
Wayne Graham

Facebook API
Developers Guide

CHAPTER 1 Introducing the Facebook Platform 1

CHAPTER 2 Getting Ready for Facebook Application Development 9

CHAPTER 3 Learning Facebook Platform Fundamentals 31

CHAPTER 4 Building a Facebook Application, Start to Finish 71

CHAPTER 5 Going Further with Your Application 129

Books for professionals By professionals®

Facebook API Developers Guide
Dear Reader,

Facebook has grown into one of the most popular web sites on the Internet boasting more
than 60 million active users Facebook’s success began with its popularity on college and
university campuses and quickly spread into other areas when it opened the web site up
to everyone As part of its strategic growth, Facebook developed a platform to enable its
users to leverage their own programming skills to extend the Facebook application

The Facebook platform is comprised of a number of REST APIs and client libraries that
allow developers to quickly build their own applications for business, for communication,
and, well, just for fun The Facebook platform has allowed community Facebook users to
develop popular applications such as Super Wall, Top Friends, and Super Poke that extend
the basic functionality of Facebook to include some additional bells and whistles

When I was developing my first Facebook application, I discovered that not only were
there some rather gaping holes in the documentation, but the platform was also changing
so rapidly that most releases would actually “break” my application! These types of chang-
es have tapered off, and the numerous enhancements to the language make many com-
mon programming tasks much simpler Even with some of the criticisms of the platform,
Facebook has by and large done a remarkable job in balancing its commitment to allowing
developers to create new and exciting applications while protecting its users’ privacy

This book covers many of the important aspects of Facebook application develop-
ment, including how to set up an application, language basics, and common pitfalls
In addition, it walks you through building a complete application that enables mul-
tiple users to share comments, reviews, and screenshots of their favorite video games
The book closes with brief coverage of methods to monetize your application in order
to help offset your incurred server costs

Have fun!

Wayne Graham

Graham
Facebook API Developers Guide

Apress’s firstPress series is your source for understanding cutting-edge technology. Short, highly
focused, and written by experts, Apress’s firstPress books save you time and effort. They contain
the information you could get based on intensive research yourself or if you were to attend a
conference every other week—if only you had the time. They cover the concepts and techniques
that will keep you ahead of the technology curve. Apress’s firstPress books are real books, in your
choice of electronic or print-on-demand format, with no rough edges even when the technology
itself is still rough. You can’t afford to be without them.

this print for content only—size & color not accurate spine = 0.326" 152 page count

User level:
Beginner–Intermediate

www.apress.com
SOURCE CODE ONLINE

137
PAGeS

Available as a
PDF Electronic Book
or Print On Demand

Facebook API
Developers Guide

WAYNE GRAHAM

Facebook API Developers Guide

Copyright © 2008 by Wayne Graham

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-4302-0969-0

ISBN-10: 1-4302-0969-0

eISBN-13: 978-1-4302-0970-6

Printed and bound in the United States of America (POD)

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

Lead Editor: Ben Renow-Clarke

Technical Reviewer: Mark Johnson

Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,
Kevin Goff, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Senior Project Manager: Tracy Brown Collins

Copy Editor: Kim Wimpsett

Compositor: Richard Ables

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA
94705. Phone 510-549-5930, fax 510-549-5939, e-mail info//www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook ver-
sions and licenses are also available for most titles. For more information, reference our Special Bulk Sales—eBook
Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com.

For Anna and Stella.

About the Author . ix

About the Technical Reviewer . xi

■CHAPTER 1 Introducing the Facebook Platform . 1

What Is Facebook?. 1
A Brief History of Facebook . 1
The Elements of the Facebook Platform . 2
Facebook Markup Language . 3

REST API Calls . 3
Facebook Query Language . 4
Facebook JavaScript . 5
Client Libraries . 6

Summary. 7
■CHAPTER 2 Getting Ready for Facebook Application Development 9

What’s Needed. 9
Creating a Facebook Account. 10
Understanding Facebook Layout and Terms 10

Setting Up Your Server . 12
Adding the Developer Application . 13
Understanding How Facebook Applications Work 15
Creating a New Application . 17

Facebook Terms of Service Highlights . 19
Using Facebook Tools. 20

API Tab . 20
XML. 21
JSON. 22
PHP . 23
FBML Tab . 24
Feed Preview Console Tab . 28

Using Programming Tools. 29
Summary. 29

■CHAPTER 3 Learning Facebook Platform Fundamentals . 31

Client Library Primer . 31
API Primer . 33

Contents

v

Authentication . 35
Events . 37
FBML. 37
Feed . 37
FQL . 38
Friends . 38
Groups. 38
Marketplace . 38
Notifications . 39
Photos . 39
Profile . 39
Users. 39
Error Codes . 39

Data Store API . 40
FQL Primer. 42

Tables . 42
Functions and Operators . 44

Facebook Markup Language Primer . 46
Valid HTML Tags . 46
FBML Tags. 47
Conditionals. 48
User/Group Information . 51
Profile Specific. 51
Embedded Media. 52
Visibility on Profile . 52
Tools . 53
Forms . 53
Other . 54
Editor Display . 54
Page Navigation. 56
Dialog Boxes . 58
Wall . 60
Mock Ajax . 61

Facebook JavaScript Primer. 63
DOM Objects . 65
Putting It Together . 65

Things to Remember . 69
Summary. 70

■CHAPTER 4 Building a Facebook Application, Start to Finish 71

Setting Up Eclipse . 71

■CONTENTSvi

Using Plug-Ins . 73
Remote Project Support (FTP/SFTP) . 73
PHP Development Tools . 75
Data Tools Platform SQL Development Tools 78
Connecting to Your Web Server . 83

Layout Out the Project . 84
Creating the Database . 93
Designing the Database . 93

Working with SQL . 95
Jumping In. 98

External Web Services . 110
Game Review . 117
Add Game . 119
Publishing Feeds . 123
Testing . 123
Debugging. 124
Scaling . 124

Launching Your Application . 125
Creating the About Page . 125
Creating a Logo . 125
Submitting for Approval . 126
Publicizing Your Application . 126

Advanced Techniques. 126
Summary. 127

■CHAPTER 5 Going Further with Your Application . 129

Application Statistics . 129
Monetizing . 131

AdSense . 132
Amazon . 134
Adonomics . 134
Others . 134

Advertising Tips . 135
Selling Your Application . 136
Help, I’m Stuck! (and Other Resources) . 136
Summary. 136

■CONTENTS vii

■WAYNE GRAHAM is the emerging technology and digital library coordinator at the Earl Gregg Swem
Library at the College of William and Mary. He has a bachelor’s degree in history from the Virginia Mili-
tary Institute and a master’s degree in history from the College of William and Mary. While a graduate
student, he worked with the Colonial Williamsburg Foundation on a project digitizing the foundation’s
collection of books, manuscripts, and research reports and discovered a love of all things technical.
After funding for the project ran out, Wayne took a position at William and Mary where he works to find
new ways to integrate new technology into the library and helps scholars from across the country
develop online projects for research.

Wayne currently resides in Williamsburg, Virginia, with his wife, Anna; daughter, Stella; and two
crazy dogs, Nikki and Jasper. In his “free” time, Wayne enjoys reading, playing almost any video game,
and spending quality time with his family. If you’re so inclined, you can add Wayne as a friend on Face-
book.

About the Author

ix

■MARK JOHNSON is a lieutenant in the United States Navy and currently a senior instructor at the
U.S. Naval Academy. He has a bachelor’s degree from the Naval Academy and a master’s degree in
computer science from George Washington University.

When not working, Mark enjoys spending time with his wife, Lori, and their friends.

[(H1F)] ■ [(H2F)] xi

About the Technical Reviewer

xi

CHAPTER 1

Introducing the Facebook
Platform

Facebook (http://www.facebook.com) has grown phenomenally over the past several years
from an Ivy League social web application to the second largest social web site on the
Internet. The creators of Facebook have done an impressive job focusing their social
software on the college demographic. In a natural progression of the social network,
Facebook recently extended its network by developing a platform for developers to create
new applications to allow Facebook users to interact in new and exciting ways.

What Is Facebook?

In 2007, Facebook launched its own platform for application development. The platform
consists of an HTML-based markup language called Facebook Markup Language (FBML),
an application programming interface (API) for making representational state transfer
(REST) calls to Facebook, a SQL-styled query language for interacting with Facebook
called Facebook Query Language (FQL), a scripting language called Facebook JavaScript
for enriching the user experience, and a set of client programming libraries. Generically, the
tools that make up the Facebook platform are loosely called the Facebook API.

By releasing this platform, Facebook built an apparatus that allows developers to create
external applications to empower Facebook users to interact with one another in new and
exciting ways—ways that you, as a developer, get to invent. Not only can you develop web
applications, but Facebook has also opened up its platform to Internet-connected desktop
applications with its Java client library. By opening this platform up to both web-based and
desktop applications and offering to general users the same technology that Facebook
developers use to build applications, Facebook is positioning itself to be a major player in
the future of socio-technical development.

A Brief History of Facebook

In 2003, eUniverse launched a new social portal called MySpace. This web site became
wildly popular very quickly, reaching the 20-million-user mark within a year. Just a year

2 Introducing the Facebook Platform

Graham

earlier, a bright young programmer named Mark Zuckerberg matriculated at Harvard
University. The year in which MySpace launched, Zuckerberg and his friend Adam
D’Angelo launched a new media player, called Synapse, that featured the Brain feature.
Synapse’s Brain technology created playlists from your library by picking music that you
like more than music than you don’t. Although this type of smart playlist generation is
common in today’s media players, at its launch, it was an innovation. Synapse’s launch was
met with positive reviews, and several companies showed interest in purchasing the
software; however, ultimately no deals were made, and the media player never took off.

Unfortunately (or fortunately, depending on your perspective), one of Zuckerman’s next
projects created quite a bit more controversy. He created Facemash.com, a variant of the
HOTorNOT.com web site for Harvard students. To acquire images for the web site,
Zuckerberg harvested images of students from the many residence hall web sites at
Harvard. Because Zuckerberg was running a for-profit web site and had not obtained
students’ permission to use their images, Zuckerberg was brought before the university’s
administrative board on charges of breaching computer security and violating Internet
privacy and intellectual property policies. Zuckerberg took a leave of absence from Harvard
after the controversy and then relaunched his site as a social application for Harvard
students in 2004. The viral nature of the web site allowed it to grow quickly, and a year
later Zuckerberg officially withdrew from Harvard to concentrate his efforts on developing
what was first known as thefacebook.com.

Relaunched as Facebook in 2005, the social network quickly expanded to the rest of the
Ivy League. Soon after, Facebook expanded dramatically across university and college
campuses across the nation. Facebook’s focus on the college and university demographic
helped catapult it into what any marketing manager will tell you is the most difficult
demographic to crack, the 18–24 young adult market.

To keep its growing momentum, Facebook opened its doors to nonacademic users for
the first time in 2007. Since this time, Facebook has grown to be the second largest social
network with more than 30 million users. And with any growth comes opportunities both
for the company and for its users.

The Elements of the Facebook Platform

As stated previously, the Facebook platform consists of five components: a markup
language derived from HTML (Facebook Markup Language), a REST API for handling
communication between Facebook and your application, a SQL-style language for
interacting with Facebook data (Facebook Query Language), a scripting language
(Facebook JavaScript), and a set of client libraries for different programming languages. I’ll
cover these five elements in the following sections.

Introducing the Facebook Platform 3

Graham

Facebook Markup Language
If you’ve ever developed in ColdFusion or JSTL (or other tag-based programming
language), you’ll find working with the platform’s Facebook Markup Language (FBML)
very natural. If you’re new to tag-based programming, just think of FBML as fancy HTML
tags, because each interaction starts and ends with a tag. However, to distinguish between
HTML and Facebook commands, you prefix the tags with fb: as you would if you were
using multiple DTDs/schemas in XHTML. By using the FBML tag set, Facebook abstracts
a lot of complex code and makes many of the routine procedures almost effortless. For
example, to add a link to your application’s help pages on your dashboard (the navigational
tabs that go across the top), you simply need to add the following lines:

<fb:dashboard>
 <fb:help href="help.php">Application Help</fb:help>
</fb:dashboard>

REST API Calls
Facebook API calls are grouped into eight action categories. These calls are really wrappers
for more sophisticated FQL interactions with the Facebook back end but are useful bits of
code that speed up the development of your application. These calls include the following:

• facebook.auth provides basic authentication checks for Facebook users.

• facebook.feed provides methods to post to Facebook news feeds.

• facebook.friends provides methods to query Facebook for various checks on a user’s
friends.

• facebook.notifications provides methods to send messages to users.

• facebook.profile allows you to set FBML in a user’s profile.

• facebook.users provides information about your users (such as content from the
user’s profile and whether they are logged in).

• facebook.events provides ways to access Facebook events.

• facebook.groups provides methods to access information for Facebook groups.

• facebook.photos provides methods to interact with Facebook photos.

4 Introducing the Facebook Platform

Graham

Facebook Query Language
The Facebook Query Language (FQL) is a SQL-style language specifically designed to
allow developers to interact with Facebook information. Facebook allows you to interact
with nine separate “tables” to query information directly. You have access to the following:

• user

• friend

• group

• group_member

• event

• event_member

• photo

• album

• phototag

I’ll get into the specifics of the information you have access to in these “tables” later in
the book, but suffice to say, Facebook exposes a lot of information to you for your
application. And, like most SQL implementations, some additional functions allow you to
take a few shortcuts when you request user information:

• now() returns the current time.

• strlen(string) returns the length of the string passed to the function.

• concat(string1, string2,…, stringN) concatenates N strings together.

• substr(string, start, length) returns a substring from a given string.

• strpos(haystack, needle) returns the position of the character needle in the string
haystack.

• lower(string) casts the given string to lowercase.

• upper(string) casts the given string to uppercase.

To write FQL, you follow basic SQL syntax. For example, to extract my name and
picture from Facebook, you would write a simple query like so:

Introducing the Facebook Platform 5

Graham

SELECT name, pic
FROM user
WHERE uid = 7608007

The previous snippet, when executed by the Facebook platform, will return a structure
(in a format that you define in your call) with a URL to the image of the profile image for
user 7608007. Calls like these are useful in giving you granular control of the information
you get back from the API.

Facebook JavaScript
To minimize the threat of cross-site scripting (XSS) attacks, Facebook implemented its own
JavaScript for developers who really want, or need, to use JavaScript in their applications.
Facebook scrubs (removes) much of the JavaScript you can add to your application, but by
using Facebook JavaScript (FBJS) you can still enrich the user’s experience. Facebook
formally released FBJS 1.0 in September 2007. If you’re well versed in JavaScript, you’ll
pick this up quickly (or perhaps find it maddening). The following is a quick example of
how you can provide a modal dialog box to your users:

<a href="#" onclick="new Dialog().showMessage('Dialog', 'This is the help message
for this link');return false">Show Dialog Box

When processed through the Facebook platform, a user will be shown the modal dialog
box represented in Figure 1-1 after clicking the Show Dialog Box hyperlink. Not bad for a
single line of code!

Figure 1-1. Modal dialog box

6 Introducing the Facebook Platform

Graham

Client Libraries
The Facebook platform provides many tools to access information, but you are responsible
for providing your own business logic through some other language. Facebook facilitates
this through “official” client libraries for both PHP and Java that provide convenient
methods to access the Facebook application. However, not everyone in the universe uses
Java and PHP exclusively. To help the rest of the programmers who want to develop their
own Facebook application, client libraries are available for the following languages:

• ActionScript

• ASP.NET

• ASP (VBScript)

• ColdFusion

• C++

• C#

• D

• Emacs Lisp

• Lisp

• Perl

• PHP (4 and 5)

• Python

• Ruby

• VB .NET

• Windows Mobile

This complement of languages should take care of just about most developers today.
And although these client libraries are not “officially” supported by Facebook (meaning
they won’t answer your questions about using them), they are posted by the company with
at least some tacit approval of being the “officially unofficial” client libraries. By the way,
I’m still waiting for them to include a library for Assembly.

Introducing the Facebook Platform 7

Graham

Summary

In this chapter, I briefly went over what the Facebook platform is and outlined some of its
technologies and capabilities. I also talked about how Facebook has grown to be the second
largest social network on the Web. In the forthcoming chapters, I’ll get more into the
specifics of what the different parts of the platform do and how these components work
together to allow programmers to develop rich applications for Facebook users.

In the next chapter, you’ll work on setting up a new application from scratch, including
setting up your server. There’s not much to set up before you start building your
application, but you will need to pay attention to a few things in order to help in your
planning and implementation stages.

8 Introducing the Facebook Platform

Graham

CHAPTER 2

Getting Ready for Facebook
Application Development

Keeping with its user focus, Facebook makes it easy to both set up and maintain
applications. Because your application doesn’t live on Facebook’s servers, you need to put
certain things in place before you start developing. This chapter will cover setting up your
environment so you can start coding your application. It will also cover some of the tools
that Facebook provides you to help develop and debug your code.

Getting to know a new platform can be daunting, especially one that has so many facets
like the Facebook platform. To help you get your feet wet with the different aspects of the
platform, Facebook provides you with a couple tools that let you explore the core API
functions, test your Facebook Query Language, and see how your Facebook Markup
Language will look in the different areas of the Facebook site.

What’s Needed

To get up and running with developing an online Facebook application, you need to have
three things in place:

• A valid Facebook account

• Access to a web server running a supported middleware language

• The client library for your particular middleware language

If you’re working on a desktop application, you still need a Facebook account (for
authentication), but you will need only the client library for your language because your
interactions with the Facebook servers will be handled by your program and not a web
server.

10 Getting Ready for Facebook Application Development

Graham

Creating a Facebook Account
Setting up a Facebook account is a simple process. If you don’t already have one, don’t
worry; it’s free, and anyone can sign up to use Facebook. Just point your browser to
http://www.facebook.com, and click the Sign Up button (see Figure 2-1).

Figure 2-1. The Facebook sign-up screen

The form asks a few simple questions about you and will send you a confirmation e-
mail to verify your e-mail address. After you confirm your account, you have the
opportunity to join a network. These networks are grouped by academic institutions,
locations, and businesses and are at the core of Facebook’s social structure’s organization.
Once you join a network, you are able to access information about the people in that
network.

Understanding Facebook Layout and Terms
If you’re new to Facebook (or even if you’ve been using it for a while), it’s useful to
understand how Facebook names the elements in its layout. Facebook utilizes both two- and

Getting Ready for Facebook Application Development 11

Graham

three-column layouts for different parts of its site with a header and footer containing global
links. Except for the header and footer, users can edit their content layout. This is an
important design consideration, because depending on where your content is loaded on a
user’s page, you need to take into account different widths.

On the far left of all pages, users have access to the different applications they have
installed in the navigation bar. By default, only four appear (see Figure 2-2), so, depending
on how many applications your user has, your application might not appear in their
navigation bar. Obviously, if you’re designing an application, you want folks to not only
use it but to also have it in a convenient location on their Facebook pages.

Figure 2-2. The Facebook left navigation box

When users first log in, they are taken to their canvas page. In Facebook-speak, a
canvas page is the wide content on the right side of the web page, as shown in Figure 2-3.
These pages generally have two- and three-column layouts, with the left application
navigation, content in the center pane, and, for three-column layouts, “useful” information
on the right such as upcoming birthdays for your friends, invitations to join groups or
become friends with individuals, and the ability to update your status (telling your friends
what you’re doing).

12 Getting Ready for Facebook Application Development

Graham

Figure 2-3. The Facebook canvas page

Another important page is the profile page. This is the page you see when you log on to
Facebook. The layout on this page is slightly different from the canvas pages. There are still
three columns, and the application navigation is still on the left. However, the content
column (referred to as wide) has shifted to the far right, and it is separated from the
application navigation panel by what Facebook calls the narrow column. Because users can
change the layout of their pages, it’s important that you have multiple displays for your
application depending on the column in which it’s located.

Setting Up Your Server

Since you host your own Facebook application, there is some setup you need to do on your
web space. If you don’t have a web site (or access to one) that runs PHP, Java, or one of the
unsupported languages with a client library, you can use one of the free web hosts available.
You will need a middleware application server to handle the business logic for your
application because Facebook provides methods only for retrieving data and displaying
certain information. I’ll be using PHP for the examples in this book, but they should be
relatively straightforward to translate into other languages.

Getting Ready for Facebook Application Development 13

Graham

You can download the client libraries for all languages from
http://developer.facebook.com/resources.php. If you’re using a *nix system (including OS
X), you can simply do the following:

wget http://developers.facebook.com/clientlibs/facebook-platform.tar.gz
tar zxvf facebook-platform.tar.gz
mv facebook-platform <path_to_web_location>

The previous snippet moves both the PHP 4 and PHP 5 libraries (along with the
Footprints sample application). The PHP 4 library is in the folder php4client, and the PHP 5
library is in the client folder. Most likely you will be working with one library or the other,
so you really need to move only one of the folders to your server to work on your
application.

Note ➡ Need some hosting? Joyent (http://www.joyent.com) recently partnered with Facebook to

provide a free year of hosting for Facebook applications (http://joyent.com/developers/facebook).

There is a waiting list, but it is a pretty good deal for a really good host. Other hosts that have a proven track

record with Facebook apps include MediaTemple (http://www.mediatemple.net) and Dreamhost

(http://www.dreamhost.com/). If you’re thinking smaller, you might want to try RunHosting

(http://facebook.runhosting.com) or 110MB (http://www.110mb.com). It’s good to look at a few and

see which one offers the best fit for what you want to do. Many of these web sites also have free database

hosting (usually MySQL), which is a great way to get up and running with Facebook application development.

Adding the Developer Application

Once you have an account and have set up a server environment, the next step is to add
Facebook’s Developer application. Go to http://www.facebook.com/developers, and install
the application.

Figure 2-4 shows the screen that users are presented with when installing a new
application. The check boxes allow certain functionality to be performed by the application,
and they give users the ability to turn certain aspects of the application on and off. Once you
have read the platform application’s terms of use, just click the Add Developer button to
install the Developer application.

14 Getting Ready for Facebook Application Development

Graham

Figure 2-4. Facebook’s Developer application installation screen

Once you’ve installed Developer, you are directed to a Facebook application that helps
you manage the applications you are developing, including the most recent entries on the
discussion board, news about the Facebook platform, links to your application management
interface, and information on the status of the platform (see Figure 2-5).

Getting Ready for Facebook Application Development 15

Graham

Figure 2-5. Facebook’s Developer welcome screen

It’s important to keep up-to-date with the platform status because Facebook is adding
information about new tags, changes to the terms of service (typically clarifying hazy
areas), systemwide outages, and, perhaps most important, platform changes that have the
potential to break your application. Like with most things in Facebook, you can subscribe to
an RSS feed to help you keep up-to-date with these changes
(http://www.facebook.com/feeds/api_messages.php).

Understanding How Facebook Applications Work

Because you host your own application, it’s a good idea to go over how Facebook
applications actually work. Essentially, Facebook provides your application to users when it
is requested through Facebook.

As you can see in Figure 2-6, each time a Facebook user interacts with your application,
you set off a series of server interactions with the Facebook server farm and your server.
Each time a user requests something from your application through Facebook, that request
is passed to your server to create the initial REST call to the Facebook API. Once your

16 Getting Ready for Facebook Application Development

Graham

the response to construct a display call (in FBML) and passes that back to the Facebook
server. Facebook processes this information and creates an HTML response to the user.
Because of the constant passing of information between servers, there is an additional level
of complexity that can complicate tracking down bugs. You also need to consider this
constant interaction when developing your application because you don’t want to make
unnecessary API calls that will slow down your application.

Figure 2-6. Basic Facebook architecture

Getting Ready for Facebook Application Development 17

Graham

Creating a New Application

Now, with all that out of the way, let’s set up an application. At this point, you need to tell
Facebook about your application. In the Facebook Developer application
(http://www.facebook.com/developers), click the Set Up New Application button, as shown
in Figure 2-7.

Figure 2-7. Setting up a new application

The only required fields are the application name and the one confirming you have read
the terms of service. However, to really do anything with an application, you will need to
fill out the optional fields. Don’t worry—if you already set up an application and didn’t fill
out these fields, you can change them by clicking the My Apps link in the Developer
application.

Note ➡ You need to remember that you can’t use the word face anywhere in your application name.

Because of this prohibition, you are precluded from using words such as surface and faceted as part of your

application name. A good thesaurus can help you get a bit more creative with your application names.

In the optional fields, you can fill out more information about how your application
works (see Figure 2-8). Perhaps the most perplexing field here is the Callback URL field.
This is the field that handles your actual application and lives in the server environment
you’ve set up. For example, if you have a web site for your application at
http://fake.domain.com/facebookApp, this would be your callback URL.

18 Getting Ready for Facebook Application Development

Graham

Figure 2-8. Optional fields for Facebook application registration

The following are the optional fields:

Support E-mail: This is the e-mail contact for support questions for your application.

Callback URL: This is the URL of your actual application on your server. If you’ve set
up an application on your server at http://fake.domain.com/facebook_app, that is your
callback URL (you’ll sometimes see this referred to as the callback metaphor).

Canvas Page URL: This is the Facebook URL to your application.

Getting Ready for Facebook Application Development 19

Graham

Application Type: Most likely this will be Website, but if you’re developing an
application in Java (using the official client library) or one of the unofficial libraries that
won’t be accessed primarily on the Web, select Desktop.

IP Addresses of Servers Making Requests: This is a comma-separated list of servers
able to make requests. If you need to lock down your application to a list of servers, this
is where you add that information. Requests from other servers are then rejected. If you
use this with an online application, the users will be presented with a fatal error in the
response stating that an “Unauthorized source IP address” was used to access the
application.

Can your application be added on Facebook?: An answer of Yes to this question will
allow people to add the application to their account. If you select No, users will be able
to use the application but won’t be able to add it to their accounts.

TOS URL: This is the URL to the terms of service for your application. If you use this,
users must accept the terms of service before they can use your application.

Developers: Your name should appear in this field by default. If you’re working with
others to develop your application, put their names there too.

Facebook Terms of Service Highlights
Terms of service are something a lot of folks skip over…which they shouldn’t. If you’re
one of these people, please take some time to go over these documents because they’re
there to save you some headaches in the long run. As with any terms of service agreement,
there are certain prohibitions that you should be aware of in terms of what is, and is not,
permissible. There have been some recent changes to the Facebook terms of service that are
designed to clarify some of the gray areas in the guidelines, and these will most likely
continue to change as unscrupulous people look for loopholes.

In an overly simplified version of the terms of service and guidelines, your application
shouldn’t do anything illegal or encourage anything illegal. You should also not store any
more information than you need from your users to make your application function. Almost
all the information you need will be available to you with just your user’s identification
number (UID). And, in case you missed it in the Facebook guidelines and terms of service,
you are not permitted to sell your users’ information!

20 Getting Ready for Facebook Application Development

Graham

Using Facebook Tools

Facebook provides three important tools for learning and debugging Facebook applications
in the Tools section of its Developers web site (http://developer.facebook.com/tools.php):
the API Test Console, the FBML Test Console, and the Feed Preview Console. Because it’s
good to have immediate feedback with your code and because it’s sometimes difficult to
debug coding issues and determine whether the problem exists on your end (of course you
would never code a bug!), we’ll start our adventure by looking at the test console for both
the API calls and FBML.

API Tab
When you first arrive at the Tools page, you are presented with two tabs. The API tab has
many of the API calls available to you so you can see what kind of data is being returned. I
find it useful in my day-to-day programming to be able to see the data I expect to have
returned in order to speed development.

For starters, let’s take a look at a simple call to return a list of your friends. Simply
select the friends.get option for the Method field. This will return an XML structure with a
root element of <friends_get_response>. You’ll also notice a couple of XML namespaces
and a location for the schema. If you run into issues with the responses, remember how
you’re getting them. If it’s XML, you might need to deal with the root XML attributes.

The Facebook API Test Console (Figure 2-9) is a great place to click around and see
what different calls will return. Not only can you switch between the different API calls, but
you can also change response formats to see what you will get when you change the
Response Format field. As you experiment with the different calls, you’ll notice that some
requests require additional fields. And, if you don’t fill out the required fields, Facebook
will return error codes in the different response formats. I’ve listed these in the following
sections for your reference.

Getting Ready for Facebook Application Development 21

Graham

Figure 2-9. Facebook API Test Console

XML

Here’s what the XML result looks like:

<?xml version="1.0" encoding="UTF-8"?>
<error_response xmlns="http://api.facebook.com/1.0/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://api.facebook.com/1.0/
 http://api.facebook.com/1.0/facebook.xsd">
 <error_code>100</error_code>
 <error_msg>Invalid parameter</error_msg>
 <request_args list="true">
 <arg>
 <key>uids</key>
 <value/>
 </arg>
 <arg>
 <key>fields</key>
 <value/>
 </arg>
 <arg>
 <key>callback</key>

22 Getting Ready for Facebook Application Development

Graham

 <value/>
 </arg>
 <arg>
 <key>app_id</key>
 <value>2227470867</value>
 </arg>
 <arg>
 <key>session_key</key>
 <value>c50b22639edc8d2d0dd29357-7608007</value>
 </arg>
 <arg>
 <key>v</key>
 <value>1.0</value>
 </arg>
 <arg>
 <key>method</key>
 <value>facebook.users.getInfo</value>
 </arg>
 <arg>
 <key>api_key</key>
 <value>0289b21f46b2ee642d5c42145df5489f</value>
 </arg>
 <arg>
 <key>call_id</key>
 <value>1186452883.4263</value>
 </arg>
 <arg>
 <key>sig</key>
 <value>28186e1be6ee4015119a992b638b694a</value>
 </arg>
 </request_args>
</error_response>

JSON

JSON uses a slightly different syntax to express the same information:

{"error_code":100,
 "error_msg":"Invalid parameter",
 "request_args":[
 {"key":"uids","value":""},
 {"key":"fields","value":""},
 {"key":"callback","value":""},

Getting Ready for Facebook Application Development 23

Graham

 {"key":"app_id","value":"2227470867"},
 {"key":"session_key","value":"c50b22639edc8d2d0dd29357- 7608007"},
 {"key":"v","value":"1.0"},
 {"key":"format","value":"json"},
 {"key":"method","value":"facebook.users.getInfo"},
 {"key":"api_key","value":"0289b21f46b2ee642d5c42145df5489f"},
 {"key":"call_id","value":"1186452905.8595"},
 {"key":"sig","value":"b7e26b1f71aeffb448d26cdf89f32f6e"}
]
}

PHP

Here’s the PHP:

Exception Thrown: FacebookRestClientException
 Code: 100, Message: Invalid parameter

You can also try FQL in this box. This is a nice place to start inserting different FQL
queries to see what is getting returned in different formats.

Here is a quick sample of FQL that queries Facebook for a link to my profile picture:

SELECT pic
FROM user
WHERE uid = 7608007

You’ll notice the response format returns a single field in the <fql_query_response>
element:

<?xml version="1.0" encoding="UTF-8"?>
<fql_query_response xmlns="http://api.facebook.com/1.0/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 list="true">
 <user>
 <pic>http://profile.ak.facebook.com/profile5/1622/61/s7608007_3215.jpg</pic>
 </user>
</fql_query_response>

Or, if you prefer to get your responses in JSON, here’s the code:
[{"pic":"http:\/\/profile.ak.facebook.com\/profile5\/1622\/61\/s7608007_3215.jpg"}]

For PHP, here’s the code:

Array
(

24 Getting Ready for Facebook Application Development

Graham

 [0] => Array
 (
 [pic] =>
 http://profile.ak.facebook.com/profile5/1622/61/s7608007_3215.jpg
)

)

These are all the responses from the same query, just in different response formats.
What you’ll notice is that each of the formats returns the information in slightly different
ways. The XML format is by far the most verbose and, depending on your environment, is
something you might want to take into consideration as your calls to the Facebook platform
become more complex. Let’s look at another FQL query:

SELECT first_name, last_name, hometown_location.state, status
FROM user
WHERE uid = 7608007

This query will return to you my first and last name, my hometown state, and the status
message I set on my home page. This is a basic query that returns a rather straightforward
structure. I’ll get into some more advanced queries later where you can combine fields and
use aggregate functions in FQL to decrease the amount of bandwidth you need to run your
applications.

FBML Tab
The Facebook Markup Language is a powerful set of tags that abstracts some rather
complex code. Although Facebook will scrub (that is, remove) JavaScript you put into your
code, it does allow you, through FBML markup, to use certain types of JavaScript code.
There are two ways to do this. You can use the MockAjax framework, which you’ll find
does much of the JavaScripting you need to do, or you can use Facebook JavaScript (FBJS)
to let you do more advanced scripting.

Note ➡ In 2005, a “clever” MySpace user figured out how to force people to become his friend by exploiting

a hole in their code. Leveraging this vulnerability, the user launched a cross-site scripting (XSS) attack where

he was able to add more than 1 million people as friends in the course of a 24-hour period. Because of this

type of attack, Facebook restricts the JavaScript available to application developers.

Getting Ready for Facebook Application Development 25

Graham

FBML is a superset of HTML, utilizing many of the HTML tags but also adding its own
special sauce to allow you to do some rather fun things. To test some of the features you
might be considering before you deploy, it’s a good idea to see how your code renders
when pushed through the Facebook platform.

Again, you can access this tool at http://developer.facebook.com/tools.php and click
FBML Test Console. Once there, you’ll notice a slightly busier interface than the API Test
Console (see Figure 2-10).

Figure 2-10. The FBML Test Console

The large panel on the left is where you can type (or paste) your HTML and FBML
code and look at the differences in the output (displayed on the right side) for the different
positions that you can place your display (narrow, wide, canvas, e-mail, notification, feed
title, and feed body). Let’s take a look at a couple of simple examples.

First, making the dashboard navigation bar for the top of your application with a set of
buttons is a simple task in FBML, as shown by this example from Facebook:

<fb:dashboard>

<fb:action href="http://apps.facebook.com/<your_facebook_app>/?id=1234567">
My Book Reviews

</fb:action>

<fb:action href="http://apps.facebook.com/<your_facebook_app>/new.php">

26 Getting Ready for Facebook Application Development

Graham

Write a New Review
</fb:action>

<fb:help
 href="http://apps.facebook.com/<your_facebook_app>/help.php"
 title="Need help">
 Help
</fb:help>

<fb:create-button href="http://apps.facebook.com/<your_facebook_app>/new.php">
 Write a New Review
</fb:create-button>

</fb:dashboard>

With these few lines of code, you have successfully accomplished the output shown in
Figure 2-11.

Figure 2-11. FBML output example

Although we’ll get a bit deeper into what’s going on here a bit later in the book, I’ll
discuss a few tags briefly here. The <fb:dashboard> tag tells the Facebook platform to
consider this a dashboard for the wide panel since this is the default for testing. The
<fb:action> tags create the two pipe-delimited anchors for “My Book Reviews” and “Write
a New Review.” The <fb:help> tag creates the reference to the help documentation, and the
<fb:create-button> tag creates the Write a New Review button. You will notice there’s
some more text here (“Facebook FBML Test Console Sample App”), which Facebook
places to help you see what else would be in the “real” application.

You’ll also notice that there is some verbose output in the HTML output box. This box
illustrates what Facebook translates your FBML input to be for browsers:

Getting Ready for Facebook Application Development 27

Graham

<div class="dashboard_header">
 <div class="dh_links clearfix">
 <div class="dh_actions">
 <a href="http://apps.facebook.com/<your_facebook_app>/?id=1234567">
 My Book Reviews

 |
 <a href=" http://apps.facebook.com/<your_facebook_app>/?new.php">
 Write a New Review

 </div>
 <div class="dh_help">
 <a href=" http://apps.facebook.com/<your_facebook_app>/?help.php">
 Help

 </div>
 </div>
 <div class="dh_titlebar clearfix">
 <h2 style="background-image:

url('http://static.ak.facebook.com/images/icons/hidden.gif?12:27651')">
 Facebook FBML Test Console Sample App
 </h2>
 <div class="dh_new_media_shell">
 <a href=" http://apps.facebook.com/<your_facebook_app>/?new.php"
 class="dh_new_media">
 <div class="tr">
 <div class="bl">
 <div class="br">
 Write a New Review
 </div>
 </div>
 </div>

 </div>
 </div>
</div>

Facebook does a lot behind the scenes to process your application, and it’s a good idea
to get acquainted with these tools to see what will work (and what won’t) before you deploy
your application.

28 Getting Ready for Facebook Application Development

Graham

Feed Preview Console Tab
The Feed Preview Console is useful when testing how the information pushed from your
application will look when it shows up in the user’s feed.

As you can see in Figure 2-12, this console consists of a bunch of text boxes to fill in
different parts of the elements for the feed.publishTemplatizedAction API call. This comes
in handy when testing the display of the news feeds elements of your code without
spamming all your users.

Figure 2-12. The Feed Preview Console

Getting Ready for Facebook Application Development 29

Graham

Using Programming Tools

If you don’t already have a favorite code editor, finding one can be challenging. Most likely
you’ll start coding with something as simple as a text editor, but you’ll quickly find this to
be a pain. Here are some editors that you might want to try to help you with developing
your Facebook application:

• Crimson (http://www.crimsoneditor.com/) [Windows]

• ConTEXT (http://www.context.cx/) [Windows]

• Dreamweaver (http://www.adobe.com/products/dreamweaver/) [Windows, OS X]

• Eclipse PDT (http://www.eclipse.org/pdt/) [Windows, OS X, *nix]

• EditPad Lite (http://www.editpadpro.com/editpadlite.html) [Windows]

• Notepad++ (http://notepad-plus.sourceforge.net/uk/site.htm) [Windows]

• phpDesigner (http://www.mpsoftware.dk/) [Windows]

• PhpEd (http://www.nusphere.com/products/phped.htm) [Windows]

• PhpEdit (http://www.waterproof.fr/) [Windows]

• PHP Expert Editor (http://www.ankord.com/phpxedit.html) [Windows]

• Quanta Plus (http://quanta.kdewebdev.org/) [*nix]

• TextMate (http://macromates.com/) [OS X]

One of the nice features of the majority of these editors is that you have the ability to
add your own language references. Although there aren’t any FBML plug-ins yet for these
editors (or at least any that I’m aware of), they could be built very easily.

Summary

This chapter introduced the necessary steps to create a user account on Facebook, to set up
your server environment, and to register your yet-to-be developed application with
Facebook. It also examined some of the concepts used by Facebook in how it names the
different parts of its site and some of the tools that Facebook provides to help you try
different parts of the platform (the API Test Console and FBML Test Console). You also
briefly looked at how the Facebook platform interprets your code to represent your program
to generate HTML for your end users (the Feed Preview Console). It’s important to
remember that your application is being parsed on at least two servers, the web server your

30 Getting Ready for Facebook Application Development

Graham

application is hosted on and one of Facebook’s servers, before the information gets to your
users. You can control only one of those parsers, so code efficiently!

Although you technically could create a Facebook application at this point, it was worth
taking a step back and looking at the terminology that the Facebook platform uses for
naming elements of pages and some of the tools it provides to help you not only learn about
the platform itself but also to help you debug your code!

In the next chapter, you’ll take a closer look at the different parts of the Facebook
platform and start getting familiar with the syntax Facebook uses. You’ll also look at some
of the tools Facebook provides to help you get comfortable with the platform as well as try
different parts of the platform.

CHAPTER 3

Learning Facebook Platform
Fundamentals

As mentioned in Chapter 1, there are five main components of the Facebook platform: API
calls, Facebook Markup Language (FBML), Facebook Query Language (FQL), Facebook
JavaScript (FBJS), and the client libraries. I consider the client libraries for the various
languages to be part of the platform because they are useful abstractions for the specific
language in which you are implementing your code. The examples in this chapter will
utilize the PHP client library from Facebook, so if you’re using a different client library,
your syntax will be slightly different. It’s important to remember that this chapter is not
meant to be an exhaustive reference for the platform (Facebook has a wiki for that at
http://wiki.developers.facebook.com), but it will cover the major elements you will likely
encounter when developing applications.

Client Library Primer

The official client libraries written by Facebook are of the PHP and Java variety. Other
language libraries are listed on the Facebook developers web site, but in the interest of
simplicity, I’ll cover only the PHP library (specifically the PHP 5 library). If you’re
working with other languages, most of the concepts should be the same, but depending on
how the developer who wrote the library chose to implement certain elements (and the
characteristics of the language the libraries are being implemented in), the way methods are
called and named might be slightly different. As a word of warning, some libraries are
better documented than others; some have web sites replete with example code, and others
have just a link for a download. If you run into a problem and you can’t get help with your
language-specific version, take a look at the documentation for the “official” client libraries
for PHP or Java.

Facebook’s PHP client library consists of two main object classes, Facebook (in
facebook.php) and FacebookRestClient (in facebookapi_php5_restlib.php). As you might
expect, the FacebookRestClient class abstracts interactions with Facebook’s API. The
Facebook class utilizes the FacebookRestClient class’s methods to further abstract common
interactions with the Facebook platform. For instance, instead of writing a procedure to

32 Learning Facebook Platform Fundamentals

Graham

require a user to have a session key to work with your application, the Facebook object has a
method named require_login() that checks for the session key and, if it doesn’t find one,
redirects the user to Facebook to perform the authentication and then returns the user to
your application.

You use the classes just like any other PHP class with require_once (or your other
favorite way to create objects):

<?php
/**
 * Include the Facebook PHP client library
 */
 require_once('<path_to_client_library>/facebook.php');

/**
 * Set your API and secret keys
 */
 $api_key = '<your_api_key>';
 $secret_key = '<your_secret_key>';

/**
 * Initialize a new instance of the Facebook client object
 */
 $facebook = new Facebook($api_key, $secret_key);
?>

Your API and secret keys are assigned to you in your My Applications portion of
Facebook’s Developer application (http://www.facebook.com/developers/apps.php). Once
instantiated, the Facebook client libraries make it easy to interact with the Facebook
platform.

If you actually look at the code in the library, you’ll notice that it contains a few
different classes. For instance, when you create a Facebook object, that class is including a
library to make the REST calls (facebookapi_php5_restlib.php). If you are using PHP to
write a desktop application, the main change is that you would use the
facebook_desktop.php file, which extends the Facebook object but is better suited to desktop
applications. The facebookapi_php5_restlib.php file is the real workhorse for your
application and is where you will find most of the functions you will use in your
application.

One nice aspect is that the developers of the Facebook platform used phpDoc
conventions, so generating complete documentation for the platform is relatively simple. If
you don’t have a version of PhpDocumentor, you can download it from SourceForge at
http://sourceforge.net/projects/phpdocu/ or use PEAR to install it:

Learning Facebook Platform Fundamentals 33

Graham

pear install PhpDocumentor

PEAR should install a new script that you can call from the command-line script, which
you then can call to create the documentation:

phpdoc -t /path/to/output -d /path/to/facebook_client_library -pp on –ti Facebook
 Client Documentation

This line will set the output directory (-t), take a look at the client library path (-d),
parse private functions within the code (-pp), set an HTML title of “Facebook Client
Documentation” (-ti), and then output the results in HTML using frames. There are many
more options for producing documentation, but these options will produce very useful
documentation while you develop your Facebook application. For more information about
using this tool, check out the phpDocumentor web site at http://www.phpdoc.org/.

API Primer

Facebook has some rather convenient out-of-the box tools for interacting with its back end.
At the core of the platform is a set of API calls that wrap more complex code into a single
call. In fact, most of the API calls are simply wrappers for complex FQL calls. So, without
further adieu, let’s take a look at what you have available to you through the API calls.

Facebook’s API methods are broken into logical groups of calls. These API calls are
also where your first interaction with the platform comes into play. You don’t need to use
the client library—it just makes things faster since you would need to write these in your
language in order to interact with the platform.

To set up the client library for PHP, you simply include the client library in your code.
For example, the following snippet makes sure users are logged on to Facebook before
displaying a list of the user’s friends. Figure 3-1 shows the results.

<?php
/**
 * Set the configuration settings for Facebook
 */
 $facebook_config['debug'] = false;
 $facebook_config['api_key'] = '<your_api_key>';
 $facebook_config['secret_key'] = '<your_secret_key>';
/**
 * include the Facebook client library
 */
 require_once('<path_to_client_library>/facebook.php');

/**

34 Learning Facebook Platform Fundamentals

Graham

 * Set up the facebook object
 */
 $facebook = new Facebook($facebook_config['api_key'],
 $facebook_config['secret']);

/**
 * Ensure the user has logged on to Facebook
 */
 $user = $facebook->require_login();

/**
 * Make an API call to call get a user's friends using the PHP library's
 * library
 */

 $friends = $facebook->api_client->friends_get();

 echo "<pre>Friends:" . print_r($friends, true). "</pre>";
?>

Figure 3-1. Results of friends_get API call

You’ll notice a few things in this example. First, you’re just throwing the results from
the friends object on the screen. I’ll cover interacting with the resulting code with FBML a
bit later. Second, the syntax for interacting with the API is abstracted into methods in the

Learning Facebook Platform Fundamentals 35

Graham

Facebook object. You first set up the Facebook object with the API and secret keys that
Facebook assigns to you when you set up your application.

You’ll also notice that you require the user to be logged on to Facebook in order to
execute the code. This example uses the require_login() method and stores the user’s
identification number (UID) in the variable user. The next call actually queries the
Facebook API method friends.get by wrapping it in the PHP method friends_get. Since
the facebook object holds the user’s identification number (their primary key or UID),
there’s no need to pass the UID to the API request. From this short sample code, you can
see that the PHP code is actually setting up a REST client to call the facebook.friends.get
API method and returns an array of user identifiers:

/**
 * Returns the friends of the current session user.
 * @return array of friends
 */
public function friends_get() {
 if (isset($this->friends_list)) {
 return $this->friends_list;
 }
 return $this->call_method('facebook.friends.get', array());
}

The client libraries allow you to concentrate on developing your application rather than
recoding your interactions with the platform. Since you need to know what you can do with
the API, let’s take a slightly closer look at the rest of the calls and what they do.

Authentication
The REST API has two methods for dealing with authenticating your users. The method
facebook.auth.createToken creates an authentication token (auth_token) that is then passed
to the Facebook authentication mechanism. After the user is logged in, the second REST
method, facebook.auth.getSession, will contain this token in the response, but only if you
specifically request the auth_token in the response.

Authentication is usually (at least when it’s done well) a big headache for developing
online applications. Because Facebook takes responsibility for these actions, you don’t have
to purchase SSL certifications, implement your own encryption schema for passwords, or
even worry about sessions. In the case of the PHP client library, you start the authentication
procedure by calling the Facebook object’s require_login method. By calling this method,
your users are redirected to Facebook’s login pages
(https://login.facebook.com/login.php), which are passed your API key, and the user is
given a session key and redirected to your callback page. The only difference is that when

36 Learning Facebook Platform Fundamentals

Graham

the user enters the application for the first time, they are asked to accept the terms of service
for the application.

Now, you might find yourself in need of performing some task (such as updating
FBML), but instead of logging into Facebook every time, you want to update the data to use
some sort of scheduled task. You are able to do this with an infinite session key.

The process to get your infinite key is a bit convoluted (but, hey, you have to do it only
once for each application). After creating your application, create a new page
(infinite_key.php) in your callback domain that creates a new Facebook object and echoes
your session_key:

<?php

/**
 * @title infinite_key.php
 */

$facebook_config['debug'] = false;
$facebook_config['api_key'] = '<your_api_key>';
$facebook_config['secret_key'] = '<your_secret_key>';

require_once('<path_to_api>/facebook.php');

$facebook = new Facebook($facebook_config['api_key'],
 $facebook_config['secret']);

// force a login page
$user = $facebook->require_login();

$infinate_key = $facebook->api_client->session_key;

echo($infinate_key);

?>

Once you have this code on your server, log out of Facebook, clear your Facebook
cookies and browser cache (just to make sure nothing funky is going on), and then go to the
page you just created on your server (that is, not the application URL, but the actual URL).
You will be asked to log on again, so do so, but make sure you check the No Longer Have
to Log In to Facebook box. After you’ve logged on, you should see the infinite key that you
can then use in your code.

You can now use your own UID and key in other code to perform anything that needs
to happen on a regular basis with the set_user function in the facebook object:

Learning Facebook Platform Fundamentals 37

Graham

<?php
 ...
 $uid = '<your_uid>';
 $key = '<your infinite key>';

 $facebook->set_user($uid, $key);

 // code that needs to be executed
?>

The infinite key is a powerful construct for your Facebook application that you might
find you need to implement. Most of the folks who have needed this are updating FBML for
features such as mini-feeds or pushing content to their user’s profile page.

Events
Event calls have two main wrappers to retrieve information on events. The first,
facebook.events.get, returns a response based on the filters passed to it. The second,
facebook.events.getMembers, returns the RSVP status for Facebook members for a given
event.

FBML
To deal with some of the more advanced features of FBML, Facebook has three API
methods to help you. The facebook.fbml.refreshImgSrc method fetches and caches an
image at a given URL. To refresh content from a given URL, you use the
facebook.fbml.refreshRefUrl method. Lastly, to use content as a handle in FBML, you can
call the facebook.fbml.setRefHandles method.

Feed
To update a user’s news feed, the REST API has two methods. To publish information to an
individual user’s feed, the facebook.feed.publishStoryToUser method will publish
information to a user’s feed based on their session key (session_key) and their user ID (uid).
You add the title, body, and various links, depending on what you want to publish. The
second method, facebook.feed.publishActionOfUser, publishes a mini-feed story to the
user’s account, also based on their session key and user ID.

38 Learning Facebook Platform Fundamentals

Graham

FQL
As I’ve mentioned, most of the calls in the REST API are wrappers for complex, but
common, FQL queries. The facebook.fql method takes a query and returns a response
object based on your syntax. In the Facebook documentation, most of the API requests have
their FQL equivalents, so if you see you need something slightly different from what is
provided in the API calls, check out the FQL equivalents before you start writing from
scratch.

Friends
When you’re developing applications, you might find it necessary to look at the friends of
your users. There are three methods provided to deal with this. The method
facebook.friends.areFriends will tell you whether two people are friends. The
facebook.friends.get method returns a structure of the user’s friends’ user IDs. Lastly, the
facebook.friends.getAppUsers method returns a structure of the friends of the user who
have installed the application on which you’re working.

Groups
If you want to work with your user’s groups, the REST API has two methods that return
information about their visible groups. When you call the facebook.groups.get method, you
can retrieve all the groups the user belongs to, or a subset of these groups, by using the
method’s filtering mechanism. The second method, facebook.groups.getMembers, returns the
user IDs (UIDs) for a given public group.

Marketplace
Facebook’s marketplace is a place to buy/sell items, list jobs, list housing, or even request
items to purchase/borrow through Facebook. You’re able to search the Facebook
marketplace with facebook.marketplace.search. There are getters and setters for listings
with facebook.marketplace.getListings and facebook.marketplace.createListing. You can
also remove listings with facebook.marketplace.removeListing. Facebook also has a
category and a subcategory getter method, facebook.marketplace.getCategories and
facebook.marketplace.getSubCategories.

Learning Facebook Platform Fundamentals 39

Graham

Notifications
Facebook allows you to send and receive notifications in your application with the REST
API. You can expose your user’s request notifications, by using the
facebook.notifications.get method, to see outstanding notification responses. You can
also send notifications to your users with the facebook.notifications.send method and send
invitations with the facebook.notifications.sendRequest method.

Photos
With more than 60 million images added each week by Facebook users, there are several
REST methods to interact with users’ images. You can tag images with the
facebook.photos.addTag method or create photo albums with the
facebook.photos.createAlbum method. You can get a user’s individual photos with the
facebook.photos.get method or a listing of their albums with the
facebook.photos.getAlbums method. You can also get the listing of the tags that individual
photos have with the facebook.photo.getTags method. I’ll cover the workflow of this later,
but you can also upload photos with the facebook.photos.upload method.

Profile
To easily interact with setting information in the user’s profile, there are two methods to
work with, facebook.profile.setFBML and facebook.profile.getFBML. I’ll cover the FBML a
bit later, but essentially these methods allow you to set and get FBML for a user’s profile
box and profile actions.

Users
The final set of methods in the REST API gives you access to some user information for
your application. The first, facebook.users.isAppAdded, tells you whether the user has added
your application. To get information from your user’s profile, you can call the method
facebook.users.getInfo. Lastly, to get the user ID (uid) from a session key, use the
facebook.users.getLoggedInUser method.

Error Codes
Sometimes when you’re developing an application, you make mistakes. Fortunately,
Facebook returns rather robust error messages when something goes wrong (like you forgot

40 Learning Facebook Platform Fundamentals

Graham

to provide a specific parameter for an API call). The error codes are returned with both a
numeric value and a message. Generally, if you receive an error message (in a structure),
it’s rather obvious when you read the error message (in the err_msg element). If you can’t
figure out what’s going on with a specific call, it’s always a good idea to check out the code
in the API Test Console (http://developer.facebook.com/tools.php). Although this won’t
give you any more information than you are getting returned, it can help you narrow down
what’s going on (in case you have multiple errors).

Data Store API

Facebook also has implemented an API for basic database manipulations with its Data Store
API (which is still in beta as of this writing). This API provides a basic create, read, update,
and delete (CRUD) API for storing data that you access through REST. If you’re unfamiliar
with object-oriented database management systems (OODMSs), some of the terminology is
a bit different from that for relational database management systems (RDBMSs). For
instance, to use the Data Store API, you must define your schema (your database), which
consists of object types (tables) and properties (columns).

One of the really nice features of the Facebook Data Store API is that Facebook does
not plan to charge for normal use! You basically have use of Facebook’s servers to perform
your database manipulations for you. However, it’s probably not quite time to get rid of
your RDBMS yet, because there aren’t any structured queries, full-text search, or
transaction-level query processing in the Facebook Data Store API.

Note ➡ The Data Store API is still in beta as of the writing of this book. Because of this, there is a chance

that what I write here will change. Please consult the wiki documentation for the latest information before

you deploy any projects using the Data Store API.

The Data Store API consists of three basic functions: specialized tables, distributed
tables, and associations that are split into five separate APIs (User Preference, Object Data
Definition, Object Data Access, Association Data Definition, and Association Data Access).
Since Facebook provides access to millions of users, the tables (objects) you create are
distributed. Facebook does provide a specialized table of users that is optimized (if you find
that you really need more, let the Facebook developers know at their Bugzilla site,
http://bugs.developers.facebook.com/). The associations component of this API is a
mechanism to provide performance for fast lookups (such as indexes). Because indexing
tables in a distributed environment won’t necessarily provide a performance boost, this

Learning Facebook Platform Fundamentals 41

Graham

mechanism has been implemented to provide fast lookups without centralized indexes or
parallel queries.

 The user preferences for the API consist of 128-character strings, for which you can
store up to 201 for each user (numbered 0–200). Access to the getters/setters are accessed
through getters and setters in the REST API (facebook.data.setUserPreference and
facebook.data.getUserPreferences).

Data objects (that is, tables) are created with facebook.createObjectType. The object
type takes a name and contains a set of object properties (that is, columns). Object
properties have names and data types. You don’t quite have the same type of control over
the data types with the API as you do with your own RDBMS because you are limited to
integers, strings (less than 256 characters), and text blobs (with a maximum of 64KB).

After defining your objects and object types, you create, read, update, and delete
through the Object Data Access API. These are rather straightforward
(facebook.data.createObject, and so on).

To work with the associations between objects, you first need to define the relationship
between objects in the facebook.defineAssociation call. You can define two types of
associations: one-way, symmetric associations and asymmetric associations. If you’re
familiar with RDBMS joins, think of an asymmetric association as a many-to-many join
and a symmetric association as a one-to-many join. One-way associations are an association
between objects that can happen only one way (in other words, there’s no need to look up a
value by some ID) for a given object. You then create the actual associations with the
Association Data Access API. These methods allow you to create, remove, and retrieve
these associations and retrieve the object details from the data contained in the data
definition.

This can be confusing at first, so let’s look at an example:

<?php

$createObject = $facebook->api_client->data_createObjectType("wallpost");

$uid = $facebook->api_client->data_defineObjectProperty("wallpost", "uid", 1);

$time = $facebook->api_client->data_defineObjectProperty("wallpost", "timePosted",
2);

$post = $facebook->api_client->data_defineObjectProperty("wallpost", "post", 3);

?>

The previous snippet of code is analogous to the following SQL DDL:

CREATE TABLE wallpost(

42 Learning Facebook Platform Fundamentals

Graham

 uid integer,
 timePosted timestamp,
 post text
)

As you can see in this simple example, this can take a little bit to get used to because
you’re not performing your typical SQL DDL; however, once you get your mind around
how to create the objects, it’s relatively trivial to use the API as the persistence layer for
your application. I suspect that this API will eventually make it out of beta and be quite a
powerful tool in the Facebook developer’s toolbox, at least for those who choose to have
Facebook manage their data.

FQL Primer

If you’ve worked with SQL before (and I assume you have), FQL isn’t a big deal. You use
the same syntax as typical ANSI-SQL, and there are only nine tables to deal with. There
are, however, some important differences. There are no joins, and FQL has not
implemented the LIMIT, GROUP BY, or ORDER BY clauses that are common to ANSI
SQL–compliant implementations. Before we go any further, let’s take a look at the tables
and fields that are exposed to the Facebook Query Language.

Tables
Here’s a list to make sure you know what’s available to you in the different tables. (OK,
these aren’t really tables; more likely these are views of specific data, but for simplicity’s
sake, we’ll just call them tables.)

• users(uid, first_name, last_name, name*, pic_small, pic_big, pic_square, pic,
affiliations, profile_update_time, timezone, religion, birthday, sex,
hometown_location, meeting_sex, meeting_for, relationship_status,
significant_other_id, political, current_location, activities, interests,
is_app_user, music, tv, movies, books, quotes, about_me, hs_info,
education_history, work_history, notes_count, wall_count, status,
has_added_app)

• friend(uid1, uid2)

• group(gid, name, nid, pic_small, pic_big, pic, description, group_type,
group_subtype, recent_news, creator, update_time, office, website, venue)

• group_member(uid, gid, positions)

Learning Facebook Platform Fundamentals 43

Graham

• event(eid, name, tagline, nid, pic_small, pic_big, pic, host, description,
event_type, event_subtype, start_time, end_time, creator, update_time,
location, venue)

• event_member(uid, eid, rsvp_status)

• photo(pid, aid, owner, src_small, src_big, src, link, caption, created)

• album(aid, cover_pid, owner, name, created, modified, description, location,
size)

• photo_tag(pid, subject, xcoord, ycoord)

Functions and Operators
Although the FQL language isn’t ANSI-SQL complete, it does have some simple operators
and functions to help you work with user data. FQL has boolean operators (AND, OR, and
NOT), comparison operators (=, >, >=, <, <=, <>), and arithmetic operators (+, -, *, and /).
The functions included in FQL, although not exhaustive, allow you to perform some basic
string manipulations. To conserve bandwidth, you can use the concat() function to group
several tuples together:

<?php

 $facebook_config['debug'] = false;
 $facebook_config['api_key'] = '<your_api_key>';
 $facebook_config['secret_key'] = '<your_secret_key>';

 require_once('<path_to_client_library>/facebook.php');

 $facebook = new Facebook($facebook_config['api_key'],
 $facebook_config['secret']);

/**
 * Ensure the user has logged on to Facebook
 */
 $user = $facebook->require_login();

/**
 * Construct the FQL request
 */
 $fql = "SELECT concat(first_name, ' ', last_name)

2ca983ba3745582e6151dc1b079b2db0

44 Learning Facebook Platform Fundamentals

Graham

 FROM user
 WHERE uid = '$user'";

/**
 * Pass the FQL to Facebook through the API client
*/
 $fql_result = $facebook->api_client->fql_query($fql);

/**
 * Print the results to the screen
 */
 echo "<pre>FQL Result:" . print_r($fql_result, true) . "</pre>";
?>

The previous example simply selects the first and last names of the user who is
currently making the request. The resulting page will display an array in the following
format:

FQL Result:Array
(
 [0] => Array
 (
 [anon] => <your_first_name> <your_last_name>
)
)

You might be saying to yourself, “This is pretty useless. What’s the difference between
this and just calling both the fields?” Well, if you have any bandwidth concerns, you can
alleviate some of those issues by using the concat function to put fields that you need
together. For instance, you might want to put a specific string into your page that combines
several fields in a specific way. Letting the Facebook servers do some of this processing
before it gets back to your server will not only decrease your server load but can also cut
down on your bandwidth in order to speed up your application.

Not only can you do simple SQL-style selects, but you can also perform subqueries.
Take, for example, this FQL equivalent for the facebook.events.get REST API call:

SELECT eid, name, tagline, nid, pic, pic_big, pic_small, host, description,
 event_type, event_subtype, start_time, end_time, creator, update_time,
 location, venue
FROM event
WHERE eid IN (SELECT eid FROM event_member
 WHERE uid=uid AND rsvp_status=rsvp_status) AND
 eid IN (eids) AND

Learning Facebook Platform Fundamentals 45

Graham

 end_time >= start_time AND
 start_time < end_time

I won’t go into the theory behind nested queries, but I will mention that they are very
useful for testing set membership, set comparisons, and set cardinality. And, this expansion
of the REST call serves as a good example for writing your own custom FQL expressions.

You might find that you will need to take some additional processing to make sure your
information is displayed in a specific order. You’ll have to do this with your client
language. For PHP, you need to sort the array and then slice it. Let’s take the following:

<?php
 $fql = "SELECT eid, name, location
 FROM event
 WHERE eid IN (
 SELECT eid
 FROM event_member
 WHERE uid = '$user'
)";

 $fql_result = $facebook->api_client->fql_query($fql);

 asort($fql_result);

 array_slice($fql_result, 0, 5);

?>

The previous passes an FQL query to find events for the current user, sorts the resulting
PHP array, and returns the array with the six elements (positions 0–5) of the query result.

FQL allows you as a developer to have granular control of the information that you
retrieve about your users from the Facebook servers. Although it’s not as robust as you
might sometimes need (or want) it to be, you can generally get around FQL’s limitations
with some post-processing in the language in which you’re developing. Additionally, as the
complexity of your FQL increases with subqueries, you might at some point run into
problems. As I’ve mentioned earlier, using the Facebook API Test Console at
http://developer.facebook.com/tools.php is a great place to help debug your code. For
instance, if you take the previous query and take out the WHERE clause so that your FQL
statement reads as follows:

SELECT eid, name, location
 FROM event
 WHERE eid IN (
 SELECT eid

46 Learning Facebook Platform Fundamentals

Graham

 FROM event_member
)

then, when executed, this will raise an error (shown in Figure 3-2) because you must have a
limiting WHERE clause.

Figure 3-2. XML error response

If you missed it when you look at your code, the resulting XML response shows an
error code of 601 and an error message of “Parser error: WHERE clause is required.”
Fortunately, this is an easy fix, but you might find yourself working with more complicated
interactions with FBML and FQL, and this tool can provide invaluable help in discerning
where your bugs exist.

Facebook Markup Language Primer

The Facebook Markup Language (FBML) is the heart of the Facebook platform. You might
see some folks referring to FBML as “fancy” HTML tags, but it actually does a little more
than static HTML because it has a dynamic connection to the Facebook back end. If you
have developed any web applications in ColdFusion or JSP (using JSTL), programming
with FBML will be very familiar. The Facebook Markup Language is described on the wiki
site as an “evolved subset of HTML,” so you have many of the same tags available to you
as you do in normal HTML, but you also get a much richer tag set that allows you to code
myriad interactions with the users very quickly.

Valid HTML Tags
For the most part, most commonly used HTML tags will work on the Facebook platform. If
you’ve worked with HTML in the past, you’re already familiar with this part of the
platform. One major difference between typical HTML and FBML is that “normal”

Learning Facebook Platform Fundamentals 47

Graham

JavaScript is stripped from your code. For instance, you cannot use the onclick attribute in
the anchor (<a>) tag to call JavaScript:

<p>
 click me
</p>

Although completely valid HTML and JavaScript, the previous will raise an error
(shown in Figure 3-3) when your users look at the page containing this code.

Figure 3-3. Facebook errors

Don’t worry, if you need access to JavaScript for your application, Facebook has
developed FBJS, which will allow you to use many of the conventions you typically see in
JavaScript.

When working with FBML, remember that it’s not exactly HTML, even though you use
a lot of the same syntax. Your code has to be processed through the Facebook platform to
ultimately generate the HTML that gets rendered to the user, so not everything you’re used
to doing with HTML code will work.

FBML Tags
FBML-specific tags are really the meat of the Facebook platform. The tag set isn’t overly
complex, but it has already gone through two iterations with FBML 1.0 and FBML 1.1.
This change actually raises a sometimes-frustrating aspect in how Facebook changes the
platform. When FBML 1.1 was announced in August 2007, developers basically had ten
days to make their code compliant to the new specification. It is imperative that if you’re
developing an application for Facebook that you keep up with the changes to the platform
so your application doesn’t stop working. If you haven’t already subscribed, add the
Facebook News feed (http://developers.facebook.com/news.php?blog=1) to keep abreast of
changes.

I’ll also take a moment here to talk briefly about some of the issues, err, enhancements
that you will see when using FBML. One of the big things you’ll notice is that there are
FBML tags that will act differently in different locations. As an example, you can use

48 Learning Facebook Platform Fundamentals

Graham

iframes on canvas pages, but you cannot use the same iframe on the code in the profile box.
There is also a queue of requested tags that are being considered for inclusion with the next
FBML tag set iteration. Although not all of these tags will make it into the official
language, it’s interesting to see what the developer community is requesting to be included.
You can view and add to these requests at
http://wiki.developers.facebook.com/index.php/Requested_FBML_Tags.

The developer’s wiki for the Facebook platform groups the tags by their function. I
believe this is perhaps the most useful way to work with the FBML because of the sheer
volume of tags (almost 100 as of version 1.1). Also, because of this volume, some tags will
necessarily have more information about them than others. If you find some of these
descriptions and examples insufficient, please refer to the official documentation for the
tags.

FBML tags are set apart from other HTML tags with the fb prefix and follow the format
<fb:tag_name>.

Conditionals

FBML contains many conditional tests that can help you cut down on implementing this
code in your application. At the heart of these conditionals is the <fb:if> tag:

<fb:if value="true">
 <p>Hi</p>
</fb:if>

At first glance, this isn’t that useful because the value attribute will always be true. This
is where your programming language comes into play. To actually make this do something
useful, you need to be able to dynamically set this value. Let’s write a short test to see
whether the logged-in user has a user ID of 12345 and show a customized message:

<?php
 $user = $facebook->require_login();

 $test = false; // you may also use 1/0 for true/false

 if($user == 0000001){
 $test = 1;
 }
?>

<fb:if value="<?php echo($test)?>">
 <p>This is the secret message.</p>
 <fb:else>

Learning Facebook Platform Fundamentals 49

Graham

 <p>No secret message for you!</p>
</fb:if>

This is a nonsense example, but it shows how you can you use the <fb:if>/<fb:else>
construct to display custom messages to your users. You will find that through your
application development process you will start constructing more complex
<fb:if>/<fb:else> statements. Fortunately, the developers of the Facebook platform
anticipated this and have a set of tags that will do many of the most common types of
conditional checking.

As I stated earlier, Facebook tags act differently in different sections of the web pages.
These conditional checks can occur only on the canvas page of your application:

• <fb:is-in-network> displays content if a UID is in the specified network.

• <fb:if-can-see> displays content if the logged-in user can view the specified content.
This is often used to implement your own privacy features in your applications.

• <fb:if-can-see-photo> displays content if the user is logged on and has permissions
to view the photo specified.

• <fb:if-is-app-user> displays content if the specified user has accepted the terms of
service for the application.

• <fb:if-is-friends-with-viewer> displays content if the user specified is friends with
the logged-in user.

• <fb:if-is-group-member> displays content if the user is a member of the specified
group.

• <fb:if-is-own-profile> displays content if the viewer is the profile owner

• <fb:if-is-user> displays content if the viewer is one of the specified users.

• <fb:if-user-has-added-app> displays content if the specified user has added the
application to their account.

Unfortunately, there isn’t an FBML construct for else if logic. If you need to perform
multiple conditional checks, you will need to properly nest your if statements.
Alternatively, you can use the FBML’s switch construct.

The FBML <fb:switch> tag acts a bit differently than many programming languages
that implement the construct. In FBML, the <fb:switch> tag evaluates a set of FBML tags
and returns the tag information from the first tag that returns something other than an empty
string:

50 Learning Facebook Platform Fundamentals

Graham

<fb:switch>
 <fb:user uid="0000001" />
 <fb:default>This is the default statement</fb:default>
</fb:switch>

This code will display the contents of the <fb:default> tag since there’s no user with a
UID of 0000001. You may at some point need something a bit more complex for your tests.
You are able to nest <fb:if> and <fb:switch> statements within an <fb:switch> tag for these
more advanced conditional analyses in your code:

<?php
 $user = $facebook->require_login();

 $test = false;

 if($user == 0000001){
 // Boolean true = 1
 $test = 1;
 }
?>

<fb:switch>
 <fb:if value="<?php echo($test)?>">
 <fb:switch>
 <fb:profile-pic uid="<?php echo($user)?>" />
 <fb:default>Inner default</fb:default>
 </fb:switch>
 </fb:if>
 <fb:default>Outer Default</fb:default>
</fb:switch>

As you’ve probably noticed, there’s no case statements with breaks that you normally
see in other programming languages. If you’re familiar with the switch statements having
case and break statements, just think of each tag as a distinct case with no need for a break
statement. There are times where this could require more complex nesting of statements,
but if you find your conditional statements getting too complicated, it’s probably a good
idea to take a step back from what you’re doing and see whether you can find an alternative
method to perform the same check. Also, as a programming note, the switch statement
essentially has a break after the first true statement in the switch statement. If you place the
<fb:default> tag at the top of your code block (which will always return true), the rest of
your switch statement will not get evaluated.

Learning Facebook Platform Fundamentals 51

Graham

User/Group Information

Working with your user’s and group’s information is an important part of any Facebook
application. You want to let your users easily interact with other users of your application,
and there are some specific FBML tags to help with these interactions:

• <fb:name> returns the user’s name for the uid passed to the tag. This function has a lot
of customizable features to allow you to display the possessive of the user’s name
and additional logic to handle users who have protected their profiles. For example,
the <fb:name uid="$user" ifcantsee="Anonymous"> tag returns “Anonymous” if the
user has chosen not to show their name in their profile.

• <fb:grouplink> returns the name and a link of the group ID passed to the tag.

• <fb:user> displays content to the specified user and no one else.

• <fb:pronoun> renders a pronoun for a specific user. This is a fun tag to use because it
has several attributes that let you choose the different formats of the pronoun’s use,
including possessive, reflexive, and objective forms.

• <fb:profile-pic> renders a linked image of a user’s profile picture. By default this is
a 50-by-50-pixel image. This is good for “iconifying” your user’s interactions.

Profile Specific

You might find that you need to provide different content depending on where your users
are accessing the application from. Facebook provides the following tags for displaying
content inside the user’s profile box:

• <fb:wide> displays content only when the profile box is the wide column.

• <fb:narrow> displays the content only when the profile box is the narrow column.

• <fb:profile-action> builds a link on the user’s profile under their photo. You’ll use
this in conjunction with setFBML to send information to the user’s profile. As a note,
there is a 30-character limit for the contents of this tag.

• <fb:user-table> renders a table of the users (specified by the <fb:user-item> tag) you
have specified. This tag works only on a user’s profile page (will not render on the
canvas page).

• <fb:user-item> defines a user for use inside the <fb:user-table> tag.

• <fb:subtitle> defines a subtitle for the profile box.

52 Learning Facebook Platform Fundamentals

Graham

Embedded Media

Rich media is one of the cornerstones of the modern Internet…just look at YouTube. If you
find a need to use embedded media in your application for music, games, or other rich
media, you can use several tags to do this. This is an area in which FBML diverges from
HTML because it is missing an <embed> tag. However, you are still able to use this
functionality through the following tags:

• <fb:iframe> inserts an iframe into your application to pull in external sources to your
application. This tag cannot be used in the profile page.

• <fb:photo> renders a picture that is in the Facebook repository and the user has
permission to view.

• <fb:mp3> adds a Flash-based MP3 player that controls the MP3 file specified.
Remember, this has to be the absolute path to the file.

• <fb:swf> renders a Flash object on the page of the specified absolute path. On profile
pages, the SWF file is rendered as an image and rendered directly on canvas pages.

• <fb:flv> renders a Flash-based player to stream FLV content. This tag will use only
.flv extensions, not other formats such as AVI.

• <fb:silverlight> is basically the same as the <fb:swf> tag, but for Microsoft’s
Silverlight-based content.

Visibility on Profile

You might encounter instances in which you want to display specific content to your users
depending on their profile status with your application. FBML allows you to distinguish
between the application owner, users, application users (those who have granted full access
to your application), and those who have added the application to their accounts.

• <fb:visible-to-owner> displays content if the user is the owner. As a side note, if the
user isn’t the owner, this displays whitespace.

• <fb:visible-to-user> displays content to the specified user.

• <fb:visible-to-app-users> displays content if the user has granted full permissions to
the application.

• <fb:visible-to-added-app-users> displays content if the user has added the
application to their account.

Learning Facebook Platform Fundamentals 53

Graham

Tools

Tag-based languages such as ColdFusion and JSTL have many tags that build portions of
your application for you. Similarly, FBML has a set of tags to help you build some very
useful portions of your application:

• <fb:comments> generates code to add comments to an application. It takes care of
posting and redrawing pages that are posted to for a given UID.

• <fb:google-analytics> adds the JavaScript to your application so you can use Google
Analytics to track your application usage.

• <fb:mobile> displays content for mobile users (http://m.facebook.com). Content
outside of these tags will be ignored for mobile users.

• <fb:random> randomly rotates certain parts of your application content (for quotes,
pictures, or even advertising). This tag not only can randomly choose an element
from within the tag (defined by the <fb:random-option> tag) but also can weight these
options to appear more often (or less often) than other options.

Forms

Working with form information is important in developing any online application. FBML
has some constructs to help with these common tasks.

• <fb:request-form> creates a form for sending requests. This is a great way to let your
users send requests to add the application (when used with the <fb:multi-friend-
seletor> tag). You cannot use this tag if you are using iframes.

• <fb:request-form-submit> creates a submit button for use with the <fb:request-form>
tag.

• <fb:multi-friend-input> renders a multifriend input field like the one used in the
message composer.

• <fb:friend-selector> renders an autocomplete input box of the user’s friends.

• <fb:submit> creates a JavaScript submit button for your forms. This is generally used
when you want to use an image instead of a submit button, such as <fb:submit></fb:submit>.

54 Learning Facebook Platform Fundamentals

Graham

Other

Here are some miscellaneous tags:

• <fb:js-string> allows you to define a string to reference in FBJS. You can set this
anywhere in your code, and it is not displayed to the user. For example: <fb:js-
string var="foo">This is the rendered text</fb:js-string>.

• <fb:fbml> allows you to define the specific version of FBML. Currently, the valid
versions include 1.0 and 1.1.

• <fb:fbmlversion> displays the version of FBML that is currently being used.

• <fb:redirect> redirects the browser to another URL in your application.

• <fb:ref> allows you to define FBML that resides at a specific URL that you then call
through the tag. This is generally used when you want to update a lot of profiles
without publishing the data on a per-user basis.

• <fb:share-button> creates a share button with either URL information or specific
metadata.

• <fb:time> renders a time in the user’s time zone.

• <fb:title> sets the page’s title tag.

Editor Display

To work with editing data, Facebook has derived a set of tags grouped in this section. The
rendered form will display in two columns with the label on the left and an input field on
the right. The one caveat to using the <fb:editor> tags to create forms is that you cannot use
mock Ajax. If you want to be able to use mock Ajax, you will need to manually create your
own form.

• <fb:editor> is the outermost tag used to create an editable form.

• <fb:editor-button> creates a button for your form.

• <fb:editor-buttonset> creates a container for one or more buttons.

• <fb:editor-cancel> creates a cancel button for the form.

• <fb:editor-custom> allows you to insert whatever code you want, as long as it’s valid
FBML.

• <fb:editor-date> creates two select boxes in the form for the month and day.

Learning Facebook Platform Fundamentals 55

Graham

• <fb:editor-divider> adds a horizontal line divider to your form.

• <fb:editor-month> creates a select box populated with the months of the year.

• <fb:editor-text> creates an input box for your form.

• <fb:editor-textarea> creates a textarea box for your form.

• <fb:editor-time> creates select boxes for hours, minutes, and an a.m./p.m. indicator
for your form.

As an example of this usage, consider the following.

<fb:editor action="." labelwidth="100">

 <fb:editor-text name="input" label="Editor Text" />

 <fb:editor-textarea name="textarea" label="Editor Text Area" />

 <fb:editor-custom label="Custom Select">
 <select name="select">
 <option value="editor-custom">Editor Custom Select</option>
 </select>
 </fb:editor-custom>

 <fb:editor-divider />

 <fb:editor-date name="date" label="Date" />

 <fb:editor-month name="month" label="Month" />

 <fb:editor-time name="time" label="Time"/>

 <fb:editor-buttonset>
 <fb:editor-button value="Add"/>
 <fb:editor-button value="Edit"/>
 <fb:editor-cancel />
 </fb:editor-buttonset>
</fb:editor>

Remember, the form the <fb:editor> tag produces uses the Post method. If you use the
<fb:editor> tag, you will need to write some code on your server to then do something, but
the purpose of this example was to show how to use these tags in conjunction with one
another to create a form. In this case, the previous snippet will render as depicted in Figure
3-4.

56 Learning Facebook Platform Fundamentals

Graham

Figure 3-4. Simple Facebook editor form

Page Navigation

Once you have your application completed, you’re going to want to develop a navigation
scheme for your users. The main tag for this task is the <fb:dashboard> tag that builds the
familiar dashboard layout in Facebook. There are additional tags that you can lay out within
the <fb:dashboard> tag, including buttons, hyperlinks, and even help:

• <fb:dashboard> renders the standard Facebook dashboard for navigation. This is a
container tag for <fb:action>, <fb:help>, and <fb:create-button>. Note that you
cannot use the <fb:if-user-has-added-app> tag inside this tag.

• <fb:action> is analogous to an anchor tag for the dashboard.

• <fb:help> creates a link to the application’s help. This is rendered to the right side of
the dashboard.

• <fb:create-button> creates a button for in the dashboard.

Learning Facebook Platform Fundamentals 57

Graham

• <fb:header> renders a title header.

• <fb:media-header> renders a media header. This tag is generally used to display user-
contributed content to specific users.

• <fb:tabs> is a container to add tabbed-navigation style of links to your application.
Individual tab items are added with the <fb:tab-item> tag.

You can see the difference between how the tag sets for the dashboard (Figure 3-5) and
tabs (Figure 3-6) generate content. The <fb:dashboard> tag allows you to nest <fb:action>,
<fb:help>, and <fb:create-button> tags:

<fb:dashboard>
 <fb:action href=".">Add Something</fb:action>
 <fb:action href=".">Delete Something</fb:action>
 <fb:help href=".">Help me</fb:help>

 <fb:create-button href=".">Add Something</fb:create-button>
</fb:dashboard>

Figure 3-5. Facebook dashboard using <fb:dashboard> tags

The <fb:tabs> tag, by contrast, allows only the <fb:tab> tag to be nested:

<fb:tabs>
 <fb:tab_item href="." title="Add Something" />
 <fb:tab_item href="." title="Delete Something" />
 <fb:tab_item href="." title="Help Me" />
</fb:tabs>

Figure 3-6. Facebook tabs using <fb:tabs> tag

58 Learning Facebook Platform Fundamentals

Graham

Both of these tag sets provide different functionality to you. Typically you will use
<fb:tabs> for creating an overall navigation schema, and you will use <fb:dashboard> for
performing functions within your application.

Dialog Boxes

As a note, this set of tags is still in beta mode, but basically this is a mechanism to provide
modal dialog boxes for your application. This is really a fancy pop-up box to interact with
your users. If this tag doesn’t fit your needs, you can also use FBJS to create this type of
interaction between your users by utilizing the Dialog object.

• <fb:dialog> is the container tag for the dialog box.

• <fb:dialog-title> is an optional title for your dialog box.

• <fb:dialog-content> is the message contained in the dialog box.

• <fb:dialog-button> renders a button for the dialog box.

Consider the following FBML snippet for constructing a dialog box:

<fb:dialog id="fb_test">

 <fb:dialog-title>This is a test</fb:dialog-title>

 <fb:dialog-content>Content</fb:dialog-content>

 <fb:dialog-button type="button" value="Okay" close_dialog="1" />

</fb:dialog>

show fb:dialog

The <fb:dialog> snippet will render a modal window as shown in Figure 3-7. Within
the <fb:dialog-content> tag, you are also able to add other information (and other FBML)
tags, such as forms to perform more advanced interactions with your users.

Learning Facebook Platform Fundamentals 59

Graham

Figure 3-7. FBML <fb:dialog>

For example, take this snippet that generates a search form to search Facebook (or some
other site):

<fb:dialog id="fb_search" cancel_button="true">

 <fb:dialog-title>Search Facebook</fb:dialog-title>

 <fb:dialog-content>

 <form action="http://www.facebook.com/s.php" method="get">

 <input type="text" name="q" />

 <input type="submit" value="Search" />

 </form>

 </fb:dialog-content>

</fb:dialog>

Show Search

Now, when the user clicks the Show Search link, a modal window will pop up, as
shown by Figure 3-8. When users hit the Search button, they are passed to the new server,
which in this case presents users with their search results.

60 Learning Facebook Platform Fundamentals

Graham

Figure 3-8. <fb:dialog> with form

As mentioned previously, you can make these dialog boxes using FBJS (using the
Dialog object). However, not everyone is a JavaScript expert, so the <fb:dialog> tags
provide a convenient method to do most of the same things you can do with FBJS without
writing any FBJS.

Wall

You might want to add the ability for your users to do something along the lines of your
wall. There is functionality for this with the following:

• <fb:wall> renders a wall-like section in your application that has <fb:wallpost>
elements from your application users.

• <fb:wallpost> is the message for the wall post that can contain an <fb:wallpost-
action> element.

• <fb:wallpost-action> adds a link at the bottom of the wall post content. Even if you
put it at the beginning of the <fb:wallpost> element, the display will still render at the
bottom of that particular post.

Walls are pretty easy to implement, assuming you have some type of persistence
mechanism (such as an RDBMS). Assuming you do have an RDBMS, you would simply
make a new table with three tuples (columns) to hold the UID (bigint), the actual post (text),
and a time stamp (for indexing). Additionally, you could add a primary key field, though
the time stamp should suffice for this. Now, all you need to do is loop over these results to
provide them in the <fb:wallpost> tags, and all this should be wrapped in <fb:wall>. The
only hard part is deciding how many posts you want to display on a page.

Learning Facebook Platform Fundamentals 61

Graham

Mock Ajax

If you’ve been working with online applications over the past several years, chances are
you’ve at least heard of Ajax (asynchronous JavaScript and XML). This technology allows
you to work with dynamic information from within a single page without needing to repost
the data. The basic idea of how Facebook has implemented this is that you make a call to
your callback URL (the code hosted on your server) and echo it back to the user.

You’ll need to create a proxy file on your server to handle the responses from your
mock Ajax. For our sample purposes, I’ll show how to create a bit of code that allows users
to type in text, and the Facebook platform will echo back the SHA1 hash of the string using
mock Ajax. First, you need to create the Ajax proxy:

<?php

/**
 * @title hashproxy.php
 */

 echo("Your encrypted text: " . sha1($_POST['q']));

?>

This file doesn’t do anything really interesting; it just echoes back the string it’s passed
as an SHA1 hash. There’s no special processing, but if you were using this to produce
search results from, say, a database, you would process your results here.

Next, you need to add some FBML to a page to call the proxy. The FBML code to do
this is pretty straightforward because it is similar to an HTML form. The only real
difference is in the submit button that includes three additional FBML-specific attributes:

<form id="hashForm">
 <label for="clearText">Text to hash:</label>
 <input type="text" name="clearText" />
 <input type="submit"
 value="Hash it"
 clickrewriteform="hashForm"
 clickrewriteid="hashResult"
 clickrewriteurl="<your_callback_domain>/hashproxy.php" />
</form>

<div id="hashResult"></div>

This bit of code will create a form on your application’s page. When a user enters text
into the input box and clicks the submit button, Facebook will take the results of the form

62 Learning Facebook Platform Fundamentals

Graham

(defined by the clickrewriteform attribute) and write the results from the hashproxy.php file
(defined by the clickrewriteurl attribute) to the hashResult div (defined by the
clickrewriteid attribute).

You can also include a loading indicator to help you let your users know that something
is being processed. You just need to add a clicktoshow attribute that maps to a new element
in the hashResult div:

<form id="hashForm">
 <label for="clearText">Text to hash:</label>
 <input type="text" name="clearText" />
 <input type="submit"
 value="Hash it"
 clickrewriteform="hashForm"
 clickrewriteid="hashResult"
 clickrewriteurl="<your_callback_domain>/hashproxy.php"
 clicktoshow="thumper" />
</form>

<div id="hashResult">
 <img src="<your_callback_domain>/loader.gif" id="thumper"
style="display:none;"/>
</div>

Note ➡ Need a loader? There are several really nice sites where you can grab these. One site that I like is

Ajaxload (http://www.ajaxload.info), which allows you to set the foreground and background colors for

a set of animated GIFs. Another nice site with a collection of loaders is at http://www.napyfab.com/ajax-
indicators/. Just remember that using these indicators does add a little bit of overhead to your application

because it has to start and stop the indicator when it gets its information. Depending on what you’re doing,

you might spend more time turning the image on and off than actually displaying the text, so doing a little

testing to see whether having these load indicators helps with the design can go a long way in alleviating

frustrations for your users.

You can also use mock Ajax from within anchor tags (<a>) with one small difference.
You need some type of form to work with the mock Ajax, so you’ll need to create an empty
form:

<form id="dummyform"></form>

<a clickrewriteform="dummyform"

Learning Facebook Platform Fundamentals 63

Graham

 clickrewriteid="clickResults"
 clickrewriteurl="<your_callback_domain>/response.php"
 clicktoshow="thumper">click me

<div id="clickResults"></div>

This type of interaction is very useful, and it will be able to handle most of the basic
types of information retrieval you might need in your application. However, you might find
that simply echoing results to the page falls a bit short of your needs. To develop more
robust Facebook features that leverage JavaScript-style code, Facebook has developed the
Facebook JavaScript language, which I’ll cover next.

Facebook JavaScript Primer

As I stated earlier, Facebook will strip most JavaScript from your code because of security
concerns. However, the Facebook developers realized that JavaScript is useful for
developing enriched user interfaces. As a result, Facebook created its own version of
JavaScript called Facebook JavaScript. However, I should note that FBJS is still currently
in beta and subject to change.

If you’ve developed for other social web sites that allow you to use JavaScript, you
know that they force you to use iframes in order to isolate their code. Facebook, however,
takes a different tact for dealing with JavaScript. It takes its FBJS, parses the code, and
prepends functions and variable names with your application identifier. For example, the
following:

function say_hello(name){
 var my_string = 'this is a sample.';
 return my_string + ' ' + name;
}

is translated into this:

function <app_id>_say_hello(<app_id>_name){
 var <app_id>_my_string = 'this is a sample.';
 return <app_id>_my_string + <app_id>_name;
}

There are a few things to keep in mind when you are using FBJS in your applications.
For instance, depending on the area your application resides in, your scripts will perform
differently. Let’s look at the following example from the Facebook wiki:

64 Learning Facebook Platform Fundamentals

Graham

Hello World!

<script>
<!--
function random_int(lo, hi) {
 return Math.floor((Math.random() * (hi - lo)) + lo);
}

function hello_world(obj) {
 var r = random_int(0, 255);
 var b = random_int(0, 255);
 var g = random_int(0, 255);
 var color = r+', '+g+', '+b;

 obj.setStyle('color', 'rgb('+color+')');
}

hello_world(document.getElementById('hello'));
//-->
</script>

This simple program randomly sets the color of the anchor text “Hello
World”…nothing too special there. However, depending on where your application is
located, it will behave differently. In the profile box, inline scripts like the previous are
deferred until the first “active” event is triggered (for example, anything that requires a
mouse click).

Note ➡ In early versions of FBJS, it was necessary to encapsulate the script code in HTML comments within

the <script> tag. Facebook has since updated the code parsers to make this step unnecessary. And, as the

platform becomes more sophisticated, other subtle changes like this should be expected.

DOM Objects
Part of Facebook’s implementation of FBJS includes DOM objects. If you’ve worked with
DOM before, FBJS typically prefixes the JavaScript equivalent with get and set. For
instance, the JavaScript href object is called with getHref() and is set with setHref().

Learning Facebook Platform Fundamentals 65

Graham

Putting It Together

Now that you have an idea of how all the different parts of the program work and a brief
introduction to the “glue” that puts them together (the client libraries), it’s worth taking a
look at a basic example to illustrate how each of these components work together to show
the platform at work.

This sample is a simple application that allows users to set their status using the PHP
client library, the Facebook API, FQL, mock Ajax, and FBML. I’ll show how to do this in a
single file for the ease of the discussion (plus it’s not that complicated).

If you haven’t already done so, set up a new application because you’ll need an API key
and secret. You’ll also need to set up your client libraries. If you need help with either of
these, refer to Chapter 2.

The first step is to create a new page. If you have pointed your callback URL to
http://www.foobar.com/facebook, you’ll create a new index.php file in the facebook folder of
your web root. In that page, you first need to set up a few variables:

<?php

 $facebook_config['debug'] = false;
 $facebook_config['api_key'] = '<your_api_key>';
 $facebook_config['secret_key'] = '<your_secret_key>';

 require_once('<path_to_client_library>/facebook.php');

 $facebook = new Facebook($facebook_config['api_key'],
 $facebook_config['secret']);

 $user = $facebook->require_login();
?>

This simply sets up some constants (api_key and secret_key) and instantiates a facebook
object (which includes an instance of the API REST client). You’ll notice that this doesn’t
actually do anything, other than create a new facebook object and gets the user ID (UID), so
let’s add something to the page:

<div style="padding:5px;">
 <h1>Hello
 <fb:name uid="<?= $user?>" firstnameonly="true" capitalize="true" />
 </h1>

 <p>What's your status?</p>

66 Learning Facebook Platform Fundamentals

Graham

 <form>
 <input type="text" name="status" value="confused" />
 <input type="submit"
 clickrewriteid="curr_status"
 clickrewriteurl="<your_callback_url>" />
 </form>
 <div id="curr_status"></div>
</div>

You’ll notice that you use the user variable you set in the PHP code to display the user’s
name. You also set a mock Ajax call to populate the empty preview div. All that’s needed
now is to write some code to handle updating the status:

if(isset($_REQUEST['status']))
{
 // check permissions
 $has_permission =
 $facebook->api_client->call_method("facebook.users.hasAppPermission",
 array("ext_perm"=>"status_update"));

 if($has_permission){
 //update status
 $facebook->api_client->call_method("facebook.users.setStatus",
 array("status" => $_REQUEST['status']));

 // grab the status
 $fql = "SELECT status FROM user WHERE uid=" . $user;
 $query_result = $facebook->api_client->fql_query($fql);
 $status = $query_result[0]['status']['message'];

 echo("<p>Your status is now: " . $status . "</p>");
 } else {
 $url = '<a href="http://www.facebook.com/authorize.php?api_key=';
 $url += $api_key . '&v=1.0&ext_perm=status_update">Click here';

 echo('<p style="font-size:14px;"> ');
 echo('D\'oh...it doesn\'t look like you have permissions to change your
 status. ' . $url . ' to add the permissions to update your
 status.');

Learning Facebook Platform Fundamentals 67

Graham

 echo('</p>');

 }

 exit;
}

Because updating the user’s status requires additional permissions, you’re first checking
the permissions for the user. If the user has permission, you update the status using an API
call, and then you query Facebook with FQL to make sure that the status you just set is in
fact the current status. Then you display it within the curr_status div.

When you put all these parts together, you get the following:

<?php
/**
 * @title index.php
 * @description Simple status updater
 */

$facebook_config['debug'] = false;
$facebook_config['api_key'] = '<your_api_key>';
$facebook_config['secret_key'] = '<your_secret_key>';

require_once('<path_to_client_library>/facebook.php');

$facebook = new Facebook($facebook_config['api_key'],
 $facebook_config['secret']);

$user = $facebook->require_login();

if(isset($_REQUEST['status'])){

 // check permissions
 $has_permission = $facebook->api_client->call_method(
 "facebook.users.hasAppPermission",
 array("ext_perm"=>"status_update")
);

 if($has_permission){
 //update status
 $facebook->api_client->call_method(
 "facebook.users.setStatus", array("status" => $_REQUEST['status'])
);

68 Learning Facebook Platform Fundamentals

Graham

 // grab the status
 $fql = "SELECT status FROM user WHERE uid=" . $user;
 $query_result = $facebook->api_client->fql_query($fql);
 $status = $query_result[0]['status']['message'];

 echo("<p>Your status is now: " . $status . "</p>");
 }else {
 $url = '<a href="http://www.facebook.com/authorize.php?api_key=';
 $url += $api_key . '&v=1.0&ext_perm=status_update">Click here';

 echo('<p style="font-size:14px;"> ');
 echo('D\'oh...it doesn\'t look like you have permissions to change your
 status. ' . $url . ' to add the permissions to update your
 status.');
 echo('</p>');
 }

 exit;
}
?>
<div style="padding:5px;">
 <h1>
 Hello
 <fb:name uid="<?= $user?>" firstnameonly="true" capitalize="true" />
 </h1>

 <p>What's your status?</p>

 <form>
 <input type="text" name="status" value="confused" />
 <input type="submit" clickrewriteid="curr_status"
 clickrewriteurl="<your_callback_url>" />
 </form>
 <div id="curr_status"></div>
</div>

This simple application shows several of the aspects I covered in this chapter in actual
action.

Learning Facebook Platform Fundamentals 69

Graham

Note ➡ The PHP client library includes a sample application named Footprints. This is a great application

that shows how an entire Facebook application is put together.

Things to Remember

The Facebook platform has some quirks since the code you write is interpreted through
Facebook. You might notice that when you create a form, Facebook creates several
additional input fields in your form. These are used by Facebook to process your input but
will be in there.

And, as another reminder, FBML isn’t HTML! Although you can use many of the
familiar tags in FBML as you have in HTML, there are differences in the way in which tags
are processed. For instance, you might have noticed that there isn’t a <link> tag in FBML.
As you might have guessed, this limits your ability to use external CSS files for your
application (Facebook also strips @import too). You have a couple of options to work
around this limitation.

First, you can embed your CSS in the page using the <style> tag. Generally this isn’t a
big deal if you have a small application, but as your application grows, this becomes less
manageable. A second method is to “fake” the style. Instead of using the <link> tag to point
to your style file(s), you can create your style file as you normally would and include it
within <style> tags in your PHP code. For instance:

<style>
 <?php require("style.css") ?>
</style>

This snippet will effectively include the style files for your application. You can also
use the <fb:ref> tag to pull the entire style sheet (including the <style> tags). The best
choice, of course, depends on your application, environment, and what you want to code.

If you look at the source for your generated page, you’ll also notice that Facebook
prepends your application key to the variables. For instance, if you define a style class of
.foo, it, and every reference to this class, will be rewritten to .yourAppKey_foo.

Summary

This chapter covered the different parts of the Facebook platform. The main technologies in
the platform consist of a REST API for data interchange, a language to querying
information from Facebook’s databases, and a language to render certain portions of the

70 Learning Facebook Platform Fundamentals

Graham

Facebook platform to users (FBML). There are additional parts to the language that are
more complex, such as Facebook JavaScript, and that are useful, but they’re not a core part
of the platform (that is, you don’t need to use FBJS to develop your applications). The
chapter also touched on the client libraries, which play an important part in gluing the
Facebook platform to your development language. I also showed how to create a basic,
functional application that updated the user’s status message. To do this, you used an
FBML form, mock Ajax, FQL, the PHP client library, and calls to the API.

In the next chapter, I’ll kick things up a bit and show how to develop a more robust,
complete application. I’ll not only cover user interface design and development issues, but
I’ll also briefly discuss ways to monetize your application and where to go to find help
when (or for you optimists, should) you get stuck. You’ll use an RDBMS to keep track of
user interactions, track usage with Google Analytics, and set up some useful libraries for
code reuse.

CHAPTER 4

Building a Facebook
Application, Start to Finish

By now you should have a good understanding of how Facebook allows you to implement
your own code to extend its platform. I’ve covered how the different parts work, and I hope
you’ve been able to take portions of the platform for a test-drive. However, I haven’t talked
about how all these pieces fit together. To that end, this chapter focuses on developing a
Facebook application from start to finish.

For this example, I’ll show how to develop a game review application. The application
will allow users to rate games, write reviews, and interact with one another. Now, I’ll
preface this chapter with a notice that the driving force behind this application’s design
decisions is to show different aspects of the Facebook platform and may, at times, diverge
from how you might ordinarily design and implement your own applications. Please keep in
mind that there are multiple (and at times, better) ways to accomplish the same result, so if
you see a better way to implement a specific element in the code examples, please, by all
means, hack away.

You probably also have a favorite integrated development environment (IDE) that you
use when developing your applications. I’ll be using Eclipse as the IDE for this chapter
because it provides a really great set of tools for developing in almost every language. Since
Facebook Markup Language (FBML) is a superset of Hypertext Markup Language
(HTML), the PHP Development Tools (PDT) plug-in will have most of the tags you will
use (it just doesn’t know about the Facebook-specific tags). I’ll also show how to use some
of the other Eclipse plug-ins to help you develop the database back end, as well as manage
and test your code.

Setting Up Eclipse

IBM developed Eclipse as a Java IDE but soon open sourced the project and established the
Eclipse Foundation, which hosts a growing number of extensible frameworks, tools, and
runtimes in many different languages. And, with its multilanguage support, Eclipse
provides a convenient platform when you’re developing in multiple languages for a given
project.

72 Building a Facebook Application, Start to Finish

Graham

You can download the Eclipse IDE from http://www.eclipse.org/downloads/. The only
other requirement to run this software is that you have a Java runtime installed on your
system (JRE 5 is recommended, and JRE 1.4.2 is the minimum). If you need the latest Java
Runtime Environment (JRE), you can download it from Sun at http://java.sun.com.

If you’re not sure which version of Java you have installed, you can open a command
prompt or terminal window and type the following:
java -version

You should see something along the lines of the following stating what JRE you have
installed:

Java version "1.6.0_04"
Java(TM) SE Runtime Environment (build 1.6.0_04-b12)
Java HotSpot(TM) Client VM (build 1.6.0_04-b12, mixed mode, sharing)

If your JRE version is less than 1.4.2, you’ll need a new version.
The download page for Eclipse displays several options for the different packages

available. For the purposes of this book, you just want the latest Eclipse Classic package for
your operating system. Once you’ve downloaded the software, simply unzip/untar the file to
a convenient location (such as C:\eclipse or /opt/eclipse). To start the Eclipse IDE, launch
the eclipse executable in the eclipse folder.

Note ➡ At the time of this writing, the most recent version of Eclipse is Europa (3.3). You may be running

Eclipse 3.4 (Ganymede) or some other future version of Eclipse. Just replace mentions of Europa with

whatever the name of the instance of Eclipse is that you’re running.

When you launch the IDE, you will be prompted for the location where you want to set
up your workspace. You can accept the default, or you can change this to a more convenient
location.

Now out of the box, the IDE isn’t that useful because, as mentioned, IBM originally
developed this as a Java IDE. You’ll need to add a couple of extensions before you can start
developing. The first plug-in to add is the Remote System Explorer End-User Runtime
extension from Eclipse. This plug-in will allow you to connect to your remote system to
make edits (it supports SSH/SFTP, FTP, Local, Telnet, and Unix and Windows shares). I’ll
explain how to install it in the following sections.

Building a Facebook Application, Start to Finish 73

Graham

Using Plug-Ins
One of the most powerful aspects of Eclipse is its extensibility through plug-ins. You’ll use
several of the official plug-in projects supported by the Eclipse Foundation to add the
ability to connect to your remote site, have PHP syntax highlighting, and connect to your
database instance. I’m sticking to the plug-ins developed as part of the Eclipse project, but
there are a lot of other plug-ins that may fit your development cycle better. A good place to
look for these plug-ins is the Eclipse Plugin Central web site at
http://www.eclipseplugincentral.com/.

Remote Project Support (FTP/SFTP)

Eclipse recently repackaged its set of plug-ins to allow remote access to different file
systems in one Remote System Explorer End-User Runtime plug-in. To install this plug-in,
use the Europa Discovery Site (a project software repository for Eclipse) by clicking Help >
Software Updates > Find and Install, as shown in Figure 4-1. Select the Search for New
Features to Install in the Feature Updates Wizard, and click Next. Click the Europa
Discovery Site check box to search, and click the Finish button. If you haven’t selected the
option to automatically select a mirror, you will be prompted to manually select a mirror
(make sure you pick one that’s close to you).

74 Building a Facebook Application, Start to Finish

Graham

Figure 4-1. Eclipse updates

Once the mirror has been scanned for the software, expand the Europa Discovery Site,
scroll down and expand the Remote Access and Device Development option, and select
Remote System Explorer End-User Runtime. Then click Next. On the Feature License
screen, select the option to accept the license, and click Next. You should have only one
feature to install, on the next screen, and now click Finish to begin the installation (Figure
4-2).

Building a Facebook Application, Start to Finish 75

Graham

Figure 4-2. Installing the Remote System Explorer End-User Runtime plug-in

Once the plug-in has been downloaded, Eclipse will prompt you to restart the IDE. Go
ahead and restart because it takes only a moment.

PHP Development Tools

The next plug-in you’ll install is the PDT plug-in from Eclipse. However, Eclipse doesn’t
include this tool in its default listing, so you have to add it to the list of repositories. To

76 Building a Facebook Application, Start to Finish

Graham

start, you again select Help > Software Updates > Find and Install, making sure the Search
for New Features to Install option is selected. Then click Next.

Click the New Remote Site button, name the update site PDT, enter the URL of
http://download.eclipse.org/tools/pdt/updates/, and click OK (Figure 4-3).

Figure 4-3. Eclipse PDT update

Make sure the update site PDT and the Europa Discovery Site are selected, and click
Finish. After you select the mirror, expand the tree PDT > PDT Features, and select PDT
Features (see Figure 4-4). You’ll notice that there’s an error message at the top of the page
letting you know that there are required features that you need to install. Expand the Europa
Discovery Site > Web and JEE Development branch, and select the Web Standard Tools
(WST) Project option. There are still unsatisfied dependencies, so now click the Select
Required button, which will then select any additional packages that need to be
downloaded.

Building a Facebook Application, Start to Finish 77

Graham

Figure 4-4. Eclipse feature installation

Click Next to view the individual licenses for each of the packages you need to
download. After you’ve read them (you did read them, right?), accept the license
agreement, and click Next. Then click Finish. After the software is finished installing,
restart Eclipse.

78 Building a Facebook Application, Start to Finish

Graham

Note ➡ PHPEclipse (http://www.phpeclipse.de) is another popular extension. It allows you to control

Apache and MySQL from within Eclipse, which can save you some time. Joomlatwork

(http://www.joomlatwork.com) has also developed an Eclipse package (to save you all the installation

headaches) that you can download called PHP Development Studio. There’s a free version as well as a paid

version that includes some optimizations.

You can edit the setting for PDT by selecting Window > Preferences and expanding the
PHP branch. It’s worth looking at all the settings you can set to be familiar with them
should you want to change anything in the future.

Data Tools Platform SQL Development Tools

Lastly, you’ll install a SQL editor, along with some tools to ease working with your
database back end. These tools are packaged in the Database Development branch of the
Europa Discovery Site. Although you may already have a favorite tool for interacting with
your relational database management system, the fact that Eclipse has an integrated tool for
working with your data can be a boon to development.

As before, open the Europa Discovery Site in the updater. Then select the entire
Database Development tree from the options, and click the Select Required button to satisfy
the dependencies, as shown in Figure 4-5.

Building a Facebook Application, Start to Finish 79

Graham

Figure 4-5. Data Tools Platform plug-in installation

After you’ve installed the plug-in and restarted Eclipse, the last thing to do is get the
JDBC driver for your particular database back end. The examples in this book are using
MySQL, so you can head over to the MySQL Connector/J web site
(http://www.mysql.com/products/connector/j/) to download the latest driver. After saving
the tarball to your hard drive, extract it to a convenient location:

tar zxvf mysql-connector-java-5.1.X.tar.gz

80 Building a Facebook Application, Start to Finish

Graham

tar zxvf mysql-connector-java-5.1.X.tar.gz
mv mysql-connector-java-5.1.X/mysql-connector-java-5.1.X-bin.jar ~/java/jdbc/mysql

The previous example places the JDBC driver for MySQL in the current user’s
java/jdbc/mysql directory. If you’re a Windows user, this is equivalent to C:\Documents and
Settings\<user_name>\java\jdbc\mysql or C:\Users\<user_name>\java\jdbc\mysql.
Wherever you decide to put these files, remember where they are!

The only remaining task is to tell Eclipse where the driver is. Open Eclipse’s
preferences (in the Window option of the taskbar), expand the Connectivity branch, and
click Driver Definitions. From there, scroll down to the MySQL Section, click 5.1, and
click Add (see Figure 4-6).

Figure 4-6. Adding the JDBC driver

Building a Facebook Application, Start to Finish 81

Graham

Expand the Driver Template tree until you get the MySQL JDBC Driver template
(Figure 4-7), and click OK.

Figure 4-7. New driver definition

You will notice that Eclipse knows to look for the mysql-connector-java-5.1.X-bin.jar
file you extracted earlier but doesn’t have the path to the actual file. You correct this by
clicking the driver file and clicking the Edit Jar/Zip option on the right. Just navigate to
where you extracted your MySQL JDBC driver to, and click Open. This will clear the error
for connecting to MySQL 5.1 database servers, so you can finish up by clicking OK until
the dialog boxes are all closed.

To test your connection, change to the Database Development Perspective (Window >
Open Perspective > Other). In the dialog box, select Database Development, and click OK.

From the wizard in the left toolbar (Figure 4-8), click the New Connection Profile icon,
select Generic JDBC Connection, and click Next. Give a name and description for your
connection, and select whether to establish the connection when Eclipse starts. This will
cause Eclipse to take slightly longer to start up, or you can just establish the connection
when you need it.

82 Building a Facebook Application, Start to Finish

Graham

Figure 4-8. Adding a new database connection

In the New JDBC Connection Profile Wizard, select MySQL JDBC Driver from the
drop-down list. This autopopulates most of the fields; all you need to do is edit them to
match your environment (see Figure 4-9).

Figure 4-9. New JDBC connection profile

Building a Facebook Application, Start to Finish 83

Graham

Assuming everything went well and there weren’t any errors, you now have direct
access to the data on the server. You can create a new SQL file for any defined projects in
Eclipse by selecting File > New > SQL File (if you don’t see it, select File > New > Other,
expand SQL Development, select SQL File, and then click Next).

Note ➡ If you’re working with a hosted database, make sure that the database server will accept outside

connections. If not, you may need to edit your configuration files to include the IP address of the location from

which you are working. Another alternative is to set up a local database that you can work with and then

dump your SQL to your production server.

In the Create SQL File Wizard, give your file a name, select the database server type of
MySQL_5.1, and select your newly created connection profile and database name. Once
your connection is established, you can test your code by writing it, right-clicking the
contents of the file, and selecting Execute All. You can also execute selected text by first
selecting the portion of the SQL statement to execute, right-clicking, and selecting Execute
Selected Text.

Connecting to Your Web Server
Now that the IDE is properly set up, let’s set up the connection to your remote site. To do
this, you’ll change the perspective to the Remote System Explorer by selecting Window >
Open Perspective > Other and selecting Remote System Explorer.

As part of a hypothetical sever configuration, let’s say that your domain
(www.foobar.com) is set up for FTP access. To set up access, click the Define a Connection
to Remote System button at the top of the Remote Systems toolbar on the left (see Figure 4-
10).

84 Building a Facebook Application, Start to Finish

Graham

Figure 4-10. Adding an FTP connection

This will launch a wizard for you to add your site definition. Once you have completed
the wizard, you can then connect to your web site by right-clicking the site definition and
selecting Connect. This will give you live access to the files on your server to develop and
edit your files as needed.

Layout Out the Project

For the purposes of this chapter, I’ll show how to lay out your files in a rather simple
manner, with each page serving a single purpose. You’ll also create a layout to separate the
files that you don’t write into a separate folder. Since you’re using the Remote System
Explorer, you’ll use this plug-in to help you set up the project in Eclipse.

You first need to set up an Eclipse project using the Remote System Explorer. This is a
simple task, but it’s not immediately evident if you’ve never done it before. Essentially,
once you’ve created a connection to a remote resource, find the root folder you want to use
as your project by expanding the directory listing in the left toolbar (shown earlier in Figure
4-10). Right-click the folder, and click Create Remote Project (Figure 4-11). This will set
up a new project that you’ll be able to see in the Package Explorer, and it will simplify a lot
of tasks.

Building a Facebook Application, Start to Finish 85

Graham

Figure 4-11. Creating a remote project

Before you go any further, let’s change views to the PHP editor. Simply click the Open
Perspective button (Figure 4-12) in the upper-right corner, select Other, and then choose
PHP.

86 Building a Facebook Application, Start to Finish

Graham

Figure 4-12. Changing the Eclipse perspective

This will change the perspective to the PHP editor from the PDT project. There’s not
much to look at right now, but I’ll go through some of the features after you get a bit further
in your setup.

The next step is to create some folder structure. You want to get the Facebook client
library files in a lib folder under the root. First, you need to download the most recent
version of the files. They’re available for download at
http://developer.facebook.com/resources.php. And, if you have wget (for example, you’re
not using Windows), you can download the client library with the following:

wget http://developers.facebook.com/clientlibs/facebook-platform.tar.gz
tar zxvf facebook-platform.tar.gz

After you’ve extracted the files, you need to get them into the project. First, create a
folder under the root by right-clicking the root folder in Eclipse and selecting New >
Folder. Then just type lib, and click Finish. Now select the newly created folder, right-click,
and select Import. Expand the General tree, select File System, and click Next (Figure 4-
13).

Building a Facebook Application, Start to Finish 87

Graham

Figure 4-13. Using the Import Wizard

Now, navigate to where you extracted the client library, and click OK. Select the files
facebook_desktop.php, facebook.php, and facebookapi_php5_restlib.php, and click Finish
(see Figure 4-14).

88 Building a Facebook Application, Start to Finish

Graham

Figure 4-14. Importing Facebook client libraries

Next, for convenience, let’s set up a file that you can include on your pages with some
of the information you’ll be using throughout the application. You’ll create another folder
called config and create a new file named config.inc.php. So, create the folder as you did
before; then create a new file by right-clicking the config folder and selecting New PHP

Building a Facebook Application, Start to Finish 89

Graham

File. Name the file config.inc.php, and click Next. Choose New Simple PHP File as the
template, and click Finish.

Note ➡ If you don’t see the option to create a new PHP file when you right-click a folder, make sure you are

in the PHP perspective.

In your new file, let’s include some code. The two most important pieces of information
you’ll need on every page is the API key and secret for your application. In case you didn’t
write them down when you applied for your application key, you can get to them in the
Developer application by clicking My Applications in the top right.

So, let’s add some code to your page. Using the code Facebook provides developers as
a template, you’ll set up your main include configuration as follows:

<?php
/**
 *
 * File: config.inc.php
 * This is the configuration file for the application
 *
 */

/*********************** Facebook Configuration ***********************/

// define the debug level (true|false)
$facebook_config['debug'] = true;

// define your API Key and secret
$facebook_config['api_key'] = '<your_api_key>';
$facebook_config['secret'] = '<your_secret>';

// include the facebook client library
require_once = '<path_to_libraries>/facebook.php';

// create the facebook object
$facebook = new Facebook($facebook_config['api_key'], $facebook_config['secret']);

// require users to be logged in
$user = $facebook->require_login();

// define your callback URL

90 Building a Facebook Application, Start to Finish

Graham

$callback_url = '<your_callback_url>';

?>

Note ➡ So, what’s the deal with the .inc. in the file name? Something you don’t want to happen is for

some of this information to be available to the Internet. To make sure these files are secure, it’s a good idea

to block these with .htaccess with a snippet like this:

<Files *.inc.php>
Order deny,allow
Deny from all
Allow from localhost
</Files>

In this code, you’ll notice at the top of the file that you set the debug level to true. This
is helpful while you’re developing your application, but make sure you set this to false
once you get ready to deploy your application!

Next I’ll show how to set up a page with some visual aspects for your application. It
won’t be anything fancy, just a page that you can use to actually see something when you
go to Facebook. You’ll create a new index file in the root. However, before you do this, I’ll
take a second to show how to edit PHP templates to include some of your specific needs
when developing your applications.

To edit the templates, click Window > Preferences. Then expand the PHP tree, and
select Templates (see Figure 4-15).

Building a Facebook Application, Start to Finish 91

Graham

Figure 4-15. PDT PHP templates

To add a new template, click the New button in the upper-right corner. Name this new
template New Facebook PHP, and change Context to New PHP. A description isn’t
necessary, but add the following in the Pattern area (see Figure 4-16):

<?php
/**
 * File:
 * Description:
 */

require_once('config/config.inc.php');

?>

92 Building a Facebook Application, Start to Finish

Graham

Click OK and then OK again when done.

Figure 4-16. PHP template

Now when you create new pages for your application, this information will
automatically be added. With that small task out of the way, let’s make your first page.

Create a new PHP file by right-clicking the root folder and selecting New > PHP File.
Name the file index.php, and click Next (not Finish). On the next screen, select the newly
created new Facebook PHP file, and then click Finish. You now have a skeleton file for
your application.

Next, you just need to fill in something on the page to make it actually have a display.
For this, you’ll use some FBML to display a success message to yourself to make sure
everything is working. Add the following to the following to your page (below the PHP):

<fb:success
 message="Congratulations! Your first application is up and running..." />

If you take a look at your application now (you remembered to save it, right?) by
navigating to http://apps.facebook.com/<your_app_name>, you should first be prompted to
add the application, and then you will see the screen shown in Figure 4-17 in the main page
of your application.

Building a Facebook Application, Start to Finish 93

Graham

Figure 4-17. FBML success

Before you get too far into the UI design, let’s take a step back and do a little planning
for your database back end.

Creating the Database

When developing a web application, one of the more complex tasks is developing a
database back end. For the purposes of this example, I’ll be using MySQL since it’s quite
typical for developers to have this as their back end. If you’re using another RDBMS such
as PostgreSQL, Oracle, Derby, or Microsoft SQL Server, there won’t be much of a
difference because you won’t be getting into any of the more advanced features of the
RDBMS engine.

Designing the Database
Now that you have things set up, let’s think about the design of your database. Like I
mentioned at the beginning of the chapter, this is a game review system. It will show off
how to do a bunch of techniques in Facebook to give you a good idea of how to use these
features in your own application.

To begin your design, you’ll need a table that holds review data. This table will hold a
user ID (UID), the game being reviewed, a rating, and a generated primary key for
convenience. You also need a game table to link to the review table that includes a game
title, publisher, ESRB rating, game genre, and release year.

If you were developing this from scratch, you would use another table to record
usernames, e-mail addresses, passwords (with some type of obfuscation in place), and other
information such as names, addresses, and so on. Since Facebook takes care of all of this,
the only information you really need from the user is the uid token in fields that will need
any type of personal information for users. Just to reiterate, it’s a good idea to keep as little
personal information about your users as needed and use Facebook methods to return the
information needed (such as usernames, where they’re at, and so on) instead of storing these
yourself. First, you could run afoul of Facebook’s terms of use, but more than that, you
waste development cycles implementing things that have already been developed.

94 Building a Facebook Application, Start to Finish

Graham

For a more formal view of your database at this point, take a look at it in the entity
relationship (ER) model shown in Figure 4-18.

Figure 4-18. First game review ER diagram

ER diagrams provide a nice visual for your design to help you walk through some of the
complexities of your design. Now that you have defined a couple of tables and a relation
(the diamond), let’s translate that into Data Definition Language (DDL) for MySQL. Figure
4-18 will translate into a slightly different table structure than I described earlier.

To create the table for games, you get the following:

CREATE TABLE game (
 game_id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 game_title VARCHAR(255) NOT NULL,
 esrb_rating VARCHAR(45) NOT NULL,
 release_year INTEGER UNSIGNED NOT NULL,
 publisher VARCHAR(45) NOT NULL,
 added TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
 asin CHAR(10) DEFAULT '' NOT NULL,
 PRIMARY KEY (game_id)
);

And here’s the table for reviews:

CREATE TABLE review (
 review_id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 uid BIGINT UNSIGNED NOT NULL,
 rating TINYINT UNSIGNED NOT NULL,
 review TEXT,
 game_id INTEGER UNSIGNED NOT NULL,

Building a Facebook Application, Start to Finish 95

Graham

 date_submitted TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
 PRIMARY KEY (review_id),
 FOREIGN KEY (game_id) REFERENCES game (game_id)
);

To take care of the game_review relation, I added the review_id tuple (column or field) to
relate the game records to individual reviews. The timestamp tuples (added and
date_submitted) will be used to display the most recently added games and reviews
somewhere on your application. There’s also a foreign key constraint on the review table
since you don’t want reviews for nonexistent games!

Working with SQL
Let’s commit your DDL to your database now. Since you’ve already installed the DPT
plug-in, all you have to do is launch the previous script in the SQL editor. You’ll create a
new SQL file with a connection to your database to insert the data. You’ll also include
some default data, just for testing purposes.

To add the new SQL file, switch to the Database Development view and select New >
SQL File, or select New > Other > SQL Development > SQL File. Give your file a name
(such as facebook_app), and set your connection information that you set up earlier (the
database server type is MySql_5.1, the connection profile name is your connection profile,
and the database name is your database name). Then click Finish.

Next, simply type the earlier code (or copy and paste it) into the file, and save it. To add
the tables, add Go between the SQL statements, right-click, and select Execute All. Check
with your favorite tool to see whether the tables were created properly.

It’s time for some dummy data so you can have something in the database. For your
games, you’ll use some of the best games of all time. You can either create a new file or
just paste these lines into the SQL file you’ve already created:

INSERT INTO game(game_title, esrb_rating, release_year, publisher)
VALUES("Super Mario Brothers","not rated",1995,"Nintendo");

INSERT INTO game(game_title, esrb_rating, release_year, publisher)
VALUES("Resident Evil 4","M",2005,"Capcom");

INSERT INTO game(game_title, esrb_rating, release_year, publisher)
VALUES("Final Fantasy III","E10+",1994,"Square");

INSERT INTO game2(game_title, esrb_rating, release_year, publisher)
VALUES("The Legend of Zelda: A Link to the Past","E",1992,"Nintendo");

96 Building a Facebook Application, Start to Finish

Graham

INSERT INTO game(game_title, esrb_rating, release_year, publisher)
VALUES("Super Metroid","E",1994,"Ninetendo");

INSERT INTO game(game_title, esrb_rating, release_year, publisher)
VALUES("Half-Life 2","M",2004,"Vivendi Games");

INSERT INTO game(game_title, esrb_rating, release_year, publisher)
VALUES("Super Mario 64","E",1996,"Nintendo");

INSERT INTO game(game_title, esrb_rating, release_year, publisher)
VALUES("The Legend of Zelda: Ocarina of Time","E",1998,"Nintendo");

INSERT INTO game(game_title, esrb_rating, release_year, publisher)
VALUES("Civilization II","E",1996,"Microprose");

INSERT INTO game(game_title, esrb_rating, release_year, publisher)
VALUES("Tetris","E",1989,"Nintendo");

INSERT INTO game(game_title, esrb_rating, release_year, publisher)
VALUES("Halo 3","M",2007,"Microsoft/Bungee");

And here’s some data for the reviews (you can change 7608007 to your own uid):

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 5, 1, 'I grew up on this game!!!');

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 4, 1, 'This game made me drop out of school!');

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 1, 1, "I wasn't even born when this came out!");

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 4, 2, 'Great game play');

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 3, 3, 'Team fighting is fun!');

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 4, 4, 'Save Hyrule from Gannon');

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 5, 5, 'Spoiler...Samus is a girl!');

Building a Facebook Application, Start to Finish 97

Graham

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 5, 6, "Gordon just can't seem to catch a break.");

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 5, 7, 'First Mario Brothers in 3D
 -- can you get the rabbits outside the castle?');

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 5, 8, 'Gannon is back!');

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 1, 9, 'I blame Sid Meier for my F in Calculus');

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 1, 10, 'Simple puzzle...hours-o-fun!');

INSERT INTO review(uid, rating, game_id, review)
VALUES (7608007, 1, 11, 'Crush the Flood!');

Now you have some data in your database that you can play with. If you query the data
(with SELECT * FROM game;), you will be able to see the games you just inserted (likewise for
the review table).

Jumping In

I’m a fan of iterative development, and since you have a table structure and an application
set up, in this section you’ll get the application to do something. For this iteration, you’ll
add some basic functionality such as the ability to view, add, and publish game reviews. For
your initial view, you’ll develop a page that will list recently reviewed games and have a
logical navigation to add reviews and ratings.

For your index page, you’ll set up some CSS for your entire site and some basic FBML
for interacting with users. For your style sheet, you’ll use a trick to include the style file
with a require_once statement. You’ll also set up some basic CSS styles to hold different
boxes to hold content areas. You need to make your style sheet file for your site in a folder
named style.

The WTP plug-in you installed when you added the PDT plug-in includes a CSS editor,
so to create a new CSS file, you simply right-click in the navigation panel, and select New
> CSS (see Figure 4-19).

98 Building a Facebook Application, Start to Finish

Graham

Figure 4-19. New CSS file

You don’t have to make all the styles since Facebook takes care of many of these for
you. However, for these purposes you’ll develop your own. First, you need to provide some
padding around your content, add a few Facebook-style boxes for your content, and add a
wide left column and smaller right column for your containers.

You’ve already added some games into your database (some of my all-time favorites
including Super Mario Brothers, Civilization II, The Legend of Zelda, and Half Life 2).
Having placeholder data is really helpful in planning how the data will be viewed on the
page, so the more data you have, the better.

You’ll make your application better, but for the time being, your PHP calls to the
database are in the index file. First for your box model, you wrap your content in a <div>
tag, with an id of body. Next, for your canvas page, you want to have a wide left column
(left-wide) and a small right column (right-small). Keeping with the general look and feel
of the Facebook web site, you’ll also have a few classes dedicated to displaying the header
information in a consistent manner.

Using your PHP template, you produce the following for an initial view of your data:

Building a Facebook Application, Start to Finish 99

Graham

<?php
/**
 * File: index.php
 * Description: The index file of the application
 */

require_once('config/config.inc.php');

$conn = mysql_connect($database_server, $database_user, $database_password);
@mysql_select_db($database_name);

$review_sql = 'SELECT g.game_title, r.review_id, r.date_submitted,
 r.uid, review_counter.review_total
 FROM review r, game g,
 (
 SELECT count(*) AS review_total FROM review
) AS review_counter
 WHERE r.game_id = g.game_id
 ORDER BY date_submitted DESC
 LIMIT 5';

$recent_reviews = mysql_query($review_sql);
$review_count = mysql_fetch_row($recent_reviews);

$games_sql = 'SELECT * FROM game g ORDER BY added DESC LIMIT 5';
$recent_games = mysql_query($games_sql);

?>

<style>
<?php require_once('style/style.css'); ?>
</style>

<div id="body">
 <div id="left-wide">
 <div id="reviews">
 <!-- recent reviews -->
 <h2 class="header">Recent Reviews</h2>

 <div class="subheader clearfix">
 <div class="left">
 <?php
 echo('Displaying Latest 5 of ' . $review_count[4]);

100 Building a Facebook Application, Start to Finish

Graham

 echo(' Reviews');
 ?>
 </div>
 <div class="right">
 See all reviews
 </div>

 </div>

 <div class="reviews box clearfix ">

 <?php
 while ($row = mysql_fetch_assoc($recent_reviews)) {
 echo('<div class="review clearfix">
 <h3 class="review_title">
 <a href="review.php?review_
 id=' . $row['review_id']. '">'.
 $row['game_title'] .
 '
 </h3'
);
 echo('<p class="more_info clearfix">Submitted ' .
 $row['date_submitted'] . '</p></div>');
 }
 ?>
 </div>
 </div>
 </div>

 <div id="right-small">
 <div class="box">
 <h2 class="header">recently added games</h2>
 <div class="subheader clearfix">
 <h3 style="float:right;">
 See all games
 </h3>
 </div>
 <div class="clearfix">
 <?php
 while($row = mysql_fetch_assoc($recent_games)){
 echo('<h3 class="game_info clearfix">
 '
 . $row['game_title'] .

Building a Facebook Application, Start to Finish 101

Graham

 '</h3>');
 }
 ?>
 </div>
 </div>
 </div>
</div>

You now have the initial design laid out, but you’re also going to need some styles:

#body {
 padding: 10px;
}

#left-wide{
 width: 406px;
 float: left;
}

#right-small {
 width: 210px;
 float: right;
}

.reviews{
 border-color:#EEEEEE;
 padding:7px 8px;
}

.review{
 border-color: #ccc;
 border-bottom:1px solid #CCCCCC;
 width: 100%;
}

.header {
 background: #D8DFEA none repeat scroll 0%;
 border-top: 1px solid #3B5998;
 margin: 0px;
 padding: 2px 8px;
}

.subheader {
 background: #eee none repeat scroll 0%;

102 Building a Facebook Application, Start to Finish

Graham

 border-top: 1px solid #ccc;
 font-size: 12px;
 margin: 0px;
 padding: 2px 8px;
}

.subheader h3 {
 font-size: 11px;
 font-weight: normal;
}

.game_info {
 border-bottom:1px solid #ccc;
 float:left;
 padding:10px 10px 5px;
 width:170px;
}

.box {
 margin-bottom: 10px;
}

.more_info {
 float: left;
 padding-right: 10px;
 width: 340px;
}

.left{float:left}

.right{float:right}

If everything has gone correctly, you should now have something along the lines of
Figure 4-20.

Building a Facebook Application, Start to Finish 103

Graham

Figure 4-20. Initial Facebook view

Now that you have something up and running, you can deal with a few other initial
details. For example, you need some type of method for users to actually add games and
reviews to your application. For the purposes of this example, you’ll write these as new
pages that perform several different actions (list all the games/reviews, display individual
games/reviews, and add a game/review).

Since there is a dependency on the existence of a game in the review table, let’s start
with the games page. You’ll declare an action variable to control what is shown on the
page, and then you’ll use library functions to actually grab data for you. For the most part,
I’m using the same conventions used by Facebook coders for consistency’s sake.

Since you want to implement some code reuse, you’ll first create a new file in the lib
folder called dbmanager.php. You’ll add useful functions to get data from your database
here, along with some useful parameterization. The first thing you want to do is add some
database configuration details to your config.inc.php file to store your database
configuration details. At the end of the PHP file, add this section:

/************************* Database Settings *****************************/
$database_server = '<your_db_server>';
$database_user = '<your_db_user>';
$database_password = '<your_db_password>';
$database_name = '<your_db>';

$conn = mysql_connect($database_server, $database_user, $database_password);
@mysql_select_db($database_name);

104 Building a Facebook Application, Start to Finish

Graham

This established a database connection that you can use to globally refer to other code
segments in your application. Next you’ll create a new PHP file as before in the lib folder
named dbmanager.php. The first function you’ll define is named query, which returns the
results from your MySQL server for a given SQL command.

function query($sql){
 global $conn;
 return mysql_query($sql, $conn);
}

Now, you’ll add the different queries you’ve already written. As with your main index
page, you have a few queries that you can put into your dbmanager file so you can reuse
these on different pages. These include the recent_reviews, review_count, game_count, and
recent_games queries:

function get_recent_reviews($count){
 $query = query(sprintf('SELECT g.game_title, r.review_id, r.date_submitted,
 r.uid, review_counter.review_total
 FROM review r, game g,
 (SELECT count(*) AS review_total FROM review)
 AS review_counter
 WHERE r.game_id = g.game_id
 AND 1
 ORDER BY date_submitted DESC
 LIMIT %d', $count));

 return $query;
}

function get_review_count(){
 $query = query(sprintf('SELECT count(*) AS total_count FROM review'));

 if($row = mysql_fetch_assoc($query)){
 return $row['total_count'];
 }else {
 return 0;
 }
}

function get_game_count(){
 $query = query(sprintf('SELECT count(*) AS total_count FROM game'));

 if($row = mysql_fetch_assoc($query)){

Building a Facebook Application, Start to Finish 105

Graham

 return $row['total_count'];
 } else {
 return 0;
 }
}

function get_recent_games($count){
 $query = query(sprintf('SELECT *
 FROM game
 ORDER BY added DESC
 LIMIT %d', $count));
 return $query;
}

You’ll notice in this code that you parameterize the input through the sprintf function,
just to keep those hackers a little more honest. Each of these will return a mysql_result
object. You use these as you would any other mysql_result object with normal loop
constructs. Let’s update the code on your main index page to use these new functions. Just
use the require_once construct to include the dbmanager.php file. Now, return to the
index.php file where you have defined the call to the MySQL file, and replace the contents
of the file with calls to these functions:

<?php
/**
 * File: index.php
 * Description: The index file of the application
 */

require_once('config/config.inc.php');
require_once('lib/dbmanager.php');

$recent_reviews = get_recent_reviews(5);
$review_count = get_review_count();

$recent_games = get_recent_games(5);
$game_count = get_game_count();

?>

Since you used the same variable names, the rest of the code on the page doesn’t
change, and you have cleaner code.

Now let’s create a couple of functions to retrieve game information. You want to be
able to deal with all games and a single game, so you’ll create two more functions in the

106 Building a Facebook Application, Start to Finish

Graham

dbmanager.php file to deal with each of these cases. The get_all_games function will take no
parameters, and the get_game function will require a game_id parameter.

function get_all_games(){
 $query = query(sprintf('SELECT * FROM game ORDER BY added DESC'));

 return $query;
}

function get_game($game_id){
 $query = query(sprintf('SELECT * FROM game WHERE game_id = %d', $game_id));

 return $query;
}

Now that you can actually get some data from your database, let’s make some displays
in the games.php file. You create this file with the same procedure as before. The code will
be a bit more complicated, so let’s deal with displaying all_games first. In your games.php
file, let’s declare a variable $action that will tell the script what to do and then add skeleton
if/else if statements.

<?php
/**
 * File: games.php
 * Description: Page for handling games
 */
require_once('config/config.inc.php');
require_once('lib/dbmanager.php');

if(isset $_REQUEST('action'){
 $action = $_REQUEST('action');
} else {
 $action = 'showall';
}
?>

<style>
<?php require_once('style/style.css'); ?>
</style>

<div id="body">

<?php

Building a Facebook Application, Start to Finish 107

Graham

if($action == 'display'){
 // show all games in the collection

} else if($action == 'add'){
 // form to add new game

} else {
 // show all games in the collection

}
?>
</div>

For your default action (that displays all the games), you’ll simply call the
get_all_games function from your dbmanager.php include file and do some formatting. Insert
the following code in the else block of the if($action == 'showall') statement:

} else {
 $all_games = get_all_games();

 print('<div id="games">');

 while ($row = mysql_fetch_array($all_games)){
 $game_rating = get_game_rating($row['game_id']);

 $title = $row['game_title'];
 $game_id = $row['game_id'];
 $publisher = $row['publisher'];
 $year = $row['release_year'];
 $rating = $row['esrb_rating'];
 $added = date('d M, Y', strtotime($row['added']));

 echo <<<EOT
<div class="game">
 <div class="game_about">
 <p class="game_header">

 $title

 by $publisher ($year)
 </p>
 <p>ESRB Rating: $rating</p>

108 Building a Facebook Application, Start to Finish

Graham

 <p>Added: $added</p>
 <p>see reviews</p>
 </div>
 <div class="bumper" />
</div>
EOT;
 }

 print('</div>');
}

You’ll notice here I’m using heredoc notation to save some typing. You could have also
used print or echo, but I find that heredoc is far easier to read, especially when writing a
block of output. You’ll also notice that I added a few new classes to the style sheet.

#games {
 padding: 10px;
}

.game {

}

.bumper {
 background:#D8DFEA none repeat scroll 0%;
 border:medium none;
 color:#D8DFEA;
 height:1px;
 margin-bottom: 21px;
 overflow:hidden;
 clear: both;
}

.game_header {
 font-size: 13px;
}

.game_header a{
 font-weight: bold;
}

Now, if you navigate to the games web page, you’ll see something along the lines of
Figure 4-21.

Building a Facebook Application, Start to Finish 109

Graham

Figure 4-21. Listing of games

110 Building a Facebook Application, Start to Finish

Graham

Adding an average rating and the number of reviews for each game is also very easy.
Just write a new function in dbmanager.php to grab the information from the database for
each of the elements:

function get_game_rating($game_id){
 $query = query(sprintf('SELECT avg(rating) AS game_rating
 FROM review WHERE game_id = %d', $game_id));

 if($row = mysql_fetch_assoc($query)){
 return round($row['game_rating']);
 } else {
 return 0;
 }
}

function get_game_review_count($game_id){
 $query = query(sprintf('SELECT count(*) AS review_count
 FROM review WHERE game_id = %d', $game_id));

 if($row = mysql_fetch_assoc($query)){
 return $row['review_count'];
 } else {
 return 0;
 }
}

Your display should now incorporate this new data, but wouldn’t it be nice if you could
incorporate those little rating stars instead of having a number? The get_game_rating
function returns a rounded average, so you just need to get some stars. I made my own stars,
but if you don’t know how to do this, there are plenty of tutorials online (just Google star
rating tutorial). The basic idea here is that a rating can be from 0 (not rated) to 5 (the
highest rating). You make a file for each of these, and you basically just use the
FBML tag. Remember, the tag in Facebook requires an absolute reference; no relative
URLs are allowed. In other words, you must put the entire path to your image, as in
http://www.foobar.com/facebook/images/1.png.

External Web Services
Another nice feature you might want to include is pictures of the covers for the different
games you’re reviewing. Fortunately, you don’t have to store these images yourself; you
can use Amazon’s Amazon Web Service (AWS) to pull the appropriate images into your
application. To use this great service, you’ll need an AWS access key from Amazon. If you

Building a Facebook Application, Start to Finish 111

Graham

don’t already have one, you can sign up at http://aws.amazon.com/. I’ll cover joining the
associate program in the next chapter, but for the time being, you just need an AWS access
key.

Since you’ll probably want to use this on many pages, make a global variable for the
key in the config.inc.php file:

/*********************** Amazon Settings ***************************/
$amazon_key = '<your_amazon_aws_key>';

Now you’ll create a new file named amazon.php in your lib folder to handle your calls to
Amazon’s web service. This is a very basic class object that will work through Amazon’s
REST protocol to query specific XML responses.

<?php
class AmazonClient {
 public $amazon_key; // AWS key
 public $amazon_associate; // associate id, if you have one

 public function __construct($amazon_key, $amazon_associate=''){
 $this->amazon_key = $amazon_key;
 $this->amazon_associate = $amazon_associate;
 }

 /**
 * Simple REST client for Amazon AWS
 * @param $params Query parameters to pass to AWS
 * @return SimpleXML object of the REST response
 */
 function amazon_search($params){
 $url = $this->build_query($params);

 $response = file_get_contents($url);

 $xmlObject = simplexml_load_string($response);

 return $xmlObject;
 }

 /**
 * Function to build query string for AWS
 * @param $params search parameters to pass to AWS
 * @return AWS REST query URL string
 */

112 Building a Facebook Application, Start to Finish

Graham

 function build_query($params){
 $constants = array('Service' => 'AWSECommerceService',
 'SubscriptionId' => $this->amazon_key,
 'AssociateTag' => $this->amazon_id,
 'SearchIndex' => 'VideoGames');

 $query_string = '';

 // add params to search string
 foreach($constants as $key => $value){
 $query_string .= "$key=" . urlencode($value) . "&";
 }

 // add searchparams to search string
 foreach($params as $key => $value){
 $query_string .= "$key=" . urlencode($value) . "&";
 }

 return = 'http://ecs.amazonaws.com/onca/xml?' . $query_string;
 }

 /**
 * Return an array of the images (small, medium,
 * and large) for a given ASIN
 * @param $asin The ASIN number to search
 */
 function get_game_image($asin){
 $params = array('Keywords' => $asin,
 'Operation' => "ItemSearch",
 'ResponseGroup' => 'Images');

 $xml = $this->amazon_search($params);

 $results = array();

 foreach($xml->Items->Item as $item){

 $results['small_url'] = $item->SmallImage->URL;
 $results['small_height'] = $item->SmallImage->Height;
 $results['small_width'] = $item->SmallImage->Width;

 $results['medium_url'] = $item->MediumImage->URL;
 $results['medium_height'] = $item->MediumImage->Height;

Building a Facebook Application, Start to Finish 113

Graham

 $results['medium_width'] = $item->MediumImage->Width;

 $results['large_url'] = $item->LargeImage->URL;
 $results['large_height'] = $item->LargeImage->Height;
 $results['large_width'] = $item->LargeImage->Width;
 }

 return $results;
 }

}
?>

Tip ➡ Not sure what’s needed in your AWS call? There’s a great online resource at

http://www.awszone.com that lists all the fields you can search for a given search type. If you run into

problems, just fill out the form and see what needs to be in your URL when searching the AWS servers.

Now, all you need to do is include the class, instantiate the object, and call the
get_game_image method. But wait…that method requires a field called ASIN that you
haven’t added to your database. Let’s commit this new tuple to the game table and work on
fixing what you have so far.

First you’ll add the field to the database using the Database Development tool. If you
open the SQL file you created earlier (or a new one) and set your connection information,
you may notice that your database isn’t selected. To see your database, you have to connect
to the database system. You can do this by switching to the Database Development view,
right-clicking your database instance, and selecting Connect (see Figure 4-22).

114 Building a Facebook Application, Start to Finish

Graham

Figure 4-22. Reconnecting to your database back end

Once you have an SQL file open, modify the table definition with this:
ALTER TABLE game ADD COLUMN asin VARCHAR(30) NOT NULL AFTER release_year;

This adds the new ASIN tuple into to the database, but you still need to get the ASINs
(where they exist) for the rest of the games. For convenience, I looked these up already, and
you can just update the game table with the following. We’ll deal with looking up ASINs
when new games are added.

UPDATE game SET asin = 'B0001ZZNNI' WHERE game_id = 1;
UPDATE game SET asin = 'B000B69E9G' WHERE game_id = 2;
UPDATE game SET asin = 'B000GABOTU' WHERE game_id = 3;
UPDATE game SET asin = 'B000B69E9G' WHERE game_id = 4;
UPDATE game SET asin = 'B00002STXN' WHERE game_id = 5;
UPDATE game SET asin = 'B00002SVFV' WHERE game_id = 6;
UPDATE game SET asin = 'B000ID1AKI' WHERE game_id = 7;
UPDATE game SET asin = 'B00000DMB3' WHERE game_id = 8;
UPDATE game SET asin = 'B000FPM8OG' WHERE game_id = 9;
UPDATE game SET asin = 'B000W1XGW6' WHERE game_id = 10;

Building a Facebook Application, Start to Finish 115

Graham

UPDATE game SET asin = 'B000FRU0NU' WHERE game_id = 11;

I like how Amazon displays its images, so let’s put the small image from AWS on the
games page. Now, include the new Amazon page, and call the code:

$require_once('lib/amazon.php');
$amazon = new AmazonClient($amazon_key);
$images = $amazon->get_game_image($row['asin']);

// make sure a structure was returned
if(sizeof($images) > 0){
 $image = $images['small_url'];
 $img = '';
} else {
 $img = 'No Image Available';
}

Now you just need to edit the heredoc string to include a new <div> for the image in the
games.php file:

<div class="game_image">
 $img
</div>

Lastly, add a bit of CSS to define the game_image style and then update the game_about
style to clear the image style:

.game_image {
 float: left;
}

.game_about {
 margin-left: 60px;
}

Let’s take a look at your work now. If everything has gone to plan, you should now
have something that looks like Figure 4-23.

116 Building a Facebook Application, Start to Finish

Graham

Figure 4-23. Games view with images

Game Review
You’re quickly getting a useful application together. Now you’ll build the individual game
review page. You need to write a new query to get all the reviews with a specified game_id.
In the dbmanager.php file, add the following function:

function get_game_reviews($game_id){
 $query = query(sprintf('SELECT * FROM review r WHERE game_id = %d
 ORDER BY date_submitted DESC', $game_id));

 return $query;
}

Building a Facebook Application, Start to Finish 117

Graham

This function simply gets all the information from the review table for the game_id.
Since you have constructed the URL for the action already, you can grab the actual game
information as you did in the previous loop structure by including the following code in the
games.php file:

if(! isset($_REQUEST['game_id'])){
 $_REQUEST['game_id'] = 1;
}

$game_id = $_REQUEST['game_id'];
$game = get_game($game_id);

$game_rating = get_game_rating($game_id);
$game_reviews = get_game_reviews($game_id);

$title = $game['game_title'];
$game_id = $game['game_id'];
$publisher = $game['publisher'];
$year = $game['release_year'];
$rating = $game['esrb_rating'];
$added = date('d M, Y', strtotime($game['added']));

$game_rating = get_game_rating($game_id);
$review_count = get_game_review_count($game_id);

$amazon = new AmazonClient($amazon_key);
$images = $amazon->get_game_image($game['asin']);

if(sizeof($images) > 0){
 $image = $images['medium_url'];
 $img = '";
} else {
 $img = 'No Image Available';
}

echo <<<EOT
<div class="game">
 <div class="game_image">
 $img
 </div>
 <div class="game_about_medium">
 <p class="game_header">

118 Building a Facebook Application, Start to Finish

Graham

 $title

 by $publisher ($year)
 </p>
 <p>
 Rating:
 <img src="<your_path_to_images>/$game_rating.png"
 alt="$game_rating" title="Average rating of $game_rating" />
 ($review_count total reviews)
 </p>
 <p>ESRB Rating: $rating</p>
 <p>Added: $added</p>
 </div>
 <div class="bumper" />
</div>
EOT;

This gives you the primary game description (along with a new offset style class that
sets the left margin of the information to 160 pixels since we’re using the medium-sized
image), so let’s take it a step further and add the review information. You’ll style the
reviews basically like a wall, with newer posts at the top:

print('<div id="reviews">');

while($row = mysql_fetch_assoc($game_reviews)){
 $uid = $row['uid'];
 $rating = $row['rating'];
 $review = nl2br($row['review']);
 $submitted = strtotime($row['date_submitted']);

 $time = date('h:ia', $submitted);
 $date = date('d M, Y', $submitted);
 $stars = '<your_callback_url>/images/' . $rating . '.png';

 echo <<< EOT
<div class="review">
 <div class="userimage">
 <fb:profile-pic uid="$uid" linked="true" size="q" />
 </div>

 <div class="review_box">
 <div class="review_header">
 <fb:name uid="$uid" capitalize="true" linked="true" /> reviewed

Building a Facebook Application, Start to Finish 119

Graham

 $title

 at $time on $date
 </div>
 <div class="review_text">
 <p>$review</p>
 <p></p>
 </div>
 </div>
</div>
EOT;

For the reviews, this code used the <fb:name> and <fb:profile-pic> to pull in user data
(including links to the user profiles). You could have made a more sophisticated FQL query
to find the user’s information (name and picture), but using the tags is far more efficient,
especially since these tags were designed specifically to do what you’re doing here.

Add Game
The last thing you need to do for this page is allow people to add new games to your
application, so here you’ll start coding the “add” section. For this action, you’ll use
MockAjax to add information to the form. You could also use the <fb:editor> tag (or just a
plain old HTML form), but the MockAjax facilities for adding a modal dialog box are nice
to work with.

You’ll be nesting your form within the <fb:dialog> tag. The nice part about this is that
you can put this anywhere on your page, and it will be hidden until someone clicks an
action item (for example, a hyperlink) that has a clicktoshowdialog attribute. You’ll then
use the power of FBJS to insert the information into the database and refresh the game
page.

To start, you’ll add a couple of links inside the body <div>. The first one just returns
you to the default view, and the other sets up the call to the dialog box. In the body <div>,
add the following lines:

 all games
 add game

Now you’ll add the actual dialog box that get called when the user clicks the Add Game
link:

<fb:dialog id="add_game" cancel_button="1">
 <fb:dialog-content>
 <form id="add_game_form" method="post" action="add_game.php">
 <table>

120 Building a Facebook Application, Start to Finish

Graham

 <tr>
 <td>Game Title:</td>
 <td><input type="text" name="game_title" /></td>
 </tr>
 <tr>
 <td>Publisher:</td>
 <td><input type="text" name="publisher" /></td>
 </tr>
 <tr>
 <td>Year Released:</td>
 <td><input type="text" name="release_year" /></td>
 </tr>
 <tr>
 <td>Rating:</td>
 <td>
 <select name="esrb_rating">
 <option value="EC">EC</option>
 <option value="E" selected>E</option>
 <option value="E10+">E10+</option>
 <option value="T">T</option>
 <option value="M">M</option>
 <option value="AO">AO</option>
 </select>
 </td>
 </tr>
 </table>
 </form>
 </fb:dialog-content>

 <fb:dialog-button type="submit" value="Add Game" form_id="add_game_form" />

</fb:dialog>

Because you’re using the <fb:dialog> tag, the form will be shown only when the user
clicks the Add Game hyperlink. You pass the entire form a new page (add_game.php) that
contains the logic to add games to the application by referencing the form_id in the
<fb:dialog> tag. The code in add_game.php will handle looking up the ASIN of the game
from Amazon, inserting the data, and redirecting the user to the games.php page with a status
message.

You’ll need to add a couple of functions in the dbmanager.php and AmazonRestClient
code. In the AmazonRestClient, you need a function that will look up an ASIN for a given
title. In the dbmanager.php code, you have a couple of functions, one to tell you whether a
given title has already been inserted in the database and one to insert data into the database.

Building a Facebook Application, Start to Finish 121

Graham

To write the ASIN lookup, you need to retrieve information for a title lookup. This will
be a fairly basic lookup where you assume that the first result passed back from Amazon is
the correct title the person was inserting. In a more sophisticated application, you want to
present the results to the user to let them choose which title they actually wanted.

function asin_lookup($title){
 $params = array('Title' => $title, 'Operation' => 'ItemSearch',
 'ResponseGroup' => 'ItemAttributes');

 $xml = $this->amazon_search($params);

 $xml_result = $xml->Items->Item;

 return $xml_result->ASIN;
}

Now all that is left is a little checking in the add_game.php page to make sure everything
went OK. First, you want to make sure that the game title doesn’t exist in the database, and
then you look up the ASIN and insert the new game record into the database:

if(isset($_REQUEST['game_title'])){
 $game_title = $_REQUEST['game_title'];

 $type = "error";

 if(game_exists($game_title)){
 // check to see if the title exists
 $message = "Sorry, looks like " . $game_title .
 " is already in our database";
 } else {
 // check in Amazon
 $amazon = new AmazonClient($amazon_key);

 $asin = $amazon->asin_lookup($game_title);

 if(strlen($asin) > 0){
 // double-check this in the database

 if(game_exists_asin($asin)){
 $message = "Sorry, looks like " . $game_title;
 $message += " is already in our database";
 } else {
 add_game($_REQUEST['game_title'], $_REQUEST['publisher'],

122 Building a Facebook Application, Start to Finish

Graham

 $_REQUEST['release_year'], $_REQUEST['esrb_rating'],
 $asin);
 $message = $_REQUEST['game_title'] . " was successfully added";
 $message += " to the database. Please be sure to write a
review!";
 $type = "success";
 }
 } else {
 $message = "Sorry, couldn't find " . $_REQUEST['game_title'];
 $message += " at Amazon.";
 }
 }

 echo('<fb:redirect url="games.php?message=' . urlencode($message)
 . '&type=' . $type . '" />');

}

This code will return a status message in the games.php page that lets the user know
whether a game was added, as well as other information. If a new game was successfully
added, that fact is sent to the user’s profile, and the user is then redirected to the games.php
page. The last thing you want to do at the top of the games.php page is display the message
from the add_game.php code.

Just under the navigation in games.php, add this code to display the messages:

<?php
 if(isset($_GET['message'])){
 if($_GET['type'] == "success"){
 echo('<fb:success message="' . $_GET['message'] . '"/>');
 } else {
 echo('<fb:error message="' . $_GET['message'] . '"/>');
 }
 }
?>

This is just a nice way to give the user a little feedback on successful/unsuccessful
actions.

You’ve done the heavy-lifting for your application; now the reviews are a piece of cake.
I won’t go into great detail for this since I’ve covered most of the techniques before. Instead
of filling these pages with code, I’m certain you can write the rest of the code for this
application.

Building a Facebook Application, Start to Finish 123

Graham

Publishing Feeds
Now that you have a functioning application, one further improvement is to publish the
actions to the user’s profile. There are really two way you can do this. The first is to publish
to the individual’s feed, and the other is to publish to the user’s friends’ feeds. The fun part
is to use feed.publishTemplatizedAction to publish a templatized action to the user’s feed.

For any action you want to immortalize in your user’s feed, simply call the
feed_publishTemplatizedAction function from the FacebookRestClient object:

$title_template = '{actor} added {game} to MyTestApp';

$title_data = '{"game":"' . $game_title .'"}';

$facebook->api_client->feed_publishTemplatizedAction($title_template,
 $title_data, '', '', '');

I especially like to publish feeds this way because the feed preview from the Facebook
tools (http://developers.facebook.com/tools.php?feed) gives you a lot of help in testing
how the feed will look. The big thing to remember is that you need to have {actor}
somewhere in the $title_template variable so Facebook knows where to place the proper
username in the text. This tag did go through a recent change, so make sure you take a look
at the most recent wiki documents for the latest on this tag.

Testing
You’ll need to create a new account (not your real account) on Facebook and then register
that account as a test user at http://www.facebook.com/developers/become_test_account.php.
You’ll need an e-mail address for this account to work, so you can create one at Google,
Yahoo, or MSN, or you can create e-mail aliases with a service such as MailExpire
(http://www.mailexpire.com/). You should remember that test users aren’t “real” Facebook
users, so they won’t see the “real” people on the network. Also, you can’t set a test account
to be the application owner.

You most likely need only one of these accounts to test your application (or ask a good
friend). However, this doesn’t actually provide you with any real human input. If you want
to get some “real” people to give you some feedback, there’s a channel in the forums to do
this (http://forum.developers.facebook.com/viewforum.php?id=16). Remember, these folks
are volunteering their time to give you feedback. If their feedback isn’t what you’re
expecting, remember to stay positive because we’ve all seen forums degrade quickly into
name calling.

124 Building a Facebook Application, Start to Finish

Graham

Debugging
So, what if you run into a problem and something just isn’t displaying properly in your
application? There are a bunch of tools that can help. Chief among these are the error
messages that you get on your page. In case you’ve forgotten a = or ; in your code, you can
at least see the line that you need to check. Another handy tool is the Firebug extension for
Firefox (http://www.getfirebug.com/), especially if you’re working with FBJS and
MockAjax. The JavaScript console can give you important details on what’s going on, plus
it’s great for dissecting code and CSS. If you don’t already have it, I highly recommend
downloading this extension ASAP!

Facebook also has tools to help you isolate your code and test it. The Tools page on the
Facebook Developers web site (http://developer.facebook.com/tools.php) has several
tools that are useful in figuring out (and testing) how code will look/function in the wild.

If you still are running into problems, you can turn to the Facebook forums
(http://forum.developers.facebook.com/). You can search for your particular problem or
start a new thread. There are also IRC channels for chatting with other Facebook developers
(such as #Facebook on freenode). More often than not, someone hanging out in one of these
areas can at least point you in the correct direction. Remember, be clear and concise when
you’re describing your problem; subjects like “My app is broken” probably won’t get much
helpful feedback.

Scaling
So, what happens when you write an application that has 500,000 installations and huge
bandwidth constraints? I hope you’ve placed some ads somewhere that will offset your
server costs, or you may get kicked off your server host. Watch your apps, and if you need
to get more bandwidth, see whether your provider has larger plans.

Not that this is necessarily an endorsement, but Joyent recently announced a deal to
provide its Accelerator service free for one year to Facebook developers
(http://www.joyent.com/developers/facebook). Its basic service offers at least one processor
and 512 megabytes of RAM with 10GB of storage with no bandwidth restrictions. There is
a waiting list now, but it is an option to get you off the ground. If you outgrow these
parameters, there are also plans starting at $45/month. Again, I can’t stress this enough: if
your application doesn’t have the capacity to grow with your users, people will start
removing your application, and no one wants that to happen!

Building a Facebook Application, Start to Finish 125

Graham

Launching Your Application

Although launching a Facebook application is relatively easy (you just allow people to add
the application and submit it to Facebook to be listed), there are several last considerations
before releasing your code into the wild.

Creating the About Page
The About page is where your users first learn about your application. A concise
explanation of your application and what it does is important, but you also need to catch
your potential user’s attention. For instance, there are a set of popular Facebook
applications that extend the default functionality of Facebook. These have names like
SuperPoke, Super Wall, and Top Friends. Give your application name some thought. Be
clever, but not too clever as to obfuscate the true nature of your application.

Your About page also has several sections that you need to visit (or subscribe to). The
forums are a great place for people to ask you about what’s going on, how to improve the
application, and what to do when things aren’t clearly planned out in a logical fashion.
These are a great way for you to communicate with your users, but remember, Facebook
users can, at times, be fickle, so they will most likely just uninstall your application if they
don’t find it useful.

Creating a Logo
Designing a logo can be a bear for programmers (just like programming can be a chore for
designers). At the least, you should be able to implement a Web 2.0 badge (there are a lot of
online versions of these generators). If your icon version doesn’t look right, there are
several open source icon libraries. Tango’s Icon Library
(http://tango.freedesktop.org/Tango_Icon_Library) and FamFamFam’s Silk Icons
(http://www.famfamfam.com/lab/icons/silk/) are two popular sets that you can use in your
application.

If you’re a designer, the sky is the limit. Just make sure you have images for all the
different sizes that can go into different areas of the web site (from 16 X 16 on up). There
aren’t really any guidelines, but be aware that any image published through the Facebook
platform gets cached on Facebook’s server. If you update your image and it doesn’t
immediately take (and you’re impatient like I am), call the facebook.fbml.refreshImgSrc
API method (for example, $facebook->api_client->fbml_refreshImgSrc($image_url)
function).

126 Building a Facebook Application, Start to Finish

Graham

Submitting for Approval
Once you’re finished with your application, it’s time to submit it to the Facebook approvers.
Log on to the Developer application (http://www.facebook.com/developers/apps.php), and
edit your settings so that everyone can add your application. Then simply click the Submit
Application button.

It generally takes a few days for the people who approve applications to respond.
They’re looking at the application to make sure it’s appropriate for their terms of service (in
case you forgot to read them, here’s the link http://www.facebook.com/developers/tos.php).
After it’s been approved, people will be able to find your application on the main
application page (http://www.facebook.com/apps/).

Publicizing Your Application
Facebook is a viral community. The first step in getting folks to use your application is to
get your friends to start using your application. Then, you need to get your friends to tell
their friends about the application. However, you can also get others by purchasing Social
Ads from Facebook (http://www.facebook.com/business/?socialads).

Advanced Techniques

When you start developing applications, you’ll notice that there are a lot of things that you
do repeatedly. For instance, for every application you create, you’ll be coding the inserting,
deleting, update, and reading of the data in your tables. After a while, this can become
annoying. This is where the various frameworks come into play. CakePHP and symfony are
two popular PHP web application frameworks that can easily be integrated into your
Facebook application. These frameworks remove a layer of monotony from developing,
allowing you to focus your efforts on developing “real” code, rather than repetitive SQL
statements, confusing conditional statements in your pages, and implementing MVC
patterns to “simplify” your code. If you haven’t taken some time to sit down with either of
these, it is well worth it because they will save you time in future development.

Another element to explore is migrating your data to Facebook’s Data Store API. By
using Facebook to store your data (and back it up), you have access to Facebook’s scalable
data storage servers. You may also want to look at Amazon’s SimpleDB, but you should
probably start with Facebook unless you have objections to Facebook “owning” the data for
your application.

Building a Facebook Application, Start to Finish 127

Graham

Summary

We covered a lot of ground in this chapter. You created an application all the way from start
to finish using Eclipse, MySQL, PHP, and the Facebook platform. I discussed some of the
issues you can run into when developing an application and how to deal with code that’s not
behaving as expected. Although I didn’t walk you completely through the code to post
reviews, you should know enough to complete this on your own very quickly (or build upon
it for your own application).

In the next, final chapter, I’ll go over some ways to track how many people are using
your application and how you can turn this into a little extra revenue.

128 Building a Facebook Application, Start to Finish

Graham

CHAPTER 5

Going Further with Your
Application

In previous chapters, I covered the meat and potatoes of creating Facebook applications. In
this chapter, I’ll shift the focus a bit to the salt and pepper by covering the resources that
you can use to analyze your application statistics, where to go if you get stuck, and, perhaps
most important, how to generate a revenue stream from your application! Although some
applications have sold for quite a bit of money and some generate a good revenue stream
from advertisements, it’s important to remember that most likely you’re not going to make
a $1,000,000 with your Facebook application, because many mitigating circumstances
contribute to the success of turning an application into a blockbuster. However, with some
planning and some good choices, you should be able to at least offset the costs of your
server hosting.

Application Statistics

Facebook provides a basic statistics feature in the Facebook Developer application to help
you get an idea of what’s going on with your application. These statistics include usage
statistics, HTTP status requests, and recent HTTP requests. Within the usage statistics, you
are provided with a helpful User Engagement statistic that tells you how many people used
your application in the past 24 hours. Although the total number of users of an application
may be quite high, this engagement number is important because it helps you figure out
how many people are actually “using” your application. If this number isn’t very high,
chances that the application will be able to sustain itself are reasonably low.

What if you need or want more sophisticated statistics? This is where the <fb:google-
analytics> tag comes in handy. You will need to create an account on Google Analytics to
use this tag, but it’s quite simple to use, and it provides exceptionally detailed statistics
about your application (and for that matter, any web site you might build).

If you don’t already have a Google Analytics account, navigate to
http://www.google.com/analytics/. You need a Google account to use Google Analytics, so
if you don’t already have one, you can sign up by clicking the Sign Up Now link in the
middle of the page, as shown in Figure 5-1.

130 Going Further with Your Application

Graham

Figure 5-1. Google Analytics sign-up link

Once you have an account set up, the next step is to add a web site profile. Simply click
the Add Website Profile link after logging in to start the process. Then fill out the form for a
new domain using your server URL (not your http://apps.facebook.com/<your_app_name>
URL), as shown in Figure 5-2, and click Continue.

Figure 5-2. Google Analytics site registration

Going Further with Your Application 131

Graham

After you’ve registered your site, you’re presented with a small snippet of JavaScript to
add to your page. But wait, you can’t use this because it’s not FBJS! So, just get the account
number (defined by the _uacct variable) to use the <fb:google-analytics> tag, and let
Facebook write this in for you (see Figure 5-3).

Figure 5-3. Google-provided source code including Google Analytics account number

Now, in your application, you merely add the following to produce the required
JavaScript in your application:
<fb:google-analytics uacct="<your_UA_account_number>" />

When used in your application, Facebook will add the correct JavaScript to the resultant
HTML stream. You may even want to define this in a global include (just in case you write
a new page and forget to add the code to track its usage).

You also have access to the Google Analytics tracker in FBJS with the
Facebook.urchinTracker object in case you need it. Most of the time it will be a lot easier to
use the <fb:google-analytics> tag than to implement your own methods through FBJS;
however, should you need more granular control over what gets sent to the Google servers
for your application, the functionality does exist.

Once you’ve added the tag to your application, it typically takes about 24 hours for an
update to occur and for you to see any statistics. Google Analytics will provide you with a
really great statistics set including a site overlay (you want to make sure your features/ads
are properly placed), geotargeting (to see where your users are from), Google AdWords
integration, and just about any other type of useful statistic that you could possibly want
about the people using your application.

Monetizing

Facebook has worked into its service agreements to allow application developers to
monetize their applications. When you start looking at the different options available to

132 Going Further with Your Application

Graham

you, you may find rather quickly that your head starts spinning from the sheer volume of
advertising alternatives. The following is a brief treatment of some of the more popular
ways developers have helped defray their costs.

AdSense
Since you’ve set up a Google Analytics account, it’s not that much more effort to enable
Google AdSense. You first go to the AdSense web site at http://adsense.google.com.
You’ll notice that if you’re signed in to other Google services (Gmail, iGoogle, Analytics,
and so on), you’ll still need to create a separate AdSense account. Simply click the large
Sign Up Now button (if you don’t already have an account). Don’t worry, you are presented
with the option to use your Google account information if you choose. After you’ve filled in
the information needed in the application, it typically takes a day or two to be reviewed.

Once you’ve set up an AdSense account and filled out the appropriate tax forms, you
need to decide what type of advertising you want to implement. Google provides ads for
content, search, referrals, video, and mobile content. What your application is doing will
drive your decision here. Since Facebook has implemented a really nice mobile version of
its application, you can always use the mobile content in your application! Google also
provides you with some options for your ads (text and images or text or images only), so
once you’ve decided which one you want, choose a size and color palette that matches your
overall application design.

Tip ➡ Blue Mix works well with the default Facebook color scheme.

You do need to make a small change to at least your main canvas page to get relevant
ads from Google: you need to make it publicly available so it can be crawled by Google.
Unfortunately, there’s no <fb:adsense> tag (and there probably will never be one), so you
have to hack your page a bit to make things work.

So, let’s make your canvas page publicly visible. The big change from the code in the
previous chapter is that you’re no longer going to be using the require_login function in the
Facebook object. You’ll use the get_loggedin_user function instead:

// $user = $facebook->require_login();
$user = $facebook->get_loggedin_user();

Now, if you want to test whether a user is logged out, you can use this:
$is_logged_out = !$user;

Going Further with Your Application 133

Graham

You can use any of the canvas page tags on this page without any changes to your code,
although you might need to refactor some of your existing code to see how it appears for
non-logged-in users.

Now I’ll discuss the iframe hack to use AdSense. You need to make a new page that
contains the JavaScript that Google provides you when you generate the ads for your page
on your web site, and then you need to call that page through the <fb:iframe> tag on your
canvas page. So, let’s say you’ve created a page on your site named ads.php and can get to
the file at http://yoursite.com/ads.php. Now, simply insert the following where you want
to place the ads:

<fb:iframe src="http://yoursite.com/ads.php" width="<google_ad_width>"
 height="<google_ad_height>" />

If you’re having problems with relevant ads, you might also want to use Google hints.
You’ll need to edit the JavaScript code that AdSense provides you and define the
google_hints variable with a comma-delimited list of keywords for your application. In
other words, you’ll want to hack your AdSense code to resemble something along the lines
of this:

<script type="text/javascript"><!--
 google_ad_client = "pub-0000000000000000";
 google_hints = "keyword1, keyword2, keyword3,...";
 google_ad_slot = "0000000000";
 google_ad_width = 728;
 google_ad_height = 90;
//--></script>
<script type="text/javascript"
 src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script>

The nice aspect of AdSense is that its ads are unobtrusive and can be placed nearly
anywhere on a page. It also offers nice tools for tracking your earnings and growth over
time. Although other sites might make you more money in the short run, AdSense has a
proven ability to generate revenue, so you’ll want to consider that when deciding what
advertising folks to partner with.

Amazon
Amazon also has a great service to generate revenue streams in its Amazon Associates Web
Service. You’ve already used part of Amazon’s service to pull the images from Amazon, so
in this instance you might be able to use this service to build specialized URLs to provide

134 Going Further with Your Application

Graham

links to Amazon so users can purchase different games from the sample application (or
anything else Amazon sells, for that matter).

Since you already have the ASIN stored in your database, you can easily generate a link
to the store with your Associate’s ID embedded in the link. The resulting anchor for the
image brought in by the Amazon web service is as follows:

<a href="http://www.amazon.com/exec/obidos/ASIN/<asin>/<your_associate_id>">
 <img src="<path_to_image>"/>

This service won’t work for every type of application. It works well for social review
applications, but it might not work as well in other types. You may find that some of the
widgets on the Affiliates web site (https://affiliate-program.amazon.com/) will work well
for your application, and you’ll notice that many of these widgets (under the Build
Links/Widgets section) generate JavaScript. But again, the <fb:iframe> hack shown in the
“AdSense” section is generally the recommended way to go.

Adonomics
Formally known as Appaholic, Adonomics provides “stock-market-style” analysis for your
applications. This site provides a few different services. The first is a service to get people
to install your application. There are multiple tiers of this that range from $5,000 to
$480,000. If you’re looking to build users for your application, this may very well be worth
the cost. However, if you’re thinking smaller, Adonomics also rents advertising space. This
is great since Adonomics takes on finding the advertising clients for the different places in
your application. To give some rough estimates, Adonomics claims an average of about
$3.60 per user per year (about $0.30 per month per the number of active users for the
previous month). Of course, your mileage may vary.

Others
You can use many of other services to generate revenue from your application. Although I
can’t get into all the various services in this book, here is a list of some others you might
want to investigate:

• AdBrite (http://www.adbrite.com)

• Appsaholic (http://apps.facebook.com/appsaholic/)

• BannerConnect (http://www.bannerconnect.net)

Going Further with Your Application 135

Graham

• Chitika (http://chitika.com/facebookapi.php)

• Cubics (http://www.cubics.com)

• fbExchange (http://fbexchange.com)

• Neverblue (http://www.neverbluemedia.com)

• PeanutLabs (http://www.peanutlabs.com)

• Survey Savvy (http://www.surveysavvy.com)

• Zohark Ads (http://www.facebook.com/applications/Zohark_Ads/18584639088)

Developers have differing opinions about each of these companies, and being listing
here isn’t necessarily an endorsement (and if I’ve missed your company, I apologize).
Rather, this is a list to help you get up to speed on the different companies that allow you to
leverage their advertising in your application.

Advertising Tips

You may notice that there are some advertising strategies that work better on your site. If
your users are all using Firefox with the Adblock add-on, most likely they won’t see the
advertising. Also, some agreements (such as the Google AdSense agreement) won’t allow
you to use multiple types of advertising. So, choose your advertising service carefully.
Although it’s a pain, it is important you read the terms of service carefully to fully
understand what you’re getting into. This can translate into some long and confusing
reading, but having a good understanding of these terms will save you many headaches
down the road.

Depending on your service agreement, you may or may not have much control on
where your advertisements are placed. If you can, place your ads near rich media (that is,
images) so that the user’s eye is drawn to the resource. You will also want to integrate your
advertising into the overall design; don’t put in the ads as an afterthought! Here are some
general rules (or perhaps, more accurately, observations) on what works:

• Ads at the top of the page do better than ads at the bottom.

• Ads near images and navigation do well since the user focuses on those areas.

• Ads that have long areas of text (that is, stories) do well placed at the bottom.

There are no hard-and-fast rules for integrating advertising into your web site.
However, pay attention to what’s going on through whatever tools your advertising supplier
provides.

136 Going Further with Your Application

Graham

Selling Your Application

Another way to make some money from your application is to sell it. However, remember
that the people you’re selling it to are expecting to make more money off your application
than they are paying you. You need to either build your application to maturity and show
sustained growth or come up with some type of novel method that has a lot of promise. If
you think you’ve built a killer application that has a lot more potential and, for whatever
reason, want to sell your stake, here are a few places to start looking for a buyer:

• Altura (http://altura.com/)

• AppFactory (http://www.baypartners.com/appfactory/)

• EBay (http://www.ebay.com/)

Help, I’m Stuck! (and Other Resources)

So, you’ve gotten partway through your application, and there’s this one little thing you just
can’t figure out how to implement. What do you do? Probably the single best resource for
these types of problems is the Facebook Developers forum (or discussion board, depending
on where you link from) at http://forum.developers.facebook.com/. If you’re more
comfortable on IRC, there’s also a channel on freenode (#Facebook) where lots of folks hang
out. This can (at times) be a faster way to get an answer to a specific question (though
people may send you to the forums, so make sure you search them before you post a “n00b”
question).

You may also want to check out the different Facebook developer groups
(http://wiki.developers.facebook.com/index.php/Local_Developer_Group) or even ask
questions at one of the Garage events
(http://wiki.developers.facebook.com/index.php/Garage_Calendar).

Summary

Making a little bit of money on the side never hurt anyone, and in this chapter I briefly went
over some avenues that are available to you as a Facebook developer to monetize your
application. You saw how to easily integrate advertisements into your application with
Google AdSense and how to use Amazon’s affiliate program to help generate a revenue
stream for your application.

Because Amazon and Google aren’t the only players on the block, I also listed some
other advertising agencies that many Facebook developers have used. It is important,
however, to compare the different agreements to each other in order to find the right

Going Further with Your Application 137

Graham

solution for your application. And, if you get to the point of wanting to sell your
application, I listed a few avenues for you to pursue. Remember, the vast majority of
applications don’t create additional value to Facebook. If you want to sell your application,
remember this altruism: Facebook isn’t about content…it’s about communication. Do
something that Facebook lacks, or do it better than Facebook does it, and you’ll be
successful.

If you get stuck, remember that the forums and the wiki documentation are your friends.
You can also drop me a line via Facebook (be sure to add me as a friend) with any
comments. Good luck with your project!

	Prelims
	Contents
	About the Author
	About the Technical Reviewer
	Introducing the FacebookPlatform
	What Is Facebook?
	A Brief History of Facebook
	The Elements of the Facebook Platform
	Facebook Markup Language
	REST API Calls
	Facebook Query Language
	Facebook JavaScript
	Client Libraries

	Summary

	Getting Ready for FacebookApplication Development
	What’s Needed
	Creating a Facebook Account
	Understanding Facebook Layout and Terms

	Setting Up Your Server
	Adding the Developer Application
	Understanding How Facebook Applications Work
	Creating a New Application
	Facebook Terms of Service Highlights

	Using Facebook Tools
	API Tab
	XML
	JSON
	PHP

	FBML Tab
	Feed Preview Console Tab

	Using Programming Tools
	Summary

	Learning Facebook PlatformFundamentals
	Client Library Primer
	API Primer
	Authentication
	Events
	FBML
	Feed
	FQL
	Friends
	Groups
	Marketplace
	Notifications
	Photos
	Profile
	Users
	Error Codes

	Data Store API
	FQL Primer
	Tables
	Functions and Operators

	Facebook Markup Language Primer
	Valid HTML Tags
	FBML Tags
	Conditionals
	User/Group Information
	Profile Specific
	Embedded Media
	Visibility on Profile
	Tools
	Forms
	Other
	Editor Display
	Page Navigation
	Dialog Boxes
	Wall
	Mock Ajax

	Facebook JavaScript Primer
	DOM Objects

	Putting It Together
	Things to Remember
	Summary

	Building a FacebookApplication, Start to Finish
	Setting Up Eclipse
	Using Plug-Ins
	Remote Project Support (FTP/SFTP)
	PHP Development Tools
	Data Tools Platform SQL Development Tools

	Connecting to Your Web Server

	Layout Out the Project
	Creating the Database
	Designing the Database
	Working with SQL

	Jumping In
	External Web Services
	Game Review
	Add Game
	Publishing Feeds
	Testing
	Debugging
	Scaling

	Launching Your Application
	Creating the About Page
	Creating a Logo
	Submitting for Approval
	Publicizing Your Application

	Advanced Techniques
	Summary

	Going Further with YourApplication
	Application Statistics
	Monetizing
	AdSense
	Amazon
	Adonomics
	Others

	Advertising Tips
	Selling Your Application
	Help, I’m Stuck! (and Other Resources)
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

