Code","USD/1 Unit"]
 data.each { |record| csv << record }
end

This especially comes in handy when generating CSV files in the context of web appli-
cations, where you may wish to build files on the fly for download without ever storing
them server-side.

Listing 13.2 File output for currency converter
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

283Generating and emailing daily reports

 For the most part, the fact that FasterCSV acts a lot like a Ruby I/O object makes
life a lot easier, since it is very rare to be working with CSV data without the need for
I/O operations. We have only scratched the surface here, of course.

 Most programmers will encounter CSV processing jobs from time to time. Though
we didn’t cover all the edge cases, most jobs will involve some of the basic techniques
shown here. You can consult the FasterCSV documentation on its website (http://
fastercsv.rubyforge.org/) or in the gem package for more information on special cases.

 Of course, CSV processing is only part of the picture. We’ll now take a look at Ruby
Reports, which is a comprehensive reporting foundation that makes use of FasterCSV
and other popular Ruby libraries to make building custom reporting applications a
whole lot easier.

13.2 Generating and emailing daily reports
A common task in reporting is generating scheduled reports. These take on several
flavors, but they usually share the same core process: query a database for records that
match a given date or time period, process the report, then send it somewhere for use
or archival. Here we’ll look at how to solve this type of problem for a basic sales report
in Ruport.

 Ruport is a gem, so installation is straightforward. We’ll want to grab the latest ver-
sions of ruport, ruport-util, and acts_as_reportable, so the easiest way to do this is to
grab the ruport/murdoch meta-gem, which can be installed as follows:

sudo gem install murdoch

Problem
You need to produce simple custom reports based on raw SQL queries, and automati-
cally email their results, all using Ruport.
Solution
We’ll use Ruport’s code generator, called rope, to script away the boilerplate code and
cut down on hand configuration. The rope tool is part of the ruport-util package,
which is officially maintained by the Ruby Reports developers.

 The following commands create a basic code skeleton and then create templates
for our report and its controller:

$ rope store_reports
$ cd store_reports
$ rake build report=daily_sales
$ rake build controller=sales

Our report will run against a MySQL database and email it automatically upon genera-
tion. The configuration in listing 13.3 is the minimum necessary to allow us to do so.

require "ruport"

Uncomment and modify the lines below if you want to use query.rb

Listing 13.3 Rope Configuration (config/environment.rb)
#

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://fastercsv.rubyforge.org/
http://fastercsv.rubyforge.org/

284 CHAPTER 13 Document processing and reporting

Ruport::Query.add_source :default, :user => "root",
 :dsn => "dbi:mysql:storefront"

Ruport::Mailer.add_mailer :default, :host => "mail.adelphia.net",
 :address => "gregory.t.brown@gmail.com"

We set up our main report to execute a simple query, and we tell the report to render
with the Sales controller. The code in listing 13.4 generates text and PDF output for
the report, and emails both upon execution.

require "lib/init"
require "lib/controllers"

class DailySales < Ruport::Report

 renders_with Sales

 def renderable_data(format)

 query %q{ select product,quantity,customer_name from sales
 where sale_date = ? order by quantity }, :params => [today]

 end

 def today
 Date.today.strftime('%Y-%m-%d')
 end

end

DailySales.generate do |report|
 report.save_as("sales_report.pdf")
 report.send_to("gregory.t.brown@gmail.com") do |m|
 m.subject = "Sales Report for #{report.today}"
 m.text = report.to_text
 m.attach "sales_report.pdf"
 end
end

Our controller for this report is fairly simple, as you can see in listing 13.5. It simply cal-
culates the total number of items sold in a day and the number of customers. The for-
matters display this information, as well as the table that is returned from the SQL query.

require "lib/init"

class Sales < Ruport::Renderer
 stage :report_table

 module Helpers

 def today
 Date.today.strftime("%m/%d/%y")
 end

 def total_sales
 data.sum("quantity")
 end

Listing 13.4 Sales Report (lib/reports/daily_sales.rb)

Listing 13.5 Sales Report Controller (lib/controllers/sales.rb)
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

285Generating and emailing daily reports

 def total_customers
 data.column("customer_name").uniq.length
 end

 end

 formatter :text do
 build :report_table do
 output << "Sales Report for #{today}\n\n"
 render_table(data)
 output << "\n\nTotal Sales: #{total_sales} " <<
 "Total Customers: #{total_customers}"
 end

 end

 formatter :pdf do
 build :report_table do

 title = "Sales Report for #{today}\n"

 render_table(data,:formatter => pdf_writer,
 :table_format => { :title => title })

 pad(10) do
 add_text "Total Sales: #{total_sales} " <<
 "Total Customers: #{total_customers}",
 :justification => :center
 end

 end
 end

end

The report is invoked by running the following command:

$ rake run report=daily_sales

You can see the text output next, which is sent as the body of the email:

Sales Report for 07/17/07

+---+
| product | quantity | customer_name |
+---+
Tollbooth	1	Joe Rasta
Tomato	1	Al Green
Vacuum Cleaner	3	Joe Loop
Vacuum Cleaner	5	Al Green
+---+

Total Sales: 10 Total Customers: 3

The PDF output (shown in figure 13.1) is sent as an
email attachment.

 By using rope, you’re automatically given a com-
mon structure for your application that is ideal for
this sort of problem. At this point, the only task
remaining is to hook up scheduling software (such as
cron)—but we’ll leave that part up to you. Figure 13.1 Ruport’s PDF output
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

286 CHAPTER 13 Document processing and reporting

Discussion
Now let’s look at the parts of this application in more detail. When you run the rope
command, you’re actually generating a simple skeleton for Ruport applications. The
files generated are listed on the screen when the command is run:

$ rope store_reports

creating directories..
 store_reports/test
 store_reports/config
 store_reports/output
 store_reports/data
 store_reports/data/models
 store_reports/lib
 store_reports/lib/reports
 store_reports/lib/controllers
 store_reports/templates
 store_reports/sql
 store_reports/log
 store_reports/util
creating files..
 store_reports/lib/reports.rb
 store_reports/lib/helpers.rb
 store_reports/lib/controllers.rb
 store_reports/lib/init.rb
 store_reports/config/environment.rb
 store_reports/util/build
 store_reports/util/sql_exec
 store_reports/Rakefile
 store_reports/README

In our report, we needed to configure our database and mailer information, which
was done in config/environment.rb (listing 13.3). For both of these, we showed
the most basic form of configuration. If you need to authenticate your SMTP session,
the following configuration can be used to connect to an SMTP mail server that
requires authentication:

Ruport::Mailer.add_mailer :default, :host => "mail.adelphia.net",
 :address => "test@test.com",
 :user => "joe", :password => "secret",
 :auth_type => :login

As you can see, it’s simply a matter of providing a username and password and specify-
ing that the mail server uses login authentication. You can also use the following
configuration to specify a database username and password and a remote location of
your database.

Ruport::Query.add_source :default, :user => "joe",
 :password => "secret",
 :host => "192.168.1.101",
 :dsn => "dbi:mysql:storefront"

If you are working with a database other than MySQL, you can set the :dsn accord-
ingly. For example, if you’re working with ODBC it would look like this:
:dsn => "dbi:odbc:storefront"

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

287Generating and emailing daily reports

You can consult the RubyDBI documentation (or our information about DBI in chap-
ter 9) to find out what DSN to use for your data source.

 You can see that for both the Mailer and Query configurations in listing 13.3, we’ve
called our configurations :default. This is because Ruport will use these sources if
others are not specified, but it can handle multiple sources. For example, you could
easily define a test database:

Ruport::Query.add_source :test, :user => "root"
 :dsn => "dbi:mysql:storefront_test"

In our report, we could rewrite our query to use this test database, as follows:

query %q{ select product,quantity,customer_name from sales
 where sale_date = ? order by quantity }, :params => [today],
 :source => :test

Mailer works in a similar fashion and can be configured through the
Report#use_mailer() method if needed.

 We’ll now take a look at Report objects and how they tie in with the rest of Ruport.
 The main purpose of Ruport’s Report class is to keep report definitions from look-

ing like a shell script. It’s entirely possible to live without it, and when working within
other frameworks, it is even advisable to do so. For standalone reports with reasonably
basic needs, Report provides a handy base class that simplifies common Ruport tasks.

 If we look back at our report definition (listing 13.4), you’ll see it is more or less
split into two parts. The first part simply ties a query’s result set to the controller and
provides a helper method for formatting dates:

class DailySales < Ruport::Report

 renders_with Sales

 def renderable_data(format)

 query %q{ select product,quantity,customer_name from sales
 where sale_date = ? order by quantity }, :params => [today]

 end

 def today
 Date.today.strftime('%Y-%m-%d')
 end

end

The renderable_data method will pass its return value as the :data option to the
controller specified by renders_with() when you generate your report.

 The second part of our definition is our output generation code, which sends an
email of PDF and text output when it is run:

DailySales.generate do |report|
 report.save_as("sales_report.pdf")
 report.send_to("gregory.t.brown@gmail.com") do |m|
 m.subject = "Sales Report for #{report.today}"
 m.text = report.to_text
 m.attach "sales_report.pdf"
 end

end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

288 CHAPTER 13 Document processing and reporting

One thing you might notice is that when you save files to disk, Ruport ensures that the
proper formatter is called. This means that this code

report.save_as("sales_report.pdf")

is equivalent to this code:

File.open("sales_report.pdf","wb") { |f| f << report.to_pdf }

This should work with arbitrary format definitions, so that save_as("foo.some-
thing") will be equivalent to this line:

File.open("foo.something","w") { |f| f << report.to_something }

By structuring your reports this way, you gain the ability to swap out data sources very
easily. It can be useful to work with CSV dumps to design a report, and later hook it up
to the actual database. As long as the data is represented in the same way, Ruport
doesn’t care where it’s coming from.

 This means that if you had a CSV dump of your sales table, you could rewrite just
the renderable_data method and not touch anything else:

class DailySales < Ruport::Report

 renders_with Sales

 def renderable_data(format)
 Table("products.csv")
 end

end

With that in mind, we’ll look at how to avoid raw SQL by using ActiveRecord instead.
The change is surprisingly simple. We can get our model hooked up via a simple rake
task:

$ rake build model=sale

We won’t need to change anything for this report, but you can see that the model def-
inition in data/models/sale.rb is quite basic:

class Sale < ActiveRecord::Base

 acts_as_reportable

end

This allows us to use a method called report_table to get a Ruport::Data::Table back
from an ActiveRecord find. Listing 13.6 shows our new ActiveRecord-backed report def-
inition. The Report.generate code and renderer needn’t be changed at all.

require "lib/init"
require "lib/controllers"
require "data/models"

Listing 13.6 Sales Report, modified for AR (lib/reports/daily_sales.rb)
class DailySales < Ruport::Report

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

289Comparing text reports to well-formed data

 renders_with Sales

 def renderable_data(format)

 Sale.report_table(:all,
 :only => ["product","quantity","customer_name","sale_date"],
 :conditions => ["sale_date = ?", today],
 :order => "quantity")
 end

 def today
 Date.today.strftime('%Y-%m-%d’)
 end

end

You’ll also notice that our controllers don’t look any different from when we used
them in the context of rope (in listing 13.5). They’re just the same as you’d use any-
where else. The only particularly interesting bit about these controllers is that they
make use of a helper module to encapsulate tasks common to the formatters:

module Helpers

 def today
 Date.today.strftime("%m/%d/%y")
 end

 def total_sales
 data.sum("quantity")
 end

 def total_customers
 data.column("customer_name").uniq.length
 end

end

This module allows us to call these methods in our formatters and fit them into our
format as needed. There is nothing tricky going on here—the Helpers module is
mixed into the formatters at render time.

 You’ve seen here how rope provides a way to partition your code so it can easily be
reused without having to write a ton of boilerplate code. The common task of writing
a quick report that’s capable of being run by a scheduler and delivered via email to
the people that need it should be easy, and rope tries to make sure that it is. We’ll now
take a look at how to use Ruport with data that isn’t coming from a convenient source,
such as a database or CSV file.

13.3 Comparing text reports to well-formed data
Although it is desirable to report against well-formed data, it’s not always an option.
Most systems we deal with from day to day make use of relational databases, or at least
offer standardized export formats, but this isn’t true for our legacy systems. Luckily,
Ruby is an excellent text-processing language, so it can handle most obscure data for-
mats with ease.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

290 CHAPTER 13 Document processing and reporting

Problem
You need to produce a comparison report that analyzes a flat file and compares it to a
CSV data source. Your data looks like the files in listings 13.7 and 13.8.

 Transaction Report
 1/1'6 Through 11/16'6
11/16'6 Page 1
ETS Checking

 Date Num Description Category
--

 BALANCE 12/31'5

1/2'6 38-487 misc adj Misc
1/3'6 38-490 John Parlian Sales
1/3'6 38-491 Tolland Sales
1/3'6 38-492 New Alliance... Misc
1/4'6 38-494 James Farall... Misc
1/4'6 38-495 Returned Check Misc
1/4'6 38-496 Craig Winter... Dinners
1/4'6 38-497 York Dinners
1/4'6 38-498 York Misc
1/4'6 38-499 York Sales
1/4'6 38-500 York Sales
1/4'6 38-501 Wooster Sales
1/5'6 38-502 Tolland Sales
1/5'6 38-503 Bankcard Ser... Dinners

Date,Num,Description,Category
1/2/2006,38487,misc adj,Misc
1/2/2006,38489,John Parlian,Salary
1/3/2006,38490,John Parlian,Sales
1/3/2006,38491,Tolland,Sales
1/3/2006,38492,New Alliance...,Msc
1/4/2006,38493,James Farell...,Salary
1/4/2006,38494,James Farall...,Misc
1/4/2006,38495,Returned Check,Misc
1/4/2006,38497,York,Misc
1/4/2006,38498,York,Misc
1/4/2006,38499,York,Sales
1/4/2006,38500,York,Sales
1/4/2006,38501,Wooster,Sales
1/5/2006,38502,Tolland,Sales

Solution
The report in listing 13.9 is quite simple, but useful. At work, we use this to catch syn-
chronization issues with a two-way bridge between a legacy system and a standard SQL
server. It parses both files to create Table objects, which can then be compared to see

Listing 13.7 Transaction report, legacy data file

Listing 13.8 Transaction report, CSV database dump
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

291Comparing text reports to well-formed data

which records are missing from each, and which records are different, based on their
record numbers.

require "rubygems"
require "ruport"
require "ruport/util"

module Analysis

 module_function

 def process_text_file(filename)
 Table(%w[Date Num Description Category]) do |t|
 File.foreach(filename) do |r|
 next unless r =~ /\A\d+\/\d+'\d+\s{4}\d/
 row = r.split(/\s\s+/)
 row[0].sub!(/'\d+/) { |m| "/#{m[1..-1].to_i + 2000}" }
 row[1].delete!("-")
 row[-1].chomp!
 t << row
 end
 end
 end

 def missing_data(options = {})
 from,compare,by = options.values_at(:from,:compared_to,:by)
 keys = compare.column(by) - from.column(by)
 compare.sub_table { |r| keys.include?(r[by]) }
 end

 def unmatched_data(options = {})
 grouping = Grouping(options[:old] + options[:new], :by => options[:by])
 Table(options[:old].column_names + ["file"]) do |t|
 grouping.each do |n,g|
 if g.length == 2 && g[0] != g[1]
 t << g[0].to_hash.merge("file" => "old", "Num" => n)
 t << g[1].to_hash.merge("file" => "new", "Num" => n)
 t << []
 end
 end
 end
 end

end

table_from_txt = Analysis.process_text_file("checking.txt")
table_from_csv = Table("checking.csv")

The final report generation is fairly simple:

puts "The following data was missing from the Text file\n"
puts Analysis.missing_data(:from => table_from_txt,
 :compared_to => table_from_csv,
 :by => "Num")

Listing 13.9 Transaction report analysis script
puts "\nThe following data was missing from the CSV file\n"

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

292 CHAPTER 13 Document processing and reporting

puts Analysis.missing_data(:from => table_from_csv,
 :compared_to => table_from_txt,
 :by => "Num")

puts "\nThe following data did not match in the two files\n"
puts Analysis.unmatched_data(:old => table_from_txt,
 :new => table_from_csv,
 :by => "Num")

This outputs a nicely formatted text report that shows what data is out of sync between
the two files:

The following data was missing from the Text file
+---+
| Date | Num | Description | Category |
+---+
| 1/2/2006 | 38489 | John Parlian | Salary |
| 1/4/2006 | 38493 | James Farell... | Salary |
+---+

The following data was missing from the CSV file
+---+
| Date | Num | Description | Category |
+---+
| 1/4/2006 | 38496 | Craig Winter... | Dinners |
| 1/5/2006 | 38503 | Bankcard Ser... | Dinners |
+---+

The following data did not match in the two files
+--+
| Date | Num | Description | Category | file |
+--+
1/3/2006	38492	New Alliance...	Misc	old
1/3/2006	38492	New Alliance...	Msc	new
1/4/2006	38497	York	Dinners	old
1/4/2006	38497	York	Misc	new
+--+

Though the solution for this is basically straightforward, we’re playing with some of
the most powerful features in Ruby and Ruport. We’ll take some time to go through
some of the more interesting parts in depth, so that you can use these tricks in your
own reports.
Discussion
The first task we must deal with, before doing any comparisons or formatting, is pars-
ing the text file input. Our process_text_file() method handles this, building up a
table of data as it iterates through the lines of the text file. An individual record in our
text file looks like this:

1/2'6 38-487 misc adj Misc

To keep things simple, we tell our processor to skip any rows that don’t have this basic
format:
next unless r =~ /\A\d+\/\d+'\d+\s{4}\d/

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

293Comparing text reports to well-formed data

The actual check is fairly simple. In English, you can read this as: Starting at the begin-
ning of the line, match one or more digits followed by a / character, followed by one
or more digits, followed by a ' character, followed by four spaces, followed by a digit.

 This means that the pattern is really only matching the following part of the pre-
ceding record:

1/2'6 3

As there are only three types of data present in our file—header data, empty lines, and
records—this check turns out to be sufficient. Only records will match this pattern. By
jumping to the next line if this check fails, we can immediately skip processing head-
ers and blank lines.

 If we’ve matched a record, we then process it to make it into well-formed data for
comparison. Let’s look at it line by line.

 Split by at least two spaces:

row = r.split(/\s{2,}/)
row #=> ["1/2'6","38-487","misc adj","Misc\n"]

Convert the year into a four-digit year:

row[0].sub!(/'\d+/) { |m| "/#{m[1..-1].to_i + 2000}" }
row[0] $=> "1/2/2006"

Remove the dashes from the Num column:

row[1].delete("-")
row[1] #=> "38487"

Remove the newline from the Category column:

row[-1].chomp!
row[-1] #=> "Misc"

This provides us with a nicely formed record, looking something like this:

row #=> ["1/2/2006","38487","misc adj","Misc"]

Notice that each field is now in a comparable format to the records in our CSV data.
We append the record to the table we’re building up, and the final result of the
process_text_file() method a Table object with all the processed records aggre-
gated. Because the CSV is well formed, there is no need to manipulate the data, and it
is loaded via a simple call:

table_from_csv = Table("checking.csv")

With both files processed, we can begin our comparison report.
 Figuring out what data is in one file but not the other is simple, because all records

have a unique primary key in their Num field. Our missing_data() method definition
follows:

def missing_data(options = {})
 from,compare,by = options.values_at(:from,:compared_to,:by)
 keys = compare.column(by) - from.column(by)
 compare.sub_table { |r| keys.include?(r[by]) }

end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

294 CHAPTER 13 Document processing and reporting

We invoke this method twice: once to show what is missing from the text file, and once
more to show what is missing from the CSV file.

 In either case, this performs a simple set difference on the values in the Num field
to find out which keys are present in one file but not in the other:

keys = compare.column(by) - from.column(by)

In our “missing from text file” report, this results in keys being set to the two values
that are not present in the text file’s Num field, which are:

["38949","38503"]

We then create a subtable from the CSV data, including only those records that are
missing from the text file:

compare.sub_table { |r| keys.include?(r[by]) }

The result is our familiar text table output, looking like this:

+---+
| Date | Num | Description | Category |
+---+
| 1/2/2006 | 38489 | John Parlian | Salary |
| 1/4/2006 | 38493 | James Farell... | Salary |
+---+

The same process is repeated to find the records that exist in the text file but not in
the CSV file. As you can see, it is fairly trivial to do this kind of filtering, so long as you
have a unique key to work with.

 The more interesting part of this report is seeing which records exist in both files
but do not match. We use a Grouping object in unmatched_data() to simplify things.
The very first line joins the two tables together and then groups them:

grouping = Grouping(options[:old] + options[:new], :by => options[:by])

The real purpose of this grouping is to collect the data in groups by their Num fields.
This leaves us with two possible group lengths, either 1 or 2. The length 1 groups are
ones that exist in only one file, and the length 2 groups are ones that exist in both
files. As we’re building up the table for our report, we immediately reject the data that
isn’t in pairs, and then compare the first record to the second record to see if they are
equal. If they aren’t, we add them to our report:

Table(options[:old].column_names + ["file"]) do |t|
 grouping.each do |n,g|
 if g.length == 2 && g[0] != g[1]
 t << g[0].to_hash.merge("file" => "old", "Num" => n)
 t << g[1].to_hash.merge("file" => "new", "Num" => n)
 t << []
 end
 end
end

In the preceding code, we are yielded the group name and actual group object for
each iteration. Our group name represents the Num value for the records, and our

group object contains our tuple of records, with the old values preceding the new

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

295Creating customized documents for printing

values. We simply append these values to the table we are building up, adding an
empty row as a spacer for each group. The resulting table looks familiar:

+--+
| Date | Num | Description | Category | file |
+--+
1/3/2006	38492	New Alliance...	Misc	old
1/3/2006	38492	New Alliance...	Msc	new
1/4/2006	38497	York	Dinners	old
1/4/2006	38497	York	Misc	new
+--+

This allows us to inspect the data very easily and see the rows with unmatched values.
 That finishes off all the interesting implementation details of the actual report.

However, it’s worth making a comment about the structure of our report definition, as
it deviates a little from the norm.

 Our solution finds itself very near the crossroads between a quick one-off script
and a more structured application. Ruby’s object-oriented model is very pleasant to
work with, but to a minimalist, it might seem a little excessive for a problem like this.
For this reason, we use a modular design.

 By using module_function, we can create modules that encapsulate functions that
can be called directly on the module itself, rather than needing to be mixed into
another object. This means we don’t need to define a class to hold our functions; the
module alone will do.

 This provides a namespace for our code to live in, which means that we can reuse
bits of this code in other scripts without worrying about a method name like
process_text_file clashing with other definitions. This sort of structure is ideal for
scripts that are around this size and complexity. It makes the code still easy to test,
which is something you throw away with one-off scripts, and it still prevents you from
having to manage state, which is inevitable if you use an object-oriented solution.

 It’s very common to reuse bits and pieces of reporting code, so structuring your
scripts in this way may make it easier for you to do so without having to think much
about design.

 As you can see, it is quite easy to quickly parse a nonstandard text format and then
compare it to other data using Ruby’s regular expressions and Ruport’s table-manipu-
lation capabilities. Though this report was somewhat basic, the general approach is
useful for more complex applications as well.

 We’ve covered a lot of useful material so far, but you can’t exactly call the reports
we’ve been generating beautiful. We’ll now take a look at how Ruport handles print-
able document output, which provides some better eye candy than we’ve been offer-
ing so far.

13.4 Creating customized documents for printing
Generating customized printable reports is something most programmers will need to

do from time to time. Though Ruport handles the most common cases without any

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

296 CHAPTER 13 Document processing and reporting

modification, you’ll often need to extend its PDF formatter to get the results you need.
We’ll walk through a common PDF formatter extension to show how to begin custom-
izing your reports.
Problem
You need to produce sharable documents from data groupings, and you want to gen-
erate custom PDF documents.
Solution
The controller and formatter in listing 13.10 takes a CSV file and does a simple group-
ing operation on the data. The result is then displayed on a landscaped page, with a
header and information panel in addition to the table of grouped data.

require "rubygems"
require "ruport"

class PurchaseNotes < Ruport::Controller

 prepare :report
 stage :header, :info_panel, :table

 formatter :pdf do
 def prepare_report
 options.paper_orientation = :landscape
 end

 build :header do
 draw_text "FooBar Enterprises", :font_size => 36, :left => 50
 hr
 end

 build :info_panel do
 info = "Daily Record for FooBar Enterprises," <<
 " prepared by #{options.preparer}\n\n" <<
 "Please process the following orders for shipping.\n" <<
 "If there are any questions, email the Sales Department"

 rounded_text_box(info) do |o|
 o.radius = 3
 o.width = 300
 o.height = 80
 o.heading = "Purchase Log for #{Date.today.strftime('%m/%d/%y')}"
 o.font_size = 12

 o.x = 450
 o.y = 580
 end
 end

 build :table do
 move_cursor -50
 render_grouping data, :style => :separated,
 :table_format => { :width => 700 },
 :formatter => pdf_writer
 end

 end

Listing 13.10 Purchase Notes PDF renderer and formatter
end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

297Creating customized documents for printing

The following code shows how this controller is used:

t = Table("products.csv")
puts PurchaseNotes.render_pdf(:data => Grouping(t,:by => "Name"),
 :preparer => "Sam Jackson")

Our input CSV is fairly simple:

Name,Recipient Name,Recipient Location,Order Number,Quantity,Unit Price,Total
Accordian,Joe Gainsville,"43 Orange Street
Smockton,VT 01010",10123,3,10.25,30.75
Toy Piano,Mark Union,"100 Telpha Lane
Silverberg, MD 02020",10124,1,200.00,200.00
Kite,Al Hooligan,"50 Staley Road
Sandspring, MI 03030",10125,2,50.00,100.00
Toy Piano,Joe Gainsville,"43 Orange Street
Smockton,VT 01010",10126,2,200.00,400.00
Kite,Ralph Eggert,"109 Salt Rock Road,
Trist, CA 04040",10127,1,50.00,50.00
Kite,Allen Spitz,"300 Telian Court
Apartment 3A
East Bay, FL 05050",10128,5,50.00,250.00

After grouping and applying the formatting we’ve specified, we get nice PDF output,
as shown in figure 13.2.

Although it definitely involves rolling up your sleeves, you can see that it isn’t terribly
difficult to get really fine-grained control over document rendering.
Discussion
Most customized formatting jobs in Ruport begin with defining a controller. This class
is responsible for describing the process that should be carried out by formatters, and
it serves as the interface to rendering data in whatever formats you wish to support.

Figure 13.2 The PDF output from our Purchase Notes renderer and formatter
For this particular application, our definition is quite simple:

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

298 CHAPTER 13 Document processing and reporting

class PurchaseNotes < Ruport::Controller

 prepare :report
 stage :header, :info_panel, :table

 # ...

end

With the preceding definitions, when told to render a specific format, the following
hooks will be called on the formatter, in order:

* prepare_report
* build_header
* build_info_panel
* build_table

Any hooks that are not implemented are simply ignored. This allows the formatters to
retain some degree of independence from the renderers. This independence is actu-
ally necessary, because the controllers do not need to know about the formatters at all
when they are defined. Take a look at our formatter definition:

formatter :pdf do
 # ...
end

This shortcut interface is simply syntactic, and it is functionally equivalent to this
code:

class PDF < Ruport::Formatter::PDF

 renders :pdf, :for => PurchaseNotes

 # ...

end

It is this callback that allows us to render our results as follows:

puts PurchaseNotes.render_pdf(:data => Grouping(t,:by => "Name"),
 :preparer => "Sam Jackson")

This turns out to be a handy feature. As there is no need to follow a specific conven-
tion, format names are simply labels. So for example, if we had used this code,

renders :landscaped_pdf, :for => PurchaseNotes

our call would look like this:

puts PurchaseNotes.render_landscaped_pdf(
 :data => Grouping(t,:by => "Name"),
 :preparer => "Sam Jackson"
)

Now that we’ve gone through the basic structure of a formatting extension, we can
walk through each of the stages of the report and take a look at what’s going on. The
first thing to notice is that we are working on a subclass of Ruport::Formatter::PDF,

which allows us to gain access to a number of helper methods to do customized PDF

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

299Creating customized documents for printing

output. Because this particular report has many columns, we want a landscaped
report. We can set an option for this in our prepare_report hook:

def prepare_report
 options.paper_orientation = :landscape
end

It is important to set this option before calling any methods that would draw on the
PDF object. Once you begin drawing, you cannot change the paper orientation. For
this reason, our prepare hook is the best place to put this instruction to ensure it is
called before anything else.

 Once we’ve established the paper orientation, we can begin drawing our report.
Starting with the header, we need our company name in large font, followed by a hor-
izontal rule:

build :header do
 draw_text "FooBar Enterprises", :font_size => 36, :left => 50
 hr
end

We’re doing a bit of measured text here, describing a specific distance from the left
margin in pixels. We could have also specified this in terms of ruler measurements, so
long as we converted the values before passing them. This would require us to make
use of a PDF::Writer helper. For example, if we wanted to place our text two inches
from the left margin, we could do something like this:

draw_text "FooBar Enterprises", :font_size => 36,
 :left => pdf_writer.in2pts(2)

Of course, you don’t always need to be so specific about where text is placed on the
screen. If you want Ruport’s PDF formatter to handle flow control for you, the
add_text() method works fine.

 In our report, we overlay a rounded text box with additional information. This text
box has dynamic elements to it, but they’re mostly trivial. Let’s look at this stage so we
can talk about what’s going on with it.

build :info_panel do
 info = "Daily Record for FooBar Enterprises," <<
 " prepared by #{options.preparer}\n\n" <<
 "Please process the following orders for shipping.\n" <<
 "If there are any questions, email the Sales Department"

 rounded_text_box(info) do |o|
 o.radius = 3
 o.width = 300
 o.height = 80
 o.heading = "Purchase Log for #{Date.today.strftime('%m/%d/%Y')}"
 o.font_size = 12

 o.x = 450
 o.y = 580
 end

end

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

300 CHAPTER 13 Document processing and reporting

The rounded_text_box method is fairly straightforward. We provide the body text
info as an argument, and set the formatting details and our text box header via the
block. All of these fields (with exception of heading) are required to create a rounded
text box, so be sure to include them. If you have to draw several similar boxes, you
can, of course, create a helper method that simplifies things.

 The more interesting part of this code is that we make use of formatting options,
allowing us to pass in extra data at rendering time to populate the dynamic parts of
our report. If you look back at the code that actually renders the report, you’ll see we
pass an option as :preparer => "Sam Jackson". In the preceding code, this is repre-
sented by options.preparer. Ruport’s formatting-option system is very simple, and
this is one of three ways to use it.

 Another way you can invoke this is to use the block form of rendering to access the
options object directly:

PurchaseNotes.render_pdf do |r|
 r.data = Grouping(t,:by => "Name"),
 r.options.preparer = "Sam Jackson"
end

The options object is shared by the controller and whatever formatter it invokes, so
you can actually make use of it in both the formatter and controller as needed. They
can also be accessed like an indifferent hash, such as options["preparer"], which
can come in handy for highly dynamic reports.

 If you want to be sure an error is raised when this option is not set, you can use
required_option() in your renderer definition. This will make it so that an invoca-
tion like the following will raise a RequiredOptionNotSet error:

PurchaseNotes.render_pdf(:data => Grouping(t,:by => "name"))

Whether or not you choose to use this feature is entirely up to you, and will probably
depend on your needs.

 That essentially covers things you can do with options processing in Ruport, so let’s
take a look at how data is handled by the formatting system.

 The data object we’re passing in is a Ruport::Data::Grouping, and because this
already has a built-in formatter that will work for our needs, we don’t need to reinvent
the wheel. We can make use of a simple rendering helper to call that formatter. The
only caveats are that we need to pass our PDF::Writer object into it to make sure that
the grouping renders on our object instead of creating a new PDF file, and that we
need to manually position it on our document. The following code does exactly that:

build :table do
 move_cursor -50
 render_grouping data, :style => :separated,
 :table_format => { :width => 700 },
 :formatter => pdf_writer
end

The move_cursor call lets us move our drawing cursor down the page 50 pixels, leav-

ing sufficient room between the start of the table and the end of the header content.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

301Reporting against large datasets

When we call render_grouping, we simply pass it our data object, and tell it to use the
separated grouping style. We also set some PDF::Writer objects via :table_format.
Any attributes you specify via this method are used to set accessors on the underlying
PDF::SimpleTable object, which means that you have full control over the table gen-
eration. For more details on this, check the Ruport API documentation for Ruport::
Formatter::PDF and possibly the PDF::Writer documentation.

 We’ve walked through a nontrivial PDF report that hits some of the common ele-
ments you will need: custom headers, text boxes, and tabular output. Though it can
get to be a little low-level, you can more or less accomplish anything you might need
with PDF::Writer and a little help from Ruport. There are copious PDF examples for
Ruport distributed with the source, but you may be able to get by with what you’ve
seen here for the most common cases.

 One thing worth mentioning is that PDF::Writer has notable performance issues.
With this in mind, we’ll now talk a little about doing performance optimizations while
working with Ruport.

13.5 Reporting against large datasets
It’s no secret that Ruby is a slow language. Combine this with the common task of gen-
erating reports based on anywhere from ten thousand to ten million records, and it
seems as if you’re asking for trouble. However, in many cases, it is still possible to
squeeze out enough performance to make it worthwhile to stick to Ruby.
Problem
You need to report against a very large dataset without eating up all the resources
available to your server.
Solution
For this solution, we’ll build a row-based processor to generate text, HTML, and PDF
reports. Although Ruport is most comfortable with processing and formatting tables,
it isn’t impossible to work with rows. In fact, Ruport has a built-in row-rendering sys-
tem that can be easily customized. For this example, we have trivial data, but it spans
over 20,000 lines. Here is a small sample of what it looks like:

date,chart,amount
2/20/2007,453175.2S,$325.00
2/20/2007,453175.2S,$300.00
2/20/2007,453175.2S,$250.00
11/17/2006,233089,$58.00
11/17/2006,233089,$58.00
11/17/2006,233089, $-
11/17/2006,233089,$58.00
11/17/2006,233089,$58.00
1/22/2007,233089,$84.00
1/22/2007,233089,$84.00
1/22/2007,233089,$84.00

The code in listing 13.11 uses Ruport, PDF::Writer, and FasterCSV to process this data
and do the necessary format conversions.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

302 CHAPTER 13 Document processing and reporting

require "rubygems"
require "ruport"
require "pdf/writer"
require "fastercsv"

class MyPDF < Ruport::Formatter::PDF

 renders :pdf, :for => Ruport::Controller::Row

 def build_row

 pdf_writer.start_new_page if cursor < 50

 pad(5) do
 ypos = cursor
 draw_text data[0], :y => ypos
 draw_text data[1], :y => ypos, :left => 150
 draw_text data[2], :y => ypos, :left => 250
 end

 horizontal_rule
 end

end

pdf = PDF::Writer.new
renderer = Ruport::Renderer::Row
widths = [10,12,10]

File.open("out.txt", "w") do |text|
 File.open("out.html", "w") do |html|
 html << "<table>"
 FasterCSV.foreach("big.csv") do |r|
 next unless r[2] =~ /\d|(amount)/

 html << renderer.render(:html, :data => r)

 text << renderer.render(:text, :data => r,
 :max_col_width => widths, :ignore_table_width => true)

 renderer.render(:pdf, :data => r, :formatter => pdf)
 end
 html << "</table>"
 end
end

pdf.save_as("out.pdf")

If you noticed, it seems like we’ve unraveled the system a bit, creating our own custom
PDF renderer, using ordinal values instead of column-based access, and even resorting
to using some of the methods of Ruport’s dependencies directly. The reasons for this
can be summed up in two words: speed and memory.

 On our machines, this takes about one minute to run. Better than 75 percent of
that time is spent generating the PDF, which is over 500 pages long. Since this is all
done in pure Ruby, speed usually comes at the cost of elegance.

 We’ll now take a closer look at the different techniques used and get a feel for how
to attack similar problems when you encounter them.

Listing 13.11 Custom row rendering report
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

303Reporting against large datasets

Discussion
When dealing with smaller datasets, it’s often convenient to think and work in terms
of tables rather than rows. This becomes less and less feasible the larger your dataset
gets. This is a problem where with every new row, your cost increases in both time and
space. By cutting the tables out of the equation, we can process, manipulate, and for-
mat each row as we receive it, then let garbage collection pick up the discarded ones
as needed.

 That’s why in the code, you’ll notice that we only need to store one row at a time,
instead of having the whole result set in memory:

FasterCSV.foreach("big.csv") do |r|
 next unless r[2] =~ /\d|(amount)/

 text << renderer.render(:text, :data => r,
 :max_col_width => widths, :ignore_table_width => true)

 html << renderer.render(:html, :data => r)

 renderer.render(:pdf, :data => r, :formatter => pdf)
end

The drawbacks of row-based processing are that it makes for uglier code. If we weren’t
trying to be conservative about resources, the preceding code could be written like
this:

table = Table("big.csv")
table.reduce { |r| r.amount =~ /\d/ }

text << table.to_text
html << table.to_html
pdf << table.to_pdf

Nothing here is particularly efficient, and it falls down and dies under high data vol-
umes. You can see in the latter case that column names are automatically detected,
but that in our row processor, we need to check for them explicitly:

next unless r[2] =~ /\d|(amount)/

Though it’s ugly, this lets us filter a specific column without applying the filter to the
header row. In cases where simple pattern matching like this won’t work, you may
need to take a different approach. Because our data isn’t being rendered as a table,
but rather as a series of rows, we need to roll up our sleeves a bit here. Ruport provides
a base-row renderer for HTML, text, and CSV, but not PDF. It also requires a little
tweaking to make use of the text formatter.

 For HTML, you’ll notice that we don’t need to provide any special directives:

html << renderer.render(:html, :data => r)

HTML turns out to be an excellent format for streaming, because we don’t need to
worry about column widths, page breaks, or anything like that for the basic cases. We
really just need to generate something like this for each row:
<tr><td>1/22/2007</td><td>233089</td><td>$84.00</td></tr>

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

304 CHAPTER 13 Document processing and reporting

This is exactly what the preceding line of code does, with some whitespace consider-
ations for easier hand-editing. It is implemented very efficiently, and if we were only
rendering HTML in this report, it would take less than five seconds to generate the
HTML from our CSV.

 You’ll notice that the text formatting isn’t nearly as straightforward. We need to
make use of fixed column widths and turn off table-width detection:

text << renderer.render(:text, :data => r,
 :max_col_width => widths, :ignore_table_width => true)

The problem with doing row-based text output is that in order to format the rows
properly, we need to set fixed widths for the columns. For example, if we did not spec-
ify column widths, we’d likely end up with something like this:

a	this is a long field
bc	this is short
d	this is another long field

By specifying fixed widths, we can get better looking output, more like this:

a	this is a long field
bc	this is short
d	this is another long field

In the preceding code, :ignore_table_width => true simply tells Ruport not to try
to truncate the table to fit the console, making it suitable for output to file.

 As another minor performance note, the text-generation code might have read a
little more clearly if we embedded the widths directly:

text << renderer.render(:text, :data => r,
 :max_col_width => [10,12,10], :ignore_table_width => true)

However, the problem here is that Ruby would create a new array each time a new
record was rendered, and since these values do not change from row to row, we can
speed things up a little by defining these values before entering the loop.

 Ruport is capable of generating very nice tables using PDF::SimpleTable. This tool
is notoriously slow and becomes painful to work with when you have a relatively small
number of pages. The reason for this is similar to why tabular output of text is tricky:
every cell needs to be inspected in order to figure out the right column widths, and
for PDFs, tables also need to properly span pages, reprinting the column names when
needed.

 Our approach here is to create a very simple, fixed-width PDF output that properly
spans pages and is easy to read. The following chunk of code does exactly that:

class MyPDF < Ruport::Formatter::PDF

 renders :pdf, :for => Ruport::Controller::Row

 def build_row

 pdf_writer.start_new_page if cursor < 50
 pad(5) do

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

305Reporting against large datasets

 ypos = cursor
 draw_text "Date: #{data[0]}", :y => ypos
 draw_text "Chart: #{data[1]}", :y => ypos, :left => 150
 draw_text "Amount: #{data[2]}", :y => ypos, :left => 250
 end

 horizontal_rule
 end

end

This formatter produces the simple output seen in figure 13.3
 You may have more complex needs for your reports, and you can certainly tweak

the formatter a whole lot more before it becomes too costly. You’ll notice that we man-
ually check to see whether we need to advance the page before rendering a new row.
This prevents records from spanning multiple pages and provides us with a buffer
zone between the end of the page and our last record on the page.

 Also remember that PDF is not a format that can easily be streamed, and even if it
were possible, the PDF::Writer API does not provide a way to do it. This is why you’ll
notice that we need to instantiate the PDF::Writer object outside of the main process-
ing loop:

pdf = PDF::Writer.new

We then pass this to our row renderer so that it uses this object instead of creating a
new PDF::Writer object with a single row each time:

renderer.render(:pdf, :data => r, :formatter => pdf)

Finally, we can save the full PDF once it has been generated:

pdf.save_as("out.pdf")

In practice, we’ve found that this approach scales fairly well, so long as you stick to
primitive drawing methods, text rendering, and manual page advancement. It’s when
you need to either inspect the entire data source before producing a report, or when
you need to do complex checks to determine whether or not your data will fit prop-
erly on a page or in a column that things slow down greatly.
Figure 13.3 Row-based PDF output

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

306 CHAPTER 13 Document processing and reporting

The general patterns shown here should help when you need to squeeze a little more
speed out of a report or conserve some memory. The CSV file in this example can be
replaced with any streaming data source, including result sets from databases or other
sources, such as files processed with StringScanner.

 The key things to remember here apply to most applications, but they’re worth
repeating:

■ Avoid loading full data structures in memory if they can be streamed
■ Use lightweight data structures if possible
■ Avoid repeatedly creating new objects with the same values in loops
■ Use fixed column widths if possible in formatted output
■ Disable as much auto-detection as possible, and tune for your specific problem
■ Use lower-level tools when necessary to avoid overhead

If you’re generating batch reports at night, or have processes that can run for a few
minutes without causing problems, it’s entirely feasible to use Ruby to process large
datasets. If you’re not in that boat, you’ll need to consider ways to parallelize your
task, or think about writing C extensions. However, for a lot of common cases, this
general approach should do the trick.

13.6 Summary
The five recipes in this chapter should give you a solid base in building reporting
applications with Ruby and Ruport, and you should be able to adapt the examples to
solve your actual problems. Ruport is ultimately more about helping you define your
reporting process and helping with the low-level bits than it is about solving any partic-
ular reporting problems. The general approach here will be sufficient to get you well
on your way with your work.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

appendix A:
Installing Ruby

Installing Ruby is a fairly trivial affair, but there are a few things worth paying atten-
tion to. You will want to use gems extensively, and not all installations include Ruby-
Gems by default. You may also want to use gems that take advantage of C extensions
(for example, MySQL drivers and the Mongrel web server), which require that you
have the proper development libraries and tools. In this appendix, we provide you
with the simplest steps for installing a fully functional and up-to-date version of
Ruby 1.8 on Windows, Mac OS X, and Linux.

 Once Ruby is running, look at the A.4 section, where we provide useful tips for
improving IRB (the Interactive Ruby Interpreter) and accessing documentation for
all gems installed on your machine.

A.1 Installing on Windows
If you’re using Windows, you have three options. You can get the latest version of
Ruby directly from the ruby-lang.org web site, with downloads for either Ruby 1.8
or 1.9. When you download the Ruby interpreter, it includes command-line tools
like RDoc, IRB, and RI, but does not include RubyGems or many of the other librar-
ies you need to get started.

 In our experience, hunting down and installing libraries like RubyGems, FCGI,
or OpenSSL is not fun, and we’ve got better things to do. A better alternative is to
use the one-click Ruby installer, available from http://rubyinstaller.rubyforge.org.
It includes many of the common libraries you need to get started, libraries for
accessing various Windows APIs, a good programmer’s text editor (Scite), and a
PDF copy of the first edition of Programming Ruby.

 If you’re interested in building Rails applications, consider Instant Rails, avail-
able from http://instantrails.rubyforge.org. Instant Rails includes all the same
libraries as the One-Click Ruby Installer, and adds recent versions of Rails, Mon-
grel, MySQL, and Apache. It’s the quickest way to install a working environment for
developing and deploying web applications.
307

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://rubyinstaller.rubyforge.org
http://instantrails.rubyforge.org

308 APPENDIX A Installing Ruby

 Before you get started, we recommend upgrading to the latest version of Ruby-
Gems, which offers important performance and usability improvements:

$ gem update –system

Now you’re all set and ready to go.

A.2 Installing on Mac OS X
Mac OS X 10.5 (Leopard) comes with Ruby 1.8.6 preinstalled and also includes Rails,
Mongrel, Capistrano, and a few other gems.

 It works well, but before you get started, we recommend upgrading to the latest ver-
sion of RubyGems, which offers important performance and usability improvements:

$ sudo gem update --system

The different release schedules mean that Leopard does not include the most recent
versions of Rails and Mongrel, but this is not a problem, since those are safe to
upgrade using sudo gem update.

 Mac OS X 10.4 (Tiger) includes Ruby 1.8.2, but many of the libraries you will want
to use no longer support 1.8.2. For example, Rails requires 1.8.4 or later. The easiest
way to upgrade to a more recent version of Ruby is using the Ruby One-Click installer
for OS X available from http://rubyosx.rubyforge.org.

 Alternatively, you can install Ruby using either MacPorts or Fink. For example, to
install Ruby with RubyGems using MacPorts, run this command:

$ sudo port install ruby rb-rubygems

Ruby support on Mac OS X is excellent, but in spite of that we did run into a couple of
gotchas. Occasionally, gems that use C extensions will fail to recognize libraries installed
outside the main directories (for example, libraries installed using MacPorts). These are
easy to fix by passing specific compile/build options to gem install, like this:

$ sudo gem install oniguruma -- --with-opt-lib=/opt/local/lib

MySQL adds another twist. By default, C extensions are built as universal binaries,
but MySQL ships with per-architecture binaries. You can force Ruby to build exten-
sions for a particular architecture by setting the ARCHFLAGS environment variable. To
install MySQL on the Intel architecture:

$ sudo -s
$ export ARCHFLAGS="-arch i386"
$ gem install mysql -- --with-mysql-dir=/usr/local/mysql

For PowerPC, replace -arch i386 with -arch ppc.

A.3 Installing on Linux
You can compile from source on any Linux distribution, but most of them offer a
binary package also. For example, installing Ruby on Red Hat Fedora couldn’t be eas-
ier. Just go into the terminal and use the package manager:
$ sudo yum install ruby ruby-devel rubygems gcc

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://rubyosx.rubyforge.org

309More tips

The ruby package provides the generic command-line utilities, while ruby-devel pro-
vides header files, and gcc the compiler, both of which are necessary for installing
gems that use C extensions, such as Mongrel and MySQL.

 Most likely, this will install an older version of RubyGems. We recommend upgrading
to the latest version, which offers important performance and usability improvements:

$ sudo gem update --system

Installing Linux on Ubuntu/Debian takes a bit more effort. For starters, the ruby pack-
age will install the Ruby interpreter but none of the command-line tools (RDoc, IRB,
etc.). Use the meta-package ruby-full to install all the relevant command-line tools.

 To build gems that use C extensions, you’ll need both ruby1.8-dev and, if you
don’t already have them, the various build tools like GCC and Make, provided by the
build-essentials package:

$ sudo apt-get install ruby-full ruby1.8-dev libopenssl-ruby
$ sudo apt-get build-essential

If you install the Debian rubygems package, you may find that it only supports install-
ing Ruby gems using apt-get. Only a fraction of Ruby gems are available through the
Debian package manager. We recommend you install a fully functional version of
RubyGems by downloading it from the RubyForge project:

$ curl -OL http://rubyforge.org/frs/download.php/38646/rubygems-1.2.0.tgz
$ tar xzf rubygems-1.2.0.tgz
$ cd rubygems-1.2.0
$ sudo ruby setup.rb
$ sudo ln -s /usr/bin/gem1.8 /usr/bin/gem

Remember that certain gems use C extensions, which in turn require header files to
compile. For example, to install the Ruby MySQL gem, it is not enough to have MySQL
installed on your machine; you must also install the MySQL developer package:

$ sudo apt-get install libmysqlclient15-dev
$ sudo gem install mysql

A.4 More tips
Now that you have Ruby installed, it’s time to customize your environment to use Ruby
gems and IRB effectively. We’re going to cover three simple setups that we find indis-
pensable in every environment. They’ll make it easier to run Ruby scripts, enhance
the IRB, and let you access documentation for the various gems you install.

A.4.1 Requiring RubyGems with RUBYOPT

One thing we find annoying about Ruby is that it still treats RubyGems as an optional
extension that you have to install separately. And since it’s optional, you also have to
require 'rubygems' in any program that uses gems.

 You can get around this by setting the RUBYOPT environment variable to the value
rubygems. On Windows, you can set this environment variable using the Control

Panel—the One-Click Ruby Installer will automatically do that for you.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

310 APPENDIX A Installing Ruby

 On Mac OS X, Linux, and other flavors of UNIX, you can add this line to your
.profile:

export RUBYOPT=rubygems

A.4.2 Improving IRB with Wirble

If, like us, you work from the command line and use IRB or the Rails console, which
itself uses IRB, we highly recommend installing Wirble. Wirble adds tab-completion,
history, a built-in ri command, and colorized output.

NOTE UtilityBelt If you’re really into extending irb, a library named Utility Belt
adds more extensions to irb than we could cover in this whole book.
Grab it from http://github.com/gilesbowkett/utility-belt.

Once you install Wirble (gem install wirble), create a file called .irbrc in your home
directory and add the following lines to it:

require 'rubygems'
require 'wirble'
start wirble (with color)
Wirble.init
Wirble.colorize

Don’t add the last line if you don’t like colors in your console, or if you are running
from the Windows command line, which doesn’t support ANSI colors.

 Once you have Wirble installed, you can use tab-completion on Ruby classes, mod-
ules, and methods. For example, begin by typing Obj and press the Tab key once to
expand it to Object. Continue by typing a period (.) and press the Tab key again to
reveal all the methods on the Object class.

 Not sure what a class or method does? You can get help from within IRB by run-
ning the ri method with a class, module, or method name, like this:

>> ri "MatchData"
>> ri "Object.dup"
>> ri "open"

You can also use the up and down arrow keys to go back in history.

A.4.3 Accessing Ruby’s documentation

As intuitive as Ruby is, you won’t get far without knowing the APIs, and that means
looking up the documentation. Ruby comes with two tools that let you access docu-
mentation using the command line or your web browser.

 You can use the command-line tool ri to request information about any class,
module, or method from both the core library and any installed gem, like this:

$ ri Enumerable
$ ri lambda
$ ri String.to_i

You can use the gem server to access documentation for all installed gems from your web

browser. This method makes it much easier to navigate through the documentation. In

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://github.com/gilesbowkett/utility-belt

311More tips

addition to class and method documentation, many gems also include a README file
containing valuable information about the gem and its usage, alongside links to the offi-
cial web site.

 Start by running the gem server from the command line:

$ gem server

Then point your browser to http://localhost:8808. You now have documentation for
all of your gems at your fingertips.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

appendix B:
JRuby

JRuby is an implementation of the Ruby language that runs on the Java Virtual
Machine (JVM). The main benefits of using JRuby are the ability to mix Ruby and Java
code, the performance benefits gained from running on the JVM, and the ability to
deploy web applications to Java servers like Tomcat and J2EE. This appendix provides
an overview that will help you get started exploring the many facets of JRuby.

B.1 Installing and using JRuby
The steps required to install JRuby are the same on all operating systems. First,
make sure you have Java installed and that the java command is accessible from
the path. Next, download the most recent version of JRuby available from dist.code-
haus.org/jruby, expand the archive to a directory of your choice, and set the path
to point to the bin directory that contains the various JRuby executables (jruby,
jirb, etc.). Verify that JRuby is installed correctly by running jruby --version
from the command line.

 For example, on Linux you could download and install JRuby 1.1.2 like this:

$ curl -OL http://dist.codehaus.org/jruby/jruby-bin-1.1.2.tar.gz
$ tar -xz < jruby-bin-1.1.2.tar.gz
$ mv jruby-1.1.2 /opt/jruby
$ echo "export PATH=\$PATH:/opt/jruby/bin" >> .profile

To run Ruby programs using JRuby, use the jruby command:

$ jruby myprog.rb

You can also use jirb, the JRuby Interactive Interpreter, the same way you would
use irb (see appendix A for instructions on how to install Wirble).

 JRuby includes a recent version of RubyGems, and you can start installing and
managing gems using the gem command. Make sure to read the next section to
avoid conflicts between the Ruby and JRuby gem repositories.
312

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

313JRuby and Ruby side by side

 If you need specific JVM settings, you can pass them along to JRuby using com-
mand-line options with the prefix -J, or by setting the environment variable
JAVA_OPTS. For example,

$ export JAVA_OPTS=-client
$ jruby -J-Xmx512m myapp.rb

Next, we’ll look at how to use JRuby and Ruby side by side on the same machine.

B.2 JRuby and Ruby side by side
Ruby and JRuby maintain separate gem repositories, and any gem you install for one
will not be available for the other. While most gems are identical across platforms,
gems that use C extensions install different code depending on the target platform.
On Windows machines (mswin32), they will use JRs, and on most other platforms,
they will compile shared libraries during installation. Gems that use C extensions will
not install on JRuby. Fortunately, many popular gems, such as Mongrel and Hpricot,
were ported over to JRuby and install using Java libraries instead of C extensions.

 RubyGems handles this for you by installing the right gem for the target platform,
so gem install mongrel will work the same way for all Ruby platforms and for JRuby.
There are a few cases where you will be using different gems, such as mysql for Ruby
but jdbc-mysql for JRuby.

 Many gems install command-line scripts; for example, Rake provides rake while
RSpec uses spec. Installing the gem on both platforms will result in two command-line
scripts in two different locations, both available from the path. This may be a source of
confusion at first, but it is easy to work around using the -S command-line argument,
as the following example illustrates:

$ ruby -S spec specs/*
$ jruby -S gem install rspec
$ jruby -S spec spec/*

This is also the suggested way to install gems when using Ruby and JRuby side by side.
If Ruby’s gem command shows up first on the path, you can run it directly to install
gems in the Ruby repository and use jruby -S gem to install gems in the JRuby reposi-
tory, or vice versa.

 When working on Rails applications, many of the scripts you will be using (e.g.,
script/server, script/plugin) are used from the current directory, not the path. In
this case, you cannot use the -S option nor do you need to. Simply run the script with
the right interpreter, like this:

$ ruby script/server
$ jruby script/server

If you’re writing Ruby code that behaves differently on each platform, you can detect
when it runs in JRuby by looking at the value of the RUBY_PLATFORM constant. This con-
stant holds a string that depends on the target platform (e.g., i386-mswin32 or
universal-darwin9.0). Since Java code behaves the same way on all operating systems,
JRuby always sets this constant to java. You can still determine the underlying operating

system by requiring rbconfig and checking the value of Config::CONFIG['host_os'].

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

314 APPENDIX B JRuby

 Next, let’s see how we can use JRuby to build Ruby applications that use Java librar-
ies and tightly integrate with Java code.

B.3 Mixing Ruby and Java
As you can imagine, JRuby is all about easy Java and Ruby integration. You can access
any Java class or interface available in the class path through the Java module. Here’s
an example:

>> foo = Java.java.lang.String.new('foo')
=> #<Java::JavaLang::String:0xe704bd @java_object=foo>

>> bar = Java.java.util.HashMap.new
=> #<Java::JavaUtil::HashMap:0xcd022c @java_object={}>

Calling Java methods is just as easy:

>> foo.toString
=> "foo"
>> foo.to_string
=> "foo"
>> foo.to_s
=> "foo"

As you can see from this example, you can call methods using either Java or Ruby
naming conventions (either toString or to_string). Since these are also Ruby
objects, you can call their Ruby methods as well, in this case to_s.

 The conversion works both ways. Here’s an example of passing Ruby objects to Java:

>> array = Java.java.util.ArrayList.new([1, "foo", Object.new])
=> #<Java::JavaUtil::ArrayList:0xc7c7bc @java_object=[1, foo,

#<Object:0xa0a9a>]>

>> array.to_s
=> "[1, foo, #<Object:0xa0a9a>]"

Primitive types like strings and integers automatically convert to the right Java types.
Since Ruby objects are also Java objects, you can define Ruby classes that extend Java
classes. Java interfaces are exposed as modules, so to implement an interface, you sim-
ply include it:

class MyIterator
 include Java.java.util.Iterator
 def hasNext
 false
 end
end

If you need to cast arrays, use the to_java method, as this example illustrates:

>> ['foo', 'bar'].to_java
=> #<#<Class:01x96f94>:0x7a00b @java_object=[Ljava.lang.Object;@9c5304>

>> ['foo', 'bar'].to_java(Java.java.lang.String)
=> #<#<Class:01xf3941>:0x8fc43e @java_object=[Ljava.lang.String;@9cce04>
As with Java, you can use import to save yourself typing the full package name:

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

315Deploying web applications

>> import Java.java.util.Hashtable
=> Java::JavaUtil::Hashtable
>> Hashtable.new
=> #<Java::JavaUtil::Hashtable:0x3584f9 @java_object={}>

To access Java libraries, add them to the class path using the -J-cp command-line
argument, by setting the CLASSPATH environment variable, or simply by requiring
them:

>> require '/usr/share/ant/lib/ant.jar'
>> Java.org.apache.tools.ant.Project
=> Java::OrgApacheToolsAnt::Project

The Java system properties are always available from ENV_JAVA:

>> ENV_JAVA['java.runtime.version']
=> "1.5.0_13"

You’ve now seen how to use Java code from Ruby. Next we’ll show you how to mix
Ruby code into Java applications using the scripting support provided by Java 6.

B.4 Scripting with Ruby
With JRuby you can also run Ruby scripts and use Ruby libraries inside your Java appli-
cations. You will need Java 6, which adds scripting support, the JRuby libraries in the
class path, and javax.script.EngineManager to create a ScriptEngine that can eval-
uate Ruby code.

 This simple example shows how you can load a Ruby file and call one of its methods:

ScriptEngine jruby = new ScriptEngineManager().getEngineByName("jruby");
jruby.eval(new FileReader("myscript.rb"));
String hello = (String) jruby.eval("hello_world");
System.out.println("Ruby says " + hello);

The last JRuby feature we’re going to cover is the ability to package Ruby applications
as WAR files and deploy them directly into your Java web server.

B.5 Deploying web applications
You can use JRuby to deploy Rails applications to Java web servers like Tomcat or JBoss.
Start by installing the Warbler gem (jruby -S gem install warbler) and head over to
the root of your Rails project to package it as a WAR file:

$ jruby -S warble war

Warbler creates a WAR file that places the core of your Rails application in the WEB-
INF directory, including Rails itself, any plugins you use, and any gem dependencies.
Public files go in the root of the WAR file, and you can use additional Java libraries that
are copied over from the lib directory to WEB-INF/lib. The result is a self-contained,
ready-to-run application.

 If you need to customize the WAR file to your specific needs, start by creating a new
configuration using the warble config command, and edit the config/warble.rb file
before running warble war again.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

appendix C:
Deploying web apps

In chapter 8, we looked at tools to deploy Ruby (both web and off-the-web) applica-
tions. Here, we’ll look at specifics and the architecture for deploying web appli-
cations. There is certainly no shortage of options. So which deployment method is
right for you?

 We’ll start by briefly reviewing the available options, then narrow it down to one
particular architecture that works best across the board, from local use during
development to deploying for production on a server farm. We’ll show you how to
deploy for this architecture using Apache 2 and Nginx as frontend web servers and
Thin and Mongrel as backend application servers.

C.1 An overview of deployment options
The original model for deploying applications behind web servers was CGI. When
using CGI, the web server starts a new process to handle each incoming request.
That may be good enough for simple and oft-used scripts, but if you’re using a web
framework or opening database connections, the cost of setting these up for each
request will quickly bring your server to its knees. Since most web applications fall
into the latter category, we’ll turn our attention to better-performing options.

 To work around the limitations of CGI, modern web servers start the application
once and keep that process alive, dispatching incoming requests as they come
along. One approach that emerged early on consists of the web server and applica-
tion running in separate processes, using protocols like FastCGI or SCGI to connect
the two. A fair number of web servers support FastCGI, SCGI, or both, either
natively or through add-ons, and on the Ruby side you’ll find both the ruby-fcgi
and scgi gems. In spite of their availability, we do not recommend either option. As
it stands, FastCGI and SCGI fell behind and are harder to set up and administer, and
they offer lackluster performance compared to the alternatives.

 The second approach involves a web server that can run Ruby code in the same
process. Most web servers support this model through modules, plugins, or
316

components, although with limited availability—the choice of language dictates

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

317Reverse proxying

the choice of web servers able to run the code, and few servers are able to run Ruby
code in the same process. As we’ll see in a minute, this is not necessarily a problem.

 Apache uses modules for running applications in the same process, the most pop-
ular being mod_php. You won’t hear much about mod_ruby because its development
stagnated, in no small part due to its inability to deal with Rails applications. Java web
servers use components that are packaged and deployed as WAR files. These must be
written in Java and use the Servlet API, but they fortunately do support Rails applica-
tions, using JRuby to run Ruby applications on the JVM, and Warble to package Rails
applications as WAR files (as discussed in appendix B).

 There are three web servers designed specifically for running Ruby applications.
WEBrick is a pure-Ruby implementation bundled as part of the core Ruby library.
When you’re running Rails in development mode, you’ll notice that it uses WEBrick
by default. WEBrick’s best feature is being available everywhere Ruby is, but don’t
expect much in terms of performance or scalability.

 Mongrel is a lightweight web server that incorporates a native library—C code on
most platforms, and Java code when running on JRuby—to handle the CPU-intensive
portion of HTTP processing, offering simple setup and configuration with real-world
performance. Thin is another lightweight web server that uses the Mongrel HTTP pro-
cessing library in combination with Event Machine, a high-performance I/O network
library, offering better throughput and scalability.

 Mongrel and Thin are both viable options, and while Thin has the edge on perfor-
mance and scalability, Mongrel has been around for longer and has better tooling
support and more extensive documentation.

 It was difficult for us to choose one server to cover. Fortunately, they’re similar
enough in principles and basic usage, so we decided to base our examples on Thin,
and to highlight the differences in sidebars.

 Although Thin and Mongrel are excellent choices for handling the dynamic por-
tion of an application, and they support a variety of frameworks (Rails, Merb, Camp-
ing, to name but a few), they do not offer the same capabilities you would expect from
a full-fledged web server. Neither one is a web server we would expose directly to the
internet. Rather, we’re going to delegate that task to a more capable frontend web
server, and configure it to reverse proxy into our Thin/Mongrel application servers.
We’ll explain the basics of this architecture next.

C.2 Reverse proxying
Proxy servers are commonly used as outbound gateways; they handle traffic emanating
from clients on the local network, directed at servers on the internet. Reverse proxy serv-
ers act as gateways for inbound traffic, responding to requests coming from clients on
the internet and dispatching them to applications deployed on the local network.

 Reverse proxies are compelling for several reasons. To clients, they look like a single
web server and provide a central location for handling encryption, access control, log-
ging, virtual hosting, URL rewriting, static-content caching, throttling, load balancing,

and everything else a web server is tasked with. That leaves the backend web servers to

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

318 APPENDIX C Deploying web apps

deal exclusively with the business logic, simplifying management and configuration
when you have many different applications deployed throughout the network. The two
communicate with each other using the HTTP protocol.

 One obvious benefit of a reverse proxy architecture is the ease of scaling, from a
single instance used during development all the way to a large-scale server farm. You
can start small, deploying the frontend web server and a handful of application serv-
ers on the same machine. Since the intensive portions of the workload are handled by
these application servers, scaling is a matter of adding more machines and distribut-
ing the application servers across them. A single frontend web server can handle mas-
sive traffic before it reaches its scalability limits. Beyond that, you can start looking at
load-balancing proxy servers like Varnish, Pound, or PenBalance, or even go down the
route of dedicated hardware appliances.

 Another benefit is the variety of options available and the ability to mix and match
them to create a best-of-breed configuration. Standardizing on the HTTP protocol
allows you to pick from any number of frontend web servers and load balancers, and
just as easily mix in different backend web applications, from the simplest ones all the
way to mainframes. Because we’re exercising management and control through the
frontend web server, we don’t have to standardize on a single provider for our web
applications, and can easily mix languages and platforms, running Ruby side by side
with PHP, Python, J2EE, and .Net.

 The last benefit is application isolation. Since all backend applications run inde-
pendent of each other—the shared-nothing architecture—we can add new applica-
tions without impacting existing ones. For example, we can roll out a new Rails 2.0
application and run it alongside an older Rails 1.1 application, without having to
migrate the older but fully functional code, just because we’re using the newer frame-
work for future development.

 The ability to scale with ease, mix and match best-of-breed solutions, and roll out
new applications alongside legacy ones makes reverse proxy our favorite deployment
model. So let’s look at actual deployment. We’ll start by showing you how to set up
Thin and Mongrel for the application servers, and then proceed to cover Apache and
Nginx for the frontend web servers.

C.3 Setting up Thin
True to its name, Thin is a light web server that’s incredibly easy to set up (visit
http://code.macournoyer.com/thin/ for more information). We’re going to start
from an existing Rails application and work our way to having an operating system ser-
vice that manages multiple application instances.

 If you don’t already have Thin, now is the time to install it by running gem install
thin. We’ll be conservative and start out by testing a single instance of the application.
From the root directory of your Rails application, issue the following command:

$ thin start -e production --stats /stats

After you start Thin, you should see some output about a server starting up and serv-
ing on port 3000. Thin is quick enough that you’ll want to use it in development

instead of WEBrick, and it knows that, so it defaults to run in development mode.

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://code.macournoyer.com/thin/

319Setting up Thin

Here we’re dealing with deployment, so we need to force Thin to run in production
mode just to make sure we got the configuration right. It’s easier to check for issues
now than later on, when we run Thin as a background service.

 Next, point your web browser to http://localhost:3000. We added the --stats
option, so you can also navigate to http://localhost:3000/stats and investigate HTTP
requests and responses. A common issue with reverse proxy configuration is forget-
ting to forward an essential request header, and the --stats option helps you spot
these problems.

 Once you have verified that everything works as expected, it’s time to create a con-
figuration file. Now let’s generate a simple configuration that will run three instances
of Thin that listen on ports 8000 through 8002:

$ thin config -s 3 -a 127.0.0.1 -p 8000 -e production -C myapp.yml

In this configuration, the frontend web server and Thin all run on the same machine,
and since we don’t want to expose Thin to clients directly, we told it to only accept
requests using the loopback address 127.0.0.1. If you’re running Thin on a separate
machine from the frontend web server, use an IP address that is directly accessible to
the frontend web server. The default (0.0.0.0) will work if you don’t care which IP
address receives incoming requests.

 We now have a configuration file called myapp.yml. Let’s see what it looks like:

pid: tmp/pids/thin.pid
log: log/thin.log
timeout: 30
port: 8000
max_conns: 1024

Performance benefits of a frontend web server
A well-tuned frontend web server does more than just shield your web applications
from the internet and provide a central point for management and control. Here are
five ways in which it can speed up your web applications:

■ It can serve static content directly, freeing your application to deal with
dynamic content.

■ It can compress responses before sending them to the client, cutting down
bandwidth and improving response time.

■ It can buffer responses on behalf of slow clients. Slow clients keep the appli-
cation busy, waiting to transmit the full response; buffering frees the applica-
tion to cater to the next incoming request.

■ Acting as a proxy server, it adds another layer of caching between client and
server. Make sure to mark responses that are publicly cacheable by using the
right Cache-Control directive.

■ By keeping connections open without tying up processing threads, it can take
advantage of HTTP keep-alives and scale to a larger number of concurrent
connections.
chdir: /var/www/myapp

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

320 APPENDIX C Deploying web apps

environment: production
max_persistent_conns: 512
daemonize: true
address: 127.0.0.1
servers: 3

If we wanted to add more servers, we could change the port, or IP assignment, or any
other configuration option; we could run the command with different options; or we
could edit this YAML file in a text editor.

 Later, we’re going to run Thin as a service. We’re going to have one Thin service
per machine, and that service may run any number of applications, so each configura-
tion file must point to the root directory of the application it runs. If you move the
application to a different location, make sure to change the value of the chdir config-
uration property.

 Next, let’s start Thin using this configuration:

$ thin start -C myapp.yml

To check that it’s running, point your browser to each of the ports, http://local-
host:8000 through 8002, or use the lsof command:

$ lsof -i tcp@127.0.0.1 -P
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
ruby 3321 assaf 3u IPv4 0x4e74270 0t0 TCP localhost:8000 (LISTEN)
ruby 3324 assaf 3u IPv4 0xaf1e66c 0t0 TCP localhost:8001 (LISTEN)
ruby 3327 assaf 3u IPv4 0xb0a0e64 0t0 TCP localhost:8002 (LISTEN)

How you get Thin to run as a service depends on the operating system you’re using.
On Linux, you can do that with a single command:

$ sudo thin install

This command creates a new directory for storing the configuration files (/etc/thin)
and adds a script in /etc/init.d to control the Thin service. When you start the Thin
service, it enumerates all the configurations it finds in the /etc/thin directory and
starts a server based on each. If you have more than one application, make sure they
all use different port ranges. If you run the same configuration on multiple machines,
you could keep the configuration file in the application and link to it from the /etc/
thin directory, like this:

$ sudo ln -s myapp.yml /etc/thin/myapp.yml

Finally, we’re going to set up the service to start and stop automatically, and then get it
started. On Red Hat/CentOS, use these commands:

$ sudo /sbin/chkconfig --level 345 thin on
$ thin start --all /etc/thin

On Debian/Ubuntu, use these commands:

$ sudo /usr/sbin/update-rc.d thin defaults
$ thin start --all /etc/thin

Now that we’ve got Thin up and running, let’s configure the frontend web server
using either Apache or Nginx.
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

321Setting up Apache load balancing

C.4 Setting up Apache load balancing
With Thin up and running, we can turn our attention to the frontend web server. To

Setting up Mongrel
Mongrel and Thin are similar enough that we can follow the same workflow and just
highlight where they differ (visit http://mongrel.rubyforge.org for more information
about Mongrel). To run a cluster (several instances) of Mongrel, you’ll want to install
the mongrel and mongrel_cluster gems with this command:

$ gem install mongrel mongrel_cluster

We’ll first start a single instance in production mode:

$ mongrel_rails start -e production

To create a configuration that runs three instances on ports 8000 through 8002, use
this command:

$ mongrel_rails cluster::configure -e production \
-N 3 -p 8000 -a 127.0.0.1 -c $PWD

You need to point Mongrel to the root of your Rails application explicitly, which we did
here using the -c $PWD argument. This command will create a new configuration in
config/mongrel_cluster.yml.

When run as a service, Mongrel picks up all the configuration files it finds in the /
etc/mongrel_cluster directory, so either move your configuration file there, or create
a symbolic link, like this:

$ sudo mkdir /etc/mongrel_cluster
$ sudo ln -s config/mongrel_cluster.yml /etc/mongrel_cluster/myapp.yml

To start and stop the service from the command line, use these commands:

$ mongrel_cluster_ctl start
$ mongrel_cluster_ctl stop

To deploy Mongrel as a service on Linux, find the resources/mongrel_cluster file in
the Mongrel gem directory, and copy it over to the /etc/init.d diretory using gem con-
tents mongrel_cluster. Make it an executable with chmod +x, and configure it to
start and stop at the appropriate run levels. On Red Hat/CentOS, use this command:

/sbin/chkconfig --level 345 mongrel_cluster on

On Debian/Ubuntu, use this command:

sudo /usr/sbin/update-rc.d mongrel_cluster defaults

On Windows, start with this command:

gem install mongrel_service

Then install a service by running the following command, which takes the same com-
mand-line arguments or configuration file:

mongrel_rails service::install
set up Apache for reverse proxy and load balancing, you need Apache 2.1 or later,

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://mongrel.rubyforge.org

322 APPENDIX C Deploying web apps

loaded with mod_proxy, mod_headers, and mod_proxy_balancer. These modules are
included and activated in the default Apache configuration.

 We’re going to create a new configuration file for our application, myapp.conf,
and place it in the Apache configuration directory. We’ll start by defining the proxy
balancer to point at the three Thin instances:

<Proxy balancer://myapp>
 BalancerMember http://127.0.0.1:8000
 BalancerMember http://127.0.0.1:8001
 BalancerMember http://127.0.0.1:8002
</Proxy>

Put this at the head of the configuration file. If you add more instances (ports), move
Thin to a different server (IP address), or if you need to fine-tune how the workload is
distributed (assigning a different load factor to each instance), this will be the place to
make these changes.

 Next, and still using the same configuration files, we’re going to create a virtual
host that handles incoming requests using the proxy load-balancer:

<VirtualHost *:80>
 ServerName example.com
 ServerAlias www.example.com
 DocumentRoot /var/www/myapp/public

 # Redirect all non-static requests to application,
 # serve all static content directly.
 RewriteEngine On
 RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f
 RewriteRule ^/(.*)$ balancer://myapp%{REQUEST_URI} [P,QSA,L]
</VirtualHost>

Our application serves dynamic content, but also includes static content like images,
CSS stylesheets, JavaScript, and so forth. Apache can handle these efficiently and with-
out burdening the backend server, so we tell Apache to serve any file it finds in the
document root directory, and to dispatch all other requests to the backend server.
Rails puts all the static content under the public directory, so point DocumentRoot
there. Never point it to the root directory of the Rails application unless you want peo-
ple to download your application’s source code and configuration files.

 The reverse proxy forwards requests to the backend application using HTTP, so
when configuring a virtual host to handle HTTPS requests, the proxy must inform
Rails that the original request came over HTTPS by setting the forwarded protocol
name. You can do that by adding this line to the virtual host configuration:

RequestHeader set X_FORWARDED_PROTO 'https'

Now we’re ready to restart Apache (sudo apachectl -k restart), open the browser to
http://localhost, and watch the application in action.

 Before we finish off, here’s another trick to add to your arsenal. Apache includes a
Load Balancer Manager that you can use to monitor the state of your workers and
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

323Setting up Apache load balancing

change various load-balancing settings without restarting Apache. The following con-
figuration will enable local access to the Load Balancer Manager on port 8088:

Listen 8088
<VirtualHost *:8088>
 <Location />
 SetHandler balancer-manager
 Deny from all
 Allow from localhost
 </Location>
</VirtualHost>

Setting up Nginx
Nginx is an up-and-coming web server. It isn’t as popular as Apache and unfortunately
isn’t as well documented, but it offers better performance and scalability. At its core,
Nginx has a smaller memory and CPU footprint and uses nonblocking I/O libraries,
so it can scale to larger workloads and maintain a higher number of concurrent con-
nections. We recommend giving Nginx a try, and we’ll show you how to configure it as
we did for Apache (you can read more about it at http://nginx.net).

We’re going to create a new configuration file for our application, myapp.conf, and
place it in the Nginx configuration directory. Some setups of Nginx will include all the
configuration files placed in a certain directory (typically /etc/nginx/enabled), but if
not, make sure to include it from within the http section of the main configuration file.

We’ll start by defining the upstream web server that points to our three Thin instances:

upstream myapp {
 server 127.0.0.1:8000;
 server 127.0.0.1:8001;
 server 127.0.0.1:8002;
}

Next, and still using the same configuration files, we’re going to define a virtual host
that handles incoming requests by dispatching them to the upstream server:

server {
 listen 80;
 server_name example.com;
 gzip on;
 proxy_buffering on;

 location / {
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;

 root /var/www/myapp/public;
 if (!-f $request_filename) {
 proxy_pass http://myapp;
 break;
 }
}

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

http://nginx.net

324 APPENDIX C Deploying web apps

C.5 Summary
In this appendix, we covered options for deploying Ruby-based web applications,
focusing specifically on the reverse-proxy architecture. The benefits of this architec-
ture are the ability to scale from a single-server deployment to a cluster of application
servers, and the ease of mixing different web applications and languages. We showed
you how to set up a cluster using two different lightweight Ruby servers, Thin and
Mongrel. We also showed you how to set up a sturdy frontend server using either the
popular Apache or the blazing fast Nginx.

Setting up Nginx (continued)
When dealing with HTTPS requests, add the following line to the list of forwarded
headers:

proxy_set_header X-Forwarded-Proto 'https';

If you’re running Nginx and Thin on the same machine, you can take advantage of
Unix sockets by configuring the upstream server to use them:

upstream backend {
 server unix:/tmp/thin.0.sock;
 server unix:/tmp/thin.1.sock;
 server unix:/tmp/thin.2.sock;
}

You will also need to configure Thin to use sockets instead of IP ports:

$ sudo thin config -s 3 -S /tmp/thin.sock -e production -C /etc/
thin/myapp.yaml
Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

index
Symbols

' character 293
(<<). See append operator
[]. See square brackets
*_eval method family 18
*dbm libraries 189
/ character 293
/. See slash 61
\. See backslash 61
% 60
%s format specifier 201

A

abstract class 11
access control 317
Action Mailer 134

on top of TMail 127
Active Directory 234
Active Record 7
ActiveDirectory 238–240

using ruby-activedirectory 240
using ruby-net-ldap 238
using with OpenID 251

ActiveLdap 238
ActiveMQ 141–145

consuming a message 143
queuing a message 142

ActiveRecord 7, 29, 84, 203,
206, 217, 238, 261, 288

database support 267
methods 267

objects 271
storing encrypted

passwords 234
storing messages from

WMQ 157
storing work orders for asyn-

chronous processing 147
used in a SOAP service 121
without Rails 121

ActiveResource 114–117
acts_as_ferret 267–270
acts_as_list 84
acts_as_solr 269–270
add_class 216
add_element 214

function 213
add_to_cart method 44, 46
after block 38
agile practices 37
AIM 127, 134
AJAX 82, 275
Aksyonoff, Andrew 270
Amazon S3 55
Amazon Web Services 56
anonymous class definition 11
Ant 17, 21
AOL Instant Messenger. See AIM
Apache 97, 259

load balancing 321–323
for reverse proxy 321

Apache Lucene. See Lucene
API 44, 184–185

(g)dbm 189–197
low-level database 21

web search 273–275
wrapper 228–229

APOP 132
append operator 186–187
Apple iCal. See iCal
AppleScript 59, 63
application

scripting 59
ApplicationController 215
Appscript 63

library 62
arguments

simulating named 12
assembly language 5
assert methods 30
assert_equal method 30
assertion 29–30
Astrotrain 134
Asynchronous messaging

ActiveMessaging 148
AP4R 148
consuming a message with

reliable-msg 147
queuing a message with

reliable-msg 145
queuing a message with

RubyWMQ 151, 155
RubyWMQ and WMQ

149, 155–159
StompServer 144
testing your application 153
using ActiveMQ 141–145
using reliable-msg 145–149
325

migration 243 MySolr 263 using Stomp 141–145

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

INDEX326

ATOM 245
Atom 208–209, 228, 243

generating with Rails 111
attr method 219
attr_accessor 17–18
attribute

owner definition 18
reader 193

attributes method 211
Authenticated POP. See APOP
Authentication 233

ActiveDirectory 238–240
LDAP 237–238
username/password 234–237

authentication
credentials 58
with token 244

automated testing 25
automating with OLE and

OSA 59–64

B

backslashes 61
Base64 246
baseline setup 42
base-row renderer 303
Bash 21
BDD 35–36, 39
BDUF 37
before block 38
behavior expectation setup 46
behavior-driven

development 242
See also BDD

benchmarking
Rails applications 86–88
Rails views 87

Berkeley database. See DBM
Big Design Up Front. See BDUF
blog data aggregation 216
boost

query results 266
technique 268
values 266

 tag 217
broken HTML 216
Brooks, Fred 5
Builder 21, 95

creating an XML message 141
using with Rails 113

business logic test 186
byline class 219

C

C programming language
89, 214, 263

C/C++ 5
C# 17
C0 coverage 50
calculate_total method 26
calculator

configuration 209
object instantiation 209

<calculator> node 221
calendar

application 62
using Cocoa API 64

Capfile 167
Capistrano 167–170

Capfile 167
deploying to different

environments 169
finding recipes 169
rollback 168
using Deprec 169
using sudo and run 169

CGI 246
escape 92
work around limitations 316

Chronic
gem 270
time-handling library 82

class
definition 13, 18
definition change 17
definition checking 20

Class object 19
class_eval 18
clobber task 68, 70
clobber_rdoc 66
close method 193
COBOL 5
Cocoa API 64
code

behavior 26
duplication reduction 10
refactoring 27

color 66
command-line language,

bash 55
command-line tool

cap 167
creating with Ruby gems 164

God 178
https 322
IRB 310
jirb 312
jruby 312
lsof 320
make 164
newgem 162
rake 313
rcov 50
RI 310
spec 313
warble 315
wsdl2ruby 119
xsd2ruby 122

comma-separated values. See CSV
comparison report 290
compiler

type-checking 13
verifying behavior 27

complex query 259
component reference

incapsulation 203
COMPONENTS constant 193
Config

class 213
object 214, 221

@config instance variable 225
configuration file

format 209
parsing 209, 211

configuration object 211
configuration value, storage 209
constant value 203
constructor 11, 13
contact

retrieval 186
variable 195

Contact class 185, 189, 192, 203
close method 193
COMPONENTS constant 193
implementation 187
new instance 185
open method 193

Contact object 186–187,
197, 200

caching 194
creation 206
part of a ContactList 191

ContactList
class 185–186, 188, 192–193,

196
new instance 188
built-in converter 282 gem 161, 165 object 188, 192, 194, 197

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

INDEX 327

@contacts array 187
contacts table 199
:contains selector 219
conventions

ActiveResource and
REST 115

resource mapping and
Rails 104

response templates in
Rails 110

convert program 56, 58
converter building 282
CRM 10, 155
cron

removal 58
scheduling tasks 58
starting monitoring service on

boot 178
CSS 17, 21, 80

stylesheet 215
CSS3 214

selector 216, 219
syntax 219

CSV 184, 209, 290, 296
headers 281
processing 279–283
on the web 91

currency converter 279
file output 282

custom
mock 48
PDF 296

customer-relationship
management. See CRM

customized reports 295

D

daemons
controlling with

Capistrano 167
controlling with Vlad 171
monitoring with God

173, 176
daily report generation 283
Darcs 265
data

format selection 208
serialization 209, 230

:data option 287
data serialization 196

format 184
data source, swapping 288
database 7, 183

driver. See DBD
relational 183

database interface library. See
DBI

Davis, Ryan 50–51
DBD 197, 204

setting 205
DBI 184, 204, 206
DBM 184, 189
debugging 27, 29
DELETE command 10
delta indexing 272
deployment

using Capistrano 167–170
using Ruby gems 164–166
using Vlad 171–173
web applications 316

Deprec 169
describe command 35
developer cycle optimization 5
Dir.glob 61

method 60, 62
directory removal 196
Distributed Ruby. See DRb
<div> tag 217
docs directory 70, 72
document

indexing 261
processing 279
scoring 258
search 255
sharable 296

DOM 213
domain model 7
domain-specific language 276

See also DSL
DOS command line 61
drag and drop 21
DRb 145
DRY 71, 82

efficiency language 14
DSL 21

intentional programming 23
success 23
See also domain-specific

language
DTD 20
duck typing 11–12
dynamic languages

testing 27
dynamic method

definition 20

E

each_with_index 60
e-commerce site 275
EDSL 22
EJB 5
Elements array 220
email 283–289

processing email 132–134
property 187
sending notifications with

God 176
using APOP 132
using POP3 130, 132–134
using SMTP 127–129, 132
using TMail 132

embedded DSL. See EDSL
empty name attribute 52
empty? method 187, 196
encryption 317
environment variable,

HTTP_PROXY 93
error handling 58
eRuby 60
establish_connection 8
:even selector 216
Event Machine 317
Excel. See Microsoft Excel
exception raising 26, 29
excerpt 272
execute_purchase method 44
$expectations hash 48
extconf.rb 164
Extensible Messaging and Pres-

ence Protocol. See XMPP
extraction process 23
extras

component 193
hash 200, 206
table 206

F

fake object 44
false response 13
FastCGI, disadvantage 316
FasterCSV 91, 279–283, 301

object 282
Fedora Directory Server 237
feed reader 221
FeedTools 225–229
Fernandez, Mauricio 50, 263
Ferret 254–259, 263, 267–270

compared to FTSearch 265

connection 205 dynamic typing 13 index 257

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

INDEX328

FieldInfos
class 265
object 258

File
:ALT_SEPARATOR 61
:SEPARATOR 61
class 189

file
IO 185
matching rule 72
method 65
using glob patterns 98

FileList 70, 72
filename extension

substitution 72
FileUtils 194, 196

library 69
fill_textfield 276
find_by_contents method 269
find_by_name 23
finish! method 266
:first extension 219
FIXME

find 59
punctuating comment 60

fixtures 41–44
flat files 6
FlexMock 48
float conversion 211
Float object 282
for loop 11
foreign key 199, 203
formatting library 279
FORTRAN 36
Fowler, Chad 231
from_xml 214

method 213
frontend web server 318–319
FTSearch 254, 263–266
fuzz testing 51

G

gdbm 189–197, 206
API 191
database 204
key/value pair 191

gem 198
heckle 51
install ferre 255
install rspec 36
rcov 50
Thin 318

Gems 64
ansi-color 170
builder 113
capistrano 167
Chronic 82
god 173
Highline 171
Mongrel 97
mysql 308–309
net-ssh 170
newgem 162
RedCloth 82
ruby-fcgi 316
rubyforge 164
rubyzip 98
server 310
Ultraviolet 78
vlad 171
warble 317
Warbler 315
wirble 310
xml-simple 93
See also Ruby Gems

GET command 10
get_results_as_string method 26
global variable 47
glue language 200
GNU 189
GNU Database Manager. See

gdbm
God

lifecycle events 175
running as a daemon 178
sending notifications 176–178

God.rb 173–178
Google 254, 273, 275–277

MapReduce algorithm 15
pulling data from Google

Finance 91
scraping 275

graph
building 9
themes 9

Gray, James Edward II 279
Greasemonkey 55
Grouping

object 294
Growl 64

H

-h. See --help
Hash 227
hash 12, 63, 191, 202

Heckle 51
--heckle option 51
--help 224
helper module 289
Hibernate 5
Highline 171
home component 193
Hpricot 209, 214, 218, 220–224

for JRuby 313
object 219

href attribute 219
htaccess 21
HTML 21, 50, 72, 208,

214–219, 303
data postprocessing 215
files converted from

Textile 70
generating 301
parsing 214

HTML/XHTML 50
HTTP 91, 262

201 (Created) 94
404 (Not Found) 98
405 (Method Not

Allowed) 100
406 (Not Acceptable) 111
415 (Unsupported Media

Type) 111
authentication 246–247
Basic Authentication using

ActiveResource 114
content negotiation 111
Content-Disposition 101
Content-Length 101
GET 91
HEAD, OPTIONS 96
headers 100, 246
Keep-Alive 96
Location header 108
making requests with

headers 94
POST 93
returning 404 (Not

Found) 108
returning 412 (Unprocess-

able Entity) 108
serving requests 97
serving requests with

Mongrel 97–101
status codes 94, 100
streaming large files 101
using DELETE to remove a

resource 115
using HTTPS. See HTTPS
See also Ruby gem Haskell 15 using Net::HTTP 93–96

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

INDEX 329

HTTP (continued)
using open-uri 91–93
using POST to create a

resource 115
using proxy server 93
using PUT to update a

resource 115
WebDAV 96

HTTP_PROXY 93
HTTPS 94, 247

Apache reverse proxy 322
Nginx reverse proxy 324

Hunt, Andy 231
Hyett, PJ 272

I

I/O network library 317
iCal automation 61
IDE wizard 17
identifier 12, 89, 116, 120, 152
IM 126, 134

integrating with Rails 136
Jabber and XMPP 136–139
using AIM 134–136
using Net::TOC 134
using xmpp4r 137

image
link posting 55
transformation 56, 58

ImageMagick 58
incremental iterations 37
:index 258
index

deletion 262
query 261, 264
storing 258

indexer 254
building 264

indexing
integration 273
library 255
text only 255

initialization method 218
initialize method 193–194
inject method 16
insertion cycle 201
instance variable 17, 42
instant messaging. See IM
InstantRails 307
Integer 214
integer

conversion 211
test 27

intentional programming 23
Interactive Ruby Interpreter. See

IRB
interface 11
Internet Movie Database 275
IRB 281, 307

enhancing 310
is_indexed 271
items array 224

J

J2EE 318
size of API 5

Jabber 127, 134
See also XMPP 137

Java 5, 17, 29, 36, 255,
314–315, 317

CLASSPATH 315
deploying Rails

applications 315
ScriptEngine 315
scripting with JRuby 315

Java Message Service. See JMS
Java System Directory 237
Java Virtual Machine. See JVM
JavaBean 20
JavaScript 21, 70, 214–215
JMS 141
join command 219
JPEG 56
jQuery 214, 220
JRuby 312, 317

calling Java code 314
classpath 315
deploying web

applications 315
ENV_JAVA 315
import 314
installation 312–313
scripting 315
side by side with Ruby 313
to_java 314
using Java WS-* stacks 125

js directory 70–71
JSON 259
JVM 312, 317

K

key/value pair 191, 206
Keyboard

class 212–213

keyboard specification
object 212

keyboard.to_xml 214
Keyboard#to_xml function 214

L

landscape report 299
language features 6
large dataset report 301
:last selector 219
LDAP 90, 234, 237–238

authentication 237
using ActiveLdap 238
using ruby-ldap 238
using ruby-net-ldap 237

library
formatting 279
packaging and

distribution 161
processing 279

libxml 95
LICENSE 68
Lightweight Directory Access

Protocol. See LDAP
Linux 266

installing 308
installing JRuby 312
RubyGems 309
setting up Mongrel as a

service 321
setting up the Thin

service 320
LISP 15
list object 194
literal node creation 220
load

balancing 317–318
method 188, 231

lock mechanism 15
logging 317
LOGIN command 10–11
login method 11
logs, tailing with Capsitrano 170
lookup table generation 280
Lucene 255, 259, 264

M

Mac OS X 59, 209
automating application 63
Fink 308
installing 308
integration test 28 object 213–214 installing JRuby 312

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

INDEX330

Mac OS X (continued)
MacPorts 308
One-Click Installer 64, 308
RubyGems

C extensions 308
Mailer configuration 287
mainframe applications 5
Make 21, 64, 309
make method call 63
Marohni, Mislav 272
measurement

pixels 299
ruler 299

Merb 64, 215
metadata 255
Metaprogramming

BlankSlate and
BasicObject 114

method_missing 114
metaprogramming

16–24, 82–84
method 194

argument 13
calling 29

method_missing 6, 20, 23
usage in Builder 113

method-defining methods 17
Microsoft 238
Microsoft Excel 209
Microsoft Office 59
Microsoft Outlook 209
Microsoft SQL Server 267
Microsoft Windows 209

See also Windows
missing_data() method 293
mixins 10
Mocha 48

expectations 48
mock

custom 46, 48
objects 46

mocking
interface 48
library 48

Module object 19
module_function 295
Mongrel 97–101, 317

configuration 321
HttpHandler 97
for JRuby 313
request parameters 97
running a cluster 321
sending response 97
starting a new HttpServer 99

monit 173
monitoring

alerts and notifications 176
flapping 175
process limits and

intervals 175
using God.rb 173

Mowers, Matt 127
multicore architectures 54
multifield document search 256
multiple

platform planning 44
return values 246

mutex 15
MySolr 262

class 260
MySQL 29, 184, 197–204, 267,

270, 286
API 200, 203
database 283
database data transfer

197, 206
:Error 204
gem driver 198
installing on Linux 309
installing on Mac OS X 308
managing via email 130
managing via IM 137

Mythical Man-Month 5

N

name
field population 227
lookup 187
property 187

ndbm 189
needed? method 68
nested containers 193
.Net 318
Net::HTTP 93–96

HTTP Basic
Authentication 96

making requests with
headers 94

working with status codes
94, 100

Net::TOC
responding to IMs 135
sending an IM 134

New Database Manager. See
ndbm

Nginx 97, 318
load balancing 323

nil 29, 31, 195
Nitro 215
North, Dan 35
Novell eDirectory 237
:nth-child 216
null test 27
numeric_keypad 211

O

-o option 50
object

definition 27
extension 11

object-oriented 212
object-relational mapper. See

ORM
ODBC 286
Og 203, 206
OLE Automation 59
Olson, Rick 241
One-Click Installer 64

for Mac OS X 308
Ruby installer 307

open
classes 246
method 193, 195, 274

Open Scripting Architecture. See
OSA

open source
Jabber 136
messaging servers 140–149

OpenID 234, 247–251
Rails plugin 249

OpenLDAP 237, 240
OpenSSL, cryptographically

secure random
numbers 236

open-uri 91–93, 221,
224, 262, 274

using proxy server 93
options object 300
optparse 224
Oracle 267
order_on method 23
ordinal indices 281
ORM 203
OS X. See Mac OS X
OSA 59, 63

API 64
Outlook automation 59

See also Microsoft Outlook
output

directory specification 50

using with SOAP4R 122 setup 323 generation code 287

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

INDEX 331

P

<p> element 219
paginated search results 272
paper orientation 299
partial updates 21
Passwords

hashing 234
salting 234

:path parameter 259
path separator 61
pathmap 72
pattern matching 293
PDF 6

custom 302
custom documents 296
drawing 299
generating 296–301
report 279, 285

PDF::SimpleTable 304
PDF::Writer 279, 299–301

API 305
PenBalance 318
percent operator 60
Perl 55
persistence 184
PHP 318
PID files, cleaning with God 174
plain text

data storage 184
file 183

PNG 56
file 9

Polaroid effect 55
POP3 130, 132–134
populate_contact method

194–195, 197
Post object 268
Postgres 267
PostgreSQL 197, 270
Pound 318
predicates 38
prepare task 70
prepare_report 299
--prereqs option 69
Pretty Printing 8
primary key 199
printf 60
proc 225
Proc object 282
process_text_file 295

method 292–293
ProcessChecker class 42
processing library 279

Profiling, Rails applications
88–89

progress formatter 66
proxy objects 192
proxy server 317

reverse 317
ps command 43
pull-down menus 21
purchase method 47
Python 29, 55, 318

Q

query
script 264
test 8

Query configuration 287
querying 254

R

Rails 4, 6, 23, 42, 77,
261, 267, 318

accepting XML
documents 112

ActionWebService 122
ActiveResource 114–117
adding request formats with

params_parser 113
API 23
ApplicationController 102
associating user with

session 108
atom_feed 111
authentication 245
benchmarking 86–88
code generation 240
content types 109–113
core team 249
create action 103
creating and editing

forms 104
customizing routes 105
deploying to Java web

server 315
deployment 317
form_for 112
helpers 78–82
hiding passwords in log 237
index and show actions 102
libraries 78
link_to 106, 113
listing routes 105

named routes 113
performance 86
processing and sending

email 132
processing forms 112
profiling 88–89
queuing messages to

WMQ 152
queuing work using

reliable-msg 147
redirect_to 103
rescue errors 108
respond_to 103, 110
REST conventions 104
RESTful resources 101–109
restful_authentication

240–243
routing and resources 102
sending and receiving

IMs 136
server script 42
sessions 241
templates and content

types 110
to_param 109
update and destroy

actions 103
url_for 106
using ActiveRecord on its

own 121
using Builder templates 113
using JRuby 313
using to_xml to create a

message 151
validation 82
Windows installation 307
XMPP and

ActionMessenger 137
Rails plugins 78–80, 85

creating 84–86
and tasks 86

Rake 23, 36, 64, 73, 271
:RDocTask 66
Rakefile 162, 171
using Vlad for

deployment 171
rake

command 67
rdoc 66
spec failures 66

Rake API 65
Rakefile 65, 69, 71, 162

DRY 71
referencing a task 67
productivity 5 map.resources 102 Vlad the deployer 171

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

INDEX332

rakefile 68
rank_offsets array 266
raw hits 266
rcov command 50
RDoc 65–66
rdoc 66, 68
README 68
RedCloth 72, 82

gem 71
library 70

regular expressions 21
relational database 21, 183,

197, 204
reliable-msg 145–149

consuming a message 147
delivery options 148
queuing a message 145

remote service 45
interaction 44

remote_session method 11
render_grouping 301
renderable_data method 287
report

customized 295
email 285
generation 36

Report class 287
report definition 287

ActiveRecord-backed 288
reporting 278
Representational State Transfer.

See REST
require 37

method 30
rerdoc 66
respond_to? method 13
REST 101–117

content types 109–113
creating a resource 103
handling PUT and

DELETE 103
identifying resources 102
multiple representations 111
resources 101–109
uniform interface 107
using DELETE to remove a

resource 115
using POST to create a

resource 115
using PUT to update a

resource 115
working with

restful_authentication
237, 240–243

test helpers 242
@results variable 271
return command 15
reverse proxy 317–318

architecture 318
server 317

REXML 95, 210–214, 220
parsing a message 156
processing XML

messages 143
RI 310
ri 263
rm_rf method 69, 196
RMagick 7, 57
rope code generator 283–289
rounded_text_box method 300
row-based processing,

drawbacks 303
RSpec 22, 34, 36, 51, 65, 242

mocking library 48
RSS 209, 221–229, 243, 245

feed 39, 216, 218
generating 225
object 224
parsing 221

RSS feed 39
creation 20

Ruby 55
gdbm extension 191
history 4
idiom 10, 211
Linux installation 308
Mac OS X installation 308
one-click installer. See one-

click installer for Mac OS X
one-click installer. See

one-click Ruby installer
popularity 6
-S option 313
scripting 55–58
side by side with JRuby 313
simplicity 14
standard library 185
standard library

processor 281
testing library 22, 29
using JRuby 312
Windows installation 307
wrapping C/C++ libraries 164

Ruby Gems
ActiveLdap 238

installing gems with C
extensions 150

MailFactory 128
mongrel-soap4r 122
net-toc 134
reliable-msg 145
ruburple 136
ruby-activedirectory 240
ruby-ldap 238
ruby-net-ldap 237–238
RubyWMQ 149
SOAP4R 122
stomp 141
TMail 134
xmpp4r 137

Ruby gems as Rails plugins
79, 85

Ruby on Rails 6, 12, 42, 215, 254
authentication 240
core team 241
email library 129
sourcing plugins 240
YAML usage 230
See also Rails

Ruby One-Click Installer. See
One-Click Installer

Ruby standard library
OpenSSL 236

Ruby/Cocoa bridge 64
RubyDBI 287
RubyGems 7–8, 255

automating release tasks 163
binaries 164
C extensions 164
gem server 165, 310
JRuby 312
loaded by default 309
packaging 161
repository 164–166
specification 162
updating to latest version 161
using newgem 162
using RUBYOPT 309
wrapping C/C++ libraries 164

Ruby-OLE bridge 60
RubyOSA 63
ruby-prof 89
RubyWMQ 155

queuing a message 151, 155
running admin

commands 154
testing your application 153
using synchpoint 156
ActiveResource 114 ActiveSalesForce 158 YAML configuration 151, 155

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

INDEX 333

RubyZip 98
ZipOutputStream 98

RuleML 17
run 272
Ruport 279, 301

API 301
customized formatting 297
installation 283
PDF formatter 299

ruport-util package 283

S

SalesForce
integrating with WMQ 158
using ActiveSalesForce 158

save method 188
scanf 60
SCGI, disadvantage 316
scheduled reports 283
scheduling software 285
scraping 275
script run schedule 55
scripting

languages 55
with JRuby 315

scRUBYt! 275–276
Scruffy 7, 9
Scruffy::Graph instance 9
sdbm 189
search 254

automation 275
method 44, 46
result order 272

search_each method 257
Security

authentication 233
cryptographically secure

random numbers 236
hiding passwords in Rails

log 237
security

SHA1 235, 244
SHA2 235

send method 211
separate indexer 256
serialization 185

method 220
Serialization, sending binary

messages with reliable-
msg 146

server farms 54
Service Oriented Architecture.

See SOA

set_author method 228
setup method 31, 186
sharable documents 296
shared-nothing architecture 318
should method 38
should_not method 38
SimpleIdentifierAnalyzer 265
SimpleRSS 40
simulating named arguments 12
single sign-on 247
size 187, 196

method 13
slash and backslash 60
slashes 61
SMTP 127–129, 132

ActionMailer and TMail 127
faking a server with

MailTrap 127
sending a message with

Net::SMTP 128
session authentication 286
using MailFactory 128
using Net::SMTP 132

SOA 90
SOAP 6, 275

generating dynamic stubs with
SOAP4R 123

generating stubs with
SOAP4R 124

Java stacks and JRuby 125
Rails ActionWebService 122

SOAP4R 117–125
client stubs 124
dynamic stubs using

WSDLDriverFactory 123
mapping XML to Ruby 120
naming conventions 120
servants 120
using WSDL 119

sock parameter 11
Solr 254, 259–263, 267, 269–270
source code

generation 20
generator 17

SOX compliance 4
spec 66

command 40
command-line tool 36

specification 35, 66
object instantiation 213
report 35

Sphinx 267, 270–273
indexing conditions 272

Spring 5

SQL 7, 17, 21
avoiding raw 288
generation 203
hacks 267
query 284

sqlite 197
square brackets 187
SSH 170

using for deployment 167
Standard Library

CGI 92
Dir.glob 98
Net::HTTP 94
Net::POP3 130, 132
Net::SMTP 127–128, 132
open-uri 91
SOAP4R 122
Tempfile 98
URI 92, 94

standard library
mkmf 164
SHA1 235

standardized export format 289
<startup> node 221
state change check 26
static typing 13
static-content caching 317
Stomp 141

acknowleding messages 144
authentication 144
consuming a message 143
queuing a message 142
running StompServer 144
using Stomp with

ActiveMQ 141–145
storage object 12
:store 258
Streaming Text Orientated Mes-

saging Protocol. See Stomp
String 214, 221, 227
string

deserialization 185
object representation 184
testing 36
value test 27

string-based manipulation 221
Struct class 20
structured format 208
stub 44

automatic creation 48
stubbed class 44
stubbing 46
Substitute DBM. See sdbm
Servlet API 317 sprintf 60 Subversion installation 269

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

INDEX334

subversion, using for
deployment 167, 172

suffix-array search engine 263
SupplierInterface stubbed 45
SVN. See subversion
SWIG 164
synchronization issues 290
Szinek, Peter 275

T

-T option 50
Table object 290, 293
tables array 205
tabular data 279
tag manipulation 19
task method 65
TDD 28–35, 50, 241
teardown 11

method 31
temporary files, working with 98
test

adding 29
business logic 186
case 29
coverage 49–51, 242
fail 29
pass 29
refactoring 29
runner 29

test case
setup 31
teardown 31

test code length 26
test suite 190

example 185
Test::Unit 31
Test::Unit::TestCase 29
test/unit 186
test-driven development. See

TDD
test-first development 28
testing

assert 30
automated 26
benefits 26
coverage 49–50
dynamic languages 27
empty name attribute 52
environment 41
fuzz 51
integration test 28
library 22, 29
metrics 49

quality 51
specification 29
team 28
types 27
unit tests 27
workflow 28
ZenTest 50

text
editability 184
format 50

Textile 71–72
converting files to HTML 70

TextMate 78
text-only indexing 255
Thin 317

configuration 319
live statistics 319
running as a service 320
setting up 318

Thomas, Dave 231
thread 15
throttling 317
TMail 127

formatting email 132
parsing email 132

to_atom method 228
to_f 211, 282
to_html method 224
to_i 211
to_rss method 228
to_s 214
to_yaml method 231
TODO

find 59
punctuating comment 60

--trace flag 67
transaction 203

e-commerce 28
OpenID 248

transitive dependency
tracking 68

Trollop library 225
true response 13, 46
truncating prevention 304
Twitter 55, 57
type

attribute 211
casting 27
checking 13

@type instance variable 214
typing

duck 12
dynamic 13

U

Ubuntu, installing 309
Ultrasphinx 270–272

plugin 270
Ultraviolet 78
UML 21
unary operator 193
unit test 27
unit-testing library 25
unmatched_data() 294
URI 92

parse 94
URL 91

escaping 92
format suffix 112
HTTP Basic

Authentication 96
rewriting 317
validating 82

V

validation in Rails 82
values method 202
variable declaration 13
Varnish 318
VBA 59
virtual hosting 317
Visual Basic for Applications. See

VBA
Vlad the Deployer 64, 171–173
Voice over IP. See VOIP
VOIP 139

W

Warble 315
Weaver, Evan 270
web application framework 12
web framework 215

search 273, 275
web server

building a simple service 97
FCGI and SCGI 316
JRuby and Warbler 315
JRuby and WARs 317
Mongrel 97–101, 321
Nginx 323
processing forms with

Rails 112
processing XML requests with

Rails 112

principles 26 static 13 RESTful resources 101

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

INDEX 335

web server (continued)
SOAP processing with

SOAP4R 120
streaming large files 101
Thin 318–320
using Atom with Rails 111
using Capistrano 167
working with

ActiveResource 114
web services

SOAP and Ruby 117–125
using CSV 91
using HTTP GET 91
using HTTP POST 93
using XML 93

WEBrick 97, 317
WebSphere MQ 6
WebSphere MQ. See WMQ
Weirich, Jim 48
why the lucky stiff 214
wildcard 259
will_paginate 272
win32ole 60
Windows

installing 307
installing JRuby 312

Wirble 310
WMQ 90, 149–159

queuing a message with
RubyWMQ 151, 155

running admin commands
with RubyMQ 154

testing your application 153
using Ruby to integrate with

SalesForce 158
using RubyWMQ 155
using synchpoint 156

work component 193
wrapper 57

WSDL 21
code generation with

SOAP4R 119
dynamic stubs with

SOAP4R 123
generating stubs with

SOAP4R 124

X

XHTML 209, 217
XML 44, 93, 184, 209–214,

259, 273
application test 28
creating message with

Builder 141
element nodes 210
generating Ruby code from

XML Schema 122
generation 220
mapping to Ruby using

SOAP4R 120
new document creation 213
parsing 210
parsing a message with

REXML 156
processing messages with

REXML 143
reading 211
report 32
Schema 17, 20, 22
serialization 231
serializing 212
templates 6
transforming an XML

document to Hash 156
using to_xml to create a

message 151
writing 212

XML Path Language. See XPath
XML::Builder 20
XmlSimple 34, 93, 95
XMPP 136

ActionMessenger 137
contact authorization 137
responding to IMs 137
using xmpp4r 137

XPath 156, 211, 276
query 276

XSLT 21
xUnit architecture 31

Y

Yahoo!
IM 136
searching with 273–274
Web Search API 274

YAML 42, 183–191, 196,
208, 230–231

data serialization format 184
deserialization 188
example file 189, 198
fixtures 242
loading 189
serialization 188, 231
using to configure

RubyWMQ 151, 155
YAML.load method 185
yield statement 11

Z

ZenTest 50
zip files, using RubyZip to

compress files 98

write-only code 5 XmlSimple 34 zip project package 67

Licensed to sam kaplan <beop.love@gmail.com>

Download at Boykma.Com

Download at Boykma.Com

	Front Cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	What this book doesn’t include
	How this book is organized
	Code conventions
	Code downloads
	Author online
	About the cover illustration
	Ruby techniques
	Ruby under the microscope
	1.1 Why Ruby now?
	1.1.1 Optimizing developer cycles
	1.1.2 Language features

	1.2 Ruby by example
	1.3 Facets of Ruby
	1.3.1 Duck typing
	1.3.2 Simplicity
	1.3.3 DRY efficiency
	1.3.4 Functional programming

	1.4 Metaprogramming
	1.4.1 Getting started with metaprogramming
	1.4.2 Domain-specific languages
	1.4.3 Refining your metaprogramming

	1.5 Summary

	Testing Ruby
	2.1 Testing principles
	2.1.1 Why bother with testing?
	2.1.2 Types of testing
	2.1.3 Testing workflow

	2.2 Test-driven development with Ruby
	2.3 Behavior-driven development with RSpec
	2.3.1 What is behavior-driven development?
	2.3.2 Testing with RSpec

	2.4 A testing environment
	2.4.1 Setting up a baseline with fixture data
	2.4.2 Faking components with stubs
	2.4.3 Setting behavior expectations with mock objects

	2.5 Testing your tests
	2.5.1 Testing code coverage
	2.5.2 Testing quality with Heckle

	2.6 Summary

	Scripting with Ruby
	3.1 Scripting with Ruby
	3.2 Automating with OLE and OSA
	3.2.1 Automating Outlook with Ruby
	3.2.2 Automating iCal with Ruby

	3.3 Using Rake
	3.3.1 Using tasks
	3.3.2 File tasks

	3.4 Summary

	Integration and communication
	Ruby on Rails techniques
	4.1 Extending Rails
	4.1.1 Using helpers to expose Ruby libraries
	4.1.2 Metaprogramming away duplication
	4.1.3 Turning your code into reusable components

	4.2 Rails performance
	4.2.1 Benchmarking a Rails application
	4.2.2 Profiling a Rails application

	4.3 Summary

	Web services
	5.1 Using HTTP
	5.1.1 HTTP GET
	5.1.2 HTTP POST
	5.1.3 Serving HTTP requests

	5.2 REST with Rails
	5.2.1 RESTful resources
	5.2.2 Serving XML, JSON, and Atom
	5.2.3 Using ActiveResource

	5.3 SOAP services
	5.3.1 Implementing the service
	5.3.2 Invoking the service

	5.4 Summary

	Automating communication
	6.1 Automating email
	6.1.1 Automating sending email
	6.1.2 Receiving email
	6.1.3 Processing email

	6.2 Automating instant communication
	6.2.1 Sending messages with AIM
	6.2.2 Automating Jabber

	6.3 Summary

	Asynchronous messaging
	7.1 Open source messaging servers
	7.1.1 Using ActiveMQ
	7.1.2 Using reliable-msg

	7.2 WebSphere MQ
	7.2.1 Queuing messages
	7.2.2 Processing messages

	7.3 Summary

	Deployment
	8.1 Creating deployable packages with RubyGems
	8.1.1 Using RubyGems in your organization
	8.1.2 Setting up a RubyGems repository

	8.2 Deploying web applications
	8.2.1 Simplifying deployment with Capistrano
	8.2.2 Tailing remote logs with Capistrano
	8.2.3 Deploying with Vlad the Deployer

	8.3 Monitoring with God.rb
	8.3.1 A typical God setup
	8.3.2 Notifications

	8.4 Summary

	Data and document techniques
	Database facilities and techniques
	9.1 Using plain-text files for data persistence
	9.2 Using the (g)dbm API
	9.3 The MySQL driver
	9.4 Using DBI
	9.5 Summary

	Structured documents
	10.1 XML in practice
	10.1.1 Using XML to read configuration files
	10.1.2 Writing configuration data to disk

	10.2 Parsing HTML and XHTML with Hpricot
	10.2.1 Post-processing HTML output
	10.2.2 Reading broken HTML

	10.3 Writing configuration data: revisited
	10.4 Reading RSS feeds
	10.5 Creating your own feed
	10.6 Using YAML for data storage
	10.7 Summary

	Identity and authentication
	11.1 Securely storing a password
	11.1.1 Authenticating against LDAP

	11.2 Authenticating against Active Directory
	11.3 Adding authentication to your Rails application
	11.4 Semi-private, personalized feeds
	11.5 HTTP Basic Authentication
	11.6 Integrating OpenID into your application
	11.7 Summary

	Searching and indexing
	12.1 The principles of searching
	12.2 Standalone and high-performance searching
	12.2.1 Standalone indexing and search with Ferret
	12.2.2 Integrating with the Solr search engine
	12.2.3 Ultrafast indexing and searching with FTSearch
	12.2.4 Indexing and searching Rails data with Ferret and Solr
	12.2.5 Searching in Rails with Ultrasphinx

	12.3 Integrating search with other technologies
	12.3.1 Web search using a basic API (Yahoo!)
	12.3.2 Web search using a scraping technique (Google)

	12.4 Summary

	Document processing and reporting
	13.1 Processing CSV data
	13.2 Generating and emailing daily reports
	13.3 Comparing text reports to well-formed data
	13.4 Creating customized documents for printing
	13.5 Reporting against large datasets
	13.6 Summary

	appendix A: Installing Ruby
	A.1 Installing on Windows
	A.2 Installing on Mac OS X
	A.3 Installing on Linux
	A.4 More tips
	A.4.1 Requiring RubyGems with RUBYOPT
	A.4.2 Improving IRB with Wirble
	A.4.3 Accessing Ruby’s documentation

	appendix B: JRuby
	B.1 Installing and using JRuby
	B.2 JRuby and Ruby side by side
	B.3 Mixing Ruby and Java
	B.4 Scripting with Ruby
	B.5 Deploying web applications

	appendix C: Deploying web apps
	C.1 An overview of deployment options
	C.2 Reverse proxying
	C.3 Setting up Thin
	C.4 Setting up Apache load balancing
	C.5 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back Cover

