

Facebook Cookbook™

Other resources from O’Reilly

Related titles FBML Essentials

PHP Cookbook
JavaScript: The Good Parts

PHP Pocket Reference

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly Media brings diverse innovators together to nurture
the ideas that spark revolutionary industries. We specialize in
documenting the latest tools and systems, translating the inno-
vator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Facebook Cookbook™

Jay Goldman

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Facebook Cookbook™
by Jay Goldman

Copyright © 2009 Jason Goldman. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary E. Treseler
Production Editor: Sarah Schneider
Copyeditor: Genevieve d’Entremont
Proofreader: Sarah Schneider

Indexer: Fred Brown
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:
October 2008: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Facebook Cookbook,
the image of a slow loris, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

http://safari.oreilly.com

To Bianca, whose face is tops in my book. I could
do nothing without you.

Table of Contents

Contributors . xv

Preface . xix

1. Introducing Facebook Platform . 1
1.1 What Exactly Is Facebook Platform? 2
1.2 Skills to Pay the Bills 5
1.3 Facebook Platform Off-Facebook 7
1.4 Facebook Platform Versus Google OpenSocial 7
1.5 Saddle Up! 9

2. Ideation and Strategy . 11
2.1 Which Types of Apps Are the Most Popular? 12
2.2 Which Apps Are Most Popular? 13
2.3 Test-Driving Ideas with Facebook Polls 16
2.4 The Winning Formula for Facebook 19
2.5 Where’s the Money? 21
2.6 Google AdSense and Facebook 23
2.7 Funding Facebook Development 24
2.8 Facebook Platform Integration Points 25
2.9 Application Directory 26

2.10 Navigating the Applications Menu 31
2.11 Facebook Canvas Pages 33
2.12 Think Outside the Profile Box 34
2.13 Info Sections 36
2.14 News Feed and Mini-Feed 37
2.15 Noteworthy Notifications 43
2.16 Understanding Allocations 43
2.17 Attachments and the Publisher 45
2.18 Requests 47
2.19 Tabs 47
2.20 Guiding Principles of App Strategy 48

vii

2.21 Community Gardening 50
2.22 Finding Inspiration 51

3. Hello World . 55
3.1 Installing the Facebook Developer App 55
3.2 Setting Up a New App 57
3.3 Hello World 66
3.4 Installing Your App: It’s All About the About Page 67

4. Architecture and Design . 71
4.1 Under the Hood: How Facebook Apps Work 71
4.2 Architecting for the Future: Open Web Apps 73
4.3 Build Now, Scale Later: Getting Real 75
4.4 Scalability 77
4.5 Language Selection As Architecture 78
4.6 Cross-Language Development with Facebook Thrift 80
4.7 The Database Is Dead! Long Live memcached! 82
4.8 Advanced Caching with Nginx and memcached 83
4.9 Standing on the Shoulders of Giants: Hosting with Amazon

Web Services 84
4.10 Integrating Drupal and Facebook 85
4.11 App Design Process 86
4.12 The Facebook User Interface Widgets 91
4.13 Facebook’s Global User Interface 95

5. Setting Up Your Environment . 99
5.1 Creating a Test Account 99
5.2 Facebook Clients 101
5.3 JavaScript Client Library 101
5.4 Starting Out in PHP 103
5.5 Demo Applications 106
5.6 Developer Documentation 106
5.7 Test Consoles 107
5.8 Developer Forums: Help! 108
5.9 Facebook Bug Squashing 109

5.10 Facebook Developer Software Toolbox 109
5.11 Weekly Facebook Pushes 112
5.12 Hosting 112
5.13 Amazonian Backends: Simple Storage Solution 114
5.14 Amazonian Backends: Hosting on Elastic Cloud Computing 120
5.15 Staying Up-to-Date 123

viii | Table of Contents

6. Facebook Markup Language (FBML) . 125
6.1 What Is FBML? 125
6.2 Categories of FBML Tags 127
6.3 FBML Versions 128
6.4 A Rose by Any Other Name: Forced Renaming 129
6.5 Web Standards 130
6.6 Displaying a User’s Name 133
6.7 He Said, She Said: Dealing with Pronouns 135
6.8 Worth a Thousand Words: Profile Pictures 136
6.9 Linking to Events 137

6.10 Linking to Groups 138
6.11 Linking to Networks 138
6.12 Display Content to Group Members 138
6.13 Display Content to Network Members 139
6.14 Displaying Content to App Users 140
6.15 Displaying Content to Friends 140
6.16 Displaying/Hiding Content to/from Specific Users 141
6.17 Displaying Random Content 142
6.18 Displaying Content to Specific Browsers 143
6.19 Displaying Your Application’s Name 144
6.20 Formatting Relative Time 144
6.21 Making Content Visible to Some Users in Profile Boxes 145
6.22 Hiding Private Profile Content 147
6.23 Hiding Private Photos 148
6.24 Embedding an iFrame 149
6.25 Embedding Facebook Photos 150
6.26 Embedding MP3s 151
6.27 Embedding Adobe Flash 152
6.28 Embedding Flash Video 156
6.29 Embedding Microsoft Silverlight 157
6.30 Wide Versus Narrow Profile Boxes 158
6.31 Tabling Users 159
6.32 Page and Box Titles 160
6.33 Profile Box Subtitles 162
6.34 Forms the Facebook Way 163
6.35 Heads Up! Heading Your App Pages 169
6.36 Dashing Dashboards: Heading Your App Pages 170
6.37 Tabs Ahoy! 173
6.38 Media Headers 174
6.39 Errors, Explanation, and Success: Displaying Messages (Oh My!) 175
6.40 Discussion Boards Made Simple 177
6.41 Giving Users a Voice: Wall Posts in Your App 178
6.42 Adding Profile Boxes and Info Sections 181

Table of Contents | ix

6.43 Prompting for Extended Permissions 183
6.44 You Can Pick Your Friends 184
6.45 You Can Pick Your Friends (in Batches) 186
6.46 Invitations and Requests 189
6.47 Predicting the Future with Type-Ahead Controls 193
6.48 Using FBML Inside FBJS 194
6.49 Dialogs That Pop 196
6.50 Dialogs in Context 198
6.51 Dialogs with Ajax 198
6.52 Facebook Share Buttons 203
6.53 Feed Forms: Publishing Feed Stories from FBML 205
6.54 Redirecting to a Different URL 207
6.55 Painless Image Submitting 208
6.56 Hunting for Robots: CAPTCHA in Your App 208
6.57 FBML Caching 210
6.58 Analyzing Traffic with Google Analytics 211
6.59 Translations 213
6.60 Valid HTML Tags 218
6.61 Facebook and CSS: FBSS? 219
6.62 Beating the CSS, JavaScript, and Image Cache 221

7. Facebook JavaScript (FBJS) . 225
7.1 Dealing with Sandbox Renaming 227
7.2 Losing Your < >s 230
7.3 Retrieving DOM Elements 230
7.4 Manipulating DOM Elements 231
7.5 Manipulating CSS Styles 233
7.6 Manipulating CSS Class Names 234
7.7 Dynamically Setting Content 237
7.8 Textbox Selections 238
7.9 Limiting the Length of Text Fields 239

7.10 Creating Elements Dynamically 240
7.11 Adding and Removing Event Listeners 241
7.12 Retrieving Data via Ajax 241
7.13 Displaying Pop-Up Dialogs 245
7.14 Displaying Contextual Dialogs 247
7.15 Avoiding Heartache When the DOM Changes 248
7.16 Linking to External FBJS Files 249
7.17 Use Firebug (No, Seriously) 250
7.18 Accessing the DOM Behind FBJS 252
7.19 Ajax Library: Backface 253

x | Table of Contents

8. Facebook Query Language (FQL) . 255
8.1 Playing with FQL 256
8.2 FQL Query Structure 256
8.3 Functions and Operators 258
8.4 Indexed Facebook Tables and Fields 259
8.5 Advanced Relational Database Table Optimization 262
8.6 Album Table 264
8.7 Retrieving an Album 265
8.8 Counting All of a User’s Photos 266
8.9 Retrieving Five Albums for a User 266

8.10 Cookie Table 267
8.11 Retrieving All Cookies for a User 268
8.12 Retrieving a Specific Cookie 268
8.13 Retrieving All Cookies for a Specific Path 268
8.14 Metrics Table 269
8.15 Retrieving Yesterday’s Metrics 270
8.16 Retrieving Metrics for a Date Range 271
8.17 Alerting Yourself 272
8.18 Event Table 273
8.19 Event Member Table 274
8.20 Retrieving an Event 275
8.21 Retrieving Events Created by a User 275
8.22 Retrieving a User’s Events 276
8.23 Retrieving a User’s Events with a Specific RSVP 276
8.24 Retrieving Events Two Users Are Attending 276
8.25 Friend Table 277
8.26 Friend Request Table 277
8.27 Retrieving a User’s Friends 278
8.28 Checking Whether Two Users are Friends 279
8.29 Retrieving a User’s Pending Friend Requests 279
8.30 Checking for a Friend Request Between Two Users 279
8.31 Friend List Table 280
8.32 Friend List Members Table 280
8.33 Retrieving a User’s Friend Lists 281
8.34 Retrieving a Specific Friend List 281
8.35 Retrieving Friends in Friend Lists 282
8.36 Retrieving Friends in a Specific Friend List 282
8.37 Groups Table 282
8.38 Group Member Table 283
8.39 Retrieving a Specific Group 284
8.40 Retrieving a User’s Groups 285
8.41 Checking Whether Two Users Are in the Same Group 285
8.42 Listing Table 286

Table of Contents | xi

8.43 Retrieving a Listing 287
8.44 Retrieving a User’s Listings 288
8.45 Retrieving a User’s Friends’ Listings 288
8.46 Retrieving a User’s Listings by Category 288
8.47 Page Table 289
8.48 Page Fan Table 291
8.49 Retrieving a Page 292
8.50 Retrieving a User’s Pages 293
8.51 Photo Table 293
8.52 Photo Tag Table 294
8.53 Retrieving the 10 Most Recent Photos from a User 295
8.54 Retrieving All Photos a User Is Tagged In 295
8.55 User Table 296
8.56 App Friends 298
8.57 Birthday Friends 298
8.58 600 Errors 299
8.59 Preload FQL 300

9. Facebook API . 301
9.1 What’s an API? 301
9.2 Getting Started with the Client Library 304
9.3 RESTing with Facebook 304
9.4 Storable Data 305
9.5 Authenticating Users 306
9.6 Creating a Session Key 310
9.7 Creating an Infinite Session Key 311
9.8 Getting a Session (Desktop Only) 313
9.9 Creating an Auth Token (Desktop Only) 314

9.10 Making Calls (Desktop Only) 314
9.11 Logging Out 315
9.12 Getting Allocations 315
9.13 Getting Metrics 316
9.14 Getting and Setting Application Properties 318
9.15 Getting an App’s 4-1-1 320
9.16 Batching Calls 322
9.17 Getting and Setting Cookies 324
9.18 Getting Events 325
9.19 Getting Event Members 326
9.20 Refreshing FBML Caches 327
9.21 Getting a (Ref) Handle on FBML 328
9.22 Three Story Sizes: Working with Template Bundles 328
9.23 Publishing News and Mini-Feed Stories 332
9.24 Story Aggregation 333

xii | Table of Contents

9.25 Setting Info Sections 335
9.26 FQL Queries 337
9.27 Friends? 337
9.28 Get Friends 339
9.29 Get Friends Who Use My App 339
9.30 Get Friend Lists 340
9.31 Get Groups 341
9.32 Get Group Members 341
9.33 Creating/Modifying Marketplace Listings 342
9.34 Get Marketplace Listings 343
9.35 Get Marketplace Categories and Subcategories 344
9.36 Deleting Marketplace Listings 345
9.37 Searching the Marketplace 345
9.38 Sending Notifications 346
9.39 Get Notifications 348
9.40 Get Pages 348
9.41 Checking Page Properties 349
9.42 Create a Photo Album 350
9.43 Get Photo Albums 351
9.44 Get Photos 352
9.45 Uploading a Photo 353
9.46 Adding Tags to Photos 354
9.47 Getting and Setting Profile FBML 354
9.48 Get a User’s Info 357
9.49 Get Logged-In User 357
9.50 Has a User Added My App? 358
9.51 Setting Status 358
9.52 Extended Permissions 359
9.53 Checking Extended Permissions 360
9.54 Storing Data with the Data Store API 361
9.55 Granting Permissions to Other Applications Via the

Permissions API 364
9.56 Post-Remove (Uninstall) URL 366
9.57 Adding Missing PHP Client Library Methods 367
9.58 Error Codes 369

10. Marketing Your App . 371
10.1 Attracting Users Through Facebook Ads 371
10.2 Monetize, Measure, and Market with SocialMedia 375
10.3 Social Network Advertising with Cubics 377
10.4 Other Ad Networks 378
10.5 Spreading Your App via Google AdWords 378
10.6 Measuring Your Success 379

Table of Contents | xiii

10.7 Work the Integration Points 381
10.8 Continuous Improvement Through A/B Testing 381
10.9 The Great Apps Program 382

10.10 Application Verification Program 383

Index . 385

xiv | Table of Contents

Contributors

The following people contributed recipes to this book:

Jayant Agarwalla: Recipe 2.4, The Winning Formula for Facebook
There aren’t many people in the world who can claim to have a winning formula
for building Facebook applications. Jayant is one of those very, very few. I had the
pleasure of interviewing him on stage at the ICE08 conference, and I can honestly
say that I’ve never met anyone with a deeper understanding of what it means to
build a successful Facebook app. And he should know! At 21 years old, Jayant,
who comes from Kolkata, India, is the cofounder of http://scrabulous.com and the
Scrabulous application on Facebook (now called Wordscraper). He’s currently the
VP of business development and marketing for Scrabulous.

Will Pate: Recipe 2.21, Community Gardening
When I set out to find someone who could write eloquently about some good
community gardening strategies, my list had exactly one person on it: Will Pate.
From starting the Infinity BBS when he was still in high school, through cofounding
Raincity Studios in Vancouver, to being the community manager for Flock, co-
hosting commandN, and in his current role as community manager for VenCorps,
Will has demonstrated an unparalleled understanding of how to grow a vibrant
community. You can find him at http://www.willpate.org.

Alistair Morton: Recipe 2.22, Finding Inspiration
Al is one of the most talented designers I’ve ever met, and certainly the tallest.
We’ve collaborated on a few projects, which has given me the opportunity to notice
that even his on-the-phone doodles are individually perfect works of art. I asked
him to contribute a recipe that’s a little outside the regular scope you might have
come to expect, and to shine some light on where he finds inspiration for his cre-
ative endeavors. You can find him at http://www.peapod.ca.

Rajat Agarwalla: Recipe 4.4, Scalability
I’ve never met Rajat, but I have had the pleasure of sharing a stage with his brother,
Jayant. You might not recognize their personal names, but you’ve almost certainly
lost hours and hours of your life to their creation: Scrabulous. Few Facebook de-
velopers have dealt with the scaling issues that they have! The brothers hail from
Kolkata, India, and are cofounders of http://scrabulous.com and the Scrabulous

xv

http://scrabulous.com
http://www.willpate.org
http://www.peapod.ca
http://scrabulous.com

application on Facebook (now Wordscraper). Rajat is the CEO and chief software
architect.

Mark Slee: Recipe 4.6, Cross-Language Development with Thrift
I’ve only had the honor of meeting a handful of Facebook’s development team
members, which fortunately included Mark. I saw Mark present at the FSOSS07
conference on Thrift and immediately cornered him to contribute a recipe. He’s
one of the original authors of Thrift and is a product manager at Facebook. Prior
to that, Mark was a member of the engineering team, focused on systems infra-
structure, mobile applications, and general site development. He holds degrees in
computer science and mathematics from Stanford University, and spends the better
part of his spare time listening to and producing electronic music.

Ilya Grigorik: Recipe 4.8, Advanced Caching with Nginx and memcached
Every now and then, you run into a person who is so much smarter than you that
you’re really just dumbfounded. Ilya is one of those people. He’s the founder and
CTO of AideRSS (http://www.aiderss.com), an RSS filtering service designed to help
you find and read what matters. In his downtime, he maintains a popular blog
(http://www.igvita.com) where he talks about Ruby, Ruby on Rails, and best prac-
tices of scalable web architectures. The scope of his recipe is probably beyond all
but the most advanced readers, though I encourage you to consider it in your
architecture if you’re planning an app that really needs to scale.

James Walker: Recipe 4.10, Integrating Drupal and Facebook
Since some of you will be experienced PHP developers, there’s a good chance that
you’ve played around with Drupal or even built some sites on it. What you may
not know is that you can save yourself a lot of time and energy by building your
Facebook app on it! James, known to his loyal followers as Walkah, is a High Priest
in the religion of Drupal. He’s also a father, a geek, a drummer, a (former) hockey
goalie, a music nerd, a free software advocate, a beer drinker, a thinker, a Cancer,
a flirt, a closet singer, a dork, a hugger, a clown, and alive. James and I have shared
many conversations in which the answer ended up being “Drupal,” so I was thrilled
when the conversation about him contributing to this book started with “Drupal”
and ended with “Yes.” You can find him at http://walkah.net/ and at http://lullabot
.com, where he’s the director of education.

Daniel Burka: Recipe 4.13, Facebook’s Global User Interface
Daniel is one of the friendliest people I’ve ever met. Maybe it’s because he’s a fellow
Canadian, but it’s always such a pleasure to run into each other and catch up. You
may not recognize his name, but you know his work: Daniel is a partner at
Silverorange and the design director at Digg, as well as a cofounder of Pownce. You
can find him at http://deltatangobravo.com.

Jason DeFillippo: Recipe 5.4, Starting Out in PHP
Many of you will be new to the world of programming or won’t be overly familiar
with PHP. I asked my good friend Jason DeFillippo to contribute a recipe on a
simple but effective beginner PHP tip, which he happily did. Jason has been

xvi | Contributors

http://www.aiderss.com
http://www.igvita.com
http://walkah.net/
http://lullabot.com
http://lullabot.com
http://deltatangobravo.com

building websites professionally since 1994, working for companies such as Epson,
Paramount, Technorati, and 8020 Publishing. He specializes in social media and
blogging and is the cofounder and CTO of the Metblogs global network. Jason’s
blog can be found at http://jpdefillippo.com, and his awesome photos can be ogled
at http://aphotoaday.com.

Martin Kuplens-Ewart: Recipe 6.5, Web Standards
Martin was a member of our team at Radiant Core and now consults on frontend
development for Zerofootprint. He’s a brilliant web designer and writes better
HTML than almost anyone I’ve ever met, which makes him perfectly qualified to
contribute a recipe about why web standards are important, even on Facebook.
Martin has helped major groups and brands, including Microsoft, Mozilla,
Toronto’s Hospital for Sick Children, UNESCO, YMCA, and Zerofootprint,
understand how to embrace web technologies and online community as part of
their core business, and he has developed online solutions for these and other major
organizations. He is an expert in the development of web applications using
standards-compliant methodologies and is a 10-time judge of the Web Marketing
Association WebAwards. Martin’s consulting services can be found at http://www
.apolitic.com.

Pete Forde with Rowan Hick: Recipe 8.5, Advanced Relational Database Table
Optimization

Pete Forde is a cofounder of Unspace Interactive, one of the world’s best Ruby on
Rails consulting firms. He’s also an amazing photographer, a charismatic leader of
the tech community in Toronto, founder of our Rails Pub Night, and a
co-organizer of the Ruby Fringe Conference. I asked Pete to contribute a recipe
about optimizing database performance and got more than I could have hoped for
when he dragged Rowan along for the ride. You can find Pete at http://www.unspace
.ca or on Flickr at http://flickr.com/photos/leftist. Rowan is at http://www.rowanhick
.com.

Alain Chesnais: Recipe 10.1, Attracting Users Through Facebook Ads
Alain is the vice president of product development for View 22, makers of the
SceneCaster application. Their Facebook application, a portal into the world of
SceneCaster, has quickly attracted over a million users. Alain has previously
worked at Alias|Wavefront, ATI, Tucows, and TrueSpectra, and has forgotten
more about the world of 3D than you or I will ever know.

Jeffrey Tseng: Recipe 10.6, Measuring Your Success
I was completely blown away when Albert Lai, Kontagent’s CEO and an old friend
of mine, showed me their demo. Albert’s a very successful serial entrepreneur and
has another great startup on his hands, cofounded with his CTO, Jeffrey Tseng.
Kontagent is focused on providing next-generation social analytics tools for de-
velopers, and Jeffrey is well-suited to his roll, having previously been the founder
of a startup that provided consulting services for wireless sensor networks. You
can find them at http://www.kontagent.com.

Contributors | xvii

http://jpdefillippo.com
http://aphotoaday.com
http://www.apolitic.com
http://www.apolitic.com
http://www.unspace.ca
http://www.unspace.ca
http://flickr.com/photos/leftist
http://www.rowanhick.com
http://www.rowanhick.com
http://www.kontagent.com

Preface

One day, in the not too distant future, I fully expect my grandmother to ask me about
Facebook. She’s particularly hip, as grandmothers go, and is already all over email. She
even occasionally “surfs” the Web to read up on the latest events in her native South
Africa! You might not think she falls into Facebook’s target demographic, but I would
hate to be the person standing between her and her Mac if anyone told her that she
could learn even more about her beloved Toronto Maple Leafs by registering for a
Facebook account. She is, after all, their number-one fan.

There’s an important takeaway in there for everyone who has picked up this book in a
bookstore and is weighing the idea of building a Facebook empire: my grandmother,
and millions of people like her, are waiting for you to build the application that lures
them into the world’s fastest growing social network. Please don’t disappoint her,
because I’m her number one fan, and I have no objection to getting a little rough in the
corners, if you know what I mean.

Who Should Read This Book
The contents of this cookbook are primarily aimed at developers with a general back-
ground in web development who are interested in building Facebook web applications.
Although Facebook Desktop and Mobile apps are covered where applicable, the con-
tent in here is really aimed more at the web side of things. There’s a wide swath of
material covered, from how to plan an app, to really gritty API details and FQL calls,
to how to market and attract users, so there should be something for everyone.

Most cookbooks assume that the would-be chefs reading them have a basic knowledge
of how to cook, and this book is no different. I assume you know your way around the
following (even at a very fuzzy, somewhat-in-the-dark level): web development in the
areas of HTML, CSS, programming (particularly PHP), and SQL/database design. You
don’t need to be a master of any of them, and I’ve asked a few friends to contribute
some recipes to help you out if you’re just getting started (particularly Recipes 5.4 and
8.5, respectively). I’ve also pointed out some excellent books if you need to brush up
on some of the related topics.

xix

What’s in This Book?
Like all good cookbooks, this one is intended to be pulled off the shelf and rifled through
when you need to know how to embed an MP3 on a Canvas page (fb:mp3: see Rec-
ipe 6.26), how to look up friend lists using FQL (SELECT flid, name FROM friendlist
WHERE owner = $uid; see Recipe 8.33), or where to find inspiration when you’re faced
with App Developer block (all around you; see Recipe 2.22). You’re welcome to read
through it from cover to cover—and I hope you’ll find it entertaining and worth a few
laughs if you do—or to use it as a trusted reference while you take over the Platform
world.

This book is organized into 10 chapters:

Chapter 1, Introducing Facebook Platform
A general overview of Facebook, Facebook Platform, and an introduction to the
incredible opportunity it represents.

Chapter 2, Ideation and Strategy
If you don’t have an idea in mind already for an app, this is the chapter for you.
Learn about the Platform ecosystem, dig into the integration points and different
strategies for using them, and pick up a few techniques for doing app design quickly
and with the best possible results.

Chapter 3, Hello World
Time to get started building your first app! This quick chapter will walk you
through the classic Hello World first programming example.

Chapter 4, Architecture and Design
This chapter covers the best architectures for Facebook apps, some solid recom-
mendations for database performance, and an overview of the design and user
experience of winning applications.

Chapter 5, Setting Up Your Environment
Learn about all the things you need to download, how to add apps to Facebook,
the secret trick to setting up a test account, and how to get the lowdown on the
latest and greatest from Facebook.

Chapter 6, Facebook Markup Language (FBML)
FBML is the magic that makes the Facebook Platform world go ’round. We’ll cover
all of the tags, dig into some surprising behaviors you might encounter, and explore
some great tricks for building better frontends.

Chapter 7, Facebook JavaScript (FBJS)
If JavaScript is the duct tape that binds the Web together, FBJS is the glue that
makes Facebook apps stick (or something like that). This chapter explains why
you can’t just use regular JavaScript in your app, how to build great Ajax-like
interactions using Facebook’s Mock Ajax techniques, and goes into detail about
all of the handy functions available to you.

xx | Preface

Chapter 8, Facebook Query Language (FQL)
As FBML is to HTML, FQL is to SQL. We’ll take a look at the schema of the various
database tables you have access to, and catalog some really useful (and fast) FQL
queries you can use in your apps.

Chapter 9, Facebook API
Ah, sweet, sweet API. We would be nothing without you! This chapter will show
you the real power behind Platform, digging deep into the code that connects
everything together. We’ll go through each of the objects and methods you have
at your disposal, and I’ll give you some tips and tricks for desktop apps along the
way.

Chapter 10, Marketing Your App
Remember: if you build it, they won’t come—without persuasion. Marketing is
the art of persuasion, and this chapter goes over some general marketing options
for Facebook apps and some great techniques for measuring your success.

Code Samples
Many of the PHP code samples in this book require the Facebook API to be included
and instantiated before the sample can be run. Those precious few lines of code have
been omitted throughout to save space, so stick these in when you need them:

<?php
 include_once 'resources/includes/config.php';
 include_once 'resources/includes/facebook.php';
?>

<?php
global $api_key, $secret;

// Code Goes Here

?>

You’ll need to adjust the paths in the include_once lines to match where you’ve put the
files after downloading them. See Chapter 5 for more information on setting up your
environment.

Although there’s a lot of code in here that you could lift straight off these pages and
drop into your app, remember that none of this has been extensively tested as produc-
tion code and there’s very little error checking. Since Facebook throws exceptions when
things blow up, I’d suggest at least wrapping your code in some try/catch statements
and doing something useful with your contained explosions.

Preface | xxi

Keeping Up with the Facebookers
As I was getting to the end of writing this book (mid-2008), Facebook announced that
they were planning a major redesign of their Profiles and the way that applications
integrate with them. That decision sure made for exciting times in these parts!

Luckily, the timing worked out nearly perfectly, and this book now contains informa-
tion about the “Profile redesign” rather than the old way of doing things. The new
design was still in the initial phases of being rolled out as we were wrapping up the
manuscript, so some of the screenshots still show the old design we knew and loved,
rather than the new design we’re fumbling around with but are pretty sure is going to
become our number-one squeeze. Fear not: the screenshots were updated anywhere
that it was absolutely required. It’s also possible that some of the information changed
after we went to press, so check the Developers Wiki if you think that might be the case
(http://wiki.developers.facebook.com/).

It’s also worth noting that some of the applications profiled in this book are no longer,
and that some have completely changed their look, feel, and very purpose in life. Scra-
bulous, for example, is consistently used throughout as a paragon of what to do right,
but it has actually fallen prey to its legal battles and has been reborn, phoenix-like, as
Wordscraper (http://apps.facebook.com/wordscraper).

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You don’t need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book doesn’t require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code doesn’t require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but don’t require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Facebook Cookbook by Jay Goldman.
Copyright © 2009 Jay Goldman, 978-0-596-51817-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

xxii | Preface

http://wiki.developers.facebook.com/
http://apps.facebook.com/wordscraper

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596518172

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Thanks!
Writing this book was hard work, so I’m lucky to have been surrounded by so many
great contributors who made gathering recipes so easy. To my gang of guest chefs: they
say that too many cooks spoil the batter, but obviously they were never backed by a
team like you. Your expertise and insight have made this book what it is. In the order
they appear in the book:

• Jayant Agarwalla

• Will Pate

• Alistair Morton

• Rajat Agarwalla

• Mark Slee

• Ilya Grigorik

• James Walker

• Daniel Burka

Preface | xxiii

http://safari.oreilly.com
http://www.oreilly.com/catalog/9780596518172
http://www.oreilly.com

• Jason DeFillippo

• Martin Kuplens-Ewart

• Pete Forde

• Rowan Hick

• Alain Chesnais

• Jeff Tseng

A special thanks to Will, who shot my Profile pic one cold day on a photo walk through
Toronto’s Junction neighborhood.

My gratitude to my reviewers, who helped turn my (sometimes incoherent) ramblings
into the book you hold today. In no particular order:

• Jesse Stay (http://staynalive.com)

• Pete Bratach (http://facebook.com)

• Peter Meth (http://softersoftware.com)

• Michael Porterfield (http://wealthengine.com)

• Tim Consolazio (http://tcoz.com, http://nabbr.com)

Thanks also to the amazing crew at O’Reilly, who made life for this first-time author a
whole lot easier. Particular thanks go out to Jacque McIlvaine for handling the admi-
nistrivia; Sarah Kim, Maureen Jennings, Marsee Henon, and Laurel Ackerman for
marketeering; Adam Witwer and Marlowe Shaeffer for handling my sometimes clueless
questions; Genevieve d’Entremont for making my ramblings into readable copy; Sarah
Schneider for turning this into a real book; Brady Forrest (and Jen Pahlka, even though
she’s not really an O’Reillyian) for the speaking gigs; and my editor, Mary Treseler, for
putting up with me and for shared stories about dogs.

Apologies to Eli
In searching for an example ID I could use for applications, users, groups, networks
and the like, I settled on 12345. It turns out, much to both my delight and surprise,
that Facebook has actually assigned that ID to a user: Eli Richlin. So, my apologies to
Eli for using him as an example throughout the book. Apart from being user 12345, Eli
is apparently a Harvard graduate and an NYU grad student. Good luck with everything,
Eli, and thanks for being such a model user!

xxiv | Preface

http://staynalive.com
http://facebook.com
http://softersoftware.com
http://wealthengine.com
http://tcoz.com
http://nabbr.com

CHAPTER 1

Introducing Facebook Platform

Many profound questions have haunted scholars and thinkers since the dawn of hu-
manity: Why are we here? Does God exist? What is art? Where does the other sock go?
The question of whether or not to build an application on Facebook* Platform is not
one of them.

That said, since you’re holding this book in your hands, you’ve likely already spent
some time pondering this question. Perhaps you have recently been bitten by a zombie
or been given some fish for an aquarium you didn’t know you owned. Maybe you were
challenged to a round of movie trivia or told that you were someone’s Top Friend. If
you’re a Facebook user (and it’s increasingly likely that you are), you’ve probably in-
stalled an application or been invited to install one by a member of your ever-growing
social network.

Although it may seem impossible to live without those applications, Platform hasn’t
always been part of Facebook. Mark Zuckerberg unleashed Facebook Platform on May
24, 2007, at an event held at the San Francisco Design Center attended by 800 devel-
opers. For all the epic speechwriting and grandiose claims (Mark opened his presen-
tation with, “Today, together, we’re going to start a movement”), that day really did
mark an important moment in the history of the industry. The enthusiastic and decid-
edly nervous founder of Facebook might just as well have been standing on that blue
stage and waving a vial of gold over his head, yelling, “Gold! Gold! Gold from the
American River!” Just as surely as Samuel Brannan’s march through the streets of San
Francisco heralded the start of the California Gold Rush, news of the Platform exploded
onto the Web. Technorati shows nearly 500 blog posts with the term “Facebook Plat-
form” from that day, up from practically none the day before (see Figure 1-1).

At the time of the announcement, Facebook counted just over 24 million active users
(defined as people who have returned to the site in the last 30 days). At the time this
book was written, its user base has exploded to more than 90 million† and continues

* Facebook is a registered trademark of Facebook, Inc.

† f8 Keynote Address (http://www.new.facebook.com/f8)

1

http://www.new.facebook.com/f8

to grow at the astounding rate of 200,000 new users per week. Numbers like that tend
to be somewhat difficult to understand—if all those people impossibly stood on each
other’s shoulders, they’d reach 93,000 miles into the sky! But consider that San Fran-
cisco has a population just shy of 800,000 people, and now imagine each and every one
of them sitting down in front of their computers and diligently joining Facebook in the
same month. The current growth rate runs at about 3% a week, and if you consider
that the world’s population is only growing at a rate of about 1.14% a year, it becomes
mathematically possible to calculate the Facebook Singularity: the point at which every
human on the planet has been signed up and is filling your inbox with free gifts, pokes,
and friend requests. Although it’s difficult to figure out how much Platform has to do
with that growth, it’s notable that there have been over a billion installs of almost 24,000
apps, and that some of those apps (such as Slide’s Top Friends and FunWall and Rock-
You’s Super Wall) are seeing well over a million daily users.

1.1 What Exactly Is Facebook Platform?
Chances are, if you’re reading this book, you’re comfortable with the concept of an
operating system (OS), be it Windows, Mac OS, or Linux. In a lot of ways, you can
think of Facebook Platform as an OS for social networking. Platform provides many of
the important and underlying technologies that enable the social graph, a term Face-
book uses to describe a social network.

The social graph is a representation of all the connections that make up a social net-
work. Every member of the network has his own social graph, which represents that
user’s unique set of connections to other members of the same network. The example

Figure 1-1. Blog posts about “Facebook Platform” since May 2007

2 | Chapter 1: Introducing Facebook Platform

shown in Figure 1-2 depicts the social graph of the person in the center, whom we’ll
call Mark. The people in the network who are directly connected to Mark are shown
slightly smaller than him, the people he’s indirectly connected to are shown even
smaller, the next level even smaller, etc, etc. The social graph isn’t unique to Facebook
(although it’s certainly one of the biggest on the Web); it is actually a common property
of any network in which things are joined to other things. It’s a useful visualization tool
to show the structure of the interlinked nodes (the topology of the network), and it can
also be used to calculate the value of any one node (usually based on the number of
links it has to other nodes). Although it may not seem so at first, network value is a
fascinating topic, especially when it’s worth an estimated $15 billion.‡ You can figure
out the value of any network by applying Metcalfe’s Law: the value of a telecommuni-
cations network is proportional to the square of the number of users of the system

Figure 1-2. The social graph

‡ http://www.facebook.com/press/releases.php?p=8084

1.1 What Exactly Is Facebook Platform? | 3

http://www.facebook.com/press/releases.php?p=8084

(n2). Robert Metcalfe, who coinvented Ethernet along with David Boggs and cofounded
3Com, first formulated his law to explain the network effects of things like joining
computers or fax machines together, but it’s just as useful for explaining social networks
and the Web. The math behind the law is actually pretty simple and is easily illustrated
by looking at the social graph just shown. If Mark is the first person to join Facebook,
the value of the network is one (12 = 1). When Mark’s friend Sarah joins, the network
has become a lot more valuable because now Mark can stop poking himself and can
now poke someone else. It’s so much more valuable, in fact, that the value doesn’t just
increase by one but actually becomes four (22 = 4), meaning that the network is now
four times more valuable to Mark and Sarah than it was to either one alone. Eventually,
after every member of Mark’s very extended circle of family and friends has joined, the
network has 54 million users, the value of the network is too high to calculate on most
calculators (54,000,0002 = 2,916,000,000,000,000), and suddenly Microsoft is offering
Mark $240 million for 1.6% of his company.

Before we get too far off topic, there’s a reason why the value of the social graph is
important, and it’s one of the three pillars upon which Platform was launched:

Deep integration
Two of the most popular Facebook applications are Photos and Videos, both writ-
ten by internal Facebook developers. Your applications get the same level of inte-
gration as these do (known as application parity), and you have basically the same
access to Platform.

Mass distribution
Here’s where the network value comes into play. Those of you old enough to re-
member television commercials from the 1970s may recall an ad campaign for a
shampoo called Faberge Organics (with wheat germ oil!), which holds the distinc-
tion of being an almost entirely forgotten line of hair products whose marketing
strategy has long, long outlasted the product it once promoted. One of their tele-
vision commercials showed a blonde woman who had presumably just washed her
hair with Organics. The voiceover said, “If you tell two friends about Faberge
Organics shampoo with wheat germ oil and honey, they’ll tell two friends, and so
on... and so on... and so on...”, which was accompanied by a Brady Bunch-esque
splitting of the screen into more and more squares of smiling models. Now think
of the social graph from Figure 1-2: if Mark does something interesting and Face-
book automatically tells two of his friends, they might do the same interesting
thing, and two of their friends will find out. Since most people on Facebook have
a lot more than just two friends, the network effect does a lot more than just double
at every point (if everyone on the site had an average of 10 friends, for example,
the message would reach a million people in six generations). It’s safe to say that
Facebook offers an opportunity to distribute to a much larger audience much more
quickly than virtually any other technology in history.

4 | Chapter 1: Introducing Facebook Platform

New opportunity
This brings us to the bottom line: Deep Integration + Mass Distribution = New
Opportunity. Building applications on Facebook Platform gives you a chance to
get your software in front of 90 million people without having to spend millions
on marketing, in an environment that is built to spread it to people who want to
use it. The barrier to entry is very low and requires only that you retrain some of
your existing web development skills (or learn some basic new ones), all of which
you can master with this very book.

You’re probably thinking that this all sounds a little too good to be true, and that if this
book were a late-night infomercial, I would be telling you all of this from a sleek speed-
boat hurtling across my own private lake toward my towering mansion, accompanied
by scantily clad models and drinking magnums of champagne. The truth is that cham-
pagne gives me nasty headaches, and that, although building apps on the Platform can
be very profitable and lead to a satisfying career, it’s not a breezy walk in the park. Like
almost everything else in life, you’ll still need an original idea, and you’ll still need to
roll up your sleeves and dig into some hard work. The rest of this book will help to
make that as easy as possible by telling you how to get set up quickly, providing practical
advice on what to build and how to evaluate your idea, working through the technical
side of Platform, and showing you some proven marketing techniques for your new
application.

1.2 Skills to Pay the Bills
Now that you know a little about Facebook Platform and the opportunity it represents,
you may well be asking yourself what skills you’ll need in order to take advantage of
it. Facebook maintains an excellent high-level view of Platform on its Developers site
(http://developers.facebook.com), as well as a wiki with the nitty-gritty details of Plat-
form (API calls, FBML tags, FBJS, FQL tables, Platform Policy, etc.) along with user-
contributed content (http://wiki.developers.facebook.com), but neither of these really
covers the basics. Whether you’re assembling a team to develop apps or you’re going
to bravely tackle it single-handedly, you’re going to want:

Frontend skills
The requirements here, as with the other realms we’ll look at in a moment, are
basically the same as if you were building a traditional website. A solid knowledge
of HTML or XHTML is key, as is a good understanding of CSS. Although some of
your HTML will be replaced with FBML, you still need to be able to build the
structure around those tags and understand how they work. You’ll want to have
wrapped your head around JavaScript and Ajax if you’re going to do any dynamic
interface elements, as well as Adobe Flash or Microsoft Silverlight if you want to
do any animations, audio, video, etc. Keep in mind that the only officially suppor-
ted client library for Facebook is PHP (4 and 5), so you’ll need at least some level
of familiarity with that language if you’re going to integrate directly with the

1.2 Skills to Pay the Bills | 5

http://developers.facebook.com
http://wiki.developers.facebook.com

Facebook API (as opposed to relying entirely on FBML) or with your own backend.
We’ll cover these topics largely in Chapters 6 and 7.

Backend skills
As you’ll see in the coming chapters, your application actually lives on your server,
rather than being hosted by Facebook. This gives you a huge amount of flexibility
in terms of how you architect and develop your backend, but it can give you equally
huge hosting bills if you’re not careful. If you’re aiming to build a very successful
application, you’ll want to make sure you have some knowledge of industry best
practices related to scaling and database design, as well as code optimization and
server setup. We’ll cover backend issues in Chapters 5 and 9.

Ideation, strategy, and marketing
The very early days of Facebook Platform were marked by an incandescent sense
of optimism, as we watched applications such as Slide’s Top Friends chart a me-
teoric rise toward millions of users in a matter of weeks. There was a pervasive
sense of “if you build it, they will come” echoing among the cornfields of early
developers as they leapt at the chance to mow them down and build baseball dia-
monds. However, it turns out that really does only work in the movies. Now that
Platform has somewhat settled and Facebook has established more realistic rules
around inviting friends to apps (which are much more focused—and rightly so—
on protecting users from tidal waves of invitations at every login), it has become a
widely acknowledged truth that successful application developers will need to
spend some serious time on:

Ideation
Defined as “the capacity for or the act of forming or entertaining ideas.” A lot
of people lump “ideation” in with “synergy” as equally useless marketing
terms, but both have very long histories that considerably predate our modern
tech industry (the terms were first cited in 1818 and 1660, respectively,
according to Merriam-Webster). Ideation, in the context of Facebook appli-
cations, means coming up with an original idea or twist on an idea. We’ll cover
this, plus strategy, in Chapter 2.

Strategy
Defined as “a careful plan or method.” In the context of your illustrious future
career as a Facebook application tycoon, strategy refers to how you plan to
approach integration with Facebook Platform’s myriad integration points, and
the strategy you will use to spread your application.

Marketing
People often confuse marketing and selling, which are usually two sides of the
same coin. For our purposes (and often in the world outside of Facebook),
marketing is building demand for your service or product, whereas selling is
satisfying that demand by exchanging your service or product for cold, hard
currency. A whole world of application marketing is blooming alongside the

6 | Chapter 1: Introducing Facebook Platform

world of application development, and we’ll explore a bunch of those oppor-
tunities in Chapter 10.

1.3 Facebook Platform Off-Facebook
For the first half of a year that Facebook Platform was available, you could only build
applications that ran inside the Facebook site itself. On December 12, 2007, Bebo
launched its new application platform, which was carefully designed to use the same
architecture and virtually identical tags as Facebook Platform (Bebo collaborated with
Facebook on the development). Shortly thereafter, Facebook announced that it would
be opening up the architecture and making it available to other social networks as a
model for building out application platforms, and would even go so far as to license its
technology to interested parties (see http://developers.facebook.com/specification.php
for the high-level specification). In a world of things that are too new and young to
predict, this is a particularly fresh area and it’s difficult to anticipate the effects and
consequences. The potential promise is that your Facebook application might run un-
altered (or basically unaltered) on a variety of other websites in the near (or somewhat
near) future, which really just sweetens the Platform pot, but don’t count the proverbial
chickens until they hatch.

Facebook Connect, launched in May 2008, takes the idea of Facebook Platform off-
Facebook one step further by enabling you to include Facebook-like features in your
own site. The topic is a little outside the reach of this book, but you can find more
information on the Developers Wiki at http://wiki.developers.facebook.com/index.php/
Facebook_Connect.

1.4 Facebook Platform Versus Google OpenSocial
Nobody likes a one-sided race: our competitive spirits take a beating at the unfairness
of it all. Just when it looked like Facebook was going to single-handedly make a break
for the cookie jar and steal all the cookies, competition popped up in the form of Goo-
gle’s OpenSocial Application Programming Interface (API). It’s important to take a
moment to understand what that means to you, the would-be Facebook developer, so
that you can feel secure in your decision to write apps for this Platform.

What Exactly Is OpenSocial?
With much fanfare, Google launched OpenSocial on November 1, 2007. Now that you
have the gist of Facebook Platform, think about how much more powerful it would be
if your Facebook apps could run inside lots of other websites too. The promise of
OpenSocial is that you can build an app that runs on http://engage.com, Friendster, hi5,
Hyves, imeem, LinkedIn, MySpace, Ning, Oracle, orkut, Plaxo, salesforce.com, Six
Apart, Tianji, Viadeo, and XING with little to no modification, giving you a potential
audience of 200 million users (or double the size of Facebook, though it should be

1.4 Facebook Platform Versus Google OpenSocial | 7

http://developers.facebook.com/specification.php
http://wiki.developers.facebook.com/index.php/Facebook_Connect
http://wiki.developers.facebook.com/index.php/Facebook_Connect
http://engage.com

noted that installation on one of those doesn’t guarantee or even cross-promote
installation on others, and so the network effect of the social graph is lost). Unlike
Facebook Platform, you don’t need to learn a proprietary markup language, and you
can take full advantage of Google Gears to have your application run on- and offline.
The OpenSocial API includes three major areas of functionality, both accessible
through JavaScript and via data APIs:

People
Information about individual people and their relationships to each other

Activities
Ability to post and view updates on what people are doing

Persistence
A simple key-value data store to allow server-free state-full applications

That definition obviously leaves a great deal out, and it’s never wise to discount a
company with more Ph.D.s per square foot than a NASCAR track has beer-drinking
race fans. OpenSocial will evolve pretty quickly and a description is already beyond the
scope of this subsection, so you should take a few minutes to familiarize yourself with
the information Google has posted to its website (http://code.google.com/apis/openso
cial). Like many arguments in the tech industry, some of this is going to come down to
a religious war (see Mac OS versus Windows, etc.). A fair chunk of the rest is going to
come down to the seemingly eternal struggle between Open and Closed, with Google
and friends crusading under the Open banner and characterizing Facebook as the dark
lord of Closed. There is some truth to that position: OpenSocial apps will run on any
website that implements an OpenSocial container, and their environment is built on
open technologies such as HTML and JavaScript, whereas Facebook requires devel-
opers to learn closed technologies such as Facebook Markup Language (FBML) and
Facebook JavaScript (FBJS). The Facebook Legions would argue that Platform is really
just extending the same open tech, that learning those extensions is almost trivial (as
you’ll soon see), and that their carefully developed and controlled environment means
developers and users get more control, greater security, and easier interoperability. This
is a theme that runs much deeper than the social network space, and anyone who has
been in the industry for more than a few years has seen the same battle play out in any
number of fields, from operating systems (Windows versus Linux) to browsers (Internet
Explorer versus Firefox), and from content delivery formats (Flash versus HTML) to
user interface markup languages (XAML versus XUL). The world of digital music is
going through this as well in a classic, Hamlet-like struggle (to DRM or not to DRM:
that is the question), and the mobile application space is about to have a similar shakeup
with the release of Google Android and its push to open the previously walled gardens.

Who’s Going to Win?
It’s still the very early days in this battle, and therefore it’s hard to predict the outcome.
As of this writing, Orkut, hi5, Ning, and Plaxo have OpenSocial sandboxes or

8 | Chapter 1: Introducing Facebook Platform

http://code.google.com/apis/opensocial
http://code.google.com/apis/opensocial

application containers enabled in some form, enabling some of their users to try Open-
Social apps in the context of their sites. Anecdotal evidence from leading app
developers—such as Slide, RockYou, and iLike—says that porting apps from Facebook
Platform to OpenSocial is relatively trivial, which suggests that you can easily start with
one and move to the other. Historical precedent indicates that some open platforms
have a lot of success (Firefox has stolen a big share of the market away from Internet
Explorer), whereas a number of closed systems have done even better (Apple’s domi-
nation of the MP3 market is based largely on iTunes and iPods being completely closed).

Ultimately, the announcement of OpenSocial is a win for developers just like you,
because it signifies a maturing marketplace backed by serious investment from major
industry players. Mark Andreessen, founder of Netscape and now of OpenSocial part-
ner Ning, agrees: “As an app developer, there’s no real reason to choose between Face-
book and OpenSocial. It’s easy to do both. You’ve already put in most of the effort—
creating a new set of frontend HTML and JavaScript pages is almost trivial, and that’s
all you need to do to have your app ‘port’ to Open Social....”§ Mark’s proposed strategy
(which is a very solid one) is to maintain a single backend with four sets of frontend
pages, each optimized for different platforms:

• A set in normal HTML/JavaScript for consumption in regular browsers

• A set in FBML and FBJS for use in Facebook

• A set in normal HTML and using JavaScript to connect to the OpenSocial API for
use in OpenSocial

• A possible fourth set adapted for use on mobile devices, such as Apple’s iPhone

What Should I Do?
Calling Facebook Platform “mature” seems odd given how young it is, but it will always
be nine months older than OpenSocial. Since the number of people who can access
OpenSocial containers is currently smaller than the number of Facebook users, and
since Facebook’s social graph will make it easier for your application to pick up a larger
user base in less time, you should start by building a Facebook version—but make sure
to architect your backend services so that they are loosely joined to the frontend and
can be used easily by an OpenSocial version later (we’ll cover this in detail in Chapter 4).

1.5 Saddle Up!
You’re about to embark on a big adventure! Just keep thinking of the gold in them thar
hills while you ride across the wilderness of FBML. Don’t forget to circle the wagons
when you hear the hosting fees howling in the distance, and remember that the cavalry
is just around the corner. It’s not going to be an easy ride, but if you’re dedicated and
determined, you can definitely reap the rewards.

§ http://blog.pmarca.com/2007/10/open-social-a-n.html

1.5 Saddle Up! | 9

http://blog.pmarca.com/2007/10/open-social-a-n.html

CHAPTER 2

Ideation and Strategy

So! Now that you’re ready to write your million-dollar Facebook app and retire to a
life of luxury, there’s only one small problem: what to build? You might already have
an idea, or you might have come across an existing Facebook app that you think you
can one-up. Maybe you have no ideas at all but are overflowing with web development
fu and want to flex your coding muscles. Fear not, intrepid developer! This chapter will
help you figure out the four Ws of Facebook application development:

Who should I build for?
Some of the most successful software products are born out of a need their devel-
opers felt wasn’t satisfied elsewhere. If that’s the case for you, build for yourself
and your friends. However, many of you will be reading this book because you
hope to make money from your work, in which case you need to consider your
audience more carefully. Sometimes you and your friends aren’t the ones who are
going to pay for your villa in Maui, so make sure you spend the time to understand
who is.

What can I build?
The sky is really the limit: if you can imagine it, you can probably build it. That
said, before you start dreaming up the most complex application ever, keep in mind
that you’ll start earning users (and money) sooner if your app is released sooner,
so consider how to tackle your problem in more manageable chunks. Also, keep
in mind that throwaway apps that people install and play with once are much less
successful (and profitable!) than apps that get used over and over. If you’re new to
this game, take the time (and $19) and read 37signals’s Getting Real book, which
you’ll find at http://gettingreal.37signals.com/.

Where can I integrate with the Platform?
The Platform includes a number of “integration points,” which you can use to tie
your app into the everyday life of Facebookers. Simple math: the more points you
hit, the more people will see your app. The more people who see it, the more who
will add it. The more people who add it, the closer you get to mai tais, leis, and
Maui.

11

http://gettingreal.37signals.com/

Why should I build it?
That’s a pretty metaphysical question! Why do anything, really? In this case, there
are a few good reasons to build apps and a few less good ones. I can’t promise I’ll
be able to satisfy all of your metaphysical needs, but keep on reading and I’ll do
my best to answer at least the Facebook-related ones.

More astute readers may be wondering what happened to the fifth W: when? The
answer is so easy that we’re not even going to cover it here: now! This really isn’t rocket
science, so get out there and build your first app today.

2.1 Which Types of Apps Are the Most Popular?
Problem
It’s a big world out there and the sky’s virtually the limit in terms of what I can build.
Where do I start?

Solution
If you have no firm idea of which direction to go in, getting a feel for the pulse of Platform
can definitely help. Just like doing a quick Google search and checking the number of
results can help you get a feel for the amount of activity around a topic, the fastest way
to get a sense of the relative popularity of app types is to look in the Facebook Appli-
cation Directory (http://www.facebook.com/apps/index.php).

Discussion
Facebook’s Application Directory lists all approved apps, organized by category. In
early 2008 (and probably out-of-date before I even finished typing this), the Directory
breakdown was as follows:

• Alerts (817)

• Business (746)

• Chat (1,051)

• Classified (265)

• Dating (1,194)

• Education (1,237)

• Events (796)

• Fashion (461)

• File Sharing (166)

• Food and Drink (429)

• Gaming (1,820)

12 | Chapter 2: Ideation and Strategy

http://www.facebook.com/apps/index.php

• Just for Fun (7,142)

• Messaging (1,067)

• Mobile (237)

• Money (302)

• Music (870)

• Photo (704)

• Politics (543)

• Sports (1,667)

• Travel (442)

• Utility (1,481)

• Video (716)

Although there are nearly 10,000 more apps now (mid-2008) than there were then, the
overall breakdown percentage-wise hasn’t changed. Categories are determined by the
apps’ developers (you can pick yours by editing the About Page for your application),
so keep in mind that this is a somewhat arbitrary and self-imposed categorization. If
you’ve been using Facebook for some time, you probably won’t be surprised to discover
that the Just for Fun category has almost seven times more apps than the second biggest,
Gaming. In fact, more Rain Man-like readers may have casually noticed that the list
just shown adds up to 24,153 apps, even though at the time the official count sat at
16,409 (over 24,000 now). What gives? Since it’s a little ambiguous whether your
meticulously crafted “Go Fish” challenge should go in Gaming or Just for Fun, and
since Facebook allows developers to pick up to two categories per app, you might as
well stick it in both and be part of the 7,744 phantom duplicated app listings.

2.2 Which Apps Are Most Popular?
Problem
Riding onto the Platform battlefield means taking on over 26,000 opponents. Sun Tzu
once said:

Know thy self, know thy enemy. A thousand battles, a thousand victories.

Anyone can take on a thousand battles, but 26,000? That takes real courage. How can
I possibly know thine enemy when there are so damn many of them?

Solution
You’re probably wishing that someone had gone out and built some kind of thing that
would tell you which apps have the most installs or active users. If that’s true, it must
be your lucky day! A few different people have done exactly that. There are two solu-
tions with two very different approaches:

2.2 Which Apps Are Most Popular? | 13

SocialMedia’s Appsaholic
You can either install the Appsaholic Facebook application (http://apps.facebook
.com/appsaholic) or register for an account on http://www.socialmedia.com and
then use the web application. (If you’re doing any work on Bebo or OpenSocial,
go for the web version because it can track apps on all platforms.)

Deft Labs’ AppHound
AppHound is available as a Facebook app (http://apps.facebook.com/apphound).

Discussion
Either one of those apps will help peel back the curtain and give you a glimpse into the
sometimes bizarre world of Facebook app popularity. They won’t, of course, tell you
what made each of the apps as popular as it is, but they will help you develop an
understanding of the kinds of apps people install, what motivates them to keep the app
after installation, and general trends rippling their way across the Platform landscape.

Appsaholic (see Figure 2-1) has been around a lot longer than AppHound and is the
basis for the so-called SocialMedia app network, which SocialMedia created to help
developers track, monetize, and advertise their software. All of this is done through the
sale and purchase of advertising spots on the Canvas pages of other apps, with the
general idea being the creation of a marketplace in which developers effectively trade
users back and forth. Using the calculator on its site (http://www.socialmedia.com/mar
ket), as of this writing, if your average user referred 1.25 additional users and you went
through 10 levels of referrals, you could buy 8,513,225 new users for $50,000 (or
$0.006/user). If you were able to sustain a 10% daily active rate (i.e., 10% of your users
use your app every day), you would rank fifth on today’s Top Apps scale. More real-
istically, if you saved yourself a doughnut and spent $5,000, you could buy (surprise!)
851,322 users, which might give you 8,513 dailies for a ranking in the top 1,000 apps.

AppHound might be more your cup of tea if you’re not looking to monetize your app
and just want a better understanding of the market. The user interface is simpler to
navigate and it allows you to define “trackers,” which are basically notifications when
specified events occur (e.g., when your application’s daily usage grows by more than
5%). An example screenshot of the AppHound Facebook app is shown in Figure 2-2.

Once you’ve decided what to build, you should jump into AppHound and add trackers
for all the apps you consider competitive. Let’s say you are going to write a quiz game
and want to get a sense of how the genre is making out. Using AppHound’s Browse
feature, you can get an index of the top apps in each category of the Facebook Appli-
cation Directory, ranked by total number of installs. A quick trip to the Gaming cate-
gory will show you which quiz apps are doing the best, and you can throw a couple of
trackers on them to receive alerts about changes in their popularity. Also, bonus points
to Deft Labs for realizing that those of us who want to track Platform aren’t doing our
research as a social activity; AppHound doesn’t publish a Profile Box or add stories to
your feed.

14 | Chapter 2: Ideation and Strategy

http://apps.facebook.com/appsaholic
http://apps.facebook.com/appsaholic
http://www.socialmedia.com
http://apps.facebook.com/apphound
http://www.socialmedia.com/market
http://www.socialmedia.com/market

Figure 2-1. Scrabulous in SocialMedia’s Appsaholic web app and Facebook app

Figure 2-2. Scrabulous in Deft Labs’ AppHound Facebook app

2.2 Which Apps Are Most Popular? | 15

2.3 Test-Driving Ideas with Facebook Polls
Problem
I think I have an amazing idea for a Facebook app or a feature, but I want to test it out
before I go and build the whole thing.

Solution
Facebook Polls offers a cost-effective way to get some real-time feedback on an idea
before you invest a lot of time and effort. You can find out more about Polls at http://
www.facebook.com/business/?polls, and you can jump straight into creating a new Poll
at https://secure.facebook.com/add_poll.php (Figure 2-3).

Figure 2-3. Create a New Poll, step 1

Polls consist of a short question and up to five multiple-choice options. You can filter
your audience by one of Interests, Location, Age, or Sex in order to shrink your audience
and get an answer faster, or you can just leave it open to anyone.

16 | Chapter 2: Ideation and Strategy

http://www.facebook.com/business/?polls
http://www.facebook.com/business/?polls
https://secure.facebook.com/add_poll.php

The second step (Figure 2-4) is all about the Benjamins: paying for your Poll.

Figure 2-4. Create a New Poll, step 2

The top of this screen gives a preview, the middle lets you configure how much you
want to spend, and the bottom (omitted in the screenshot) gathers your credit card
information. You’ll note in the middle section that you pay a $1 insertion fee and can
then select either $0.25 or $0.50 per response (with estimated runtimes of 24 or 48
hours, respectively), as well as a maximum number of responses. You may never get to
that number if people don’t feel like participating, so the maximum cost indicated here
really is just an estimate until you see how the Poll plays out. You’ll see the $1 fee hit
your card immediately and the rest of the fee at the conclusion of the Poll.

You’ll be given a URL for the dashboard of your Poll, where you can watch the results
roll in as they happen. Facebook provides a demo poll (http://tinyurl.com/4r3m84),
which shows you a “What’s your favorite soft drink?” example that was answered by
148 users.

2.3 Test-Driving Ideas with Facebook Polls | 17

http://tinyurl.com/4r3m84

Discussion
In researching this book, I spoke to many accomplished developers who told me that
using Polls was almost like a secret weapon in their success (which I humbly reveal to
you with their permission): they had all started down a certain road and ended up on
a completely different but very popular route thanks to the results of a Poll.

If you haven’t done many statistics courses before (or if they were more slanted toward
the math side of stats and less to their application in the social sciences), you might not
be familiar with the ideas of reliability and validity. Both are critical to building any
kind of survey if you’re going to rely on the answers to make important decisions:

Reliability
This is the constancy of your measurement. A survey is considered reliable if it
returns the same result each time it runs (i.e., a person’s score is reasonably the
same each time she takes the test). This can be thought of as the “repeatability” of
your survey. You can verify reliability by running the same Poll at different times
with the same audience to see if you get the same result.

Validity
Did your Poll actually measure what you set out to quantify? It’s important that
you’re measuring an actual causal relationship, rather than a coincidence in the
data. It’s harder to construct an invalid Poll when you’re asking only one question,
but the goal is to make sure that the question you’re asking is actually a direct
outcome of the answers you’ve offered. People often behave very differently from
the way they think they will, and so it can be difficult to ask them in advance what
the outcome of an idea will be. If you asked, “Would you pay $5 for a widget app?”,
you might get an overwhelmingly negative answer; however, this might not be the
case if you had built the app and it caught on, in which case respondents who now
knew about it would answer differently.

Since Polls are really cheap to run, you should consider building out some part of your
idea and then creating a series of reliable and valid questions that test your plans. Don’t
necessarily abandon them if the results don’t jibe with your expectations, but keep an
open mind about the possibilities that come out of the surveys.

18 | Chapter 2: Ideation and Strategy

2.4 The Winning Formula for Facebook
—Jayant Agarwalla (see his bio in Contributors)

Problem
What’s the winning formula for creating a successful Facebook application?

Solution
Never build an application that you think will be successful. Always build an applica-
tion that you know will be successful. Think carefully. Is your app going to have a
seasonal appeal? Is it something that will not lose its charm after being used 100 times
by a user? Are there any existing apps that are similar? If so, have you looked at their
discussion boards and written down all the flaws? Getting a user to try a new app is
difficult, but getting a user to switch from one app to another is nearly impossible. Try
to build an application only when you see the need for it.

Discussion
Ever since Facebook launched its platform in May 2007, there has been a frenzy of
activity amongst developers across the world. While there were only a handful of ap-
plications in the first couple of months, Facebook now has nearly 30,000 of them.
Facebook applications have sublimely demonstrated the immense potential of a social
network, in terms of entertainment as well as a solid revenue source.

Flipping the coin, however, shows us the darker side. In October 2007, a report pre-
pared by a research team headed by Tim O’Reilly had revealed shocking results: 87%
of application usage went to just 84 applications (out of around 5,000 applications at
that time). And only 45 applications had more than 100,000 daily active users. Seven
months hence, Facebook is healthier by more than 20 million users and 21,000 appli-
cations. But amazingly, only 50 applications now have more than 100,000 users! I think
it’s safe to say that more than 80% of application usage goes to not more than 120
applications today.

Why? It’s simply because the developers are not planning for the long term. There are
hundreds of applications out there that took perhaps thousands of dollars to build but
have barely a few thousand active users. Many developers lose hope if their first appli-
cation is not successful. We have learned a lot in the time since we created Scrabulous.
Check out the following tips.

Try to build an application that is social in nature

Your application must be able to exploit the highly social nature of Facebook. If you
build a top-notch Spades (card game) application that does not show top scores or best
ratings of peers, it will disappear without a trace. There are tons of casual gaming sites,

2.4 The Winning Formula for Facebook | 19

and it’s nearly impossible to get someone to use a single-player application on Face-
book. Keep in mind that the News Feed and Notifications are awesome tools to reach
hundreds of thousands of users quickly. Use them to their full potential. This will also
lower your costs on marketing and advertising.

Clean or vibrant look

Decide carefully whether your application will have more appeal as a highly colorful
and bubbly app or as a more sober application. The “Who Has the Biggest Brain?”
social game by Playfish is an excellent example of a flourishing application that uses a
lot of graphics. No wonder it has made it to the top 20 so fast. With Scrabulous, we
have done away with sounds and animations, but users are very happy with the way
things are. The games load very quickly and there is no disturbance in game play.

Seasonal or long-term prospects

Working on seasonal apps such as Christmas greeting cards is not a bad idea. But try
to have apps for most of the popular seasons or festivals so that users always think of
your company when it comes to sending gifts or greetings. If you are planning for the
long term, make sure that users will not get bored of the app. You should have enough
resources to expand smoothly and meet user demands as quickly as possible. The mo-
ment you slow down, you will have stiff competition.

When to monetize

In case you are not just out to make a quick buck, it is highly recommended that you
refrain from showing a crazy amount of ads, even if you think they will not be intrusive.
Go simple. It’s essential to retain users and provide them with excellent support. Spend
more time reading discussion boards and walls than testing out the various ad networks.

Scalability

You have to be extremely cautious when it comes to making a scalable system. If your
app is super cool but has high levels of downtime, users will soon lose interest in it.
And once a user removes your app, getting him to add the app back is next to
impossible.

Branding and appeal

Last, but definitely not least, make sure you have a powerful brand equity. Spend your
spare time on weekends trying to think of the perfect name for your app. If you have a
brand that users will love, they will talk about it and refer it to their friends as well. And
make sure you book a domain of the same name. Having a strong identity might also
help you secure financing more easily.

20 | Chapter 2: Ideation and Strategy

2.5 Where’s the Money?
Problem
I’m totally excited about building my app, but something keeps bugging me. Where’s
the money in this game? How can I make mad cash through my apps?

Solution
If you’re in this app-building game to make a quick buck, you’re in the wrong game.
There was a time when your app could attract a million users overnight, but those days
are long gone (and probably for the better, since users hated being bombarded with
constant app propaganda). Platform has evolved to become much more focused on
keeping users happy, sometimes at the expense of app developers who had gotten used
to attracting users through certain channels and are adverse to change.

That said, if you’re determined and ready to put in the work, you can definitely still
make a really good living from Facebook apps. There are lots of examples of developers
(some of whom have contributed recipes to this book) doing very well off the apps
they’ve built. Try to stay away from the tempting world of quick, throwaway apps, in
which you build hundreds of them, keep the ones that make a little cash, and hopefully
end up on top of the world. Sadly, this often just leads to lots of apps that don’t make
any money, and it upsets the small user base they attract when you stop supporting
them, thereby guaranteeing that those users won’t install any more of your apps and
would firebomb your house if they only knew where you lived.

Discussion
Generally speaking, people who make money from Facebook apps do it by running ads
inside of their apps. You’re certainly not limited to doing this, and I encourage you to
think up a completely new business model for making money on social networks (and
then whisper it in my ear before you launch!). Most of the ad networks listed in Chap-
ter 10, Marketing Your App, also provide developers with the ability to insert ads into
their apps, so take a look at that list and check out their offerings. It’s tough to get any
real answers out of these networks about what you can expect to earn in terms of
effective cost per thousand impressions (eCPM), so your best bet is to split up the
available impressions you have between a few networks and monitor the amount they
pay. Run that experiment for a week or two, and then start dropping the lowest paying
networks until you’ve optimized your ad inventory sales to the highest margin buyers.

Here’s a sample of the ways people have been monetizing to date, which might inspire
some ideas for your apps:

Banner/skyscraper/text ads
Any ad that you can run on an off-Facebook website also can be run on Facebook.
Click-through rates tend to be lower on Facebook than off, but you can still earn

2.5 Where’s the Money? | 21

some money from running them. It’s not a bad idea to design your pages so they
have space for these ads, but don’t count on them paying the mortgage.

Other apps
There’s a whole underworld market of app developers selling each other installs,
which can be a great way to line the pockets of developers who have popular apps
while attracting lots of potentially interested users to your app. As you grow in
popularity, you can earn a nice income by selling installs to other developers. Those
installs work best when they’re between related apps, so try to think of places in
your app where it would logically make sense to suggest another app. Then, scope
out some apps that would benefit from advertising in those spaces.

Product placement
There are lots and lots of brands that are still trying to crack the Facebook nut. If
you do a really good job of monitoring your Facebook Insights statistics for your
app and know your demographic, you can carefully engineer places to insert prod-
ucts and get paid for it. Consider, as examples, Facebook’s own Gifts app and iLike,
which are both excellent examples of product placement at work. Gifts recently
included 250,000 free Indiana Jones fedoras to support the release of The Kingdom
of the Crystal Skull (Figure 2-5).

Figure 2-5. Facebook Gifts product placement

E-commerce
There hasn’t been a lot of success in this area, mostly because Facebook currently
doesn’t offer developers a mechanism to accept payments through the site. You
can create an integration to a third-party gateway such as PayPal or Google

22 | Chapter 2: Ideation and Strategy

Checkout fairly easily, but users have shown some resistance both to leaving Face-
book and to paying for things that have traditionally been free (as they are in most
of the apps in the Facebook ecosystem). Facebook has announced that it will be
offering a payment gateway service to developers, so it’s worth starting to plan out
how you would take advantage of that.

Loss leader
Lots of apps on Facebook are extensions of off-Facebook brands or websites. Many
of them are built on the premise that they can grab a chunk of the Facebook au-
dience and gradually pull them into the off-Facebook site, where they can sell them
upgraded accounts or show them more ads. This is a pretty solid idea, except that
users on Facebook show a very strong resistance to leaving it. If you can figure out
how to leverage their loyalty into upgrades to pay accounts without leaving the
site, you might be on to something.

Guns for hire
If you’re a crack team of Facebook developers but aren’t big on ideas, don’t discard
the avenue of getting paid to build apps for other people. There’s a lot of money
out there in helping the world’s agencies and brands establish their foothold on
Facebook, and many of them are desperately looking for reliable resources who
they can call on as needed. You can start by listing yourself in the Facebook Mar-
ketplace, but if you don’t have a portfolio to call your own, you should get started
on one. For those of you who are really pressed for ideas, consider finding a not-
for-profit or charity whose work you dig and offer to build an app for them for free,
provided they throw their marketing effort and budget behind building up users.

2.6 Google AdSense and Facebook
Problem
I’m using Google AdSense on my websites to run ads, and I really like the system. Can
I use it inside Facebook?

Solution
You can, but it’s a little more complicated than just dropping your AdSense code into
place. Facebook’s FBJS parser won’t allow straight JavaScript through without adding
all kinds of funky namespace and sandbox security to your code, which prevents
Google’s insertion script from working at all.

The generally accepted technique is to embed an fb:iframe tag in your Canvas page,
which will load the AdSense ads inside your Canvas. Since AdSense works by selecting
ads that are relevant to the content on the page, it’s important that you create that
context by passing some parameters to the page for use in the meta keywords, descrip-
tion, and page title:

2.6 Google AdSense and Facebook | 23

<fb:iframe
src="http://www.someserver.com/adsense.php?title=My%20Encoded%20Title&keywords=My%2
0endcoded%20keywords&desc=My%20encoded%20desc"/>

Discussion
AdSense still pays out some of the best cost-per-click (CPC) rates around and has bigger
reach than anyone else. However, it should be noted that the system isn’t tailored to
social networks, so you might get more relevance running ads from something like
SocialMedia or Cubics.

2.7 Funding Facebook Development
Problem
I’ve heard that you can raise money if you’re a developer with a good idea. Is that true?

Solution
A number of funds have been set up to back companies building Facebook applications,
including:

Facebook’s own fbFund
fbFund gives grants between $25,000 and $250,000 (grants are awesome because
you don’t have to pay them back). There have been about nine grants so far, and
the fund has plenty of money left in it. For more information, see http://www.face
book.com/developers/fbfund.php.

Bay Partners’ App Factory
Bay Partners, a well-respected Valley-based venture capitalist (VC), has set up a
fund called App Factory, which is “a fast-track program supporting entrepreneurs
dedicated to developing applications for Facebook Platform.” You can find more
information at http://www.baypartners.com/appfactory/.

Altura Ventures’ Altura 1 Facebook Investment Fund
This fund exclusively backs developers of Facebook apps. You can get more info
at http://www.altura.com/ or in their Facebook group at http://www.facebook.com/
group.php?gid=2392191727.

Discussion
Investing in Facebook apps is really just like investing in non-Facebook apps, so there’s
no reason to limit yourself to the VCs and funds just listed. If you have a solid idea and
the right team to pull it off, and especially if you have a monetization strategy in place
and have built out some realistic projections, you should get in front of as many po-
tential investors as possible. If you’re unfamiliar with the world of VCs and angels,
spend a little time reading their blogs and doing some Google research before you

24 | Chapter 2: Ideation and Strategy

http://www.facebook.com/developers/fbfund.php
http://www.facebook.com/developers/fbfund.php
http://www.baypartners.com/appfactory/
http://www.altura.com/
http://www.facebook.com/group.php?gid=2392191727
http://www.facebook.com/group.php?gid=2392191727

embarrass yourself in a pitch session. Start with http://www.ventureblogs.com/, which
lists most of the good VC blogs.

2.8 Facebook Platform Integration Points
Problem
What are Facebook Platform’s integration points?

Solution
It’s tough to wrap your head around a limitless space that stretches on forever in every
direction. How would you even start painting it? Limitations can be really helpful to
get the creative mojo flowing in the right direction, even when those limitations don’t
actually impose many constraints. As a would-be Facebook developer, you need to
know exactly where and how you can integrate with Platform so that you can wield
your weapons most effectively.

Facebook Platform offers 10 official integration points that your app can hook into:

1. Application Directory

2. Application Menu

3. Facebook Canvas Pages

4. Profile Box

5. Info Sections

6. News Feed

7. Notifications

8. Attachments and the Publisher

9. Requests

10. Tabs

Discussion
Not all integration points are created equal, as we shall soon see. Facebook has made
it easy for you to take advantage of all of them, and the most successful apps definitely
do, so whenever you’re designing a new product, keep the handy AAFPINNART
acronym in mind (see the previous list). The bulk of this chapter goes through each of
these points and gives you the quick rundown, and you can also check out Chapters
6 and 7 for more information about how to implement them.

2.8 Facebook Platform Integration Points | 25

http://www.ventureblogs.com/

2.9 Application Directory
Problem
What can I put in my Application Directory listing?

Solution
Every approved app gets a listing in the Application Directory; this is your place to
shine when bored users are looking to spice up their Profiles. It’s pretty rare for people
to browse the Directory directly, since almost all application installs come as a result
of the other integration points (unless they have a very specific Facebook itch that needs
scratching). Don’t overlook the Directory, though, since your app’s About Page is part
of it (which users will often view as a precursor to installing the app; see an example in
Figure 2-6), and the description will appear in the right sidebar when users are adding
your app. If you’ve never seen it before, you can browse the directory at http://www
.facebook.com/apps.

Discussion
Five things make up your Application Directory listing (some of which make appear-
ances elsewhere as well), and we’ll examine them through the lens of the Causes
application.

Application icon

You have a very, very tiny 16 × 16 pixel canvas to showcase your masterpiece. This icon
will appear in the Applications menu, Message Attachment, and News Feed integration
points, as well as in places like the Application Privacy Settings, so you want something
distinctive that is going to stand out from the crowd but still represent your app. The
Causes app uses a globe with two people in front of it, as shown in Figure 2-7.

It’s really hard to draw something meaningful at this size, so do yourself a favor and
find a designer to give your app some professional polish. If you don’t know any, post
a message to the Facebook Marketplace offering to trade some development resources
for some creative ones, or take a look at sites like ProgrammerMeetDesigner (http://
www.programmermeetdesigner.com).

26 | Chapter 2: Ideation and Strategy

http://www.facebook.com/apps
http://www.facebook.com/apps
http://www.programmermeetdesigner.com
http://www.programmermeetdesigner.com

Figure 2-6. PackRat About Page

Figure 2-7. Causes icon

2.9 Application Directory | 27

Application logo

You get to upload an image, up to 75 × 75 pixels, that will represent your application
in the Directory listing pages. This is going to be the first impression users have of your
baby when they see it listed among the other 1,067 Messaging apps, so get the same
designer who made your icon to make the logo (you did get a designer to make the
icon, right?). Causes uses a larger version of their app icon, as shown in Figure 2-8,
which is a great way to build a brand through consistency.

Figure 2-8. Causes logo

Application description

You’ve just spent days toiling over your new app, and now you have to synthesize all
that amazing functionality and mind-blowing cool into 250 measly characters. What
to do? Take a look at the leading apps in your category (i.e., your competition) and see
what they wrote. Stay away from describing your technological wizardry in favor of the
awesome benefits that potential users will receive by installing it. In other words, break
free from the tyranny of the Three-Letter Acronyms (TLAs), and avoid mentioning
anything that isn’t a real word. Try to use a more active tone (“Play Go Fish! Amaze
your friends!”) instead of a passive one (“You can play Go Fish”), since it adds more
vibrancy to your message (and often takes up fewer characters). The description for
Causes fits that model really well:

Make a difference, on Facebook! Causes on Facebook lets you start and join the causes
you care about. Donations to causes can benefit over a million registered 501(c)(3)
nonprofits.

This text is also key because Facebook indexes this content for the search function in
the Application Directory. You should try to get a bunch of relevant keywords in here
so that you app turns up when people are searching for things like it.

Application picture

The picture is displayed on the app’s About Page within the Application Directory.
Although size restrictions are not actually listed on the upload page, your image will
be scaled down to a maximum of 396 × 396 pixels, so you’re better off working at that
size from the beginning. These pictures are typically screenshots of the application, but
feel free to get creative here and do something that really draws people in. And, of

28 | Chapter 2: Ideation and Strategy

course, you don’t need me to tell you to get your trusty designer to make it really shine,
right?

Causes deviates slightly from the norm in that their Picture is a screenshot of the Profile
Box rather than of the app itself, as shown in Figure 2-9.

Figure 2-9. Causes picture

Application categories

You’ll have the option to choose two categories for your app from the full list of 22.
Keep in mind that some of them are a lot more crowded than others, so if you can justify
having your app categorized as File Sharing or Mobile, you’ll be a much bigger fish in
a much smaller pond (see Recipe 2.1, earlier in this chapter, for a full breakdown of
categories). Causes is listed in the Education and Politics categories.

Measuring About Page success

The concept of A-B testing will be familiar to anyone who has tested speakers in a stereo
store or built a sophisticated online marketing or e-commerce site. The name actually
comes from the stereo test, in which two sets of speakers are connected to the same
amplifier and are tested by flipping the A-B switch back and forth while the same music
plays. The online version takes a little more work but a lot less crawling around in the
dark trying to remember which side of the speaker wire is the positive connector. The
same general principle applies: try two versions of something and see which gives the

2.9 Application Directory | 29

better result. This concept will come up again in Chapter 10 as a more general tool to
stick in your tool belt, since it works equally well for things like invitations.

Think of this as an experiment in which you’re going to gradually refine your About
Page content until you’ve tweaked your visit-to-install ratio into install-base nirvana.
We’ll keep this example short by focusing on the Application Description. This will
give you the general idea, which you can then apply throughout your app design. You’ll
need to track your success, so create a spreadsheet with different Descriptions in each
row of column A, and then columns for each day you’ll be running the experiment in
columns B and up. I’d suggest keeping each iteration short but long enough to take
into account different Facebook usage patterns on different days of the week. If you
can spare a full seven-day period for each iteration, you’ll have all your bases covered;
if not, you can probably assume that most weekdays are the same and leave weekends
out. Running a round is simple: at the start of the test period, swap the next version of
the Description into your application, and then diligently record the number of installs
over the interval (don’t fret if you miss a day, since you can always look up your numbers
through Facebook’s Insights tool or on a third-party tool such as SocialMedia).

You may be wondering why you need to go to the trouble of tracking
this yourself, since there are other options out there that will track it for
you. Good question! If you’re content with the analysis they provide,
save yourself the extra work and go with their numbers. If you’d like to
be able to easily extract your stats into other reports or if you will be
generating your own complex analysis or graphs, you’ll want your own
data set in an easy, spreadsheet-like format.

As with experiments in the real world, you have to follow scientific principles here and
make sure you change only one variable at a time. If you change your app’s Description
and Photo at the same time, you’ll have no way of measuring which one was responsible
for an increase in uptake. Since we’re focusing on the Description, try to keep everything
else static while you refine just that piece. If you see a precipitous drop in installs right
away, feel free to abandon all scientific reason and logic (no doubt setting countless
scientific forebears spinning in their graves) and skip to the next variant. This kind of
data unfortunately tends to be a closely guarded trade secret, so there’s no established
metric I can tell you to aim for. This makes it especially important to define your success
criteria before you start or you’ll be doing this forevermore. Establish a ratio that will
make you happy, and stop when you hit it (but keep an eye on the ratio over time, since
it will likely start to drop off and you’ll need to begin again).

30 | Chapter 2: Ideation and Strategy

2.10 Navigating the Applications Menu
Problem
The Applications menu seems really sophisticated and slick. How does it work?

Solution
There used to be a Left Nav, which was the area that ran vertically down the left edge
of Facebook’s main content area and included the Facebook logo, search box, users’
installed Applications, and a “skyscraper” format ad. That was removed in the Profile
redesign of mid-2008, in favor of a site-wide Applications menu in the blue bar at the
top of each page, as shown in Figure 2-10.

Figure 2-10. Page header with Applications menu

Clicking on Applications opens the menu shown in Figure 2-11.

Figure 2-11. Applications menu open

2.10 Navigating the Applications Menu | 31

The menu is divided into three sections: the top contains commands related to the
current app or to all apps; the second lists the five most recent apps in which you’ve
viewed at least one Canvas page; and the third lists all of the apps you’ve “book-
marked,” which includes all of the apps you’ve added to your Profile.

Selecting “Bookmark [App Name]” opens a pop-up dialog (shown in Figure 2-12) with
a checkbox indicating the current state of the bookmark.

Figure 2-12. Bookmark application dialog

This is slightly confusing because the menu item should really be something like “Add
Bookmark for [App Name]...” and should change to “Remove Bookmark for [App
Name]...” if it’s bookmarked. Selecting “Edit [App Name] Settings...” opens the same
dialog but on the Wall tab instead of the Bookmark tab, as shown in Figure 2-13.

Figure 2-13. Edit Application Settings dialog

32 | Chapter 2: Ideation and Strategy

Finally, selecting “See All My Applications” goes to the full application listing page
shown in Figure 2-14, where you can reorder your bookmarked apps.

Figure 2-14. All Applications page

As a developer, this menu is of little interest to you, because you have no control over
whether your application appears in it (you used to have an integration point on the
Left Nav bar if users allowed it). That said, consider that your app’s name and icon are
still primary real estate because they will at least turn up on the “Recently Used” list,
and you want to make sure that your entry is memorable.

2.11 Facebook Canvas Pages
Problem
Where do users go when they’re actually using my application?

Solution
Every artist needs a canvas, and you’re no exception. The Facebook Canvas is the area
you work in when you’re crafting your masterpiece of interface design and elegant code
creation. App developers have the choice of building their apps as Canvas pages, which

2.11 Facebook Canvas Pages | 33

reside within the Facebook navigation frame, or as iFrames, which pull content from
a different server and display it in place. Unless you have a make-or-break reason to
use an iFrame, always go with the Canvas page option because then you’ll be able to
take full advantage of things like FBML and FBJS. The Canvas page, shown in Fig-
ure 2-15, is the blue square in Facebook’s Deep Integration diagram (although it shows
the old Profile design with the Left Nav rather than the newer design, which has a wider
Canvas).

Figure 2-15. Facebook’s Deep Integration diagram showing the Canvas page

Discussion
The most important thing to remember here, especially if you’re building a Facebook
version of something that already exists elsewhere on the Web (and especially if you’re
adapting a Flash movie), is that the Canvas area is only 760 pixels wide (up from 646
pixels in the old Profile design), so you may have to play with your layout to get it to
fit. Calling this an integration point is a bit of a stretch, since Canvas pages are really
only seen by users who are using your app (rather than their friends who are being
exposed to it through the social graph), but you’ll also spend the vast majority of your
time building them, so pay close attention.

2.12 Think Outside the Profile Box
Problem
How do I get all this awesome data I have about my users out of the Canvas page and
into their social graph?

Solution
One of the best ways to leverage the social graph is to show information about your
users to their friends in way that inspires them to install your app as well. The best
place to find information about a person is on their Profile, so it makes sense that the
Profile Box is one of the best ways for you to share.

34 | Chapter 2: Ideation and Strategy

Discussion
Users have the option of allowing your app to display a Profile Box on their Boxes page
when they install it (this is enabled by default), and they can then reorder and resize
the box by dragging it up or down and from the wide to narrow column. As an app
developer, you get to decide where your box goes by default and can build different
layouts for both. Compare, for example, the difference between the Zerofootprint Cal-
culator’s two Profile Boxes, shown in Figures 2-16 and 2-17.

Figure 2-16. Profile Box (wide)

Figure 2-17. Profile Box (narrow)

2.12 Think Outside the Profile Box | 35

The mid-2008 Profile redesign introduced a third size of box, which can reside in the
left sidebar of the main Wall tab and is height-limited to 250 pixels. If your app includes
a box of that size, your users can choose to add it to their main Wall tab instead of only
on their Boxes tab.

2.13 Info Sections
Problem
I have some great structured data about my users, and I’d love for them to be able to
publish it on their Profiles.

Solution
The Info tab, which debuted in the mid-2008 Profile redesign, gives apps the ability to
publish structured data about users. Info sections are 540 pixels wide (including pad-
ding) and are dynamically sized vertically to fit your content. Your section will have a
25-character bolded title across the top, and Facebook will render a See All link if there’s
more content than will fit.

Your Info section is made up of field/value pairs, with each field’s label being about 30
characters long (try to keep them to one line if possible). Facebook will automatically
adjust the case of your title and add a colon (:) to the end if you forget. Values can be
made up of text blocks (which you’ll tokenize and add hyperlinks to) or objects (which
can include pictures).

Discussion
The Facebook Groups app shows a good text-based section, as shown in Figure 2-18.

Figure 2-18. Mary Treseler’s groups (my editor!)

The Facebook Pages app renders a good example of an object-based section, shown in
Figure 2-19.

See Recipe 9.25 for more information on setting Info sections.

36 | Chapter 2: Ideation and Strategy

Figure 2-19. Facebook Pages Info section

2.14 News Feed and Mini-Feed
Problem
How can I get my users to spread the good word about my app to their friends?

Solution
If success on Facebook is all about getting your message spread around the social graph,
then the News Feed is your primary target. Think of it as the play-by-play announcer
in a giant game of tag: almost every action you take on Facebook generates an item that
appears in the Mini-Feed on your Profile. If it just stopped there it would still be a useful
message-spreading tool, but luckily for us, the fun has just begun! Those same items
can also appear in your friends’ News Feeds on their home pages, announcing every-
thing you’ve done to everyone who cares.

Facebook processes over a billion News stories per day, running them through a super-
sophisticated algorithm that determines which tidbits about your friends will turn up
in your Feed. The end result is that your app can publish one story about each user
every 12 hours, all of which will appear in that user’s Mini-Feed and some of which
will get broadcast out to their friends via the News Feed.

2.14 News Feed and Mini-Feed | 37

Discussion
My News Feed (Figure 2-20) contains some subset of the stories that have been
published about my friends, as determined by Facebook’s top-secret algorithm, likely
created by a crack team of ninjas and Tibetan monks.

Figure 2-20. My News Feed (names blurred to protect the not-so-innocent)

As seen here, the Feed includes the icon of the application that published the story (in
this case, Groups, Notes, Posted Items, Events, and Wall). Posts can include a title and
a body (the Groups story only has a title, and the rest have both), and up to four images,
which will be resized to fit within a 75 × 75 pixel area and cached by Facebook.

Each Facebook user also has a Mini-Feed, which appears as part of the Profile (see
Figure 2-21).

38 | Chapter 2: Ideation and Strategy

Figure 2-21. My Mini-Feed (names also blurred to protect the not-so-innocent)

Your Mini-Feed will contain every News story that gets published about you, regardless
of whether your friends saw it in their News Feed. It also has the ability to import Mini-
Feed items from external sites using the “Import” link in the box’s subtitle, which is
responsible for the YouTube story you see in my Mini-Feed. The Profile redesign
launched in mid-2008 merged the previously separate Wall and Mini-Feed into a single
tab of the Profile, with the ability to filter entries using the small filter control at the top
of the screenshot in Figure 2-21 (setting the filter to “Posts by Jay” essentially makes it
the Mini-Feed, and “Posts by Others” makes it the Wall).

Users now have a lot more control over how stories appear in their Feeds. Each entry
can appear in one-line, short, and full sizes (assuming the developer of the app has

2.14 News Feed and Mini-Feed | 39

provided templates for each size), and users can set an app-wide default, which they
can override for each story. Overall settings for apps can be edited from the All Appli-
cations page, which brings up a settings dialog (Figure 2-22).

Figure 2-22. iLike application settings

Clicking on the blue pencil to the right of each story title on their Wall shows a pop-
up menu with story-specific size options (Figure 2-23).

Figure 2-23. Feed story options

The iLike application has templates for each size: one-line, short, and full (Figures 2-24,
2-25, and 2-26, respectively).

Figure 2-24. iLike one-line story

40 | Chapter 2: Ideation and Strategy

Figure 2-25. iLike short story

Figure 2-26. iLike full story

Facebook users can adjust their privacy settings (http://www.facebook.com/privacy/
?view=feeds) to control the items that appear in their Mini-Feeds (and therefore in other
users’ News Feeds), as shown in Figure 2-27.

The best use of News Feed stories is to broadcast a significant action taken by a user
of your application that includes some relevant information that the user’s friends will
find interesting. Remember that your primary goal is to get their friends to install the
application, so think about adding a call to action that provokes their curiosity. Con-
sider Facebook’s own Photos app, which makes masterful use of the News Feed (Fig-
ure 2-28).

2.14 News Feed and Mini-Feed | 41

http://www.facebook.com/privacy/?view=feeds
http://www.facebook.com/privacy/?view=feeds

Figure 2-27. News Feed and Wall privacy settings

Figure 2-28. Photo app News Feed

Everything you need is in one place: information about your friends, what they did, a
sample, and a very obvious call-to-action link to lure them into clicking.

42 | Chapter 2: Ideation and Strategy

2.15 Noteworthy Notifications
Problem
How can I keep my users coming back to my app after they’ve installed it?

Solution
Getting users to install your app is like G.I. Joe’s message about knowledge: it’s only
half the battle. Your app’s real success will be measured on your total install base and
your percentage of active daily users, which is particularly relevant if you’re planning
to monetize by selling ads. You need to think about how you’re going to get users
engaged with your app on an ongoing basis. What’s going to keep them coming back
for more, and how are you going to let them know when there’s more to come back
to? Notifications are the key. Your app has the ability to send on-Facebook Notifica-
tions (and off-Facebook emails if users have opted into receiving them), letting your
install base know about something relevant to them. It’s important to keep them rele-
vant or else users will start blocking your app, so try to think about things about which
you can notify them that will really draw their interest. Scrabulous (and any game in
which you challenge your friends) is a great example, since Notifications (like the one
in Figure 2-29) are used to let you know that it’s your turn to play.

Figure 2-29. Scrabulous new game Notification

Discussion
As part of its ongoing effort to combat app spam, Facebook clamped down on Notifi-
cations in February 2008, implementing a scheme that grants applications a sliding cap
on Notifications per user per day, based on how well your Notifications are being
received by other users (i.e., if your Notifications get marked as spam, your available
number per day will go down). You can check to see how many Notifications are avail-
able to you on the Allocations tab of the Stats area of your app in the Facebook Devel-
oper app (see Recipe 2.16 for more information). Remember that invitations from your
app to another user count as a Notification, as do actual Notifications you send.

2.16 Understanding Allocations
Problem
I’m running into an allocated limitation on the number of emails I can send to users
per day. I don’t even understand what that means!

2.16 Understanding Allocations | 43

Solution
Back in the wild west days of the early Platform launch, you could basically send out
as many Notifications and invitations per day as you’d like. This was great from a viral
growth perspective, and apps like FunWall and Super Wall shot up into the millions
of users range really quickly. The downside was the constant barrage of invites and
Notifications that suddenly dropped Facebook’s signal-to-noise ratio down the tubes
(Internet tubes, naturally). Facebook responded by imposing a hard cap on the number
of invites an app could send out at one time, but crafty developers found ways around
it by using a succession of invite screens. Facebook responded again by imposing a hard
limit on the number of invites per day, but that was limiting the majority of well-
behaved apps to punish the minority of naughty ones.

So, in February 2008, Facebook responded by imposing a sliding scale system, based
on how well the things you send out are received. This system, essentially a closed
feedback loop, makes a good amount of sense: behave and your users will respond,
thereby grading your behavior well and rewarding you with more Notifications that
you can send to users who will grade your behavior, etc.

You can find out your app’s allocations by visiting the Allocations tab of the Facebook
Insights app at http://www.facebook.com/business/insights/app.php?id=123456&tab=
allocations (replacing 12345 with your app’s ID). Figure 2-30 shows an example.

Figure 2-30. Feedback-Based Allocations

Discussion
Allocations work by putting your app into a Threshold Bucket, which thereby imposes
an actual threshold. If you take a look at Figure 2-30, you’ll see that the app in the
screenshot is allowed to send 15 Notifications per day, which is Threshold Bucket 6 of
15. That means I can move up nine more buckets, with each one giving me some higher
number of allocated Notifications. They don’t tell you how many extra Notifications
are in each bucket, and it’s not necessarily a linear scale, so it could turn out that buckets
14 and 15 each give you an extra 1,000.

44 | Chapter 2: Ideation and Strategy

http://www.facebook.com/business/insights/app.php?id=123456&tab=allocations
http://www.facebook.com/business/insights/app.php?id=123456&tab=allocations

The only allocation that really needs any extra explanation is the last one: “Email dis-
able message location.” Facebook will automatically append a link to disable emails
from your app in every email that you send to users. It’s obviously in your best interest
that the link be at the bottom of the message, since users are less likely to see it way
down there than they are if it comes before your content. In this case, there are only
two Buckets, with the first being “Top” and the second being “Bottom.”

Jesse Stay, author of the excellent FBML Essentials (O’Reilly) and co-
author of I’m on Facebook—Now What??? (Happy About), gave me
some great advice about Notifications. He suggested that you should
build a queuing strategy into your app so that you send out less than
the maximum number you’re allowed, rather than running into the
limit. Monitor the number of people who add/remove your app in the
same period and increase the size of the queue (up to the maximum) in
response to the add/remove ratio.

2.17 Attachments and the Publisher
Problem
According to Dave Morin, senior Platform manager, Facebook’s servers process over
a billion messages every day. Wouldn’t it be fantastic if some percentage of them (even
a small percentage!) included an attachment promoting my application?

Solution
Attachments are an easy way to make that happen. Prior to the Profile redesign of
mid-2008, attachments were essentially limited to being attached to Facebook mes-
sages. The new Publisher—the strip of controls across the top of every Profile that
enables users to publish content—now includes the ability to attach app content
directly to Profiles. Every user who has your application installed will see your app’s
icon and Attachment Action listed in the Publisher, as shown in Figure 2-31.

Figure 2-31. The Publisher

The “Add Music/Video” and “Causes” items in the screenshot appear because I have
the iLike and Causes applications installed in my Profile. Clicking on the down arrow
to the right of Causes shows a list of additional apps that offer attachments (from all
of the apps I’ve installed), as in Figure 2-32.

2.17 Attachments and the Publisher | 45

Figure 2-32. Publisher attachments

Clicking on your app’s link will bring up a dialog box with FBML inside, which gives
your users the opportunity to customize their attachments (simpler apps might just use
this box as a preview). iLike implements a fairly sophisticated mechanism, granting
users a few different options for what they’d like to attach (Figure 2-33).

Figure 2-33. iLike attachment

46 | Chapter 2: Ideation and Strategy

Discussion
As with all of the other integration points, remember to make the attachment relevant
to both the sender and receiver. The best attachments focus on something the sender
is sharing with the receiver (e.g., check out my score on this quiz!) or something they
want to give them (e.g., here’s a gift to cheer you up!), and include a clear call to action
that will bring the receiver into your app.

2.18 Requests
Problem
How can I ask users to come and do something in my app?

Solution and Discussion
It’s easiest to think of requests as Notifications with an action. They carry a little more
weight than general invitations into an application because they have a specific call to
action associated with them, as shown in Figure 2-34.

Figure 2-34. Disco Nap request

The general idea is that you’re requesting users to take an action in your app based on
an action that another user has already taken. Requests tend to have a higher click-
through rate than Notifications because they contain an obvious call to action, so care-
fully consider how you can leverage them.

2.19 Tabs
Problem
If my users really like my app, I’d like for them to be able to feature it more prominently
on their Profile. Is there anything I can offer them?

2.19 Tabs | 47

Solution
You can give your app the ability to have its own Profile tab, which users can create by
clicking on the + symbol tab when they’re viewing their own Profile (Figure 2-35).

Figure 2-35. Add a new tab

Discussion
Your app will get a tab that defaults to roughly the first 15 characters of its name
(although users can edit this and override it). Your tab is very similar to a Canvas page
in that it has a width of 760 pixels, but different in that it loads in “passive” mode and
can’t autoplay any content or JavaScript until it’s activated by a user.

2.20 Guiding Principles of App Strategy
Problem
Are there any general principles of Facebook app strategy that I should keep in mind
while designing my app?

Solution
The Facebook team has published a set of Guiding Principles that they encourage all
Platform developers to follow, grouped into three categories:

48 | Chapter 2: Ideation and Strategy

• Applications should be Meaningful.

• Applications should be Trustworthy.

• Applications should be Well-Designed.

You should try to follow all of the Principles in your app’s design, particularly if you
plan to apply to fbFund for funding. You can find the full list at http://developers.face
book.com/get_started.php?tab=principles.

Discussion
The Facebook Guiding Principles are great, and you should read and practice them,
but the full list is a little long. Here’s a short list of things that will almost certainly make
your app more successful, each of which includes some questions that you can ask
yourself while you’re designing your application, to help you stay focused:

Create value
People use things that add value to their lives and throw away things that don’t.
Your own use of Facebook apps will show the same trend: the ones that actually
add value to your use of Facebook remain in your Profile and the rest get installed,
stick around for a bit like a bad cold, and then get flushed down the toilet with the
used tissues. Ask yourself, “What’s the value this feature provides to my users?”
as you work through your app’s design.

Help users communicate and share information more efficiently
This is the key value proposition that the Facebook Social Graph offers: make it
easy for people to find information about their friends and they’ll add their own
information to the network. If you can tap into an area of people’s lives that they
want to share with other people, you’ll see much better adoption. Ask yourself,
“What’s the value of the information I’m helping people share?” and, “How can I
make the process of sharing this as efficient as possible?”

Generate more meaningful activity
Facebook Platform is drowning in apps that deliver little value to their users
because the activities undertaken in the apps are valueless. If your application
doesn’t include activities that users can do with each other (e.g., tagging their
friends in photos), there’s very little meaningful activity generated into the social
graph, and consequently your app won’t spread. Ask yourself, “What’s the value
of the activity my app adds to the social graph?” and, “How can I add value to the
activities my users do with their friends both inside and outside my app?”

Provide valuable information to users
In a world in which you’re competing with tens of thousands of apps for attention,
the higher the value of the information you provide to your users, the more likely
they are to return. This is a classic application of the signal-to-noise ratio principle.
According to Wikipedia (http://en.wikipedia.org/wiki/Signal_to_noise_ratio):

Signal-to-noise ratio (often abbreviated SNR or S/N) is an electrical engineering
concept, also used in other fields (such as scientific measurements, biological cell

2.20 Guiding Principles of App Strategy | 49

http://developers.facebook.com/get_started.php?tab=principles
http://developers.facebook.com/get_started.php?tab=principles
http://en.wikipedia.org/wiki/Signal_to_noise_ratio

signaling), defined as the ratio of a signal power to the noise power corrupting the
signal.

In less technical terms, signal-to-noise ratio compares the level of a desired signal
(such as music) to the level of background noise. The higher the ratio, the less
obtrusive the background noise is.

For our purposes, think of the valuable information your app provides as signal,
and the valueless information you and the other 20,000 apps provide as noise. Ask
yourself, “Can my users find the signal in all the noise?” and, “What can I do to
amplify the signal and suppress the noise?”

Increase user trust
Every relationship is based on trust, including the one your users form with your
app. The more that users trust your app, the more likely they are to invite their
friends and to make it part of their Facebook experience. Remember that you can
artificially earn trust, but you’ll lose it all if users figure out that you’ve lied or
misled them. Ask yourself, “Would I trust this app if I hadn’t built it?”, “Which
aspects will make users lose trust?”, and, “What can I do to build trust?”

2.21 Community Gardening
—Will Pate (see his bio in Contributors)

Problem
I’m an experienced developer, but now I want to build a community around my
application.

Solution
Interact with your users every way you can. Listen, respond quickly, and always be
friendly.

Think of a community like it’s a party, and you’re the host. You have to set the table,
welcome the guests as they arrive, help them with anything they need, and do it all with
a smile.

Discussion
Before you launch your application, create a short list of questions you would like to
ask your users. “What do you like the most?”, “What do you like the least?”, and
“What’s missing?” are good questions to start with. Too many questions can be over-
whelming, so embrace constraints.

Next, create a list of places to check regularly for feedback. Your application page can
have discussion forums, reviews, and a Wall. Also keep an eye on community activity

50 | Chapter 2: Ideation and Strategy

outside of Facebook with a Google Alert for your application name, so you can respond
to blog and forum posts.

As you launch your application, be proactive and reach out to your early users. Ask
them the questions you prepared, follow up on their answers, and answer any questions
they may have. If a member engages with you in any way, be sure to thank them.

Ask your users to rate, review, and invite their friends to try out your application. If
people seem unsatisfied, work on addressing their concerns before you ask them to tell
their friends.

Pay particular attention to language. Most people are not developers, and they may not
understand how you explain something. If that happens, they may feel like you are
talking down to them or being dodgy. If you have to talk about technology, use clear
language that is accessible to anyone.

Tone is also important. Be warm, positive, and excited. If you are pushy, negative, or
lackluster, people will be turned off.

If something breaks, resist the temptation to get defensive or not respond until it’s fixed.
Apologize, accept responsibility, and clearly state how you are working to fix the prob-
lem. Give an ETA if you have one. When the problem is fixed, follow up to thank people
for their patience and support. No reasonable person expects your application to be
perfect, but they will be impressed if you act professionally when a crack shows.

2.22 Finding Inspiration
—Alistair Morton (see his bio in Contributors)

Problem
Sometimes it’s hard to find a source of inspiration. I don’t even know where to start
looking!

Solution
Creativity isn’t a system that can be learned easily. I’ve been told it’s much like writing:
the more you do it, the easier (and clearer) it gets. A great boss once told me that to be
a good writer, you need to “flex” your writing muscles often. Creativity is much the
same.

Discussion
Where you find elements of creativity will be quite different for different people. Let’s
begin with your immediate surroundings, as they will hold the keys for you to begin to
visualize and associate differently. An average person, during an average day, is bom-
barded with television ads, art, architecture, print ads, billboards, and the like. Design

2.22 Finding Inspiration | 51

and creativity simply surround us, but most of us have built up a resistance to the
constant onslaught and become partially (if not fully) immune. While marketing com-
panies fight to keep your attention, our built-in defense systems can really begin to
neutralize the effect of these messages. To find a creative edge, we simply need to figure
out how to turn it back on.

For some, this is something as simple as a sketchbook or a camera. Others can take in
a great deal of their surroundings and process the things that speak to their creativity
with ease. For the rest of us, keeping a keen eye on seeing past the messages to what
might speak to people’s interest is tougher, but it’s possible when you store a mental
note to remind yourself to try to see things slightly differently than you have before.

Similar to writing, this is an exercise you’ll need to do regularly before you can really
identify the patterns and inspirational elements you react to most strongly. Design tends
to work in trends, and once you spend a little time making the conscious connection
to it, the patterns and elements will become obvious. Just remember to keep switching
off your mental filter, and you’ll be surrounded by the beginnings of a creative glow in
no time. Congratulations! You’re part of the way there. Finding those patterns and
elements is just the beginning of discovering your creative brain.

For me, in my work as a designer, the most important part of creating is always to work
in an element of a style that I have honed as my own over the course of many years. I
spend a great deal of time picking the brains of other creatives and programmers for
elements of things that interest them. A creative genius might not always be available
to the average person, but there are plenty of them blogging about their processes and
designs, and most of them don’t bite! You’ll find that designers are pretty friendly as a
rule and are more than willing to share their work with you. Here are a few of my favorite
hangouts:

• http://www.flickr.com/photos/splat/sets/981332/

• http://veerle.duoh.com/blog/

• http://www.31three.com/weblog/

• http://www.qbn.com/

• http://vectips.com/

An important tip that I can’t stress enough: don’t be afraid to join in the discussions of
the sites you find! A big part of creativity and inspiration is sharing.

Finally, it’s very important to find the time to spend alone to let your creative process
begin. If possible, find a place where you can avoid all the distractions of your normal
everyday life. For me, this could be my home office or even a coffee shop in a neigh-
borhood I don’t really know. The latter is especially effective for me, but everyone will
find a different place that suits them best. Many of my best designs have begun on a
napkin or back of a receipt! Good ideas wait for no man, so it’s really critical to get
them down on paper as soon as they come. Try to learn to detail your creative ideas in
ways that will help them make sense when you view them again later on.

52 | Chapter 2: Ideation and Strategy

http://www.flickr.com/photos/splat/sets/981332/
http://veerle.duoh.com/blog/
http://www.31three.com/weblog/
http://www.qbn.com/
http://vectips.com/

Picasso said he could never have made any of his famous abstracts if he hadn’t spent
so much time initially learning the ins and outs of well-applied artistic theories and
styles. His most simplistic work was his best, but developing his ability to do it with
such a developed personal style was part of his life’s work. The Web is much the same.
Creative processing and learning to find inspiration is a road you must explore first,
and then, in time, make your own. It’s something that has to be done consciously, in
order to unravel the direction you will take as you grow, but you have to begin by
learning to flex your own creativity muscle.

2.22 Finding Inspiration | 53

CHAPTER 3

Hello World

“Hello World” is the Citizen Kane of computer programs: it’s hailed as a classic by
almost everyone, but seriously misunderstood the first time it’s tried. If you’ve ever
learned a new programming language, the odds are pretty good that your first program
was some variation on Hello World: just enough complexity to get a flavor for the
environment and to fill you with satisfaction at seeing those beautiful 10 letters paint
across the screen, which is what this chapter is all about. Time to get Facebook Plat-
forming!

3.1 Installing the Facebook Developer App
Problem
How do I actually add an app to Facebook? How do I configure and manage my apps?
Where are the stats?

Solution
It’s all about Facebook’s Developer app, which acts as a control panel for managing all
of your apps, a portal into the Developer Discussion Board, a listing of News published
by Facebook, and a Marketplace listing that shows Platform-related jobs available and
developers looking for gigs. It’s also where you’ll add a new app to Facebook, so install
it here: http://www.facebook.com/developers/.

Discussion
You’re going to spend a lot of time in this app, so it’s worth taking a quick look around.
Figure 3-1 shows the app’s home page.

55

http://www.facebook.com/developers/

New Application (see
www.facebook.com/developers/
editapp.php?new)

My Applications (see
www.facebook.com/developers/
apps.php)

Status (see
www.facebook.com/developers/
message.php)

Discussion Board (see
forums.developers.facebook.com)

News (see
forums.developers.facebook.com)

Marketplace (see
www.facebook.com/developers/
marketplace)

Discussion Board (see
forums.developers.facebook.com)

News (see
forums.developers.facebook.com)

Marketplace (see
www.facebook.com/developers/
marketplace)

Figure 3-1. Facebook Developer app

Let’s take a quick tour of the major areas you’ll be interacting with:

Setup New Application
Starting in the top-right corner, you’ll see the all-important “Set Up New Appli-
cation” button. That’s the key first step in adding a new app to Facebook, which
we’ll cover a little later in this chapter.

My Applications
Immediately below that button, you’ll find a listing of all the applications that
you’ve added, including the number of daily active users and fans of the app’s
About Page.

Developer Status Feed
If you’re suddenly running into a problem that you didn’t have before, or you want
a quick hit of what’s going on right now, check the Developer Status Feed list right
under your applications. The Developers page pulls in the three most recent posts,
but you can click through to the full list or subscribe to the RSS to stay absolutely
up-to-date.

56 | Chapter 3: Hello World

Discussion Board
To the left of your application list is the Discussion Board, which pulls in the five
most recent posts from the Facebook Developer Forums (see http://forum.develop
ers.facebook.com). A lot of very knowledgeable developers are on the boards who
are happy to answer questions, so try posting questions here if you get stuck.

News
The rate at which Facebook makes changes to Platform is one of the biggest chal-
lenges in producing a book like this. Hitting a target that moves this quickly is like
trying to bullseye womp rats from a T-16, if you know what I mean. Keep up-to-
date with the latest schemes hatched by the Facebook team in the News section,
located just below the Discussion Board. Since their announcements regularly have
a significant impact on what your application can do, I recommend subscribing to
the RSS feed and making it a daily read.

Marketplace
If you’re the kind of evil genius who has brilliant ideas but lacks the technical chops
to build them, or the kind of brilliant developer who needs an evil genius, then cast
your eyes toward the Marketplace, located below the News. Use it to post about
your idea and recruit developers, or post about your mad skillz and find projects
to work on.

If you’re anything like me and your RSS reader is subscribed to more
feeds than a pig farm at lunchtime, you might want to use an RSS-to-
email service to make sure you are alerted when Facebook posts updates
that could affect your app. Check out http://www.rssfwd.com/ or http://
www.sendmerss.com/, both of which will happily send the latest posts
from any RSS feed right into your inbox.

3.2 Setting Up a New App
Problem
I’m rip-roarin’ to go on my new app and have the Developer app installed and mastered.
Now what?

If you don’t have the Developer app installed, check out Recipe 3.1.
You’ll also need to have hosting set up with a third-party hosting pro-
vider; if you don’t, check out Recipe 5.12 for more information. For the
purposes of this recipe, we’re going to use http://yourdomain.com as the
name of your third-party host.

3.2 Setting Up a New App | 57

http://forum.developers.facebook.com
http://forum.developers.facebook.com
http://www.rssfwd.com/
http://www.sendmerss.com/
http://www.sendmerss.com/
http://yourdomain.com

Solution
Inside the Developer app (http://www.facebook.com/developers), you’ll find a Set Up
New Application button, shown in Figure 3-2.

Figure 3-2. The fabled Set Up New Application button in its natural habitat

On the Developer app page, which lists all of your apps (http://www.facebook.com/
developers/apps.php), you’ll find a button that looks similar but is labeled Apply for an
Application Key (Figure 3-3).

Figure 3-3. Set Up New App’s evil twin, Apply for an Application Key

Click on either button to jump into the world’s most deceptive form, shown in Fig-
ure 3-4. Sure, you could just provide an Application Name, check the ToS box, and
ignore the innocent-looking Optional Fields area, but you’d be in for a nasty surprise
when your app doesn’t work.

Figure 3-4. Simple version of the Set Up New Application form

58 | Chapter 3: Hello World

http://www.facebook.com/developers
http://www.facebook.com/developers/apps.php
http://www.facebook.com/developers/apps.php

Fill in the form to add your new Hello World app and get an API key, and then you’re
ready to start rocking. Take the extra few minutes to complete the full form here, even
if you don’t know all the details now. See the Discussion, next, for a description of each
field.

Discussion
Some of the fields in the form are a little complex the first time through, so here’s a
quick guide.

Base Options

Developer Email Addresses (Contact and User Support)
Pretty self-explanatory, though worth noting that important things like ToS vio-
lation notices will get sent to the Developer Contact Email, so make sure you check
it regularly. You should check the User Support address too, but it might be worth
having them go to separate places so you can make sure you don’t miss anything
important from Facebook.

Suggested Hello World values: contact@yourdomain.com, support@your-
domain.com.

If you don’t have a bug tracking system in place, take a look at something
like FogBugz from Fog Creek Software. Not only is Joel Spolsky one of
the industry’s leading brains on the development of quality software (see
http://www.joelonsoftware.com), but FogBugz also has the ability to au-
tomatically check an email address and pull all the new messages in as
support tickets. Their hosted Software-as-a-Service version is really in-
expensive, and you can have it pull in all messages sent to the support
address you specify here so you can easily track the issues your users are
having. It also includes a wiki and discussion forum that you can open
up to your users if you need to. More details are at http://www.fogbugz
.com.

Callback URL
The address on your third-party server where Facebook will find the pages that
actually make up your application. For more information, see http://wiki.developers
.facebook.com/index.php/Your_callback_page_and_you.

Suggested Hello World value: http://www.yourdomain.com.

Canvas Page URL
Unless you have a really good reason for using an iFrame, you want to pick FBML
here. You’ll have a lot more control over your app’s integration with Facebook and
will have full access to things like FBML and FBJS when you’re writing your code.
Plus, it’s what all the cool kids are doing. Think carefully about what you put in

3.2 Setting Up a New App | 59

http://www.joelonsoftware.com
http://www.fogbugz.com
http://www.fogbugz.com
http://wiki.developers.facebook.com/index.php/Your_callback_page_and_you
http://wiki.developers.facebook.com/index.php/Your_callback_page_and_you
http://www.yourdomain.com

the URL here. It will be visible to everyone who uses the app, and it’s best not to
move it around or you’ll break precious inbound links.

Suggested Hello World value: Unfortunately, you’re not going to get “helloworld,”
so you might want to go with something like “jays-fantastic-demo.” (You can’t, of
course, all use “jays-fantastic-demo”; only the first one of you to read this and nab
it can.)

Profile Tab URL
Under the new Profile design launched in July 2008, applications can now give
users the option to add a Profile tab that exclusively displays their content. If your
app supports that functionality, you need to specify the URL here from which
Facebook can get the FBML to display on the tab (note that it will always be a URL
starting with http://apps.facebook.com/).

Suggested Hello World value: We’re not actually going to add support for a tab
here, but if we were, the URL might be something like http://apps.facebook.com/
jays-fantastic-demo/profile-tab.php.

Profile Tab Name
If you’re providing a Profile tab URL, you need to also provide a name for your tab
that will appear on the Profile tab itself. Facebook will use roughly the first 15
characters of the name on the tab.

Suggested Hello World value: Leave it blank, since we’re not using it.

Application Type
This will be “website” for almost all of you, unless you’re planning to build a
desktop app that lives outside of Facebook and communicates with it via the API
(e.g., photo uploaders, Outlook synchronization). Note that your selection here
will change the other fields in the form.

Suggested Hello World value: website.

Mobile Integration
At the time this book was written, the mobile integration side of Facebook Platform
hadn’t taken off nearly as strongly as the website side. Some very powerful tools
are available to you as an app developer, and it’s always a good idea to consider
ways to expand your user base, so think about adding in mobile support for your
app. You can always check this option later if it’s not part of your version-one
plans. For more information about Facebook Platform for mobile, see http://wiki
.developers.facebook.com/index.php/Mobile.

Suggested Hello World value: Leave this unchecked for Hello World.

IP Addresses
This is an optional security measure that can help prevent fraud in your app. If
you’re building something like a contest site and you want to make sure that the
only servers that can communicate with Facebook belong to you, add in their IP
addresses and Facebook’s mighty firewall will block everyone else. This is probably

60 | Chapter 3: Hello World

http://apps.facebook.com/
http://apps.facebook.com/jays-fantastic-demo/profile-tab.php
http://apps.facebook.com/jays-fantastic-demo/profile-tab.php
http://wiki.developers.facebook.com/index.php/Mobile
http://wiki.developers.facebook.com/index.php/Mobile

overkill for most apps and can be a pain if you move servers and forget to update
this, so I wouldn’t recommend it unless you need it.

Suggested Hello World value: You can leave it empty for Hello World, but you
should put the IP address of your http://yourdomain.com server in here for other
apps.

IP Blocking Exceptions
If you’re using the IP Addresses server to constrain your app to only accept requests
from your server but you also have a client-side component making API requests,
you’ll need to set “Allow IP Blocking Exceptions” to “Yes” and make sure that
those components use session secret keys for security.

Suggested Hello World value: “No” for Hello World, but “Yes” if the previous
paragraph describes your need for other apps.

Can your application be added on Facebook?
This might be the most confusing field on the form. If your app can’t be added on
Facebook, why are you building it? The simple answer is that it might be a web-
based tool outside of Facebook, or a desktop app that can’t be added to a Profile.
You’ll almost definitely want to turn this on. Two whole new areas of the form will
appear once you check this field. These areas allow you to adjust access privileges
(make sure to lock your app down to just developers until you’re ready to launch;
see the Developers option, discussed later) and configure Platform integration
points.

Suggested Hello World value: Yes.

TOS URL
You can use a Canvas page URL here so that users don’t have to leave Facebook,
or you can point them to an external URL if your legal department has carefully
crafted a masterful ToS and wants everyone to read it on your website. If you don’t
have a ToS, you can leave this blank, but keep in mind that you’re opening yourself
up to potential legal troubles. It’s not that hard to come up with a reasonable ToS
for your app: go read a bunch of other ToSes and cobble together a new Franken-
steinian version from the parts you like best. This will appear as a link when users
are adding your application.

Suggested Hello World value: We’re not going to add a ToS to the Hello World app,
so you can leave it blank. Otherwise, a URL such as http://apps.facebook.com/jays
-fantastic-demo/tos.php would work.

Developers
You’ll have the option to have your app listed as having been built by everyone in
this field or by a company when you edit the About Page information. Everyone
you list in this field can access the application’s settings (this page and the various
additional pages), as well as the Insights stats on app usage. If you have the app
locked down in Developer Mode, they’re also the only people who will be able to
add or use the app. Note that you need to be friends with anyone you want to add,

3.2 Setting Up a New App | 61

http://yourdomain.com
http://apps.facebook.com/jays-fantastic-demo/tos.php
http://apps.facebook.com/jays-fantastic-demo/tos.php

so you’ll need to do a friend request first. As with all the other fields on this form,
you can change this later, so don’t worry about listing everyone now.

Suggested Hello World value: You can just list your own name for the Hello World
app.

Default iFrame Canvas Size
If you’re not building an iFrame-based app, you can ignore this one. For those of
you who have a really good reason to do so, this setting toggles your iFrame from
being “smartsized” (Facebook automatically sizes it to fill the available space on
the page) to being resizable (you have control via the JavaScript API). Remember:
with control comes responsibility, which means you’ll need to size it yourself and
won’t be able to rely on Facebook to handle it for you. This is one of the great
trade-offs in life, second only to the eternal struggle over whether the toilet paper
should roll off the front or back side (always bet on back).

Suggested Hello World value: We’re not going to use an iFrame for Hello World,
so you can leave it as smartsize.

When you’re editing the settings for an app you’ve already added, this
section will also include a field for Connect Preview URL (the URL used
to generate the account preview when a user is accepting a Facebook
Connect request), as well as the app’s icon, logo, and Facebook Connect
logo.

Internationalization Options

Language Selection
As of late July 2008, developers can now take advantage of Facebook’s Translations
application to have their application translated into different languages. This op-
tion, which defaults to English, allows you to specify the default language.

Suggested Hello World value: Since you’re reading this in English, that’s probably
a safe choice.

Installation Options

This section will be available to you only if your app is set in the Base Options as being
able to be added to Facebook (see the earlier section for details).

Who can add your app?
Of all the dastardly user interface designs you’re likely to encounter as a Facebook
developer, this question has got to rank near the top. It’s such a strange mix of
controls that it deserves its own screenshot for posterity (Figure 3-5).

Where to even start? Perhaps with the lonely checkbox labeled Users. The difficult-
to-understand distinction here is that you’re enabling Users and/or Pages, which
would be much more obvious if there were a checkbox for Pages with the three

62 | Chapter 3: Hello World

Page-related options grouped underneath it. And speaking of those three blind
mice: the All and None choices are pretty self-explanatory, but what to make of
Some? Clicking on it will open a massive list of checkboxes that let you tailor the
types of Pages (e.g., some combination of the 69 available Page types, which in-
cludes Actor and Model but lacks the all important Actor/Model combo).

Generally speaking, you want to turn on the Users checkbox so that individual
users can add your app. You should think about what it means for your app to be
available on Pages and should definitely go for it if you can, but make sure that you
consider all the angles. If you’re building the most awesome Go Fish game ever
made, what would it mean for a Rental Cars or Religious Organization Page to
have a Profile Box for it?

Suggested Hello World value: Pages are going to have to live without your Hello
World app because we’re making it available only to Users.

Figure 3-5. The bizarre mélange of controls that is the “Who can add your app” field

Post-Add URL
This one is simple: where do you want users to be sent once they’ve added your
app to a Facebook Page? You’re generally going to put a Canvas page URL in here,
which will usually be the app’s home page, but it might be a special welcome page
or include a parameter in the URL to let your app know to display a welcome
message. Consider having this point to an Invite Friends page that you show only
to new users, which asks them to invite their friends into the app before they start
using it (though this move is losing popularity as users feel more and more like
they’re being pressured to buy a used car from a guy in a bad suit, so you might
want to skip it). For more information, see http://wiki.developers.facebook.com/
index.php/Post-Add_URL.

Suggested Hello World value: We’re not supporting Pages in this example, so you
can leave this blank (or just use the value you put into Post-Authorize URL,
described next).

Post-Authorize URL
This is similar to the Post-Add URL, but it’s for users authorizing your app to access
their Profile for the first time rather than for users adding it to a Facebook Page.

Suggested Hello World value: Since Hello World is really just for you and we’re not
worrying about inviting friends, we’re going to keep this simple and use http://apps
.facebook.com/jays-fantastic-demo/.

3.2 Setting Up a New App | 63

http://wiki.developers.facebook.com/index.php/Post-Add_URL
http://wiki.developers.facebook.com/index.php/Post-Add_URL
http://apps.facebook.com/jays-fantastic-demo/
http://apps.facebook.com/jays-fantastic-demo/

Application Description
If you’re the kind of developer who has meticulously planned out every nook and
cranny of your work of art well in advance, go ahead and fill in this box with your
carefully crafted, 250-character marketing masterpiece. For everyone else, leave
this field blank and come back to it after you’ve built the app and are ready to add
it to the Application Directory.

Suggested Hello World value: Follow my advice and leave it blank for now.

Post-Remove URL
As George Santayana once said, “Those who cannot remember the past are con-
demned to repeat it.” Wouldn’t it be great if you could be notified whenever some-
one removes your app from a Facebook Page, so that you could track the circum-
stances and learn something from them? Well, you can! Enter a URL here and
Facebook will ping it whenever your app gets un-added, and will provide some
useful info, such as the person’s UID and a timestamp. You’ll find a whole lot more
information, including some sample PHP, Rails, and pseudocode for handling the
pings, at http://wiki.developers.facebook.com/index.php/Post-Remove_URL. An
important note: this is different from the Post-Add URL because users won’t be
directed to it after they remove the app. Facebook will send a background ping to
the URL, and users will continue on their merry ways.

Suggested Hello World value: Again, we’re not supporting Pages and we don’t really
care who uninstalls Hello World, so leave this blank.

Post-Authorize URL
This is similar to the Post-Remove URL, but it’s for users revoking authorization
for your app to access their Profile rather than for users removing it from a Facebook
Page.

Suggested Hello World value: Ditto here; we don’t really care who uninstalls Hello
World, so leave this blank.

Default FBML and Action FBML
The Profile Box and Profile Action links are two of the Platform integration points
you’ll be all over. Since the user has just added your app, you won’t have anything
to insert yet, so the two default boxes let you specify the FBML that should be used
until you first make a call to Profile.setFBML() (see Recipe 9.47). Leaving these
blank will effectively make your app invisible on the user’s Profile page until then,
so think about sticking a “coming soon” message in there in the meantime. Your
ultimate Bowling Score app might, for example, pop in a box containing “Scores
coming soon!” and a link into your app for all of the user’s bowling fanatic friends
to follow.

Suggested Hello World value:

<fb:wide>Hello big, wide world!</fb:wide><fb:narrow>Hello narrower world!
</fb:narrow>

64 | Chapter 3: Hello World

http://wiki.developers.facebook.com/index.php/Post-Remove_URL

Default Profile Box Column
Users will have the option of dragging your Profile Box into either the wide or
narrow column of the Boxes tab in their Profiles after it appears, and this gives you
control over where it starts off. You can do completely different layouts depending
on which width they choose, so pick the one you think is strongest as the default,
but have a kick-ass backup in case they prefer the other size.

Suggested Hello World value: It doesn’t make much difference, but since most apps
go with wide, you might as well go narrow and appear higher up the page by default.

Developer Mode
The all-important Developer Mode switch lets you limit access to and the adding
of your app to the people you’ve listed as Developers. Everyone else will get a 404
Page Not Found error when they try to hit any of the app’s URLs, even if they had
previously added the app.

Suggested Hello World value: On. This app isn’t going to do much, so it’s not really
worth sharing with the wider world. If you’d like to show it to your friends, just
add them as developers.

Integration Points

Like the Installation Options, this section will be available only if you set your app to
be addable to Facebook Profiles.

Side Nav URL
This option used to provide the URL you wanted users taken to when they clicked
on your app in their Side Nav (the sidebar on the left edge of the Profile, which
doesn’t exist anymore). Although this hasn’t been renamed yet, it’s now the URL
you want users taken to when they select your app in the Applications menu in the
blue header bar at the top of the Facebook window. Note that this has to be a
Facebook Canvas page and can’t be an external URL.

Suggested Hello World value: http://apps.facebook.com/jays-fantastic-demo/

Privacy and Help URLs
Both of these are links to static content within your app and can point to Canvas
pages within Facebook or to external pages elsewhere (though the former is better
than the latter).

Suggested Hello World value: We don’t much care about private hellos or helping
people, so leave ’em blank.

Private Installation
If you’re building one of those rare apps that won’t leverage the social graph to
spread among users, you can turn on this option to disable News and Mini-Feed
installation stories. This could be handy if your app is in a field such as health or
finances, but you’re generally going to want to leave this option off.

Suggested Hello World value: Leave it off.

3.2 Setting Up a New App | 65

http://apps.facebook.com/jays-fantastic-demo/

Attachments
Attachments are one of the most underused integration points, so you should think
about how to take advantage of the scarcity of attachment options to give your app
some good visibility in front of your users. You’ll need two pieces of information
in order to enable Attachments for your app: the wording to use as the action
(which will appear next to your app’s icon) and a callback URL (which will be
loaded in the pop-up window to present the Attachment selection interface). For
more information, see http://wiki.developers.facebook.com/index.php/Attachment
_Example.

Suggested Hello World value: Leave this blank, since we’re not going to build
attachments.

Publish Content to Friends/Self
The Publisher, introduced in the Profile redesign of mid-2008, provides users with
a very simple mechanism for publishing content on the Wall tab on their own
Profile or their friends’ Profiles. Specify URLs here for the Publishing Action and
Callback Action the same way you do with Attachments, discussed earlier.

Suggested Hello World value: Leave this blank, since we’re not going to add Pub-
lisher support.

Info
The Info tab, which was also introduced in the Profile redesign, contains informa-
tion about the user whose Profile you’re browsing. Apps can now populate their
info into that tab, either in text-based or object-based formats, and will receive a
ping at this URL when users edit the content so they can post-process it (i.e.,
tokenize and add URLs).

Suggested Hello World value: Leave this blank, since we’re not using the Info
features.

3.3 Hello World
Problem
OK! I have my new Hello World application set up in the Developers app. Now what?

Solution
You have your app all ready to go, but when you go to your URL (one like http://apps
.facebook.com/jays-fantastic-demo), you get a 404 error message (see Recipe 3.2 for
more about setting up your app). The problem is that you don’t have anything on your
server for Facebook to display, so let’s put something there. Make a new blank page in
your favorite text editor (see Recipe 5.10 for a list) and stick this in it:

<p>Hello <fb:name uid="loggedinuser" firstnameonly="false" useyou="false"/>!</p>

66 | Chapter 3: Hello World

http://wiki.developers.facebook.com/index.php/Attachment_Example
http://wiki.developers.facebook.com/index.php/Attachment_Example
http://apps.facebook.com/jays-fantastic-demo
http://apps.facebook.com/jays-fantastic-demo

Save the file to your http://yourdomain.com server as index.php, and then reload your
new Facebook app.

Discussion
You should now have a fully functional Facebook application that only you can see.
Congrats! This app can be used as a great test bed for all of your ideas as you work your
way through the rest of this book.

3.4 Installing Your App: It’s All About the About Page
Problem
Now that I have an app set up, how do people install it?

Solution
You probably know this already if you’ve ever installed an app, but the general case is
that all installation roads lead to your About Page. It’s worth noting that this used to
be more true when you had to install an app before you could see any of its content,
but it has become slightly less the case now that pages inside an app can be publicly
visible. The URL to your application’s About Page will take the form http://www.face
book.com/apps/application.php?id=8653633892 (obviously with your app’s ID rather
than the Zerofootprint Calculator’s), which leads to a page profiling your masterwork.

The screenshot in Figure 3-6 shows the About Page for an application that I’ve added
and for which I’m a developer. Contrast this with the page for tvClickr (Figure 3-7; see
http://www. facebook.com/apps/application.php?id=16534688290), an app I haven’t
installed.*

In Figure 3-7, you’ll note the big blue “Go to Application” button in the top-right, as
well as the absence of the links that would enable me to edit the app’s settings (which
are present in Figure 3-6). Clicking on the button takes me to the “Log in to Applica-
tion” page where I can grant the app access to my information, as shown in Figure 3-8.

Actually adding the application takes me to the post-add URL specified by the devel-
oper (see Recipe 3.2 for more information).

* I actually have installed it—and it’s a great example of an app that thinks considerably outside the “box” of
typical Facebook apps. Such is my dedication to you, the reader, that I uninstalled it for the purpose of this
example.

3.4 Installing Your App: It’s All About the About Page | 67

http://yourdomain.com
http://www.facebook.com/apps/application.php?id=8653633892
http://www.facebook.com/apps/application.php?id=8653633892
http://www. facebook.com/apps/application.php?id=16534688290

Figure 3-6. Zerofootprint Calculator’s About Page

68 | Chapter 3: Hello World

Figure 3-7. tvClickr About Page

3.4 Installing Your App: It’s All About the About Page | 69

Figure 3-8. tvClickr Log in to Application page

Discussion
There are a number of spots in this flow where the whole thing can go pear shaped and
you’ll lose potential installers. You need to put a lot of thought and effort into making
sure your About Page is a gleaming model of marketing brilliance, carefully tweaked
and toned to optimize the experience for would-be users. Keep in mind that your ap-
plication’s Photo and Description will be only two of the things people see, so you need
to be a conscientious community gardener and keep close tabs on the Reviews, Dis-
cussion Board, and Wall Posts. Reply to people who have problems, encourage users
to become fans and leave positive reviews, and provoke good conversations if your
Boards are empty. The more activity that visitors see, the more likely they are to install
and give it a try (remember that no one likes to be the first to the party, but everyone
wants to get into the crowded bar).

70 | Chapter 3: Hello World

CHAPTER 4

Architecture and Design

Building Facebook apps requires you to master the trifecta of dating: a pretty face, a
winning personality, and a rock-solid architecture that can handle scaling tall buildings
in a single bound.

Building an app is a lot like building a house: poor architecture and foundations will
only lead to a rickety structure that falls over the first time the big bad wolf blows on
it (and by “big bad wolf,” I mean 100,000 users). Knowledge is power, so arm yourself
with a thorough understanding of the way Facebook applications are structured, as
well as some practical techniques for optimizing your app’s underpinnings.

Once you have the basics down, bring out the best in your awesome framework by
adding a beautiful and functional design. If you’re more of a developer than a designer,
don’t make the classic mistake of applying lipstick to your pig: good user experience
design is much deeper than a pretty skin.

Most of this chapter is aimed at web developers who are building web-
based Facebook apps, but a lot of the lessons in here can be abstracted
to desktop apps as well.

4.1 Under the Hood: How Facebook Apps Work
Problem
I’ve heard that I have to host my own Facebook app, even though people access it
through Facebook’s site. I don’t understand—how does this all work?

Solution
Facebook Platform architecture is brilliant from its perspective: you go and do all the
hard work of building apps, and you have to pay for the hosting, too. The upside is, of
course, that you get unparalleled access to a dedicated audience of 90 million users and
the ease of building on a fairly mature and well-realized Platform.

71

The short solution is: yes, you host your app. You’ll need to find a robust hosting
provider who can scale up quickly if things go your way and who won’t charge you an
exorbitant fee if you exceed your allocated traffic (see Recipe 5.12 for more information
about hosting choices).

Discussion
Let’s take a look at what happens when someone requests a page from your app
(Figure 4-1).

Browser

Application
Canvas

Facebook Server Your Application
Server

3

4
5

1

2

Figure 4-1. Facebook Platform

1. The user’s browser requests http://apps.facebook.com/myapp.

That address points to a cluster of servers in Facebook’s data center. Their servers
analyze the request, determine which app it’s for, then look up the callback URL
that the app developer provided and make a call to it behind the scenes.

2. Facebook server requests http://www.myserver.com/index.php.

This call, which happens behind the scenes and is invisible to the user, goes into
your application server. If you’re hosted with Joyent or Amazon, you can take
advantage of especially low latency rates, which speed this part of the process up
considerably.

3. Your application server makes API calls to the Facebook Server as required by your
page.

This can, of course, include FQL calls made through the API’s fql.query() meth-
od. You may not need to do any calls, or you may need to do lots, but keep in mind
that the user is waiting for his page while you do all this back and forth, so it’s
better to try and cache as much data on your server as possible.

72 | Chapter 4: Architecture and Design

http://apps.facebook.com/myapp
http://www.myserver.com/index.php

4. Your application server returns FBML to the Facebook server.

The end result of your app doing its thing should be an FBML document, which
you’ll send back to Facebook’s server for processing.

5. Facebook’s FBML parser turns your FBML into HTML and serves it to the user.

This is the final step in the process and results in the browser rendering what ap-
pears to be a single Facebook page, made up of Facebook’s HTML code around
the edges with your parsed FBML in the middle.

This is a really clever piece of system design and makes for a lot of flexibility, but it also
has some obvious spots where a slow network connection or poor page implementation
can result in very slow page loads for your users. If you’ve ever run into a timeout error
when you’re trying to use a Facebook app, one of the five steps just outlined has prob-
ably taken too long. You can see it for yourself by inserting:

sleep(120);

into one of your PHP files and then requesting that page through Facebook.

4.2 Architecting for the Future: Open Web Apps
Problem
I’m following your advice and building for Facebook first, but I want to make sure that
my app can be deployed elsewhere later. What steps should I take?

Solution
You should build one backend that is capable of serving your application’s core data
to several frontends, as shown in Figure 4-2.

Facebook OpenSocial Web iPhone

Your Application Server

Your Database Server

Figure 4-2. Facebook application architecture

4.2 Architecting for the Future: Open Web Apps | 73

Layered architecture diagrams always make me think of tasty cakes. This particular
diagram makes me think of a tasty cake that comes in four excellent flavors but doesn’t
cost the baker much more in baking time. It also makes me think of Mark Andreessen,
founder of Netscape and now of OpenSocial partner Ning. If you read the Preface, this
probably comes as no surprise. If you didn’t, you might find yourself grasping for a
connection between a brilliant serial entrepreneur and baked goods. Look no further
than this quote:

As an app developer, there’s no real reason to choose between Facebook and OpenSocial.
It’s easy to do both. You’ve already put in most of the effort—creating a new set of
frontend HTML and JavaScript pages is almost trivial, and that’s all you need to do to
have your app “port” to OpenSocial.

As you start planning your application, think about ways in which you can consolidate
your business logic, backend code, and data so that your application server is fairly
independent of the particular API you need to use to render a page. Although the calls
required to display a friend selector, for example, won’t be the exact same on Facebook
Platform as they are on OpenSocial, the data returned to your application will still be
a selection of friends.

Discussion
There’s a term that gets thrown around a lot in web development circles that always
makes my sub-cockles* itchy: future proof. The idea that we can design something today
that will be able to withstand whatever the future may throw at it is to give ourselves
far too much credit. (Unless you’re Danny Hillis, of course. Danny can give himself
that much credit because he deserves it: anyone determined to build a clock that will
last for 10,000 years on a hill in the Nevada desert gets pretty much all of my respect.
See http://www.longnow.org/projects/clock/.)

At any rate, you don’t need your application to last for 10,000 years, but you do want
to try to see around the next curve in the road. There was a time, not too long ago,
when everyone thought that Friendster was the best thing since Sir Tim Berners-Lee
invented sliced bread, but now it’s a relic of the past. If it had introduced a developer
platform back when it was the flavor of the month, we might all still be Friendstering
instead of Facebooking.

Following an architecture like the one described earlier frees you from being tied to
something over which you have no control. Facebook has real momentum behind it
now, so the risk is pretty low, but the Facebook team might also make a decision
tomorrow about a new direction for Platform that could significantly affect the viability
of your app. If you have no fallback strategy through other delivery channels, you have
nothing.

* Thank you, Denis Leary.

74 | Chapter 4: Architecture and Design

http://www.longnow.org/projects/clock/

4.3 Build Now, Scale Later: Getting Real
Problem
I’ve heard so many horror stories about developers who didn’t think through their
scaling issues at the beginning and ended up with 250,000 users and were madly
running around trying to scale their app. I don’t want to do that! I want to build in
scaling right from the start. Isn’t that a smarter approach?

Solution
Go watch this video: http://youtube.com/watch?v=ntfEKmIg_VQ.

(If that video isn’t available, close your eyes and picture the iLike team madly driving
around the Bay Area in a rental truck, begging, borrowing, and buying 150 rack-
mounted servers and installing them in their data center, all in 48 hours.)

At the time when the iLike crew went on their mad dash, they already had six million
users. The moral of this story is that you can always scale by throwing more money at
servers later. It is important for you to take some time to think about scalability now,
but if you plan to build out a carefully load-balanced, n-tier architecture for your zero
users, you’re going to spend the next six months figuring out how to do that while
someone else just does it (to quote Nike) and has a six-month head start.

Discussion
Here’s a fun exercise to get you into the right headspace. Start by drawing a line across
this page, which would be defacing this book if I didn’t do it for you (Figure 4-3).

Figure 4-3. A plain old line

Now take that plain old line and transmogrify it into a fancy, educated line by adding
a sophisticated label full of $5 words (Figure 4-4).

The Continuum of Scalablity Preoccupation

Figure 4-4. Fancy, educated-type line

4.3 Build Now, Scale Later: Getting Real | 75

http://youtube.com/watch?v=ntfEKmIg_VQ

Now let’s add some points of reference to that line (Figure 4-5), and then I’ll tell you a
little cautionary tale.

The Continuum of Scalablity Preoccupation

Youtwttr twitter

Figure 4-5. You, bracketed by Twitters

Once upon a time, Ev Williams and his cofounders built up Pyra Labs, created the
Blogger platform, and sold it to Google. The web community looked upon this and
said that it was good! Then Ev started a new company called Odeo and started to build
it up, and the web community looked upon it and said that it seemed fairly interesting
but that they were not, as of yet, entirely convinced. One day, whilst hard at work on
Odeo, a member of their stalwart team named Jack Dorsey presented an idea that had
been rattling around in his head for six years. The assembled other members looked
upon this idea and decided it had real merit and so, on a lark, they cobbled together a
working version and released it upon the world. And so it went that in October 2006,
the world discovered the newly named twttr, 140 characters at a time.

Fast forward to May 2008. With over 1.7 million users sending more than three million
tweets per day on the newly renamed Twitter, now owned by the newly minted Twitter,
Inc., some serious scalability problems became apparent. In an interview with Robert
Scoble,† taped on May 31, 2008, Ev notes (about 7 minutes and 35 seconds in) that
their problem isn’t money, Ruby on Rails, or servers, but is entirely architectural. When
they built twttr, they had no idea that it would become popular or that it would even
spread beyond the prototype built by Jack and Biz Stone. They had no scalability plan
because they didn’t think they would need one, and they followed the predominant
Ruby on Rails mentality that dictates building software over spending time planning.

Ev mentions in the video that it’s not usually worth considering scalability since most
products never reach a point where it’s needed, and he’s mostly right. Looking back
over the first year of Facebook Platform highlights a number of apps that skyrocketed
into the Top 10 almost overnight, which is not an unrealistic proposition if you build
a great application with broad appeal and leverage all of the viral integration points
available. You should aim for the mid-point of the Continuum of Scalability Preoccu-
pation: more than releasing an underengineered prototype, but less than worrying
about handling three million messages per day.

† http://scobleizer.com/2008/05/31/clearing-the-air-with-twitter/

76 | Chapter 4: Architecture and Design

http://scobleizer.com/2008/05/31/clearing-the-air-with-twitter/

4.4 Scalability
—Rajat Agarwalla (see his bio in Contributors)

Problem
How do I scale my application so that it is not a victim of its own success?

Solution
Speed is critical. If your application does not load within milliseconds, it will tend to
drive away users. Given the viral nature of Facebook, such a scenario can occur within
weeks or even days of launching your application. Scalability needs to be ingrained
within all aspects of the application: source code, database, hardware/operating system
platform, user interface, and support systems. As there is no fixed formula for scala-
bility, you need to monitor these aspects closely and tune the ones that you think will
cause a bottleneck. Build your application to sustain at least three times more load than
you initially expect.

Discussion
When we launched Scrabulous on Facebook in June 2007, we did not expect more than
a few thousand users. Accordingly, Scrabulous was launched on a shared-hosting serv-
ice and utilized a common database server with possibly 50 other websites. Two weeks
into our launch and with less than 10,000 users on Scrabulous, we were introduced to
the word “scalability.” Our hosting service politely asked us to remove the application
from their servers as it was causing a large amount of load! Even today, after having
rewritten the entire source code four times and moving onto private dedicated servers,
we still need to consider the scalability factors before launching a new feature on Scra-
bulous. For your application, you may want to consider looking into the following
areas.

Monitoring software

This is the number one requirement. A number of free utilities can help you analyze
your hardware resources (Cacti, MRTG, etc.). Use them as efficiently as possible. They
are a tremendous help in letting you decide whether to add hardware or focus on the
source code.

Application source code

The source code of your application may end up being a resource hog. In a hurry to
launch applications, developers sometimes overlook the benefits of object-oriented
programming (OOP). Even if you are not much into OOP, try to write your code in
functions that can be loaded as required. For example, if you are writing your

4.4 Scalability | 77

application in PHP, you can easily split functions into files and load the appropriate
files based on the user’s action. This will ensure minimal memory usage on page loads.

It is highly recommended that a versioning system, such as CVS or SVN, is utilized.
Coding is more efficient and you can keep a history of changes, which helps when trying
to tune the code for scalability.

Database

If your budget allows, start off with your database on a separate server within the same
network as your primary server. This will allow you to tune the OS specifically for the
database, removing all other applications and making more memory and CPU resour-
ces available to the database. Having a separate server will also let you cluster/replicate
without affecting other aspects of the system.

Hardware/OS/software utilities

With the right hardware and OS platform, you can easily scale up. For example, if you
are on Linux and using Apache as your HTTPD, it is very easy to convert your box into
a load-balancing unit!

Simple utility software, such as memcached and various PHP accelerators, go a long
way in easing out hardware resources. When we implemented memcached for Scra-
bulous, it reduced our database loads by 40%. You may also want to consider using
Java or C++ servers for backend tasks (such as updating Facebook Profiles). Accord-
ingly, you can schedule the backend tasks to run during off-peak hours.

User interface/support systems

Build your user interface so that it can grow with your application. Drastic interface
changes drive users away. Try to imagine the largest possible feature set for your ap-
plication and then see whether your interface can easily scale up to that level or not.
This is an issue we faced with Scrabulous. There were too many useful features and too
little space on the user interface to make them easily accessible.

Utilize a support system from day one so that all your user requests are handled in an
efficient manner. This helps in bug solving and allows for easy handover to a support
team when your application becomes successful.

4.5 Language Selection As Architecture
Problem
I hear Ruby on Rails is the best thing since Java, which was the best thing since Perl,
which was once a great thing but is now a confusing thing, which is similar to but the
reverse of PHP, which was a confusing thing but is becoming great. And then there’s

78 | Chapter 4: Architecture and Design

JavaScript, which isn’t Java at all and used to be the bane of everyone’s existence but
has come back as the golden child thanks to a household cleaner named Ajax. I’m
confused. What should I use to build my app?

Solution
All languages are tools that ultimately can be used to achieve the same goal. Some
languages are better at certain tasks, and others dominate different jobs. A paragraph
like the question you just asked is sure to upset pretty much anyone with a language
preference, which is the very nature of a “religious” war.

This question is, in a sense, like asking whether you should use only a hammer, screw-
driver, or monkey wrench to build your house. Always use the right tool for the right
job, and always remember to measure twice and cut once.

Discussion
At the risk of wandering innocently into the middle of said religious war, I recommend
building Facebook applications using PHP 5. A number of different Client Libraries
are available thanks to a very active developer community, but there is only one true
ring, and it is known as PHP. You can choose to build your app on one of the other
Libraries—and you probably should if you have, for example, an entire .NET stack or
have spent the last 10 years becoming a Supreme Perl Monger—but keep in mind that
those Libraries get updated after the official one and therefore run the risk of not having
access to new features and of breaking when Facebook changes core pieces of Platform.

That said, if you’re following the architecture recommended in Recipe 4.2, you can use
a combination of different languages by adding a compatibility layer of web services,
written in the best language for each frontend, which communicate to your shared
backend through a standard data protocol like XML (see Figure 4-6).

Facebook OpenSocial Web iPhone

Your Application Server (Ruby on Rails)

Your Database Server (MySQL)

PHP JavaScript

XML

HTML

Frontends

Web Services

App Server

Database Server

Figure 4-6. Architecture with multiple languages

4.5 Language Selection As Architecture | 79

Facebook actually uses a mixed language environment, and it is a big fan of the right-
tool-for-the-right-job approach. The Facebook team built a framework called Thrift,
which they use to do easy cross-language development, and which they have generously
made available to the community at large as part of their Open Source Projects initiative
(http://developers.facebook.com/opensource.php/). Mark Slee, one of the developers be-
hind Thrift, has contributed a recipe explaining how you can make use of it in your
own applications (see Recipe 4.6).

4.6 Cross-Language Development with Facebook Thrift
—Mark Slee (see his bio in Contributors)

Problem
I’m developing a large software system, and I’d rather not standardize on one pro-
gramming language. I’d like to be able to make service calls and move data between
languages, but it needs to be fast and easy to maintain.

Solution
Use Thrift, an open source framework developed by Facebook for cross-language data
serialization and remote procedure calls in a high-performance environment.

Thrift facilitates performant interoperability between C++, Java, PHP, Python, Ruby,
Erlang, Haskell, C#, Cocoa, Smalltalk, and even OCaml.

Discussion
Thrift uses code generation to enable rapid development of software spanning multiple
programming languages. Data types and service interfaces are defined in .thrift files,
which use a simple, language-neutral grammar. The Thrift compiler then generates all
the necessary plumbing code in the languages of your choice to encode and transport
data objects and make service calls, letting the developer focus on writing the actual
application code.

For example, suppose you have created a web frontend in PHP. You want to build a
service to efficiently search an object store, and you’d like to build this service in C++
to optimize memory usage and data structure layout. Here’s how you might define such
a service in Thrift:

search.thrift:
struct search_result_elem {
 1: i64 object_id,
 2: list<string> terms.
 3: i64 weight
}

struct search_result {

80 | Chapter 4: Architecture and Design

http://developers.facebook.com/opensource.php/

 1: i32 total,
 2: list<search_result_elem> matches
}

service search {
 search_result query(1:list<string> terms)
}

To generate all the framework code you need, you’d simply execute the following:

thrift -cpp -php search.thrift

Your C++ server stub is generated, and you just need to fill in the method
implementation:

class searchHandler : virtual public searchIf {
 public:
 searchHandler() {
 // Your initialization goes here
 }

 void query(search_result& _return, const std::vector<std::string> & terms) {
 // Your implementation goes here
 printf("query\n");
 }
};

Similarly, all your PHP client code is generated. To make a call to the service, you simply
write the following:

function call_search() {
 // Specify the server to connect to
 $transport = new TSocket('192.168.1.1', '9090');
 $transport->open();
 // Pick the protocol you want to use
 $protocol = new TBinaryProtocol($transport);
 // Make a client for your service
 $client = new searchClient($protocol);
 // Make the call!
 $results = $client->query(array('term1', 'term2'));
}

Thrift supports many advanced features, such as:

• Service inheritance

• Cross-language support for application-level exceptions

• Compatibility across application version changes

• Multiple encoding protocols (binary, JSON, etc.)

• Multiple transport mechanisms (TCP sockets, files, HTTP)

• Multiple server implementations (threaded, libevent, pooling)

For more information on Thrift, visit http://developers.facebook.com/thift/.

4.6 Cross-Language Development with Facebook Thrift | 81

http://developers.facebook.com/thift/

4.7 The Database Is Dead! Long Live memcached!
Problem
I’m designing a very database-intensive application that is going to need to do a lot of
reads to render a page. I know this is going to get slow as the database fills up and I
have a lot of users hammering on it, so what can I do to speed that up?

Solution
Use memcached, a caching application originally developed by Danga Interactive to
speed up LiveJournal (http://livejournal.com) but now in use all over the Web (including
YouTube, Slashdot, Wikipedia, SourceForge, Facebook, Digg, Twitter, and http://ny
times.com). Memcached is a sophisticated caching engine designed to quickly return
results from memory instead of making a trip to your database, which makes it fast. In
answer to the question, “Is memcached fast?”, Danga says:

Very fast. It uses libevent to scale to any number of open connections (using epoll on
Linux, if available at runtime), uses nonblocking network I/O, refcounts internal objects
(so objects can be in multiple states to multiple clients), and uses its own slab allocator
and hash table so virtual memory never gets externally fragmented and allocations are
guaranteed O(1).

That’s one of those blocks of text that you either understand on your own or, like me,
have to read a few times before ultimately giving up and accepting that you can move
on without knowing what a slab allocator is. You can find more information about
memcached, as well as downloads, at http://www.danga.com/memcached.

Discussion
This is one of those places where it’s worth building in scalability from the beginning.
Thanks to the memcached libraries available for most languages, implementing is really
easy and won’t significantly slow down your initial code creation. Plus, if you build
memcached in from the beginning and get a tidal wave of popularity, you won’t have
to scramble to track down all of the SQL queries in your code and rewrite them (unless
you’re smart and build them all into a Database Acess/Abstraction Layer). A number
of memcached libraries are available in about 12 different languages from http://www
.danga.com/memcached/apis.bml.

Instructions on how to implement memcached are outside the scope of this book, so
if you’re interested in more information I highly recommend Cal Henderson’s excellent
Building Scalable Web Sites (O’Reilly). Cal was the architect of http://flickr.com, so he
knows a thing or four hundred about building really scalable sites (and he’s a great guy
to have a beer with!). He covers everything from providing content to an international
audience all the way through buying hardware on a budget and coordinating a team of
developers.

82 | Chapter 4: Architecture and Design

http://livejournal.com
http://nytimes.com
http://nytimes.com
http://www.danga.com/memcached
http://www.danga.com/memcached/apis.bml
http://www.danga.com/memcached/apis.bml
http://flickr.com

4.8 Advanced Caching with Nginx and memcached
—Ilya Grigorik (see his bio in Contributors)

Problem
I’ve built a popular destination (or an API server), and now I need to handle several
thousand requests a second, but I don’t have the time to rearchitect my code, or worse,
rewrite in a faster language.

Solution
Memcached, the darling of every web developer, is capable of turning almost any
application into a speed demon. No matter which language you’re working in, your
application server is usually the slowest part of the chain: no application server is faster
than any web server, even if yours is written in C.

Nginx, a very popular HTTP and reverse-proxy server, by default comes prepackaged
with a memcached module, which allows us to bypass the application server and serve
cached responses from memcached directly. With minimal code changes, we’ve im-
plemented this technique for AideRSS API servers, and immediately saw our request
throughput improve by 400%—from 800 req/s to 3,700 req/s!

Discussion
Most popular open source web servers can be configured to serve cached data quickly
and directly from one or more memcached server instances, rather than from your
filesystem or an application server. Apache (see http://code.google.com/p/modmemca
checache/) and Lighttpd (http://trac.lighttpd.net/trac/wiki/Docs) require additional
modules to enable this functionality, whereas Nginx (http://wiki.codemongers.com/
Main) comes with native support and offers the most flexible implementation. A relative
newcomer to the field, it is quickly gaining in popularity, and is currently the fourth
most popular web server (http://survey.netcraft.com/Reports/200806/).

To get started, download the latest copy of the Nginx code base, and run configure,
install—this takes less than a minute and has no additional dependencies. Also, make
sure to browse the wiki and look at sample configuration files. If you’re coming from
Apache or Lighttpd, you’ll be pleased to see that the configuration syntax is virtually
identical.

Nginx comes with a built-in memcached module, which allows it to query the cache
directly prior to forwarding the request to the application server. If the cache does not
contain the item we are looking for, the memcached module will raise a 404 Not Found
error, which we catch and redirect for processing on our application server:

upstream appserver { server 127.0.0.1:9010; }
server {

4.8 Advanced Caching with Nginx and memcached | 83

http://code.google.com/p/modmemcachecache/
http://code.google.com/p/modmemcachecache/
http://trac.lighttpd.net/trac/wiki/Docs
http://wiki.codemongers.com/Main
http://wiki.codemongers.com/Main
http://survey.netcraft.com/Reports/200806/

 location / {
 set $memcached_key $uri;
 memcached_pass 127.0.0.1:11211;
 error_page 404 = @dynamic_request;
 }
 location = @dynamic_request {
 proxy_pass appserver;
 }
}

You can set the key with which Nginx will query memcached via the memcached_key
variable directly in your configuration file. Any Nginx variable can be used to create
the key: uri, args, http_user_agent, etc.

More complex keys can also be created with the help of the Perl module, which allows
you to execute Perl directly within Nginx. To enable this module, specify –with-
http_perl_module when running configure. Once installed, we can execute arbitrary
code on the incoming request. For example, you can create an MD5 hash of the request
URI, and set it as your memcached key:

perl_set $md5_uri '
 sub {
 use Digest::MD5 qw(md5 md5_hex md5_base64);
 my $r = shift;
 return md5_hex($r->uri);
 }
 ';

server {
 location / {
 set $memcached_key $md5_uri;
 ...
 }
}

If the cached item is not found in memcached, the request is passed on to your appli-
cation server, which in turn should construct a response and send it to memcached so
that Nginx can serve future requests directly.

It is a good practice to set a Time to Live (TTL) on the memcached record to avoid
additional cache invalidations. Once the TTL timestamp expires, memcached will au-
tomatically return a 404 error, and the application server can repeat the pattern.

4.9 Standing on the Shoulders of Giants: Hosting with Amazon
Web Services
Problem
I think my application could be a Top 10 app, so I want to make sure it has really solid
hosting behind it that isn’t going to ruin my profitability.

84 | Chapter 4: Architecture and Design

Solution
If I told you that you could hire the engineers who built and run one of the top 20
websites in the world to provide your hosting, all at pennies per GB, would you say I
was crazy or would you say, “Oh! You must mean Amazon Web Services, you clever
(and handsome) man”? If you said the latter, then you probably don’t need me to tell
you to build your stuff on their stuff and save yourself a lot of the green stuff (and from
pulling out or graying a lot of the stuff on top of your head). Go there now: http://www
.amazonaws.com.

Discussion
There are two whole recipes about getting set up on S3 and EC2 in Chapter 5: see
Recipes 5.13 and 5.14.

4.10 Integrating Drupal and Facebook
—James Walker (see his bio in Contributors)

Problem
I have an existing site built with Drupal (http://drupal.org/) and I’d like to create an
associated Facebook application quickly and easily. It’s important to be able to reuse
the existing content and user base for the new application.

Solution
Drupal for Facebook (http://drupal.org/project/fb) is an existing Drupal module with an
associated FBML theme that can quickly and easily create one or more Facebook ap-
plications for an existing site.

Discussion
To begin, create your application on Facebook as you normally would, but leave the
callback URL blank for now.

Next, download the Drupal for Facebook module from http://drupal.org/project/fb and
install it per the included README.txt. The instructions here include downloading a
copy of the Facebook PHP library and installing the associated FBML theme.

Once those steps are complete, it is time to enable some modules. The Facebook for
Drupal package comes with several modules so that you can enable only the modules
your application requires. A good starter set is “Facebook API,” “Facebook Applica-
tion,” “Facebook Application Canvas Pages,” and “Facebook User Management.”
Note, however, that there are modules for integrating things like the popular Views
and Actions modules for Drupal.

4.10 Integrating Drupal and Facebook | 85

http://www.amazonaws.com
http://www.amazonaws.com
http://drupal.org/
http://drupal.org/project/fb
http://drupal.org/project/fb

Now we’re ready to create applications. Go to Create content→Facebook Application,
and fill out the form with information about the application you already created, such
as the API Key, secret, and the app ID. You can also specify controls around user
account handling and landing pages for users.

When that form is submitted, Drupal will generate a full callback URL that you can
then use in the application settings on Facebook. Drupal will also generate Post-Add
and Post-Remove URLs as well.

Congratulations! Your Drupal site is now a Facebook application.

For more information and hints on additional features and configuration, see http://
drupalforfacebook.org/ and the screencasts available at http://www.dave-cohen.com/
node/2246.

4.11 App Design Process
Problem
I’m new to the whole idea of designing applications. What process should I follow?

Solution
Ever get that feeling like you’re standing on the edge of a massive cliff and way down
below you stretches an infinite plane upon which you can see large and very violent
armies massing? Maybe it’s just me. I tend to get that feeling whenever I’m overlooking
what amounts to a religious war with no obvious winner, be it Java versus .NET versus
Ruby on Rails, dogs versus cats (although dogs are clearly superior IMHO), or software
design methodologies. Wikipedia lists 16 different approaches to application design
(http://en.wikipedia.org/wiki/Software_development_process):

• Waterfall model

• Spiral model

• Model driven development

• User experience

• Top-down and bottom-up design

• Chaos model

• Evolutionary prototyping

• Prototyping

• ICONIX process (UML-based object modeling with use cases)

• Unified process

• V-model

• Extreme programming

86 | Chapter 4: Architecture and Design

http://drupalforfacebook.org/
http://drupalforfacebook.org/
http://www.dave-cohen.com/node/2246
http://www.dave-cohen.com/node/2246
http://en.wikipedia.org/wiki/Software_development_process

• Software development rhythms

• Specification and description language

• Incremental funding methodology

• Verification and validation (software)

Most of these are overkill for your purposes, but you should take a few days out of your
busy schedule and read up on them anyway. If you really are new to this and are coming
at the question of methodology as pure as the driven snow, you should take the time
to evaluate the strengths and weaknesses of the different armies before you dive into
the battle.

In the end, you’ll probably find that you need a really lightweight approach that adapts
quickly to the changing demands of a platform such as Facebook. You might find that
37signals’ Getting Real book has a lot of merit when it comes to Facebook app devel-
opment—you can find out more about it, as well as pay your $19 to download the PDF,
at http://gettingreal.37signals.com/.

The most important thing you can leave this recipe with is this: don’t get stuck trying
to pick a methodology at the expense of ever getting started. All of them are just tools
in your toolbox, and although it’s always easier to do a job with the right tool, you can
still get it done with the wrong one. My own process is described next in the Discussion,
but feel free to use anything you’d like, just as long as you get out there and use it.

Discussion
I agree with a lot of what 37signals says in their book, although I tend to prefer a more
structured design process than they advocate. I’ve been on enough teams and built
enough software to know that there is some real truth to the axiom that an hour of
design saves 10 hours of programming. Here’s the process I follow when designing a
new application.

Know thy user

Start off by understanding who you’re building for. Is your app targeted at males aged
17–24? Are you building for stay-at-home moms and dads in their 30s? Do you expect
to attract predominantly French-speaking new immigrants who are trying to get
established? The answer to this question is really the foundation of everything that
comes after, so don’t gloss over it and try to skip ahead. If you’re serious about getting
it right, consider using Alan Cooper’s personas methodology to develop some personas
for your key demographics. For more information, see his book The Inmates Are Run-
ning the Asylum (http://www.cooper.com/insights/books/#inmates) or Wikipedia (http:
//en.wikipedia.org/wiki/Personas).

4.11 App Design Process | 87

http://gettingreal.37signals.com/
http://www.cooper.com/insights/books/#inmates
http://en.wikipedia.org/wiki/Personas
http://en.wikipedia.org/wiki/Personas

Gooooooooooooaaaaaaaaaal!

Now that you know who your users are and have some personas built out to represent
their opinions, what are they going to do in your app? Start with high-level goals and
work your way down into lower-level use cases and bottom-level tasks. A quick break-
down for the Facebook Photos app might look like this:

• Goal: See friends’ latest photos

— Use case: Browse through the latest photos from friends

— Task: Go to the Photos app main page and see the list of newly uploaded
photos, filtered to display only the current user’s friends

• Goal: Share photos with friends

— Use case: Create a new album and upload photos

— Task: Click on the “Create new album” button, then enter a name and
description

— Task: Use the Java applet Photo Uploader to add photos to their new album

• Use case: Send photos to friends off-Facebook

— Task: Copy the URL for a given photo or album from that photo or album’s
page and email to friends

Always remember the age-old adage KISS: Keep It Simple, Stupid. If your app is suc-
cessful and attracts a lot of users, you’re going to need to reconsider a lot of this anyway,
so try to define the smallest set of goals and tasks that you can possibly get away with
for the first version, and then start building them.

Frame the problem

It might be my human-factors background talking, but I never start writing code on a
project until I have a full set of complete user experience sketches. A lot of the problems
you’ll run into writing code will become apparent as you design the user interface (UI),
but the opposite doesn’t tend to be true, and you end up with a so-called “implemen-
tation design”: a user interface that exposes the underlying implementation, which is
often irrelevant for your users.

I start this process by doing wireframes for every page and dialog so that I know what’s
going to be in them, what content I need to write for instructions, buttons, etc., and
which graphics I’m going to need to produce (or get produced). There are about as
many formats and techniques for doing wireframes as there are minutes in the day, so
I suggest that you just experiment until you find something that works for you. Some
people prefer to do wireframes in static HTML (and then use it as the basis for imple-
mentation), others prefer tools such as Visio or OmniGraffle, and others really dig old-
school paper and pencil. The important thing at this point is to sketch out a UI and
spend time thinking about how the different parts interact, rather than shading every
button and getting the colors exactly right. Don’t get hung up on how it looks just yet,

88 | Chapter 4: Architecture and Design

but instead focus on where the big pieces are on the page and how they interact with
each other. Think of this step as creating the architectural blueprints that will define
your application rather than the interior design or construction technique you’ll use to
build it. The main page of the Photos app might look like Figure 4-7.

Thumbnail

Album Title
by Friend Name
Created date Thumbnail

Album Title
by Friend Name
Created date

Thumbnail

Album Title
by Friend Name
Created date Thumbnail

Album Title
by Friend Name
Created date

Thumbnail

Album Title
by Friend Name
Created date Thumbnail

Album Title
by Friend Name
Created date

14 more albums. . .

1 2 3 4 5 Next Last

1 2 3 4 5 Next LastDisplaying 1 - 20 of 3292 friends’ recent albums.

Recent Photo Albums Recently Tagged Friends

+ Create a Photo AlbumPhotos

HelpYour Photos Photos of Me

Figure 4-7. Photos app wireframe

Once you’ve laid out a page, go back through and make sure you know where each
link and button goes. Plan out the interaction for any dynamic interactions (e.g., Ajax),
and identify where you’re going to use a standard Facebook control or roll your own.

If you went through the persona process in the earlier step, you can now use your
personas to evaluate your wireframes as you go through this step. If you didn’t use
personas, or to supplement them, you can use wireframes as ultra-low-fidelity proto-
types to run actual users or potential users through quick sanity checks. Sit them down

4.11 App Design Process | 89

and ask them to accomplish some of the goals from the previous step, using your wire-
frames as though they were real software, and see where they get stuck or confused.

Making a mockery

Now that you have your blueprint done, it’s time to get creative! If you’re not the
designing type, find someone who is and pay them to do this step for you. User en-
gagement increases dramatically when software looks good, and the tiniest details will
make a huge difference to the overall impression of your app. Take a break from reading
this recipe and have an honest moment with your ego over in the corner. Are you the
right person to do this? Most developers aren’t, so don’t be afraid to admit that you
might need some help here.

If your wireframes share a lot of similarities, there’s no need to mock up all of them.
Just concentrate on the differences between them, and you’ll produce enough artwork
to cover the development phase. If you have the time and resources to do so, it’s well
worth running your designs past some potential users to see what they think, but re-
member that everyone gets really emotional about design, so some of the feedback you
get here will be very specific to the individual giving it and not particularly represen-
tative of your users at large. If you do this step properly, your mockup and your final
build will end up being virtually identical. Based on the Photos app wireframe outlined
in the previous step, the mockup might look like Figure 4-8.

Figure 4-8. Photos app mockup

90 | Chapter 4: Architecture and Design

Build it!

That’s it! If you’ve made it to this point, you’re ready to jump in and start building. If
you like to have a plan of attack before you start slinging code, go through the wire-
frames and find all the tricky parts where you’re unsure how you’re going to do some-
thing, and build yourself some prototypes first. Don’t forget about the Facebook Test
Consoles on the Developer site (http://developers.facebook.com/tools.php); these can
help you figure out FBML, API, and FQL without needing to write little test apps.

4.12 The Facebook User Interface Widgets
Problem
I really want my app to fit in on Facebook Platform, so I’d like to use as many of
Facebook’s native widgets in my interface as I can. Is there a style guide or widget library
somewhere?

Solution
Unfortunately, Facebook hasn’t published any official Human Interface Guidelines, so
you’re somewhat on your own. Luckily, they have provided a handful of FBML tags
that will render standard controls, which means you don’t have to worry about styling
them now or changing them later when Facebook updates their look and feel. For more
about why you should use their user interface (UI) widgets, see Recipe 4.13.

Discussion
First off: what’s a widget? From Wikipedia (http://en.wikipedia.org/wiki/GUI_widget):

In computer programming, a widget (or control) is an element of a graphical user inter-
face (GUI) that displays an information arrangement changeable by the user, such as a
window or a text box. The defining characteristic of a widget is to provide a single in-
teraction point for the direct manipulation of a given kind of data. Widgets are basic
visual building blocks which, combined in an application, hold all the data processed by
the application and the available interactions on this data.

There are a whole bunch of UI widgets that you can easily implement with simple FBML
tags, as well as a bunch of UI conventions that you should follow but that you’ll have
to code on your own. This is by no means an exhaustive list, so if you don’t find what
you’re looking for here, take a browse through the FBML Wiki page (http://wiki.devel
opers.facebook.com/index.php/FBML), or just go through the Facebook site and then
take a look at its HTML/CSS.

Simple UI widgets

Thanks to the magic of FBML, implementing the following on your own is often as
simple as inserting a few tags:

4.12 The Facebook User Interface Widgets | 91

http://developers.facebook.com/tools.php
http://en.wikipedia.org/wiki/GUI_widget
http://wiki.developers.facebook.com/index.php/FBML
http://wiki.developers.facebook.com/index.php/FBML

Page headers
Page headers (see Figure 4-9) can include links (or actions) across the top, a Help
link, your app’s name, and a Create button. These are all nested inside an
fb:dashboard tag, which is explained in Recipe 6.36.

Figure 4-9. Facebook Photos header

Tabbed navigation
You can include as many tabs as you’d like, and full support is included for high-
lighting the current tab (see Figure 4-10). More information is in Recipe 6.37.

Facebook has adopted an informal UI convention related to the use of left- and
right-aligned tabs in some of its apps. Generally speaking, left-aligned tabs are used
to sort types of information, while right-aligned tabs are used for actions, as in
Figure 4-11.

Figure 4-10. Facebook Photos tabs

Figure 4-11. Facebook Inbox with left- and right-aligned tabs

Errors and messages
It’s particularly important to be consistent when delivering information to users,
since they’ll be used to seeing this kind of thing reported by Facebook. In order,
from top to bottom, are fb:error, fb:explanation, and fb:message (see Fig-
ure 4-12), which are all documented in Recipe 6.39.

92 | Chapter 4: Architecture and Design

Figure 4-12. Facebook errors, explanations, and messages

UI conventions

Facebook has adopted some UI conventions that aren’t available as simple FBML tags,
but are worth following anyway:

Paging
The convention here is to list on the left the number of objects on this page and
the total number of objects, accompanied by a link back to an index (if applicable),
with paging controls on the right and the current page indicated by an underline
(see Figure 4-13). You can replicate this in your app by taking advantage of the fact
that Facebook hasn’t set a namespace on its own CSS classes, allowing you to use
them, too:

<div class="bar clearfix summary_bar">
 <ul id="pag_nav_links" class="pagerpro">
 <li class="current">
 <a>1

 2

 next

 <div class="summary">
 <h4>
 Blobs 1 - 20 out of 24
 |
 Back to Jay's Stuff
 </h4>
 </div>
</div>

4.12 The Facebook User Interface Widgets | 93

I’ve made one small change from Facebook’s code: it’s generally a bad idea to have
a page link to itself because it’s not the expected behavior for links, so I’ve removed
the href from inside the <a> around the current page.

Figure 4-13. Paging in Facebook Photos

Sidebars
Your home page on Facebook includes a sidebar with very subtle but effective
divisions into sections (Figure 4-14). The sidebar is a 186-pixel-wide div floated
right. The background on the sidebar is achieved by setting the entire Canvas’s
background to http://facebook.com/images/newsfeed_line.gif, which is a 646-pixel-
wide and 1-pixel-tall image set to repeat vertically. Apply a sidebar_item_header
class to your headers:

sidebar_item_header
 background:#E9E9E9 none repeat scroll 0% 0%;
 margin:0pt 5px;
 padding:3px 5px 4px;
 text-align:right;
}

Figure 4-14. Facebook Home sidebar

Canvas Footers
The Footer Bar runs across the bottom of Canvas pages and provides actions (usu-
ally contextualized to the current user: the earlier example is from the bottom of
your Profile page; see Figure 4-15). You can replicate these easily with some simple
HTML:

94 | Chapter 4: Architecture and Design

http://facebook.com/images/newsfeed_line.gif

<div id="footerBar">

 Thingy!
 |
 Stuffs!
 |
 Dudes!

</div>

and some equally simple CSS:

div#footerBar {
 background: #F7F7F7 none repeat scroll 0% 0%;
 border-top: 1px solid #DDDDDD;
 margin: 0px;
 overflow: hidden;
}
div#footerBar ul {
 list-style-image: none;
 list-style-position: outside;
 list-style-type: none;
 margin: 0px;
 padding: 10px 20px 25px;
}
div#footerBar li {
 float: left;
 line-height: 18px;
 padding: 0px 2px;
}

Figure 4-15. Facebook Profile footer

4.13 Facebook’s Global User Interface
—Daniel Burka (see his bio in Contributors)

Problem
I want to develop an application interface that will integrate smoothly and will adapt
successfully with the global Facebook user interface.

Solution
By using user interface tools provided by Facebook and adhering to de facto standards,
your users will find your Facebook application’s user interface inherently intuitive, and
your application will evolve smoothly as the main site changes.

4.13 Facebook’s Global User Interface | 95

Discussion
Facebook application developers are lucky to have a suite of user interface elements
prebuilt for them by default. Designers often have a powerful desire to create original
work that breaks with convention, but, particularly when developing Facebook appli-
cations, the benefit of adhering to standards (both explicit and implicit) far outweighs
the potential benefit of originality.

In the case of developing a Facebook application, you will be developing an interface
within an interface (see Figure 4-16). Your application will exist within the shell of the
global Facebook interface and, possibly even more importantly, your application will
live in a vibrant ecosystem of other applications made by Facebook developers just like
you.

Figure 4-16. Your application within the Facebook shell

In many ways, the Facebook interface can be thought of like an operating system user
interface. In developing their own default applications (such as the messaging system,
your preferences, the News Feed, as well as the default applications) and the framework
for the global user interface (such as the main navigational elements, error dialogs, and
the footer), the Facebook design team has tackled many of the interface challenges you
are likely to come up against. There are standards already developed for tabbed navi-
gation, selectors, item lists, menus, icons, sliders, forms, dialogs, and many of the other
interface elements you are likely to need for your own application (see Figure 4-17).

Figure 4-17. Tabbed navigation, menus, and buttons

The most robust and simplest way to take advantage of Facebook’s existing user in-
terface elements is to tap into them directly with FBML. Using this proprietary markup

96 | Chapter 4: Architecture and Design

language, you can pull directly from Facebook’s own toolkit to build tabbed navigation,
dialog boxes, headings, forms, and other elements. The Facebook Developers Wiki has
a full list of FBML tags and how to use them.

There are many advantages to using FBML. Most importantly, people who use your
application are already familiar with these standard interface elements because they
have been using them elsewhere on Facebook. FBML elements look familiar and behave
in a consistent way across the site and across different applications, no matter what
those applications are for. You can also avoid reinventing the wheel. Developing your
application will be faster and will have fewer bugs by taking advantage of prefabricated
FBML code that has been tested extensively. By relying on FBML, you will also be
future-proofing your application. When Facebook upgrades its user interface, you will
immediately reap the benefits because your own interface will be upgraded seamlessly.
For instance, should Facebook improve its tabbed navigation design, your own tabs
will reflect those improvements without any effort on your part.

Although FBML has many common elements, you will find occasions where custom
interface elements are necessary. In these cases, try to fall back onto de facto
standards—become familiar with Facebook’s default user interface and how other
Facebook application developers have tackled similar issues. If you can copy or mimic
other common implementations of user interface elements, you will reap many of the
same benefits as using FBML. Your users will find your application more intuitive if
they are already familiar with elements you are using (for example, Figure 4-18). Face-
book even documents on its Wiki how to copy some of the common elements that are
available as FBML (http://wiki.developers.facebook.com/index.php/Facebook_Styles).

Figure 4-18. Two list table

All of this said, there is room for branding your application and inserting your own
style into the work. Build a strong foundation of standard user interface elements to
create a highly usable and efficient application, and then integrate your brand in a
meaningful way.

4.13 Facebook’s Global User Interface | 97

http://wiki.developers.facebook.com/index.php/Facebook_Styles

CHAPTER 5

Setting Up Your Environment

The difference between churning out beautiful code and pounding your head against
the wall can often come down to getting your environment configured properly. This
chapter covers some of the things you need to do to become a Facebook developer, and
also some of the things you should really check out to make your life a whole lot easier.

5.1 Creating a Test Account
Problem
I want to test my application as another user who isn’t a developer, but the Facebook
ToS prevent me from creating accounts that aren’t linked to my real identity. What’s
a poor developer to do?

Solution
The Facebook team realized that they were caught in a vicious cycle in which developers
were creating fake accounts for testing and the Facebook police were disabling them
as fakes, thereby upsetting the developers who then created more accounts, thereby
making more work for the police, etc., etc., ad infinitum. Facebook put an end to the
problem by giving us the ability to mark an account as a “test account,” which has most
of the privileges of a real account but with the notable exception of not being able to
see “real” Facebook users or owning Platform applications.

Making a test account is really easy: just create a new Facebook account and then go
to http://www.facebook.com/developers/become_test_account.php while you’re logged
into it. You’ll be shown a confirmation page (Figure 5-1) that reiterates that any ap-
plications owned by this account will be disabled, and you’re one click away from
testing nirvana.

99

http://www.facebook.com/developers/become_test_account.php

Figure 5-1. Becoming a test account

This is very strong magic! Be very, very careful. Test accounts are like
the Matrix: once you’ve swallowed the red pill (or gone to the URL just
listed), there’s no way to go back to living innocently in your pod. Don’t
do this step from your primary Facebook account or you’ll have ban-
ished yourself into Test Account land.

Discussion
Here are a few useful tips on using test accounts:

• Test accounts can be really handy, but the fact that they can’t own applications
(which really means not being registered Developers of an app) means they can’t
see apps that are in Developer Mode and therefore can’t be used to test an app that
isn’t yet public.

• You’ll need a unique email address in order to sign up, but coming up with different
addresses for each account can be a pain. If you have a Gmail account, take a look
at so-called “dot addressing.” Gmail doesn’t recognize dots inside of your email
address, so bob.dylan@gmail.com is the same thing as b.obdylan@gmail.com and
b.o.b.d.y.l.a.n@gmail.com, in that they’ll all get delivered to you. Facebook sees
them all as different addresses and will let you sign up as different accounts. Gmail
also has a much more useful “plus sign addressing” feature in which it ignores
everything after a plus sign in your address (so bobdylan+test1@gmail.com is the
same as bobdylan+test2@gmail.com), but unfortunately Facebook won’t allow
plus signs in emails.

• Facebook login sessions persist across all the tabs and windows in your browser
through the use of session cookies, but they can’t persist into different browsers.
Since you’re a kick-ass web developer and you already test in Firefox, Safari, and
IE 6/7/8 on Windows and in Firefox and Safari on Mac, why not log into Facebook
with a different test account on each platform? That way you cover different
browsers and different users at the same time.

100 | Chapter 5: Setting Up Your Environment

5.2 Facebook Clients
Problem
I have a good grasp on my idea and how to build it, but I need to find the right Facebook
client for my development environment before I can get started.

Solution
Most of the resources you’re going to need to get started can be found on the Facebook
Developers site at http://developers.facebook.com.

Discussion
Facebook officially supports Client Libraries for PHP 4 and PHP 5, which you can find
at http://developers.facebook.com/resources.php. Facebook has also recently launched
a JavaScript Client Library (which was still in beta at the time this was written), which
you can find at http://wiki.developers.facebook.com/index.php/JavaScript_Client_Li
brary. There used to be an officially supported Java library, but it’s been discontinued
(presumably due to a lack of interest).

If you’re intent on using a different language and don’t mind that its Client Libraries
might not be up-to-date, you’ll find a full list on the main page of the Wiki at http://
wiki.developers.facebook.com/index.php/Main_Page (including ASP.NET, Perl,
Python, Ruby on Rails, etc.).

The PHP Client is currently missing four methods that are available through the API:
Photos.createAlbum(), Photos.upload(), photos.addTag(), and
Users.hasAppPermission() (see Recipe 9.57). You can use a third-party extension to
get around the fifth method (see Recipe 9.45).

5.3 JavaScript Client Library
Problem
I’d like to use the JavaScript Client Library to access the API, but I want to make sure
I understand any potential limitations and how to get set up before I jump in.

Solution
The JavaScript Client Library is a new addition to the Facebook family and was still in
beta at the time this book went to press. The biggest advantage is that you can use it
from an HTML page with no server-side code required, which can be served up by
Facebook either inside an iFrame-based app or inside an fb:iframe in a Canvas-based
app. This opens up the possibility of creating apps with really rich Ajax interactions,

5.3 JavaScript Client Library | 101

http://developers.facebook.com
http://developers.facebook.com/resources.php
http://wiki.developers.facebook.com/index.php/JavaScript_Client_Library
http://wiki.developers.facebook.com/index.php/JavaScript_Client_Library
http://wiki.developers.facebook.com/index.php/Main_Page
http://wiki.developers.facebook.com/index.php/Main_Page

which can even run outside of Facebook (provided that the user is logged into Facebook
in another window or tab).

Since there’s no server-side code, there’s nothing for you to download. The first step
is to create what’s known as a “channel page” on your server, which uses a library
developed by Facebook to enable communications between your site and Facebook
without running into cross-domain scripting limitations. Create a page on your site
called xd_receiver.html and enter the following HTML into it (you can copy and paste
from http://wiki.developers.facebook.com/index.php/Cross_Domain_Communication
_Channel):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Cross-Domain Receiver Page</title>
</head>
<body>
 <script src="http://static.ak.facebook.com/js/api_lib/
v0.3/XdCommReceiver.debug.js" type="text/javascript"></script>
</body>
</html>

Now you can create the HTML pages for your app. Load the Client Library JavaScript
into the <head> of each page:

<script type="text/javascript" src="http://static.ak.face
book.com/js/api_lib/v0.3/FeatureLoader.js"></script>

When you’re ready to start making API calls, instantiate a Facebook API Client object,
passing in your app’s API key and a domain-relative URL to the xd_receiver.html page:

var api = new FB.ApiClient('1234567890123456789', 'xd_receiver.html', null);

That’s about it for setup! Now you’re ready to build your JavaScript-based app.

Discussion
If you’re doing a lot of JavaScript development and aren’t already using Firefox with
the Firebug add-on installed, I highly recommend you make the switch (see Rec-
ipe 7.17 for more info about Firebug). Apple has recently added some fantastic
developer tools to Safari, which is quickly becoming an excellent platform for building
JavaScript apps. Microsoft’s Internet Explorer 8 has some really compelling JavaScript
features (particularly the debugger), but we won’t see it in reliable production for some
time yet.

There are eight methods in the JavaScript Client Library that give you control over the
Canvas page that your app is running inside:

FB.CanvasClient.startTimerToSizeToContent()
iFrames in Canvas pages are sized to fill the remaining space in the page by default.
If you would like your iFrame to adapt to the content you put in it, call

102 | Chapter 5: Setting Up Your Environment

http://wiki.developers.facebook.com/index.php/Cross_Domain_Communication_Channel
http://wiki.developers.facebook.com/index.php/Cross_Domain_Communication_Channel

FB.CanvasClient.startTimerToSizeToContent() and Facebook will start a timer
that regularly checks in on the content and resizes appropriately.

FB.CanvasClient.stopTimerToSizeToContent()
When you are ready to have the iFrame stop resizing, call
FB.CanvasClient.stopTimerToSizeToContent(), and it will revert to the default
behavior.

FB.CanvasClient.setSizeToContent()
If you want to make a one-time adjustment to the size to match the content (rather
than having it continuously adjust), call FB.CanvasClient.setSizeToContent().

FB.CanvasClient.setCanvasHeight()
You can manually adjust the height of the Canvas by calling
FB.CanvasClient.setCanvasHeight(). Note that the width is always set to 646
pixels.

FB.CanvasClient.add_windowSizeChanged(),
FB.CanvasClient.remove_windowSizeChanged()

These two methods let you add a listener to the window’s event so that you can be
informed of changes to the window’s size and adjust appropriately.

FB.CanvasClient.get_timerInterval(), FB.CanvasClient.set_timerInterval()
These final two methods let you get and set the timer interval used in
FB.CanvasClient.startTimerToSizeToContent().

The Wiki’s JavaScript Client Library page (http://wiki.developers.facebook.com/index
.php/JavaScript_Client_Library) has some great sample code on it which demonstrates
retrieving a user’s friends and how to make a bunch of API calls in batched mode to
save bandwidth and increase performance.

The library currently supports Internet Explorer 6 and 7, Safari 3, and Firefox 2 and 3
(the Wiki currently says that the beta of Firefox 3 is unsupported, but since the browser
has shipped, support will certainly follow shortly if it isn’t already provided). Facebook
has promised to support Internet Explorer 8 when it ships.

5.4 Starting Out in PHP
—James DeFillippo (see his bio in Contributors)

Problem
I’m new to PHP and want some general tips on optimizing my application so that it
can scale gracefully.

5.4 Starting Out in PHP | 103

http://wiki.developers.facebook.com/index.php/JavaScript_Client_Library
http://wiki.developers.facebook.com/index.php/JavaScript_Client_Library

Solution
One of the easiest and most overlooked ways to optimize a PHP application is the
proper use of double and single quotes when handling strings. Using double quotes
only where they are entirely necessary can give your app the runway it needs to get off
the ground.

For example, you wouldn’t want to use:

echo "This is a simple piece of text with a single $variable";

when this is faster to execute with much lower memory requirements:

echo 'This is a simple piece of text with a single ' . $variable;

Discussion
When dealing with strings in PHP, there are two ways of using quotation marks to wrap
your strings. One involves using single quotes (') and the other uses double quotes
("). There is a major difference—not only in functionality, but also in speed—when it
comes to using the two different options.

PHP will take anything wrapped in a matching set of single quotes and treat that as a
string literal. Literally anything in between single quotes is a string and should be treated
as such, with no interference from the parser. If you wrap the string in double quotes,
though, PHP will parse every element in that string looking for variables for reassign-
ment. Even if none are present, it still has to look, which means if you are wrapping
any piece of text in double quotes that does not have a variable in it, you’re throwing
compute cycles away and making your application slower for no reason.

On smaller and low-load applications, the difference in speed is not noticeable, which
is why it’s often overlooked during testing and ignored as a potential bottleneck. As
your application grows in size, complexity, and traffic, the difference can be extremely
troublesome and can hinder your ability to serve your clients or customers.

A recent application that I rearchitected to use proper quoting for strings saw an im-
mediate speed increase of 35%! And all we had to do was make sure that the right
quotes were used for the right job.

When assigning plain text strings, common practice is to use something like this:

$error_message = "Hey $username! Something's broken. Try again.";

Since there is a variable in the assignment, common thinking is to wrap the entire
assignment in double quotes and call it a day. This works just fine from a functional
standpoint, but from a speed standpoint you’re wasting time and memory by having
PHP look at every other word in that string to see if it also is a variable. The preferred
method for assigning a string with a variable is the "." concatenation method. For
example:

$error_message = 'Hey ' . $username . '! Something\'s broken. Try again.';

104 | Chapter 5: Setting Up Your Environment

By breaking the line into two string literals and a simple variable replacement, we’ve
taken the burden off of PHP when it comes to finding out exactly what each element
of that assignment is. You will also note the \' in the previous example. When you’re
dealing with string literals and single quotes, you need to remember to escape your
containing characters. The same thing goes for double quotes inside of a double-quoted
string.

And quotes don’t just matter when you’re doing variable assignments or echos; they
also matter when dealing with arrays, ifs, elseifs, and almost anything else you can
use a string for. The following are a few of the more common things I’ve seen that can
easily sneak into your code if you’re used to using double quotes for all your string
needs.

When manually initializing an array, you should always use single quotes for any
strings:

// Don't
$foo = array("a", "b", "c");

// Do
$foo = array('a', 'b', 'c');

When accessing a named array slice, always (and I mean always) use single quotes:

// Don't
$foo = $array["slice"];

// Do
$foo = $array['slice'];

Often something like this can get by and turn into a massive loop:

for ($x=0;$x<100000;++$x)
{
 doSomethingWith($array[$x]["slice"]);
}

In this example, you’re iterating over and over again on that array, and with every loop,
PHP is taking the string “slice” and checking it to see whether it has any variables in it
for reassignment. This wastes memory and cycles on a much larger scale than a single
assignment or if statement.

When upgrading older code that uses a lot of double quotes to a single-quote model,
the biggest gotcha can come from special escaped characters. These characters include
\n, \t, and \r, which, when used in a double-quoted string, get replaced with a newline,
tab, and carriage return, respectively. You can use the concatenation method for keep-
ing these structures intact, though, and still save processor time and memory. For
example:

echo 'This is a line with a newline at the end' . "\n";

5.4 Starting Out in PHP | 105

Proper quoting of strings can sometimes be a pain, but the rewards over time in terms
of speed, hardware costs, man hours, and your sanity can be extraordinary in any app
that you want to scale to a global audience. And who doesn’t want that?

5.5 Demo Applications
Problem
It would be so awesome if I had some demo applications I could download and play
with!

Solution and Discussion
Lucky for you, there are a bunch of demo apps that you can grab and dig through.
You’ll find them on the Wiki at http://wiki.developers.facebook.com/index.php/Demos.
The current crop of three demos includes:

Footprints
An extremely basic application included with the PHP 4 and PHP 5 clients. You
can play with a live demo at http://apps.facebook.com/footprints/.

Restaurants
A more advanced demo showing some of the more complex features, including
Mock Ajax, FBJS, and the Data Store API. It’s backed by premade data on your
MySQL server and/or the Facebook Data Store API.

Who’s Showing Up
Another “real” application, demonstrating building applications that are installa-
ble both for users and for Facebook Pages, such as those for businesses, bands, and
brands.

In addition to the apps provided by Facebook, Jesse Stay (author of O’Reilly’s excellent
FBML Essentials and coauthor of I’m on Facebook—Now What???) has built an app
that demonstrates almost all of the FBML tags; see http://apps.facebook.com/fbmlessen
tials.

5.6 Developer Documentation
Problem
This book is the greatest thing since sliced bread, but I need more technical detail on
a specific topic and/or long listings of sample code.

106 | Chapter 5: Setting Up Your Environment

http://wiki.developers.facebook.com/index.php/Demos
http://apps.facebook.com/footprints/
http://apps.facebook.com/fbmlessentials
http://apps.facebook.com/fbmlessentials

Solution
Facebook Platform launched with some official documentation (see http://developers
.facebook.com, not to be confused with http://www.facebook.com/developers, which is
the Developer app), but that quickly became out-of-date. Realizing that there was a
veritable army of people who were happy to help keep the docs relevant, the Facebook
team quickly launched a wiki and stopped updating the old docs, which languish as a
reminder of days gone by. If you’re looking for info or want to contribute to keeping it
real, check out the Developers Wiki at http://wiki.developers.facebook.com.

Discussion
The Wiki is a real treasure trove of information but can be very difficult to navigate.
Since it’s essentially crowdsourced documentation, different authors have come up
with very different ways to organize different sections, which leads to a palpable sense
of disorientation (as an example, check out the excellent index page for the FBML
section and the chaotic jumble of FBJS’s single page). The joy of wikis is that we’re all
free to update and edit them, and so I encourage you to contribute back to the com-
munity by jumping in and helping to keep it orderly, up-to-date, and well-organized.

5.7 Test Consoles
Problem
It can be a real pain to set up a testing framework as a Facebook app if you just want
to try out a few lines of API code. Surely there must be a better way!

Solution
Facebook makes three test consoles available to developers:

API Test Console
Found at http://developers.facebook.com/tools.php?api, the API Test Console lets
you pick an API call from a drop-down menu, specify any optional parameters,
and see the returned XML for your logged-in user. It’s very useful for figuring out
what you’ll get back from a given call so that you can write code to handle it. There
isn’t an FQL-specific Test Console, but you will find an fql.query option in the
Method drop-down here.

FBML Test Console
Found at http://developers.facebook.com/tools.php?fbml, the FBML Test Console
lets you choose where your FBML will occur (narrow profile box, wide profile
box, canvas, email, notification, request, feed title, feed body, and mobile) and lets
you enter some FBML that will be rendered from the logged-in user’s perspective
(and shown in HTML source form).

5.7 Test Consoles | 107

http://developers.facebook.com
http://developers.facebook.com
http://www.facebook.com/developers
http://wiki.developers.facebook.com
http://developers.facebook.com/tools.php?api
http://developers.facebook.com/tools.php?fbml

Feed Preview Console
Found at http://developers.facebook.com/tools.php?feed, the Feed Preview Console
is a really quick way to preview what a given story will look like in a user’s News
and Mini-Feeds. This is critical to making sure your feed items will make effective
use of the social graph, so spend time in here tweaking to get them right.

Discussion
All three consoles use the Facebook session from your browser, so they’ll work from
the perspective of the logged-in user. If you want to see how different code will be seen
by different users, use more than one browser and log into test accounts in the others
(see Recipe 5.1). It’s pretty easy to tweak the code in your main account and then copy
and paste it into the console in other browsers to double-check.

5.8 Developer Forums: Help!
Problem
I’ve been through this book and I’ve read through the Wiki, but I’m really stuck and
nothing is working. Help!

Solution
Gotham has the bat symbol, Metropolis has Superman, and we have the Developer
Forums. Whether you’re really stuck or are a super-talented dev master with knowledge
pouring out your ears, the Forums are a great place to meet other developers, ask ques-
tions, and get help. You’ll find them at http://forum.developers.facebook.com.

It’s also worth checking to see when the next Facebook Developer Garage is happening
near you, since these events are like being in the middle of a real-world forum with real
people who can answer your questions (and who you can then buy drinks for!). Keep
an eye on the Developer Garage Calendar at http://wiki.developers.facebook.com/index
.php/Garage_Calendar.

Discussion
Don’t forget to contribute back to the community! If you ask a question in the forums
and get a helpful answer, make sure you come back when you’ve grown your developer
chops and help out others who are just finding their footing. Also, if you’re new to the
world of online forums and discussion boards, spend a little time looking through the
forums before you post to get a feel for the right tone and content, and to make sure
that no one else has already asked your question and received an answer.

108 | Chapter 5: Setting Up Your Environment

http://developers.facebook.com/tools.php?feed
http://forum.developers.facebook.com
http://wiki.developers.facebook.com/index.php/Garage_Calendar
http://wiki.developers.facebook.com/index.php/Garage_Calendar

5.9 Facebook Bug Squashing
Problem
I’ve found an honest-to-goodness bug in Facebook Platform. Now what?

Solution
Platform bugs are actually very rare, so first off you should pat yourself on the back for
a job well done. Then you should hit up the Facebook bug tracking system at http://
bugs.developers.facebook.com/.

Discussion
The Facebook bug tracking system is really Bugzilla with a prettier face. For those of
you not familiar with Bugzilla, it’s an open source bug tracker developed by the Mozilla
Foundation and used by them to track defects in all of their products. It’s not the most
intuitive application but it is incredibly powerful, and Facebook has done a good job
of cleaning up the user interface while still maintaining the irreverent humor Bugzilla
is known for (try doing a search that returns no bugs).

One of the most powerful tools within the system is the ability to save searches, and
you’ll find that your shiny new Bug Tracker account comes with a predefined “My
Bugs” search, which is accessible in the footer of every page. Once you’ve done a search,
you’ll find a “Remember search as” option at the bottom of the page, which will save
your search under a new name.

5.10 Facebook Developer Software Toolbox
Problem
What software tools do I need to build Facebook apps? Is this going to be expensive?

Solution
The good news is that you can get away with entirely free software to build your app!
The bad news is that there’s only good news. So, I guess that’s just good news, then!
Phew.

Until Facebook released Facebook Open Platform, you couldn’t build Facebook apps
locally on your own computer because you needed the Facebook servers and parsers
and other crazy software running. Now you can download Facebook Open Platform,
which is licensed under a combination of the Common Public Attribution License
(CPAL) and Mozilla Public License (MPL), get it running locally on your dev machine,
and go to town. So, I guess there used to be a piece of bad news (you always needed to
have a web connection available to test with), but it’s now a mostly good piece (you

5.10 Facebook Developer Software Toolbox | 109

http://bugs.developers.facebook.com/
http://bugs.developers.facebook.com/

can get it running locally if you’re good at the server setup and software-compiling-type
stuff). You can find out more about Facebook Open Platform at http://developers.face
book.com/fbopen/.

Other than that, you’ll need a text editor for writing code, an FTP client for uploading
it to your server (see Recipe 5.12 for more info), and some sort of graphics editor for
images. If you have a toolkit in place for doing web development now, you should be
more than ready.

Discussion
I’m not going to cover getting Facebook Open Platform running, since that could be
almost a book on its own given the number of possible operating system and server
combinations out there. You’re going to spend most of your time in your text editor,
so that’s the focus of this discussion.

Choosing the best text editor is a little bit like picking the best right hand. Editors
disappear when you’re comfortable in them, becoming a natural extension of your
code-writing brain directly into your computer. Unless you’re a heavy web designer (in
which case you’re probably quite at home in the Adobe Creative Suite), this is the piece
of software you’re going to use most often while building your app. The following are
a few of the more popular options for different OSes.

Mac OS X

Mac-based developers tend to be in one of three camps:

Bare Bones Software’s BBEdit
The old-school choice of pros. I’m a BBEdit user myself, mostly because I’ve been
using it for more than 10 years and I couldn’t possibly face the idea of learning a
new editor. Standing by its long-term slogan, Bare Bones still maintains that “It
doesn’t suck.®”, and I firmly agree. More info at http://bbedit.com/products/bbe
dit/. The cost is $129 for an individual or $49 for an educational license.

MacroMates’ TextMate
A relative newcomer (compared to the venerable BBEdit), TextMate’s slogan is,
“The missing editor for Mac OS X.” This is a full-featured editor with all the bells
and whistles you would expect, and it is particularly popular in the Ruby on Rails
world (though it has support for more than 50 languages). More info at http://
macromates.com/. The cost is €39 for an individual (which translated to about USD
$64 in May 2008). Educational/academic licenses are available, though the price
isn’t listed.

Panic Software’s Coda
Coda is the newest contender for the Mac OS X editor throne. If you’re a web
developer who focuses on HTML/CSS/JavaScript and does PHP development, you
should take a serious look at this app. It includes a full FTP/SFTP client based on
Panic’s popular Transmit client, file management, a great text editor based on the

110 | Chapter 5: Setting Up Your Environment

http://developers.facebook.com/fbopen/
http://developers.facebook.com/fbopen/
http://bbedit.com/products/bbedit/
http://bbedit.com/products/bbedit/
http://macromates.com/
http://macromates.com/

Subetha Engine, a Preview window that uses WebKit (Safari’s rendering engine),
a WYSIWYG CSS editor, an integrated Terminal command-line window, and a
built-in reference library of HTML, CSS, JavaScript, and PHP books. More info at
http://www.panic.com/coda/. The cost is $79 for an individual, or $69 if you already
own Transmit 3.

Windows

I’m less familiar with the world of Windows editors, being Mac-based myself. Short of
advising you to switch to a Mac, I can offer the following list, solicited from my
Windows-based developer-type friends:

E Text Editor
If you’re a fan of TextMate on Mac OS X, this is the editor for you (its slogan is,
in fact, “The power of TextMate on Windows”). Full support for TextMate com-
mands, snippets, and bundles makes this an excellent choice if you spend time
between platforms, and it is a really solid editor in its own right. Get more info at
http://www.e-texteditor.com/. The cost is $34.95 for an individual, with no obvious
educational licensing.

Notepad++
Notepad++ is an open source and entirely free replacement for Windows’ built-in
Notepad editor. This is a relatively mature editor with many of the high-end fea-
tures you’ll find elsewhere, including tabbed windows, syntax coloring, regexp,
macros, and so on. More info at http://notepad-plus.sourceforge.net/uk/site.htm.

Helios Software Solutions TextPad
This fairly popular editor was designed to follow the Windows XP user interface
guidelines, so you should feel right at home if that’s your operating system of
choice. More info at http://www.textpad.com/products/textpad/. The cost is $33 for
an individual, with educational discounts available on request.

Linux

If you’re running Linux as your primary operating system, you certainly don’t need my
advice on text editors (and I’m certainly not about to step into the vi/Emacs war without
at least a Pico or NEdit to shield myself with).

Eclipse

If you’re into the idea of an open source, cross-platform editor, particularly one that is
extendible through a veritable mountain of third-party plugins, check out Eclipse at
http://www.eclipse.org/.

5.10 Facebook Developer Software Toolbox | 111

http://www.panic.com/coda/
http://www.e-texteditor.com/
http://notepad-plus.sourceforge.net/uk/site.htm
http://www.textpad.com/products/textpad/
http://www.eclipse.org/

5.11 Weekly Facebook Pushes
Problem
How will I know when Facebook is going to push new code to its production servers?
What if it breaks my app?!

Solution
Facebook generally does one weekly push of new code to their production servers,
which is currently scheduled for Tuesdays. The details of the push (which is, essentially,
the list of check-ins to Facebook’s source control server) are available from the Wiki’s
Push Changes page at http://wiki.developers.facebook.com/index.php/Category:Push
_Changes.

Discussion
If you’re actively working on a new app or maintaining an existing one, you should
make sure to test it on Wednesdays to see whether the push has broken anything for
you. But don’t fixate on that day of the week, as Facebook sometimes moves the actual
push day to Monday. You can see when the push is scheduled by keeping up with the
Platform Status Feed from the Developer app, which you can find at http://www.face
book.com/developers/message.php?id=233, or you can subscribe to it by RSS/Atom at
http://www.facebook.com/feeds/api_messages.php.

As of mid-May 2008, Facebook has started pushing its release candidates to http://www
.beta.facebook.com on the Monday prior to the Tuesday push to production, so that
developers can test and report bugs. You should definitely take advantage of that testing
window, so schedule some blocked-off time on Monday nights to make sure your babies
haven’t broken.

5.12 Hosting
Problem
I need to find reliable and scalable hosting for my Facebook applications.

Solution
Hosting a Facebook app doesn’t have any real requirements, other than the ability to
rapidly scale up if your app becomes popular.

112 | Chapter 5: Setting Up Your Environment

http://wiki.developers.facebook.com/index.php/Category:Push_Changes
http://wiki.developers.facebook.com/index.php/Category:Push_Changes
http://www.facebook.com/developers/message.php?id=233
http://www.facebook.com/developers/message.php?id=233
http://www.facebook.com/feeds/api_messages.php
http://www.beta.facebook.com
http://www.beta.facebook.com

Unclear on why you would need your own hosting since your app is on
Facebook? Check out Chapter 4 for more information on the way Face-
book apps work.

Facebook has negotiated with Joyent and Amazon Web Services to offer programs
tailored to Platform developers. You can, of course, host your app anywhere you’d like,
but make sure that your hosting provider doesn’t have a really expensive ramp up if
you exceed your plan. Your app could become the hottest thing on Facebook
overnight, which would be awesome, but then you could get a bill from your provider
for $100,000 in overages, which would suck (to say the least).

If you’re happy with your existing hosting and have already checked to
make sure you’re OK to become #1 with a bullet, you can safely skip
the following discussion.

Discussion
Facebook’s Developer Resource page lists two hosting partner programs: Joyent Face-
book Developers Progam and Amazon Web Services (AWS).

Joyent Facebook developers program

A proud member and leader of the cloud computing world, Joyent provides scalable
web application hosting using their Accelerator technology. From its site (http://joyent
.com/developers/facebook):

Facebook, Joyent, and Dell have partnered to provide free scalable, on-demand
infrastructure from Joyent to Facebook developers. Joyent’s Accelerator on-demand in-
frastructure (peered with Facebook’s datacenter!) provides the very best load balancers,
routing and switching fabric, x86 servers, and storage from Dell. Facebook developers
can take advantage of Joyent Accelerators to quickly launch Facebook applications
capable of scaling to millions of users. All for free.

Joyent’s program offers one of its entry-level Accelerators for one year for free (up to
certain levels, over and above which you have to pay), after which you have to start
paying. A limited number of free Accelerators are available, so you might not get a spot
if you want to take advantage of this program. We host our Zerofootprint application
with Joyent (in a non-free account) and have been very happy with the service and
support, so I can personally recommend it.

As of May 2008, the restrictions on the free Accelerator are as follows: you need to use
your Accelerator within the first 30 days of signing up (or they release it back into the
pool); you need to log into your Accelerator every 60 days by either ssh or webadmin;
you have 512 MB of RAM and 10 GB of storage; you can use the Accelerator to host
non-Facebook apps but need to have at least one active Facebook app (i.e., more than

5.12 Hosting | 113

http://joyent.com/developers/facebook
http://joyent.com/developers/facebook

50 total users); and you can have only one Accelerator account per person. If you want
to bypass the potential hassle of waiting for a free account, pricing for regular Accel-
erators starts at $45/month for 5 GB of storage, 256 MB of RAM, and 1/16 of a CPU,
and they range up to $4,000/month for 100 GB of storage, 32 GB of RAM, and 8 CPUs.
The Joyent team has a post up on their blog about a presentation they did at the
Graphing Social Patterns conference in 2007, which includes some price comparisons
with Amazon Web Services, showing that you can save a considerable amount by going
with Joyent’s Accelerators: http://joyeur.com/2007/10/10/graphing-social-patterns-joy
ent-web-application-presentation. Check the math for yourselves since prices may well
have changed.

More info about Accelerators can be found at http://www.joyent.com/accelerator.

Amazon Web Services (AWS)

AWS may have started as an attempt by Amazon to leverage extra capacity in its data
centers into a new revenue earner, but it’s grown way beyond that. Its fourth quarter
earnings report for 2007 revealed that traffic to AWS had exceeded traffic to Amazon’s
actual sites for the first time:

Adoption of Amazon Elastic Compute Cloud (EC2) and Amazon Simple Storage Service
(S3) continues to grow. As an indicator of adoption, bandwidth utilized by these services
in fourth quarter 2007 was even greater than bandwidth utilized in the same period by
all of http://amazon.com’s global websites combined.

Facebook and Amazon have partnered together to provide hosting in EC2 and S3 for
Facebook apps, as well as some sample code, plug-ins, etc. See Recipes 5.13 and 5.14
for more information about setting up those services.

As of May 2008, the rough cost to host 1 GB worth of assets on S3 (1 GB of data inbound,
100 GB outbound, 1000 PUT/LIST requests, 1000 other requests) and to have a small
instance of EC2 running for the full month (with 100 GB of data in and out) was $116.
That won’t handle a popular Facebook application, but it would serve up a smaller app
without a huge number of graphic and rich-media resources.

More information about Amazon Web Services can be found at http://www.amazonaws
.com.

5.13 Amazonian Backends: Simple Storage Solution
Problem
My app is going to require me to store a whole big heaping pile of rich-media files,
which are huge and are going to gobble up my entire monthly bandwidth allocation in
one bite.

114 | Chapter 5: Setting Up Your Environment

http://joyeur.com/2007/10/10/graphing-social-patterns-joyent-web-application-presentation
http://joyeur.com/2007/10/10/graphing-social-patterns-joyent-web-application-presentation
http://www.joyent.com/accelerator
http://amazon.com
http://www.amazonaws.com
http://www.amazonaws.com

Solution
Store your media files (or any files, for that matter) on Amazon Simple Storage Solution
(S3), part of Amazon’s growing family of web services. Don’t just take it from me—
Nat Brown, CTO of iLike, is a big fan of S3:

S3 is a no-brainer if you need to scale out delivery of simple content or provide secure
limitless storage. We chose S3 for expediency (we were up and running within a few
hours) and usage-based pricing (instead of minimum commits and long-term contracts).

Also, the active open source community, growing commercial ecosystem of products &
services around AWS, and the high-quality tools for working with AWS are not only
great resources for us but they also indicate that the community will be around for the
long-term and so we feel comfortable basing more of our architecture on AWS.

You can read a full interview with Nat about how iLike uses AWS at http://tinyurl.com/
3j7hmw (the actual Amazon URL is so long and embarrassingly full of weird parameters
that it’s actually unprintable).

Discussion
Back in the bad old days of the first bubble, it used to be that startups had to raise
bucket loads of money, which they then handed straight to the network hardware and
server makers in exchange for rooms full of gear, which they could then sell at fire sale
prices when the bubble popped. The Web 2.0 revolution has turned that entire equation
upside down, giving startups the ability to get going with almost no upfront cost by
building entirely on services like S3. So many web apps are now built on Amazon S3
that a very irregular outage in early February 2008 nearly brought the Web to a crashing
halt. Other than that single blip, S3 (and all of the AWSs) have been rock solid and
completely reliable as they continue their inexorable march toward complete web
backend dominance.

S3 is a godsend for developers on a tight budget because it brings the cost of storing
and transferring data down to the point where they basically disappear. I store my
personal library of photographs—about 30 GB—on S3, and I pay about $5/month for
the storage and bandwidth to access them. For a server located in the U.S. (European
servers are slightly more expensive), storage is currently $0.15/GB/month, $0.10/GB
transferred into S3, and between $0.10 and $0.17 for data out, depending how much
you pull. To get a better idea of pricing, you can play with the AWS Simple Monthly
Calculator at http://calculator.s3.amazonaws.com/calc5.html.

Setting up your AWS account

The first step is to sign up for an AWS account at http://www.amazonaws.com. You will
need to activate the S3 service on your account by visiting the S3 page (http://s3.ama
zonaws.com) and clicking on the big “Sign Up For This Web Service” button on the
right side, shown in Figure 5-2.

5.13 Amazonian Backends: Simple Storage Solution | 115

http://tinyurl.com/3j7hmw
http://tinyurl.com/3j7hmw
http://calculator.s3.amazonaws.com/calc5.html
http://www.amazonaws.com
http://s3.amazonaws.com
http://s3.amazonaws.com

Figure 5-2. The eponymously named “Sign Up For This Web Service” button

S3 provides developers with API and secret keys (which will feel familiar to a Facebook
expert like yourself), which you can collect by logging into your account and then
selecting “AWS Access Identifiers” from the yellow “Your Web Services Account”
drop-down menu in the upper-righthand corner of most pages (Amazon’s URLs are
unfortunately completely useless for sharing between users, so you’ll just have to follow
along; see Figure 5-3).

Figure 5-3. AWS menu

You can view your Secret Access Key by clicking on the Show link, as in Figure 5-4.

Figure 5-4. Amazon Web Services access identifiers

Getting foxy with S3Fox

Once you have those puppies, it’s time to find an S3 client that you’re comfortable
with. You have quite a few options to choose from, including S3Fox if you’re a Firefox

116 | Chapter 5: Setting Up Your Environment

user (https://addons.mozilla.org/en-US/firefox/addon/3247), or Panic’s Transmit if you
are on a Mac (the best FTP/SFTP client in the world; http://www.panic.com/trans
mit/). If you’d like to use S3 for personal storage (as I do with photos), I highly recom-
mend JungleDisk on both Macs and PCs (http://www.jungledisk.com/), though note
that the automated file renaming it does makes it less useful if you’re using S3 for web
development. I’m going to use S3Fox as an example, mostly because it’s cross-platform.

After you’ve installed the Add-on and restarted Firefox, you’ll find a new “S3 Organ-
izer” entry in the Tools menu, as shown in Figure 5-5.

Figure 5-5. S3 Organizer in Firefox’s Tools menu

Selecting that item will open the S3 Organizer, and when you open it for the first time,
it will prompt you to enter your account info. Click on the “Manage Accounts” item
in the top-left corner of the S3 Organizer window to open the Accounts window
(Figure 5-6), into which you should carefully place your S3 credentials.

Figure 5-6. S3 Organizer account preferences

5.13 Amazonian Backends: Simple Storage Solution | 117

https://addons.mozilla.org/en-US/firefox/addon/3247
http://www.panic.com/transmit/
http://www.panic.com/transmit/
http://www.jungledisk.com/

Clicking “Close” will close the Accounts window and should connect you to your S3
account on the right side of the S3 Organizer window (Figure 5-7).

Figure 5-7. S3Fox Organizer window

Buckets of files

S3 is essentially a flat file system, in that it doesn’t support nested hierarchies of folders.
You can create “buckets” (which are basically folders), but you can’t put them inside
of each other. We’re going to create a new bucket first, and you should do this for each
of the apps for which you want to store files on S3. If your app’s name is “Jay’s Super
Cool Facebook App,” you might create a bucket called “jay.super.cool.app” (you’re
only allowed to use lowercase letters, and you never want to put spaces into filenames
on servers). Click on the “Create Directory” button above the file list on the right (it’s
the little blue folder with the spark of life), and then name your new bucket (Figure 5-8).

Don’t be confused by the fact that the button is called “Create Directory” and that the
dialog box uses the terms “Folder” and “Bucket” interchangeably. You can now upload
any files you’d like, either by selecting them on the left and clicking the blue arrow, or
by dragging and dropping from right to left.

118 | Chapter 5: Setting Up Your Environment

Figure 5-8. S3Fox new bucket

As a final step, you’ll need to edit the permissions on your new bucket to allow
“Everyone” to read the files, which you can do by selecting it in the list and clicking on
the “Edit ACL” button (the Access Control List—the paper and pencil icon). Click on
the red “X” in the Everyone/Read box to turn it into a green checkmark, turn on the
“Apply to subfolders” checkbox, and then click Save (Figure 5-9).

Figure 5-9. S3Fox ACL

5.13 Amazonian Backends: Simple Storage Solution | 119

That should set the permissions of everything in your new bucket to match. You can
now embed those images right in your HTML (or serve up PDFs, embed videos, etc.)
by using the URL of your bucket:

Interacting with S3’s API

Adding files to S3 manually is great if your app has a small number of images or media
files, but what about handling user-generated content uploads? A very popular app
might have a million users, and if 10% of them are active every day and a quarter of
those upload a 100k image, you’re looking at about 2 GB a day in new data. You
certainly don’t want to have to upload that by hand!

There are a number of different ways to interact with S3 via the AWS API, including
some great Client Libraries for different languages:

Neurofuzzy’s Amazon PHP class
http://neurofuzzy.net/2006/03/17/amazon-s3-php-class/

Edoceo, Inc.’s phps3tk
http://edoceo.com/creo/phps3tk

Undesigned’s Amazon S3 PHP class
http://undesigned.org.za/2007/10/22/amazon-s3-php-class

“How to Serve Static Files From Amazon’s S3” from the Ruby on Rails wiki
http://wiki.rubyonrails.org/rails/pages/howtoservestaticfilesfromamazonss3

JetS3t, an open source Java toolkit for Amazon S3
http://jets3t.s3.amazonaws.com/downloads.html

5.14 Amazonian Backends: Hosting on Elastic Cloud Computing
Problem
I want to make sure my app is able to scale up really quickly to meet demand. I’ve heard
that Amazon’s Elastic Cloud Computing (EC2) service lets me add on servers as I need
them, really cheaply. How do I host my app there?

Solution
As Amazon S3 is to storage, EC2 is to hosting (see Recipe 5.13). You can realize some
pretty dramatic cost savings by hosting on EC2, particularly if your app needs to scale
suddenly to meet demand.

120 | Chapter 5: Setting Up Your Environment

http://neurofuzzy.net/2006/03/17/amazon-s3-php-class/
http://edoceo.com/creo/phps3tk
http://undesigned.org.za/2007/10/22/amazon-s3-php-class
http://wiki.rubyonrails.org/rails/pages/howtoservestaticfilesfromamazonss3
http://jets3t.s3.amazonaws.com/downloads.html

Discussion
Setting up and running an EC2-based hosting system isn’t any easier than doing it the
old-fashioned way, but it sure is cheaper. If you don’t have experience administering
Linux-based systems, you might want to skip this approach or find a friend (or new
employee) who does. There’s a pretty thorough tutorial on setting up and using AWS
with Facebook available at http://tinyurl.com/2fs9f6 (Amazon really needs to do some-
thing about the URLs on its website).

Getting started is pretty simple: if you don’t already have an AWS account, you can
sign up for one at http://www.amazonaws.com. You’ll then need to add EC2 to your
Amazon Web Services by visiting the EC2 page (http://ec2.amazonaws.com) and click-
ing on the big “Sign Up For This Web Service” button on the right side (Figure 5-10).

Figure 5-10. Can you guess what this button does?

You’re going to need an S3 account to go along with your EC2 account, since EC2
stores and retrieves your Amazon Machine Images (AMIs) from S3. That will make
more sense in a moment, but in the meantime you should go add S3 to your AWS
account at http://s3.amazonaws.com.

Amazon will email you when your servers are available, so in the meantime you should
make yourself an X.509 certificate. According to Wikipedia (http://en.wikipedia.org/
wiki/X.509):

In cryptography, X.509 is an ITU-T standard for a public key infrastructure (PKI) and
Privilege Management Infrastructure (PMI). X.509 specifies, amongst other things,
standard formats for public key certificates, certificate revocation lists, attribute certifi-
cates, and a certification path validation algorithm.

Amazon uses X.509 certificates to authenticate you when you connect to your server
over SSH or SFTP. If you already have a certificate, you can upload it at http://tinyurl
.com/6jbnbu. If you don’t, it provides a service for creating a new certificate, which you
can access at http://tinyurl.com/5dm5cb. That page will produce two files that you
should download and store very securely: your Private Key file and your X.509 Certif-
icate. Create a directory called .ec2 in your home directory of your computer, and put
those two files into it.

You’ll need to figure out your EC2 username, which is your Amazon account number
with the hyphens removed. If you don’t have your account number, you can get it by
selecting “AWS Account Activity” from the yellow “Your Web Services Account”
menu, as shown in Figure 5-11.

5.14 Amazonian Backends: Hosting on Elastic Cloud Computing | 121

http://tinyurl.com/2fs9f6
http://www.amazonaws.com
http://ec2.amazonaws.com
http://s3.amazonaws.com
http://en.wikipedia.org/wiki/X.509
http://en.wikipedia.org/wiki/X.509
http://tinyurl.com/6jbnbu
http://tinyurl.com/6jbnbu
http://tinyurl.com/5dm5cb

Your account number will be listed at the top of the page, and it should take the form
1234-1234-1234. Drop the hyphens, and there you have your EC2 username
(123412341234).

Figure 5-11. Amazon Web Services Account menu

Next up is grabbing the EC2 Command Line Tools, which are a set of shell scripts
written in Java and available for Windows or Mac OS X/Linux/Unix. You can get them
from the EC2 Resource Center at http://tinyurl.com/2erefx. Once you have them in-
stalled on your machine, you’ll need to configure the EC2_HOME environment variable
and will probably want to add the bin directory to your path. You can also make your
life a whole lot easier by setting up the EC2_PRIVATE_KEY and EC2_CERT variables, which
should point to the two files you stashed in your .ec2 directory, so that you don’t have
to provide paths to them with every EC2 call you make. The instructions for doing so
vary considerably depending on the operating system, so either consult your docu-
mentation or do a Google search.

You’re all ready to fire up your first EC2 instance! Your path will deviate considerably
from this point depending on what you’re looking to accomplish, so I’m going to end
this recipe here and point you to some resources that can take you further along in this
process:

Amazon EC2 Getting Started Guide
http://docs.amazonwebservices.com/AWSEC2/2007-03-01/GettingStartedGuide/

Hosting Facebook Applications on Amazon EC2
http://developer.amazonwebservices.com/connect/entry.jspa?entryID=1044

Hello World Facebook Application AMI (a very useful AMI to load as a starting point,
including a demo app showing how to list objects from an Amazon S3 bucket)

http://developer.amazonwebservices.com/connect/entry.jspa?categoryID=116&ex
ternalID=964

122 | Chapter 5: Setting Up Your Environment

http://tinyurl.com/2erefx
http://docs.amazonwebservices.com/AWSEC2/2007-03-01/GettingStartedGuide/
http://developer.amazonwebservices.com/connect/entry.jspa?entryID=1044
http://developer.amazonwebservices.com/connect/entry.jspa?categoryID=116&externalID=964
http://developer.amazonwebservices.com/connect/entry.jspa?categoryID=116&externalID=964

If you’re going to be running a large number of instances, you might want to consider
using RightScale (http://www.rightscale.com) or Service Cloud (http://www.servicecloud
.com) third-party systems that make managing 20 or more concurrent servers a piece
of cake.

5.15 Staying Up-to-Date
Problem
How can I stay up-to-date with changes in the world of Facebook?

Solution
Facebook publishes four RSS feeds, and you should definitely subscribe to them. If you
already subscribe to a lot of feeds, you might want to use an RSS-to-email service to
make sure that these feeds don’t get lost in the shuffle (or use a separate RSS reader just
for them):

Facebook Developer Blog
Updates from Facebook’s team about upcoming changes to Platform.

Website: http://developers.facebook.com/news.php

RSS: http://developers.facebook.com/news.php?blog=1&format=xml

Facebook Platform Status Feed
Updates on pushes, problems, etc.

Website: http://www.facebook.com/developers/message.php

RSS: http://www.facebook.com/feeds/api_messages.php

Facebook Blog
The general blog maintained by Facebook.

Website: http://blog.facebook.com/

RSS: http://feeds.feedburner.com/FacebookBlog

Facebook Pages Blog
The News Feed from the Facebook Pages Page, maintained by Facebook. This isn’t
directly related to Platform, but it is still a useful source of information if your app
is installed on Pages.

Website: http://www.facebook.com/notes.php?id=10381469571

RSS: You’ll have to visit the page to subscribe because it generates a unique RSS
URL for each visitor.

There are at least two pages on the Facebook Developers Wiki that you’ll want to watch
closely. Unfortunately, there’s no way to subscribe to them by RSS, but you can add
them to your Watchlist within the Wiki:

5.15 Staying Up-to-Date | 123

http://www.rightscale.com
http://www.servicecloud.com
http://www.servicecloud.com
http://developers.facebook.com/news.php
http://developers.facebook.com/news.php?blog=1&format=xml
http://www.facebook.com/developers/message.php
http://www.facebook.com/feeds/api_messages.php
http://blog.facebook.com/
http://feeds.feedburner.com/FacebookBlog
http://www.facebook.com/notes.php?id=10381469571

Push Changes
This page documents the changes included in each push of new code that Facebook
makes, organized by date. See http://wiki.developers.facebook.com/index.php/Push
_Changes.

Platform Changes
This page documents the bigger-picture changes that Facebook has released. See
http://wiki.developers.facebook.com/index.php/Platform_Changes.

Discussion
In addition to the news straight from the horse’s mouth, there are also a number of
excellent third-party websites maintained by the community at large:

FaceReviews
Reviews of Facebook applications published by Gravitational Media, LLC. This is
a great way to keep up-to-date on the competition and get some attention for your
app when it’s ready to go live.

Website: http://www.facereviews.com

RSS: http://feeds.feedburner.com/facereviews

Inside Facebook
A wide and deep-reaching view into the world of Facebook, started by Justin Smith.

Website: http://www.insidefacebook.com

RSS: http://www.insidefacebook.com/feed/

AllFacebook
A similar mandate to Inside Facebook, started by Nick O’Neill.

Website: http://www.allfacebook.com

RSS: http://feeds.feedburner.com/allfacebook

124 | Chapter 5: Setting Up Your Environment

http://wiki.developers.facebook.com/index.php/Push_Changes
http://wiki.developers.facebook.com/index.php/Push_Changes
http://wiki.developers.facebook.com/index.php/Platform_Changes
http://www.facereviews.com
http://feeds.feedburner.com/facereviews
http://www.insidefacebook.com
http://www.insidefacebook.com/feed/
http://www.allfacebook.com
http://feeds.feedburner.com/allfacebook

CHAPTER 6

Facebook Markup Language (FBML)

In the world of Facebook Platform, Facebook Markup Language (FBML) is to Hyper-
text Markup Language (HTML) as Facebook JavaScript (FBJS) is to JavaScript (JS) and
Facebook Query Language (FQL) is to Structured Query Language (SQL). This may
seem strange at first—almost like some sort of parallel universe in which you have been
given two left feet and must dance the tango in double-time—but it’s really not that
bad. If you have any familiarity with HTML, you’ll discover pretty quickly that FBML
is really just like having a bunch of new dance moves available, having a bunch of your
old ones updated and changed from 10-step-long sequences into a graceful one-
stepper, and occasionally having to learn a different way to do the familiar foxtrot.

You should be able to look up any of the tags covered in this chapter by
adding them to the end of the Facebook Developers Wiki URL. As an
example, if you want more info on fb:name, go to http://wiki.developers
.facebook.com/index.php/Fb:name.

6.1 What Is FBML?
Problem
When I hang out around other Facebook developers (at a Facebook Developer Garage
event, say), sometimes all I hear is FBML, FBML, FBML. I just got a handle on HTML!
What’s this new thing everyone is going on about?

Solution
FBML is Facebook Markup Language, an extension of HTML that works within Face-
book Canvas pages (and some other spots, such as Profile Boxes) to render your content
within the constraints of the Facebook Platform Sandbox. The FBML parser on Face-
book’s servers takes in your FBML, does its parsing magic, and spits out HTML, which
your users’ browsers render and display. FBML is very similar to HTML (and you can

125

http://wiki.developers.facebook.com/index.php/Fb:name
http://wiki.developers.facebook.com/index.php/Fb:name

use a lot of regular HTML mixed in with your FBML), and is generally recognizable
because all of the tags start with “fb:”.

You can find documentation on every FBML tag on the Facebook Developers wiki at
http://wiki.developers.facebook.com/index.php/FBML, and a high-level spec for FBML
at http://wiki.developers.facebook.com/index.php/FBMLspec.

Discussion
Google touts that not needing to learn a new language is one of the big advantages of
OpenSocial. It’s not fair to call FBML a new language, since it’s entirely based on HTML
and is really just an extension that makes available a number of very handy tags.

Let’s say that you want to insert a friend selector into your Facebook Canvas page so
that your users could pick a friend to send a gift to. You’re focused on user experience
and you know that your users might have very long lists of friends, so you want to
implement an in-place suggestion mechanism as they type.

If you were building your own web app, you’d have to create a text field, write a bunch
of Ajax to take keydown and onchange events and pass them to your server, write a server-
side function to receive them and return suggestions encoded in something like XML
or JSON, and finally add some more client-side script to receive the suggestions, display
them, and handle selections within the list. If that’s something you’ve done before, you
might have a library you’ve already written to handle some of it. If you’re using a
JavaScript library such as jQuery, you might use something like PengoWorks’ Auto-
complete plug-in (http://www.pengoworks.com/workshop/jquery/autocomplete.htm).

Since you aren’t building a standalone web app, and since I’ve gone to the trouble of
setting up such a carefully contrived example to prove that FBML can make your life
easier, you’re probably thinking that there must be a better way. Well, there is! Just
drop the following code into your FBML page (or try it in the FBML Test Console at
http://developers.facebook.com/tools.php?fbml):

<fb:friend-selector/>

That’s it! If you include that inside a form, the Facebook ID of the user they entered
will be added to your POST request (the variable will be called friend_selector_id by
default, but you can override it by specifying an idname as a parameter inside the
fb:friend-selector tag).

If you’re looking for more or different info than this chapter provides, I
recommend the excellent FBML Essentials book (O’Reilly), written by
Jesse Stay. Find it at better bookstores everywhere, including O’Reilly’s
own store at http://oreilly.com/catalog/9780596519186/index.html.

126 | Chapter 6: Facebook Markup Language (FBML)

http://wiki.developers.facebook.com/index.php/FBML
http://wiki.developers.facebook.com/index.php/FBMLspec
http://www.pengoworks.com/workshop/jquery/autocomplete.htm
http://developers.facebook.com/tools.php?fbml
http://oreilly.com/catalog/9780596519186/index.html

6.2 Categories of FBML Tags
Problem
There sure are a lot of FBML tags! Surely there must be some way to group them
together to make some sense out of them.

Solution
Damn skippy! There sure is. FBML tags can be organized into types based on their
intended use:

• Social (tags that leverage or expose the social graph, such as fb:name)

• Sanitization (tags that sanitize potentially insecure or dangerous content, such as
fb:swf)

• Design (tags that provide Facebook-style elements much more easily than building
the HTML, such as fb:tabs)

• Component (tags that provide actual user interface widgets, such as fb:comments)

• Control (tags that control what gets displayed on your page, such as fb:visible-
to-owner)

The other way to slice and dice is based on the area of functionality they affect (see all
of the tags grouped this way on http://wiki.developers.facebook.com/index.php/FBML):

• Dialog (display a Facebook-style dialog, either pop-up or contextual)

• Editor display (display a Facebook-style form with labels)

• Embedded media (embed media such as Flash, Silverlight, MP3s, etc.)

• Forms (enable images or text links to act as form submission controls)

• Message/Wall attachments (preview attachments to messages or Wall posts)

• Misc (things that don’t fit somewhere else)

• Notifications and requests (content for the Notification and Request integration
points)

• Page navigation (navigation widgets, including dashboards and tabs)

• Profile-specific (FBML that works only in Profile Boxes)

• Status messages (display Facebook-style errors and messages)

• Tools (assorted tools, including various friend selectors and Google Analytics)

• User/Groups (display information related to users)

• Visibility on Profile (control who can see what on Profiles)

• Wall (emulate a Wall-like environment in your app)

6.2 Categories of FBML Tags | 127

http://wiki.developers.facebook.com/index.php/FBML

Discussion
One of the biggest differences between HTML and FBML is the context of the logged-
in users. Tags in HTML always render the same content, regardless of who looks at
them, so there’s never a need to think about what someone will see depending on which
state she’s in. FBML is different, and the first grouping provides a handy way to
remember which tags are affected by context and which ones aren’t.

Social tags are very aware of who’s logged in and what they can see. For example, the
fb:name tag will render the specified user’s full name to someone who is logged into
Facebook, but only that user’s first name to someone who isn’t. The output of sani-
tization tags generally doesn’t change from user to user, but the content they add to a
page might (e.g., standard HTML <form>s will get some hidden fields automatically
added, including the UID of the current user). Design and Component tags are almost
all user-agnostic, as they tend to be shortcuts to blocks of HTML or advanced func-
tionality rather than user-specific content that needs to be aware of privacy concerns.
Control tags are highly user-aware, since their primary purpose is to control display of
content based on who’s looking at it.

6.3 FBML Versions
Problem
I know there are different versions of FBML and some tags require FBML 1.1, but how
do I set or even know which version I’m using?

Solution
Wrap your FBML in fb:fbml tags and specify a version you want them executed with:

<fb:fbml version="1.1">
 <!-- FBML Here -->
</fb:fbml>

Discussion
You can include an fb:fbmlversion tag inside an fb:fbml tag to output which version
is being used to parse that content, though you should note that this is really only
intended for debugging purposes. As an example, the following:

<fb:fbml version="1.0">
 <p>This is <fb:fbmlversion /></p>
</fb:fbml>
<fb:fbml version="1.1">
 <p>This is <fb:fbmlversion /></p>
</fb:fbml>
<fb:fbml version="1.2">
 <p>This is <fb:fbmlversion /></p>
</fb:fbml>

128 | Chapter 6: Facebook Markup Language (FBML)

will give you:

This is 1.0
This is 1.1

You might have expected to get a third paragraph for 1.2, but the FBML parser ignores
it because that version didn’t exist at the time this book was written. Using an
fb:fbmlversion tag outside of an explicit fb:fbml tag should give you 1.0, since that’s
the assumed default if you haven’t specified otherwise.

6.4 A Rose by Any Other Name: Forced Renaming
Problem
Facebook keeps renaming all of the ids in my HTML.

Solution
It’s cool! Relax, man. You’re in the Sandbox! The Sandbox is groovy.

No, seriously. The Sandbox is just doing its job, protecting the forces of good (namely,
you) from the evil demon know as namespace clash. Sandboxes in the computer science
sense are a security mechanism for safely running programs in a contained space, pre-
venting them from having access to things outside the box. Think about it this way:
picture a situation in which you’ve given a div in your page the id “supercalifragili-
cious,” and by some unthinkably remote change, that happened to be the same id that
Facebook had given to one of their divs. Aside from the invalid XHTML that would
cause (ids have to be unique in a page), how would your CSS or JavaScript know which
one to work with? To get around this situation, the Facebook Sandbox goes through
your code and replaces things like:

<div id="supercalifragilicious">

with:

<div id="app12345_supercalifragilicious">

where 12345 is your app’s ID. This is known as creating a “namespace,” which Wiki-
pedia defines as:

In general, a namespace is an abstract container providing context for the items (names,
or technical terms, or words) it holds and allowing disambiguation of items having the
same name (residing in different namespaces).*

Discussion
The end result is that your application should be basically unaffected. The Sandbox is
smart enough to also rename any occurrences of #supercalifragilicious in your CSS

* http://en.wikipedia.org/wiki/Namespace

6.4 A Rose by Any Other Name: Forced Renaming | 129

http://en.wikipedia.org/wiki/Namespace

files, so that they still match up to the renamed ids in your FBML. That said, be careful
with classes! The Sandbox doesn’t rename those, so:

<div id="supercalifragilicious" class="person">

will become:

<div id="app12345_supercalifragilicious" class="person">

This is OK within your app, but what happens when your classes conflict with Face-
book’s markup? Crazy, crazy things. For example, consider this line:

<div id="app12345_sample" class="so_sound_player">

That’s not an entirely unlikely line of HTML for you to have written. Unfortunately,
so_sound_player is a Facebook class already:

.so_sound_player{
 left: 0px;
 position: absolute;
 top: 0px;
 z-index: 1000px;
}

You’ll notice pretty quickly that your div is misbehaving, and a quick trip into Firebug
should tell you why, but you can avoid this problem by enforcing namespaces in your
own CSS and then overriding Facebook’s markup (or just renaming your class). Since
Facebook automatically wraps your Canvas page in a div with the id
app_content_12345 (where 12345 is your app’s ID), you can do this:

#app_content_12345 .so_sound_player{
 position: relative !important;
 z-index: auto !important;
 ...
}

This takes advantage of CSS’s inheritance rules to contextualize the class
named .so_sound_player within your app, and then to override Facebook’s rules for
them.

6.5 Web Standards
—Martin Kuplens-Ewart (see his bio in Contributors)

Problem
I want to create an innovative application that I can build on Facebook and also deploy
to other platforms (such as OpenSocial, iPhone, etc.) in the future.

130 | Chapter 6: Facebook Markup Language (FBML)

Solution
Build your application with standards-compliant techniques, including clean, semantic
HTML (FBML) to mark up your content and page structure, hack-free CSS to style
your application, and DOM scripting using JavaScript (FBJS) to interact with your
application’s backend code to make the whole thing work.

Discussion
Crucial for the success of a Facebook application is constant innovation and experi-
mentation. The best applications keep refining interactions, implementing new
features, and developing new ways for their users to engage with their friends.

As you plan out your application, it may be worth preparing to structure it in two parts:
the Facebook interface elements that are viewed by the user, and your application logic,
which is hosted and accessed independently of the Facebook environment. This kind
of separation between the layers of your application will be crucial if you intend to
deploy to other platforms down the road. See Figure 6-1.

Facebook interface

AJAX calls/form submissions

Backend logic

Figure 6-1. Separating interface and logic using Ajax calls

There are three elements to your standards-compliant development toolkit:

1. FBML (HTML), used for marking up content and establishing boundaries of ele-
ments and blocks of the page

2. CSS, used to add style and visual cues to guide your users, and to bring personality
to the experience

3. FBJS (JavaScript), used to add complex functionality and behavior to your
application

Stop! Is that a <table> I see in your page source? Unless you’ve been marking up tabular
data, don’t use that tag. There are two reasons for this: first, using tables to lay out your
page forces you to rewrite your FBML (HTML) if you want to move an element or
iterate the design and interactions. Second, remember your goals in building your
Facebook application—growth, growth, and growth. Once your application’s audi-
ence starts to grow, the extra markup associated with a table-based layout will start to

6.5 Web Standards | 131

ratchet up your hosting costs and potentially cause slowdowns if your server is unable
to meet the demand.

Facebook provides an amazing environment for developing a following of passionate
fans, but chances are you will want to expand your reach to other community platforms
or even deploy your application to your own or other websites. If you’ve followed this
advice and built your application with the trifecta of standards-compliant web devel-
opment (and avoided the temptation of the <table> tag), porting your application could
be as simple as adjusting CSS and updating link and form submission URLs. Soon your
application architecture could go from a Facebook-only structure to something like
Figure 6-2.

AJAX calls/form submissions

Backend logic

Facebook OpenSocial Website

Figure 6-2. Addition of interfaces to the shared backend logic

A well-structured Facebook application built using standards-compliant techniques
permits you to iterate presentation, content, and application behavior independently
of each other. It allows you to determine the logic that will be followed as Facebook
members use and share your application, and then adjust layout and copy to make that
as simple (or complicated) as you like. Finally, it allows your markup to be lightweight
and quick to transfer, keeping your bills down and user satisfaction up!

Resources

Two-Faced Django (http://www.lethain.com/entry/2007/dec/04/two-faced-django-part
-1-building-project-exists-si/)

A series of articles by developer Will Larson detailing how he created an application
that works in both Facebook and as a simple web application outside the Facebook
ecosystem.

W3C HTML Validator (http://validator.w3.org/)
An indispensable tool. Make sure your HTML is fully standards-compliant before
adapting it to fit the FBML format.

132 | Chapter 6: Facebook Markup Language (FBML)

http://www.lethain.com/entry/2007/dec/04/two-faced-django-part-1-building-project-exists-si/
http://www.lethain.com/entry/2007/dec/04/two-faced-django-part-1-building-project-exists-si/
http://validator.w3.org/

6.6 Displaying a User’s Name
Problem
How do I display a user’s name?

Solution
Use the <fb:name> tag. Among the many options you can include, specify the uid of the
user whose name you want to display (you can also use loggedinuser or profileowner).

Discussion
This tag is interesting because of the various ways that different languages deal with
possessive nouns and other grammatical structures, which I can never keep straight.
(Is the participle dangling? What does that even mean?) This is a great example of FBML
saving you from having to add giant if/else blocks to your code. The parameters are
listed in Table 6-1.

Table 6-1. Parameters for fb:name

Name Type Default value Description They see I see

uid uid N/A The Facebook user ID (uid) of the user
or Page whose name you want to
show. You can also use
loggedinuser or
profileowner. This is the only
required field.

“Jay Goldman” “You”

capitalize bool false Capitalize the text if useyou is
true and loggedinuser is the
uid.

“Jay Goldman” “You”

firstnameonly bool false Show only the user’s first name. “Jay” “You”

ifcantsee string Empty Alternate text to display if the logged-
in user cannot access the user
specified.

Specified text if
they can’t see
me; “Jay
Goldman” if they
can

“You”

lastnameonly bool false Show only the user’s last name. “Goldman” “You”

linked bool true Link to the user’s Profile. “Jay Goldman” “You”

possessive bool false Use the possessive form (his/her/
your).

“Jay Goldman’s” “Your”

reflexive bool false Use the reflexive form (himself/her-
self/yourself).

“Jay Goldman” “Yourself”

shownetwork bool false Displays the primary network for the
uid.

“Jay Goldman
(Toronto)”

“You”

6.6 Displaying a User’s Name | 133

Name Type Default value Description They see I see

subjectid uid None The Facebook ID of the subject of the
sentence where this name is the ob-
ject of the verb of the sentence. Will
use the reflexive when appropriate.
When subjectid is used, uid is
considered to be the object and
uid’s name is produced.

See upcoming
explanation in
the text

useyou bool true Use “you” if uid matches the logged-
in user.

“Jay Goldman” “You” if
true; “Jay
Goldman” if
false

The only one that really needs explanation is subjectid, which feels a little like you’re
being asked a question on Jeopardy! in the “Mind-Bending Grammar Rules” category
for $500. It’s easiest to understand in the context of an example from the Mini-Feed
story that the Photos application pushes out:

<fb:name uid="561415460" capitalize="true" /> tagged
 a photo of <fb:name subjectid="561415460" uid="567770429" />.

In this example, 561415460 is my prison number and 567770429 is my wife, Bianca.
I’ve just tagged her in a photo of our daring escape under the wall, and Facebook has
helpfully pushed that story out to all of my friends, including Warden Norton. That
sentence would get rendered for me as:

You tagged a photo of Bianca Gutnik Goldman.

When my wife sees the item in her News Feed, right before she yells at me for putting
the cops on our tail, she’ll see:

Jay Goldman tagged a photo of you.

When Warden Norton sees the item pop up in his News Feed, right before he jams the
big red button on his desk and sends the boys in blue after us, he’ll see:

Jay Goldman tagged a photo of Bianca Gutnik Goldman.

But wait! There’s more. If I tagged a photo of myself, the FBML would look like this:

<fb:name uid="561415460" capitalize="true" /> tagged a photo
 of <fb:name subjectid="561415460" uid="561415460" />.

Now when I see the item, dejected and alone in a dingy roadside motel after Bianca left
me for being stupid moments before being apprehended, the sentence would be ren-
dered as:

You tagged a photo of yourself.

134 | Chapter 6: Facebook Markup Language (FBML)

When Bianca sees it, celebrating in the Cayman Islands at her new beach-side bar, she’ll
see:

Jay Goldman tagged a photo of himself.

The moral of this story is that the Cayman Islands are a British overseas territory, which
means they have an extradition policy and my wife is coming right back to join me in
the slammer. Think carefully before you tag yourself in incriminating photos, folks (but
not before you use fb:name, which can save you a whole world of trouble)!

6.7 He Said, She Said: Dealing with Pronouns
Problem
Gender issues are complicated. I could just use the third-person pronouns (“they” and
“their”) for everything, but that’s really not grammatically correct. How do I figure out
whether to use “he” or “she”? And what about people who didn’t specify a gender on
their Profiles?

Solution
The fb:pronoun tag will output the correct pronoun for the user specified by the uid
parameter. The simplest form is:

<fb:pronoun uid="12345" />

Discussion
Just like the fb:name tag, the fb:pronoun tag gets itself into all kinds of trouble with
possessives and reflexives and lots of other grammar ghouls that you don’t want to have
to deal with. Luckily, FBML will deal with them for you! See Table 6-2 for a list of the
tag’s parameters.

Table 6-2. Parameters for fb:pronoun

Name Type Default value Description They see I see

uid int N/A The Facebook user ID (uid) of the user or Page
whose pronoun you want to show. You can also
use loggedinuser or profileowner. This
is the only required field.

“he” “you”

capitalize bool false Capitalize the pronoun. “He” “You”

objective bool false Use the objective form (him/her/you/them). “him” “you”

possessive bool false Use the possessive form (his/her/your/their). “his” “you”

reflexive bool false Use the reflexive form (himself/herself/
yourself).

“himself” “yourself”

6.7 He Said, She Said: Dealing with Pronouns | 135

Name Type Default value Description They see I see

usethey bool true Use “they” if gender is not specified. “him” (but if I
removed my
gender,
“they”)

“you”

useyou bool true Use “you” if uid matches the logged-in user. “your” “your”

6.8 Worth a Thousand Words: Profile Pictures
Problem
Profile pictures are awesome because they’re so easy to recognize and they really draw
people in! How can I display someone’s pic?

Solution
The fb:profile-pic tag will display the Profile picture for the user specified by the
uid parameter. The simplest form is:

<fb:profile-pic uid="12345"/>

Discussion
In addition to the uid, there are two optional parameters, listed in Table 6-3.

Table 6-3. Parameters for fb:profile-pic

Name Type Default value Description

uid int N/A The Facebook user ID (uid) of the user or Page whose pronoun you want to show. You
can also use loggedinuser or profileowner. This is the only required field.

linked bool true Link to the user’s Profile.

size string thumb Size of image to display (see the upcoming list).

Differently sized pics can be hugely useful in different scenarios. Using my current
Profile picture (taken by my good friend Will Pate), the following list shows a break-
down of the options (note that you can use the short form listed in parentheses):

thumb (t): 50 pixels wide

136 | Chapter 6: Facebook Markup Language (FBML)

small (s): 100 pixels wide

normal (n): 200 pixels wide

square (q): 50 × 50 pixels

6.9 Linking to Events
Problem
How do I link to an event from the Facebook Events application?

Solution
Use the fb:eventlink tag and specify the event ID:

<fb:eventlink eid="12345" />

where 12345 is your eid.

Discussion
This will insert the name of the event as a link to the event’s page in the Events app.

6.9 Linking to Events | 137

6.10 Linking to Groups
Problem
How do I link to a group from the Facebook Groups application?

Solution
Use the fb:grouplink tag and specify the group ID:

<fb:grouplink gid="12345" />

Discussion
This will insert the name of the group as a link to the group’s page in the Groups app.

6.11 Linking to Networks
Problem
How do I link to a Facebook network?

Solution
Use the fb:networklink tag and specify the network ID:

<fb:networklink nid="12345" />

Discussion
This will insert the name of the network as a link to the network’s page.

6.12 Display Content to Group Members
Problem
How do I display content only to members of a specific group?

Solution
Use the fb:if-is-group-member tag and specify the group ID. The simplest form is:

<fb:if-is-group-member gid="12345">Private content goes here</fb:if-is-group-member>

138 | Chapter 6: Facebook Markup Language (FBML)

Discussion
You can use this tag in combination with the fb:else tag to display alternate content
to people who aren’t in the group. The tag will default to checking for the
loggedinuser, but you can also specify a different uid if you want to check a different
member:

<fb:if-is-group-member gid="12345" uid="12345">
 Private content goes here
 <fb:else>
 Sorry! You're not in <fb:grouplink gid="12345"/>.
 </fb:else>
</fb:if-is-group-member>

Since groups support different roles (member, admin, officer), you can also use the
fb:if-is-group-member to check for a user’s access level:

<fb:if-is-group-member gid="12345" uid="12345" role="admin">
 Private content for admins goes here
 <fb:else>
 Sorry! You're not an admin of <fb:grouplink gid="12345"/>.
 </fb:else>
</fb:if-is-group-member>

6.13 Display Content to Network Members
Problem
How do I display content only to members of a specific network?

Solution
Use the fb:is-in-network tag and specify the network and uids. The simplest form is:

<fb:is-in-network network="12345" uid="12345">Private
 content goes here</fb:is-in-network>

Discussion
Although this tag doesn’t start with the word “if”, you can still use it in combination
with the fb:else tag to display alternate content to people who aren’t in the network:

<fb:is-in-network network="12345" uid="loggedinuser">
 Private content goes here
 <fb:else>
 Sorry! You're not in <fb:networklink nid="12345"/>.
 </fb:else>
</fb:is-in-network>

Note that the tag uses network="12345" and not nid="12345" as you might expect.

6.13 Display Content to Network Members | 139

6.14 Displaying Content to App Users
Problem
How do I display content only to users who have added my app or accepted the Terms
of Service for my application?

Solution
Facebook used to offer two tags that provided an easy way to limit the visibility of
content, but only one is still supported. The fb:if-user-has-added-app tag, which is
now deprecated, worked for all users who had added your app. The fb:if-is-app-
user tag, which you should now always use, limits the display to users who have
explicitly accepted your Terms of Service. The simplest use case is:

<fb:if-is-app-user>Thanks for installing my application! You rock!</fb:if-is-app-user>

Discussion
With no uid specified, the tag will automatically assume that it’s for the current
loggedinuser. You can specify a uid to check for a different user, as well as include the
fb:else tag to provide alternate content:

<fb:if-is-app-user uid="12345">
 Here's <fb:name uid="12345" possessive="true" /> score: 55555!
 <fb:else>
 <fb:name uid="12345" /> hasn't signed up for this app!
 </fb:else>
</fb:if-is-app-user>

Note that these tags can be used only in a Canvas page.

6.15 Displaying Content to Friends
Problem
How do I display content only to friends of a specific user?

Solution
Use the fb:if-is-friends-with-viewer tag. The simplest form is:

<fb:if-is-friends-with-viewer>You're friends!</fb:if-is-friends-with-viewer>

Discussion
As with all fb tags that begin with if, you can use the fb:else tag inside the fb:if-is-
friends-with-viewer to provide alternate content if they aren’t friends. You can also
specify a different uid if you don’t want to check for friendship with the

140 | Chapter 6: Facebook Markup Language (FBML)

loggedinuser, and you can explicitly exclude the loggedinuser if you don’t want to treat
them as being friends with themselves (you will also be a friend of yourself unless you
set includeself to false):

<fb:if-is-friends-with-viewer uid="12345" includeself="false">
 You're friends with <fb:name uid="12345" />. Yay!
 <fb:else>
 You aren't friends with <fb:name uid="12345" />. Boo!
 </fb:else>
</fb:if-is-friends-with-viewer>

6.16 Displaying/Hiding Content to/from Specific Users
Problem
How do I display content only to a specific user?

Solution
Use the fb:if-is-user tag. The simplest form is:

<fb:if-is-user uid="12345">You're it!</fb:if-is-user>

Discussion
As with all fb tags that begin with if, you can use the fb:else tag inside the fb:if-is-
user to provide alternate content if the user isn’t the droid you’re looking for:

<fb:if-is-user uid="12345">
 You're it!
 <fb:else>
 You aren't it.
 </fb:else>
</fb:if-is-user>

You might sometimes want to check for a bunch of different users you want to exclude
from seeing some content. The tag supports comma-separated uids, and you can use
the fb:else tag to actually do the inverse of the example just shown:

<fb:if-is-user uid="12345,54321,11111,22222">
 <!-- No content here -->
 <fb:else>
 Everyone else sees this bit here.
 </fb:else>
</fb:if-is-user>

6.16 Displaying/Hiding Content to/from Specific Users | 141

6.17 Displaying Random Content
Problem
I’d like to display some content on my Canvas page, randomly selected from a few
different options.

Solution
The fb:random and nested fb:random-option tags are the answer. The simplest form is:

<fb:random>
 <fb:random-option>You're cool!</fb:random-option>
 <fb:random-option>You're awesome!</fb:random-option>
</fb:random>

Discussion
Profile Boxes are a really great use of the fb:random tag, which gives you the ability to
have different content appear each time the page refreshes, even though Profile Box
content isn’t really dynamic.

You can assign weighting to the different options if there’s something you’d like shown
more often than the other options:

<fb:random>
 <fb:random-option weight="2">
 A: This will be shown twice as often as B
 </fb:random-option>
 <fb:random-option weight="1">
 B: This will be show half as often as A
 </fb:random-option>
</fb:random>

The weights can be any number greater than zero, and they are relative to each other
rather than being relative to a fixed starting point (so a weight of 800 will still be shown
twice as often as a weight of 400, not 800 times more often).

You can also have fb:random select more than one option by specifying a count of the
number you’d like returned in the pick parameter. By default, fb:random will try to pick
unique options (i.e., it won’t return the same option more than once), but you can
override that by specifying false in the unique parameter:

<fb:random pick="2" unique="false">
 <fb:random-option>You're cool!</fb:random-option>
 <fb:random-option>You're awesome!</fb:random-option>
 <fb:random-option>You're swell!</fb:random-option>
 <fb:random-option>You're rad!</fb:random-option>
</fb:random>

Note that specifying false won’t guarantee duplication, but it means you will occa-
sionally get back duplicates.

142 | Chapter 6: Facebook Markup Language (FBML)

6.18 Displaying Content to Specific Browsers
Problem
I need to display content to specific browsers in order to get around some rendering
issues.

Solution
Use the fb:user-agent tag. The simplest form is:

<fb:user-agent includes="ie 6">
 Your browser has lots of rendering issues!
</fb:user-agent>

Discussion
You might want to use this tag for reasons other than browser idiosyncrasies, but that’s
likely to be the main use. Every browser, crawler, indexer, etc. has a different
“user-agent” string that represents the browser and company who make it. A few pop-
ular examples are given in Table 6-4.

Table 6-4. Some fun user-agent examples

User agent Description

Googlebot/2.1 (http://www.googlebot.com/bot.html) Google crawler

Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.4; en-US; rv:1.9b5) Gecko/
2008032619 Firefox/3.0b5

Mozilla Firefox 3.0b5 on an Intel-based Mac running
Mac OS X 10.4

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; bgft) Microsoft Internet Explorer 7 on Windows XP

Opera/9.00 (Windows NT 5.1; U; de) Opera 9 on Windows NT, running in German

Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_2; en-ca) AppleWebKit/
525.13 (KHTML, like Gecko) version/3.1 Safari/525.13

Safari 3.1 on an Intel-based Mac running Mac OS X
10.5.2

For a full list of user agents, see the excellent http://www.user-agents.org, maintained
by Andreas Staeding. You can also quickly find out the user agent for your browser by
visiting http://www.whatsmyuseragent.com, which includes an excellent resource page
about how to fake different user agents in your browser for testing purposes (http://
whatsmyuseragent.com/SwitchingUserAgents.asp).

The tag supports include, exclude, and mixed modes, so you could also do:

<fb:user-agent excludes="Firefox">
 You should download Firefox!
</fb:user-agent>

6.18 Displaying Content to Specific Browsers | 143

http://www.googlebot.com/bot.html
http://www.user-agents.org
http://www.whatsmyuseragent.com
http://whatsmyuseragent.com/SwitchingUserAgents.asp
http://whatsmyuseragent.com/SwitchingUserAgents.asp

and:

<fb:user-agent includes="Mozilla" excludes="Firefox/3.0">
 Time to upgrade to Firefox 3!
</fb:user-agent>

Note that the tag does appear to be case-sensitive, so “firefox/3.0” and “Firefox/3.0”
aren’t the same thing.

6.19 Displaying Your Application’s Name
Problem
I’d like a way to output my application’s name so that it will update automatically if I
change it later. Also, I decided to put the word “message” in my application’s name
and have now discovered that I can’t add it to things like my Mini-Feed and News
stories, because Facebook won’t let me put that word in those places.

Solution and Discussion
Use the very simple fb:application-name tag, which will output your app’s current
name as plain text. The simplest and only form is:

<fb:application-name />

6.20 Formatting Relative Time
Problem
I want to display time formatted and converted to my users’ local time zones.

Solution
Use the fb:time tag. The simplest form is:

<fb:time t="212698800" />

If that doesn’t look like a date and time to you, read on to the Discussion.

Discussion
The tricky part here is that you have to pass in t in what’s known as “epoch seconds,”
or the number of seconds that have elapsed since the Unix Epoch, which was January
1, 1970. You think I’m making this up? You couldn’t make this stuff up! No one would
believe you. (See http://en.wikipedia.org/wiki/Unix_epoch for more information on why
we use this seemingly bizarre method of encoding a date and time.) You might find
yourself wondering how you’re going to calculate that without doing a whole bunch
of counting and skipping leap years and remembering that 30 days hath September,

144 | Chapter 6: Facebook Markup Language (FBML)

http://en.wikipedia.org/wiki/Unix_epoch

April, June, and November. Easy! To display the current time, just take advantage of
the PHP time() function (or an equivalent in your language of choice):

<fb:time t="<?php echo time();?>" />

To display a different time, use the PHP mktime() function, which generates the epoch
seconds for any given date:

<fb:time t="<?php echo mktime(17, 35, 0, 4, 26, 2008);?>" />

The parameters, in order, are hours, minutes, seconds, month, day, and year. More
info is at http://www.php.net/manual/en/function.mktime.php.

Note that fb:time makes the time display relative, so if t is on the same day as today,
you’ll just get the time (e.g., 5:35 p.m.); if it’s in the same year, you’ll get month, day,
and time (e.g., April 26 5:35 p.m.); and if it’s in a different year, you’ll get the full thing
(e.g., April 26, 2008 5:35 p.m.).

You can also include a time zone in your call to fb:time if you want to specify where
and not just when:

<fb:time t="<?php echo mktime(17, 35, 0, 4, 26, 2008);?>" tz="America/Chihuahua" />

That would format April 26, 2008 at 5:35 p.m. in the Mexican state of Chihuahua,
rather than inside a small, yappy dog. This won’t include the time zone in the display,
so you’d need to add it to the end (MST or MDT for Chihuahua, depending on whether
daylight saving time is active). The tz parameter accepts any standard PHP time zone
descriptor (you can find the full list at http://ww.php.net/manual/en/timezones.php).

Finally, you can pass in a preposition boolean to indicate whether you’d like “at” and
“on” inserted into your date. For example:

<fb:time t="<?php echo mktime(17, 35, 0, 4, 26, 2008);?>" preposition="true" />

will give you:

at 5:35pm on April 26, 2008

6.21 Making Content Visible to Some Users in Profile Boxes
Problem
I’d really like to make some of the content in my Profile Boxes visible to only a select
group of users.

Solution
The fb:visible family of tags will do exactly what you’re looking for. Think of them
as the big, burly bouncers who stand inside the velvet rope and won’t let you into the
club unless you’re on the magic list. In this case, their clipboards actually contain eight
different lists:

6.21 Making Content Visible to Some Users in Profile Boxes | 145

http://www.php.net/manual/en/function.mktime.php
http://ww.php.net/manual/en/timezones.php

fb:visible-to-owner
Content that is visible only to the owner of the Profile.

fb:visible-to-user
Content that is visible only to the specified users. Include a uid parameter con-
taining one or more comma-separated Facebook uids to control who can see it.

fb:visible-to-app-users
Content that is visible only to users who have also added the app and have agreed
to the Terms of Service and been granted full permission.

fb:visible-to-connection
Content that is visible only to friends of the user who owns the Profile, or fans of
the Page if used on a Page. Note that this effectively replaces fb:visible-to-
friends, which worked only on user Profiles.

fb:18-plus
Content that is visible only to users who are 18 years old or older. Unlike the rest
of the visible tags, this one and the fb:21-plus tag can both contain an fb:else tag
(which displays alternate content) and can be used on Canvas pages.

fb:21-plus
Content that is visible only to users who are 21 years old or older. As per the
previous tag, this can contain an fb:else tag to display alternate content to people
who are under 21.

Discussion
All of the previously listed tags will accept an optional bgcolor parameter, which lets
you set the color of the block shown to users who don’t meet the criteria. Let’s say that
you were going to include an encouragement to friends of your users to kick back and
hang out with their friends, but you didn’t want to encourage anyone under 21 to have
a drink:

<p><fb:visible-to-connection bgcolor="#ccc">
 <fb:21-plus>
 Have a drink with your friend!
 <fb:else>
 Have a pop with your pal!
 </fb:else>
 </fb:21-plus>
</fb:visible-to-friends></p>

Users who are friends with the Profile owner and over 21 will see the message shown
in Figure 6-3.

Figure 6-3. Visible to friends who are over 21

146 | Chapter 6: Facebook Markup Language (FBML)

Underage users would see the same thing, but with the pop-related message. Users who
aren’t friends with the Profile owner would see the gray box in Figure 6-4.

Figure 6-4. Visible to everyone else

It’s very important to understand how the fb:visible tags actually work, since it affects
the type of information that you should put in them. If you look at the HTML that the
FBML parser renders for the “Have a drink” example (assuming you’re over 21), you’ll
note that the part we don’t want some people to see is right there in the source:

<p>

 Have a drink with your friend!

</p>

That’s not very well hidden, so don’t put really sensitive content in them! You definitely
don’t want to use these tags for things like the following:

<p><fb:visible-to-owner>
 Your credit card number is 1234 5678 9012 3456!
</fb:visible-to-owner></p>

6.22 Hiding Private Profile Content
Problem
Privacy is such an important concern on Facebook, and I want to make sure my appli-
cation follows all of the rules and regulations so I respect my users and don’t get Terms
of Service violations! How do I make sure I’m showing users only the Profile content
from other users that they’re supposed to see?

Solution
The fb:if-can-see tag gives you full control over whether to display one user’s Profile
content to another user. The simplest form is:

<fb:if-can-see uid="12345">You're allowed to see this</fb:if-can-see>

Discussion
The simplest case is probably not all that useful to you, since you’re probably more
interested in a specific part of the Profile rather than the whole thing. Add a what
parameter and include any one of the following: profile, friends, not_limited, online,

6.22 Hiding Private Profile Content | 147

statusupdates, wall, groups, photosofme, notes, feed, contact, email, aim, cell, phone,
mailbox, address, basic, education, professional, personal, seasonal:

<fb:if-can-see uid="12345" what="friends">
 You're allowed to see <fb:name uid="12345" possessive="true" /> friends
 <fb:else>
 You're not allowed to see them.
 </fb:else>
</fb:if-can-see>

Note that you can’t chain the whats together, so you’ll have to nest fb:if-can-see tags
if you want to check for more than one permission at a time:

<fb:if-can-see uid="12345" what="profile">
 <fb:if-can-see uid="12345" what="friends">
 You can see <fb:name uid="12345" possessive="true" /> profile and friends.
 </fb:if-can-see>
</fb:if-can-see>

6.23 Hiding Private Photos
Problem
How do I know whether I can show a photo to a user?

Solution
Use the fb:if-can-see-photo and specify a photo ID (pid). The simplest form is:

<fb:if-can-see-photo pid="12345">
 <fb:photo pid="12345" />
</fb:if-can-see-photo>

For more information on fb:photo, see Recipe 6.25.

Discussion
The default behavior of fb:if-can-see-photo is to check for permission for
loggedinuser, but you can specify a uid for a different user to check that person’s per-
missions instead. As always, you can include fb:else to display an alternate image:

<fb:if-can-see-photo pid="12345">
 <fb:photo pid="12345" />
 <fb:else>

 </fb:else>
</fb:if-can-see-photo>

148 | Chapter 6: Facebook Markup Language (FBML)

6.24 Embedding an iFrame
Problem
I was smart and didn’t build my app as an iFrame, but now I need to put an iFrame
inside the page.

Solution
Use the fb:iframe tag to embed an iFrame inside of FBML. The simplest form is:

<fb:iframe src="http://www.someserver.com/" />

Discussion
The embedded iFrame actually gets all kinds of interesting goodies appended to the
embedding URL (these are similar to the parameters added by the fb:swf tag; see
Recipe 6.27), which you can use in that page to render more intelligent content. If you
take a peek at the HTML rendered by the FBML parser, you’ll see something like:

<iframe src="http://www.someserver.com/?fb_sig_in
_iframe=1&fb_sig_time=1206929247.1825&fb_sig_added=1&
fb_sig_user=12345&fb_sig_profile_update_time=1204849318&fb_
sig_session_key=123456789&fb_sig_expires=0&fb_sig_api
_key=123456789&fb_sig=123456789"></iframe>

Two important things to note: you can’t use fb:iframe in a Profile Box, and you can’t
use FBML inside the iFrame, since it won’t be parsed by the FBML parser. There are a
bunch of additional options you can include as parameters in the fb:iframe tag, which
are listed in Table 6-5.

Table 6-5. Parameters for fb:iframe

Name Type Default value Description

src string N/A The URL of the content you want to load into the frame. Facebook will auto-
matically append a number of parameters to your URL, as noted earlier. This is
the only required field.

frameborder int 1 Sets whether the frame has a border (1) or not (0). Take careful note of this one
because it isn’t a boolean and it isn’t yes/no.

height int None Height of the iFrame, in pixels. Note that this may be overridden if you turn on
smartsize or resizable.

name string None This is required only if you’re using resizable to resize the iFrame from the
JavaScript API.

resizable bool false Controls whether you can resize this iFrame dynamically using the JavaScript
API. This can’t be used when smartsize is enabled (so you have to pick one
or the other), and you’ll have to provide a name so that you can address it from
your script.

6.24 Embedding an iFrame | 149

Name Type Default value Description

scrolling string yes Controls whether the iFrame has scrollbars. Note that this one isn’t a boolean
or a 1/0, but rather one of “yes”, “no”, or “auto”.

smartsize bool false When set to true, smartsize will automatically size your frame to fill the
remaining empty space in your Canvas page.

style string None Anything specified in this field will be applied to the iFrame as an inline CSS style.

width int None Width of the iFrame, in pixels. Note that this may be overridden if you turn on
smartsize or resizable.

6.25 Embedding Facebook Photos
Problem
I know my users have some great photos in their Facebook Photos app and I’d really
like to be able to embed them in my FBML.

Solution
Use the fb:photo tag to embed photos from the Facebook Photos app. The simplest
form is:

<fb:photo pid="12345" />

Discussion
You’ll likely have found the pid of the photo you’re embedding through the Facebook
API’s photos.get() method (see Chapter 9 for more information). If you used FQL to
find the photo, you’ll need to include the uid that you used in the query to find the
photo so that Facebook can make sure that user is allowed to view it:

<fb:photo pid="12345" uid="12345" />

You can also specify a size parameter, similar to the fb:profile-pic with the same
allowable sizes: thumb (t), small (s), normal (n), and square (q). See Recipe 6.8 for a
breakdown of the different sizes. The final optional parameter is align, which can be
either left or right:

<fb:photo pid="12345" size="t" align="right" />

The fb:photo tag actually renders out a standard HTML img tag, so if I embedded a
photo of my dog, Findley, from my Photos album of dog pictures, the FBML parser
might ultimately insert this:

<img pid="2079254" uid="561415460" src="http://photos-g.ak.
facebook.com/photos-ak-sf2p/v168/16/97/561415460/n561415460_2079254_773.jpg" />

If you need to style the inserted image using CSS, just treat it like any other img tag.

150 | Chapter 6: Facebook Markup Language (FBML)

6.26 Embedding MP3s
Problem
I want to embed a playable MP3 into my Canvas page.

Solution
Use the fb:mp3 tag. The simplest form is:

<fb:mp3 src="http://host.com/file.mp3" />

Discussion
The Facebook MP3 player (Figures 6-5 through 6-7) is designed to match the rest of
the Facebook interface and should look right at home on your Canvas pages.

Figure 6-5. Facebook MP3 player (closed)

Figure 6-6. Facebook MP3 player (playing)

Figure 6-7. Facebook MP3 player (paused)

In these examples, the optional song and artist parameters were specified:

<fb:mp3
 src="http://someserver.com/my.mp3"
 title="How to Speak Hip, Side 2"
 artist="Del Close and John Brent" />

You can also specify a width and height, which will not actually scale the player but
will cut it off (at the time this was written, the height parameter actually did nothing).
Specifying a width of 20 will give you Figure 6-8.

Figure 6-8. Facebook MP3 player with 20 px width

6.26 Embedding MP3s | 151

As you may have guessed, the MP3 player is actually an Adobe Flash widget that gets
inserted into your page by the FBML parser. If you want to position it using CSS, note
that it gets added to a div with the class mp3player_holder and a unique generated ID
(e.g., mp3player_swf_fb_mp347f05b50e5add7c4380642047f05b50e5b392399159624), so you
can find it in the DOM and apply whatever styling you’d like.

This isn’t the super-high-performance media-playing widget you might hope, so a few
notes on compatibility and display:

• The player supports only MP3-formatted files, so formats such as WMV or Ogg
Vorbis are out.

• The file’s bit rate must be an increment of 11 KHz (11 KHz, 22 KHz, and 44.1 KHz
all work).

• The song and artist fields have to be ASCII characters or they won’t display prop-
erly, so non-ASCII foreign languages (e.g., Kanji) are out of luck.

• Adding song="" or artist="" will result in the title being displayed as “No Title”
and the artist as “Unknown Artist,” respectively (rather than not displaying them).
Leave the parameters out if you don’t want them in.

• Keep in mind that embedding multiple Facebook MP3 players on one page is en-
tirely possible, but they don’t have any intelligence built in to pause each other, so
your users will end up with overlapping sound if they play more than one
simultaneously.

6.27 Embedding Adobe Flash
Problem
I’ve made the most brilliant Adobe Flash piece ever created, and now I want to stick it
in my FBML.

Solution
Use the fb:swf tag to embed Flash. The simplest form is:

<fb:swf swfsrc='http://www.youtube.com/v/12345"/>

Discussion
The FBML parser will automatically add a few Flash variables to your embed that you
can then use in your Flash movie (these are similar to the parameters added by the
fb:iframe tag—see Recipe 6.24), shown in Table 6-6.

152 | Chapter 6: Facebook Markup Language (FBML)

Table 6-6. Flashvars added by the FBML parser

Name Type Description

allowScriptAccess string This parameter is always set to “never” by Facebook, so that your embedded Flash
movies can’t access any page-level scripts.

fb_sig_profile int If this Flash is being loaded in a Profile, this is the uid of the Profile owner. If it’s being
loaded in a Canvas page, this will be blank.

fb_sig_time int A timestamp of when this signature information was generated.

fb_sig_user int The uid of the current user (a.k.a. loggedinuser).

fb_sig_session_key string The current Facebook session key.

fb_sig_expires int The session expiration time.

fb_sig_api_key string Your application’s API key, which the Flash movie will need if it’s going to make any
API requests.

fb_sig_added bool Indicates whether the current user has added your application.

fb_sig string An MD5 hash of all the parameters with names that start with fb_sig_ plus your
application’s secret key. See the section called “Enhancing security in your Flash” later
in this recipe for how to use this to enhance security.

There are a number of additional parameters you can use to tweak your Flash, listed
in Table 6-7.

Table 6-7. Parameters for fb:swf

Name Type Default value Description

Swfsrc string N/A The URL of the Flash you want to embed. This is the only required field.

Align string left Pick either “left”, “right”, or “center”.

Flashvars string None Include any variables you want passed to your Flash movie here, making
sure to URL encode them first. Facebook will automatically append a number
of variables to your embed, as mentioned earlier.

Height int None Height of your Flash, in pixels.

imgclass string None CSS class to apply to the image specified in imgsrc.

imgsrc string spacer.gif The image that will be shown in place of your Flash when it can’t be displayed
or in places where the user needs to click to activate it (e.g., in Profile Boxes).
The default value is http://static.ak.facebook.com/images/spacer.gif, which
will render your Flash unusable in Profile Boxes since it will be invisible, so
make sure you specify this if you want to embed it there.

imgstyle string None Inline CSS styling for the image specified in imgsrc.

loop bool false Setting this to true will cause your Flash to loop endlessly.

quality string None This can be any one of “low”, “medium”, or “high”.

salign string None This is the same as the salign variable you specify in a normal Flash embed,
which can be “l” (left), “r” (right), “t” (top), “b” (bottom), or a combination
(“tl”, “tr”, “bl”, “br”).

6.27 Embedding Adobe Flash | 153

http://static.ak.facebook.com/images/spacer.gif

Name Type Default value Description

scale string None Choose one of “showall”, “noborder”, or “exactfit”.

swfbgcolor string #ffffff A hex-encoded background color that will be shown behind the movie.

waitforclick bool true Setting this to false will autoplay your Flash whenever Facebook allows
that behavior (i.e., anywhere other than Profile Boxes).

width int None Width of your Flash, in pixels.

wmode string transparent Standard Flash window modes: “transparent”, “opaque”, or “window”.

Here are some important things to note:

• Facebook requires users to have the Flash 9.0 plug-in or greater, so take that into
account when you’re building your movies.

• Your Flash will be inserted into a div with a generated id (such as
15021277386_fbswf_47f06eeeae3c29499214985) and no class set.

Enhancing security in your Flash

It’s a good idea to make sure that your Flash is actually embedded in a Facebook page,
because it tells you that the uids passed in are valid and have been authenticated by
Facebook. If you don’t verify this, someone could download your Flash that actually
does some action on people’s accounts, embed it in another page, pass in someone’s
ID, and do bad things. The fb_sig variable that Facebook passes into your Flash will
help you do this, but you need to follow a few extra steps in order to be really secure.

The basic intent of fb_sig is to provide your app with an MD5 hash of all of the
fb_sig_ variables and your app’s secret key, so that you can create a hash in your Flash
movie and then check that it matches the hash passed in. Checking that will definitely
prove that you were passed the correct key and that it’s likely your Flash is inside of
Facebook, but it’s also possible that some malicious hacker type installed your app,
grabbed the URL to your Flash from the page, downloaded myBrilliantFlash.swf onto
their machine, and then reverse engineered it to extract your secret key. That would be
bad, so the answer is not to put the key into your Flash. But if you don’t do that, how
will you check the hash?

It’s actually not that hard. Instead of putting the key into your Flash, create a simple
service on your backend that will accept the fb_sig_ variables and the hash, and validate
it, returning a boolean to indicate whether it passed the sniff test. The simplest way to
do this is to add a page (written in PHP, or whatever you’d prefer) to your server, which
accepts the fb_sig_s and hash as parameters:

http://www.someserver.com/myapp/checkMD5.php?fb_sig_profile=12345&fb_sig
_time=12345&fb_sig_session_key=12345&fb_sig_expires=12345&fb_sig_api
_key=12345&fb_sig_added=1&fb_sig=9e107d9d372bb6826bd81d3542a419d6

154 | Chapter 6: Facebook Markup Language (FBML)

http://www.someserver.com/myapp/checkMD5.php?fb_sig_profile=12345&fb_sig_time=12345&fb_sig_session_key=12345&fb_sig_expires=12345&fb_sig_api_key=12345&fb_sig_added=1&fb_sig=9e107d9d372bb6826bd81d3542a419d6
http://www.someserver.com/myapp/checkMD5.php?fb_sig_profile=12345&fb_sig_time=12345&fb_sig_session_key=12345&fb_sig_expires=12345&fb_sig_api_key=12345&fb_sig_added=1&fb_sig=9e107d9d372bb6826bd81d3542a419d6
http://www.someserver.com/myapp/checkMD5.php?fb_sig_profile=12345&fb_sig_time=12345&fb_sig_session_key=12345&fb_sig_expires=12345&fb_sig_api_key=12345&fb_sig_added=1&fb_sig=9e107d9d372bb6826bd81d3542a419d6

The page will recreate the fb_sig string and then compare it to what gets passed in,
returning true if they match and false if they don’t. Here’s the PHP version:

<?php
 // Copy the $_GET params into a local array and sort it by the keys
 $nameValueArray = $_GET;
 ksort($nameValueArray);

 // Iterate through and create a string out of all the name/values pairs
 $nameValueString = '';
 foreach($nameValueArray as $key=>$value){
 if($key != 'fb_sig'){
 $nameValueString .= strtolower(substr($key, 7)) . '=' . $value;
 }
 }

 // Append the app's secret key
 $nameValueString .= $your_apps_secret_key_goes_here;

 // Encode as an MD5 hash
 $nameValueString = md5($nameValueString);

 // Check to see if they match and decide what to output
 if($nameValueArray['fb_sig'] == $nameValueString){
 echo 'true';
 }else{
 echo 'false';
 }
?>

Substitute your app’s secret key on line 15, and you should be in business. Here’s some
ActionScript 3 code you can use in Flash to send the request and deal with the response
(I put it in frame 1 of the movie, but you might have somewhere else you’d rather stick
it):

var nameValue:String = "";

try {
 // Step through the parameters and keep any which are part of fb_sig
 var keyStr:String;
 var valueStr:String;
 var paramObj:Object = LoaderInfo(this.root.loaderInfo).parameters;
 for (keyStr in paramObj) {
 if (keyStr.substr(0,6) == "fb_sig") {
 valueStr = String(paramObj[keyStr]);
 if (nameValue!="") {
 nameValue += "&";
 }
 nameValue += keyStr + "=" + valueStr;
 }
 }
 nameValue = "http://someserver.com/checkMD5.php?" + nameValue;

 // Setup the URLLoader
 var loader:URLLoader = new URLLoader();

6.27 Embedding Adobe Flash | 155

 loader.dataFormat = URLLoaderDataFormat.TEXT;
 loader.addEventListener(Event.COMPLETE, onMD5Check);
 // You should add more listeners for IO_ERROR, SECURITY_ERROR, and HTTP_STATUS
 loader.load(new URLRequest(nameValue));
} catch (e:Error) {
 // Handle your errors here
}

function onMD5Check(ev:Event) {
 try {
 if (ev.target.data == "true") {
 // Your key matched! You can continue
 } else {
 // Your key didn't match. Something fishy going on so deal with it
 }
 } catch (e:TypeError) {
 // Handle your errors here
 }
}

The check should still work even if you pass additional flashvars into the Flash that
start with fb_sig_, but you should generally avoid that and use your own prefix if you
want to have one.

A really crafty hacker could still get around this by observing the URL
to which you’re sending the security check then using some network
trickery to route requests to that address to a different page that just
returns true without doing the check. The truth about software security
is that there’s always someone with more time and willingness to break
your code than you can invest in preventing them, so it’s probably safe
to assume you’re reasonably secure (unless your Flash app launches
nuclear missiles, in which case you probably don’t need my advice).

6.28 Embedding Flash Video
Problem
I’ve encoded some great video as FLV files and now I need to embed this in my FBML.

Solution
Use the fb:flv tag to embed Flash Video (FLV) files. The simplest form is:

<fb:flv src="http://someserver.com/greatEncodedVideo.flv" />

The player fits right into the Facebook look and feel, as shown in Figure 6-9.

156 | Chapter 6: Facebook Markup Language (FBML)

Figure 6-9. Facebook Flash Video player

Discussion
The fb:flv tag really is just that: a tag that plays FLV files. This is not a generic video
player, meaning it won’t handle anything but FLV files, so don’t throw it .mov, .wmv,
or .avi files and hope they’ll work. The three optional parameters let you set the
width and height (which you should do if you can because some reports indicate that
Internet Explorer will collapse your video down to a single gray dot if you don’t), and
a title, which will be passed into the video as the Flash variable video_title.

6.29 Embedding Microsoft Silverlight
Problem
I love using the latest and greatest technologies, so I’ve gone and built a kick-ass
Silverlight movie that I want to embed into my app.

Solution
Use the fb:silverlight tag to embed your Silverlight objects. The simplest form is:

<fb:silverlight silverlightsrc="http://someserver.com/kickAss.xaml" />

Discussion
As with embedding Flash (see Recipe 6.27), your Silverlight objects will play automat-
ically when embedded on a Canvas page and will load and display the image specified
in imgsrc when embedded in a Profile Box, which will require a click to start playing.
The fb:silverlight tag shares some of the same optional parameters as fb:swf, and
these are listed in Table 6-8.

6.29 Embedding Microsoft Silverlight | 157

Table 6-8. Parameters for fb:silverlight

Name Type Default value Description

silverlightsrc string N/A The URL of the Silverlight you want to embed. This is the only required field.

height int None Height of your Silverlight, in pixels.

imgclass string None CSS class to apply to the image specified in imgsrc.

imgsrc string spacer.gif The image that will be shown in place of your Silverlight when it can’t be
displayed or in places where the user needs to click to activate it (e.g., in
Profile Boxes). The default value is http://static.ak.facebook.com/images/
spacer.gif, which will render your Silverlight unusable in Profile Boxes since
it will be invisible, so make sure you specify this if you want to embed it
there.

imgstyle string None Inline CSS styling for the image specified in imgsrc.

swfbgcolor string #ffffff According to the Facebook Developers Wiki, that is the correct name for
the parameter, even though it’s not a SWF. The attribute doesn’t appear
to do anything either way.

width int None Width of your Silverlight, in pixels.

The FBML parser will embed your image in a div with the id silverlightImage and
your actual Silverlight in a div with the id silverlightControlHost. Since both of those
are IDs rather than classes, it suggests that you can embed only one Silverlight movie
per Facebook page. It’s so early in the wild Silverlight frontier that it’s hard to say
whether anyone has used this tag in production, so keep that in mind when you’re
choosing a technology for your interactive media bits.

6.30 Wide Versus Narrow Profile Boxes
Problem
I know users can drag my Profile Box from the wide body of their Boxes tab into the
narrow sidebar, and I’d really like to be able to display different content when they do.
How can I send different info to Facebook?

Solution
Facebook provides two tags that differentiate where the content should be shown:
fb:wide and fb:narrow. It will be left as a task for the reader (that would be you) to
determine which is which. There are no parameters for either tag.

Note that these tags aren’t used on a Canvas page in the same way as many of the other
tags in this chapter. You’ll need to pass your FBML as a parameter to the Facebook
API’s Profile.setFBML() method, which will update the cached Profile Box for the
specified user. For more information, see Recipe 9.47.

158 | Chapter 6: Facebook Markup Language (FBML)

http://static.ak.facebook.com/images/spacer.gif
http://static.ak.facebook.com/images/spacer.gif

Discussion
If you call the Facebook API’s Profile.setFBML() and don’t pass in fb:wide or
fb:narrow tags, everything you do pass in will be placed in both locations. Neither box
has a height constraint, so you’re free to make your content as tall as you’d like (though
keep in mind that people are more likely to remove your box if it takes over their entire
Profile). The wide box is 388 pixels wide with an 8-pixel left margin and no right margin,
so if you want them to be balanced, go for a width of 380 pixels. The narrow box is
190 pixels wide, with a left margin of 10 pixels and no right margin, so go with 180
pixels if you want balanced margins.

Don’t forget that there are settings for your application that will determine whether
you end up in the sidebar or body by default (“Default Profile Box Column: Wide or
Narrow”), as well as what default FBML to display in the Profile Box before the user
has done anything in your application (“Default FBML”). For more information on
setting these, see Recipe 3.2.

6.31 Tabling Users
Problem
I love the Mutual Friends table of users I see on people’s Profile pages, and I’d really
like to display a similar listing of users in my app.

Solution
The good news is that you can use the fb:user-table tag to display a table of users
without worrying about the formatting and extra HTML. The bad news is that it will
only work in a Profile Box and can’t be used in a Canvas page. The simplest form is:

<fb:user-table>
 <fb:user-item uid="561415460" />
 <fb:user-item uid="561415460" />
 <fb:user-item uid="561415460" />
 <fb:user-item uid="561415460" />
 <fb:user-item uid="561415460" />
 <fb:user-item uid="561415460" />
</fb:user-table>

That’ll give you an awesome table filled with links to my Profile; see Figure 6-10.

Figure 6-10. User table filled with my Profile

6.31 Tabling Users | 159

Discussion
You can add a col parameter to control the number of columns you want in your table.
For example, the following:

<fb:user-table cols="2">
 <fb:user-item uid="561415460" />
 <fb:user-item uid="561415460" />
 <fb:user-item uid="561415460" />
 <fb:user-item uid="561415460" />
 <fb:user-item uid="561415460" />
 <fb:user-item uid="561415460" />
</fb:user-table>

will give you a two-column table, as shown in Figure 6-11.

Figure 6-11. A two-column-wide user table

6.32 Page and Box Titles
Problem
Page titles are a really important element of Search Engine Optimization, and they also
provide users with better bookmarks and history list entries. How can I set titles for
the different pages in my app?

Solution
Use the fb:title tag to set the title of your page. When used on a Canvas page, this
will append the included text to the title of the window. The simplest form is:

<fb:title>Title Here</fb:title>

160 | Chapter 6: Facebook Markup Language (FBML)

If your app is called “Super Disco Napping,” and you set the fb:title to “Invite Friends
to Nap,” and you’re running Firefox 3 on Mac OS X (which you should be!), the window
title bar will look something like Figure 6-12.

Figure 6-12. Window title

You can also use the fb:title tag to set the title of the various boxes you can place the
tag in, including Profile Boxes and the like. When used inside of a wide Profile Box,
you’ll get something like Figure 6-13.

Figure 6-13. Profile Box text

Discussion
The fb:title tag is often used with the fb:subtitle tag to create a header like the one
you’ll see in Profile Boxes on users’ Profiles. For example, the following:

<fb:title>Super Disco Naps</fb:title>
<fb:subtitle seeallurl="http://apps.facebook.com/superdisconaps/all">
 Displaying 10 of 2587 naps
 <fb:action
 href="http://apps.facebook.com/superdisconaps/nap.php">
 Take a Nap!
 </fb:action>
</fb:subtitle>

will give you something like Figure 6-14.

Figure 6-14. Title and subtitle

See Recipe 6.33 for more information on the fb:subtitle tag.

6.32 Page and Box Titles | 161

6.33 Profile Box Subtitles
Problem
I want to add one of those cool bars I see at the top of other Profile Boxes to mine so
that I can give people more information about what’s in the box and some useful links
to draw them into the app.

Solution
Luckily for you, subtitles aren’t just for foreign films anymore. Use the fb:subtitle
tag to add a bar to the top of your Profile Boxes that contain more info. Note that this
tag is usually used with the fb:title tag, which is included in the following examples.
The simplest form is:

<fb:subtitle>
 Displaying 10 of 2587 naps
</fb:subtitle>

which will give you Figure 6-15.

Figure 6-15. Super Disco Naps subtitle

Discussion
You can add a seeallurl parameter to the fb:subtitle tag, which will add a “See All”
link to the right edge of your bar. For example, the following:

<fb:title>Super Disco Naps</fb:title>
<fb:subtitle seeallurl="http://apps.facebook.com/superdisconaps/all">
 Displaying 10 of 2587 naps
</fb:subtitle>

will give you Figure 6-16.

Figure 6-16. Super Disco Naps subtitle with “See All”

You can also add an fb:action tag within the fb:subtitle, which will add an action
link next to the “See All” link (or in place of it if you don’t include a seeallurl
parameter):

162 | Chapter 6: Facebook Markup Language (FBML)

<fb:title>Super Disco Naps</fb:title>
<fb:subtitle seeallurl="http://apps.facebook.com/superdisconaps/all">
 Displaying 10 of 2587 naps
 <fb:action
 href="http://apps.facebook.com/superdisconaps/nap.php">
 Take a Nap!
 </fb:action>
</fb:subtitle>

That code will give you Figure 6-17.

Figure 6-17. Super Disco Naps subtitle with an action and “See All”

6.34 Forms the Facebook Way
Problem
I need to display a form in my app and would really like to use the same layout and
fields that Facebook uses for its forms so that my app matches the rest of Platform.

Solution
The fb:editor family of tags gives you the ability to quickly create a Facebook-style
form. The layout gets wrapped in fb:editor tags, with the rest of the family inserted
between your opener and closer to fill in the form itself:

<fb:editor action="http://someserver.com/somePage.php">
 <fb:editor-custom label="About You">It's all about you!</fb:editor-custom>
 <fb:editor-text label="Your Name" name="name"/>
 <fb:editor-textarea label="Comments" name="comments"/>
 <fb:editor-divider/>
 <fb:editor-time label="Current Time" name="time" value="<?php echo time();?>"/>
 <fb:editor-month label="Current Month" name="month" value="4"/>
 <fb:editor-date label="Current Date" name="date" value="<?php echo time();?>"/>
 <fb:editor-divider/>
 <fb:editor-custom label="Favorite Ice Cream">
 <select name="iceCream">
 <option value="chocolate" selected="selected">Chocolate</option>
 <option value="vanilla">Vanilla</option>
 <option value="strawberry">Strawberry</option>
 <option value="moosetracks">Moose Tracks</option>
 </select>
 </fb:editor-custom>
 <fb:editor-divider/>
 <fb:editor-buttonset>
 <fb:editor-button value="Give me Ice Cream!"/>
 <fb:editor-cancel />

6.34 Forms the Facebook Way | 163

 </fb:editor-buttonset>
</fb:editor>

The code here shows all of the various subtags, which are covered in great detail in the
upcoming Discussion. This code will render out to a form that looks like Figure 6-18.

Figure 6-18. Facebook form

Discussion
The FBML parser renders the fb:editor form as a table with two columns, and so the
example ends up looking like this:

<form action="http://someserver.com/somePage.php" method="post"><table
class="editorkit" border="0" cellspacing="0" style="width:425px"><tr
class="width_setter"><th style="width:75px"></th><td></td></tr>
 <tr><th class="detached_label"><label>About You:</label></th><td
class="editorkit_row">It's all about you!</td><td class="right_padding"></td></tr>
 <tr><th><label>Your Name:</label></th><td class="editorkit_row"><input type="text"
name="name"/></td><td
class="right_padding"></td></tr>
 <tr><th class="detached_label"><label>Comments:</label></th><td
class="editorkit_row"><textarea name="comments"></textarea></td><td
class="right_padding"></td></tr>
 <tr><th></th><td colspan="2"><divclass="divider"></div></td></tr>

 <tr><th><label>Current Time:</label></th><td
class="editorkit_row"><select name="time_hour" id="time_hour"><option
 value="1">1</option><option
value="2">2</option><option value="3">3</option><option value="4">4</option><option
value="5">5</option><option value="6">6</option><option value="7">7</option><option
value="8" selected>8</option><option value="9">9</option><option

164 | Chapter 6: Facebook Markup Language (FBML)

value="10">10</option><option value="11">11</option><option
value="12">12</option></select>:<select
name="time_min" id="time_min">

<option value="00">00</option><option value="05" selected>05</option><option
value="10">10</option><option value="15">15</option><option
value="20">20</option><option value="25">25</option><option
value="30">30</option><option value="35">35</option><option
value="40">40</option><option value="45">45</option><option
value="50">50</option><option value="55">55</option></select><select
name="time_ampm" id="time_ampm"><option value="am">am</option><option value="pm"
selected>pm</option></select></td><td class="right_padding"></td></tr>

 <tr><th><label>Current Month:</label></th><td class="editorkit_row"><select
name="month" id="month" ><option value="-1">Month:</option><option
value="1">Jan</option><option value="2">Feb</option><option
value="3">Mar</option><option value="4" selected>Apr</option><option
value="5">May</option><option value="6">Jun</option><option
value="7">Jul</option><option value="8">Aug</option><option
value="9">Sep</option><option value="10">Oct</option><option
value="11">Nov</option><option value="12">Dec</option></select></td><td
class="right_padding"></td></tr>

 <tr><th><label>Current Date:</label></th><td
class="editorkit_row"><select name="date_month"
id="date_month" onchange="editor_date_month_change(this,
'date_day','');" ><option
value="1">Jan</option><option
value="2">Feb</option><option
value="3">Mar</option><option value="4"
selected>Apr</option><option
value="5">May</option><option
value="6">Jun</option><option
value="7">Jul</option><option value="8">Aug</option><option
value="9">Sep</option><option
value="10">Oct</option><option
value="11">Nov</option><option
value="12">Dec</option></select><select
name="date_day" id="date_day"><option
value="1">1</option><option
value="2">2</option><option value="3">3</option><option
value="4">4</option><option
value="5">5</option><option
value="6">6</option><option value="7">7</option><option
value="8">8</option><option
value="9">9</option><option
value="10">10</option><option
value="11">11</option><option value="12">12</option><option
value="13">13</option><option
value="14">14</option><option
value="15">15</option><option
value="16">16</option><option
value="17">17</option><option
value="18">18</option><option
value="19">19</option><option

6.34 Forms the Facebook Way | 165

value="20">20</option><option
value="21">21</option><option
value="22">22</option><option
value="23">23</option><option value="24">24</option><option
value="25">25</option><option
value="26">26</option><option
value="27">27</option><option value="28"
selected>28</option><option value="29">29</option><option
value="30">30</option><option
value="31">31</option></select></td><td
class="right_padding"></td></tr>

 <tr><th></th><td colspan="2"><div
class="divider"></div></td></tr>
 <tr><th class="detached_label"><label>Favorite Ice
Cream:</label></th><td class="editorkit_row">
 <select name="iceCream">
 <option value="chocolate" selected="selected">Chocolate</option>
 <option value="vanilla">Vanilla</option>
 <option value="strawberry">Strawberry</option>
 <option value="moosetracks">Moose Tracks</option>

 </select>
 </td><td class="right_padding"></td></tr>
 <tr><th></th><td colspan="2"><div class="divider"></div></td></tr>
 <tr><th></th><td class="editorkit_buttonset">

 <input type="submit" class="editorkit_button action"
 value="Give me Ice Cream!" />
 orCancel
 </td><td class="right_padding"></td></tr>
</table></form>

It’s worth noting that this XHTML is actually invalid. Challenge your
powers of perception and go find the two validation errors! Back?
Got ’em? No? OK, I’ll tell you, but only this time. The various
select options that are marked as selected should be marked as
selected="selected" in XHTML, and the textarea is missing the rows
and cols attributes.

Each of the tags within the form has its own set of optional parameters (with the ex-
ception of fb:editor-divider, fb:editor-buttonset, and fb:editor-cancel, which are
simplicity defined), discussed next.

fb:editor

The fb:editor tags wrap the whole kit and caboodle, defining the start and end of the
form. These replace the HTML form tag, so you don’t need to include one in addition
to them. Its parameters are listed in Table 6-9.

166 | Chapter 6: Facebook Markup Language (FBML)

Table 6-9. Parameters for fb:editor

Name Type Default value Description

action string N/A The URL to post the form to. This is the only required field.

width int 425 Width of the fields column, in pixels.

labelwidth int 75 Width of the labels column, in pixels.

Note that the total width of the table will be width + labelwidth, and so it defaults to
500 pixels.

fb:editor-custom

The fb:editor-custom tag is used to insert any valid block of FBML into your form. In
the example shown earlier, it’s used to both display some static text in the field column
and include a select with ice cream flavors. Its parameter is listed in Table 6-10.

Table 6-10. Parameter for fb:editor-custom

Name Type Default value Description

label string N/A Label to display in the label column.

fb:editor-text

The fb:editor-text tag is equivalent to an HTML <input type="text">. Its parameters
are listed in Table 6-11.

Table 6-11. Parameters for fb:editor-text

Name Type Default value Description

label string N/A Label to display in the label column.

name string N/A Name of the control, which will become the variable containing the value in the
POST.

value string N/A Default string to put into the field.

maxlength int N/A Maximum number of characters to allow in the field.

fb:editor-textarea

The fb:editor-textarea tag is equivalent to an HTML textarea. Its parameters are
listed in Table 6-12. You can use this tag in either the self-closed or open modes,
depending on whether you want to include content or not. For example:

<fb:editor-textarea label="Comments" name="comments"/>

or:

<fb:editor-textarea label="Comments" name="comments">
 Put your comments in here
</fb:editor-textarea>

6.34 Forms the Facebook Way | 167

Table 6-12. Parameters for fb:editor-textarea

Name Type Default value Description

label string N/A Label to display in the label column.

name string N/A Name of the control, which will become the variable containing the value in the POST.

rows int N/A Height of the text area in rows.

fb:editor-time

The fb:editor-time tag creates a series of selects with options for setting the hours,
minutes, and a.m./p.m. values for a time field. Its parameters are listed in Table 6-13.

Table 6-13. Parameters for fb:editor-time

Name Type Default value Description

label string N/A Label to display in the label column.

name string N/A Name of the control, which will be prepended to _hour, _min, and _ampm to create
the variables containing the values in the POST (e.g., if you set this to “current”, you’ll
get current_hour, current_min, and current_ampm in POST).

value int 4:00 p.m. The time in epoch seconds. See Recipe 6.20 for a description of epoch seconds and how
to work with them.

fb:editor-month

The fb:editor-month tag creates a single select to pick a month of the year. Its param-
eters are listed in Table 6-14.

Table 6-14. Parameters for fb:editor-month

Name Type Default value Description

label string N/A Label to display in the label column.

name string N/A Name of the control, which will become the variable containing the value in the POST.

value int “Month:” Number of the month to select by default (January=1, and so on). If you don’t specify
a value, this will default to the text “Month:”, which appears as the first option in
the select and prompts users to make a choice.

fb:editor-date

The fb:editor-date tag creates two selects to pick the month and day of the year. Its
parameters are listed in Table 6-15.

Table 6-15. Parameters for fb:editor-date

Name Type Default value Description

label string N/A Label to display in the label column.

168 | Chapter 6: Facebook Markup Language (FBML)

Name Type Default value Description

name string N/A Name of the control, which will be prepended to _month and _day to create the two
variables containing the values in the POST (e.g., if you set this to “current”, you’ll get
current_month and current_day in the POST).

value int “Month:” Number of the month to select by default (January = 1, and so on). If you don’t specify
a value, this will default to the text “Month:”, which appears as the first option in
the select and prompts users to make a choice.

fb:editor-button

The fb:editor-button tag, which should appear inside an fb:editor-buttonset tag,
renders a Facebook-style submit button. Its parameters are listed in Table 6-16.

Table 6-16. Parameters for fb:editor-button

Name Type Default value Description

value string N/A Text to display on the button. This is the only required field.

name string N/A Name of the control, which will become the variable containing the value in the POST.

6.35 Heads Up! Heading Your App Pages
Problem
I want to display my app’s icon and a title at the top of my pages.

Solution
Use the fb:header tag:

<fb:header />

which will give you your app’s icon and name, as shown in Figure 6-19.

Figure 6-19. Empty fb:header tag

You can also put text in the tag:

<fb:header>This is a Page in my App</fb:header>

which will keep the icon but substitute your text for your app’s name, as shown in
Figure 6-20.

Figure 6-20. fb:header with text

6.35 Heads Up! Heading Your App Pages | 169

Discussion
You can pass in a false value for icon to switch off the icon display:

<fb:header icon="false">This is a Page in my App</fb:header>

You can also pass in a decoration string set to either add_border or no_padding (but not
both), which gives you control over whether you want a one-pixel gray border
(#cccccc) along the bottom edge of your header or the default 20 pixels of padding. For
example, the following:

<fb:header decoration="add_border">This is a Page in my App</fb:header>

will give you Figure 6-21.

Figure 6-21. fb:header with border

Alternatively, this code:

<fb:header decoration="no_padding">This is a Page in my App</fb:header>

will give you Figure 6-22.

Figure 6-22. fb:header with no padding

If you’re looking for a full dashboard at the top of your page, including
actions, help, and a Create button, try the fb:dashboard tag. See Rec-
ipe 6.36 for more information.

6.36 Dashing Dashboards: Heading Your App Pages
Problem
I’ve noticed that some Facebook apps have their app icon and name at the top, along
with a really nice Create button relevant to what the app does. That looks swanky! How
I do get that?

Solution
Use the fb:dashboard tag, along with its children, fb:action, fb:create-button, and
fb:help. The simplest form is the fb:dashboard alone:

170 | Chapter 6: Facebook Markup Language (FBML)

<fb:dashboard />

which will give you Figure 6-23.

Figure 6-23. Simple dashboard

Adding in the fb:create-button gives you Figure 6-24.

Figure 6-24. Dashboard with fb:create-button

Finally, adding some fb:actions and an fb:help gives you the full Events header, as
shown in Figure 6-25.

Figure 6-25. Full dashboard

Discussion
Using fb:dashboard is a great way to give your app a Platform-native look and feel very
quickly. The tag will automatically render your icon next to your app’s name (if your
app has an icon, which it should). The tag will ignore anything you put in it that isn’t
one of its children, so:

<fb:dashboard>
 No dice!
</fb:dashboard>

and:

<fb:dashboard />

both give exactly the same result (a dashboard with the app name and icon, but nothing
else).

6.36 Dashing Dashboards: Heading Your App Pages | 171

You might want to display a different dashboard depending on whether users have
installed your app. You can’t use any of the fb:if tags inside of an fb:dashboard, but
you can wrap the dashboard in the if tags:

<fb:if-user-has-added-app>
 <fb:dashboard>
 <!--Dashboard Stuff-->
 </fb:dashboard>
<fb:else>
 <fb:dashboard>
 <!--Dashboard Stuff, Plus...-->
 <fb:action href="http://apps.facebook.com/add.php?api_key=12345">Add
 this app</fb:action>
 </fb:dashboard>
</fb:if-user-has-added-app>

You can have as many fb:action links inside an fb:dashboard as you’d like, but keep
in mind that they’ll start to wrap onto a new line if you exceed the width of the Canvas,
as shown in Figure 6-26.

Figure 6-26. Lots of fb:actions

You can have only one fb:create-button and one fb:help per fb:dashboard (you can
put more into your code, but only the first one will appear). Both tags require an
href parameter that points to a Canvas page on Facebook. For example, the following:

<fb:dashboard>
 <fb:help href="other_canvas.php">Help Me!</fb:help>
 <fb:create-button href="canvas.php">New Widget</fb:create-button>
</fb:dashboard>

will give you something like Figure 6-27.

Figure 6-27. Dashboard with fb:help and fb:create-button

You can have as many fb:dashboards as you’d like per page, and you can put them
inside of divs (and the like) if you want to position them:

<div style="width:30%; float:left;">
 <fb:dashboard>
 <fb:create-button href="canvas.php">Work It!</fb:create-button>

172 | Chapter 6: Facebook Markup Language (FBML)

 </fb:dashboard>
</div>
<div style="width:30%; float:left;">
 <fb:dashboard>
 <fb:create-button href="canvas.php">Make It!</fb:create-button>
 </fb:dashboard>
</div>
<div style="width:30%; float:left;">
 <fb:dashboard>
 <fb:create-button href="canvas.php">Do It!</fb:create-button>
 </fb:dashboard>
</div>
<div style="clear: left;">
 <fb:dashboard>
 <fb:action href="canvas.php">Makes us...</fb:action>
 <fb:action href="canvas.php">Harder</fb:action>
 <fb:action href="canvas.php">Better</fb:action>
 <fb:action href="canvas.php">Faster</fb:action>
 <fb:help href="canvas.php">Stronger!</fb:help>
 </fb:dashboard>
</div>

This would uselessly (but very Daft Punkingly) give you Figure 6-28.

Figure 6-28. Multiple fb:dashboards

If you’re just looking for your app’s name and icon, try fb:header
instead. See Recipe 6.35 for more information.

6.37 Tabs Ahoy!
Problem
I want tabs in my app just like I see all over Facebook. Tabs are the greatest! Tabs! Tabs!
Tabs!

Solution
Woah! Easy there. Tabs are pretty great, especially when they’re as simple as this:

6.37 Tabs Ahoy! | 173

<fb:tabs>
 <fb:tab-item href="http://apps.facebook.com/myapp/some.php"
 title="First Tab!" selected="true"/>
 <fb:tab-item href="http://apps.facebook.com/myapp/page.php" title="Second Tab!" />
</fb:tabs>

which will give you Figure 6-29.

Figure 6-29. Easy tabs with fb:tabs

Discussion
You can have as many tabs as you’d like, but note that they’ll either get cut off on the
right edge of the Canvas or wrap around onto additional lines with somewhat unpre-
dictable results. Each fb:tab-item must have an absolute href and title, and can
optionally have align (either left or right; see Figure 6-30) and selected (true or
false) parameters. Setting more than one tab to be selected will highlight only the first
tab.

Figure 6-30. fb:tab-items with align left and right

6.38 Media Headers
Problem
I want to display a bunch of media that all belong to a user, so I’d like some way of
showing that.

Solution
Use the fb:mediaheader tag along with its children, fb:header-title and fb:owner-
action:

<fb:mediaheader uid="561415460">
 <fb:header-title>Jay's Photos</fb:header-title>
 <fb:owner-action href="http://facebook.com/photos">Facebook</fb:owner-action>
 <fb:owner-action href="http://flickr.com">Flickr</fb:owner-action>
</fb:mediaheader>

which will give you Figure 6-31.

174 | Chapter 6: Facebook Markup Language (FBML)

Figure 6-31. fb:mediaheader as viewed by the owner

Note that I will see the Facebook and Flickr links in this image (because they’re owner-
actions), but other people will see a standard set of links relating to me (Send a Message,
Poke, etc.), depending on privacy settings.

Discussion
Unlike tags such as fb:help (in fb:dashboard), the href in the fb:owner-action tag
doesn’t have to be a Canvas page URL.

6.39 Errors, Explanation, and Success: Displaying Messages
(Oh My!)
Problem
I’d like the different types of messages displayed in my app to match Facebook’s look
and feel.

Solution
Facebook provides a family of tags that display text using their familiar user interface
standards: fb:error, fb:explanation, and fb:success. They all follow the same pattern,
in that they have two modes of use. For example, the following:

<fb:error message="Ka-Blam! Bad stuff happened!" />

will give you the message in Figure 6-32.

Figure 6-32. Facebook error with inline message

The following is a slightly more complex mode:

<fb:error>
 <fb:message>Ka-Blam!</fb:message>

6.39 Errors, Explanation, and Success: Displaying Messages (Oh My!) | 175

 <p>Bad stuff happened!</p>
</fb:error>

which will give you Figure 6-33.

Figure 6-33. Facebook error with title and message

Discussion
Using the Facebook-native appearance is valuable because users are familiar with the
look of errors and messages and will extend their understanding of them into your
application. Figure 6-34 shows the three types of message displays.

Figure 6-34. Facebook error, explanation, and success messages

The only optional parameter is decoration, which can be either no_padding (removes
the 20 pixels of padding that normally surround the message) or shorten (removes the
20 pixels of padding from the bottom of the message). Facebook’s CSS for these mes-
sages is pretty flexible, so they’ll adapt if you put them inside a div with a specified
width, as shown in Figure 6-35.

Figure 6-35. Facebook error inside a 300-px-wide div

176 | Chapter 6: Facebook Markup Language (FBML)

6.40 Discussion Boards Made Simple
Problem
I’d love to have a discussion board in my app, but it’s so much work to build one from
scratch, and I’m not sure how easy it would be to convert an existing board to run
inside of Facebook. What to do?

Solution
Facebook released the fb:board tag into a full public beta on December 7, 2007, so it
can now be used in any application. This tag will render a full discussion board within
your app and handle all of the subpages and additional functionality required to run
the board. The simplest form is:

<fb:board xid="my_quick_and_easy_board" />

which will give you something like Figure 6-36.

Figure 6-36. The simplest form of fb:board

You might consider using a Wall post–type comments system instead
of a discussion board, depending on whether you want a conversation
or more of a one-way message board. See Recipe 6.41. Note that the
implementation of both tags is almost identical, so you might have a
striking sense of déja vu if you’ve already read that recipe.

Discussion
The xid parameter needs to be unique, so go nuts and make up something that no one
else will have thought of. You’re limited to alphanumeric characters (Aa–Zz, 0–9),
hyphens (-), and underscores (_). You’ll see why it needs to be unique once you have
the board on your page and you can see the URLs it uses for internal pages, which all
point back to the same set of PHP pages for every board, passing in your xid to identify
which board it should load content for.

You can control the number of topics that appear in the initial view by passing in a
numtopics parameter (which defaults to 3):

<fb:board xid="my_quick_and_easy_board" numtopics="6" />

6.40 Discussion Boards Made Simple | 177

Four optional parameters control permission for the current user: canpost, candelete,
canmark, and cancreatetopic. Other than candelete (which defaults to false for obvious
security reasons), they all default to true. The only one that isn’t immediately obvious
from its name is canmark. You might think this means they can mark things as favorites,
but it actually enables or disables the ability to mark posts as relevant or irrelevant.

The last two options give you control over the URLs used by the board. Both default
to the current page, but you can choose to load a configuration from a different URL
by specifying a callbackurl, or to have people pop out of the discussion boards onto a
different page by specifying a returnurl. The documentation for fb:board warns that
every page load within the board will reload the configuration, so you should consider
using the callbackurl to point Facebook to a page that is served from a potentially
lower-cost or higher-bandwidth/reliability server, just in case hundreds of thousands
of users storm down your door to talk about their favorite adolescent magicians.

Finally, you can specify your own title for your board by throwing an fb:title tag into
the fb:board:

<fb:board xid="potter_chatter_board"
 numtopics="6"
 canpost="true"
 candelete="false"
 canmark="false"
 cancreatetopic="true"
 callbackurl="http://superrobustserver.com/board_config.php"
 returnurl="http://apps.facebook.com/potterchatter">
 <fb:title>Talk about Harry!</fb:title>
</fb:board>

Keep in mind that this feature is still marked as beta, so it might behave a little differently
than you’re expecting it to. If you run into any problems, jump into the Facebook Bug
Tracker (http://bugs.developers.facebook.com/) and post about them so that the Face-
book team can get right on fixing them.

6.41 Giving Users a Voice: Wall Posts in Your App
Problem
I’d really like to have something like the Profile Wall in my app so that users can leave
comments.

Solution
Don’t settle for something like the Wall; have the Wall! Use the fb:comments tag to add
a real, live Wall to your Canvas pages. The simplest form is:

<fb:comments xid="my_quick_and_easy_wall" />

which will give you something like Figure 6-37.

178 | Chapter 6: Facebook Markup Language (FBML)

http://bugs.developers.facebook.com/

Figure 6-37. The simplest form of fb:comments

You might consider using a Discussion Board–type system instead of a
Wall, depending on whether you want a one-way message board or
more of a conversation. See Recipe 6.40. The implementation of both
tags is virtually identical, so this might all seem very familiar if you’ve
already read that recipe.

You could also use the fb:wall and fb:wallpost tags if you wanted to
format content to look like Wall posts, but since they don’t provide any
mechanism to create new posts, they are much less useful. You can find
more information about them on the Platform Wiki if you’re curious.

Discussion
The xid parameter needs to be unique across all of Facebook, so put on your imagining
cap and make up something that no one else will have come up with (note that you’re
limited to alphanumeric characters (Aa–Zz, 0–9), hyphens (-) and underscores (_)).
You’ll see why it needs to be unique once you have the Wall on your page and you can
see the URLs it uses for internal pages, which all point back to the same set of PHP
pages for every Wall, passing in your xid to identify which Wall it should load content
for.

You can control the maximum number of Posts you want visible by passing in a
numposts parameter:

<fb:comments xid="my_quick_and_easy_wall" numposts="6" />

Two optional parameters control permission for the current user: canpost and
candelete. The former defaults to true and the latter to false (for obvious security
reasons). Facebook will automatically adjust the text about the number of visible posts,
as seen in Figure 6-38. The default behavior for posting is to include the “Write Some-
thing” link (see the earlier screenshot in Figure 6-37), but you can switch to an inline
form by setting showform to true (the page will refresh after posts to show the new ones;
see Figure 6-39).

6.41 Giving Users a Voice: Wall Posts in Your App | 179

Figure 6-38. The fb:comments Wall with one post

Figure 6-39. The fb:comments Wall with showform set to true

Note that you’ll (obviously) need canpost set to true to use the form.

You might want to receive a Notification every time someone posts a comment so that
you can jump in and check out what they’ve written. Pass in your uid as a
send_notification_uid parameter. It unfortunately accepts only one uid, so set it to
someone who will either keep up with the Wall herself or do a good job delegating.

The last two options give you control over the URLs used by the board. Both default
to the current page, but you can choose to load a configuration from a different URL
by specifying a callbackurl, or to have people pop out of the Wall onto a different page
by specifying a returnurl. The documentation for fb:comments warns that every page
load within the Wall will reload the configuration, so you should consider using the
callbackurl to point Facebook to a page that is served from a potentially lower-cost or
higher-bandwidth/reliability server, just in case hundreds of thousands of users storm
down your door to talk about their cat’s penchant for ignoring them, demanding food,
and sleeping a lot.

Finally, you can specify your own title for your board by throwing an fb:title tag into
the fb:comments:

<fb:comments xid="awesome_go_fish_game_wall"
 numposts="6"

180 | Chapter 6: Facebook Markup Language (FBML)

 canpost="true"
 candelete="false"
 send_notification_uid="12345"
 showform="true"
 callbackurl="http://superrobustserver.com/comments_config.php"
 returnurl="http://apps.facebook.com/awesomegofish">
 <fb:title>Talk about AGF!</fb:title>
</fb:comments>

6.42 Adding Profile Boxes and Info Sections
Problem
How can I give my users the opportunity to add a Profile Box if they don’t have one,
or to add my app’s info to the Info tab of their Profile?

Solution
Use the fb:add-section-button to give users the ability to add either Profile Boxes or
Info sections:

<fb:add-section-button section="profile" />
<fb:add-section-button section="info" />

Discussion
This will render Facebook’s Add to Profile and Add to Info buttons, shown in Fig-
ure 6-40.

Figure 6-40. Add to Profile and Add to Info buttons

The Add to Profile button will appear only if you have previously called
Profile.setFBML() for this user and he doesn’t already have your box on his Profile (on
either the Wall or Boxes tab). Likewise, the Add to Info button will appear only if you
have previously called Profile.setInfo() and the user doesn’t already have your Info
section on his Info tab. See Recipe 9.47 for more on Profile Boxes and Recipe 9.25 for
more on setting Info.

Clicking the Add to Profile button will show a confirmation dialog like the one in
Figure 6-41.

6.42 Adding Profile Boxes and Info Sections | 181

Figure 6-41. Add to Profile confirmation

Clicking on Add will take users to their Profile (on either the Wall or Boxes tab, de-
pending on which tab they select in the subtitle of that dialog) and highlight the new
box for them, as shown in Figure 6-42.

Figure 6-42. Keep Profile Box

182 | Chapter 6: Facebook Markup Language (FBML)

Clicking on the Add to Info button will also show a confirmation (Figure 6-43).

Figure 6-43. Add Info section confirmation

Clicking Add takes them to the Info tab but doesn’t highlight the new section in the
same way that the Profile button highlights the new box.

6.43 Prompting for Extended Permissions
Problem
I need to get permission from users to send them email, get an infinite session, update
their status, upload and tag photos, and create or modify Marketplace listings. Is there
an easy way to do that?

Solution
Sure is! Use the fb:prompt-permission button, which was added in the mid-2008 Profile
redesign:

<fb:prompt-permission perms="set_status">Can we set your status?
 </fb:prompt-permission>

The tag will display the text (or any other FBML) you put into it as a link that opens a
confirmation dialog like the one shown in Figure 6-44.

6.43 Prompting for Extended Permissions | 183

Figure 6-44. Prompt permissions confirmation dialog

Discussion
The following extended permission strings are available:

• email

• offline_access

• status_update

• photo_upload

• create_listing

Facebook will show links (or other FBML) only for permissions the user hasn’t already
granted you. You can optionally pass a next_fbjs parameter into the fb:prompt-
permission tag to specify an FBJS function that you’d like called after permission has
been granted, which gives you the option of hiding the link.

6.44 You Can Pick Your Friends
Problem
I need to give my users the ability to pick one of their friends. How can I give them a
text field that will filter their friend list as they type?

Solution
Use the fb:friend-selector tag to render a predictive text field into your forms. The
simplest form is:

<form name="some_form" action="http://apps.facebook.com
/myapp/handle.php" method="post">
 <fb:friend-selector />
 <input type="submit" value="Send it!"/>
</form>

which will give you a form field like the one in Figure 6-45.

184 | Chapter 6: Facebook Markup Language (FBML)

Figure 6-45. The fb:friend-selector field before typing any text

When users start typing in the field, it will immediately show them potential matches,
as in Figure 6-46, which can then be selected using the up/down arrow keys.

Figure 6-46. The fb:friend-selector field after text has been entered

Discussion
You can specify a uid for the selector if you’d like to give people the option of selecting
from someone else’s friends. Facebook will take care of the potential privacy violation
by not listing any friends if the loggedinuser shouldn’t see them (by default, the selector
uses loggedinuser as the uid so that they’re picking from their own friends).

The control works by using JavaScript to set the value of a hidden field when your user
makes a selection in the predictive list. Pass in name and/or idname parameters to set the
names of the actual selector field and the hidden field, respectively:

<form name="some_form" action="http://apps.facebook.com
/myapp/handle.php" method="post">
 <fb:friend-selector
 uid="4"
 name="marks_friends"
 idname="selected_friend"/>
 <input type="submit" value="Send it!"/>
</form>

Your handle.php file will receive the current contents of the name field and the last user
selected in the idname field (using, in this case, marks_friends and selected_friend as
keys in $_POST).

Facebook CEO Mark Zuckerberg has the lowest Facebook uid: 4. The
numbers stopped being consecutive at some point, so although my
uid is 561415460, I obviously wasn’t the 561,415,460th user.

There are three parameters that give you control over the contents of the list:
include_me, which takes a boolean value that defaults to false and sets whether to
include the loggedinuser in the selector; exclude_ids, a comma-separated list of uids

6.44 You Can Pick Your Friends | 185

to exclude from the selector; and include_lists, which takes a boolean value that
defaults to false and sets whether to include friend lists in the selector.

If the user types a value into the field that doesn’t match any of the friends in the selector,
name will be the string they entered and idname will be blank. If they enter no text at all,
the idname field will not appear in the POST variables. This actually introduces the
potential for a misleading form submission in which the user picks a valid user in the
selector and then erases their entry or enters some text that doesn’t match. In the first
case, you’ll get an empty string for name and the uid of the user they had selected in
idname, and in the second case you’ll get whatever they type into name and the uid in
idname. You shouldn’t accept the uid in either of those cases because they didn’t actually
mean to submit it, so you should probably do a sanity check and make sure that name
matches the name of idname, just to be safe:

if(isset($_POST['friend_name'])
 && isset($_POST['friend_uid'])
 && checkName($_POST['friend_name'], $_POST['friend_uid'])){
 // They match, so do your thing in here
}

function checkName($friend_name, $friend_uid){
 global $api_key, $secret;

 $facebook = new Facebook($api_key, $secret);
 $user = $facebook->require_login();

 // Retrieve the user
 $user_details = $facebook->api_client->users_getInfo($friend_uid, 'name');

 if($friend_name == $user_details[0]['name']){
 return true;
 }else{
 return false;
 }
}

6.45 You Can Pick Your Friends (in Batches)
Problem
I need to give my users the ability to pick a bunch of friends at the same time. How can
I give them a text field that will filter their friend list as they type?

Solution
Use the fb:multi-friend-input tag. The simplest form is:

<form name="some_form" action="http://apps.facebook.com/myapp/
handle.php" method="post">
 <fb:multi-friend-input />

186 | Chapter 6: Facebook Markup Language (FBML)

 <input type="submit" value="Send it!"/>
</form>

It’s hard to get much simpler than that! This is a great example of FBML saving you a
huge amount of work. That piece of code will give you a simple text box shown in
Figure 6-47.

Figure 6-47. multi-friend-input box

When users put focus into the field, they’ll get some instructions, as shown in Fig-
ure 6-48.

Figure 6-48. multi-friend-input with instructions

As they start typing a name, Facebook will display a list of matching friends below the
field (Figure 6-49).

Figure 6-49. multi-friend-input with prediction

So far, this looks a lot like the fb:friend-selector tag covered in Recipe 6.44. The
difference is in what happens after the user picks her first friend—in this case, she can
keep adding more and more friends to the field, as you can see in Figure 6-50.

Figure 6-50. multi-friend-input with friends

Clicking on the “X” next to the name will, of course, remove it from the field, as will
backspacing over a name.

6.45 You Can Pick Your Friends (in Batches) | 187

Discussion
You can have only one of these per page. Well, you can add more, but they won’t do
anything.

In the example shown earlier, the handle.php page will receive a parameter called ids,
which is an array containing the Facebook IDs of each friend listed in the field. You
can step through the members of that array quite easily:

$friends = (isset($_REQUEST["ids"])) ? $_REQUEST["ids"] : 0;
if($friends != 0){
 $counter = 0;
 foreach($friends as $friend){
 echo '<p>Friend ' . $counter . '\'s ID: ' . $friend . '</p>';
 $counter++;
 }
}else{
 echo "<p>You didn't pick anyone!</p>";
}

Given the field shown earlier in Figure 6-50, this would output:

Friend 0’s ID: 512293981

Friend 1’s ID: 759805472

Friend 2’s ID: 505031822

Friend 3’s ID: 548340659

Friend 4’s ID: 725395385

There are a few optional parameters you can pass into the tag, which are listed in
Table 6-17.

Table 6-17. Parameters for fb:multi-friend-input

Name Type Default value Description

width int 350px The width of the field.

border_color string #8496ba The color of the border.

include_me bool false Setting this to true will allow people to add themselves to the field.

max int 20 Limits the number of friends who can be added.

exclude_ids array N/A Comma-separated list of IDs to exclude from the field.

prefill_ids array N/A Comma-separated list of IDs to automatically pre-fill into the field.

prefill_locked bool false Setting this to true will lock the list of pre-filled IDs (if you included one),
preventing users from deleting them. This will have no effect without a
prefill_ids list.

188 | Chapter 6: Facebook Markup Language (FBML)

6.46 Invitations and Requests
Problem
I want to give my users the ability to invite their friends to install my app.

Solution
There are a bunch of different ways to handle the actual invitation controls, but they
all stem from the use of the fb:request-form tag. The general principle is that you start
with an fb:request-form tag and include parameters that define what you want to do,
and then you include some combination of fb:multi-friend-selector, fb:multi-
friend-input, fb:friend-selector, and fb:request-form-submit. Let’s start with a look
at the following example:

<?php
$inviteContent = htmlentities('<fb:name uid="' . $user . '" firstnameonly="true"
 shownetwork="false"/> says this is the most awesomest Super Disco Napping
 application ever made. Come take naps with <fb:pronoun objective="true"
 uid=" ' . $user . '"/>!');
$inviteContent .= htmlentities('<fb:req-choice url="new_napper.php"
 label="Take Naps with Me!" />');
?>

<fb:request-form
 action="index.php"
 method="post"
 invite="true"
 type="Disco Nap"
 content="<?php echo $inviteContent?>">
 <fb:multi-friend-selector actiontext="Tell all your friends! Tell the
 whole bunch!" />
</fb:request-form>

It’s a good idea to put the name of the user sending the invites or requests right into
the content so that it has some context for the recipient. The fb:req-choice tag creates
a button in the actual invitation that gets sent. You can add more than one button here,
with the caveat that they all have different URLs specified in the url parameter; other-
wise, only the last of that group will appear. According to the Platform Wiki, it’s
important to encode the content that you want to have in the invitation so that things
like < become < and © becomes ©, which the PHP htmlentities function will
handle for you. See the Discussion in this recipe for a full breakdown of the
parameters. If you’re awarding any kind of points or want to track who has been sending
invites, you could also append the ID of the sender to the URL in the fb:req-choice
tag(s) and then include some code on that page to log them to your database:

$inviteContent .= htmlentities('<fb:req-choice url="new_
napper.php?referrer=' . $user . '" label="Take Naps with Me!" />');

6.46 Invitations and Requests | 189

On to the contents of the fb:request-form. Facebook has given you a lot of flexibility
here, though there are few occasions when you’ll need to take advantage of it. In this
case, we’ve put in an fb:multi-friend-selector, which will give us essentially the full-
page version of the control with our actiontext listed across the top. If you’re doing
an invite type of page, this is what you want to use: it’s big and commanding and gives
lots of space for people to select their friends. As mentioned earlier, you can also use
any combination of fb:multi-friend-selector, fb:multi-friend-input, fb:friend-
selector, and fb:request-form-submit, although combining them can result in a pretty
strange form. The other options are covered in the Discussion.

Discussion
The parameters for fb:request-form are listed in Table 6-18.

Table 6-18. Parameters for fb:request-form

Name Type Default value Description

type string N/A The type of invitation will appear on the recipient’s Notifications page and in the title
of the invitation itself (e.g., “You have received a Disco Nap invitation”). This is
required.

content string N/A The content to put in the invitation itself. This should be encoded for HTML entities
so that they can appear properly, which you can do by using something like PHP’s
htmlentities function. It should contain at least one fb:req-choice button
and will automatically have an Ignore button appended to the end. This is required.

invite bool false Set to true to send an invitation, and false to send a request. This will affect the
action button on the form and the format of the notification sent to the recipients.

method string get Set to either get or post as you would with any HTML form. Depending on how
many friends your user selects, there can be a lot of parameters in the URL and you
can send them to URLs off Facebook, in which case post is probably a better choice
for security reasons (it will hide all of the Facebook IDs of their selected friends). Then
again, this isn’t an HTTPS connection, so it’s not all that secure either way.

action string N/A The URL to send users to after they complete the form. This can be on- or off-Facebook,
and it will receive two GET or POST variables (depending on what you specified for
the method parameter): typeahead and ids (an array). See the rest of the
Discussion for details.

The choice of which control to put in your fb:request-form depends on what you plan
to use it for.

Inviting/requesting friends in bulk

Use the fb:multi-friend-selector in either full or condensed modes. The page iden-
tified in the fb:request-form’s action parameter will receive a GET or POST parameter
called ids, containing an array of the Facebook IDs of the friends selected by the user.
fb:multi-friend-selector’s parameters are listed in Table 6-19.

190 | Chapter 6: Facebook Markup Language (FBML)

Table 6-19. Parameters for fb:multi-friend-selector

Name Type Default value Full Condensed Description

actiontext string N/A • Title text displayed above the full version.
This is required for the full version.

condensed bool false • Triggers condensed mode when set to
true. This is required for the condensed
version.

max int The number of
remaining friend
requests

• • The maximum number of friends the user
can invite, ranging from 1 to 35. Facebook
will automatically cap this at the number of
remaining daily friend requests this user has
in your app.

exclude_ids array N/A • • Comma-separated list of IDs that should be
excluded. See later in the Discussion for code
to remove friends who already have your
app.

bypass string skip • Choose the text you want listed on the skip
button. Options are skip, step, and
cancel, which will render “Skip”, “Skip
This Step”, or “Cancel”, respectively. Any-
thing other than those three values will de-
fault to skip, and there’s no way to set the
top and bottom bypass buttons
individually.

rows int 5 • The number of rows of friends to show in the
selector without scrolling (i.e., the height of
the box in rows). Any whole integer between
3 and 10 is allowed.

showborder bool false • Turns on a 10-pixel-wide light blue border
with one pixel of darker blue on the inside
edge, all the way around the selector.

unselected_rows int 6 • Number of rows of friends to display in the
“unselected” part of the control. Whole
integers between 4 and 15 are allowed.

selected_rows int 5 • Number of rows of friends to display in the
“selected” part of the control. Whole inte-
gers between 5 and 15 are allowed, or set
this to 0 to get a single box for “unselected”
and “selected.”

If you’re using this tag to provide your users with a mechanism to invite their friends
into the application, you might want to consider using exclude_ids to exclude friends
who already have the app installed. Some relatively simple PHP code and FQL will give
us back a list of who belongs in that group and will parse it into a comma-separated

6.46 Invitations and Requests | 191

list for use in the tag (this is original code by the developers of PickPocket, from http:
//wiki.developers.facebook.com/index.php/Fb:request-form):

<?php
global $api_key, $secret;

$facebook = new Facebook($api_key, $secret);
$user = $facebook->require_login();

// Use FQL to find the list of users who have installed this app already and are
// friends with this user
$friends = $facebook->api_client->fql_query("SELECT uid FROM user
 WHERE has_added_app=1 and uid IN (SELECT uid2 FROM friend WHERE uid1 = $user)");

// Parse into a comma-separated list
$excludeList = '';
if($friends){
 $excludeList .= $friends[0]['uid'];
 for($counter = 1; $counter < count($friends); $counter++){
 if($excludeList != ''){
 $excludeList .= ',';
 }
 $excludeList .= $friends[$counter]['uid'];
 }
}

// Build your invite text
$inviteContent = htmlentities('<fb:name uid="' . $user . '" firstnameonly
="true" shownetwork="false"/> says this is the most awesomest Super Disco
 Napping application ever made. Come take naps with <fb:pronoun
 objective="true" uid=" ' . $user . '"/>!');
$inviteContent .= htmlentities('<fb:req-choice url="new_napper.php"
 label="Take Naps with Me!" />');
?>

Now you’re ready to output the FBML for your selector:

<fb:request-form
 action="http://www.someserver.com/post_invite.php"
 invite="false"
 type="Disco Nap"
 content="<?php echo $inviteContent?>">
 <fb:multi-friend-selector
 actiontext="Here's a list of friends who don't take Super Disco Naps:"
 <?php if($excludeList != ''){?>exclude_ids="<?php
 echo $excludeList?>"<?php }?>/>
</fb:request-form>

Inviting/requesting a small number of specific friends

Use fb:multi-friend-input when your users will have very specific friends in mind
(rather than when they want to browse through all of their friends). This is particularly
true when your layout doesn’t have space for an entire fb:mutli-friend-selector, even
in condensed mode. See Recipe 6.45 for details. Note that you’ll need to include an

192 | Chapter 6: Facebook Markup Language (FBML)

http://wiki.developers.facebook.com/index.php/Fb:request-form
http://wiki.developers.facebook.com/index.php/Fb:request-form

fb:request-form-submit tag if you use fb:multi-friend-input, since it won’t render its
own submit button.

Inviting/requesting a single user

Use fb:friend-selector when you need to prompt your users for one friend. This is
particularly useful when they’re doing something like challenging a friend to a game or
sending someone a gift and you only support one-to-one interactions. See Rec-
ipe 6.44 for details. Note that you’ll need to include an fb:request-form-submit tag if
you use fb:friend-selector, since it won’t render its own submit button.

For information on actually sending Notifications and the like, see
Chapter 9.

6.47 Predicting the Future with Type-Ahead Controls
Problem
I love the type-ahead control that Facebook provides in the fb:friend-selector (see
Recipe 6.44), but I want to use it for things other than friends.

Solution
Use the fb:typeahead-input tag, which is currently in beta. The simplest form is:

<fb:fbml version="1.1">
<form name="some_form" action="http://apps.facebook.com/myapp/handle.php"
 method="post">
<fb:typeahead-input name="color">
 <fb:typeahead-option value="red">Red</fb:typeahead-option>
 <fb:typeahead-option value="yellow">Yellow</fb:typeahead-option>
 <fb:typeahead-option value="green">Green</fb:typeahead-option>
</fb:typeahead-input>
</form>
</fb:fbml>

This tag is supported only in FBML v1.1, so you’ll need to make sure to wrap it in the
fb:fbml tags or you’ll get an error about it not being supported in this version.

Discussion
In the example just shown, the handle.php page will receive the value of the form as the
color parameter. If you don’t provide a name for your field, you won’t be able to access
the value later, so it’s probably a good idea.

6.47 Predicting the Future with Type-Ahead Controls | 193

You can use FBML inside of the fb:typeahead-options tag if you’d like to include
dynamic information, including names of users:

<fb:typeahead-option value="12345"><fb:name
 uid="12345" linked="false" useyou="false" /></fb:typeahead-option>

The type-ahead field is particularly useful when combined with an API call to provide
users a choice from a long list of Facebook-related content. You could, for example,
use the API to pull in a list of all of the groups this user is a member of:

<fb:fbml version="1.1">
<form name="some_form" action="http://apps.facebook.com/myapp/handle.php"
 method="post">
 <fb:typeahead-input name="groups">
 <?php
 global $api_key, $secret;

 $facebook = new Facebook($api_key, $secret);
 $user = $facebook->require_login();

 $groups = $facebook->api_client->groups_get(12345);
 foreach($groups as $group){
 echo '<fb:typeahead-option value="' . $group['gid']
 . '">'. $group['name'] . '</fb:typeahead-option>';
 }
 ?>
 </fb:typeahead-input>
</form>
</fb:fbml>

As with anything marked beta, remember that this might not work the
way you expect it to. If you encounter any behavior that looks like a
bug, feel free to report it using the Facebook Bug Tracker (http://bugs
.developers.facebook.com/).

6.48 Using FBML Inside FBJS
Problem
I have a whole big function working perfectly in FBJS, but now I want to use some
FBML as an output inside of it. Putting the FBML into the FBJS directly doesn’t work,
so how can I get it in there?

Solution
Use the fb:js-string tag. The simplest form is:

<fb:js-string var="myName">
 <fb:name uid="561415460" linked="false" useyou="false" />
</fb:js-string>

194 | Chapter 6: Facebook Markup Language (FBML)

http://bugs.developers.facebook.com/
http://bugs.developers.facebook.com/

Any FBML you put inside the fb:js-string tag will become available in the FBJS on
your page as the variable named in var (in this case, I’d now have a variable in my FBJS
called myName with the value “Jay Goldman”).

Discussion
This tag comes in handy when you want to do things like display a bunch of content
or a number of options inside something like a dialog (see Recipe 6.49) using FBJS:

<fb:js-string var="iceCreams">
 <p>What's your favorite ice cream flavor?</p>
 <select id="iceCreamSelector">
 <option value="" selected="selected">(Pick a flavor!)</option>
 <option value="chocolate">Chocolate</option>
 <option value="vanilla">Vanilla</option>
 <option value="strawberry">Strawberry</option>
 <option value="moosetracks">Moose Tracks</option>
 </select>
</fb:js-string>

<script type="text/javascript">
<!--
 var myDialog = new Dialog(Dialog.DIALOG_POP);

 myDialog.showChoice('Ice Cream', iceCreams, button_confirm='Mmmm!',
 button_confirm='Ewww!');
-->
</script>

That will give you something like Figure 6-51.

Figure 6-51. FBJS dialog using fb:js-string

There’s an easier way to create this particular example if you don’t need
to do it from inside FBJS—just use the fb:dialog tag. See Recipe 6.49
for more info.

6.48 Using FBML Inside FBJS | 195

6.49 Dialogs That Pop
Problem
I need to show my users some information in a way that really grabs their attention.
I’ve seen some pop-up dialogs around Facebook that are like overlays (rather than
JavaScript alerts) and I really dig ’em. Especially the semi-transparent smoky edges!

Solution
Another great example of FBML making something complicated really simple. Use the
fb:dialog tag to show a simple pop up with some content:

<fb:dialog id="ice_cream">
 <fb:dialog-title>I Scream! You Scream! We All Scream!</fb:dialog-title>
 <fb:dialog-content>For Ice Cream!</fb:dialog-content>
 <fb:dialog-button type="button" value="Yay!" />
</fb:dialog>

<input type="button" value="Click me!" clicktoshowdialog="ice_cream" />

which will give you Figure 6-52.

Figure 6-52. Simple fb:dialog

Notice the very important clicktoshowdialog attribute on the button, which tells Face-
book to trigger the dialog when the button gets clicked.

Discussion
The clicktoshowdialog attribute can be applied to things that typically aren’t clickable,
such as divs:

<div id="my_dialog_trigger" clicktoshowdialog="my_dialog">Click Me!</div>

The fb:dialog-content tag can contain entire forms if you want to do something more
than just display info to your users. For example, the following:

<fb:dialog id="ice_cream" cancel_button="true">
 <fb:dialog-title>I Scream! You Scream! We All Scream!</fb:dialog-title>
 <fb:dialog-content>
 <form id="ice_cream_flavors" action="http://www.someserver.com">
 <p>What's your favorite flavor?</p>

196 | Chapter 6: Facebook Markup Language (FBML)

 <select name="flavors">
 <option>Chocolate</option>
 <option>Vanilla</option>
 <option>Rocky Road</option>
 <option>Moose Tracks</option>
 </select>
 </form>
 </fb:dialog-content>
 <fb:dialog-button type="submit" value="For Ice Cream!"
 form_id="ice_cream_flavors" />
</fb:dialog>

will give you Figure 6-53.

Figure 6-53. fb:dialog-content with a form

You can take advantage of Facebook’s Mock Ajax to do form submis-
sion and return from inside of your fb:dialog. See Recipe 6.51 for more
information.

The fb:dialog-title tag needs no further explanation, other than to note that you can
format the content with HTML tags such as strong and em, and by applying CSS:

<fb:dialog-title>
 I Scream!
 You Scream!
 We All Scream!
</fb:dialog-title>

The fb:dialog-button tag, on the other hand, does need some explanation because it
has a few optional parameters, listed in Table 6-20.

Table 6-20. Parameters for fb:dialog-button

Name Type Default value Description

type string N/A The type of button to render. Can be either button for a generic button
or submit for a form submitter (make sure to include a form_id for
a submit button). This is required.

6.49 Dialogs That Pop | 197

Name Type Default value Description

value string N/A The text to put on the button. This is required.

close_dialog bool false Specifying true will close the dialog when this button is clicked.

href string N/A The URL to take users to when they click on the button. Can be external
to Facebook.

form_id string N/A If this button submits a form, you need to specify the form’s id here
(e.g., <form id="some_id">).

clickrewriteurl string N/A If you’re using Mock Ajax with this dialog, you need to specify the URL
from which Facebook will retrieve your response. See Recipe 6.51.

clickrewriteid string N/A If you’re using Mock Ajax with this dialog, you need to specify the id
of the element that will be replaced with the response when it comes
back (typically the id of the fb:dialog this button is in so that the
whole dialog gets replaced, but it could be a div within it). See Rec-
ipe 6.51.

clickrewriteform string N/A If you’re using Mock Ajax with this dialog, you need to specify the id
of the form whose values this button will submit to the URL specified
in clickrewriteurl. See Recipe 6.51.

6.50 Dialogs in Context
Problem
Sometimes I want a dialog, but I don’t really want it to pop up over everything else.
Can I attach it to something on my Canvas page?

Solution and Discussion
The fb:dialog FBML tag won’t give you the power you want, but you can definitely
do this with FBJS. See Recipe 7.14.

6.51 Dialogs with Ajax
Problem
I have an fb:dialog with a form in it, which I’d like to submit to my server and have
the result displayed back in my fb:dialog.

Solution
Facebook’s Mock Ajax is perfect for this kind of application, taking a lot of the pain
out of doing things such as dynamic form submission without having to reload the
page. The setup is pretty simple, requiring an fb:dialog, a trigger control, and a
response page. Let’s start with the fb:dialog, which can be defined anywhere in your

198 | Chapter 6: Facebook Markup Language (FBML)

FBML (or in an included file if you’re going to use it in a few places throughout your
app):

<fb:dialog id="ice_cream" cancel_button="true">
 <fb:dialog-title>I Scream! You Scream! We All Scream!</fb:dialog-title>
 <fb:dialog-content>
 <form id="ice_cream_flavors">
 <p>What's your favorite flavor?</p>
 <select name="flavors">
 <option>(Please choose a flavor!)</option>
 <option value="chocolate">Chocolate</option>
 <option value="vanilla">Vanilla</option>
 <option value="rockyroad">Rocky Road</option>
 <option value="moosetracks">Moose Tracks</option>
 </select>
 </form>
 <div id="ice_cream_image"></div>
 </fb:dialog-content>
 <fb:dialog-button
 type="submit"
 value="For Ice Cream!"
 clickrewriteurl="http://www.someserver.com/ice_cream_maker.php"
 clickrewriteid="ice_cream_image"
 clickrewriteform="ice_cream_flavors"/>
</fb:dialog>

Some of you out there in reader land are inevitably going to read this
example and say, “Moose Tracks!? He’s just making this stuff up.” I pity
you. Go out to your nearest vendor of frozen treats and demand a big
waffle cone of Denali Original Moose Tracks® and eat the whole thing
before you read one more sentence. You can find a store here: http://
www.moosetracks.com/page/locator. Go now! We’ll wait for you. (But
bring me one back, m’kay?)

Now we’ll need a trigger for the dialog so that it knows when to open. As covered in
Recipe 6.49, you can use pretty much anything as a trigger provided you specify a
clicktoshowdialog property on it. In this case, I’ve used Flickr’s awesome Creative
Commons search to find a photo of some tasty ice cream (“Trio of Summer Fruit Ice
Cream” by jessicafm) that we’ll use as a button:

<img src="http://farm2.static.flickr.com/1339/855848513_515a9f66ba_m.jpg"
 alt="Trio of Summer Fruit Ice Creams by jessicafm"
 clicktoshowdialog="ice_cream"/>
<p>Photo credit: jessicafm, http://flickr.com/photos/jessicafm/855848513/</p>

So far, we have a button on our page, shown in Figure 6-54.

6.51 Dialogs with Ajax | 199

http://www.moosetracks.com/page/locator
http://www.moosetracks.com/page/locator

Figure 6-54. Dialog trigger

Clicking on our button gives us our dialog overlaid on our Canvas, as shown in Fig-
ure 6-55.

Figure 6-55. Dialog triggered

Now we need to put our response page in place so that clicking the “For Ice Cream!”
button will go fetch the resulting FBML and display it. You need to use a URL for
clickrewriteurl that isn’t on Facebook (but can be on the server that hosts your app),
so instead of something like http://apps.facebook.com/myapp/ice_cream_maker.php, go
straight to the source at http://www.myhostingserver.com/ice_cream_maker.php. Nor-
mally, you would build some slick server-side processing here that would take the
person’s favorite flavor and perform some deep business analysis using data warehouse
cubes to calculate an executive dashboard charting flavor versus education level versus
bed linen thread count. We’re just going to return a photo of the ice cream flavor they
asked for. The most important thing to remember about what you return is that it needs
to be wrapped in FBML tags:

200 | Chapter 6: Facebook Markup Language (FBML)

http://apps.facebook.com/myapp/ice_cream_maker.php
http://www.myhostingserver.com/ice_cream_maker.php

<?php
$flickr = 'http://farm2.static.flickr.com/1339/855848513_515a9f66ba_m.jpg';
$credit = 'jessicafm';

switch($_POST['flavors']){
 case 'chocolate':
 $flickr = 'http://farm2.static.flickr.com/1036/1072040703_6f657ebdbe_m.jpg';
 $credit = 'Zesmerelda';
 break;
 case 'vanilla':
 $flickr = 'http://farm2.static.flickr.com/1126/932883287_821c96d904_m.jpg';
 $credit = 'skye820';
 break;
 case 'rockyroad':
 $flickr = 'http://farm2.static.flickr.com/1132/734813872_63e3105b62_m.jpg';
 $credit = 'jessicafm';
 break;
 case 'moosetracks':
 $flickr = 'http://farm2.static.flickr.com/1401/1064233083_18445730bb_m.jpg';
 $credit = 'lucianvenutian';
 break;
}

echo '<fb:fbml version="1.0"><img src="' . $flickr
 . '" /><p>Photo credit: ' . $credit . '</p></fb:fbml>';
?>

OK! That should just about do it. Now when you click the “For Ice Cream!” button,
you see one of the Flickr photos below the drop-down, as shown in Figure 6-56.

Finding CC Photos on Flickr
The Flickr Advanced Search is a great resource to find Creative Commons–licensed
photos for just about anything. You can find the search at http://flickr.com/search/ad
vanced/, and you’ll want to scroll down to the bottom and turn on at least the “Only
search within Creative Commons (CC) licensed content” and “Find content to use
commercially” options. If you plan to modify the content (like putting text over the
image or manipulating it in any way), add in the “Find content to modify, adapt, or
build upon” option as well. The CC license terms for each photo can be found in the
righthand sidebar when you’re on the photos page, and you’ll see that some don’t even
require attribution (though I always give it if I can). If the search isn’t finding what you
need, try the actual CC search at http://search.creativecommons.org/. And remember,
kids: you should license your photos under a CC license so that other people can benefit
from them, too.

6.51 Dialogs with Ajax | 201

http://flickr.com/search/advanced/
http://flickr.com/search/advanced/
http://search.creativecommons.org/

Figure 6-56. Dialog with Ajax result

Since this is an Ajax-based form, changing the drop-down and clicking the “For Ice
Cream!” button again will just load a different image in place of the first one (though
I have no idea why anyone would stray from the path of Extreme Moose Tracks).

Some of you may be using slower servers and may have seen a delay between clicking
the button and getting your ice cream, thereby ruining the whole instant-gratification
angle. It’s generally considered good practice to implement a loading indicator to show
that something is happening, but unfortunately Mock Ajax doesn’t have any built-in
methods for doing so. Thanks to the contributors to the Facebook Developers Wiki,
we have a handy way to do this (see http://wiki.developers.facebook.com/index.php/
Mock_ajax). The first thing you’ll need is some type of spinner animation, which you
can build for yourself at the excellent http://www.ajaxload.info. Once you have your
image and have it saved to your server, update the FBML just shown to include the
spinner in the div for ice_cream_image and set it to be hidden by default:

<div id="ice_cream_image">
 <img id="spinner" src="http://www.someserver.com/spinner.gif"
 alt="Loading" style="display: none";/>
</div>

Now update the FBML on the fb:dialog-button so that it shows the spinner when
clicked:

<fb:dialog-button
 type="submit"
 value="For Ice Cream!"

202 | Chapter 6: Facebook Markup Language (FBML)

http://wiki.developers.facebook.com/index.php/Mock_ajax
http://wiki.developers.facebook.com/index.php/Mock_ajax
http://www.ajaxload.info

 clickrewriteurl="http://facebook.cheshoax.com/cookbook/ice_cream_maker.php"
 clickrewriteid="ice_cream_image"
 clickrewriteform="ice_cream_flavors"
 clicktoshow="spinner"/>

As long as the id specified on the image matches the id specified in the clicktoshow
parameter for the button, your image should appear as soon as you submit the form.
This method is effective because Facebook automatically overwrites the inner HTML
of the element you specify in clickrewriteid, thereby overwriting the spinner when the
response comes back from your server. If you want to be really sure to display one, add
it in to the final echo in the PHP code just shown so that a new spinner image gets
returned with the response and is ready for the next time the button is clicked:

echo '<fb:fbml version="1.0"><img src="' . $flickr .
 '" /><p>Photo credit: ' . $credit . '</p><img src=
"http://www.someserver.com/spinner.gif" id="spinner" style="display:non
e;"/>';

The one downside to this method is that it will leave your spinner control visible on
the page if your Ajax call fails, since Mock Ajax doesn’t provide any kind of callback
capability on failure.

6.52 Facebook Share Buttons
Problem
I’d like to include a Facebook Share button in my app to encourage my users to share
items on their Profile or to send them to friends.

Solution
Use the fb:share-button tag. The simplest form is:

<fb:share-button class="url" href="http://apps.facebook.com/myapp/somePage.php" />

That will give you the standard Share button, shown in Figure 6-57.

Figure 6-57. Facebook Share button

Clicking on the button shows the Share dialog, with a choice between sending a message
or posting to your Profile, as shown in Figure 6-58.

6.52 Facebook Share Buttons | 203

Figure 6-58. Share dialog

If your URL includes content and images, your users will have the option of selecting
what they would like to include in the message or post.

Discussion
There are two modes (or “classes”) for the Share button: URL and meta. The URL class
is easier and can be either an on- or off-Facebook URL, as seen earlier in this recipe.
Meta class requires a little more effort on your behalf, but it also gives you more control
over what appears in the Share dialog and in the message or Profile post. As an example,
let’s say that you wanted to include a Facebook Share button to this great video of my
friend Leo Laporte interviewing my friend Kris Krug (of Raincity Studios) on the Lab
with Leo show, talking about this shiny new social network called Facebook (which
some of you may have heard of). The video can be found on YouTube at http://www
.youtube.com/watch?v=2IIHFEvpszU, which we can use to define a meta-based
fb:share-button tag:

<fb:share-button class="meta">
 <meta name="medium" content="video"/>
 <meta name="title" content="Facebook Applications Platform (f8) Overview"/>
 <meta name="video_type" content="application/x-shockwave-flash"/>
 <meta name="video_height" content="355"/>

204 | Chapter 6: Facebook Markup Language (FBML)

http://www.youtube.com/watch?v=2IIHFEvpszU
http://www.youtube.com/watch?v=2IIHFEvpszU

 <meta name="video_width" content="425"/>
 <meta name="description" content="Kris Krug talks with Leo about
 Facebook's new platform for Applications."/>
 <link rel="image_src" href="http://img.youtube.com/vi/2IIHFEvpszU/2.jpg" />
 <link rel="video_src" href="http://www.youtube.com/watch?v=2IIHFEvpszU"/>
 <link rel="target_url" href="http://www.youtube.com/watch?v=2IIHFEvpszU"/>
</fb:share-button>

Now that we’ve told Facebook where to find a bunch of the useful meta information
about the video (hence the “meta” class), our Share dialog gets a lot smarter (Fig-
ure 6-59).

Figure 6-59. Share dialog using the meta class

The fb:share-button tag supports audio, image, video, news, blog, and mult mediums,
and it has a whole bunch of different types of information you can send into it. The full
documentation can be found at http://www.facebook.com/share_partners.php, though
make sure you click on the unobvious “How do I make sure the Share Preview works?”
link at the bottom to expand the content you’re looking for.

6.53 Feed Forms: Publishing Feed Stories from FBML
Problem
I’d like to give my users the ability to publish Mini-Feed stories about themselves or
about their friends by completing a form in my app.

6.53 Feed Forms: Publishing Feed Stories from FBML | 205

http://www.facebook.com/share_partners.php

Solution
To create a form through which users can publish stories to their own Mini-Feed,
include an HTML form with the special fbtype attribute to signify that Facebook should
use it as a Feed Form:

<form fbtype="feedStory" action="http://someserver.com/feed_handler.php">
 <input type="text" name="status" />
 <input type="hidden" name="template_id" value="12345678901" />
 <input type="submit" label="Publish" />
</form>

You can include any fields, content, and controls you’d like in the form. On submit,
Facebook will send the form to the URL specified in the action, and will then take your
JSON-formatted response back and use it to render a preview of a story. For the example
just shown, your server-side feed_handler.php page could be as simple as:

{"method":"feedStory", "content":{
 "next":"http://apps.facebook.com/myapp/somepage",
 "feed":{
 "template_id":"<?php echo $_POST['template_id']?>",
 "template_data":{"status":"<?php echo $_POST['status']?>"}}}}

Depending on what template 12345678901 contained, the story preview for this ex-
ample might look like Figure 6-60.

Figure 6-60. Feed Form preview

Discussion
We aren’t, of course, setting the status in the previous example, though we could quite
easily, as the next field in the JSON response tells Facebook where to send the user
after he closes the preview box. By making that a page in your app that sets the status,
you could make this example fully functional.

In addition to the feedStory outlined earlier, you can also create a multiFeedStory to
give users the ability to publish into their friend’s Mini-Feeds as well. The principle is
exactly the same as feedStory, but you need to include one of fb:multi-friend-
selector, fb:multi-friend-input, or fb:friend-selector:

206 | Chapter 6: Facebook Markup Language (FBML)

<form fbtype="multiFeedStory" action="http://facebook.cheshoax
.com/superdisconapping/feed_handler.php">
 Take a nap with: <fb:multi-friend-input> </fb:multi-friend-input>
 <input type="hidden" name="template_id" value="12345678901" />
 <input type="submit" label="Zzzzz!" />
</form>

You’ll also need to modify your server-side handler so that it lists mutliFeedStory as the
method:

{"method":"multiFeedStory", "content":{
 "next":"http://apps.facebook.com/superdisconapping/",
 "feed":{
 "template_id":"<?php echo $_POST['template_id']?>",
 "template_data":{}}}}

In this particular example, assuming a template like this:

{*actor*} took a nap with {*target*}.

we have no additional fields, so our template_data return is empty. Facebook will
automatically provide the {*actor*} token based on the user who is publishing the story
and the {*target*} token from the friends they selected.

6.54 Redirecting to a Different URL
Problem
I’d like to redirect users to a different URL from one of my Canvas pages.

Solution
Use the fb:redirect tag. The simplest (and only) form is:

<fb:redirect url="http://jaygoldman.com" />

Discussion
This tag will only work on a Canvas page, so you can’t use it in a Profile. It’s a bit of
an awkward tag, since it will immediately redirect to a new URL when someone hits
it, which means you’ll need to wrap it in some page logic if you don’t want the page
it’s on to just send them on their way. You might, for example, use it inside a tag such
as fb:if-is-group-member:

<fb:if-is-group-member gid="12345" uid="12345">
 Private content goes here
 <fb:else>
 <fb:redirect url="http://apps.facebook.com/myapp/safe-page"/>.
 </fb:else>
</fb:if-is-group-member>

6.54 Redirecting to a Different URL | 207

6.55 Painless Image Submitting
Problem
I’ve spent hours making beautiful image buttons that I want to use to submit forms,
but I can’t get them to work. Help!

Solution
Help is on the way. Use the fb:submit tag to wrap your images:

<form method="post" action="http://someserver.com/somePage.php">
 <fb:submit></fb:submit>
</form>

Discussion
Image buttons are all well and good, but make sure that they actually look clickable,
or people are going to have a whole lot of nasty things to say about your app when they
can’t make it work.

6.56 Hunting for Robots: CAPTCHA in Your App
Problem
I’m worried that people will use scripts to hack their way into my app! How can I verify
that my users are real people?

Solution
Use the fb:captcha tag to display a CAPTCHA (Completely Automated Public Turing
test to tell Computers and Humans Apart) on your page. The simplest form is:

<form method="post" action="http://someserver.com/somePage.php">
 <fb:captcha />
</form>

which will give you something like Figure 6-61.

Figure 6-61. Facebook CAPTCHA

208 | Chapter 6: Facebook Markup Language (FBML)

Discussion
CAPTCHAs were originally created in 2000 by Luis von Ahn, Manuel Blum, Nicholas
J. Hopper (all of Carnegie Mellon University), and John Langford (then of IBM). The
general idea is to present users with a distorted image of a word, which computers
would find very difficult to decipher but which people should be able to read quite
easily. Early CAPTCHAs were quickly defeated by sophisticated algorithms, but more
modern ones have surpassed all but the most dedicated of hackers (or hackers smart
enough to outsource the work of cracking them to people in places such as Russia, who
are reputedly paid $3/hr to interpret image after image). The acronym is an extension
of the concept of a Turing test, first proposed by Alan Turing and postulated as the
ultimate test for artificial intelligence: the ability to convincingly pass as human (i.e.,
to demonstrate intelligence). This is almost a reverse Turing test in that it’s really de-
signed to separate the people from the machines rather than to unite us all under the
Skynet banner.

When a form containing a correct CAPTCHA is submitted, you’ll find an extra POST
parameter called fb_sig_captcha_grade, which will be set to 1. The parameter doesn’t
show up when the CAPTCHA is false, so make sure you’re checking for it to exist rather
than for it to be true or false.

The Facebook CAPTCHA is smart enough not to display itself to verified users by
default (i.e., users who have logged into their account and already proven to Facebook
that they’re human), but you can force them to by adding the showalways parameter:

<fb:captcha showalways="true" />

I wouldn’t suggest adding these on every page of your app—they get annoying pretty
quickly—but if you’re doing anything that people might want to automate (entering
contests, signing up for free stuff, etc.), you’re entirely justified in sticking one in your
form.

Facebook’s CAPTCHAS are actually provided by a really interesting
service called reCAPTCHA, which is a Carnegie Mellon project. Ac-
cording to their website, people around the world solve over 60 million
CAPTCHAs a day, which at about 10 seconds each adds up to over
150,000 hours of lost time. They realized that human processing time
could be used for something valuable, and so their CAPTCHA images
are actually text that various book digitizing projects have identified as
being impossible for Optical Character Recognition (OCR) software to
understand. Every time you solve a reCAPTCHA, you’re helping a
project to digitize two more words from our collected knowledge and
history. For more information (including details about implementing
reCAPTCHA on your own website), see http://www.repcatcha.net.

6.56 Hunting for Robots: CAPTCHA in Your App | 209

http://www.repcatcha.net

6.57 FBML Caching
Problem
I’d like to take advantage of Facebook’s FBML caching to store a block of FBML that
I use often.

Solution
Use the fb:ref tag. There are two ways to use it, depending on how you’ve architected
your app:

By handle
If you’re developing heavily in the Facebook API, this is probably the better method
for you. Use the API call setRefHandle to initialize your handle:

$facebook->api_client->fbml_setRefHandle("MyUniqueAppHandle", "Some FBML Content");

Then insert the fb:ref tag in your FBML to pull the block out and display it:

<fb:ref handle="MyUniqueAppHandle" />

Now when you want to update the content, just call setRefHandle again with new
FBML and it will change everywhere you’ve put fb:ref tags.

By URL
If your app is based more on different files or pages on a server, you can still put
FBML into the cache by giving it a unique URL. Create a page that only renders
out the block you’d like stored, and then use the alternate form of the fb:ref tag:

<fb:ref url="http://www.someserver.com/cacheThisPage.php" />

When you want to change the content, update your page on your server and then
make a simple API call to tell Facebook that it needs to reindex that URL:

$facebook->api_client->fbml.refreshRefUrl("http://www.someserver
.com/cacheThisPage.php")

Discussion
There are lots of places you might use this—really wherever you have a block of rela-
tively static content you want to display—but the best use is probably for Profile Boxes
that aren’t user-specific. In that case, you’ll want to pick one of the methods discussed
earlier and then embed the fb:ref tag inside your call to profile.setFBML so that the
Profiles all contain the ref. Once you do that, you can go ahead and update either your
handle or your URL, and all of the Profiles will update automatically.

You can retrieve an fb:ref using the FBML.setRefHandle() from the
Facebook API. See Recipe 9.21 for more information.

210 | Chapter 6: Facebook Markup Language (FBML)

6.58 Analyzing Traffic with Google Analytics
Problem
I want to know more about what users are doing within my application, and I really
love using Google Analytics on my off-Facebook site, but dropping its code into my
Canvas page didn’t work. How can I use it?

Solution
Use the fb:google-analytics tag to insert your tracking code for you. The simplest form
is:

<fb:google-analytics uacct="UA-9999999-99" />

where uacct is the _uacct variable from your Google-provided code block. The FBML
parser will render that into:

<script src="https://ssl.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
 _uacct = "UA-9999999-99";
 urchinTracker();
</script>

Discussion
The first thing to note is that this tag still produces the old-style Analytics code that
calls the urchinTracker(), rather than the new-style code:

<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl."
 : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/
ga.js' type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
var pageTracker = _gat._getTracker("UA-9999999-99");
pageTracker._initData();
pageTracker._trackPageview();
</script>

One of the features of the new code is the automatic detection of HTTP versus HTTPS,
which would be wasted inside of Facebook because there are no secure connections to
Facebook apps at this time. It also offers you the ability to track specific events that
you won’t be able to use, so try not to design your tracking and marketing strategies
around any of the new features until the tag gets updated. You can read all about the
new tracking code on the excellent Analytics Talk blog, maintained by Justin Cutroni:
http://www.epikone.com/blog/2007/10/16/gajs-new-google-analytics-tracking-code/.

6.58 Analyzing Traffic with Google Analytics | 211

http://www.epikone.com/blog/2007/10/16/gajs-new-google-analytics-tracking-code/

Facebook exposes the urchinTracker object to you via FBJS, so you can explicitly record
some actions within your app:

<a href="http://www.someserver.com" onclick="Facebook.urchin
Tracker('/outgoing/example.com')">

Most Analytics users will be happy with this, but if you’re the type who likes to really
get under the hood and do things with the stuff, you can pass in a wide variety of Urchin
Traffic Monitor settings to tweak the performance; see Table 6-21.

Table 6-21. Parameters for fb:google-analytics

Name Type Default value Description

page string N/A The argument given to the urchinTracker() function, either a page
or a virtual page.

ufsc bool 1 Turns the client info flag on (1) or off (0).

udn string auto Domain name for cookies. Can be auto, none, or domain.

uhash string on Turns the unique domain hash for cookies on or off.

utimeout int 1800 Inactive session timeout in seconds.

ugifpath string /__utm.gif Path to the __utm.gif file.

utsp string | Transaction field separator.

uflash bool 1 Turns the Flash version detection option on (1) or off (0).

utitle bool 1 Turns the document title detection option on (1) or off (0).

ulink bool 0 Turns the linker functionality on (1) or off (0).

uanchor bool 0 Controls whether the use of anchors for campaigns is on (1) or off (0).

utcp string / Cookie path for tracking.

usample int 100 Sampling percentage of visitors to track (a whole number from 1 to 100).

uctm bool 1 Turns the campaign-tracking module on (1) or off (0).

ucto int 15768000 (6
months)

Timeout in seconds.

uccn string utm_campaign Name of the campaign.

ucmd string utm_medium Campaign medium. Can be one of cpc, cpm, link, email, or organic.

ucsr string utm_source Campaign source.

uctr string utm_term Campaign term or keyword.

ucct string utm_content Campaign content.

ucid int utm_id Campaign ID number.

ucno string utm_nooverride Whether to override the campaign.

212 | Chapter 6: Facebook Markup Language (FBML)

6.59 Translations
Problem
I’d like to be able to offer my application in other languages, but I only speak and write
English.

Solution
Facebook has made their amazing Translations app available to all developers. When
added to your FBML, the following family of tags represents the Translations capability
on your pages:

fb:intl
Wrap content you want to make translatable in this tag.

fb:intl-token
Replaces a token contained within an fb:intl tag with its content.

fb:tag
Renders an HTML tag that has translatable attributes.

fb:tag-attribute
Contains the translatable attributes of an HTML tag specified by the enclosing
fb:tag tag.

fb:tag-body
Contains the contents of an HTML tag specified by an enclosing fb:tag.

fb:date
Renders a locale-specific date based on the settings of the viewing user.

fb:fbml-attribute
Contains and makes translatable the value of an attribute of an FBML tag.

The Translations app isn’t intended to provide translations for user-generated content
within your application (which you hopefully have if you’ve built a good Facebook
app), but rather for all of your static text (application description, About Page content,
etc.), FBML content, Notifications, requests, and Feed stories.

Using the tags is quite simple and will become second nature as you write new FBML.
Assuming you haven’t built a gargantuan app with hundreds of pages, you should be
able to go back and retrofit the Translations tags fairly quickly. As an example, consider
this FBML:

Share a Pan Galactic Gargle Blaster with <fb:name uid="12345" useyou="false"/>?

You could make it translatable by adding a few tags:

<fb:intl desc="Asking whether user wants to share a drink">
 Share a {drink} with <fb:name uid="12345" useyou="false"/>?
 <fb:intl-token name="drink">Pan Galactic Gargle Blaster</fb:intl-token>
</fb:intl>

6.59 Translations | 213

A few things to note about fb-intl and its children:

• The fb:intl tag that wraps the whole block makes this text translatable.

• The optional desc in the fb:intl tag provides context to the translators so they
understand what they’re translating.

• Wrapping part of the text in curly braces—{ and }—turns it into a token that can
then be defined using the fb:intl-token tag. This is important because it helps
translators know what they need to translate and what they don’t. In this case,
we’re assuming that the Pan Galactic Gargle Blaster is truly pan-galactic and there-
fore doesn’t need to be translated.

• Facebook will automatically turn the fb:name tag into a second token when pre-
senting this phrase to translators: “Share a {drink} with {name}?”

• You’ll need to load the FBML pages containing translation tags once before they
appear in the Translations app (i.e., go through your site after adding tags so other
people see the phrases).

The other main set of Translations tags have to do with translating HTML tags with
attributes and content. Consider the following:

<div id="share_drink" class="share_something" title="You've shared 10 drinks.">

 Share a {drink} with <fb:name uid="561415460" useyou="false"/>?
</div>

Setting that same block up for translation considerably increases the amount of code
but is still far less work than trying to translate it all on your own:

<fb:tag name="div">
 <fb:attr name="id">share_drink</fb:attr>
 <fb:attr name="class">share_something</fb:attr>
 <fb:attr name="title">
 <fb:intl desc="Status display">
 You've shared {numDrinks} drinks.
 <fb:intl-token name="numDrinks">10</fb:intl-token>
 </fb:intl>
 </fb:attr>
 <fb:tag-body>
 <fb:intl desc="Asking whether user wants to share a drink">
 Share a {drink} with <fb:name uid="561415460" useyou="false"/>?
 <fb:intl-token name="drink">Pan Galactic Gargle Blaster</fb:intl-token>
 </fb:intl>
 </fb:tag-body>
</fb:tag>

A brief explanation:

• The fb:attr tag contains an attribute of the enclosing fb:tag, in this case the id,
class, and title for the div.

• fb:attr tags can contain fb:intl tags in order to make those attributes translatable,
as per the title shown in the example.

214 | Chapter 6: Facebook Markup Language (FBML)

Once you’ve wrapped your tags and been back through your app, you can keep tabs
on translation progress inside the Translations app itself. All of your apps have their
own Application Admin Panel, which you’ll find at the URL http://www.new.facebook
.com/translations/admin/dashboard.php?app=12345 (where 12345 is your app’s ID, not
the API key).

Discussion
Translating, localizing, globalizing, and internationalizing might well be considered
swear words if you’ve previously gone through any of those processes. Although the
end result is fantastic, the journey to get to a multilingual website or web app is often
a torturous, bumpy, and highly repetitive process.

Trust Facebook to save the day! When faced with the enormous task of translating their
site into lots and lots of languages, the Facebook team built an extremely clever crowd-
sourcing application that lets their members do all of the hard work (a task they took
to in droves). For every page on Facebook, members have the ability to translate any
string into a different language, which is then voted on by other Translations users. So
far, in the French translation of the Facebook site itself, 9,437 translators have sub-
mitted 65,887 translations.

The Translations app presents users with a list of phrases that need to be translated,
like the page shown in Figure 6-62.

Figure 6-62. Translations list

6.59 Translations | 215

http://www.new.facebook.com/translations/admin/dashboard.php?app=12345
http://www.new.facebook.com/translations/admin/dashboard.php?app=12345

Clicking on the Translate link next to a phrase opens a contextual dialog to enter your
translation, as shown in Figure 6-63.

Figure 6-63. Submit a translation (mediocre French translation courtesy of Google Translate)

For incomplete languages, such as Georgian, you can get a sense of how much work is
left on the Translations home page (after you’ve picked it as your language); see Fig-
ure 6-64.

Figure 6-64. Translating Georgian

216 | Chapter 6: Facebook Markup Language (FBML)

Voting on translations is actually a lot of fun, and primarily involves voting potential
translations up or down, as in Figure 6-65.

Figure 6-65. Voting on translations

The “Discuss this Phrase” link takes you to a discussion board if you’re unclear on a
translation or want to debate the finer points of a phrase.

Each of your apps has an Application Admin Panel inside of the Translations app, which
you can get to by selecting Translations from the app’s menu in the Developer app
(Figure 6-66).

Figure 6-66. Translations in the Developer app’s More menu

A newly translatable app will have no phrases complete and will look something like
Figure 6-67.

Clicking on a checkbox next to a language enables that language for translation and
changes the Publish column from a disabled Not Open to an enabled Publish. Clicking
on a language in the Language column shows you the voting and translation interfaces
for that language, and clicking on the Manage link in the Language Managers column
lets you appoint users to be managers for that language.

6.59 Translations | 217

Figure 6-67. Translations application Admin Panel with French enabled

Finally, Facebook has published a series of Internationalization Best Practices, which
I highly recommend you read as they represent the learnings of a team that has gone
through a massive translation effort and lived to tell the tale. Find it at http://wiki.de
velopers.facebook.com/index.php/Platform_Internationalization_Best_Practices.

6.60 Valid HTML Tags
Problem
FBML sounds great, but sometimes I just want to use good ole HTML. What can I get
past the parser?

Solution
There’s actually quite a lot of standard HTML you can use inside an FBML page. Keep
an eye on the Wiki for an up-to-date list (http://wiki.developers.facebook.com/index.php/
FBML), but this should give you a good idea:

a code h2 legend script textarea

abbr dd h3 li select tfoot

acronym del h4 link small th

address dfn h5 meta span thead

218 | Chapter 6: Facebook Markup Language (FBML)

http://wiki.developers.facebook.com/index.php/Platform_Internationalization_Best_Practices
http://wiki.developers.facebook.com/index.php/Platform_Internationalization_Best_Practices
http://wiki.developers.facebook.com/index.php/FBML
http://wiki.developers.facebook.com/index.php/FBML

b div h6 old strike tr

bdo dl hr optgroup strong tt

big dt i option style u

blockquote em img p sub ul

br fieldset input pre sup var

caption font ins q table

center form kbd s tbody

cite h1 label samp td

Discussion
You’ll note that head and body aren’t included as valid tags, because you shouldn’t
include them in Canvas pages. This may go against everything you know when it comes
to building valid HTML pages, but you’ll actually get an error if you include them.

6.61 Facebook and CSS: FBSS?
Problem
I think I’m getting a handle on this FBML thing, but what about CSS? Is there an FBSS?

Solution
Actually, no. You’re pretty much free to do whatever you’d like from a CSS perspective,
and you can definitely follow best practices, such as linking to external CSS files rather
than putting everything inline.

Discussion
You’ll likely run into some things that don’t work quite the way you expect them to,
but for the most part, CSS on Facebook is the same as CSS off Facebook. A few things
to look out for:

• CSS files, like images, are cached by Facebook’s server, so you need to change the
name every time you change the contents of the file; otherwise, the Facebook server
will continue to serve up the old version. See Recipe 6.62 for two ways around this.

• Absolute positioning is one of the few things that is a little wonky. In the early days
of Platform, it was possible to absolutely position elements from inside your app
outside of the Canvas page frame, making them look like they were part of the
Facebook interface. Since this posed obvious security issues, the div that contains
your application’s content (which will have an id like app_content_12345) has the
canvas_rel_positioning class applied, which sets it to position: relative. Since
absolutely positioned elements inside of a relatively positioned element are

6.61 Facebook and CSS: FBSS? | 219

positioned within their parents, that resets your top, left, bottom, and right values
to being context-sensitive to your Canvas area. The class also sets overflow:
hidden, which will hide any content you try to position outside of the Canvas. You
can test this easily by throwing the following code into a test page inside your app:

<style type="text/css">
 div#full{
 background-color: red;
 height: 200px;
 width: 200px;
 }

 div#half{
 background-color: red;
 height: 200px;
 right: −100px;
 position: absolute;
 top: 0px;
 width: 200px;
 }
</style>

<div id="full">This is a full div.</div>
<div id="half">This is half a div (but the other half still exists over here!).</div>

You should get most of a Canada flag, as seen in Figure 6-68.

Figure 6-68. Positioning an element outside of the Canvas will cut it off (this is 100 px and one maple
leaf short of a Canada flag!)

• You’ll need to import CSS files using a <link> rather than a <style> tag with an
@import in it. Your CSS files should be stored on your server, and you should use
an absolute URL to pull them in:

<link href="http://someserver.com/resources/css/screen
.css" rel="stylesheet" type="text/css" media="screen" />

220 | Chapter 6: Facebook Markup Language (FBML)

6.62 Beating the CSS, JavaScript, and Image Cache
Problem
I keep changing my static files on my server, but they’re not reloading in Facebook!
How do I get my CSS and JavaScript files and my beautiful images to load?

Solution
Facebook’s servers cache your static files when they first serve them up so that your
app loads faster for subsequent requests. To get your files to load after you’ve made a
change to them, you’ll need to change the file’s name so that Facebook notices it’s
different and grabs the new one. If you’re a server admin master and are running Apache
(or are super server ninja and are running IIS), skip down to the Discussion. If you’re
less sure of your server admin powers, keep reading.

All you need to do is change the name of your static files and any references to them
when you make a change. This is tedious and will quickly get annoying, but it will work
every time and won’t require you to mess around under the hood of your web server.
If you had a file named hawt_stylez.css, you could start with hawt_stylez_1.css, then
rename it to hawt_stylez_2.css, and so on. Make sure that you update the <link> that
loads it into your pages as well:

<link href="http://someserver.com/resources/css/hawt
_stylez_1.css" rel="stylesheet" type="text/css" media="screen" />

If you use that file (and a number of others) on every page of your app, the easiest thing
is to make an include file that contains all of your various <link>s, and then include
that at the top of each page:

<?php require_once 'resources/includes/page_header.php'; ?>

Now you can just edit the include file and don’t have to worry about tracking down all
of the references in other pages.

Discussion
This Discussion is for you if you just read through the Solution and thought of the
mind-numbing hours you were going to have to spend renaming files. Thanks to the
brilliant minds at Particle Tree (http://www.particletree.com, makers of the awesome
http://www.wufoo.com), this solution will completely remove any need to manually
rename files in exchange for about five minutes of server reconfigurations. You’ll find
the original version on their blog at http://particletree.com/notebook/automatically-ver
sion-your-css-and-javascript-files/. Note that this was written for developers who are
building PHP apps running on Apache with mod_rewrite installed, but there’s no reason
you couldn’t adapt this to work in other languages and server environments.

6.62 Beating the CSS, JavaScript, and Image Cache | 221

http://www.particletree.com
http://www.wufoo.com
http://particletree.com/notebook/automatically-version-your-css-and-javascript-files/
http://particletree.com/notebook/automatically-version-your-css-and-javascript-files/

If you’re not familiar with mod_rewrite, you might find this a little con-
fusing. It’s basically a way to run grep on the URLs your server is serving
up (if you’re not familiar with grep, this may be a little too far outside
your comfort range). Brian Moore, quoted in the official documentation
for mod_rewrite, says, “Despite the tons of examples and docs,
mod_rewrite is voodoo. Damned cool voodoo, but still voodoo.” So
consider yourself warned. You’ll find the documentation at http://httpd
.apache.org/docs/1.3/mod/mod_rewrite.html, or you can pick up Sams
Teach Yourself Apache 2 in 24 Hours by Daniel López Ridruejo and Ian
Kallen, which includes some in-depth mod_rewrite mojo.

We’re going to configure the server so that we can insert version numbers into filenames
without it even noticing, and then we’re going to use a function to insert filenames into
our documents that automatically calculates the version number based on the last time
the file changed. This example assumes a file path of resources/css and resources/js for
your CSS and JavaScript files, respectively, as well as a path of images/ for all images,
but feel free to adjust this to suit your personal storage preferences:

1. Assuming your server has mod_rewrite already running properly, drop
an .htaccess file into the root directory of your site (or edit your existing one). This
is a plain text file.

2. We’re going to add two rules to that file, one for images and one for everything
else. These rules tell Apache to treat hawt_stylez.1.css as hawt_stylez.css, and to do
the same for images (JPGs, GIFs, and PNGs) and JavaScript that have a version
number after the first period and before the file type extension:

RewriteEngine on
RewriteBase /
RewriteRule ^(.+)/images/(.+)\.(.+)\.(jpg|gif|png)$ $1/images/$2.$4 [L]
RewriteRule ^(.+)/resources/(.+)/(.+)\.(.+)\.(.+)$ $1/resources/$2/$3.$5 [L]

3. You could use this technique at this point by updating your filenames wherever
they’re referred to in your code, without needing to change the actual filenames to
match, but that still requires manual labor on your end, and that sucks. The next
step is to define a PHP function that will take in a filename and then figure out a
timestamp of the last time it was modified and insert that as the version. Create a
new PHP file called autoVer.php, stick it wherever you keep includes, and drop this
function into it (note that you could rewrite this to skip passing in the server if
you’re always pulling your static content from the same server; just hardcode it
into the function). Don’t worry about what it does just yet; that’s explained later:

function autoVer($server,$file){
 $path = pathinfo($file);
 $ver = '.'.filemtime($_SERVER['DOCUMENT_ROOT'].$file).'.';
 echo $server . $path['dirname'].'/'.str_replace('.', $ver, $path['basename']);
}

222 | Chapter 6: Facebook Markup Language (FBML)

http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html
http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html

4. You’ll need to include your new autoVer.php file into all of your other files. If you
already have a header you’re including, stick it in there. Otherwise, drop this into
the top of your other pages:

<?php require_once 'resources/includes/autoVer.php'; ?>

5. Last step! Wherever you previously referred to a static file, replace the reference
with a call to our new function:

<link href="<?php autoVer('http://www.someserver.com',
'resources/css/screen.css'); ?>" rel="stylesheet" type="text/css"
media="screen" />

That’s all the magic you need. The reference to screen.css in this example will au-
tomagically become something like resources/css/screen.1206750843.css, with the time-
stamp changing every time you make a change to the CSS file (the PHP filemtime
function returns the last modification timestamp for a file). Facebook will note the new
filename and request that from your server, which will disregard the version number
and return your CSS. The last modified timestamp will remain the same until you touch
the file again, so Facebook’s cache will continue to speed things up until you don’t
want it to. It’s hard to get more elegant than that.

I ran this solution past my good friend Jason DeFillippo (http://www
.jpdefillippo.com), the mastermind behind some of the best PHP you’ve
ever unknowingly used (including Technorati and http://jpgmag.com)
and contributor of Recipe 5.4. He really dug it, but added that he would
“write an update script that builds a conf file that you can trigger via
cron or manual update that includes in the particulars and caches it via
apc or memcache so it’s not doing a filemtime every time the script is
called. Can be hard on the disk for apps with larger traffic.” If that sen-
tence makes any sense to you, you know what to do. For the rest of you,
move along. There’s nothing to see here.

6.62 Beating the CSS, JavaScript, and Image Cache | 223

http://www.jpdefillippo.com
http://www.jpdefillippo.com
http://jpgmag.com

CHAPTER 7

Facebook JavaScript (FBJS)

JavaScript is not unlike the Force (and duct tape): it has a light side and a dark side,
and it holds the universe together. Back in the dark days of JavaScript, before the light
of Ajax shone upon the land, it mostly got used for doing things like validating form
input on the fly (inevitably making it really hard to complete forms amidst the onslaught
of alert() boxes) and putting counters on pages. Now that we are firmly ensconced
in the land of Web 2.0, JavaScript is the prodigal son, returned to make every web
experience animated, dynamic, and completely incompatible with all assistive tech-
nologies. All kidding aside, the ability to build richer and more desktop-like user
interfaces (UIs) within browsers, combined with some impressive libraries—such as
the Yahoo! User Interface Library (YUI), jQuery, Scriptaculous, Prototype, and Dojo—
has breathed new life into the web application space and made it a whole lot more fun
to work in.

There’s no reason that your Facebook application need be any different.As we saw with
FBML in Chapter 6, Facebook has imposed a sandbox on JavaScripts running inside
of applications by creating a variant of JavaScript (Facebook JavaScript, or FBJS). It’s
not a dramatic variation from the actual language, and primarily exists to protect its
users from the potentially massive security and privacy holes you could otherwise open.
Allowing third-party developers to run scripts within an existing website is a well-
known quandary, and most platform providers solve it by forcing developers to run
their JavaScripts within an iFrame which loads content from a different server. Since
browsers prevent Cross-Site Scripting (XSS), this effectively prevents the script running
inside the iFrame from accessing the Document Object Model (DOM) outside of it.
Consider the gaping hole that would be opened, for example, with the following script:

<script type="text/javascript">
<!--
 function doBadStuff(menu){
 for(var i = 0; i < menu.length; i++){
 if(menu[i].childNodes && menu[i].childNodes.length > 0){
 doBadStuff(menu[i].childNodes);
 }

 var item = menu[i];

225

 if(item.tagName == 'A'){
 var pageHref = item.href.split('http://www.facebook.com/');
 item.href = 'https://www.securefacebooklogin.com/' + pageHref[1];
 }
 }
 }

 doBadStuff(document.getElementById('navigator').childNodes);
//-->
</script>

If you followed that recursive bit of naughtiness and knew in advance that Facebook’s
main menu bar has the id “navigator”, you would understand that all of the links in
the navigation had been deviously rewritten to point to the fictional http://www.secure
facebooklogin.com site. Users going to that site could be presented with an entirely
authentic-looking Facebook login page, which would capture their usernames and
passwords and then redirect them to their destinations without them ever realizing that
their accounts had been compromised. That’s obviously a problem, and so if you try
to run this code from a Facebook Canvas page, it will fail with an error very similar to
“a12345_document.getElementById("navigator") has no properties” (which might give
you a clue as to how the Sandbox works).

Here are two main areas that FBJS locks down:

The JavaScript namespace
Any identifiers used in your JavaScript code (function names, variable names, etc.)
could collide with names used by Facebook elsewhere on the page, and so your
JavaScript will automatically be rewritten to prepend your application ID to all of
them (hence the earlier error). For example, the following code block:

function foo(bar) {
 var obj = {property: bar};
 return obj.property;
}

would automatically become:

function a12345_foo(a12345_bar) {
 var a12345_obj = {property: a12345_bar};
 return a12345_obj.property;
}

I’ll be using 12345 as the Facebook application ID throughout this
chapter. If you look at your own app, you’ll find a different ID in
its place.

Accessing and modifying the DOM tree
Many of the standard function calls and properties remain, but a number of them
behave differently (e.g., setting the innerHTML property of an object only allows text

226 | Chapter 7: Facebook JavaScript (FBJS)

http://www.securefacebooklogin.com
http://www.securefacebooklogin.com

and will remove all childNodes of the element it’s called on) or don’t work at all
(e.g., you can’t access the document.form property directly). There are a number of
very useful functions for setting and manipulating the style of objects, as well as
handling events, working with Ajax, and displaying dialog boxes.

This chapter focuses on the most common FBJS-related objects you’ll want to com-
plete, but it’s worth noting that the full scope of using JavaScript in Facebook appli-
cations could fill a few books on its own. We cover the basics in the rest of this chapter,
including some handy recipes for stuff you’ll want to do frequently.

If your JavaScript skills are a little rusty and you want to brush up before
jumping into FBJS, check out David Flanagan’s JavaScript: The Defini-
tive Guide or Shelley Powers’s Learning JavaScript, both from O’Reilly.

7.1 Dealing with Sandbox Renaming
Problem
The Facebook Sandbox keeps renaming my objects and functions.

Solution
Don’t sweat it! That’s what the Sandbox is there for. The good news is that it should
be renaming them consistently throughout your application (in your HTML and in
your JavaScript), so that your DOM manipulation still works properly.

Discussion
As mentioned in the introduction to this chapter, the Sandbox is really there to protect
Facebook’s users from the nasty things you might (advertently or inadvertently) do to
them. Let’s say, for example, that you gave a div in your HTML the very common id
of content. That would clash with the id of the Canvas area of the Facebook page,
which is a problem because no two HTML elements on the same page can share the
same id. Ever spent time around one or more people who share your name? It gets
confusing pretty quickly, especially when someone is trying to manipulate your style
object. This isn’t as big of a deal when you’re applying CSS based on id
(e.g.,#content{font-weight: bold;} would just be applied to both), but it is when you
try to grab one of them through JavaScript (e.g., what gets returned by document.getE
lementById('content')?).

The solution is the same for JavaScript as it is for HTML. As we saw in Chapter 6 for
FBML, the FBJS Sandbox rewrites your code to prepend your application ID to things
such as object, function, and variable names. Let’s take a look at a quick example that
should allay your fears.

7.1 Dealing with Sandbox Renaming | 227

If your carefully constructed Canvas page contained this HTML and JavaScript:

<script type="text/javascript">
<!--
 function checkIt(){
 var title = 'Are you sure?!';
 var content = 'You really want to change it? The world could end!';
 var confirm = 'Yup!';
 var cancel = 'Oh geez!';
 var doIt = new Dialog();
 doIt.onconfirm = changeIt;
 doIt.showChoice(title, content, confirm, cancel);
 }

 function changeIt(){
 var it = document.getElementById('it');
 it.setStyle('background', 'red');
 }
//-->
</script>

<div id="it" style="background: blue;">This is it!</div>

<input type="button" value="Click me!" onclick="checkIt();" />

Facebook would rewrite it to something like:

<div id="app12345_it" style="background: blue none repeat
 scroll 0% 0%;" fbcontext="f5b362fe8409">This is it!</div>

<input type="button" value="Click me!" onclick="a12345_checkIt();"/>

<script type="text/javascript">
 function a12345_checkIt(){
 var a12345_title = 'Are you sure?!';
 var a12345_content = 'You really want to change it? The world could end!';
 var a12345_confirm = 'Yup!';
 var a12345_cancel = 'Oh geez!';
 var a12345_doIt = new a12345_Dialog();
 a12345_doIt.onconfirm = a12345_changeIt;
 a12345_doIt.showChoice(a12345_title, a12345_content, a12345_confirm,
 a12345_cancel);
 }

 function a12345_changeIt(){
 var a12345_it = a12345_document.getElementById('it');
 a12345_it.setStyle('background', 'red');
 }
</script>

Here are a few important things to note:

• The id of the div changed from it to app12345_it, as we saw in Chapter 6.

228 | Chapter 7: Facebook JavaScript (FBJS)

• The name of the function changed from checkIt to a12345_checkIt. Sandbox re-
naming for JavaScript prepends a### instead of the app### used in FBML. All of
the variables within the function were likewise renamed.

• The call to set the onconfirm handler for the doIt Dialog was automatically changed
from changeIt to a12345_changeIt to match the new function name.

• Finally, even though the div itself has been renamed app12345_it, the call to
a12345_document.getElementById still refers to it as plain old it. Since this is no
longer a call to document.getElementById but has instead been contextualized to
your app’s sandbox, you’re now making a call to a prototype function defined in
fbml.js (look for fbjs_main.prototype.getElementById near line 72). The new ver-
sion of the old standby basically translates between the Sandbox and the DOM,
prepending your app’s ID to a standard getElementById call and then passing the
resulting object back to you. There are a number of standard JavaScript objects
that get similarly remapped, so don’t worry if you see things like Math getting re-
named to a12345_Math. Here’s the full list:

— Ajax (Facebook-specific)

— console

— Date

— Dialog (Facebook-specific)

— document

— escape

— Facebook (Facebook specific)

— Math

— RegExp

— setInterval

— setTimeout

— String

— undefined

— unescape

The end result should be that you don’t even need to think about this, but sometimes
bad things happen to good code. As we’ll see in Recipe 7.15 later in this chapter, very
complicated and fragile code constructions might break given the translation into FBJS,
particularly if Facebook makes any changes to the way Platform interprets code. If you
remember the primary rule of all programming—Keep It Simple, Stupid (KISS)—you
should be fine.

7.1 Dealing with Sandbox Renaming | 229

7.2 Losing Your < >s
Problem
The angle brackets (< and >) keep disappearing from my rendered FBJS code.

Solution
Facebook suggests wrapping code within <script> tags in standard HTML comments
to prevent the FBJS parser from removing < and > characters (or turning them into
their equivalent < and > HTML entities):

<script type="text/javascript">
<!-
 function someFunction(){
 // Do stuff!
 }
//-->
</script>

This will likely change at some point as the FBJS parser matures, so you may not find
it necessary, but YMMV (Your Mileage May Vary).

Discussion
This was standard practice for a long time to support older browsers that didn’t handle
<script> tags properly. Then again, we also used to build websites that degraded
gracefully when people didn’t have JavaScript enabled in their browsers (or were using
browsers that—heaven forbid—didn’t even support it). If you take a look at the source
of one of your app’s rendered pages, you’ll find that a lot of the Facebook JavaScript
that gets added to your app isn’t escaped, so this recipe will likely be out-of-date pretty
quickly (you’ll also notice that the FBJS parser removes them when it renders your final
JavaScript). That said, it certainly doesn’t hurt to have the comment tags in there, so
you might as well add them.

7.3 Retrieving DOM Elements
Problem
I need to retrieve a DOM element from my page.

Solution
Use the old standby document.getElementById():

var someElement = document.getElementById('aDiv');

230 | Chapter 7: Facebook JavaScript (FBJS)

Discussion
Document is one of the standard JavaScript objects that gets mapped from the renamed
Sandbox format to the actual object in fbml.js (see Recipe 7.1 for more information),
so there’s no need to worry about it breaking in your code.

Make sure you haven’t named any of the elements in your page with
the same ids. Not only is that part of the HTML and XHTML specs,
but it’s also just good practice. If you don’t follow it,
document.getElementById() will get confused and not know which one
to return. This is just as true on Facebook as it is off.

7.4 Manipulating DOM Elements
Problem
I want to dynamically add DOM elements to my page.

Solution
You can use most of the JavaScript calls that work outside of Facebook to make pro-
grammatic changes to the DOM:

function addNewDiv(){
 var parentDiv = document.getElementById('parentDiv');

 // Appending a child
 var firstDiv = document.createElement('div');
 firstDiv.setId('appendedChild');
 firstDiv.setStyle('color', 'black');
 firstDiv.setTextValue('This div rocks!');
 parentDiv.appendChild(firstDiv);

 // Insert before
 var secondDiv = document.createElement('div');
 secondDiv.setStyle('color', 'red');
 secondDiv.setTextValue('This div rocks more!');
 parentDiv.insertBefore(secondDiv, firstDiv);

 // Remove the first div
 parentDiv.removeChild(firstDiv);

 // Clone the second node
 var thirdDiv = secondDiv.cloneNode();
 thirdDiv.setStyle('color', 'blue');
 thirdDiv.setTextValue('This is the third div to be created.');
 parentDiv.appendChild(thirdDiv);
}

7.4 Manipulating DOM Elements | 231

Assuming you have a div in your HTML with the id parentDiv when you run the script,
the end result will have it contain the text:

This div rocks more!
This is the third div to be created.

(with the text in the appropriate colors), along with anything else it might have
contained already.

Although appendChild(), insertBefore(), removeChild(), and cloneNode() all work
the same way they do off-Facebook, you’ll run into problems with many of the other
JavaScript object manipulation functions. Most of the ones you’ve come to know and
love are available, but they’ve been changed to getters and setters instead of direct
functions. Table 7-1 shows the mappings.

Table 7-1. JavaScript DOM manipulation function mappings

JS function FBJS getter FBJS setter Description

accessKey getAccessKey setAccessKey

checked getChecked setChecked

childNodes getChildNodes N/A Returns an array of childNodes.

className getClassName setClassName See rest of recipe for more info.

clientHeight getClientHeight N/A

clientWidth getClientWidth N/A

cols getCols setCols

dir getDir setDir

disabled getDisabled setDisabled

firstChild getFirstChild N/A

form n/a N/A No direct access to forms. Use
document.getElement
ById('formid') instead. (You gave
your form an ID, right?)

N/A getRootElement N/A Equivalent to docu
ment.rootElement. Returns the top-
level element of a Canvas page or Profile
Box.

N/A getAbsoluteTop N/A Returns the element’s absolute position
relative to the top of the page. Use this
instead of offsetParent.

N/A getAbsoluteLeft N/A Same as getAbsoluteTop, but
horizontal-wise.

href getHref setHref

id getId setId

232 | Chapter 7: Facebook JavaScript (FBJS)

JS function FBJS getter FBJS setter Description

innerHTML N/A setInnerFBML Can throw an error if you try to put the
FBML in as a string. Create an <fb:js-
string> in your code first, and then pass
the variable name instead.

innerText/
textContent

N/A setTextValue Only allows text: no HTML or FBML.
Removes all childNodes of the ele-
ment it is called on.

lastChild getLastChild N/A

location N/A setLocation

name getName setName

nextSibling getNextSibling N/A

OffsetHeight getOffsetHeight N/A

offsetWidth getOffsetWidth N/A

parentNode getParentNode N/A

previousSibling getPreviousSibling N/A

readOnly getReadOnly setReadOnly

rows getRows setRows

scrollHeight getScrollHeight N/A

scrollLeft getScrollLeft setScrollLeft

scrollTop getScrollTop setScrollTop

scrollWidth getScrollWidth N/A

selected getSelected setSelected

selectedIndex getSelectedIndex setSelectedIndex

src getSrc setSrc

style N/A setStyle

tabIndex getTabIndex setTabIndex

tagName getTagName N/A

title getTitle setTitle

type getType setType

value getValue setValue

7.5 Manipulating CSS Styles
Problem
I want to make things pretty programmatically.

7.5 Manipulating CSS Styles | 233

Solution
Facebook Platform provides a very handy setStyle() method that does exactly what
it sounds like it should. The very simplest form lets you set one style attribute at a time:

obj.setStyle('color', 'green');

Basically, pass in an attribute name (e.g., color) and a value (e.g., black). You can also
set multiple attributes at the same time:

obj.setStyle({color: 'green', background: 'white'});

Discussion
setStyle() is one of the most useful shortcuts provided by Facebook Platform. If you
master it (and the bar is not exactly high on that task), you’ll find dynamic styling a lot
like a big slice of tasty chocolate cake. There are only a couple of things you need to
look out for:

• Be aware that names usually including a hyphen (e.g., text-decoration) need to be
spelled out using so-called camel case (i.e., drop the hyphen and capitalize the first
letter of the next word):

obj.setStyle('lineHeight', '120%');

• If you’re working with an attribute that’s measured in a given unit, note that you
have to include the unit in the value:

obj.setStyle('top', '20px');
obj.setStyle('fontSize', '9em');

• Be careful with that last one when you’re calculating the value in JavaScript,
because it means you need to tack the unit onto the calculated number:

var newWidth = (someValue + someOtherValue) / somethingElse;
obj.setStyle('width', newWidth + 'px');

• Note that there is no getter method to complement setStyle(), so you can’t get
back an array of style information.

7.6 Manipulating CSS Class Names
Problem
I’ve done a great job of setting up my CSS so that I can make things pretty in a very
modular and semantically correct fashion while keeping a flawless separation between
presentation and content. But how can I apply that CSS programmatically?

Solution
In addition to the nearly standard getClassName() and setClassName() methods, Face-
book has added a handful of fantastically useful methods:

234 | Chapter 7: Facebook JavaScript (FBJS)

obj.addClassName(newClass)
Adds the newClass class name to the object’s className string, checking first to see
that it isn’t already there.

obj.removeClassName(oldClass)
Does the exact opposite of addClassName(), but you already knew that.

obj.toggleClassName(someClass)
If obj already has someClass in its className string, the class is removed. Contrary-
wise, if it doesn’t already have it, the class is added.

obj.hasClassName(someClass)
If obj has someClass in its className string, returns true. Otherwise, returns false.

See Recipe 7.4 for an explanation of why you can’t just look at the
className property of an object.

Discussion
If you’re not using one of the Ajax-type libraries (which is impossible given the Sandbox
renaming), manipulating CSS through JavaScript can be a bag full of pain, crammed
with sharp-ended bits of code that do lots of className checking and poke you in the
ribs repeatedly. Facebook’s new functions take a whole bunch of those sharp bits and
round the corners off, so it’s more like a dull throbbing ache than a real hurty poke.
Let’s look an example:

<style type="text/css">
 div{
 margin: 20px;
 }

 div.redDiv{
 background-color: red;
 }
 div.blueDiv{
 background-color: blue;
 }
 div.greenDiv{
 background-color: green;
 }

 div.funDiv{
 float: left;
 height: 100px;
 width: 100px;
 }

 div.bordered{
 border: 1px black solid;
 }

7.6 Manipulating CSS Class Names | 235

 div#control{
 clear: left;
 }
</style>

<script type="text/javascript">
<!--
function dullAche(){
 var firstDiv = document.getElementById('firstDiv');
 var secondDiv = document.getElementById('secondDiv');
 var thirdDiv = document.getElementById('thirdDiv');

 firstDiv.addClassName('bordered');
 secondDiv.removeClassName('blueDiv');
 secondDiv.addClassName('redDiv');
 thirdDiv.toggleClassName('greenDiv');
 if(!thirdDiv.hasClassName('greenDiv')){
 var butNotGreen = new Dialog().showMessage('Not Green',"But
 it's not green!",'True');
 }
}
//-->
</script>

<div id="firstDiv" class="redDiv funDiv"></div>
<div id="secondDiv" class="blueDiv funDiv"></div>
<div id="thirdDiv" class="greenDiv funDiv"></div>

<div id="control"><input type="button" value="Ouch!" onclick="dullAche();" /></div>

Before you click on the “Ouch!” button, you should see three colored squares and a
button, as in Figure 7-1.

Figure 7-1. Before clicking “Ouch!”

When you click on the button (see Figure 7-2), the first div gets the bordered class
applied (so it now has a black border), the second div loses the blueDiv class and gains
the redDiv one (so it becomes red), and the third div toggles the greenDiv class to off
so that it disappears (and we get a pop-up Facebook dialog to let us know it’s not green
anymore).

236 | Chapter 7: Facebook JavaScript (FBJS)

Figure 7-2. After clicking “Ouch!”

7.7 Dynamically Setting Content
Problem
Now I want to set the contents of an element on my page programmatically.

Solution
Facebook Platform makes two methods available to you:

obj.setInnerFBML(newContent)
Similar to using obj.innerHTML = newContent in traditional JavaScript, but with a
few differences. Note that actually passing a string instead of a variable will usually
cause a JavaScript error (fbjs_private.get(fbml_ref) has no properties), so you
should instead use the <fb:js-string var="newContent"> FMBL tag on your page
to define an FBJS string that you can pass instead (i.e., wrap the content in opening
and closing <fb:js-string> tags). Also, note that setInnerFBML() will replace all
of the existing children of obj in the same way that setting innerHTML() will.

obj.setTextValue(newContent)
Sets the text displayed within an object but will not accept FBML or HTML. This
is really useful for doing things such as status updates, where you don’t really need
anything beyond a text update, especially if you’re setting the text value of a div
with a class applied for formatting (e.g., <div class="statusMessage"></div>).

Discussion
Setting text values is pretty self-evident, but setInnerFBML needs a little bit more ex-
planation, mostly because of the weirdness around passing a string versus setting up a
JavaScript string.

If you’ve read the chapter on FBML (Chapter 6), you’ll know that a lot of the power of
building on Facebook Platform comes from the ease of throwing in tags that display
user interface widgets and a lot of content. It’s much easier to toss in a <fb:name
uid="<?php echo $user?>"/> than it is to use the PHP API to extract the person’s name

7.7 Dynamically Setting Content | 237

and output it. It’s also way simpler to drop in an <fb:tabs> block than it is to build
your own from scratch, and these blocks have the added benefit of being Platform-
native. You could build your FBML as a string literal in your function call to
setInnerFBML, but odds are that you’ll end up having to untangle a whole bunch of
nested quote characters that will need to be properly escaped, and you’ll end up with
one long line of rendered HTML instead of your meticulously formatted and easily
readable version. Do this instead:

<script type="text/javascript">
<!--
 function showInvite(){
 var fp = document.getElementById('friendPicker');
 fp.setInnerFBML(fpContent);
 }
//-->
</script>

<fb:js-string var="fpContent">
<fb:fbml>
 <fb:request-form
 action="index.php"
 method="POST"
 invite="true"
 type="Your App"
 content="Your text goes here.">
 <fb:multi-friend-selector
 showborder="false"
 actiontext="Invite your friends!">
 </fb:request-form>
</fb:fbml>
</fb:js-string>

<div id="friendPicker"></div>

<div id="controls">
 <input type="button" value="Show Invite" onclick="showInvite();" />
</div>

7.8 Textbox Selections
Problem
I need to get or set the selection (or contents) of a textarea or an input of type text.

Solution
Facebook Platform provides a pair of methods for getting and setting the selection in
text fields:

obj.getSelection()
Returns an object with start and end properties:

238 | Chapter 7: Facebook JavaScript (FBJS)

selIndexes = document.getElementById('myTextarea').getSelection();
selStart = selIndexes.start;
selEnd = selIndexes.end;

obj.setSelection()
Sets the selection within the text field, taking a required start and an optional end:

// Put the cursor into the field after the 5th character
document.getElementById('myTextarea).setSelection(5);

// Select the 5th to 10th characters
document.getElementById('myTextarea).setSelection(5,10);

Discussion
This isn’t much different from the way you would access the same properties through
normal JavaScript, except than an abstraction layer has been added to smooth over
Internet Explorer’s lack of support for selectionStart and selectionEnd. The Fabulous
Selection Getter and Setter twins will help you do all kinds of amazing manipulation
of the cursor and text selection regions, but they won’t help you actually retrieve the
value of the text in the field (or, by extension, of the selected text in the field). Here’s
a useful function that accepts the id of a text field and returns the full value if nothing
is selected, or returns just the selected text if something is:

function getText(targetField){
 var indexes = document.getElementById(targetField).getSelection();
 var fullText = document.getElementById(targetField).getValue();
 if(indexes.start == indexes.end){
 // There's nothing selected so return the whole thing
 return fullText;
 }else{
 // Substring out the part that's selected and return it
 return fullText.substr(indexes.start,(indexes.end - indexes.start));
 }
}

You’ll note a call in there to getValue(), which you might not recognize.
It’s a handy function provided by Facebook Platform that will figure out
what type of object you’ve called it on and will then use the appropriate
methods to retrieve and return the value of it. See Recipe 7.4 for more
information.

7.9 Limiting the Length of Text Fields
Problem
I have a text field in my app, and I want to limit the number of characters someone can
type into it.

7.9 Limiting the Length of Text Fields | 239

Solution
You’re looking for a combination of getValue() and setValue(), a pair of getter/setters
implemented by Facebook as a shortcut to manipulating the value of various object
types. If your Canvas page is set up something like this:

<div id="message">
 <textarea id="messageField" onkeyup="limitLength(this,200);"></textarea>
 <div id="messageCount">0/200 characters</div>
</div>

then give this a shot:

function limitLength(targetField,maxLength){
 var currentLength = targetField.getValue().length;

 if(currentLength > maxLength){
 targetField.setValue(targetField.getValue().substring(0, maxLength));
 currentLength = maxLength;
 }

 document.getElementById('messageCount').setTextValue(currentLength + '/200
 characters');
}

Discussion
There are lots of occasions in which you might need to do something like limit the
length of a text field, so it’s always better to try to write functions like that as general-
purpose utilities rather than one-time-use tools. That function could have been written
as checkMessageField() without passing in the field or length, but then you’d also need
checkProfileField() and checkDescriptionField(), etc. Since FBJS allows you to
include external JavaScript files, do yourself a favor and put things like this into a
utilities.js, which you can just include in pages where you need them (see Rec-
ipe 7.16).

7.10 Creating Elements Dynamically
Problem
I want to dynamically create DOM objects and pop them into my page.

Solution
Use document.createElement(), the same way that you would in traditional JavaScript.

Discussion
This is one of the things that doesn’t change in FBJS, so your knowledge of off-Facebook
JavaScript can be applied directly.

240 | Chapter 7: Facebook JavaScript (FBJS)

One special exception to note: document.createElement() can be used to create FBML
elements, but it is currently limited to <fb:swf> (not even <fb:flv> or <fb:silver
light> work). The call is basically the same:

var newFlash = document.createElement('fb:swf');

Once you’ve created your object and attached it to the DOM (using a call such as
appendChild()), you will not be able to move it around the DOM, and it will be rendered
by the FBML parser into a standard <embed> tag.

7.11 Adding and Removing Event Listeners
Problem
I want to add an event listener to or remove an event listener from a DOM object. (In
other words, I have a thing I want to be able to click on and have it do something.)

Solution
FBJS supports the standard addEventListener() and removeEventListener() meth-
ods that you know and love from traditional JavaScript. Calling them is as simple as
finding your target in the DOM and passing in your event type and function name:

var myObj = document.getElementById('someId');
myObj.addEventListener('click', otherFunctionName);
myObj.removeEventListener('click', otherFunctionName);

Discussion
This is pretty simple, as long as you keep in mind that otherFunctionName needs to be
a defined JavaScript function, and that your new listeners will join any that were added
in the FBML code (e.g., <div id="someId" onclick="aFunctionName();">).

7.12 Retrieving Data via Ajax
Problem
I want to do a call and/or response to my server without causing the current page to
refresh. For example, I might want to dynamically populate some content, or update
a section of my page, or maybe check to see whether some text entered into a field is
valid.

Solution
Ajax can be used for such a wide variety of uses that it would require a whole other
book to run down all the various permutations and combinations (conveniently, you
can pick up any number of O’Reilly books on the topic, including Understanding AJAX:

7.12 Retrieving Data via Ajax | 241

Using JavaScript to Create Rich Internet Applications and Ajax for Web Developers). As
a simple example, we’re going to use a text field in which users would enter the user-
name they’d like to use, and then we’ll check on the fly to see whether it’s available.
You’ll need a text input on your Canvas page:

<div id="registration">
 <div id="usernameFields">
 <label for="username">Username:</label>
 <input type="text" id="username" onchange="checkUsername(this);" />

 </div>
</div>

The JavaScript for checkUsername() is surprisingly simple because of the Ajax object
provided by Facebook Platform, which really makes your life easy:

function checkUsername(usernameField){
 if(usernameField.getValue() == ''){
 document.getElementById('usernameAvailable').setTextValue('');
 return;
 }

 var encodedUsername = escape(usernameField.getValue());
 var checkUsername = new Ajax();
 checkUsername.responseType = Ajax.JSON;
 checkUsername.ondone = function(data){
 var message = '';
 console.log(data);
 if(data.available){
 message = 'Great! That username is available!';
 }else{
 message = 'Ooops! That username is taken. Sorry!';
 }
 document.getElementById('usernameAvailable').setTextValue(message);
 }
 checkUsername.post('http://www.yourserver.com/checkUsername.php?
 username=' + encodedUsername);
}

Finally, you’re going to need to create a page on your server (or a servlet, depending
on your server-side language of choice) that the Ajax script in your Canvas page can
call to send data to and/or receive data from. Since this is just a simple example, the
checkUsername.php file on our server contains:

<?php
if($_GET['username'] == 'jay'){
 echo '{"available": true}';
}else{
 echo '{"available": false}';
} ?>

Your Ajax call will fail if you try to use a Facebook URL as the callback.
It’s very important that the script call a URL that is not on Facebook,
but it could still sit on the same server that your app is served from.

242 | Chapter 7: Facebook JavaScript (FBJS)

That should really be it! If you’re following along at home and have recreated the code
just shown, you can now try entering a username in the field. As soon as the field loses
focus, the onchange event will fire and cause the checkUsername() JavaScript function
to execute, which will prepare and fire off an Ajax request to your server and then parse
the JSON-formatted response and update the contents of the usernameAvailable
.

Discussion
Even though the solution presented here is one of the simplest cases, it provides a pretty
flexible foundation for building more complicated Ajax calls. You would use an almost
identical function if you just wanted to update data on your server (e.g., moving the
pieces in a chess game might call a chessMove.php page and pass it player and move, and
then parse a result value and update the displayed board on the Canvas page). You
could also use a similar function and a call to setTimeout() to create a rotating banner
ad system that doesn’t need to refresh the page when changing ads.

The Ajax implementation in Facebook Platform provides a good deal more function-
ality than we’ve covered, including:

onerror
An error handler function that you would set the same way we’ve set the ondone
handler in the earlier example.

requireLogin
A boolean attribute you can set on your Ajax object to indicate that the user has
to log into Facebook before the Ajax call can be made. This is particularly useful
if you’re using a public Canvas page but need access to the user’s Facebook account
information in order to calculate the return value of your Ajax method.

abort
Some quick testing shows that the Facebook Platform Ajax object has a default
timeout of about 10 seconds, which you can’t adjust. If you think you might need
to bail out sooner (or need to kill an in-progress request for any number of other
reasons), call the myAjax.abort() method.

responseType
This is covered in the earlier example (we’re using Ajax.JSON), but you have the
choice of three values:

Ajax.JSON
Your server will return a response encoded using JavaScript Object Notation
(JSON), which will automatically be decoded for you. Any attributes you en-
code on the server side will become attributes of the data object, which you
can then access using dot-notation (e.g., if you send back an attribute called
available, you can access it using data.available). Generally speaking, this is
the preferred approach because it keeps a proper separation between your data
and display layers, meaning that the return from the server contains no

7.12 Retrieving Data via Ajax | 243

formatting codes, and therefore isn’t tied to Facebook Platform (for example,
you could call the same server-side function from a mobile version of your app
and then parse and display the result using something like XHTML Mobile
Profile). For more information on JSON, see http://json.org.

Ajax.FBML
Your server’s going to do all the calculations and formatting of the result and
return it in FBML, all ready to display. You can pass this directly into the
setInnerFBML() function. This approach means less client-side processing
(since you can just dump the result straight to screen), but it also means that
you’re tying your data and display layers very tightly together, and you might
not be able to use the same server-side function in non-Facebook
environments.

Ajax.RAW
Your server will return raw data that you’ll deal with client-side on your own.
You might use this if you have an existing server-side function that returns
something like XML and have an XML parser implemented in FBJS separately.

post
There’s no real magic in the post method, but it is worth noting that the earlier
example uses the simpler form and passes the variables as a GET request. Since we
were passing only one variable, we just used the JavaScript escape() function to
handle the URL encoding, in case someone enters a username with funny charac-
ters in it. Sometimes you’ll need to pass a whole whack of variables to the server,
which is happily accommodated by passing an array of variables instead:

var queryParams = {'username': username, 'firstName': firstName};
myAjax.post('http://www.yourserver.com/process.php', queryParams);

The FBJS parser will automatically encode all of the values so that you don’t have
to worry about them. It’s important to note that this will change your request from
a GET to a POST, so if you’re looking for these variables on the server side and you’re
writing PHP, make sure to look in $_POST instead of in $_GET.

In keeping with the Facebook design methodology evident in apps such as Photos, this
framework isn’t intended to provide the kind of overwhelmingly complete feature set
you’d find in libraries such as jQuery, Prototype, or Dojo (to name a few). You’re not
likely to need a whole lot more than is listed here for the simple interactions that most
Facebook apps exhibit, and you might even find this overkill, in which case take a look
at Recipe 6.51.

244 | Chapter 7: Facebook JavaScript (FBJS)

http://json.org

7.13 Displaying Pop-Up Dialogs
Problem
I want to display a pop-up dialog in the style seen throughout Facebook (well, I really
want to display an alert but I’m not allowed to in FBJS, so I’ll settle for this).

Solution
Facebook Platform provides a very simple implementation of a Dialog object that can
easily be used to display pop-up dialogs with a confirm button (Figure 7-3):

var myDialog = new Dialog(Dialog.DIALOG_POP);

// Show the dialog with only a confirm button
myDialog.showMessage('Title Here', 'Text Here', button_confirm='Okay!');

Figure 7-3. Simple dialog

If you’d like to have the confirm button do something other than just hiding the dialog,
you can set an event handler for it before you call showMessage():

myDialog.onconfirm = eventHandlerName;

Your event-handler function can do whatever processing you’d like and should return
true to hide the dialog (e.g., you have validated some input in the dialog) or false to
leave it open (e.g., the input didn’t validate and the user needs to re-enter it). If you are
asking for input, you probably want to add a cancel button (Figure 7-4):

var myDialog = new Dialog(Dialog.DIALOG_POP);
myDialog.onconfirm = handleConfirm;
myDialog.oncancel = handleCancel;
myDialog.showChoice('Title','Body',button_confirm='Okay!', button_cancel='No!');

Figure 7-4. Dialog with confirm and cancel buttons

7.13 Displaying Pop-Up Dialogs | 245

Discussion
As mentioned in the Solution, the showMessage() form of dialog is a useful replacement
for the traditional JavaScript function alert(). The showChoice() version is a little more
useful in that you can ask users simple yes-or-no questions (“Are you sure you want to
put the chocolate in the peanut butter?”), but what if you need to ask them something
with more than two possible answers? Luckily for you (and for ice cream lovers every-
where), you can pass an <fb:js-string> as the text parameter in the call to
showChoice() and use it to render a much more complex query:

<fb:js-string var="iceCreams">
 <p>What's your favorite ice cream flavor?</p>
 <select id="iceCreamSelector">
 <option value="" selected="selected">(Pick a flavor!)</option>
 <option value="chocolate">Chocolate</option>
 <option value="vanilla">Vanilla</option>
 <option value="strawberry">Strawberry</option>
 <option value="moosetracks">Moose Tracks</option>
 </select>
</fb:js-string>

<script type="text/javascript">
<!--
 function showDialog(){
 var myDialog = new Dialog(Dialog.DIALOG_POP);

 myDialog.onconfirm = handleConfirm;
 myDialog.oncancel = handleCancel;

 myDialog.showChoice('Ice Cream', iceCreams, button_confirm='Mmmm!',
 button_confirm='Ewww!');
 }

 function handleConfirm(evt){
 // Get the flavor value from the selector
 var flavor = document.getElementById('iceCreamSelector').getValue();

 // Make sure something was selected
 if(flavor != ''){
 // Do something with this new found knowledge

 // Close the dialog
 return true;
 }else{
 // Don't close the dialog
 return false;
 }
 }

 function handleCancel(evt){
 // Close the dialog
 return true;
 }
//-->

246 | Chapter 7: Facebook JavaScript (FBJS)

</script>

<input type="button" value="What's your favorite?" onclick="showDialog();" />

That should give you a dialog something like Figure 7-5.

Figure 7-5. Dialog with an embedded <fb-js:string>

7.14 Displaying Contextual Dialogs
Problem
I want to display a nifty contextual dialog that points to one of my DOM objects.

Solution
Contextual dialogs are really a variation of the pop-up dialog covered in Recipe 7.13,
so take a moment to read that recipe first. The main differences are in your call to the
Dialog() constructor and in the call to setContext(), which establishes which DOM
object the dialog should point to (see Figure 7-6):

var myDialog = new Dialog(Dialog.DIALOG_CONTEXTUAL);
myDialog.setContext(document.getElementById('attachToMe'));
myDialog.showMessage('Look at Me!', 'Check this out!', button_confirm='Cool!');

Figure 7-6. Contextual dialog

7.14 Displaying Contextual Dialogs | 247

Discussion
All of the same tidbits that apply to pop ups apply to contextual dialogs as well,
including the ability to set up an <fb:js-string> for use as the body:

<fb:js-string var="messageText">
 Hi <fb:name uid="<?php echo $user?>"
 firstnameonly="true"
 linked="false"
 useyou="false"/>!
</fb:js-string>

<script type="text/javascript">
<!--
var myDialog = new Dialog(Dialog.DIALOG_CONTEXTUAL);
myDialog.setContext(document.getElementById('attachToMe'));
myDialog.showMessage('Message for you!', messageText, button_confirm='Thanks!');
//-->
</script>

That should give you a dialog something like Figure 7-7.

Figure 7-7. Contextual dialog with an embedded <fb:js-string>

7.15 Avoiding Heartache When the DOM Changes
Problem
I’ve built an amazing piece of JavaScript that has suddenly stopped working because
Facebook has changed the structure of the page!

Solution
Be careful when you architect your code so that you don’t build very specific DOM
structures into it:

this.getElementByTagName('div')[1].getFirstChild()
.getLastChild().setStyle('color', 'white');

It’s a much better idea to assign everything on your page a unique id or to give all similar
objects a shared class so that you can target them more specifically from your JavaScript.

248 | Chapter 7: Facebook JavaScript (FBJS)

Discussion
The statement just shown is fragile for at least two reasons:

• It’s effectively chaining down to the last child of the first child of the second
<div> on the page (remember that arrays in JavaScript are zero-indexed, so the first
<div> would be [0]). You might inadvertently change your own markup and insert
an element above what used to be the first child, or below what used to be the last
one.

• If you’re used to doing development in a more traditional environment, you might
not run into too many circumstances in which the HTML in your page changes
without you doing it. Consider what happens to your code when Facebook changes
the way something like <fb:multi-friend-input> is actually output by the FBML
parser. If Facebook adds an extra <div>, your count is now off.

All of this is not to suggest that you shouldn’t chain your JavaScript commands
together. There are plenty of times when combining a few lines of code can help
optimize your function by cutting down on computationally expensive operations, such
as allocating memory. It’s perfectly acceptable, for example, to optimize a few lines like:

var messageDiv = document.createElement('div');
messageDiv.setTextValue('Hi there!');
messageDiv.setStyle('color', 'red');
messageDiv.setStyle('border', '1px red solid');
messageDiv.addListener('click', closeMessage);

into a more compact single line like:

document.createElement('div').setTextValue('Hi there!')
.setStyle({color: 'red', border: '1px red solid'}).addListener('click', closeMessage);

The main difference lies in the dependence of the code on external factors. In this case,
the entire line is self-contained and won’t break, even if the entire structure of your
page changes. Keep in mind that lines like that really benefit from a comment to remind
you of what they’re doing when you come back to them in six months’ time, or to
prevent your teammates from wanting to hunt you down and express their frustrations
in very real and physical terms. Remember Golding’s Law: always program as if the
person who will be maintaining your program is a violent psychopath who knows where
you live.

7.16 Linking to External FBJS Files
Problem
I have a large block of FBJS that I use throughout my application, and I’d really like to
have the browser cache it for better client-side performance.

7.16 Linking to External FBJS Files | 249

Solution
Facebook Platform supports linking to external FBJS files through the <script> tag with
a src attribute, the same way you would with traditional JavaScript. Simply add a line
to your source file and stick the JavaScript file on your server:

<script src="http://www.foo.com/bar.js"></script>

Your external file will get included in your rendered FBML pages, with a cache policy
set to never expire.

Discussion
As with most traditional JavaScript you put into your app pages, your <script> tag will
be rewritten by the FJBS parser into something you’ll barely recognize. Our example
would appear in the final page as:

<script src="http://apps.facebook.com/fbjs_get.php?src=
http%3A%2F%2Fwww.foo.com%2Fbar.js&appid=12345&pv=1&sig=xxxxxxxxxxxx"></script>

You can access that URL directly (not the one here, but the one from your own app),
and you’ll see your external JavaScript file after it’s been run through the FBJS parser.
If there’s anything wrong with your script or the parser isn’t able to do its thing, you’ll
simply get a 0 as the return value (i.e., a blank page with the only content being the
character 0). All of your variable, object, and function names will get rewritten by
fbjs_get.php the same way your inline JavaScript is.

7.17 Use Firebug (No, Seriously)
Problem
Unfortunately, I lack any form of extrasensory powers and have no idea why my HTML
isn’t rendering properly, what my Ajax calls are returning, or the first clue why my
JavaScript is behaving like it’s possessed.

Solution
Install Firebug, a Firefox add-on, and make your life considerably easier. Install it with
a single click from http://www.getfirebug.com/, give your browser a quick restart, and
then click on the little bug icon in the status bar at the bottom of your window and let
the festivities begin.

If you’re not running Firefox, you can still access some of this functionality by including
the firebug.js JavaScript file in your pages (although this may fail when parsed through
the FBJS parser). For more information, see http://www.getfirebug.com/lite.html. Do
yourself a favor, though, and download Firefox and Firebug just to see how much easier
this will make your life. You should still test in Internet Explorer and Safari, but your

250 | Chapter 7: Facebook JavaScript (FBJS)

http://www.getfirebug.com/
http://www.getfirebug.com/lite.html

joy in building Facebook applications (and any other web project) will increase by the
bucketload.

Discussion
Some web developers are born with a sixth sense that lets them do freaky things like
writing flawless cross-browser HTML on the first try or crafting brilliant JavaScripts
that make my head hurt to even contemplate. For the rest of us, there’s Firebug. If
you’re a devout Internet Explorer or Safari user, you’re going to want to just skip to the
next recipe before you find your life changing in unexpected ways. If you’re already a
dedicated Firefox user, prepare to fall in love all over again. If you do any web devel-
opment of any kind and don’t yet know about Firebug, you’d better grab a seat. (You
should really grab one anyway—isn’t this book getting heavy?)

Real firebugs, known in some circles as Pyrrhocoris apterus, are members of the insect
order Hemiptera, usually mate in April and May, and subsist primarily on a diet of seeds
from lime trees and mallows. Lovely as they are, they certainly aren’t going to help your
web development efforts. Recognizing this shortfall, top-notch developers and Firefox
contributors Blake Ross and Joe Hewitt built Firebug and reshaped web development
forevermore. Firebug gives you the ability to inspect and edit HTML on the fly, tweak
your CSS in place and see the results, visualize CSS metrics and the box model of your
objects, monitor network activity and watch GET and POST requests from your page as
they happen, debug and profile JavaScript, catch and monitor all of the exceptions and
errors thrown by your code, explore the DOM and all of its properties, execute Java-
Script on the fly, and log JavaScript errors, warnings, and info straight to the console.

Just for the sake of this story having a happy and entirely relevant-to
this-book ending, Blake and Joe were nice enough to go and sell their
company, Parakey, to Facebook, where they now do amazing things,
such as building the iPhone version of the Facebook site.

There are a bunch of uses for Firebug in building Facebook applications, not the least
of which is figuring out what your JavaScript is doing and walking through the various
ways that the FBML and FBJS parsers have modified your code. One of the most useful
features is the ability to log to the console, as well as to output your objects in human-
readable form. Firebug automatically adds a console object to any window in which
it’s enabled, which means you can freely call the functions in the console from inside
your own code. Here are some of the most useful functions you can try in your own
code:

console.log('What the heck is this: ', obj);
Having a debugger that lets you step through your code is great, but sometimes
you just want to dump some messages or the contents of a variable out to the
console. console.log() will join together all of the objects you pass in, and will
automatically output a human-readable version of FBJS objects (if that obj variable

7.17 Use Firebug (No, Seriously) | 251

were a reference to a div, it would be something like Object
PRIV_obj=div#app12345_someDiv).

console.debug(), console.info(), console.warn(), and console.error()
Logging stuff is fun and all, but once your console is full of information, you’re
going to wish you had a way to sort through it. In addition to the ever-handy
console.log() just mentioned, Firebug supports four other levels of console output
in the form of debug(), info(), warn(), and error().

console.assert(expression)
Tests to see whether expression resolves to true, and throws a logged exception if
not.

console.dir(obj) and console.dirxml(node)
Outputs DOM and XML views of an object, respectively. The console.dir() view
is similar to what you would see if you used Firebug’s DOM inspector, whereas
console.dirxml() outputs the same source tree that you would see in the HTML
inspector.

console.time() and console.profile()
If you’re having trouble with the performance of a block of JavaScript, these two
functions can be lifesavers. Add a call to console.time('timerName') before your
code and a complementary console.timeEnd('timerName') after, and you’ll get
precise time info. If that’s not enough information for you, throw in con
sole.profile('profileName') and console.profileEnd('profileName'), and you’ll
get an incredibly detailed breakdown of every call that gets made, how many times
it gets called, how long it takes to run, exactly which file it’s in, and the line it’s
contained on.

There’s way more to the application than that, and we could probably fill a whole
different O’Reilly book on the topic. In the meantime, check out http://www.getfirebug
.com/docs.html for more information.

7.18 Accessing the DOM Behind FBJS
Problem
I need to see the actual DOM object that’s behind an FBJS variable, but I can’t figure
out any way to get to it.

Solution and Discussion
Install Firebug (see Recipe 7.17 for more information), and then add a call to
console.dir(obj) on your object. Firebug will give you a long listing of all of the func-
tions that FBJS has added to your object (starting with things such as addClassName(),
addEventListener(), appendChild(), etc.), at the very top of which you will find a

252 | Chapter 7: Facebook JavaScript (FBJS)

http://www.getfirebug.com/docs.html
http://www.getfirebug.com/docs.html

PRIV_obj entry. If you open that up, you’ll see the actual DOM object hiding behind
the ultimate FBJS representation.

7.19 Ajax Library: Backface
Problem
I’d really like to do some nifty Ajax animation effects or use some cool interface widgets
and drag-and-drop actions, but none of the traditional Ajax libraries work inside of
Platform.

Solution
Backface is a library for creating draggable widgets within your Facebook Canvas. Cre-
ated by Peter Svensson from Stockholm, Backface (a.k.a. The Library Formerly Known
as Prince—or TLFKAP—after he discovered that applications including the word
“face” are not allowed on Facebook) can be found at http://apps.facebook.com/back
face/ and includes links to the downloadable PHP sample app and source. Backface
won’t quench all of your Ajax cravings, but it will allow you to do some neat drag-and-
drop stuff, and it has panes and resizable objects coming, all written in FBJS so they
don’t run afoul of the parser.

Once you’ve downloaded and unpacked backface.zip, you’ll find some documentation,
a demo, and backface.inc, the actual include file. If you’re building your Facebook app
in PHP, the easiest way to work with it is to include(backface.inc) in the page you
want to use it on.

Discussion
Peter is pretty dedicated to the project and has been quick to respond to developers’
requests for features. You can follow along on his blog at http://unclescript.blogspot
.com/, or by keeping tabs on the latest news in the Backface app on Facebook. The
original library was hacked together in one late November night and has grown by leaps
and bounds as people have asked for new things, such as snap-backs (i.e., objects
returning to their original position when you drop them somewhere they shouldn’t go).
Peter has received a few donations to help the cause and may be interested in co-
contributors, so drop by his blog if you’d like to be part of the effort.

7.19 Ajax Library: Backface | 253

http://apps.facebook.com/backface/
http://apps.facebook.com/backface/
http://unclescript.blogspot.com/
http://unclescript.blogspot.com/

CHAPTER 8

Facebook Query Language (FQL)

Let’s say that you’d been puttering around town in a beat-up old jalopy and you pulled
up to a traffic light. You dig your jalopy in a very Archie kind of way, even though it’s
a little slow sometimes and uses a lot of gas, but it’s your car and it’s all you’ve known.
And now let’s say, while you’re sitting there at the light, a brand new Formula 1 race
car comes screaming up to a stop right next to you, tires smoking. Sure, your jalopy is
nice and all, but think how much faster you could get your shopping done in that baby!
Now think of your jalopy as the Facebook API and the sleek, sexy, speedy race car as
FQL.

See, here’s the dirty little secret about APIs: they’re all the rage with the kids these days,
and they’re a joy to program in, but they’re not particularly efficient when you’re wor-
ried about your app scaling to hundreds of thousands of users. If you’re building a
Facebook app that you think will really take off and you want to make sure you’re being
as future-proof as possible, you should consider using FQL for key queries for the
following reasons:

Decreased result sets
When you’re working with the API and you request the friends of a specific user,
you get all the info back about everybody and then parse through the results. FQL
gives you the ability to limit the fields you want returned and to put more conditions
on your queries, thereby reducing the size of the result set and the bandwidth
consumed. If you change a key query from the API to FQL and save yourself 10k
per request, and you get 100 requests per minute, you’re saving 1 MB of transfer,
which is about 1.4 GB per day.

Reduced requests
Some of the API calls require you to make a request, get back the results, parse
through them, and then make more requests based on your findings (e.g., to get
the names of user’s friends, you get the list of their IDs and then call
users.getInfo on them). You can often reduce that down to a single FQL query
that uses a subquery to get the list, saving yourself a full roundtrip from the server.

If you already know SQL, FQL is like a natural extension in the same way that FBML
naturally proceeds from HTML. If you’re not comfortable with SQL, I recommend

255

picking up a book such as Head First SQL by Lynn Beighley, Learning MySQL by Seyed
M.M. “Saied” Tahaghoghi and Hugh E. Williams, or MySQL Cookbook by Paul Du-
Bois. You’ll find all of them, along with everything else O’Reilly publishes, on http://
safari.oreilly.com.

We’ll start off with a quick overview of the basics (and particularly how FQL is different
than SQL), and then dive right into some practical recipes. This isn’t intended to give
you every possible FQL query you might need, but rather to give you a whole bunch
of different tools that you can combine to build your own queries. If you’re looking for
a specific query for one table and can’t find it, check the other recipes for similar
situations.

8.1 Playing with FQL
Problem
I’d like to try out some of the FQL queries listed in this chapter, but I don’t want to
have to write a whole test page for it.

Solution
Facebook makes three great testing consoles available to developers, which you can
find at http://developers.facebook.com/tools.php. There isn’t one specifically for FQL,
but if you look in the API Test Console’s Method drop-down (http://developers.face
book.com/tools.php?api), you’ll find an “fql.query” option, which will reveal a query
field.

Discussion
Another cool thing you can do in the test console is play with the Response Format
drop-down, which lets you toggle between getting your responses in XML, JSON, or
Facebook PHP Client. You can also switch between the different applications that
you’re a developer for, which lets you take advantage of the shortcuts in Platform based
around who the logged-in user is and which app he’s currently in.

8.2 FQL Query Structure
Problem
What’s the basic structure of an FQL query?

Solution
FQL mimics SQL directly here, so the basic structure is:

SELECT [fields] FROM [table] WHERE [conditions]

256 | Chapter 8: Facebook Query Language (FQL)

http://safari.oreilly.com
http://safari.oreilly.com
http://developers.facebook.com/tools.php
http://developers.facebook.com/tools.php?api
http://developers.facebook.com/tools.php?api

In addition, you can also make use of SQL-like ORDER BY and LIMIT clauses:

SELECT [fields] FROM [table] WHERE [conditions] ORDER BY
 [field] LIMIT [offset], [rowcount]

Discussion
Here are a few noteworthy differences between SQL and FQL that might trip you up
if you’re used to the former and not the latter:

• Most significantly, the FROM clause in FQL can include only a single table, so there’s
no official support for joins of any kind. You can sort of get around this by using
subqueries, but note that the subqueries can’t reference variables from the outer
query’s scope. An example of a very useful subquery: requesting all of the friends
of the current user who have already installed your application so that you can
exclude them from an fb:multi-friend-selector control:

SELECT uid FROM user WHERE has_added_app=1 and uid IN
 (SELECT uid2 FROM friend WHERE uid1 = $user)

• In order for Facebook to provide direct database access for apps, all queries have
to be indexable so that they don’t impose huge performance hits on the server.
Facebook maintains a relatively short list of 17 tables that you can do queries on;
see Recipe 8.4 for details.

Indexing is a technique in which a lookup index is created on a specific
column in a table in order to speed up queries where that column is in
the WHERE clause. (That makes it much clearer, no?) It might help to think
of a giant library in which all the books are arranged in alphabetical
order by title. If you wanted to find all of the books I’ve written, you’d
have to go through the entire library and look for my name on the
spines—slow and highly inefficient. However, if all the books were
numbered and I handed you an index organized by author, you could
look me up, note all the IDs of the books I’ve written, and then walk
directly up to them on the shelf. Of course, this query would be very
quick because this is my first book, so you wouldn’t have far to walk.

• One critical note: the indexing limitation isn’t that your query can only use indexed
columns in the WHERE clause, but rather that at least one of them has to be indexed.
This is not explained very well in the Developers Wiki, which may lead you to
conclude that you can query only on indexed columns. For example, if you’re
looking for all of the users who share my birthday, you can’t do:

SELECT uid FROM user WHERE strpos(birthday, "September 27") = 0;

since birthday isn’t an indexed field. You can, however, do:

SELECT uid FROM user WHERE strpos(birthday, "September 27")
 = 0 AND uid IN (SELECT uid2 FROM friend WHERE uid1 = 561415460)

8.2 FQL Query Structure | 257

which will find all of my friends with that birthday. Since the first query would
have been automatically constrained to people whose birthdays I’m allowed to see
anyway, they have almost the same result.

• Given that one of the goals of FQL is to reduce the amount of data exchanged,
there is no support for SELECT *. Down with lazy programmers! You’re just going
to have to figure out the actual fields you want and list them in each query.

• Finally, note that the ORDER BY capability in FQL is limited to a single field rather
than the multiple comma-separated fields supported by SQL. You’ll get a 601 error
(“Parser error: unexpected ',’”) if you try to sneak one in.

8.3 Functions and Operators
Problem
What functions and operators are supported in FQL?

Solution
FQL supports a number of functions that will be very familiar to PHP developers (see
Table 8-1).

Table 8-1. FQL functions

Function Description

now() Returns the current time

rand() Generates a random number

strlen(string) Returns the length of the string

concat(string, ...) Concatenates strings together

substr(string, start, length) Returns the specified substring

strpos(haystack, needle) Returns the position of the needle in the haystack

lower(string) Converts the string to lowercase

upper(string) Converts the string to uppercase

The standard set of SQL-like operators are supported: =, >=, <, etc., parentheses for
order of operations, and the arithmetic operators +, -, *, and /. FQL also supports the
AND, OR, and NOT logical operators inside of queries.

Discussion
You can use the functions directly inline with your FQL queries:

SELECT upper(concat(first_name, " ", substr(last_name, 0, 1),
 ".")), birthday FROM user WHERE sex = "female" AND uid IN (SELECT uid2
 FROM friend WHERE uid1 = $user) LIMIT 5;

258 | Chapter 8: Facebook Query Language (FQL)

That may not be the most practical query ever constructed, but it will return user’s first
five female friends with their first name and last name’s first initial in all caps. Do with
it what you will.

8.4 Indexed Facebook Tables and Fields
Problem
Which Facebook tables can I run queries against?

Solution
As of this writing, Facebook maintains a list of 17 tables you can query against. The
Platform Wiki is a great source of information about which columns are contained in
which table, so you should check there for information on building your own queries
(see http://wiki.developers.facebook.com/index.php/FQL_Tables).

For a quick overview of database indexing, see the Discussion in Rec-
ipe 8.2.

The list of available tables, along with the indexed columns you can use in WHERE clauses,
includes:

album
Storage for albums created in the Facebook Photos app. You can query on:

• aid (album ID of the album you’re looking for)

• cover_pid (photo ID of the photo used on the cover)

• owner (ID of the owner whose albums you’re looking for)

See Recipe 8.6 for more information.

cookies
Browser cookies that your application might have dropped. This will only return
cookies for your app, and there’s no way to request cookies for a different app for
Facebook in general. You can query on:

• uid (user ID associated with the cookie)

See Recipe 8.10 for more information.

metrics
Metrics for your application. These are limited to your app, and there’s no way to
request metrics for a different app. You can query on:

• end_time (end date and time that metrics were collected, in epoch seconds). Note
that the query is indexable (and therefore allowed) only if the date range of

8.4 Indexed Facebook Tables and Fields | 259

http://wiki.developers.facebook.com/index.php/FQL_Tables

results is bounded and less than 30 days. See Recipe 6.20 for more on epoch
seconds.

• period (period, in seconds, for which you want data returned). Allowable values
are one day (86400 seconds), one week (604800 seconds), or one month
(2592000 seconds).

See Recipe 8.14 for more information.

event
Storage for the events created in the Facebook Events app. You can query on:

• eid (event ID of the event you’re looking for)

See Recipe 8.18 for more information.

event member
Relationship table storing a specific user’s status for a specific event. Check this
table to find out a user’s RSVP response for an event. You can query on:

• uid (user ID of the user whose events you’re looking for)

• eid (event ID of the event whose users you’re looking for)

See Recipe 8.19 for more information.

friend
Relationship table storing friendships between users. You can query on:

• uid1 (one of the two user IDs of the users you’re checking)

• uid2 (the other user ID)

See Recipe 8.25 for more information.

friend request
Storage of pending friend requests for the current loggedinuser. Check this table
to find out who has invited the current user to be friends. Note that you can’t query
for anyone other than the current user and that the table contains only pending
requests, not a history of all requests. You can query on:

• uid_to (user ID of the friend receiving the requests; can only be the loggedinuser)

See Recipe 8.26 for more information.

friendlist
Storage of friend lists owned by the current loggedinuser. You can display the list
only to the loggedinuser, as it’s considered private. You can query on:

• owner (user ID for whom you want to find friend lists; can only be the
loggedinuser)

See Recipe 8.31 for more information.

friendlist member
Relationship table showing which friends of a specific user are in a specific friend
list. You can query this table only when the friend list is owned by the

260 | Chapter 8: Facebook Query Language (FQL)

loggedinuser, and you can display this information only to the loggedinuser, as
it’s considered private. You can query on:

• flid (friend list ID of a friend list belonging to the loggedinuser)

See Recipe 8.32 for more information.

group
Storage for the groups created in the Facebook Groups app. You can query on:

• gid (group ID of the group you’re looking for)

See Recipe 8.37 for more information.

group member
Relationship table showing which users are in which groups. You can query on:

• uid (user ID of a user whose groups you’re looking for)

• gid (group ID of a group whose members you’re looking for)

See Recipe 9.32 for more information.

listing
Storage for the listings created in the Facebook Marketplace app. You can query on:

• listing_id (listing ID of the listing you’re looking for)

• poster (user ID of the user whose listings you’re looking for)

See Recipe 8.42 for more information.

page
Storage for the pages created in the Facebook Pages app. You can query on:

• page_id (page ID of the page you’re looking for)

• name (name of the page you’re looking for)

See Recipe 8.47 for more information.

page_fan
Relationship table showing which users are fans of which pages. You can query on:

• uid (user ID of the user whose pages you’re looking for)

See Recipe 8.48 for more information.

photo
Storage for photos added to the Facebook Photos app. You can query on:

• pid (photo ID of the photo you’re looking for)

• aid (album ID of the album whose photos you’re looking for)

See Recipe 8.51 for more information.

photo_tag
Relationship table showing which photos have been tagged with which users. You
can query on:

• pid (photo ID of the photo you’re looking for)

• subject (user ID of the user who you’re looking for in the photos)

8.4 Indexed Facebook Tables and Fields | 261

See Recipe 8.52 for more information.

user
Storage for Facebook users. You can query on:

• uid (user ID of the user you’re looking for)

• name (full name of the user you’re looking for)

See Recipe 8.55 for more information.

8.5 Advanced Relational Database Table Optimization
—Pete Forde with Rowan Hick (see their bios in

Contributors)

Problem
I have the problem everyone wants: popularity! Even with a proper caching strategy
and sensible indexes in place, my application database is quickly becoming a bottle-
neck. Like most web applications, my resources tend to be frequently read, with rela-
tively infrequent updates. I have adhered to common design best practices; my schema
is properly normalized. What more can I do to scale my database throughput capacity?

Solution
The solutions listed next won’t work for everyone, but there’s a pretty good chance
that they’ll solve some of your problems.

Denormalization

Are you consistently joining the same tables together? You might consider adding re-
dundant columns to your high-traffic tables so that you can reduce or eliminate joins.
For example, given a Users.province_id fk> Province.id relationship, it might make
sense to create a Users.province column and store the literal text value directly on the
Users table.

Of course, they call these databases “relational” for a reason! By giving that up, you
accept the burden of updating the same data in multiple places. You might have to
change how your application retrieves these new redundant values. Profile to find
bottlenecks, and weigh the tradeoff cost of each optimization.

In most cases, it’s not recommended that you drop or abandon your normalized join
tables completely; you should add redundant columns only for data that you require
in the high-throughput scenario. You are taking referential integrity into your own
hands.

262 | Chapter 8: Facebook Query Language (FQL)

Cached counters

One of the most common database tasks is to discover how many child records a parent
record has, resulting in redundant and expensive counting operations. Most modern
database platforms do an impressive job of caching query results under normal load,
but at some point it’s better to track this count ourselves.

Create columns on the parent table in which to store these counts, and verify that
your application contains hooks to update this value any time a child record is added
or removed. For example, given Items.list_id fk> List.id, you could add
List.items_count to your table and eliminate the requirement to incur a count
operation.

Precalculated sums

Any expensive data transformation operations should be performed at the time a record
is written, regardless of whether the operation is triggered programmatically or through
SQL. However, although SQL supports functions like SUM(), these tools are not
encouraged for use during a highly concurrent read operation.

Similar to implementing a cached counter, you can add columns to store these precal-
culated values. Generally this is assuming that there is a parent and child foreign key
relationship in place. Any time a dependent record is changed, these calculated sum
values on the parent table will need to be regenerated.

Discussion
First off, give yourself a quick refresher of normalization and its awkward cousin,
denormalization:

• http://en.wikipedia.org/wiki/Database_normalization

• http://en.wikipedia.org/wiki/Denormalization

To paraphrase Wikipedia, a denormalized data model is not the same as a data model
that has not been normalized, and denormalization should only take place after a sat-
isfactory level of normalization has taken place.

Using database constraints to enforce referential integrity on a set of write-heavy, nor-
malized tables might prove slower than using a join! Don’t ever forget that your rela-
tional database management system (RDBMS) is trying to do its best to speed things
along, regardless of your attempts at optimization.

Note that database views might seem like a shortcut to denormalization, with all of the
benefits of a join and none of the syntax requirements. However, most RDBMS systems
provide views so that a security model can be attached; they still do all of the ugly joins
behind the scenes.

8.5 Advanced Relational Database Table Optimization | 263

http://en.wikipedia.org/wiki/Database_normalization
http://en.wikipedia.org/wiki/Denormalization

Some object-relational mapping (ORM) toolkits, such as ActiveRecord, abstract tra-
ditional concepts such as foreign keys and constraints. This is fine—if yours is the only
application that will be accessing this data.

Not all of these solutions will work for every application. You should extensively profile
your application using tools like ab (Apache Benchmark) to verify a positive change
before giving up the advantages of a normalized schema.

Next steps

It wasn’t that long ago that programmers were not encouraged to have an opinion on
database infrastructure, which was traditionally the realm of the database admin
(DBA). Today, this is no longer the case. Developer Rowan Hick has some pointers for
optimizing your database access:

• If you are using MySQL, bookmark this excellent resource: http://www.mysqlper
formanceblog.com/.

• If you are using MySQL or Postgres, look into the EXPLAIN statement. It is invaluable
for spotting where you have missed creating a key index, or are inadvertently doing
full table scans. You should always watch for queries that take longer than you
expect by looking at slow query logs, if your database supports them.

• Make sure that you understand table locking, with the goal of reducing updates to
a table or even offloading updates to another denormalized table. See http://dev
.mysql.com/doc/refman/5.0/en/table-locking.html.

• Eventually you might need to pursue more dramatic strategies, such as sharding.
Sharding splits data across multiple tables and servers. For example, you might
have users A–M on one server and N–Z on another.

• If you are using Rails, check out “How to avoid hanging yourself with Rails” at
http://work.rowanhick.com/hang.pdf to optimize how you use ActiveRecord for
better performance.

8.6 Album Table
Problem
What’s the schema for the album table?

Solution
The album table holds all of the photo albums that users have created in the Facebook
Photos application. Its fields are listed in Table 8-2. Queries to this table will only return
data the current user is allowed to see (in other words, you can’t request albums that
this user isn’t allowed to see). More information about this table, including an

264 | Chapter 8: Facebook Query Language (FQL)

http://www.mysqlperformanceblog.com/
http://www.mysqlperformanceblog.com/
http://dev.mysql.com/doc/refman/5.0/en/table-locking.html
http://dev.mysql.com/doc/refman/5.0/en/table-locking.html
http://work.rowanhick.com/hang.pdf

up-to-date listing of fields, can be found at http://wiki.developers.facebook.com/index
.php/Album_(FQL).

Table 8-2. album table fields

Name Type Index Description

aid int • Album ID.

cover_pid int • pid (photo ID) of the photo that has been set as the cover of the album.

owner int • uid (user ID) of the owner of this album (i.e., the user who created it).

name string Name of the album.

created string Creation date of the album.

modified string Date that the album was last updated, in epoch seconds (see Recipe 6.20 for an
explanation of epoch seconds).

description string Description entered by the album’s owner.

location string Location entered by the album’s owner (e.g., Toronto, The Moon).

size int The number of photos in the album.

link string URL to the album (i.e., the actual Facebook URL for this album).

Note that only the fields marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
If you’d rather use the API to access albums, try the Photos.getAlbums() method.

8.7 Retrieving an Album
Problem
I need to retrieve a Facebook album using FQL.

Solution
This is your most basic album-related query:

SELECT aid, cover_pid, name, link FROM album WHERE owner = $uid;

Discussion
Since SELECT * isn’t supported in FQL, you’ll have to list out the actual fields you’re
looking for. This would be enough to let you display someone’s albums with links back
to the original. Remember that this query will only return albums that the current
loggedinuser has permission to see.

8.7 Retrieving an Album | 265

http://wiki.developers.facebook.com/index.php/Album_(FQL)
http://wiki.developers.facebook.com/index.php/Album_(FQL)

8.8 Counting All of a User’s Photos
Problem
I need to use FQL to count all of the photos that a user has uploaded to the Facebook
Photos app.

Solution
This would be easier in real SQL, since you could use the sum() function to add up all
the photos. We’ll have to use a little PHP instead:

<?php
$query = 'SELECT size FROM album WHERE owner = ' . $user . ';';
$sizes = $facebook->api_client->fql_query($query);

$totalPhotos = 0;
if($sizes){
 foreach($sizes as $album){
 $totalPhotos += $album['size'];
 }
}
?>

The variable totalPhotos will contain the count of all photos at the end, or zero if none
were found.

Discussion
As with all FQL queries, this will only return photos that the current loggedinuser has
access to, so you won’t be able to query for photos that she can’t see.

8.9 Retrieving Five Albums for a User
Problem
I need to retrieve some (or all) of the albums for a specific user from the Facebook
Photos app using FQL.

Solution
The simplest form of this query is:

SELECT aid, cover_pid, name, link FROM album WHERE owner = $uid LIMIT 5;

Discussion
When you’re imposing a limit on the data that gets returned, you might want to add
an ORDER BY clause so that you’re getting some logical subset. With the case of

266 | Chapter 8: Facebook Query Language (FQL)

something like albums, it might make sense to get the five albums most recently updated
by a user:

SELECT aid, cover_pid, name, link, modified FROM album
 WHERE owner = $uid ORDER BY modified DESC LIMIT 5;

The DESC added to the ORDER BY when using a timestamp as the ordering field will give
you results in reverse chronological order (i.e., newest first).

8.10 Cookie Table
Problem
What’s the schema for the cookie table?

Solution
The cookie table holds all of the browser cookies that your app has dropped. Its fields
are listed in Table 8-3. There’s no way to use this table to access cookies that other apps
or Facebook might have dropped, so your queries will only return results for your app.
More information about this table, including an up-to-date listing of fields, can be
found at http://wiki.developers.facebook.com/index.php/Cookies_(FQL).

Table 8-3. cookie table fields

Name Type Index Description

uid int • uid (user ID) associated with this cookie. This is the ID of the user who was using your
application when the cookie was dropped.

name string Name of the cookie.

value string Value of the cookie.

expires int Expiry timestamp for the cookie. The cookie never expires if this is empty.

path string Path relative to your app’s callback URL with which the cookie is associated (i.e., if your app’s
callback is http://www.someserver.com/myapp/ and the path is friends/add.php, then it was
dropped by the page http://www.someserver.com/myapp/friends/add.php).

Note that only the field marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
If you’d rather use the API to access cookies, try the Data.getCookies() and
Data.setCookie() methods.

8.10 Cookie Table | 267

http://wiki.developers.facebook.com/index.php/Cookies_(FQL)
http://www.someserver.com/myapp/
http://www.someserver.com/myapp/friends/add.php

8.11 Retrieving All Cookies for a User
Problem
I need to retrieve all of the cookies dropped for a specific user using FQL.

Solution
The simplest query you could use is:

SELECT name, value FROM cookies WHERE uid = $uid;

Discussion
This query is automatically contextual to your app based on the API key you initialized
the Facebook client with, so you’ll only be able to pull back cookies dropped by your
app.

8.12 Retrieving a Specific Cookie
Problem
I need to retrieve a specific cookie using FQL.

Solution
SELECT name, value, path from cookies WHERE name="$name" AND uid = $user;

Discussion
Remember that all FQL queries are scoped to your application, so if you specify the
name of a cookie from a different app, you’ll get back null.

8.13 Retrieving All Cookies for a Specific Path
Problem
I need to retrieve all of the cookies I’ve dropped for a specific page in my app using FQL.

Solution and Discussion
SELECT name, value, path from cookies WHERE path="$path" AND uid = $user;

268 | Chapter 8: Facebook Query Language (FQL)

8.14 Metrics Table
Problem
What’s the schema for the metrics table?

Solution
The metrics table holds all of the metrics recorded for your application. Its fields are
listed in Table 8-4. You can view the same metrics from inside the Facebook Insights
app (http://www.facebook.com/business/insights/app.php?id=12345). Metrics are calcu-
lated at midnight Pacific time everyday, so you should convert your date values into
epoch seconds based on midnight PST (see Recipe 6.20 for more about epoch seconds).
More information about this table, including an up-to-date listing of fields, can be
found at http://wiki.developers.facebook.com/index.php/Metrics_(FQL).

Table 8-4. metrics table fields

Name Type Index Description

end_time int • The ending date for which these metrics were recorded,
in epoch seconds. See Recipe 6.20 for an explanation
of epoch seconds.

period int • Length of time for which you want results, in seconds.
Supported lengths are one day (86400 seconds), seven
days (604800 seconds), and 30 days (2592000 seconds).

active_users int Number of active users in your app on this day.

unique_adds int Number of unique new users for your app on this day
(if the same user added, removed, and then added it
again, it only counts for one).

unique_removes int Number of unique removes for your app on this day (if
the same user added, removed, added, and removed,
it only counts for one).

unique_blocks int Number of unique blocks for your app on this day (if
the same user blocked, unblocked, and blocked, it only
counts for one).

unique_unblocks int Number of unique unblocks for your app on this day (if
the same user blocked, unblocked, blocked, and un-
blocked, it only counts for one).

api_calls int Total number of API calls your app made on this day
(e.g., two calls to fql_query would count as two
here).

unique_api_calls int Unique API calls made by your app on this day (e.g.,
two calls to fql_query would count as only one here).

8.14 Metrics Table | 269

http://www.facebook.com/business/insights/app.php?id=12345
http://wiki.developers.facebook.com/index.php/Metrics_(FQL)

Name Type Index Description

canvas_page_views int Number of Canvas pages your app served up on this day
(two views of the same page count as two views here).

unique_canvas_page_views int Unique number of Canvas pages your app served up on
this day (two views of the same page count as only one
views here).

canvas_http_request_time_avg int The average time required to handle an HTTP request
from your app, in milliseconds.

canvas_fbml_render_time_avg int The average time required to render an FBML page for
your app, in milliseconds.

canvas_page_views_http_code_0 int The number of Canvas pages that timed out.

canvas_page_views_http_code_200 int The number of Canvas page requests that were suc-
cessful (HTTP code 200 is success).

canvas_page_views_http_code_200ND int The number of Canvas page requests that were suc-
cessful but returned no data (HTTP code 200 is success;
ND is no data).

canvas_page_views_http_code_404 int The number of Canvas page requests that couldn’t be
found (HTTP code 404 is resource not found).

Note that only the fields marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
If you’d rather use the API to access metrics, try the Admin.getMetrics() method.

This table actually contains fields for every HTTP code, not just the ones listed here.
Simply sub in the code you want and you should get results. For example, if you were
looking for 301, which is “resource permanently moved,” you could SELECT
canvas_page_views_http_code_301.

8.15 Retrieving Yesterday’s Metrics
Problem
I need to retrieve some of my metrics from yesterday.

Solution
Since the date field is in epoch seconds, you need to do a conversion before you can
query on it:

<?php
$hoursAhead = 3;
$period = 86400; // 86400 = one day, 604800 = one week, 2592000 = one month

270 | Chapter 8: Facebook Query Language (FQL)

$yesterday = mktime($hoursAhead,0,0,date("m"),date("d")-1,date("Y"));
$monthAgo = mktime($hoursAhead,0,0,date("m"),date("d")-30,date("Y"));
$query = 'SELECT api_calls from metrics WHERE end_time = ' .
$yesterday . ' AND period = ' . $period . ';';
$metrics = $facebook->api_client->fql_query($query);
?>

You’ll need to substitute the number of hours that your server’s time zone is ahead of
PST into the first line, and also change the fields you want to retrieve in the actual query
if you want something other than just the number of API calls.

Discussion
The hours ahead of PST is important because Facebook calculates metrics at midnight
PST and considers a day from midnight to 11:59:59 p.m. PST. You should always set
your date ranges based on that time zone. See Recipe 6.20 for more information about
epoch seconds.

8.16 Retrieving Metrics for a Date Range
Problem
I need to retrieve some of my app’s metrics for the last 30 days.

Solution
Since the date field is in epoch seconds, you need to do a conversion before you can
query on it:

<?php
$hoursAhead = 3;
$period = 2592000; // 86400 = one day, 604800 = one week, 2592000 = one month

$yesterday = mktime($hoursAhead,0,0,date("m"),date("d")-1,date("Y"));
$monthAgo = mktime($hoursAhead,0,0,date("m"),date("d")-30,date("Y"));
$query = 'SELECT active_users from metrics WHERE end_time = ' .
$yesterday . ' AND period = ' . $period . ';';
$metrics = $facebook->api_client->fql_query($query);
?>

The variable metrics will now contain an array with a single element that contains the
active_users for the 30-day period ending yesterday.

Discussion
The hours ahead of PST is important because Facebook calculates metrics at midnight
PST and considers a day from midnight to 11:59:59 p.m. PST. You should always set
your date ranges based on that time zone. See Recipe 6.20 for more information about
epoch seconds.

8.16 Retrieving Metrics for a Date Range | 271

8.17 Alerting Yourself
Problem
I’d like to receive email alerts when my app is serving up 200ND (No Data) or 404 (Not
Found) errors.

Solution
Since you can make calls from any server to Facebook through the Client, you can
schedule a cron job on your server to use something like curl to request a page that
runs the following code:

<?php
$hoursAhead = 3;
$appId = 12345;
$appName = 'My App name goes here';
$myEmail = 'me@mydomain.com';

$yesterday = mktime($hoursAhead,0,0,date("m"),date("d")-1,date("Y"));
$query = 'SELECT canvas_page_views_http_code_200ND, canvas_page_views
_http_code_404 from metrics WHERE end_time = ' . $yesterday . ' AND period = 86400;';
$metrics = $facebook->api_client->fql_query($query);

if($metrics && ($metrics[0]['canvas_page_views_http_code_200ND']
 > 0 || $metrics[0]['canvas_page_views_http_code_404'] > 0)){
 $headers = 'From: do-not-reply@mydomain.com' . "\r\n" . 'X-Priority: 1';

 $message = $appName . ' had ' . $metrics[0]['canvas_page_views
_http_code_200ND'] . ' 200ND errors';
 $message .= ' and ' . $metrics[0]['canvas_page_views_http_code_404']
 . ' 404 errors';
 $message .= ' on ' . date('F dS, Y', $yesterday) . '.';
 $message .= ' View more info at http://www.facebook.com/business/
insights/app.php?id=' . $appId . '&tab=httpreq';

 $success = mail($myEmail, '[Facebook Errors]: ' . $appName, $message, $headers);
}
?>

The little bit of configuration at the top will customize this for your app.

Discussion
Note that this code requires you to have an SMTP server running locally on your server,
which most of you will. You can check to see whether your server’s PHP is at least
configured to send mail by putting phpinfo() into a page and loading it in your
browser—look for sendmail_path and make sure there’s a value there (you can’t do this
through Facebook because phpinfo() outputs a body tag, which the FBML parser won’t
allow, so you’ll have to hit your server directly at your callback URL).

272 | Chapter 8: Facebook Query Language (FQL)

Many PHP installs don’t have a default “from” address configured, and most SMTP
servers will reject email without one, so we’re adding in an additional header just to be
safe (along with setting the priority to the highest level so that you notice the alerts in
your inbox).

If you need some help with setting up a cron job, check out Click Mojo’s excellent
tutorial at http://www.clickmojo.com/code/cron-tutorial.html.

8.18 Event Table
Problem
What’s the schema for the event table?

Solution
The event table holds all of the events created in the Facebook Events application. Its
fields are listed in Table 8-5. Queries to this table will only return data the current user
is allowed to see (meaning you can’t request events for users the current user isn’t
friends with). More information about this table, including an up-to-date listing of
fields, can be found at http://wiki.developers.facebook.com/index.php/Event_(FQL).

Table 8-5. event table fields

Name Type Index Description

eid int • eid (event ID) of this event.

name string Name of this event.

tagline string Tagline of this event.

nid int nid (network ID) of the network, as set by the creator when the event was created.

pic_small string URL of the small picture for this event, which has a maximum width of 50 px and a
maximum height of 150 px. Might be empty if this field wasn’t set by the creator.

pic_big string URL of the big picture for this event (max width of 200 px, max height of 600 px).
Might be empty if this field wasn’t set by the creator.

pic string URL of the picture for this event (max width of 100 px, max height of 300 px). Might
be empty if this field wasn’t set by the creator.

host string Name of the host of the event. Note that this can be set to a group when the event
is created, but this will return only a string, not a gid.

description string Description of this event.

event_type string Type of this event. Can be any one of Party, Causes, Education, Meetings, Music/Arts,
Sports, Trips, or Other.

event_subtype string Subtype of this event. Subtypes are tied to the type, so each type has between 3 and
20 options.

start_time string Start time in epoch seconds. See Recipe 6.20 for more about epoch seconds.

8.18 Event Table | 273

http://www.clickmojo.com/code/cron-tutorial.html
http://wiki.developers.facebook.com/index.php/Event_(FQL)

Name Type Index Description

end_time string End time in epoch seconds. See Recipe 6.20 for more about epoch seconds.

creator int uid (user ID) of the user who created this event.

update_time string Last time this event was updated in epoch seconds. See Recipe 6.20 for more about
epoch seconds.

location string Location of this event. This is a free text field, so this could be anything.

venue array An array containing the street address, city, state, country, latitude, and longitude
of the venue.

Note that only the fields marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
If you’d rather use the API to access events, see the Events.get() method in Chapter 9.

8.19 Event Member Table
Problem
What’s the schema of the event_member table?

Solution
The event_member table records the relationships between events and users, as well as
their RSVP status. Its fields are listed in Table 8-6. Queries to this table will only return
data the current user is allowed to see (meaning you can’t request events for users the
current user isn’t friends with). More information about this table, including an up-to-
date listing of fields, can be found at http://wiki.developers.facebook.com/index.php/
Event_member_(FQL).

Table 8-6. event_member table fields

Name Type Index Description

eid int • eid (Event ID) of this event.

uid int • uid (User ID) of the Facebook user whose RSVP status is recorded in this entry.

rsvp_status string The user’s RSVP status. Can be one of attending, declined, unsure, or
not_replied.

Note that only the fields marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

274 | Chapter 8: Facebook Query Language (FQL)

http://wiki.developers.facebook.com/index.php/Event_member_(FQL)
http://wiki.developers.facebook.com/index.php/Event_member_(FQL)

Discussion
If you’d rather use the API to access event_members, try the Events.get() and
Events.getMembers() methods.

8.20 Retrieving an Event
Problem
I need to retrieve a Facebook event using FQL.

Solution
If you have the eid (event ID) of the event, this is easy:

SELECT eid, name, pic_small, description, start_time,
 end_time, location FROM event WHERE eid = $eid;

You can, of course, SELECT a different set of fields.

Discussion
The only place you can get an eid using FQL is from the event_member table (see Rec-
ipe 8.19). This query will only return events that the current loggedinuser has permis-
sion to see.

8.21 Retrieving Events Created by a User
Problem
I need to retrieve all of the Facebook events created by a specific user using FQL.

Solution
SELECT eid, name, pic_small, description, start_time,
 end_time, location FROM event WHERE creator = $user AND eid IN (SELECT eid
 FROM event_member WHERE uid = $user);

Discussion
This will return content only if the current loggedinuser can see the events of the user
specified in $user.

8.21 Retrieving Events Created by a User | 275

8.22 Retrieving a User’s Events
Problem
I need to retrieve a specific user’s Facebook events using FQL.

Solution
Retrieving all of a specific user’s events is easy:

SELECT eid, rsvp_status FROM event_member WHERE uid = $uid

Discussion
Keep in mind that this will return events only if the current loggedinuser is allowed to
see them. If you query for a user that the loggedinuser isn’t friends with, you’ll get an
empty results set.

8.23 Retrieving a User’s Events with a Specific RSVP
Problem
I need to retrieve a specific user’s event based on their RSVP.

Solution
SELECT eid, rsvp_status FROM event_member WHERE rsvp_status = $status AND uid = $user;

Discussion
There are four possible statuses for event_member records: attending, declined,
unsure, or not_replied. Keep in mind that this solution will return events only if the
current loggedinuser is allowed to see them.

8.24 Retrieving Events Two Users Are Attending
Problem
I need to find all of the events that two users are attending, using FQL.

Solution
Assuming the current loggedinuser is friends with both of these users (or otherwise
allowed to see their events):

276 | Chapter 8: Facebook Query Language (FQL)

SELECT name FROM event WHERE eid IN (SELECT eid FROM
 event_member WHERE uid = $user1 AND eid IN (SELECT eid FROM event_member
 WHERE uid= $user2))

You’ll need to plug the two IDs in as user1 and user2.

Discussion
This should be pretty easy to extend for more than two users if you need to, and it
shouldn’t affect performance considerably, since the heavy lifting is done by the
database.

8.25 Friend Table
Problem
What’s the schema of the friend table?

Solution
The friend table records the friendship between two users. Its fields are listed in Ta-
ble 8-7. Queries to this table will only return data the current user is allowed to see
(meaning you can’t request friendships for users the current loggedinuser isn’t friends
with). More information about this table, including an up-to-date listing of fields, can
be found at http://wiki.developers.facebook.com/index.php/Friend_(FQL).

Table 8-7. friend table fields

Name Type Index Description

uid1 int • uid (user ID) of the first user

uid2 int • uid (user ID) of the second user

Discussion
If you’d rather use the API to access friends, try the Friends.get() and the
Friends.areFriends() methods.

This table isn’t all that useful on its own, since it contains only two data points, but it
is very powerful when combined with the user table (see Recipe 8.55).

8.26 Friend Request Table
Problem
What’s the schema for the friend_request table?

8.26 Friend Request Table | 277

http://wiki.developers.facebook.com/index.php/Friend_(FQL)

Solution
The friend_request table records the friendship requests between two users. Its fields
are listed in Table 8-8. Queries to this table will only return data the current user is
allowed to see (meaning you can’t request friendships for users the current log
gedinuser isn’t friends with). More information about this table, including an up-to-
date listing of fields, can be found at http://wiki.developers.facebook.com/index.php/
Friend_request_(FQL).

Table 8-8. friend_request table fields

Name Type Index Description

uid_to int • uid (user ID) of the user this request went to. You can query only on the current
loggedinuser.

uid_from int uid (user ID) of the user this request came from.

Note that only the field marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
This table isn’t all that useful on its own, since it contains only two data points, but
you can combine it with other tables as a subquery.

8.27 Retrieving a User’s Friends
Problem
I need to retrieve all of a specific user’s friends using FQL.

Solution
This is a really simple query:

SELECT uid2 FROM friend WHERE uid1 = $uid;

Discussion
Luckily for FQL users everywhere, this query returns exactly the same result if you run
it the other way around:

SELECT uid1 FROM friend WHERE uid2 = $uid;

You can run this query only when you’re looking for the friends of the current
loggedinuser, or you’ll get an “Error 604: Can’t lookup all friends of 12345; only for
the logged in user” error (see Recipe 8.58 for more info).

278 | Chapter 8: Facebook Query Language (FQL)

http://wiki.developers.facebook.com/index.php/Friend_request_(FQL)
http://wiki.developers.facebook.com/index.php/Friend_request_(FQL)

8.28 Checking Whether Two Users are Friends
Problem
I need to check to see whether two users are friends using FQL.

Solution
If this query returns a result, user1 and user2 are friends:

SELECT uid1 FROM friend WHERE uid1 = $user1 AND uid2 = $user2;

Discussion
There are no privacy restrictions on this query in terms of errors, but you will get back
an empty set if the current loggedinuser isn’t allowed to see the friends for one of the
two users.

8.29 Retrieving a User’s Pending Friend Requests
Problem
I need to retrieve all of the pending friend requests for a specific user using FQL.

Solution
This query will return an empty set if there are no pending requests:

SELECT uid_from FROM friend_request WHERE uid_to = $uid;

Discussion
You can run this query only for the current loggedinuser or you’ll get an “Error 604,
Message: Can only lookup friend requests for logged in user” (see Recipe 8.58 for more
information).

8.30 Checking for a Friend Request Between Two Users
Problem
I need to check to see whether there’s a pending friend request between two specific
users using FQL.

Solution
SELECT uid_to, uid_from FROM friend_request WHERE uid_from
 = $user2 AND uid_to = $user1;

8.30 Checking for a Friend Request Between Two Users | 279

Discussion
You can run this query only when user1 is the current loggedinuser.

8.31 Friend List Table
Problem
What’s the schema for the friendlist table?

Solution
The friendlist table stores the friend lists created by users to organize their friends.
Its fields are listed in Table 8-9. Queries to this table will only return data the current
user is allowed to see (i.e., you can’t request friendlists for users other than the current
loggedinuser). More information about this table, including an up-to-date listing of
fields, can be found at http://wiki.developers.facebook.com/index.php/Friendlist_(FQL).

Table 8-9. friendlist table fields

Name Type Index Description

flid int flid (friendlist ID) of this friend list.

name string Name of this friend list.

owner int • uid (user ID) of the owner of this friend list. You can query only on the current loggedinuser.

Note that only the field marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
If you’d rather use the API to access friendlists, try the Friends.getLists() method.

8.32 Friend List Members Table
Problem
What’s the schema for the friendlist_member table?

Solution
The friendlist_member table records the friends that a user has placed into his friend
lists. Its fields are listed in Table 8-10. Queries to this table will only return data the
current user is allowed to see (i.e., you can’t request friendlists for users other than
the current loggedinuser). More information about this table, including an up-to-date

280 | Chapter 8: Facebook Query Language (FQL)

http://wiki.developers.facebook.com/index.php/Friendlist_(FQL)

listing of fields, can be found at http://wiki.developers.facebook.com/index.php/Friend
list_member_(FQL).

Table 8-10. friendlist_member table fields

Name Type Index Description

flid int • flid (friendlist ID) of the friend list. You can only query for flids owned by the current
loggedinuser.

uid int uid (user ID) of the friend that the current loggedinuser has placed in the friend list.

Note that only the field marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
If you’d rather use the API to access friendlist_members, try the Friends.getLists()
method.

8.33 Retrieving a User’s Friend Lists
Problem
I need to retrieve a specific user’s friend lists using FQL.

Solution
SELECT flid, name FROM friendlist WHERE owner = $uid;

Discussion
You can run this query only when uid is the current loggedinuser.

8.34 Retrieving a Specific Friend List
Problem
I need to retrieve a specific friend list from a specific user using FQL.

Solution
SELECT flid, name FROM friendlist WHERE name = $name AND owner = $user;

Discussion
You can run this query only when uid is the current loggedinuser.

8.34 Retrieving a Specific Friend List | 281

http://wiki.developers.facebook.com/index.php/Friendlist_member_(FQL)
http://wiki.developers.facebook.com/index.php/Friendlist_member_(FQL)

8.35 Retrieving Friends in Friend Lists
Problem
I need to use FQL to retrieve the friends that specific users have put in their friend lists.

Solution
You can pretty easily find all of the friends that the current loggedinuser has put into
friend lists:

SELECT flid, uid FROM friendlist_member WHERE flid IN
 (SELECT flid FROM friendlist WHERE owner = $uid)

Discussion
You can run this query only when uid is the current loggedinuser.

8.36 Retrieving Friends in a Specific Friend List
Problem
I need to retrieve the friends from a specific user’s specific friend list using FQL.

Solution
SELECT name FROM user WHERE uid IN (SELECT uid FROM friendlist
_member WHERE flid IN (SELECT flid FROM friendlist WHERE name = $name
 AND owner = $user));

Discussion
This will work only when user is the current loggedinuser.

8.37 Groups Table
Problem
What’s the schema for the group table?

Solution
The group table stores the groups that have been created in the Facebook Groups app.
Its fields are listed in Table 8-11. Queries to this table will only return data the current
user is allowed to see (meaning you can’t request groups that the current
loggedinuser can’t see). More information about this table, including an up-to-date

282 | Chapter 8: Facebook Query Language (FQL)

listing of fields, can be found at http://wiki.developers.facebook.com/index.php/Group
_(FQL).

Table 8-11. group table fields

Name Type Index Description

gid int • Group ID of this group.

name string Name of this group.

nid int Network ID that this group belongs to, if any.

pic_small string URL of the small picture for this group (max width of 50 px and max height of 150
px). Might be empty if this field wasn’t set by the creator.

pic_big string URL of the big picture for this group (max width of 200 px and max height of 600
px). Might be empty if this field wasn’t set by the creator.

pic string URL of the picture for this group (max width of 100 px and max height of 300 px).
Might be empty if this field wasn’t set by the creator.

description string Description of this group.

group_type string Type of group. Can be any one of Business, Common Interest, Entertainment & Arts,
Geography, Internet & Technology, Just for Fun, Music, Organizations, Sports &
Recreation, or Student Groups.

group_subtype string Subtype of this group. Subtypes are tied to the type, and each has between 3 and
20 options.

recent_news string Contents of the Recent News as set by a group admin.

creator int User ID of the creator of the group.

update_time string Last time this event was updated in epoch seconds. See Recipe 6.20 for more about
epoch seconds.

office string Contents of the office field as entered by the creator of the group.

website string Contents of the website field as entered by the creator of the group.

venue array An array containing the street address, city, state, and country of the venue of the
group.

Note that only the field marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
If you’d rather use the API to access groups, try the Groups.get() method.

8.38 Group Member Table
Problem
What’s the schema for the group_member table?

8.38 Group Member Table | 283

http://wiki.developers.facebook.com/index.php/Group_(FQL)
http://wiki.developers.facebook.com/index.php/Group_(FQL)

Solution
The group_member table records the relationships between groups and users. Its fields
are listed in Table 8-12. Queries to this table will only return data the current user is
allowed to see (i.e., you can’t request groups that the current loggedinuser can’t see).
More information about this table, including an up-to-date listing of fields, can be
found at http://wiki.developers.facebook.com/index.php/Group_member_(FQL).

Table 8-12. group_member table fields

Name Type Index Description

uid int • User ID of this user.

gid int • Group ID that this user belongs to.

posi
tions

array Any positions in the group that this user may occupy. If the user has no position in this group,
positions will be null; otherwise, it will be an array listing each of her positions. Looks
like the possible positions are ADMIN and OFFICER, but that’s not documented anywhere.

Note that only the fields marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
If you’d rather use the API to access groups, try the Groups.get() and
Groups.getMembers() methods.

8.39 Retrieving a Specific Group
Problem
I need to retrieve a specific group using FQL.

Solution
If you know the gid of the group, it’s as easy as:

SELECT name, description FROM group WHERE gid = $gid;

It’s a little trickier if you know the name of the group but not the gid. As long as the
user is a member of the group, you can do this:

SELECT gid, nid, description FROM group WHERE name = $name
 AND gid IN (SELECT gid FROM group_member WHERE uid = $user);

Discussion
The current loggedinuser needs to be allowed to see the specified group or you’ll get
back an empty set. Two things to note if you’re looking up a group by name:

284 | Chapter 8: Facebook Query Language (FQL)

http://wiki.developers.facebook.com/index.php/Group_member_(FQL)

• Groups aren’t unique by name, so you may well get more than one result back.

• Remember that it’s an exact match, so you’ll need to get punctuation and capital-
ization exactly right.

8.40 Retrieving a User’s Groups
Problem
I need to retrieve a specific user’s groups using FQL.

Solution
You can’t get a user’s groups without using both the group and group_member tables:

SELECT name FROM group WHERE gid IN (SELECT gid FROM group_member WHERE uid = $uid);

Discussion
If the current loggedinuser doesn’t have permission to see the groups that uid is in,
you’ll get an empty set.

8.41 Checking Whether Two Users Are in the Same Group
Problem
I need to check to see whether two specific users are in the same group using FQL.

Solution
Assuming the current loggedinuser is able to see both groups:

SELECT name FROM group WHERE gid IN (SELECT gid FROM
 group_member WHERE uid = $user1 AND gid IN (SELECT gid FROM group_member
 WHERE uid = $user2))

You’ll need to plug the two IDs into user1 and user2.

Discussion
This should be pretty easy to extend for more than two users if you need to, and it
shouldn’t affect performance considerably, since the heavy lifting is done by the data-
base. Just chain on an additional subquery for every additional user you need to check,
and remember to add a closing bracket at the end.

8.41 Checking Whether Two Users Are in the Same Group | 285

8.42 Listing Table
Problem
What’s the schema for the listing table?

Solution
The listing table stores the listings created in the Facebook Marketplace application.
Its fields are listed in Table 8-13. Queries to this table will only return data the current
user is allowed to see (i.e., you can’t request listing that the current loggedinuser can’t
see). More information about this table, including an up-to-date listing of fields, can
be found at http://wiki.developers.facebook.com/index.php/Listings_(FQL).

Table 8-13. listing table fields

Name Type Index Description

listing_id int • Listing ID of this listing.

url string URL pointing to this listing on Facebook.

title string Title of this listing.

description string Description of this listing.

price string Price of this item as a string (rather than a float).

poster int • User ID of the user who posted this item.

update_time string The last time this item was updated in epoch seconds. For more info about epoch
seconds, see Recipe 6.20.

category string The top-level categories for listings are JOBS, FORSALE, HOUSING, FREE
STUFF, and OTHER.

subcategory string Subcategories are the level below the category. Each category has about five subs
(e.g., “For Sale” breaks down into “Books”, “Furniture”, “Tickets”, “Electronics”,
“Cars”, and “Other”).

image_urls array An array of the images uploaded to this listing. Users can add four images when
they create the listing and can add more after it’s been created (which is a really
effective user experience design trick to limit most people to four unless they’re
determined enough to add more).

condition string Condition of the item, if applicable. Either Used or New.

isbn string ISBN number, if applicable.

num_beds int Number of bedrooms, if applicable.

num_baths int Number of bathrooms, if applicable.

dogs bool Are dogs allowed? (if applicable)

cats bool Are cats allowed? (if applicable)

smoking bool Is smoking allowed? (if applicable)

square_footage string Square footage of the property, if applicable.

286 | Chapter 8: Facebook Query Language (FQL)

http://wiki.developers.facebook.com/index.php/Listings_(FQL)

Name Type Index Description

street string Street address of the property, if applicable.

crossstreet string Closest cross street to the property, if applicable.

postal string Postal/zip code of the property, if applicable.

rent int Monthly rent of the property, if applicable.

pay int Salary for the job, if applicable.

Note that only the fields marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
The design of this table is a little strange in that it has fields to accommodate every
possible listing property in one table, rather than splitting them out into tables for each
type of listing and using a central table to record the IDs of the children. Sometimes
it’s better to denormalize your data for performance reasons, and this approach means
that all listings are in a single table with one index on listing_id, which is significantly
faster than chaining down through relationships. For more information about
denormalization, see Recipe 8.5 or http://en.wikipedia.org/wiki/Denormalization.

If you’d rather use the API to access listings, try the Marketplace.getListings() and
Marketplace.search() methods.

8.43 Retrieving a Listing
Problem
I need to retrieve specific a listing from the Facebook Marketplace using FQL.

Solution
If you know the listing_id of the listing, it’s as simple as:

SELECT url, title, description, price, poster FROM listing
 WHERE listing_id = $listing_id;

If you don’t know the listing_id but it was posted by user and you do know the
title, you can do:

SELECT listing_id, description FROM listing WHERE title = $title AND poster = $user;

Discussion
The current loggedinuser needs to be allowed to see the specified listing or you’ll get
back an empty set. Two things to note if you’re looking up a listing by title:

8.43 Retrieving a Listing | 287

http://en.wikipedia.org/wiki/Denormalization

• Listings aren’t unique by title, so you may well get more than one result back.

• Remember that it’s an exact match, so you’ll need to get punctuation and capital-
ization exactly right.

8.44 Retrieving a User’s Listings
Problem
I need to retrieve all of the listings posted by a specified user using FQL.

Solution
SELECT url, title, description, price FROM listing WHERE poster = $uid;

Discussion
The current loggedinuser needs to be able to see this listings posted by the user you’re
querying on, or you’ll get back an empty set.

8.45 Retrieving a User’s Friends’ Listings
Problem
I need to retrieve all of a specified user’s friends’ listings using FQL.

Solution
SELECT title, url, description, price, category FROM
 listing WHERE poster IN (SELECT uid2 FROM friend WHERE uid1 = $user);

Discussion
Since this is based on a query on the friend table, you can make it only when user is
the current loggedinuser.

8.46 Retrieving a User’s Listings by Category
Problem
I need to retrieve all of a specified user’s listings that are in a specific category.

Solution
SELECT title,listing_id, description, category FROM listing WHERE
 category = $category AND poster = $user;

288 | Chapter 8: Facebook Query Language (FQL)

Discussion
Unfortunately, there’s no way to retrieve all of the listings in a category independently
of the poster, as you ultimately need a WHERE clause that acts on either the poster or
listing_id fields.

You can easily modify this recipe to search for all of the listings in a category from all
of the user’s friends:

SELECT title, url, description, price category FROM listing
 WHERE category = $category AND poster IN (SELECT uid2 FROM friend
 WHERE uid1 = $user);

8.47 Page Table
Problem
What’s the schema for the page table?

Solution
The page table records information about Facebook Pages. Its fields are listed in Ta-
ble 8-14. Queries to this table will only return data the current user is allowed to see
(i.e., you can’t request pages that the current loggedinuser can’t see). More information
about this table, including an up-to-date listing of fields, can be found at http://wiki
.developers.facebook.com/index.php/Page_(FQL).

Table 8-14. page table fields

Name Type Index Description

page_id int • Page ID of this Page.

name string • Name of this Page.

pic_small string URL of the small picture for this Page (max width of 50 px and max
height of 150 px). Might be empty if this field wasn’t set by the creator.

pic_big string URL of the big picture for this Page (max width of 200 px and max
height of 600 px). Might be empty if this field wasn’t set by the creator.

pic_square string URL of the square picture for this Page (max width and height of 50
px). Might be empty if this field wasn’t set by the creator.

pic string URL of the picture for this Page (max width of 100 px and max height
of 300 px). Might be empty if this field wasn’t set by the creator.

pic_large string URL of the large picture for this Page (max width of 396 px and max
height of 1188 px). Might be empty if this field wasn’t set by the creator.

type string Type of this Page.

website string External URL for the subject of this Page.

has_added_app bool Indicates whether this Page has your application installed.

8.47 Page Table | 289

http://wiki.developers.facebook.com/index.php/Page_(FQL)
http://wiki.developers.facebook.com/index.php/Page_(FQL)

Name Type Index Description

founded string The date when the subject of this Page was founded, if applicable.

company_overview string Summary of the subject of this Page, if applicable.

mission string Mission statement of the organization that is the subject of this Page,
if applicable.

products string Products offered by the company on this Page, if applicable.

location string Location of this Page, including the street, city, state, country, and zip
code (or post code). Some of the fields may be blank.

parking string Type of parking available at the location of this Page.

public_transit string Type of public transportation available near the location of this Page,
if applicable.

hours string Hours of operation for the Page being queried.

attire string Type of attire recommended by the Page being queried, if applicable.

payment_options string Forms of payment accepted by the Page being queried, if applicable.

culinary_team string Team of people preparing the food at the restaurant on this Page, if
applicable.

general_manager string General manager of this Page, if applicable.

price_range string Price range for the products offered by this Page.

restaurant_services string Services offered by the restaurant on this Page, if applicable.

restaurant_specialties string House specials offered by the restaurant on this Page, if applicable.

release_date string Date the film on this Page was released, if applicable.

genre string Genre of music of the band on this Page, if applicable.

starring string Actors starring in the film on this Page, if applicable.

screenplay_by string Screenwriters of the film on this Page, if applicable.

directed_by string Director of the film on this Page, if applicable.

produced_by string Producers of the film on this Page, if applicable.

studio string Studio releasing the film on this Page, if applicable.

awards string Awards received by the film on this Page, if applicable.

plot_outline string Plot of the film on this Page, if applicable.

network string Network airing the TV show on this Page, if applicable.

season int Season of the TV show on this Page, if applicable.

schedule string Schedule of the TV show on this Page, if applicable.

written_by string Writers of the TV show on this Page, if applicable.

band_members string Members of the band on this Page, if applicable.

hometown string Home town of the band on this Page, if applicable.

current_location string Current location of the band on this Page, if applicable.

record_label string Record label for the band on this Page, if applicable.

290 | Chapter 8: Facebook Query Language (FQL)

Name Type Index Description

booking_agent string Booking agent for the band on this Page, if applicable.

artists_we_like string Other bands and artists that the band on this Page likes, if applicable.

influences string Influences of the band on this Page, if applicable.

band_interests string Other interests of the band on this Page, if applicable.

bio string Artist biography of the band on this Page, if applicable.

affiliation string Political affiliation of the person on this Page, if applicable.

birthday string Birthday of the person featured on this Page, if applicable.

personal_info string Personal information about the artist on this Page, if applicable.

personal_interests string Other interests of the artist on this Page, if applicable.

members string Members of the cast of the TV show on this Page, if applicable.

built string Year the vehicle on this Page was built, if applicable.

features string Features of the vehicle on this Page, if applicable.

mpg string Fuel economy (in miles per gallon) of the vehicle featured on this Page,
if applicable.

general_info string General information about the entity on this Page, if applicable.

Note that only the fields marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
Much like the schema for the listing table (see Recipe 8.42), the page table has been
seriously denormalized for performance reasons. A normalized schema for this page
would move all of the fields specific to one type of listing into a secondary table for that
listing type.

If you’d rather use the API to access page, try the Pages.getInfo() method.

8.48 Page Fan Table
Problem
What’s the schema for the page_fan table?

Solution
The page_fan table records the relationships between pages and users. Its fields are
listed in Table 8-15. Queries to this table will only return data the current user is allowed
to see (i.e., you can’t request fans for pages that the current loggedinuser can’t see).

8.48 Page Fan Table | 291

More information about this table, including an up-to-date listing of fields, can be
found at http://wiki.developers.facebook.com/index.php/Page_fan_(FQL).

Table 8-15. page_fan table fields

Name Type Index Description

uid int • User ID of this user.

page_id int Page ID of the Page the user is a fan of.

type string Type of this Page. There are a way too many different Page types to enumerate here. You can
see them on the Create a Page page (http://www.facebook.com/pages/create.php). They’re
generally stored in the database in all caps, with underscores in place of spaces (e.g.,
CONSUMER_PRODUCTS).

Note that only the field marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
There’s a really obvious index missing from this table, which makes working with it a
whole lot harder: page_id (although the field exists, the lack of an index on it means
you can’t include it in FQL queries as part of the WHERE clause). As it currently stands,
you can find the Pages a user is a fan of but not the users who are fans of a Page. It
would fit better with the general FQL model to enable that index but only return users
that the current loggedinuser is friends with, so maybe that will come in time.

If you’d rather use the API to access page_fan, try the Pages.getInfo() and
Pages.isFan() methods.

8.49 Retrieving a Page
Problem
I need to retrieve a specific Page using FQL.

Solution
If you know the page_id of the Page you want, this is easy:

SELECT name, type, pic_square FROM page WHERE page_id = $page_id;

If you don’t know the page_id but do know the name, you can still find it, as long as you
know a user who’s a fan:

SELECT page_id, pic_square, type FROM page WHERE name = $name
 AND page_id IN (SELECT page_id FROM page_fan WHERE uid = $user;

292 | Chapter 8: Facebook Query Language (FQL)

http://wiki.developers.facebook.com/index.php/Page_fan_(FQL)
http://www.facebook.com/pages/create.php

Discussion
This is a little harder than some of the comparable queries on other tables because
there’s no way to do this without a subquery, which is dependent on having a uid. As
noted earlier, the outcome is that this will work only when the current loggedinuser or
one of his friends is a fan of the Page you’re looking for.

You’ll get an empty set if the current loggedinuser doesn’t have permission to see the
Pages of the user you’re querying on.

8.50 Retrieving a User’s Pages
Problem
I need to retrieve all of the Pages a specified user is a fan of using FQL.

Solution
SELECT name, type, pic_square FROM page WHERE page_id IN
 (SELECT page_id FROM page_fan WHERE uid = $user);

Discussion
You’ll get an empty set if the current loggedinuser doesn’t have permission to see the
Pages of the user you’re querying on.

8.51 Photo Table
Problem
What’s the schema for the photo table?

Solution
The photo table stores the photos that have been created in the Facebook Photos app.
Its fields are listed in Table 8-16. Queries to this table will only return data the current
user is allowed to see (i.e., you can’t request photos that the current loggedinuser can’t
see). More information about this table, including an up-to-date listing of fields, can
be found at http://wiki.developers.facebook.com/index.php/Photo_(FQL).

Table 8-16. photo table fields

Name Type Index Description

pid int • Photo ID of this photo.

aid int • Album ID of this photo.

owner int User ID that this photo belongs to.

8.51 Photo Table | 293

http://wiki.developers.facebook.com/index.php/Photo_(FQL)

Name Type Index Description

src_small string URL of the small picture for this photo (max width of 75 px and max height of 225 px).
Might be empty if this field wasn’t set by the creator.

src_big string URL of the big picture for this group (max width or height of 604 px). Might be empty if
this field wasn’t set by the creator.

src string URL of the picture for this photo (max width or height of 130 px). Might be empty if this
field wasn’t set by the creator.

link string URL to view this photo on Facebook.

caption string Caption for this photo.

created string Date this photo was created in epoch seconds. See Recipe 6.20 for more about epoch
seconds.

Note that only the fields marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
If you’d rather use the API to access photos, try the Photos.get() method.

8.52 Photo Tag Table
Problem
What’s the schema for the photo_tag table?

Solution
The photo_tag table contains the relationship between photos and the users who have
been tagged in them. Its fields are listed in Table 8-17. Queries to this table will only
return data the current user is allowed to see (i.e., you can’t request photos that the
current loggedinuser can’t see). More information about this table, including an up-
to-date listing of fields, can be found at http://wiki.developers.facebook.com/index.php/
Photo_tag_(FQL).

Table 8-17. photo_tag table fields

Name Type Index Description

pid int • Photo ID of this photo.

subject int • User ID of the person tagged in this photo.

text string The text entered for this tag.

xcoord float The x coordinate of the center of the tag square.

ycoord float The y coordinate of the center of the tag square.

created int The date this tag was created, in epoch seconds. See Recipe 6.20 for more about epoch seconds.

294 | Chapter 8: Facebook Query Language (FQL)

http://wiki.developers.facebook.com/index.php/Photo_tag_(FQL)
http://wiki.developers.facebook.com/index.php/Photo_tag_(FQL)

Note that only the fields marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

Discussion
If you’d rather use the API to access photo_tags, try the Photos.get() and
Photos.getTags() method.

8.53 Retrieving the 10 Most Recent Photos from a User
Problem
I need to retrieve the 10 most recently posted photos by a specific user using FQL.

Solution
SELECT pid, src, caption FROM photo WHERE aid IN (SELECT
 aid FROM album WHERE owner = $user) ORDER BY created DESC LIMIT 10;

Discussion
The owner field isn’t indexed in the photo table, so we need to make a subquery into
the album table to find photos owned by a specific user.

The ORDER BY and LIMIT clauses can be applied to any of the queries in this chapter to
order and/or constrain the result set.

8.54 Retrieving All Photos a User Is Tagged In
Problem
I need to retrieve all of the photos that a specific user has been tagged in using FQL.

Solution
SELECT pid, src, caption FROM photo WHERE pid IN
 (SELECT pid FROM photo_tag WHERE subject = $user);

Discussion
This will return an empty set if the current loggedinuser doesn’t have permission to
see any of the photos or if user hasn’t been tagged in any.

8.54 Retrieving All Photos a User Is Tagged In | 295

8.55 User Table
Problem
What’s the schema for the user table?

Solution
The user table stores all the Facebook users. Its fields are listed in Table 8-18. Queries
to this table will only return data the current user is allowed to see (meaning you can’t
request users that the current loggedinuser can’t see). More information about this
table, including an up-to-date listing of fields, can be found at http://wiki.developers
.facebook.com/index.php/User_(FQL).

Table 8-18. user table fields

Name Type Index Description

uid int • User ID of this user.

first_name string First name of this user.

last_name string Last name of this user.

name string • Full name of this user, including any initials.

pic_small string URL of the small picture for this user (max width of 50 px and max height
of 150 px). Might be empty.

pic_big string URL of the big picture for this user (max width of 200 px and max height
of 600 px). Might be empty.

pic_square string URL of the square picture for this user (max width and height of 50 px).
Might be empty.

pic string URL of the picture for this group (max width of 100 px and max height of
300 px). Might be empty.

affiliations array Array of networks that this user is a member of. Includes the nid (network
ID), name, type (work, region, etc.), status, and year.

profile_update_time string Timestamp of the last update to this Profile, in epoch seconds. See Rec-
ipe 6.20 for more about epoch seconds.

timezone string Time zone the user is in, measured in offset from GMT (e.g., Eastern Daylight
Time is stored as −4).

religion string User-created string.

birthday string String version of the date (“September 27, 1901”).

sex string male, female, or empty string if unspecified.

hometown_location array An array containing the city, state, country, and zip code of this user’s
home town.

meeting_sex array An array containing the genders of other users that this user is interested
in meeting.

296 | Chapter 8: Facebook Query Language (FQL)

http://wiki.developers.facebook.com/index.php/User_(FQL)
http://wiki.developers.facebook.com/index.php/User_(FQL)

Name Type Index Description

meeting_for array An array containing some combination of “Friendship”, “Networking”,
“Dating”, or “A Relationship”.

relationship_status string String with one of the following values: “Single”, “In a Relationship”,
“Engaged”, “Married”, “It’s Complicated”, “In an Open Relationship”, or
an empty string if unspecified.

significant_other_id int uid (user ID) of this user’s significant other, if specified.

political string Users can enter anything they’d like into this field, but it also presents an
autocomplete list of options based on the party names of each country.

current_location array An array containing the city, state, country, and zip code of the user’s
current locations.

activities string User-created string.

interests string User-created string.

music string User-created string.

tv string User-created string.

movies string User-created string.

books string User-created string.

quotes string User-created string.

about_me string User-created string.

hs_info array An array of high school records containing the name, grad_year, and
id of each high school.

education_history array An array of degrees that this user has earned, containing the name, year,
degree, and array of concentrations for each school.

work_history array An array containing the company_name, position, description,
start_date, end_date, and location array (city, state,
country) for each position.

notes_count int Count of the notes that this user has posted.

wall_count int Count of the posts on this user’s Wall.

status array An array containing this user’s current message and time (epoch seconds
timestamp for when the status was entered; see Recipe 6.20 for more
about epoch seconds).

has_added_app bool Does this user have your app installed?

is_app_user bool Has this user logged into your app?

online_presence string One of active, idle, offline, or an empty string.

Note that only the fields marked as “Index” in this table can be used in an FQL query’s
WHERE clause, but any of the fields can appear in the SELECT.

8.55 User Table | 297

Discussion
If you’d rather use the API to access users, try the Users.getInfo() method.

8.56 App Friends
Problem
I need to find all of the friends of a specific user who have already installed my
application.

Solution
SELECT uid FROM user WHERE has_added_app = 1 AND uid IN (SELECT
 uid2 FROM friend WHERE uid1 = $user);

Discussion
This particularly comes in handy when you’re displaying an fb:multi-friend-
selector control in FBML and want to exclude friends of the current loggedinuser who
have already installed your app (see Recipe 6.46).

8.57 Birthday Friends
Problem
I need to find all of a specific user’s friends whose birthdays are on a given day using
FQL.

Solution
SELECT uid FROM user WHERE strpos(birthday, "September 27")
 = 0 AND uid IN (SELECT uid2 FROM friend WHERE uid1 = $uid)

Discussion
Rather than supporting the LIKE comparator from SQL, Facebook has included the
ability to run a small set of PHP-like functions in your queries (see Recipe 8.3). We’re
using the strpos() function here, which returns the position of the needle in the hay-
stack (the first parameter—birthday—is known as the haystack, and the second
parameter—“September 27”—is known as the needle). Since we’re looking for people
who share the same birthday and we don’t care about the year, we want to return results
where the string starts with “September 27”, which would mean it’s at position 0. In
more traditional SQL, this query would have:

SELECT uid FROM user WHERE birthday LIKE "September 27%"
 AND uid IN (SELECT uid2 FROM friend WHERE uid1 = $uid)

298 | Chapter 8: Facebook Query Language (FQL)

You can, of course, substitute any day you’d like for “September 27”, which just hap-
pens to be my birthday (please email cakes and other goodies). This query comes from
the excellent Facebook Developers Wiki Sample FQL Queries page, which you’ll find
at http://wiki.developers.facebook.com/index.php/Sample_FQL_Queries.

8.58 600 Errors
Problem
My FQL doesn’t work! I’m getting a 600 error!

Solution
Don’t panic! 600-class errors are Facebook’s way of telling you that there’s something
wrong with your FQL query. The possible error codes are listed in Table 8-19.

Table 8-19. FQL error codes

Error code Description

601 Error while parsing the FQL statement.

602 The field you requested does not exist.

603 The table you requested does not exist.

604 Your statement is not indexable.

605 The function you called does not exist.

606 Wrong number of arguments passed into the function.

Discussion
Pay special attention to 604 errors, because they often have extra information in them
about why the statement isn’t indexable. As an example, metrics table queries are
considered indexable only if the date range you’re querying on isn’t bigger than 30 days.
If it is bigger, you’ll get a 604 error, which tells you that the range is too big.

If you’re getting an error and are having trouble tracking it down in the context of your
code, try extracting the query and running it directly inside the API Test Console at
http://developers.facebook.com/tools.php?api. If you select “fql.query” as the Method,
you can play with FQL and see live results on the righthand side.

8.58 600 Errors | 299

http://wiki.developers.facebook.com/index.php/Sample_FQL_Queries
http://developers.facebook.com/tools.php?api

8.59 Preload FQL
Problem
I want to increase the performance of my pages that require the results of an FQL to
do their initial rendering.

Solution and Discussion
Facebook has developed a preload FQL system that enables you to have Facebook send
along the results of a specific FQL query when it requests FBML pages from your server.
Since this is more reliant on an API call than on FQL, it’s documented in the
Admin.SetAppProperties() API method (see Chapter 9). More information can also be
found in the Developers Wiki at http://wiki.developers.facebook.com/index.php/Preload
_FQL.

300 | Chapter 8: Facebook Query Language (FQL)

http://wiki.developers.facebook.com/index.php/Preload_FQL
http://wiki.developers.facebook.com/index.php/Preload_FQL

CHAPTER 9

Facebook API

You’ve done a bang-up job of planning, your brilliant, unpolished diamond is starting
to shine with a beautiful design, you have stellar FBML built out on a standards-
compliant framework, your FBJS screams Ajax cleanliness from 1,000 feet away, and
you’ve mastered FQL queries like the back of your normalized (and partially denor-
malized) hand. Now what?

Time to dig into the Facebook Application Programming Interface (API). If you’re un-
familiar with the concept of an API, read the first few recipes in this chapter carefully.
The majority of the content here will cover the various API calls and how to get different
types of data in and out of Facebook, with some extra attention at the end to some of
the new beta features that have recently been introduced. As with the rest of this book,
I’m going to cover the API using the official Facebook PHP Client, but it shouldn’t be
too hard to convert these examples into your language of choice.

In the interest of saving space (and trees!), I’ve omitted the code to set
up a Facebook Client object and retrieve the active user from most of
the recipes in this chapter. Since it’s always the same, refer to Rec-
ipe 9.1 for reference.

You should be able to look up any of the API calls covered in this chapter
by adding them to the end of the Facebook Developers Wiki URL. As
an example, if you want more info on Users.getInfo(), go to http://wiki
.developers.facebook.com/index.php/Users.getInfo.

9.1 What’s an API?
Problem
I keep hearing about this API thing. API this, API that. What’s the deal?

301

http://wiki.developers.facebook.com/index.php/Users.getInfo.
http://wiki.developers.facebook.com/index.php/Users.getInfo.

Solution
According to Wikipedia:

An application programming interface (API) is a source code interface that an operating
system, library, or service provides to support requests made by computer programs.

In the case of Facebook, the API provides developers with external access to the very
core functionality of Platform, in a way that enables you to build on top of it and
integrate it directly into your application. All of the other pieces of Platform—FBML,
FBJS, FQL, etc.—wouldn’t exist without the API, but that’s not true the other way
around. There are lots of examples of really powerful APIs in web applications that
exist without any means to do frontend development on top of them (see the upcoming
Discussion for some examples).

Most APIs exist as a specification that explains what you can expect to receive back
from a service when you make certain calls to it. The Facebook API is no different, and
you can visit http://wiki.developers.facebook.com/index.php/API to see all of the API
calls available and what they expect to receive from you and send back to you (e.g.,
Pages.isFan() expects a page_id and a uid and returns XML containing either 0 for
false or 1 for true). Luckily for you, Facebook has gone a little beyond the norm by
also providing a full Client Library, which makes it easy to integrate API code into your
application (see Recipe 9.2 for more info).

Generally speaking, you make a call to an API directly in your code and then use the
response as you would any other variable. A quick example:

<?php
include_once 'resources/includes/config.php';
include_once 'resources/includes/facebook.php';

global $api_key, $secret;

$facebook = new Facebook($api_key, $secret);
$facebook->require_frame();
$user = $facebook->require_login();

$fields = array('last_name', 'first_name');
$myUser = $facebook->api_client->users_getInfo($user, $fields);

echo $myUser[0]['first_name'] . ' ' . $myUser[0]['last_name'];?>

The end result of this code should be the current loggedinuser’s first name and last
name separated by a space. Although this looks like a lot of code to get to that point,
keep in mind that the first five lines are setup, which you need to do only once per page.
Since this is our first actual, live code sample from the API, let’s take a look at what
we’re doing in each section:

include_once 'resources/includes/config.php';
include_once 'resources/includes/facebook.php';

global $api_key, $secret;

302 | Chapter 9: Facebook API

http://wiki.developers.facebook.com/index.php/API

The config.php file includes the definition of the api_key and secret variables, which
hold the API and secret keys for your application (you can find them in the Developers
app, on your app’s page: http://www.facebook.com/developers/apps.php?app_id=
12345, where 12345 is your app’s ID). You don’t have to set up your app that way, but
I find it more convenient than embedding the keys in every page. The facebook.php
file is the Client Library that includes all of the actual calls.

$facebook = new Facebook($api_key, $secret);
$facebook->require_frame();
$user = $facebook->require_login();

The first line instantiates a new instance of the Facebook Client Library, which we’ll
use to make all of our subsequent calls. The second checks to see whether we’re inside
of a frame (e.g., an iFrame), and then forces us to the login page to make sure that this
session is valid. The call to require_login() will force the user to hit a login screen if
they aren’t logged in and will then create a session and will return their uid (you’ll get
a uid either way).

Users have the option of turning that session into an infinite session by
checking the “Keep me logged into [Your App Name]” checkbox on the
login screen. See Recipe 9.7 for more information.

$fields = array('last_name', 'first_name');
$myUser = $facebook->api_client->users_getInfo($user, $fields);

Since the Users.getInfo() method requires an array of fields that we want returned,
we start off by defining an array called fields and populating it. The call to
Users.getInfo() returns a multidimensional array with each item representing one
user’s data, but since we passed in only one uid, we can assume that we’re only inter-
ested in the data at position 0 when we echo it:

echo $myUser[0]['first_name'] . ' ' . $myUser[0]['last_name'];?>

Discussion
APIs are truly wonderful things. It’s fairly safe to say that they are one of the underlying
technologies that makes this entire Web 2.0 revolution possible, and are therefore the
golden goose that lays the golden eggs into our fat dotcom v2 pockets. Or, if you want
to be a little less cynical, they’re the glue that makes it easy to bind a whole bunch of
independent services together into a new mashup app that is far greater than the sum
of its parts.

There are a whole bunch of them, too. At the time this was written, the fantastic
ProgrammableWeb site (http://www.programmableweb.com/apis), a repository of in-
formation about APIs, listed 760 different publicly available APIs in 55 categories.
Google Maps is the most popular API for mashups, by quite a long way (47% of all
mashups listed on ProgrammableWeb), with Flickr (11%), YouTube (8%), and

9.1 What’s an API? | 303

http://www.facebook.com/developers/apps.php?app_id=12345
http://www.facebook.com/developers/apps.php?app_id=12345
http://www.programmableweb.com/apis

Amazon (8%) following behind. You can find a whole lot of information about each
of those APIs in the directory section of that site (e.g., http://www.programmableweb
.com/api/google-maps).

9.2 Getting Started with the Client Library
Problem
OK! I’m down with the API scene. How do I get started?

Solution
You need to download a Facebook Client Library in the language of your choice, get
it installed on your server, and then get cracking! You’ll find links to various Client
Libraries at http://developers.facebook.com/get_started.php, but keep in mind that the
only officially supported version is the PHP 4/5 library, and so using another language
means relying on third parties to keep the library up-to-date.

In addition to the Wiki (http://wiki.developers.facebook.com/index.php/API), there’s
some documentation for the Client Library in the actual code files in the form of com-
ments, and it’s often easier to figure out how to use a function by just looking it up in
the facebookapi_php5_restlib.php file than trying to find it on the Web.

Discussion
If you’re running PHP, this should be as simple as downloading the library from Face-
book, uploading to your server, and creating a config.php file with your app’s API and
secret keys. The PHP Client Library comes with the Footprints sample application,
which will give you a very simple overview of an app that uses the API to set some
Profile Actions and Boxes. There are also two more demo apps, Restaurants and Who’s
Showing Up, which show off Mock Ajax, FBJS, and the Data Store API, and the ability
to build apps for users and Pages, respectively. You can find all three apps at http://wiki
.developers.facebook.com/index.php/Demos.

If you’re not running PHP, check the installation instructions that came with your
Client Library.

9.3 RESTing with Facebook
Problem
I’m curious to know more about how my app communicates with Facebook. What
kind of API is this?

304 | Chapter 9: Facebook API

http://www.programmableweb.com/api/google-maps
http://www.programmableweb.com/api/google-maps
http://developers.facebook.com/get_started.php
http://wiki.developers.facebook.com/index.php/API
http://wiki.developers.facebook.com/index.php/Demos
http://wiki.developers.facebook.com/index.php/Demos

Solution
This is a Representational State Transfer, or REST-like API, which means that calls are
simply made over HTTP (using GET or POST) to the Facebook server. You’ll be
POSTing requests to http://api.facebook.com/restserver.php when you make calls from
your server, but you can visit that URL directly if you’re curious to see what a 101 error
response looks like (and who isn’t, really?).

Discussion
The alternative to REST is generally considered to be SOAP, a heavier-weight protocol
that includes an additional message layer. The two are very similar in some regards
(both generally use HTTP as their transport protocol and generally use XML to encode
data), but there’s a lot more overhead in implementing a SOAP-based API. More in-
formation about REST and SOAP can be found at http://en.wikipedia.org/wiki/Repre
sentational_State_Transfer and http://en.wikipedia.org/wiki/SOAP, respectively.

9.4 Storable Data
Problem
I want to make sure that I don’t violate the Facebook Developer Terms of Service. What
information am I allowed to retrieve from Platform and store in my own database?

Solution
The (short) list shown in Table 9-1 is all you’re allowed to store.

Table 9-1. Storable data

Property Description

Uid User ID

Nid Network ID

Eid Event ID

Gid Group ID

Pid Photo ID

Aid Album ID

flid Friend list ID

listing_id Marketplace Listing ID

page_id Page ID

notes_count Total number of notes written by a user

profile_update_time Last time the user’s Profile was updated

9.4 Storable Data | 305

http://api.facebook.com/restserver.php
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/SOAP

Discussion
The Developer Terms of Service can be found at http://developers.facebook.com/terms
.php.

9.5 Authenticating Users
Problem
How do I log a user into my Platform app?

Solution
Users have to be logged into Facebook in order for you to make API calls on their behalf,
so Facebook provides an automated authentication process that you can initiate by
redirecting users to http://www.facebook.com/login.php?api_key=1234567890&v=1.0
(where 1234567890 is your app’s API key). This URL can accept a few parameters, as
documented in the Discussion.

Discussion
The process works like Figure 9-1.

User visits
Canvas page

Already
authenticated?

Canvas page

Callback URL

Facebook
Login page

Authentication

Installed
app?

ToS

No

Yes

Yes

No

Figure 9-1. User authentication flow

306 | Chapter 9: Facebook API

http://developers.facebook.com/terms.php
http://developers.facebook.com/terms.php
http://www.facebook.com/login.php?api_key=1234567890&v=1.0

Let’s walk through the steps. Users start off by visiting a Canvas page in your app
without logging into Facebook first, as shown in Figure 9-2.

Figure 9-2. Canvas page with login message

You can insert a standard Facebook login button anywhere you’d like with the follow-
ing code:

<a href="http://www.facebook.com/login.php?api_key=1234567890
&v=1.0"><img src="http://static.ak.facebook.com/images/devsite/
facebook_login.gif">

where 1234567890 is your app’s API key (which isn’t the same as your app’s ID; the
API key can be found in the Facebook Developers app and is usually about 30 characters
long, made up of letters and numbers). When users click on that button, they’ll get
bumped over to a Facebook login page with your app’s name in it, as in Figure 9-3.

Figure 9-3. Facebook Login page

If this user hasn’t installed your app or agreed to its Terms of Service before, they’ll be
shown the ToS page (Figure 9-4).

9.5 Authenticating Users | 307

Figure 9-4. Facebook ToS page

Finally, they’ll be sent to your app’s callback URL, rather than to the page they started
on. This is important because the callback URL isn’t actually on Facebook, so you want
to use this as an opportunity to store the auth_token variable you’ll get passed and then
redirect them to a page in your app:

$auth_token = $_GET['auth_token'];

You’ll need to keep that auth_token handy if you’re going to be making calls into the
API from your server to Facebook without rendering them into a Canvas page. Note
that auth_tokens expire, but you can create an infinite session instead (see Recipe 9.7
for more info).

The login URL (to which you send users to start this whole process) accepts a bunch
of parameters that give you some control over the way it behaves; see Table 9-2.

Table 9-2. Parameters for login URL

Name Type Default Description

api_key string N/A Your application’s API key (not ID). This is required.

v float N/A The API version you’re using. “1.0” is currently the only supported value. This is
required.

auth_token string N/A This is used only for desktop applications and is required when they make API calls.
You can create this using the auth.createToken() method.

popup bool false Forces the display of an alternate version of the login page without the Facebook
navigation around it. For best results, you should open this in a pop-up window
sized 646 × 436 pixels.

skipcookie bool false Force Facebook to ignore the presence of a login cookie and always show the form.
Might be useful if another Facebook user forgot to log out.

308 | Chapter 9: Facebook API

Name Type Default Description

hide_checkbox bool false Force Facebook to hide the “Save my login info” checkbox on the login form. Do
this only if you want to force users to log in every time; otherwise, leave this as true.

next string false Whatever you pass in here will get appended to the callback_url after login,
so use this to maintain state.

canvas bool false Force Facebook to return users to the Canvas page they came from rather than to
your callback URL.

It’s worth going into a little detail about how Facebook assembles the URL that users
will be sent to after they log in. By default, this will just be the callback URL that you’ve
specified for your application (which should be off-Facebook). For the sake of this
example, let’s assume that it’s something like:

http://facebook.myserver.com/apps/myapp

Users will be directed to that URL after they’ve logged in, and you’ll get an
auth_token automatically added to the end of it:

http://facebook.myserver.com/apps/myapp?auth_token=
aca27a78c5853267656280baa35642cb

If you specify a next parameter, Facebook will append that to the end of your callback
URL. You’ll need to URL-encode the string so that it doesn’t become part of the login
URL when you put your login button onto your Canvas page, which you can do using
any number of web-based tools, such as http://ostermiller.org/calc/encode.html. Con-
tinuing in the vein of our example, let’s say that you wanted to append the time in epoch
seconds, which you’ve calculated as 1212020040 (see Recipe 6.20 for more info about
epoch seconds). In that case, you would pass “%3Ftime%3D1212020040” as the value
for next, and Facebook will send users to:

http://facebook.myserver.com/apps/myapp?time=1212020040&auth_token=
aca27a78c5853267656280baa35642cb

Note that Facebook will automatically switch the separator before the auth_token
from ? to & if it needs to.

Finally, if you specify true for the canvas parameter, Facebook will send users back to
the page they came from rather than to your callback URL. You won’t get an
auth_token in that case (because you don’t need to create a session key when you’re
making API calls from inside a Canvas page), but you will still get whatever you passed
into next:

http://apps.facebook.com/myapp/?time=1212020040

9.5 Authenticating Users | 309

http://facebook.myserver.com/apps/myapp
http://facebook.myserver.com/apps/myapp?auth_token=aca27a78c5853267656280baa35642cb
http://facebook.myserver.com/apps/myapp?auth_token=aca27a78c5853267656280baa35642cb
http://ostermiller.org/calc/encode.html
http://facebook.myserver.com/apps/myapp?time=1212020040&auth_token=aca27a78c5853267656280baa35642cb
http://facebook.myserver.com/apps/myapp?time=1212020040&auth_token=aca27a78c5853267656280baa35642cb
http://apps.facebook.com/myapp/?time=1212020040

9.6 Creating a Session Key
Problem
I need a session key so that I can make subsequent API calls from my app’s server to
Facebook. Where would I find such a thing?

Solution
If you’ve made a run down to the local Session Key Store and they’re all out of stock,
try the Auth.createToken() and Auth.getSession() methods. Desktop apps need to
call Auth.createToken() to generate a token, whereas web apps will receive one
appended to their callback URL when users log in (see Recipe 9.5 for more info).

Discussion
Session keys were undergoing some changes as this book was being written, largely to
make the process of adding new applications and authenticating easier for users. Face-
book has modified a number of its API methods so that they no longer require a session
key (meaning that you can call them on behalf of users without users needing to have
added your app), and Facebook is moving in the direction of making it possible for
users to try your app out and gradually grant it more permissions, rather than a single,
complex authentication page. Facebook is working toward having the following meth-
ods not require a key:

• Auth.createToken()

• Auth.getSession()

• Fbml.refreshImgSrc()

• Fbml.refreshRefUrl()

• Fbml.setRefHandle()

• Marketplace.createListing()

• Marketplace.getCategories()

• Marketplace.getSubCategories()

• Marketplace.removeListing()

• Notifications.send()

• Notifications.sendEmail()

• Pages.getInfo()

• Pages.isAppAdded()

• Photos.addTag()

• Photos.createAlbum()

• Photos.upload()

310 | Chapter 9: Facebook API

• Profile.getFBML()

• Profile.setFBML()

• Users.hasAppPermission()

• Users.isAppUser()

• Users.setStatus()

Since this new policy was evolving as this book was going to press, check the Wiki for
more information about which methods do or don’t require a key (specifically http://
wiki.developers.facebook.com/index.php/New_Design_Platform_Changes#Changes_to
_Session_Keys or http://tinyurl.com/5czxej).

9.7 Creating an Infinite Session Key
Problem
The user sessions that are created when my users log in expire too quickly. Is there a
way to create an infinite session?

Solution
There are two ways to do this:

• If your users check the “Keep me logged into [Your App Name]” checkbox when
logging into your app, their session with your app will go on forever and always.

• You can give users the option of creating a special infinite key code for you by
sending them to the URL http://www.facebook.com/code_gen.php?v=1.0&api_key
=1234567890, where 1234567890 is your app’s API key (not your app’s ID, but
rather the full API key). This will prompt them to generate a key, which they can
then give your app and you can pass into the Auth.getSession() as an
auth_token. The session_key you get back will survive beyond the sands of time.

Web-based Facebook apps used to be automatically granted infin-
ite sessions but now need to manually create them (as of July 15,
2008), the same way that Desktop and Mobile apps have always
had to.

Discussion
Infinite session keys are also useful when you have users accessing your app from a
third-party site or if you’re using a cron job to process things on a scheduled basis.
There’s no way for you to programmatically create an infinite session without expressed
consent from your users, which is really for the best. The second option listed in the
Solution is the more awkward of the two, since it requires sending them off into a
Facebook process that doesn’t automatically return them to your app. If users aren’t

9.7 Creating an Infinite Session Key | 311

http://wiki.developers.facebook.com/index.php/New_Design_Platform_Changes#Changes_to_Session_Keys
http://wiki.developers.facebook.com/index.php/New_Design_Platform_Changes#Changes_to_Session_Keys
http://wiki.developers.facebook.com/index.php/New_Design_Platform_Changes#Changes_to_Session_Keys
http://tinyurl.com/5czxej
http://www.facebook.com/code_gen.php?v=1.0&api_key=1234567890
http://www.facebook.com/code_gen.php?v=1.0&api_key=1234567890

logged in when you send them to that URL, they’ll see a login page with the special
message shown in Figure 9-5.

Figure 9-5. Session key generator login

After they log in (or if they were already logged in), they’ll see the confirmation page
shown in Figure 9-6.

Figure 9-6. Session key generator confirmation

If they click on the Generate button, they’ll get a code they can give you, like the one
shown in Figure 9-7.

Figure 9-7. Session key generator code

312 | Chapter 9: Facebook API

Note that there’s no way back to your app from that page, so although they now have
the code (yay!), they need to figure out how to get back to give it to you on their own
(boo!). When they’ve finally hacked their way back through the jungle and made it over
the perilous river bridge, grab that code and pass it into a call to Auth.getSession() to
produce your fabled infinite session key:

$return = $facebook->api_client->auth_getSession($userCode);

Look in return['session_key'] to find the actual key.

A final note on the true infinite nature of the infinite key. As with all things in life, this
is only mostly as good as it sounds. The key doesn’t really last forever: if a user uninstalls
and reinstalls your app, her key will expire and she’ll have to go through this again
(although this time she’ll have an easier time navigating through the jungle).

Facebook’s list of storable items doesn’t include a user’s session_key,
but it’s pretty hard to work with the key if you don’t store it (especially
for infinite keys, which you’re going to need to use again later). It’s
almost certainly not a violation of the Facebook Terms of Service, but
you should be aware of it nonetheless.

9.8 Getting a Session (Desktop Only)
Problem
I have my auth_token and created my session, but now I need to retrieve it again after
switching from HTTP to HTTPS.

Solution
If you established a session over HTTP but need to switch to HTTPS, you can retrieve
a session key again by calling Auth.getSession() and passing in the auth_token you got
when you called Auth.createToken().

Discussion
This isn’t required by web apps, as there’s currently no way for a user to interact with
your app over an HTTPS connection to http://apps.facebook.com (it will either bounce
them back to HTTP automatically or give an error about using a security certificate for
the wrong domain).

You can also pass a generate_session_secret boolean into Auth.getSession() if you’d
like it to generate and return a temporary secret key associated with the session. You
can use that secret instead of your app’s API secret key for the duration of this session.

9.8 Getting a Session (Desktop Only) | 313

http://apps.facebook.com

9.9 Creating an Auth Token (Desktop Only)
Problem
I need to create an auth token for my desktop Facebook app.

Solution
Use the Auth.createToken() method, which requires no parameters beyond the stand-
ard api_key, sig, and version, and returns a key that can be used to create a session
(see Recipe 9.6 for more info).

Discussion
This isn’t required by web apps, which can just go directly to creating a session key.

9.10 Making Calls (Desktop Only)
Problem
How do I make a call to the Facebook API server from my desktop app?

Solution
Generally speaking, you prepare a request and then transmit it to the API server (see
http://api.facebook.com/restserver.php) using POST over the HTTP protocol. The server
will return an XML response.

Discussion
You could write your own code to manage the Facebook session and handle the server
communication, but you might want to leverage the excellent work other people have
been doing and use one of these libraries instead:

.NET
Facebook and Microsoft have partnered to provide a Facebook Developer Kit built
on Popfly and Visual Studio Express. You can get more information and downloads
at http://www.microsoft.com/express/samples/facebook/. Even more information is
available on CodePlex at http://www.codeplex.com/FacebookToolkit. An alternate
library, Facebook.NET, which includes support for C# and VB.NET, can be found
on CodePlex at http://www.codeplex.com/FacebookNET.

ActionScript
The facebook-actionscript-api is an MIT-licensed library for secure communication
between Flash/Flex apps and the Facebook server, written and maintained by Jason

314 | Chapter 9: Facebook API

http://api.facebook.com/restserver.php
http://www.microsoft.com/express/samples/facebook/
http://www.codeplex.com/FacebookToolkit
http://www.codeplex.com/FacebookNET

Crist. More information and downloads are available at http://code.google.com/p/
facebook-actionscript-api/.

Java
Facebook used to provide an official Java Client Library, but it has subsequently
been discontinued. The facebook-java-api project has taken over with an open
source version, which you can download at http://code.google.com/p/facebook-java
-api/.

Ruby on Rails
Check out the Facebooker project at http://facebooker.rubyforge.org/. It’s conven-
iently packaged as a gem, so you can just gem install facebooker.

Qt+KDE
Linux developers should check out the libkfacebook project, which is an asynchro-
nous, GPL-licensed library for talking to the Facebook API with responses mapped
to C++ objects. You can grab the source from Subversion at svn://anonsvn.kde.org/
home/kde/trunk/playground/pim/kfacebook.

VB.NET
Independent developer Jay Lagorio has released a Client Library for Facebook that
supports the API version 1.0 in VB.NET. More information and downloads are at
http://www.lagorio.net/windows/facebook/.

You need to create an auth_token and then instantiate a session before you can
make most of the calls in the API (but not, obviously, before you can make the calls
to generate them). See Recipes 9.9 and 9.6, respectively, for more information on
those processes.

9.11 Logging Out
Problem
How can I give my users a way to log out of Facebook?

Solution and Discussion
Just send them to http://www.facebook.com/logout.php?confirm=1.

9.12 Getting Allocations
Problem
I need to retrieve my allocations from Facebook so that I know how many Notifications
I can send out per day.

9.12 Getting Allocations | 315

http://code.google.com/p/facebook-actionscript-api/
http://code.google.com/p/facebook-actionscript-api/
http://code.google.com/p/facebook-java-api/
http://code.google.com/p/facebook-java-api/
http://facebooker.rubyforge.org/
svn://anonsvn.kde.org/home/kde/trunk/playground/pim/kfacebook
svn://anonsvn.kde.org/home/kde/trunk/playground/pim/kfacebook
http://www.lagorio.net/windows/facebook/
http://www.facebook.com/logout.php?confirm=1

Solution
Use the Admin.getAllocations() method:

$allocation = $facebook->api_client->admin_getAllocation('notifications_per_day');

Discussion
This method supports retrieving a number of different allocations, as shown in Ta-
ble 9-3.

Table 9-3. Allocations

Allocation Description

notifications_per_day Number of Notifications your application can send per user per day

requests_per_day Number of requests your application can send per user per day

emails_per_day Number of email messages your application can send to a user per day

email_disable_message_location Location of the disable message within emails sent by your application (“1” is
at the bottom and “2” is the top)

For more information about allocations, see Recipe 2.16.

9.13 Getting Metrics
Problem
I want to retrieve my app’s daily metrics for yesterday.

Solution
The Admin.getMetrics() method will return metrics for daily, weekly, or monthly
periods:

$targetMetrics = array('active_users');
$monthAgo = strtotime('yesterday') - 24*60*60*29;
$yesterday = strtotime('yesterday');

$oneDay = $facebook->api_client->admin_getMetrics($monthAgo,
 $yesterday, 86400, $targetMetrics);
$sevenDays = $facebook->api_client->admin_getMetrics($monthAgo,
 $yesterday, 604800, $targetMetrics);
$thirtyDays = $facebook->api_client->admin_getMetrics($monthAgo,
 $yesterday, 2592000, $targetMetrics);

Discussion
Admin.getMetrics() accepts start and end dates, expressed in epoch time, a period, and
an array containing a list of the specific metrics you’re looking for (you have to use an
array, even if you only want one back, or you’ll get a long error message about needing

316 | Chapter 9: Facebook API

an array). The period parameter, also expressed in epoch seconds, defines the period
you want to receive metrics for: one day (86400 seconds), seven days (604800 seconds),
or 30 days (2592000 seconds). See Recipe 6.20 for more information about epoch time.
Your return value will always be a multidimensional array (which makes sense, since
you’re requesting an array), with each item containing a date and the specified metric.
If you requested a one-day period of active_users and did a PHP print_r on that array,
you might see:

Array
(
 [0] => Array
 (
 [active_users] => 1234340
)
)

There are quite a few metrics you can request for your app (see Table 9-4), based on
what you can graph on the Usage and HTTP Requests tabs of the Facebook Insights
application (for more info, see Recipe 10.6).

Table 9-4. Metrics

Metric Description

active_users Active users

unique_adds Users who added your application

unique_removes Users who removed your application

unique_blocks Users who blocked your application

unique_unblocks Users who unblocked your application

api_calls API calls made by your application

unique_api_calls Users on whose behalf your application made API calls

canvas_page_views Canvas page views

unique_canvas_page_views Users who viewed your application’s Canvas page

canvas_http_request_time_avg Average time to fulfill an HTTP request to your application’s Canvas page

canvas_fbml_render_time_avg Average time to render FBML on your application’s Canvas page

canvas_page_views_http_code_0 Canvas page views that timed out

canvas_page_views_http_code_100 HTTP code 100s—Continue

canvas_page_views_http_code_200 HTTP code 200s—OK

canvas_page_views_http_code_200ND HTTP code 200s—OKs with no data

canvas_page_views_http_code_301 HTTP code 301s—Moved Permanently

canvas_page_views_http_code_302 HTTP code 302s—Found

canvas_page_views_http_code_303 HTTP code 303s—See Other

canvas_page_views_http_code_400 HTTP code 400s—Bad Request

canvas_page_views_http_code_401 HTTP code 401s—Unauthorized

9.13 Getting Metrics | 317

Metric Description

canvas_page_views_http_code_403 HTTP code 403s—Forbidden

canvas_page_views_http_code_404 HTTP code 404s—Not Found

canvas_page_views_http_code_405 HTTP code 405s—Method Not Allowed

canvas_page_views_http_code_413 HTTP code 413s—Request Entity Too Large

canvas_page_views_http_code_422 HTTP code 422s—Unprocessable Entity

canvas_page_views_http_code_500 HTTP code 500s—Internal Server Error

canvas_page_views_http_code_502 HTTP code 502s—Bad Gateway

canvas_page_views_http_code_503 HTTP code 503s—Service Unavailable

canvas_page_views_http_code_505 HTTP code 505s—HTTP Version Not Supported

FQL equivalent

If you’d prefer to use FQL to access your metrics, the equivalent query is:

SELECT active_users, canvas_page_views FROM metrics WHERE end_time
 = 1206946800 AND period = 86400

For more information, see Recipe 8.14.

9.14 Getting and Setting Application Properties
Problem
I need to retrieve or set some of the properties about my application.

Solution
Use the Admin.getAppProperties() method to retrieve properties:

$targetProps = array('application_name','description');
$properties = $facebook->api_client->admin_getAppProperties($targetProps);

Use the Admin.setAppProperties() method to set properties:

$setProps = array('description' => 'My new description!');
$return = $facebook->api_client->admin_setAppProperties($setProps);

Discussion
Admin.getAppProperties() returns an array, with each named element being one of the
properties you requested. In addition to whatever you ask for, Facebook will always
return your app’s canvasname, icon_url, and logo_url appended to the end of the
returned array.

Admin.setAppPropoerties() will return a code indicating whether it worked. Confus-
ingly, it returns true as the value 1 if it works, which coincides with error code 1, which

318 | Chapter 9: Facebook API

signifies an unknown error (see Recipe 9.16). If you’re concerned it’s not working, you
can do a check using Admin.getAppPropoerties():

$setProps = array('description' => 'This was set using the new
 Admin.setAppProperties() method!');
$return = $facebook->api_client->admin_setAppProperties($setProps);

$getProps = array('description');
$newDesc = $facebook->api_client->admin_getAppProperties($getProps);

if($newDesc['description'] == $setProps['description']){
 echo 'Success!';
}

These methods are currently marked as beta in the Developers Wiki, so
treat them with a little caution and make sure to report any bugs you
might find to the Facebook Bug Tracker, at http://bugs.developers.face
book.com.

The list of properties you can specify in either method is pretty extensive and covers
basically anything that you set in the Developer app (see Table 9-5, but for the most
up-to-date list, refer to http://wiki.developers.facebook.com/index.php/ApplicationPro
perties).

Table 9-5. Application properties

Property Type Description

application_name string Name of your application.

callback_url string Callback URL, which can’t be longer than 100 characters and will be off-Facebook on
your server.

post_install_url string URL where a user gets redirected after installing your app. Can’t be longer than 100
characters.

edit_url string Appears to be an empty string.

dashboard_url string URL to your app’s dashboard (generally the first page in your app, at http://apps
.facebook.com/yourapp).

uninstall_url string URL where a user gets redirected after removing your application.

ip_list string IP addresses of the servers you’ve given permission to access Facebook’s servers. This
applies only to web-based apps.

email string Email address associated with your app, which Facebook uses to contact you (default
value is your Facebook email address).

description string Description of your application.

use_iframe bool False (0) means you use FBML; true (1) means you use an iFrame.

desktop bool False (0) means a web-based app; true (1) means a desktop app.

is_mobile bool False (0) means you can’t run on Facebook Mobile; true (1) means you can.

9.14 Getting and Setting Application Properties | 319

http://bugs.developers.facebook.com
http://bugs.developers.facebook.com
http://wiki.developers.facebook.com/index.php/ApplicationProperties
http://wiki.developers.facebook.com/index.php/ApplicationProperties
http://apps.facebook.com/yourapp
http://apps.facebook.com/yourapp

Property Type Description

default_fbml string Default FBML that appears in the user’s Profile Box when she adds your app, before
you’ve set something specific.

default_column bool False (0) means you want to appear in the narrow column (sidebar); true (1) means
you want to appear in the wide column (body) of user Profiles.

message_url string URL that Facebook uses to display your message attachment content.

message_action string Label for message attachment action for your app, which can’t be more than 20
characters.

about_url string URL for your app’s About Page.

private_install bool False (0) means you use the News Feed and Mini-Feed; true (1) means they’re disabled
for your app.

installable bool False (0) means users can’t install your app; true (1) means they can.

privacy_url string URL for your app’s privacy terms.

help_url string URL for your app’s help page.

see_all_url string Appears to be an empty string.

tos_url string URL for your app’s Terms of Service.

dev_mode bool False (0) means developer mode is disabled; true (1) means it’s enabled, which blocks
anyone who isn’t on the developer list from installing the app.

preload_fql string A preloaded FQL query.

default_action_fbml string Default FBML that appears in the user’s Profile actions when he adds your application,
before you’ve set something specific.

canvas_name string The Canvas name of your app (read-only).

icon_url string URL for your app’s icon (read-only).

logo_url string A URL for your app’s logo, as shown in the product directory and search listings
(read-only).

9.15 Getting an App’s 4-1-1
Problem
Is there any way for me to retrieve the general public information about an app?

Solution
Use the Application.getPublicInfo() method, and pass in any one of the following
properties for the target app:

• application_id

• api_key

• application_canvas_name

320 | Chapter 9: Facebook API

Let’s say, for example, that you want to retrieve some information about the Zerofoot-
print Calculator. All three of the following will return the same array:

$appId = $facebook->api_client->application_getPublicInfo('8653633892');
$appAPI = $facebook->api_client->application_getPublicInfo
('d41570392c4b0d08a794f4a66b91a2a9');
$appCanvas = $facebook->api_client->admin_getPublicInfo('zfcalculator');

Discussion
The returned array includes the properties in Table 9-6.

Table 9-6. Properties returned by Application.getPublicInfo()

Property Zerofootprint Calculator example

app_id 8653633892

api_key d41570392c4b0d08a794f4a66b91a2a9

canvas_name zfcalculator

display_name Zerofootprint Calculator

icon_url http://photos-892.ll.facebook.com/photos-ll-sctm/v43/8/8653633892/app_2
_8653633892_7652.gif

logo_url http://photos-892.ll.facebook.com/photos-ll-sctm/v43/8/8653633892/app_1
_8653633892_3724.gif

developers

company_name Zerofootprint Inc.

description The Zerofootprint Calculator helps you measure your footprint on the environment. It takes
just one minute to use and calculates how many tonnes of carbon you produce through
driving, travel, diet, and home.

daily_active_users 300

daily_active_percentage 1

The developers field is empty in this case because the application is set as having a
company name instead of individual developers (you can change this setting for your
app by editing the About Page).

This method is currently marked as beta in the Developers Wiki and is,
in fact, so beta that it isn’t included in the currently released version of
the Facebook PHP Client Library, but it will be soon.

Treat it with a little caution and make sure to report any bugs you might
find into the Facebook Bug Tracker at http://bugs.developers.facebook
.com.

9.15 Getting an App’s 4-1-1 | 321

http://photos-892.ll.facebook.com/photos-ll-sctm/v43/8/8653633892/app_2_8653633892_7652.gif
http://photos-892.ll.facebook.com/photos-ll-sctm/v43/8/8653633892/app_2_8653633892_7652.gif
http://photos-892.ll.facebook.com/photos-ll-sctm/v43/8/8653633892/app_1_8653633892_3724.gif
http://photos-892.ll.facebook.com/photos-ll-sctm/v43/8/8653633892/app_1_8653633892_3724.gif
http://bugs.developers.facebook.com
http://bugs.developers.facebook.com

9.16 Batching Calls
Problem
I have a bunch of calls I need to make using the API, and I’d really like to batch them
to get better performance.

Solution
Facebook has recently released a Batch API that does exactly that. The batching support
is really easy to use and basically consists of wrapping the calls you want to make in
beginBatch() and endBatch() statements.

If you were previously running this code as individual calls:

$friends = $facebook->api_client->friends_get();
$notifications = $facebook->api_client->notifications_get();

you could do the same thing as a batch by doing this:

$facebook->api_client->begin_batch();
$friends = &$facebook->api_client->friends_get();
$notifications = &$facebook->api_client->notifications_get();
$facebook->api_client->end_batch();

You won’t see any significant performance gains on two calls, but you should if you
push the Batch API to its limit and run 20 calls in a batch. See the Discussion for more
information about what’s really happening.

Discussion
The Batch API is currently in beta, so remember that you probably shouldn’t build
production code on it without being very careful, and you should report any bugs you
might find into the Facebook Bug Tracker at http://bugs.developers.facebook.com.

Batching is considerably more efficient because it saves you roundtrips to the server on
each call, and it lets Facebook process up to 20 calls in parallel at the same time. If you
made each of those calls individually, you’d have to do them in series and would have
40 calls and responses instead of two. If you need to run the calls in your batch in the
order you’ve listed them (rather than in parallel, which is the default), you can override
the batch_mode variable in the Facebook Client Library:

// Default is 0, which is parallel
// (unless you've modified facebookapi_php5_restlib.php)
$facebook->api_client->batch_mode = FacebookRestClient::BATCH_MODE_DEFAULT;

// Explicitly setting the mode to parallel (0)
$facebook->api_client->batch_mode = FacebookRestClient::BATCH_MODE_SERVER_PARALLEL;

// Overriding the mode to serial (2)
// (don't forget to set it back!)
$facebook->api_client->batch_mode = FacebookRestClient::BATCH_MODE_SERIAL_ONLY;

322 | Chapter 9: Facebook API

http://bugs.developers.facebook.com

Although this may change in the future, your batch will currently exit if there’s an error
in one of the calls, but any calls that you’ve made up to that point will still be committed.
(In other words, this isn’t a batched transaction in which the changes are committed
only at the end; if you make any calls that modify Facebook-side data, they will still
modify the data, even if the whole batch isn’t successful.) If you’re running in serial
mode, try to optimize your code so that the calls most likely to result in errors happen
at the end of the batch (e.g., something such as publishing to a News Feed will return
an error if you’ve exceeded your allocations for the day).

Return by reference

Notice the ampersands (&) in front of the two calls inside the batch in the example in
the Solution. This tells PHP that you want the return value from them as a reference
rather than as a copy of the value. Without the ampersand there, PHP would normally
return a copy of an array from a Friends.get() call, rather than a reference to the actual
data stored in memory. This might seem a little abstruse if you don’t have a program-
ming background, but stick with me because it’s important.

Let’s say that I’m your accountant and you really need to know how much money you
spent on Big Gulp Slushies from 7-Eleven so far this year. If you pick up the phone and
call me and I tell you that you spent $10,314 on crushed ice and syrup, you now have
the value (and probably a serious bill from the dentist), and you can use it to do whatever
you needed to do with it. The problem is that you spend about $28 a day on Big Gulp
Slushies, and so that one-time value I passed you is true only at the moment I give it to
you and immediately becomes untrue the next time you go into a 7-Eleven (which is
probably where you phoned from, so that’s a pretty short window of truth).

Now let’s further suppose that I’m your accountant 50 years into the future and that
we’re actually connected by a telepathic data link (and, of course, that you aren’t dead
from Slushie overconsumption). When you go into the 7-Eleven and scan your thumb-
print to pay for the fifth Big Gulp of the day, that transaction immediately shows up in
my records. When you ping me on the ole telelink, instead of telling you that the value
of your current purchases is $10,314, I pass you a reference to that number in my
accounting system. The next time you swipe your thumb and buy a drink, the number
updates on my end, and you automatically get the update since you have a reference
to where the value is stored, rather than a copy.

OK! Back to Facebook. When you call Friends.get() under nonbatch circumstances,
it returns the value of the array of the friends for the user you requested. If the user has
another tab open in her browser and accepts a new friend request in it, your copy of
the value of her friends array is now out-of-date. This is a fairly unlikely occurrence
when you’ve got her attention and she’s looking at your page, but it’s much more likely
to happen when you’re batching a number of API operations in which the 12th call
might affect the values retrieved from the third call, which gets used in the 15th.

9.16 Batching Calls | 323

9.17 Getting and Setting Cookies
Problem
I need to get or set cookies for my application.

Solution
Use the Data.setCookie() method to set a cookie (where user is the UID of the user
you want to drop the cookie for):

$cookieReturn = $facebook->api_client->data_setCookie($user,
 'cookie_type', 'chocolate_chip');

Use the Data.getCookies() method to get a cookie (where user is the UID of the user
you want to retrieve the cookie for):

$cookie = $facebook->api_client->data_getCookies($user, 'cookie_type');

Discussion
You can specify optional expires and path settings for cookies when you drop them
(the defaults are 24 hours and /, respectively):

$cookieReturn = $facebook->api_client->data_setCookie($user,
 'cookie_type', 'chocolate_chip', '1254079800', '/some/path/here');

Note that the expires argument is measured in epoch seconds (see Recipe 6.20 for more
information about epoch time).

If you don’t specify a cookie name for Data.getCookies(), it will return all of the avail-
able cookies for the specified user.

Cookies in Facebook are handled differently than a regular browser-side cookie
dropped by a regular web page. The cookies are actually managed by Platform and are
associated with the user’s account rather than residing in her browser, so they’ll be
present whenever that user logs into Facebook from any computer. Facebook will pass
any unexpired cookies to your application with each request from a Canvas page to
your callback URL, and will store any cookies you return (up to a limit of 50 cookies
per app) so that you can access them next time. Some important things to note:

• You can use cookies to store data that you would otherwise have to roundtrip
through API calls. This can be a very effective performance enhancement, since
cookies are sent to you with each request. Keep in mind, however, that your request
size will grow considerably if you fill it full of cookies. There’s a careful balancing
act at play here, but it’s one that you can measure quite easily (check the average
roundtrip time over a series of requests using the API, then compare to the average
of the same number of roundtrips using cookies).

• Cookies without an expires attribute expire after 24 hours by default.

324 | Chapter 9: Facebook API

• Stored cookies are associated with the application ID and not with your callback
URL’s domain (which is great because it means you can move to a different server
or address without issues).

• Facebook cookies have a path attribute just like regular cookies, which is evaluated
relative to the callback URL of your application (rather than to a path on
Facebook).

• You can drop and retrieve cookies for users who haven’t logged into your
application.

• Only web-based Facebook apps can use cookies. There is no cookie support for
desktop apps.

• The cookie API calls do not require a session key.

These methods are currently marked as beta in the Developers
Wiki, so treat them with a little caution and make sure to report
any bugs you might find into the Facebook Bug Tracker at http://
bugs.developers.facebook.com.

FQL equivalent

If you’d prefer to use FQL to access cookies, the equivalent query is:

SELECT uid, name, value, expires, path FROM cookies WHERE uid=12345 AND name='Foo'

For more information, see Recipe 8.10.

9.18 Getting Events
Problem
I need to retrieve an event.

Solution
Use the Events.get() method, which allows you to filter for one user, a series of events,
start/end times, and/or RSVP status. To filter for one user, specify null for the other
filter parameters:

$events = $facebook->api_client->events_get(12345, null, null, null, null);

To retrieve one or more events, pass an array of event IDs (eids) as the second
parameter:

$events = $facebook->api_client->events_get(null,
 array(14381739642,16044821668), null, null, null);

If you specify both a uid and an array of eids, Platform will return the events in the
array that the user has on his list:

9.18 Getting Events | 325

http://bugs.developers.facebook.com
http://bugs.developers.facebook.com

$events = $facebook->api_client->events_get(12345, array(14381739642,
16044821668), null, null, null);

You can add in a start and/or end time (in epoch seconds; see Recipe 6.20 for more
info) to further filter the results:

$events = $facebook->api_client->events_get(12345, array(14381739642,
16044821668), 1209600000, 1214827199, null);

The final argument is to filter by a specific RSVP status, which are attending, unsure,
declined, and not_replied:

$events = $facebook->api_client->events_get(12345, null, 1209600000,
 1214827199, 'declined');

Discussion
Events.get() will always return only those events that the current loggedinuser is
allowed to see, regardless of who you specify as the uid filter (you’ll get an empty set
of events back if the user isn’t allowed to see any of the events that should have been
in the set).

The Client Library will return a multidimensional array in which each element contains
all of the fields shown in Table 8-6.

FQL Equivalent

If you’d prefer to use FQL to access events, the equivalent query is:

SELECT eid, name, tagline FROM event WHERE eid IN (SELECT eid FROM
 event_member WHERE uid=uid)

See Recipe 8.18 for more information.

9.19 Getting Event Members
Problem
I need to retrieve the users who are attending an event.

Solution
Use the Events.getMembers() method:

$members = $facebook->api_client->events_getMembers($eid);

where eid is the ID of the event whose members you want to retrieve.

Discussion
This will return a multidimensional array in which the first level contains the different
RSVP statuses and the second level is the uid (user ID) of the member who RSVPed.

326 | Chapter 9: Facebook API

The four possible statuses are attending, unsure, declined, and not_replied. If you
wanted, for example, to list all of the people who are attending the event with eid 12345,
you could do the following:

$members = $facebook->api_client->events_getMembers('12345');
if($members){
 if($members['attending']){
 echo '';
 for($counter = 0; $counter < count($members['attending']); $counter++){
 $uid = $members['attending'][$counter];
 echo '';
 echo ' <fb:profile-pic uid="' . $uid . '"/>'
 echo ' <fb:name uid="' . $uid . '"/>';
 echo '';
 }
 echo '';
 }
}

FQL equivalent

If you’d prefer to use FQL to access your event members, the equivalent query is:

SELECT uid, eid, rsvp_status FROM event_member WHERE eid=eid

See Recipe 8.19 for more information.

9.20 Refreshing FBML Caches
Problem
I need to tell Facebook to refresh its caches for some of my stored data.

Solution
If you’re caching images, use the FBML.refreshImgSrc() method:

$return = $facebook->api_client->fbml_refreshImgSrc
('http://www.someserver.com/images/some_image.jpg');

If you’re caching URLs, use the FBML.refreshRefUrl() method:

$return = $facebook->api_client->fbml_refreshRefUrl
('http://www.someserver.com/page.php');

Discussion
This returns true (1) if Facebook is able to locate an entry in its cache with the url you
passed in and can refresh, or false (0) or blank if it can’t.

9.20 Refreshing FBML Caches | 327

9.21 Getting a (Ref) Handle on FBML
Problem
I want to put some FBML into Facebook’s cache so that I can use it in a whole bunch
of user Profiles.

Solution
Use the FBML.setRefHandle() method:

$return = $facebook->api_client->fbml_setRefHandle('myHandle','FBML goes here');

Discussion
This will associate the handle you pass as the first parameter with the FBML content
that you pass in the second one. You can then pull this content at any time using the
fb:ref FBML tag (see Recipe 6.57 for more info).

This can be used only by web-based Facebook apps. Desktop apps are out of luck on
this one.

9.22 Three Story Sizes: Working with Template Bundles
Problem
I’d like to be able to publish stories that take advantage of the one-line, short story, and
full story formats introduced in the mid-2008 Profile redesign. What do I need to do?

Solution
In addition to splitting Profiles into multiple tabs, the Profile redesign also saw the
advent of Feed stories appearing in one-line, short story, and full story formats. As a
developer, you need to register “template bundles” with Facebook before you can pub-
lish stories in the different formats. Template bundles contain at least one of:

• One or more one-line story templates

• One or more short story templates

• One or more full story templates

You can specify multiple one-line templates by including them in a JSON-formatted
array. Remember that order is very important here, and you want to include your most
detailed template first and your least detailed last. For example:

{*actor*} just shared a {*nap-type*} with {*target*}.
{*actor*} just shared a nap with {*target*}.
{*actor*} just napped.

328 | Chapter 9: Facebook API

Tokens are always in the form {*token_name*}, and subsequent templates should only
ever include a subset of the tokens used in the template prior (in other words, your
templates should get less and less detailed without introducing new content). See the
Discussion for more info about tokens. Facebook will always use the most flexible (i.e.,
the first) template for Mini-Feed stories, and it will try to aggregate stories together for
News Feeds. Keep in mind that your least-specific template (i.e., the last one) has the
highest likelihood of being used for aggregation, since it’s the most likely to have con-
tent from all of the actors (see the Discussion for more about aggregation). Here’s an
example of template registration:

$oneLiners = array('{*actor*} just shared a {*nap-type*} with {*target*}.',
 '{*actor*} just shared a nap with {*target*}.', '{*actor*} just napped.');

$shortStories = array(
 array('template_title'=>'{*actor*} just shared a {*nap-type*}
 with {*target*}', 'template_body'=>'<p>It was {*status*}!</p>'),
 array('template_title'=>'{*actor*} just shared a nap with
 {*target*}','template_body'=>'<p>It was {*status*}!</p>'),
 array('template_title'=>'{*actor*} just napped.', '
template_body'=>'<p>It was {*status*}!</p>'));

$fullStories = array(
 array('template_title'=>'{*actor*} just shared a {*nap-type*}
 with {*target*}', 'template_body'=>'<p><img src=
"http://myserver.com/some_img.jpg" alt="Naps!"> It
 was {*status*}!</p>'),
 array('template_title'=>'{*actor*} just shared a nap with {*target*}
','template_body'=>'<p><img src="http://myserver.com/
some_img.jpg" alt="Naps!"> It was {*status*}!</p>'),
 array('template_title'=>'{*actor*} just napped.',
'template_body'=>'<p><img src="http://myserver.com/some_img.jpg"
 alt="Naps!"> It was {*status*}!</p>'));

$bundleId = $facebook->api_client->feed_registerTemplateBundle
($oneLiners, $shortStories, $fullStories);

A few notes:

• You have to include the one-line templates but can leave out either of the short or
full templates by passing null into Feed.registerTemplateBundle().

• The template_title fields have to start with the {*actor*} token, but you’re free
to do whatever you’d like in the body fields.

• The bundle ID returned in the code here can be used with the other Feed API calls
for publishing stories and managing template bundles.

Discussion
Registering your templates is just the first step. This Discussion will give you a quick
tour of the other Feed API calls related to template bundles, as well as an example of
what the stories look like.

9.22 Three Story Sizes: Working with Template Bundles | 329

Feed story example: Causes

Figures 9-8, 9-9, and 9-10 show examples of the three different story sizes from the
Causes app.

Figure 9-8. Causes one-line story

Figure 9-9. Causes short story

Figure 9-10. Causes full story

The “Add Comment” links are added by Facebook automatically.

About tokens

You can create as many tokens as you’d like in your feeds by defining them on the fly
(anything wrapped with {* and *} automatically becomes a token). The only limitation
on naming is that you can’t conflict with one of the special tokens outlined later in this
section.

There are two special tokens that you can include in your templates and don’t need to
define:

{*actor*}
The user who originated the action that resulted in the story being published.

330 | Chapter 9: Facebook API

{*target*}
A list of the friends of the actor on whom or with whom the actor performed the
action. The advantage to using this token over a custom one (e.g., {*friends*} or
something similar) is that Facebook will automatically output the right text for the
number of included targets (one friend just lists the name, two adds “and”, three
turns into a list ending in “and”, etc.).

In both cases, Facebook will worry about substituting the right people into the story
for you. In addition to those two tokens, you can also take advantage of a collection of
additional templates that Facebook will handle for you. You can use exactly one of the
following four tags in each story:

{*images*}
You can include up to four images in your story, so when you publish a story using
Feed.publishUserAction(), this token should map to an array containing four
records, with required src keys and optional href keys if you’d like the images to
be links.

{*flash*}
You can include a single Flash movie that fits into a box measuring 100 pixels high
by 130 pixels wide. When you publish a story using Feed.publishUserAction(),
this token should map to an array containing a single entry with the required keys
swfsrc (the location of the Flash movie) and imgsrc (the location of an image to
display until the user clicks to activate). The default size is 30 pixels high by 100
pixels wide, so you’ll need to specify an optional height (an integer between 30
and 100) and width (one of 100, 110, or 130) if you want to override the default.

{*mp3*}
You can include a single MP3 that Facebook will render as playable using its audio
controller. You’re required to include an src key (the location of the MP3), and
you can include optional title, album, and artist keys (as strings).

{*video*}
You can include a single video that Facebook will make playable in the story. You’re
required to include the keys video_src (location of the video) and preview_img
(image to display until the user clicks to activate). You can optionally include
video_title, video_type (defaults to “application/x-shockwave-flash”), and
video_link keys.

Getting all of your templates

Use the Feed.getRegisteredTemplateBundles() method to retrieve all of the template
bundles your application has previously registered:

$bundles = $facebook->api_client->feed_getRegisteredTemplateBundles();

You’ll get back an array containing all of the templates, including their IDs for use in
subsequent calls.

9.22 Three Story Sizes: Working with Template Bundles | 331

Getting a template bundle

Use the Feed.getRegisteredTemplateBundleByID() method to retrieve a specific tem-
plate bundle by ID:

$bundle = $facebook->api_client->feed_getRegisteredTemplateBundleByID(12345);

where 12345 is a valid template bundle ID.

Deactivating a template bundle

If you need to deactivate a template bundle you’ve previously registered, use the
Feed.deactivateTemplateBundleByID() method:

$result = $facebook->api_client->feed_deactivateTemplateBundleByID(12345);

where 12345 is a valid template bundle ID. The result will be true if the template was
found and deactivated, and false if otherwise. Stories that were previously published
with the deactivated template will still display in the News and Mini-Feeds, but you
won’t be able to publish to it anymore.

9.23 Publishing News and Mini-Feed Stories
Problem
I want to publish stories about my users’ activities in my app so that their friends see
them and become engaged.

Solution
Use the Feed.publishUserAction() method:

$template_bundle_id = 12345678901;

$template_data = array(
 'nap-type'=>'Super Disco Nap',
 'status'=>'fabulous',
);

$target_ids = '12345,67890';

$result = $facebook->api_client->feed_publishUserAction
($template_bundle_id, json_encode($template_data), $target_ids);

You can optionally include a fourth parameter, body_general, to add additional body
content to extend short story format posts. If these stories are being aggregated, Face-
book will include one of the body_general parameters in the aggregated story. See
Recipe 9.22 for more information about template bundles.

332 | Chapter 9: Facebook API

Discussion
Your app used to be limited to calling this function once every 12 hours for every user
other than those listed as developers for your app (who will always see every story that
you publish for testing purposes). At the time this book was going to press, it remained
unclear as to whether that would continue to be the case with the Profile redesign.

Note that the template_data needs to be JSON-encoded when you pass it into the
Feed.publishUserAction() method.

Escaping JSON-Encoded URLs
The JSON-encoding step is easy if you’re working in PHP 5.2 (or newer), since it in-
cludes a JSON encoder. This can become a particular pain with URLs that you might
include in the template_data array, which need to have all the slashes escaped. If, for
example, you have a token called {*photo*} and you need to substitute in the actual
<a> tag linking to http://flickr.com/photos/someuser/12345/, you would need to include
it as:

{"photo":"<a href{{=}}\"http:\/\/www.flickr.com\/photos\/someuser\/12345">Flickr<\/a>"}

Take a look at the PHP documentation for json_encode(), which makes that a whole
lot easier:

$titleData = json_encode(array('photo => '<a href=
"http://flickr.com/photos/someuser/12345/">Flickr',));

If you’re working in an earlier version of PHP, check out the Zend JSON encoder at
http://framework.zend.com/manual/en/zend.json.html. Developers working in other
languages should find a similar library.

Stories may or may not show up in users’ News Feeds, depending on a very complex
and highly secretive algorithm that the Facebook team keeps locked up in a cage deep
underground their Palo Alto lair. Thankfully, they released some details about how this
works back in December 2007, which you can still read at http://wiki.developers.face
book.com/index.php/FeedRankingFAQ (note that this might be out-of-date or exactly
accurate—such is the joy of proprietary algorithms).

Feed.publishUserAction() will return either true (1) on success, false (0) on a permis-
sions error, or one of the other Facebook error codes (see Recipe 9.58 for more
information).

9.24 Story Aggregation
Problem
I’ve heard that Facebook aggregates stories together, but I don’t know what that means.

9.24 Story Aggregation | 333

http://flickr.com/photos/someuser/12345/
http://framework.zend.com/manual/en/zend.json.html
http://wiki.developers.facebook.com/index.php/FeedRankingFAQ
http://wiki.developers.facebook.com/index.php/FeedRankingFAQ

Solution
If your app is growing in popularity and you have multiple users who are connected
through part of the social graph, Facebook will aggregate the stories from your app
about a given user’s friends, and that aggregated story will have a much higher chance
of showing up in their feed. You’ve likely seen this happen with Facebook’s own stories,
particularly about things such as Profile picture changes. Any of your stories that are
published using the same registered template bundle can be aggregated automatically.

Discussion
Let’s take a look at an example of aggregation. If our handy old Super Disco Napping
application developed the ability to report on the post-napping brunch adventures of
its users, it might publish a News story something like the one shown in Figure 9-11.

Figure 9-11. News story, non-aggregated

The delicious photo of a delicious-looking plate of French toast is cour-
tesy of urbanshoregirl, who published it on Flickr under a Creative
Commons license. You can find the original photo at http://flickr.com/
photos/urbanshoregirl/101749649/.

That’s pretty interesting and might attract my friends’ attention if it made it into their
News Feeds, but it has to compete against all the other stories out there, so the odds
are pretty slim (which I won’t be after eating that plate of food). If we take advantage
of aggregation, Facebook can pick out that my brunch story is the same as the ones
published by my wife and our friend Jason, and it can aggregate them together into one
story, as in Figure 9-12.

Figure 9-12. News story, aggregated

334 | Chapter 9: Facebook API

http://flickr.com/photos/urbanshoregirl/101749649/
http://flickr.com/photos/urbanshoregirl/101749649/

This News story is quite likely to be true, since we all have brunch together a lot.
Unfortunately, it’s only part of the story, since Jason’s wife Athena isn’t on Facebook.
A more accurate aggregated story might be the one in Figure 9-13.

Figure 9-13. Factually accurate News story, aggregated

Aggregation used to be much more complicated before Feed.publishUserAction()
came along, requiring you to make sure that the content in the title and body of your
stories was identical. Now that we have the joy of registered template bundles, Face-
book will try to aggregate any stories that use the same templates, falling back to the
simplest (i.e., the last) template in the one-line, short, or full story formats. For more
information, see Recipe 9.22.

9.25 Setting Info Sections
Problem
My app has collected some fantastic info about my users, and I’d like to add it to their
Info tabs as structured data.

Solution
The mid-2008 Profile redesign introduced the ability for applications to add sections
to the new Info tab, accomplished through a new family of four API calls and a new
FBML tag.

Setting an Info section is fairly simple, though the nested arrays can be a little confusing:

$info_fields = array(
 array(
 'field'=>'Favorite Naps',
 'items'=>array(
 array(
 'label'=>'Disco Nap',
 'link'=>'http://apps.facebook.com/superdisconapping/define/disconap'),
 array(
 'label'=>'Super Disco Nap',
 'link'=>'http://apps.facebook.com/superdisconapping/
define/superdisconap'),
 array(

9.25 Setting Info Sections | 335

 'label'=>'Power Nap',
 'link'=>'http://apps.facebook.com/superdisconapping/
define/powernap'))),
 array(
 'field'=>'Favorite Napping Locales',
 'items'=>array(
 array(
 'label'=>'Car',
 'link'=>'http://apps.facebook.com/superdisconapping/locale/car'),
 array(
 'label'=>'Office',
 'link'=>'http://apps.facebook.com/superdisconapping/
locale/office'))));

$infoResult = $facebook->api_client->profile_setInfo('Super Disco
 Napping', 1, $info_fields, 12345);

If you read down from the top, info_fields is an array that contains a field name and
an array of items. Each item contains, at a minimum, a label and a link, but can also
contain image, description, and sublabel fields (the example here keeps it simple and
uses only label and link). The actual call to Profile.setInfo() accepts a name for the
Info section, either 1 for a text-based section or 5 for an object-based one (see the
Discussion for more details), your array of data, and the uid of the user you’re setting
the section for.

Discussion
As outlined in Recipe 2.13, you can include either text-based or object-based sections.
You can fit a lot more information into a much smaller area if you use the text-based
option, but people are like magpies and are attracted to bright, shiny images, so you’ll
probably get more clicks if you go the object route.

Since the links on items can go anywhere, add as many links into your application as
you can. Users surfing their friends’ Info tabs will see your tantalizing links and follow
them right into your app, where they will hopefully grant you access and install it
themselves. In the example here, the Super Disco Napping app now includes a section
that defines different types of naps and locations for taking them in, which would ideally
be unprotected content that didn’t require a login to access (both for attracting users
and to open them up for indexing by search engines). Note that you can add only one
Info box per application, so subsequent calls to Profile.setInfo() will simply over-
write earlier calls.

The other three tags are outlined next.

Getting Info sections

You can retrieve content you’ve set in an Info section by calling Profile.getInfo():

$infoSection = $facebook->api_client->profile_getInfo(561415460);

336 | Chapter 9: Facebook API

where 12345 is the uid for which you want to retrieve your section. This will return an
array containing the same nested array structure you used to create the section (see the
earlier example).

Adding options

Users can edit their Info section right on the Info tab, so it’s a really good idea to pre-
populate the options they can add (especially if you’re using an object-based section).
Call the Profile.setInfoOptions() method to add some options for the type-ahead
control:

$options = array(
 array(
 'label'=>'Siesta',
 'link'=>'http://apps.facebook.com/superdisconapping/define/siesta'),
 array(
 'label'=>'Cat Nap',
 'link'=>'http://apps.facebook.com/superdisconapping/define/catnap'));

$infoOptionsResult = $facebook->api_client->profile_setInfoOptions
($options,'Favorite Naps');

The second parameter is the name of the field set when you called Profile.setInfo().

Getting Options

You can retrieve the options defined for a field by calling the method
Profile.getInfoOptions():

$infoOptions = $facebook->api_client->profile_getInfoOptions('Favorite Naps');

9.26 FQL Queries
Problem
I need to run an FQL query.

Solution and Discussion
See Chapter 8, which covers FQL in great detail.

9.27 Friends?
Problem
I need to determine whether two (or more) users are friends.

9.27 Friends? | 337

Solution
Use the Friends.areFriends() method:

$areFriends = $facebook->api_client->friends_areFriends('12345', '67890');

The method also accepts two arrays and will let you know whether each pair (pulling
the member at the same position in each array) is a friend:

$aUsers = array('12345', '67890', '11223');
$bUsers = array('33445', '66778', '99100');
$areFriends = $facebook->api_client->friends_areFriends($aUsers, $bUsers);

Discussion
Either way, the Friends.areFriends() returns a multidimensional array in which each
element contains uid1, uid2, and are_friends elements (with the latter being true,
false, or empty if the members aren’t visible due to privacy rules or don’t exist, which
is the case with our fictional users here):

Array
(
 [0] => Array
 (
 [uid1] => 12345
 [uid2] => 33445
 [are_friends] =>
)

 [1] => Array
 (
 [uid1] => 67890
 [uid2] => 66778
 [are_friends] =>
)

 [2] => Array
 (
 [uid1] => 11223
 [uid2] => 99100
 [are_friends] =>
)
)

Since the method is symmetric, both arrays need to have the same number of elements
in them or you’ll get an invalid parameter error.

FQL equivalent

If you’d prefer to use FQL to access friends, the equivalent query is:

SELECT uid1, uid2 FROM friend WHERE uid1=uid1 AND uid2=uid2

See Recipe 8.28 for more information.

338 | Chapter 9: Facebook API

9.28 Get Friends
Problem
I need to retrieve all of the current loggedinuser’s friends.

Solution
Use the Friends.get() method:

$friends = $facebook->api_client->friends_get();

You can optionally specify a flid (friend list ID) if you want to narrow the scope of the
retrieval down to a single friend list:

$friends = $facebook->api_client->friends_get(12345);

You can find the flids for this user by calling Friends.getLists() (see Recipe 9.30).

Discussion
Friends.get() returns an array of uids for the matching friends.

This method will only return friends of the current loggedinuser. There is no way to
call this for a different user. It is against the terms of use of Facebook Platform to store
the returned values from this call.

FQL equivalent

If you’d prefer to use FQL to access friends, the equivalent query is:

SELECT uid2 FROM friend WHERE uid1=$uid

See Recipe 8.27 for more information.

9.29 Get Friends Who Use My App
Problem
I need to retrieve all of the current loggedinuser’s friends who already have my app
installed.

Solution
Use the Friends.getAppUsers() method:

$friends = $facebook->api_client->friends_getAppUsers();

This method has no parameters, and it can be called only for the combination of the
current loggedinuser and your application.

9.29 Get Friends Who Use My App | 339

Discussion
Friends.getAppUsers() returns an array of uids of the friends who have your app in-
stalled. It is against the terms of use of Facebook Platform to store the returned values
from this call.

FQL equivalent

If you’d prefer to use FQL to access friends, the equivalent query is:

SELECT uid FROM user WHERE uid IN (SELECT uid2 FROM friend WHERE uid1=$uid)
 AND is_app_user

See Recipe 8.56 for more information.

9.30 Get Friend Lists
Problem
I need to retrieve all of the friend lists for the current loggedinuser.

Solution
Use the Friends.getLists() method:

$friendLists = $facebook->api_client->friends_getLists();

This method has no parameters, and it can be called only for the current loggedinuser.

Discussion
Friends.getLists() returns an array of the flids (friend list IDs) for the current logge
dinuser. You can retrieve the members of a friend list by calling Friends.get() and
passing in the flid (see Recipe 9.28).

You’re allowed to store the returned friend lists, but you should check them periodically
because changes users make won’t be reported back to you. Friend lists are considered
private, so you can’t share this information with anyone else.

FQL equivalent

If you’d prefer to use FQL to access friend lists, the equivalent query is:

SELECT flid, name FROM friendlist WHERE owner = $uid;

See Recipe 8.33 for more information.

340 | Chapter 9: Facebook API

9.31 Get Groups
Problem
I need to retrieve information about a set of groups, based on either a list of users or
group IDs.

Solution
Use the Groups.get() method:

$groups = $facebook->api_client->groups_get();

If you specify no filters, you’ll get all the groups for the current loggedinuser. You can
specify a different user’s uid to filter for them:

$groups = $facebook->api_client->groups_get(12345);

In that case, you’ll get something back only if the current loggedinuser is allowed to
see the groups for the user you’ve specified. If you have one or more gids (group IDs)
and just want to pull information on them, you can do that too:

$targetGroups = array('2248774311', '14740918186');
$groups = $facebook->api_client->groups_get(null, $targetGroups);

Discussion
Groups.get() returns a multidimensional array of group records, with each element
containing the fields listed in Recipe 8.37.

FQL equivalent

If you’d prefer to use FQL to access groups, the equivalent query is:

SELECT gid, name, description FROM group WHERE gid IN (SELECT gid FROM
 group_member WHERE uid=$uid) AND gid IN ($gids)

See Recipe 8.37 for more information.

9.32 Get Group Members
Problem
I need to find all of the members of a group.

Solution
Use the Groups.getMembers() method:

$members = $facebook->api_client->groups_getMembers(12345);

where 12345 is the gid (group ID) of your target group.

9.32 Get Group Members | 341

Description
Groups.getMembers() returns a multidimensional array in which the first level of ele-
ments are the four membership types (members, admins, officers, not_replied), each
containing the appropriate set of uids representing all of the members of that category
whom the current loggedinuser is allowed to see. Note that the members array contains
all of the admins and officers but does not overlap with the not_replied array. These
lists are not filtered for users of your application, so note that they might contain users
who don’t have it installed.

FQL equivalent

If you’d prefer to use FQL to access group members, the equivalent query is:

SELECT uid, gid, positions FROM group_member WHERE gid=$gid

See Recipe 8.42 for more information.

9.33 Creating/Modifying Marketplace Listings
Problem
I need to create or modify a Facebook Marketplace listing from inside my application.

Solution
Creating and modifying listings both use the incorrectly named
Marketplace.createListing() method. If you’re creating a new listing, pass a 0 for the
lid (listing ID):

$attributes = array('title'=>'Bees!','category'=>'FORSALE',
'subcategory'=>'GENERAL','description'=>'Great big hive full
 of bees for sale. Makes great honey.');
$listing = $facebook->api_client->marketplace_createListing(0, true, $attributes);

If you’re modifying an existing listing, pass the listing’s lid:

$attributes = array('title'=>'Free Bees!','category'=>'FORSALE',
'subcategory'=>'GENERAL','description'=>'I\'m covered in beeeeeees!
 Please take them. Please.');
$listing = $facebook->api_client->marketplace_createListing
(23464075249, true, $attributes);

Discussion
This method (along with Users.setStatus()) requires that users grant your application
an extended permission. If you call it without having the permission granted, you’ll get
back a 280 error (“Creating and modifying listings requires the extended permission
create_listing”). See Recipe 9.52 for more information on extended permissions.

342 | Chapter 9: Facebook API

The attributes array can contain settings for any of the properties of a Marketplace
listing, which you can find in Recipe 8.42.

The middle parameter is a boolean indicating whether the entry should show up on
the user’s Profile. Passing true will publish a News story about the user, like the one
shown in Figure 9-14.

Figure 9-14. News Feed of new listing

There’s one more parameter you can pass in: a uid to indicate who should own the new
listing. This is ignored for desktop applications, and it will be honored for web apps
only if that user has granted the extended permission. If you’re not using the Client
Library, this parameter is required if you don’t pass in a session_key.

9.34 Get Marketplace Listings
Problem
I need to retrieve Marketplace listings, based on either a list of users or listing IDs.

Solution
Use the Marketplace.getListings() method:

$listings = $facebook->api_client->marketplace_getListings('1234567', null);

where 1234567 is the lid (listing ID).

If you specify no uid (user ID) as the second parameter, you’ll get the listings you’ve
asked for with no filtering. You can specify a uid without lids to retrieve all the listings
owned by one user:

$groups = $facebook->api_client->marketplace_getListings(null, 12345);

Both parameters can be specified as arrays as well:

$targetListings = array('1234567', '8901234');
$targetUsers = array('12345', '67890', '11223');
$listings = $facebook->api_client->marketplace_getListings
($targetListings, $targetUsers);

9.34 Get Marketplace Listings | 343

Discussion
Marketplace.getListings() returns a multidimensional array of listing records, with
each element containing the fields listed in Table 8-13.

FQL equivalent

If you’d prefer to use FQL to access listings, the equivalent query is:

SELECT listing_id, url, title, description FROM listings WHERE poster in
 ($uids) AND listing_id in ($listing_ids)

See Table 8-13 for more information.

9.35 Get Marketplace Categories and Subcategories
Problem
I need to pull in the list of Marketplace categories and subcategories.

Solution
Use the Marketplace.getCategories() method:

$categories = $facebook->api_client->marketplace_getCategories();

Once you have a category, use the Marketplace.getSubCategories() method to retrieve
its subcategories:

$subcategories = $facebook->api_client->marketplace_getSubCategories('FORSALE');

Discussion
You can quite easily combine the two methods to generate a <select> representing the
hierarchy of the Marketplace:

$categories = $facebook->api_client->marketplace_getCategories();
if($categories){
 echo '<select>';
 foreach($categories as $category){
 echo '<option value="' . $category . '">'. $category . '</option>';
 $subcategories = $facebook->api_client->marketplace_
getSubCategories($category);
 if($subcategories){
 foreach($subcategories as $subcategory){
 echo '<option value="' . $subcategory . '"> '
 . $subcategory . '</option>';
 }
 }
 }
 echo '</select>';
}

344 | Chapter 9: Facebook API

9.36 Deleting Marketplace Listings
Problem
I need to delete a Marketplace listing.

Solution
Use the Marketplace.removeListing() method:

$result = $facebook->api_client->marketplace_removeListing('1234567');

You can optionally specify a status to make it clear why the listing is being removed.
Valid statuses are SUCCESS, DEFAULT, or NOT_SUCCESS (the default is, unsurprisingly,
DEFAULT):

$result = $facebook->api_client->marketplace_removeListing('1234567', 'SUCCESS');

Discussion
You can also tag a uid on the end to specify whose listings you’re deleting if they
are not the current loggedinuser (this will be ignored for desktop apps).
Marketplace.removeListing() will return true (1) on success, and false (0) or an error
on failure.

9.37 Searching the Marketplace
Problem
I need to search the Marketplace.

Solution
Use the Marketplace.search() method:

$results = $facebook->api_client->marketplace_search(null, null, 'donuts');

The first two parameters are optional category and subcategory filters:

$results = $facebook->api_client->marketplace_search('JOBS', null, 'donuts');

Discussion
Marketplace.search() returns a multidimensional array in which each element is a
listing containing the fields found in Table 8-13 in Recipe 8.42.

9.37 Searching the Marketplace | 345

9.38 Sending Notifications
Problem
I need to send Notifications out to my users and their friends.

Solution
Use the Notifications.send() method to send on-Facebook Notifications:

$to_ids = array('12345', '67890');
$result = $facebook->api_client->notifications_send($to_ids,
 'Your super disco nap is over! Time to wake up!');

You can send a Notification to the current loggedinuser by passing an empty string for
to_ids. If you send the Notification to other users, make sure that the content starts
with a verb because Facebook will prepend your text with the user’s name (e.g., “Jay
Goldman...”). The prepending doesn’t happen if you send the Notification to the cur-
rent loggedinuser.

The second parameter is the actual content for the Notification and allows for some
FBML and markup, so you can experiment to find out what’s allowable.
Notifications.send() returns a comma-separated list of the users it was able to send
the Notification to.

Use the Notifications.sendEmail() method to send off-Facebook Notifications:

$recipients = array('12345', '67890');

$subject = 'Hello Disco Nappers!';

$text = 'This is a reminder that it\'s almost time for you to take your
 next Disco Nap!';

$fbml = 'This is a reminder about your forthcoming Disco Nap with
 <fb:name uid="11223" useyou="false" />!';

$result = $facebook->api_client->notifications_sendEmail($recipients,
 $subject, $text, $fbml);

Every application has an imposed limit on the number of emails you can send per day,
which you can find in your Facebook Insights application, on the Allocations tab (see
http://www.new.facebook.com/business/insights/app.php?id=12345&tab=allocations,
where 12345 is your app’s ID). Desktop apps have to pass a session key and can send
email only to the current user identified in that session. Some tags are prohibited in the
fbml parameter, so try experimenting to see what you can get away with.
Notifications.sendEmail() returns a comma-separated list of the users it was able to
send the Notification to.

346 | Chapter 9: Facebook API

http://www.new.facebook.com/business/insights/app.php?id=12345&tab=allocations

Discussion
Notifications have got to be one of the most contentious issues for Facebook app de-
velopers. On the one hand, they make up the bread and butter of how a lot of appli-
cations grow their user bases. On the other hand, they’re the pain in the inbox that
users most often lament when complaining about how Facebook applications are
ruining their Facebook experience. We’ve all logged in to find an overwhelming ava-
lanche of Notifications, but we’re also tickled pink when we find out that it’s our turn
in a Scrabulous game or that someone has stolen our Two Headed Serpent in PackRat.

Notifications are a mechanism for your application to alert your users that something
has happened in your app that requires their attention. Your Notifications page on
Facebook will show Notifications that you’ve both received and sent, as in Figures
9-15 and 9-16.

Figure 9-15. PackRat Notification received

Figure 9-16. PackRat Notification sent

As described in Recipe 2.16, your application has an allocated number of Notifications
that you can send per day, based on how users have received your Notifications in the
past. Since users who mark your Notifications as spam today affect the number of
Notifications you can send tomorrow, it’s critical to your app’s success that you spend
time on a Notification strategy that will keep your so-called “spamminess” rating as
low as possible. There’s no one strategy that will work for all apps, but here’s some
general advice.

Sending to friends

You can send Notifications only to the current loggedinuser or to her friends who have
your app installed. This works well for games such as PackRat, since you can only play
with your friends anyway. It works much less well in a game in which you can challenge
players who aren’t your friends, since there’s no way to send them a notification when
it’s their turn. You can get around this by creating infinite sessions for them and storing
their session_keys in your database, and then making an API call on their behalf to
send them a Notification, though this can become quite tedious. See Recipe 9.7 for
more information.

9.38 Sending Notifications | 347

Monitoring allocations

Here are two ways you can monitor your allocation of Notifications:

1. Check the Allocations tab in the Facebook Insights application for your app (http:
//www.facebook.com/business/insights/app.php?id=123456789&tab=allocations,
where 12345679 is your app’s ID).

2. Use the Admin.getAllocation() method. See Recipe 9.12 for more info.

You should generally keep an eye on those numbers, but you should be particularly
watchful when you make a change to the Notifications sent by your app, as that’s most
likely to trigger a change in the way recipients are receiving them.

9.39 Get Notifications
Problem
I need to retrieve all of the outstanding Notifications for the current user.

Solution
Use the Notifications.get() method:

$notifications = $facebook->api_client->notifications_get();

Discussion
Notifications.get() returns a multidimensional array in which the elements are dif-
ferent Notification types (messages, pokes, shares, friend requests, group invites, and
event invites), with each one containing different information depending on its type.
Messages, pokes, and shares all contain an unread count and the most_recent ID of the
relevant content type, friend requests contains the uids of the users who have made the
outstanding requests, and group and event invites contain the gids and eids of the
relevant groups and events.

Facebook encourages developers who are building apps that notify users of new mes-
sages, pokes, and shares to use the following logic:

if (unread > 0 && most_recent > old_most_recent) {
 display_notification();
}
old_most_recent = most_recent;

9.40 Get Pages
Problem
I need to find all of the Pages that the current user is a fan of.

348 | Chapter 9: Facebook API

http://www.facebook.com/business/insights/app.php?id=123456789&tab=allocations
http://www.facebook.com/business/insights/app.php?id=123456789&tab=allocations

Solution
Use the Pages.getInfo() method:

$fields = array('name','pic_small','has_added_app');
$pages = $facebook->api_client->pages_getInfo(null,$fields,null,null);

Discussion
The four parameters are filters that allow you to constrain the result set. The first is for
pageids (Page IDs), which allows you to retrieve info for a specific Page or a set of Pages:

$pages = array('25975037248', '5603889283');
$fields = array('name','pic_small','has_added_app');
$pages = $facebook->api_client->pages_getInfo($pages,$fields,null,null);

The second parameter is the set of fields you’d like returned in your results, which can
include any of the fields listed in Table 8-15. The third is for uids and allows you to
return the Pages for a different user (or set of users), provided that the current
loggedinuser is allowed to see that info:

$users = array('567770429');
$fields = array('name','pic_small','has_added_app');
$pages = $facebook->api_client->pages_getInfo(null,$fields,$users,null);

The final parameter is for Page type and lets you filter the results down to a specified
list. There doesn’t appear to be an easy way to get the list of possible types, but they
are generally an all-uppercase version of the type’s name that you see when creating
the page, with spaces replaced by underscores (e.g., “RETAIL”, “MUSICIAN”,
“LOCAL_TECHNOLOGY_TELECOMMUNICATIONS_SERVICES”, etc.).

FQL equivalent

If you’d prefer to use FQL to access Pages, the equivalent query is:

SELECT fields FROM page WHERE page_id IN (SELECT page_id FROM page_fan
 WHERE uid = $uid AND type = $type)

See Table 8-15 in Recipe 8.48 for more information.

9.41 Checking Page Properties
Problem
I need to find out if a user is the admin of a Page, or if a Page has my app installed, or
whether a user is a fan of a specific Page.

Solution
Use the Pages.isAdmin() method to find out whether the current loggedinuser is an
admin of a specific Page:

9.41 Checking Page Properties | 349

$result = $facebook->api_client->pages_isAdmin('123456789');

where 123456789 is the pageid of the Page you’re interested in.

Use the Pages.isFan() method to find out whether a user is a fan of a specific Page:

$result = $facebook->api_client->pages_isFan('123456789', '12345');

where 123456789 is the pageid of the Page you’re interested in, and 12345 is the op-
tional uid of the user you want to check for (it defaults to the current loggedinuser if
you leave it off).

Use the Pages.hasAppAdded() method to find out if a specific Page has your app added:

$result = $facebook->api_client->pages_hasAppAdded('123456789');

where 123456789 is the pageid of the Page you’re interested in.

Discussion
All three methods return true (1) if the thing you’re checking is true, or false (0) if it
isn’t (or the pageid can’t be found).

9.42 Create a Photo Album
Problem
I need to create a photo album.

Solution
Use the Photos.createAlbum() method, which unfortunately isn’t supported in the PHP
Client Library (see Recipe 9.57):

$album = $facebook->api_client->photos_createAlbum('Test Album',
'Testville','This is a test');

Discussion
This method will return an array containing the information about your newly created
album:

Array
(
 [aid] => 12345679012345
 [cover_pid] => 0
 [owner] => 12345
 [name] => Test Album
 [created] => 1212878578
 [modified] => 1212878578
 [description] => This is a test
 [location] => Testville
 [link] => http://www.facebook.com/album.php?aid=12345679012345&id=12345

350 | Chapter 9: Facebook API

 [size] => 0
)

You’re allowed to store the aid (album ID) and the uid of the owner, but nothing else.
The returned cover_pid value will always be 0 because this album was just created and
doesn’t contain any photos yet.

9.43 Get Photo Albums
Problem
I need to retrieve a user’s photo albums.

Solution
Use the Photos.getAlbums() method:

$albums = $facebook->api_client->photos_getAlbums('12345');

You can specify a uid and/or an array of aids (album IDs) to retrieve specific albums:

$targetAlbums = array('9876543210987654321','12345');
$albums = $facebook->api_client->photos_getAlbums(null,$targetAlbums);

Specifying both will return only the albums from the list that belong to the user.

Discussion
This method will return a multidimensional array of photos, with each photo
containing:

[0] => Array
 (
 [pid] => 1234567890123456789
 [aid] => 9876543210987654321
 [owner] => 1345
 [src] => http://photos-f.ak.facebook.com/photos-ak-sf2p/
v283/16/97/12345/s....jpg
 [src_big] => http://photos-f.ak.facebook.com/photos-ak-sf2p/
v283/16/97/561415460/n....jpg
 [src_small] => http://photos-f.ak.facebook.com/
photos-ak-sf2p/v283/16/97/561415460/t....jpg
 [link] => http://www.facebook.com/photo.php?pid=1122334&id=12345
 [caption] =>
 [created] => 1212879873
)

The created field is expressed in epoch seconds (see Recipe 6.20 for more information
about epoch time).

9.43 Get Photo Albums | 351

9.44 Get Photos
Problem
I need to retrieve specific photos, either because they contain a specific user, are in a
specific album, or I have their pids (photo IDs).

Solution
Use the Photos.get() method. To retrieve photos of a specific user, call:

$photos = $facebook->api_client->photos_get('561415460',null,null);

To retrieve photos from a specific album, get the aid using Photos.getAlbums() and
then pass it as the middle parameter (note that the aid shown in the URL when you’re
looking at a specific album isn’t the album’s real aid and won’t retrieve the photos here):

$photos = $facebook->api_client->photos_get(null,'1234567890123456789',null);

To retrieve specific photos, pass an array of aids as the final parameter:

$targetPhotos = array('1234567890123456789','9876543210987654321');
$photos = $facebook->api_client->photos_get(null,null,$targetPhotos);

You can combine the three parameters in any way you’d like, allowing you to filter for
photos from specific albums that have been tagged with a specific user, or the subset
of a specific set of photos that have been tagged with a specific user, etc.

Discussion
This method will return a multidimensional array of photo elements, each containing
the following:

[0] => Array
 (
 [pid] => 1234567890123456789
 [aid] => 9876543210987654321
 [owner] => 1345
 [src] => http://photos-f.ak.facebook.com/photos-ak-sf2p/
v283/16/97/12345/s....jpg
 [src_big] => http://photos-f.ak.facebook.com/photos-ak-
sf2p/v283/16/97/561415460/n....jpg
 [src_small] => http://photos-f.ak.facebook.com/
photos-ak-sf2p/v283/16/97/561415460/t....jpg
 [link] => http://www.facebook.com/photo.php?pid=1122334&id=12345
 [caption] =>
 [created] => 1212879873
)

352 | Chapter 9: Facebook API

FQL equivalent

If you’d prefer to use FQL to access photos, the equivalent query is:

SELECT pid, aid, owner, src FROM photo WHERE pid IN (SELECT pid FROM
 photo_tag WHERE subject=$subj_id) AND aid=$aid AND pid IN ($pids)

See Recipe 8.52 for more information.

9.45 Uploading a Photo
Problem
I need to upload a new Facebook photo.

Solution
Use the Photos.upload() method, which currently is not supported in the PHP Client
Library (see Recipe 9.57). Luckily, Jeremy Blanchard, Paul Wells, and Kevin Pazirandeh
have developed an unofficial extension that supports uploading, which you’ll find at
http://wiki.eyermonkey.com/Facebook_Photo_Uploads.

If you’re making API calls directly from your own code or are using a different Client
Library, this won’t be so important to you. The syntax for their method is very similar
to what’s outlined on the Developers Wiki, with the notable exception of the
filename argument:

$result = $facebook->api_client->photos_upload($filename, $aid, $caption);

In this case, filename is a URL pointing to the image you want to add to Facebook (it
has to be somewhere on the Web already); aid is the album ID you want to add the
photo to; and caption is an optional caption describing the image. The Wiki defines
this function as accepting raw data to upload the image with, which means you could
actually take a file from the user’s local computer and upload it instead of requiring it
to be on the Web.

Discussion
Uploading images from a local computer is hard to do properly, due to security con-
straints. Facebook’s own uploader uses a Java applet to get around sandbox issues that
prevent things such as Flash and JavaScript from accessing the local filesystem. With
enough experimentation, you should be able to build an HTML form into a page in
your Facebook app that makes a multipart submission to your server, including a file
upload field, and then you should be able to use this Client Library extension to upload
the image into Facebook from there.

9.45 Uploading a Photo | 353

http://wiki.eyermonkey.com/Facebook_Photo_Uploads

9.46 Adding Tags to Photos
Problem
I need to add tags to photos that have been stored in the Facebook Photos app.

Solution
Use the Photos.addTag() method, which unfortunately isn’t supported in the PHP Cli-
ent Library (see Recipe 9.57):

$result = $facebook->api_client->photos_addTag('1234567890123456789',
'12345',null,50,50,null,null);

The parameters, in order, are the pid (photo ID) of the target photo; the uid (user ID)
of the user you’re tagging (set to null if this is a text tag); the text to tag (set to null if
this is a user tag); the x coordinate of the tag; the y coordinate of the tag; a JSON-
formatted array of tag information; and the uid of the owner of the photo (if it isn’t the
current loggedinuser).

Discussion
Tags can only be added to pending photos owned by either the current loggedinuser
or the user specified in the last argument, unless your app has been granted the
photo_upload extended permission (see Recipe 9.52 for more information).

The parameters for Photos.addTag() are pretty self-explanatory, except for the optional
tags JSON-formatted array. If you pass a tags array, the tag_id, tag_text, x, and y
parameters are ignored. The tags string should be constructed of x and y values
accompanied by either a tag_uid or tag_text:

[{"x":"30.0","y":"30.0","tag_uid":12345}, {"x":"70.0","y":"70.0","tag_text":"
Joe's skateboard"}]

If you’re building your app in PHP 5.2 or higher, you can create a regular PHP array
and then use the built-in JSON encoder (other languages may have equivalent func-
tions; check your documentation):

$tags = array(array('x'=>50,'y'=>50,'tag_uid'=>'12345'),
array('x'=>25,'y'=>40,'tag_text'=>'Pizza!'));
$result = $facebook->api_client->photos_addTag('1234567890123456789'
,null,null,null,null,json_encode($tags),null);

9.47 Getting and Setting Profile FBML
Problem
I want to get and set the contents of my users’ Profile Boxes and Profile Action links.

354 | Chapter 9: Facebook API

Solution
Use the Profle.getFBML() and Profile.setFBML() methods to manipulate the contents
of your app’s Profile Box.

Discussion
The process of setting FBML is similar to the process that takes place behind the scenes
when a user requests a page from your app (see Recipe 4.1). In this case, the process is
less symmetrical, since you initiate an update to Facebook’s cache that they’ll later
display. The FBML update flow is illustrated in Figure 9-17.

Browser

Application
Canvas

Facebook Server Your Application
Server

3

2

1

Figure 9-17. FBML update flow

The FBML you set is cached on Facebook’s servers to make displaying Profiles as quick
as possible, so you’ll need to use Profile.setFBML() again if you want to update the
cache:

1. Whenever your app feels the need to update Profile FBML, you call
Profile.setFBML() from your app server and send your new content to Facebook’s
servers, where it gets cached. This generally happens either because you have a
user currently logged in who has done something Profile-worthy, or because you
have a scheduled job (possibly using cron) that has resulted in a calculation.

2. A visitor to one of your users’ Profiles requests the page from Facebook.

3. Facebook renders your cached FBML into HTML (along with all of the other
cached Profile Boxes and Action links for this user) and serves it back to the visitor’s
browser.

There are four parts to setting the FBML: the wide Profile Box, the narrow Profile Box,
the main Profile Box, and the mobile Profile Box. The main Profile Box was added in
the mid-2008 Profile redesign and gives apps the opportunity to have a version of their
Profile Box added to the Wall page, limited to a height of 250 pixels.

9.47 Getting and Setting Profile FBML | 355

We’re going to leave the mobile Box out for now and just focus on the other three. Here
are three important things to note in the code shown next:

• The wide and narrow Boxes are passed together as the Profile argument.

• The first argument used to be markup, but it’s been deprecated. It’s still in the
method call in the PHP Client Library, so you have to pass a null for it.

• The fourth argument used to be profile_action, but it’s also been deprecated with
the mid-2008 Profile redesign, so pass a null there, too:

$title = '<fb:title>Super Disco Naps</fb:title>';
$title .= '<fb:subtitle seeallurl="http://apps.facebook.com/superdisconaps/all">';
$title .= 'Displaying 10 of 3200 naps ';
$title .= '<fb:action href="http://apps.facebook.com/superdisconaps/nap.php">';
$title .= 'Take a Nap!';
$title .= '</fb:action>';
$title .= '</fb:subtitle>';

$wide = '<fb:wide>';
$wide .= $title;
$wide .= 'This is the wide profile box for <fb:name uid="'. $user . '"
 useyou="false" firstnameonly="true"/>!';
$wide .= '</fb:wide>';

$narrow = '<fb:narrow>';
$narrow .= $title;
$narrow .= 'This is the narrow profile box <fb:name uid="'. $user . '"
 useyou="false" firstnameonly="true"/>!';
$narrow .= '</fb:narrow>';

$narrowMain = '<p>This is the main narrow profile box <fb:name uid="'.
 $user . '" useyou="false" firstnameonly="true"/>!</p>';

// $markup, $uid, $profile, $profile_action, $mobile_profile, $profile_main
$result = $facebook->api_client->profile_setFBML(null, 12345, $wide . $narrow,
 null, null, $narrowMain);

Retrieving FBML for a Profile Box is as simple as:

$boxFBML = $facebook->api_client->profile_getFBML(12345, 1);
$mainFBML = $facebook->api_client->profile_getFBML(12345, 2);

The first parameter is the uid of the user you want to retrieve for, and the second is
either 1 for the wide and narrow Boxes or 2 for the main Profile’s narrow Box.

Don’t forget that you can preview your FBML using the FBML Test Console (http://
developers.facebook.com/tools.php?fbml) before you post it, to make sure it renders
correctly.

356 | Chapter 9: Facebook API

http://developers.facebook.com/tools.php?fbml
http://developers.facebook.com/tools.php?fbml

9.48 Get a User’s Info
Problem
I need to retrieve info about a specific user.

Solution
Use the Users.getInfo() method:

$uids = array('12345');
$fields = array('first_name','last_name');
$users = $facebook->api_client->users_getInfo($uids, $fields);

Discussion
You can query on any of the fields that make up the user table, which are documented
in Figure 9-1. You might run into some of the privacy restrictions built-in to Platform,
which limit the meeting_for, meeting_sex, religion, and significant_other_id fields
to being visible to an app only when it has been added by a user. Users also have the
option to limit the visibility of all fields except affiliations, first_name, last_name,
name, and uid.

FQL equivalent

If you’d prefer to use FQL to access users, the equivalent query is:

SELECT uid, name, birthday FROM user WHERE uid IN ($uids)

See Recipe 8.55 for more information.

9.49 Get Logged-In User
Problem
I need to find the current loggedinuser’s uid.

Solution
Use the very simple Users.getLoggedInUser() method:

$currentUser = $facebook->api_client->users_getLoggedInUser();

Discussion
Users.getLoggedInUser() returns the uid of the current loggedinuser.

9.49 Get Logged-In User | 357

9.50 Has a User Added My App?
Problem
I need to check whether a user has added my app.

Solution
Use the Users.isAppAdded() method:

$hasAdded = $facebook->api_client->users_isAppAdded();

Discussion
Users.isAppAdded() returns a boolean indicating whether the specified user has
installed your app. This will check for the current loggedinuser by default, but web-
based Facebook apps can also pass in a different uid:

$hasAdded = $facebook->api_client->users_isAppAdded('12345');

9.51 Setting Status
Problem
I need to set the Facebook status of my users.

Solution
Use the Users.setStatus() method, which unfortunately isn’t supported in the PHP
Client Library (see Recipe 9.57):

$result = $facebook->api_client->Users_setStatus('setting his status
using the API!',false);

The parameters, in order, are the status and whether or not to clear the status. Passing
true for clear will ignore the status you pass in and leave it blank.

Discussion
You can set the status only for users who have given your application the
status_update extended permission (see Recipe 9.52 for more information).

Users.setStatus() will also accept two additional parameters: a boolean called
status_includes_verb, which will prepend “is” to the front of your status if you pass
false, and a uid of the user for which you want to set the status (which is ignored for
desktop apps and is required for web apps only if you don’t have a valid session).

358 | Chapter 9: Facebook API

9.52 Extended Permissions
Problem
I’ve planned out a great app, but it’s going to require my users to give permission to do
some things that are beyond the usual set of options, such as setting their status or
creating Marketplace listings. How do they let me know it’s OK?

Solution
Table 9-7 lists three extended permissions that users can grant an application.

Table 9-7. Extended permissions

Permission Description

status_update Your application can call Users.setStatus() for this user.

photo_upload You can already upload photos and add tags for all users with the Photos.upload() and
Photos.addTag() methods, but both will go into a pending state and require approval. Granting
this permission allows your app to bypass that step.

create_listing Your application can create new Marketplace listings on behalf of this user.

The permissions are granted one at a time by sending users to http://www.facebook.com/
authorize.php?api_key=YOUR_API_KEY&v=1.0&ext_perm=PERMISSION_NAME
(see example page in Figure 9-18), substituting your API key and the permission’s name
from Table 9-7.

Figure 9-18. Extended permissions

9.52 Extended Permissions | 359

http://www.facebook.com/authorize.php?api_key=YOUR_API_KEY&v=1.0&ext_perm=PERMISSION_NAME
http://www.facebook.com/authorize.php?api_key=YOUR_API_KEY&v=1.0&ext_perm=PERMISSION_NAME

Discussion
You can add two more parameters to the URL, next and next_cancel, which are URL-
encoded URLS you’d like the user sent to when they’re finished granting permission
or if they cancel, respectively:

http://www.facebook.com/authorize.php?api_key=YOUR_API_KEY&v=1.0&ext
_perm=PERMISSION_NAME&next=http%3A%2F%2Fapps.facebook.com
%2Fmyapp%2Fpermissions.php&next_cancel=http%3A%2F%2Fapps.facebook
.com%2Fmyapp%2Fcancel.php

If you don’t provide those URLs, users will see a Facebook message letting them know
they can return to the app if they save (canceling just goes back one page in their his-
tory), as in Figure 9-19.

Figure 9-19. Extended permissions message

Users can revoke extended permissions on their Edit Apps page, at http://www.facebook
.com/editapps.php.

You can check to see whether a user has granted a certain permission to your app by
calling the API’s Users.hasAppPermission() method (see Recipe 9.53 for more info).

9.53 Checking Extended Permissions
Problem
How can I check to see whether a user has granted my app extended permissions?

Solution
Use the Users.hasAppPermission() method, which is not currently included in the PHP
Client Library (see Recipe 9.57):

$permission = $facebook->api_client->Users_hasAppPermission('status_update');

Discussion
This will return true (1) or false (0). There are three extended permissions you can check
for:

status_update
You can set the user’s status with Users.setStatus().

360 | Chapter 9: Facebook API

http://www.facebook.com/authorize.php?api_key=YOUR_API_KEY&v=1.0&ext_perm=PERMISSION_NAME&next=http%3A%2F%2Fapps.facebook.com%2Fmyapp%2Fpermissions.php&next_cancel=http%3A%2F%2Fapps.facebook.com%2Fmyapp%2Fcancel.php
http://www.facebook.com/authorize.php?api_key=YOUR_API_KEY&v=1.0&ext_perm=PERMISSION_NAME&next=http%3A%2F%2Fapps.facebook.com%2Fmyapp%2Fpermissions.php&next_cancel=http%3A%2F%2Fapps.facebook.com%2Fmyapp%2Fcancel.php
http://www.facebook.com/authorize.php?api_key=YOUR_API_KEY&v=1.0&ext_perm=PERMISSION_NAME&next=http%3A%2F%2Fapps.facebook.com%2Fmyapp%2Fpermissions.php&next_cancel=http%3A%2F%2Fapps.facebook.com%2Fmyapp%2Fcancel.php
http://www.facebook.com/authorize.php?api_key=YOUR_API_KEY&v=1.0&ext_perm=PERMISSION_NAME&next=http%3A%2F%2Fapps.facebook.com%2Fmyapp%2Fpermissions.php&next_cancel=http%3A%2F%2Fapps.facebook.com%2Fmyapp%2Fcancel.php
http://www.facebook.com/editapps.php
http://www.facebook.com/editapps.php

create_listing
You can create Marketplace listings for the user.

photo_upload
You can upload photos and set tags on nonpending photos.

See Recipe 9.52 for more information.

9.54 Storing Data with the Data Store API
Problem
I need a place to store some data for my app, and I don’t want to use my own database
or a third-party service. Is there somewhere I can stick it inside of Facebook?

Solution
Facebook recently introduced the Data Store API, which was still in beta as this book
went to press. The approach is to provide specialized storage, highly targeted and op-
timized to the kind of data that app developers need to store, rather than taking the
more generalized approach of Amazon SimpleDB. The API is grouped into the areas:

Specialized tables
One of the advantages of using the Data Store API is specialized tables, designed
and optimized to store the kinds of data for which your app is most likely to need
storage. The initial pass only includes a User Preference table, but Facebook is
looking for feedback from app developers about the types of tables they might be
interested in.

Distributed tables
Most web developers understand databases well enough to administer a single
server but lack the experience necessary to design and maintain a complicated,
scalable, distributed system. Using the Data Store API gives you access to a well-
managed distributed system for free, designed to allow your tables to grow to
millions of records without a significant performance loss.

Associations
If you’ve read Chapter 8 and checked out some of the performance recommenda-
tions around indexing or already have a good level of database design knowledge,
you’ll be familiar with how indexing can deliver a substantial speed increase. This
is true in a traditional database but loses its effectiveness in a distributed scheme
because there’s no centralized directory telling the index where to find data. Face-
book has solved this problem with associations, which describe the relationship
between two pieces of data (e.g., a husband and wife or a gift giver and receiver).

Since this API will appeal only to a smaller subset of readers, and since it’s in early beta
and subject to change, I’m only going to cover a few quick examples and leave the rest

9.54 Storing Data with the Data Store API | 361

up to the Wiki’s documentation, which you’ll find at http://wiki.developers.facebook
.com/index.php/Data_Store_API_documentation.

To store and retrieve a user preference:

$prefId = 31;
$prefValue = 'black';
$setResult = $facebook->api_client->data_setUserPreference($prefId, $prefValue);
$getResult = $facebook->api_client->data_getUserPreference($prefId);

You can store up to 201 preferences per user per application, identified by the numeric
IDs 0–200. One important note: the Data Store API will clear out a preference set to
either zero (0) or an empty string, which it treats as the same thing. If you need to set
a preference to the value 0, you’ll need to come up with a scheme that you’ll later
recognize, since setting it to 0 will remove it (e.g., “n:0”, or “zero”, or “nil”, etc.). Both
of the methods shown in the code sample also have a sibling batch mode version:
Data.setUserPreferences() and Data.getUserPreferences(). The former takes an as-
sociative array of key/value pairs and a boolean indicating whether new preferences
should overwrite (true) or merge into (false) existing ones:

$prefBatch = array(31=>'red', 42=>'potato', 68=>'rubber golve');
$setResult = $facebook->api_client->data_setUserPreferences($prefBatch, true);
$getResult = $facebook->api_client->data_getUserPreferences();

There are no arguments for Data.getUserPreferences(), which will return a mul-
tidimensional array containing all of the preferences for this user in this app:

Array
(
 [0] => Array
 (
 [pref_id] => 31
 [value] => red
)

 [1] => Array
 (
 [pref_id] => 42
 [value] => potato
)

 [2] => Array
 (
 [pref_id] => 68
 [value] => rubber golve
)

)

The term “object type” in the Data Store API is effectively what you would think of as
a “table” in a traditional database. You can create as many object types as you’d like
and can then add as many properties (i.e., fields or columns) as you need. Here’s some
sample code for defining a new object type for storing a dog, adding properties, getting

362 | Chapter 9: Facebook API

http://wiki.developers.facebook.com/index.php/Data_Store_API_documentation
http://wiki.developers.facebook.com/index.php/Data_Store_API_documentation

a description of our new type, and then dropping it. Note that property names can be
up to 32 characters long and can consist of lowercase letters (a–z), numbers (0–9), and
underscores. There are currently three supported types: integers (1), strings (2), and
blobs of text (3):

// Create the Object Type
$facebook->api_client->data_createObjectType('dog');

// Define some Properties
$facebook->api_client->data_defineObjectProperty('dog','name',2); // 2 = string
$facebook->api_client->data_defineObjectProperty('dog','breed',1); // 1 = int
$facebook->api_client->data_defineObjectProperty('dog','cat_friendly',1);
$facebook->api_client->data_defineObjectProperty('dog',
'description',3); // 3 = text blob

// Make some changes
$facebook->api_client->data_renameObjectProperty('dog','description','bio');
$facebook->api_client->data_undefineObjectProperty('dog',
'cat_friendly');
$facebook->api_client->data_renameObjectType('dog','canine');

// Retrieve the type(s)
$objectTypes = $facebook->api_client->data_getObjectTypes(); // Get all types
$myObjectType = $facebook->api_client->data_getObjectType('canine'); // Get the type

// Drop it
$facebook->api_client->data_dropObjectType('canine'); // Bye!

Once you’ve created your object types, you can create objects (think rows in a database
table) based on them:

// Create an object
$objProps = array('name'=>'Findley','breed'=>1,'bio'=>'Best dog!');
$objId = $facebook->api_client->data_createObject('canine',json_encode($objProps));

// Update it
// true = replace values, fales = merge
$objProps = array('name'=>'Findley','breed'=>1,'bio'=>'Best dog in the world!');
$facebook->api_client->data_updateObject($objId,json_encode($objProps),true);

// Get the properties
$findleyProperties = $facebook->api_client->data_getObject($objId);
$findleyBio = $facebook->api_client->data_getObject($objId,'bio');

The last part of the Data Store API is creating associations, which act as indexes to
speed up queries across the distributed tables. Associations can be one-way (a person
owns a car but a car doesn’t own a person), symmetrical two-way (a spouse is a spouse
in both directions), or asymmetrical two-way (a husband to a wife is not the same as a
wife to a husband). Assuming we have an object type called 'person', let’s define the
relationship between people and their dogs:

// Define an association
$info1 = array('alias'=>'owner','person',false);
$info2 = array('alias'=>'canine','person',false);

9.54 Storing Data with the Data Store API | 363

// 1 = one way
// 2 = two way symmetrical
// 3 = two way asymmetrical (requires the other direction to be named)
$facebook->api_client->data_defineAssociation('owner_of_pet',3,
$info1,$info2,'pet_of_owner');

$myAssoc = $facebook->api_client->data_getAssociationDefinition('owner_of_pet');

When we’re done with our associations, we can undefine them (make sure you undefine
both sides of a two-way asymmetrical association):

$facebook->api_client->data_undefineAssociation('owner_of_pet');
$facebook->api_client->data_undefineAssociation('pet_of_owner');

As with object types and objects, we can now create actual instances of the association
we just defined:

// Create objects
$objProps = array('name'=>'Findley','breed'=>1,'bio'=>'Best dog in the world!');
$dogId = $facebook->api_client->data_createObject('canine',json_encode($objProps));
$objProps = array('name'=>'Jay','bio'=>'Best dog owner in the world!');
$ownerId = $facebook->api_client->data_createObject('person',json_encode($objProps));

// Set an association
$facebook->api_client->data_setAssociation('owner_of_pet',$ownerId,$dogId);
$jaysDogs = $facebook->api_client->data_getAssociatedObjects('owner_of_
pet',$ownerId,false);
$findleysOwners = $facebook->api_client->data_getAssociatedObjects
('pet_of_owner',$dogId,false);

As mentioned earlier, this recipe covers only the basics of the Data Store API, and so
you’ll want to consult the Wiki for more detailed info.

Discussion
Although there are some definite advantages in using the Data Store API (mostly around
performance and ease of implementation), it also means you can’t share the data that
you store in there with any other frontends. If you’re following my architecture advice
(see Recipe 4.2), you might want to consider storing this information in your own
database so that other frontends can share the same info.

9.55 Granting Permissions to Other Applications Via the
Permissions API
Problem
I’m building a whole family of applications, and I’m writing an additional one for myself
that is going to aggregate all of the daily metrics and allocations from its siblings into
one convenient place. How can I have one app gather stats for another?

364 | Chapter 9: Facebook API

(How’s that for a contrived example? There aren’t many times when you’ll need these
calls otherwise, but maybe you have more imagination than I do.)

Solution
The Permissions API, which was still in beta at the time of this writing, enables you to
grant and revoke permissions for one app to call three Admin methods on behalf of
another app. The three available methods are:

• Admin.getAppProperties() (see Recipe 9.14)

• Admin.getMetrics() (see Recipe 9.13)

• Admin.getAllocations() (see Recipe 9.12)

You’ll need to know the API key of the application you’re granting permissions to. You
can grant on the Admin namespace in general if you want to give permission to call any
of the methods:

$permissions = array('admin.');
$result = $facebook->api_client->permissions_grantApiAccess
('456eaf416a25820f18568b7cb0848c3c', $permissions);

That would grant permission for my Super Disco Napping app to have access to your
stuff, which I highly recommend you do so that I can sneak peaks at what’s going on.
If you decided you wanted to limit me to getting just allocations and metrics, you could
modify the call to narrow the permissions:

$permissions = array('admin.getAllocation','admin.getMetrics');
$result = $facebook->api_client->permissions_grantApiAccess
('456eaf416a25820f18568b7cb0848c3c', $permissions);

Discussion
Permissions.grantApiAccess() returns true (1) if successful or false (0) if it fails. You
only need to call this once for each grant you want to do, but it will continue to succeed
if you call it multiple times, and it won’t fail with any kind of “Permission already
granted” error.

You can check to see which permissions have been granted to your application by
another application by using the Permissions.checkAvailableApiAccess() method and
passing in the API key of the other app:

$result = $facebook->api_client->permissions_checkAvailableApiAccess
('456eaf416a25820f8568b7cb0848c3c');

In this case, result would contain an array of permissions that the Super Disco Napping
application granted to your app, if any. You can also do the reverse and check to see
which permissions your app has granted to another app by calling:

$result = $facebook->api_client->permissions_checkGrantedApiAccess
('456eaf416a25820f1868b7cb0848c3c');

9.55 Granting Permissions to Other Applications Via the Permissions API | 365

which would, in this case, return an array of permissions you had granted to the Super
Disco Napping app.

Revoking API access works just like granting it, but with a different method call:

$permissions = array('admin.getAllocation','admin.getMetrics');
$result = $facebook->api_client->permissions_revokeApiAccess
('456eaf416a25820f18568b7cb0848c3c', $permissions);

9.56 Post-Remove (Uninstall) URL
Problem
I’d like to be able to collect some statistics when users remove my application, but I
don’t get any kind of notice from Facebook.

Solution
You can specify a Post-Remove URL in your app’s settings, which Facebook will ping
with a POST request when a user removes your app.

Discussion
The important thing to note is that users won’t be sent to the URL when they remove
it, but rather that you’ll get a POST request from Facebook with some useful informa-
tion, listed in Table 9-8.

Table 9-8. Post-remove URL parameters

Name Type Description

fb_sig_uninstall bool This will always be true (1).

fb_sig_time string The uninstall timestamp in epoch seconds (see Recipe 6.20 for more info on epoch time).

fb_sig_user int uid (user ID) of the user who removed the app.

fb_sig_api_key string API key of the app being uninstalled.

fb_sig string Signature of the POST, made up of the other parameters and the app’s secret key hashed
into an MD5 hash.

You should verify that the POST requests you receive are valid by building your own
version of fb_sig and then checking that they match:

$sig = '';
ksort($_POST);
foreach ($_POST as $key => $value) {
 if (substr($key, 0, 7) == 'fb_sig_') {
 $sig .= substr($key, 7) . '=' . $value;
 }
}
$sig .= $secret;

366 | Chapter 9: Facebook API

$verify = md5($sig);

if ($verify == $_POST['fb_sig'] && $_POST['fb_uninstall'] == true) {
 // The signatures match and this is an uninstall request,
 // so go ahead and do it
} else {
 // This is a forged request or not an uninstall, so track it
 // for later inquiry
}

Note that this assumes you already have a secret variable on this page that contains
your app’s secret key.

9.57 Adding Missing PHP Client Library Methods
Problem
Some of the methods documented in this chapter throw a “Call to undefined method”
error when I try to use them!

Solution
The bad news: five methods listed in the Developers Wiki are missing from the official
Facebook PHP 4/5 Client Library: Photos.createAlbum(), Photos.upload(),
photos.addTag(), Users.hasAppPermission(), and Users.setStatus(). The good news:
you can add some of them yourself! The only tricky one is Photos.upload() because it
requires you to submit raw data from a file upload field, so you might instead want to
look at the extended version of the Client Library mentioned in Recipe 9.45.

These instructions are for the PHP 5 version of the Client Library, but you should be
able to apply them to the PHP 4 version as well:

1. Back up the copy of facebookapi_php5_restlib.php on your server, just in case we
break something. You could also install them into an entirely new file and include
it too, so that you don’t have to remember to make the same changes in future
versions of the Client Library.

2. Open the nonbackup version in a text editor.

3. You can either insert all the new methods in one group, or you can find the right
place in the file to insert them so that they’re with the related functions that the
Client Library does include. I recommend the latter, so scroll down to line 596 and
insert these two functions:

/**
* Creates a new Photo album
* @param string $name : name of the new album
* @param string $location : location of the new album
* @param string $description : description of the new album
* @param int $uid : album creator. null for session user
* @return array

9.57 Adding Missing PHP Client Library Methods | 367

*/
public function &photos_createAlbum($name, $location, $description, $uid=null){
 return $this->call_method('facebook.photos.createAlbum',
 array('name' => $name,
 'location' => $location,
 'description' => $description,
 'uid' => $uid));

}

/**
* Adds Tags to a Photos
* @param int $pid : Photo ID of the target Photo
* @param int $tag_uid : uid of the user being tagged (or tag_text, not both)
* @param string $tag_text : text being tagged (or tag_uid, not both)
* @param float $x : x location of the tag box
* @param float $y : y location of the tag box
* @param string $tags : JSON formatted array of tags
* @param int $owner_uid : uid of the Photo owner. null for session user
* @return boolean
*/
public function &photos_addTag($pid, $tag_uid, $tag_text, $x, $y, $tags, $owner_uid){
 return $this->call_method('facebook.photos.addTag',
 array('pid' => $pid,
 'tag_uid' => $tag_uid,
 'tag_text' => $tag_text,
 'x' => $x,
 'y' => $y,
 'tags' => $tags,
 'owner_uid' => $owner_uid));

}

4. Scroll down to line 626 and insert these two functions:

/**
* Returns whether or not the user has a requested extended permission
* @param string $ext_perm : name of the extended permission to check
* @param int $uid : optional uid to check for. null for session user
* @return boolean
*/
public function &users_hasAppPermission($ext_perm,$uid=null) {
 return $this->call_method('facebook.users.hasAppPermission',
 array('ext_perm' => $ext_perm, 'uid' => $uid));
}

/**
* Sets the user's status
* @param string $status : The status message to set
* @param boolean $clear : Set to true to clear the status
* @param boolean $status_includes_verb : If set to false, "is" will be prepended
* @param int $uid : uid of the target user. null for session user
* @return boolean
*/
public function &users_setStatus($status, $clear, $status_includes_verb, $uid=null) {
 return $this->call_method('facebook.users.setStatus',

368 | Chapter 9: Facebook API

 array('status' => $status,
 'clear' => $clear,
 'status_includes_verb' => $status_includes_verb,
 'uid' => $uid));
}

Discussion
I actually opened a bug for this situation in Facebook’s Bugzilla system, so it will hope-
fully get resolved in the future, and then you can use this recipe to line your birdcage.

9.58 Error Codes
Problem
My API calls don’t work! I’m getting errors back!

Solution
Don’t panic! 100- and 200-class errors are Facebook’s way of telling you that there’s
something wrong with your API calls. The possible error codes are listed in Table 9-9.

Table 9-9. API error codes

Error code Description

1 An unknown error occurred. Please resubmit the request.

2 The service is not available at this time.

4 The application has reached the maximum number of requests allowed. More requests are allowed once the time
window has completed.

5 The request came from a remote address not allowed by this application.

100 One of the parameters specified was missing or invalid.

101 The API key submitted is not associated with any known application.

102 The session key was improperly submitted or has reached its timeout. Direct the user to log in again to obtain
another key.

103 The submitted call_id was not greater than the previous call_id for this session.

104 Incorrect signature.

200 The application does not have permission to operate on the passed-in uid parameter.

9.58 Error Codes | 369

Discussion
The long, long list of Facebook error codes can be found at http://wiki.developers.face
book.com/index.php/Error_codes.

If you’re getting an error and are having trouble tracking it down in the context of your
code, try extracting the call and running it directly inside the API Test Console found
at http://developers.facebook.com/tools.php?api.

370 | Chapter 9: Facebook API

http://wiki.developers.facebook.com/index.php/Error_codes
http://wiki.developers.facebook.com/index.php/Error_codes
http://developers.facebook.com/tools.php?api

CHAPTER 10

Marketing Your App

You’ve released the world’s greatest Facebook application, and all 500 of your closest
friends have it installed. Your install base is slowly climbing, and your daily active stat
looks good so far. Great riches await you, if you can just figure out how to get from
here to there. Now what?

Marketing Facebook apps is no different from marketing any other kind of web app,
widget, doohickey, or thingamabob. Some people have a natural flair for this kind of
thing, while others have a natural flair for writing programming language compilers.
It’s unlikely that you’re the kind of person with an instinct for both, so if you’re in the
latter camp and are serious about the success of your app, you might want to find
someone in the former to help you out.

The bad news: there’s no magic bullet or panacea that will instantly turn your app into
a Top 10 and bring dump trucks filled with money to your doorstep. The good news:
if you work as hard at promoting your app as you did at designing and building it, you
can be very successful and earn a really good living doing this. This chapter looks at a
few different avenues you have available for marketing your app, as well as a few tech-
niques you can use to assess where you’re at and decide how to move forward.

10.1 Attracting Users Through Facebook Ads
—Alain Chesnais (see his bio in Contributors)

Problem
I launched my app a month ago, but I still only have a handful of users!

Solution
You need to promote your app to make your potential users aware of its existence. The
most effective way to do so is through advertising.

371

Discussion
A common mistake many developers make is to assume that simply building an app is
enough to have it go viral and reach millions of users overnight. Good apps only really
go viral after they have attained a sufficient number of users. To see why this is true,
let’s assume that your app has launched and you get one new user virally every day for
every hundred users you currently have. That’s 1% growth every day. Let’s assume that
you start off with 10 of your best friends signing up and let it run. This type of viral
growth is exponential, but the startup phase can be painfully slow. In this particular
case, it would get you to 13 users in a month and 60 users after 6 months.

So what can you do about it? The key thing to do when launching a new app is to
promote it and let people know that they should be trying it out. There are currently
tens of thousands of apps on Facebook. You want users to know about yours. Your
best bet is to run advertisements within Facebook, and the most obvious way is to use
Facebook’s ads. These appear randomly in users’ Notifications or in the ad slot on the
lefthand side of each Facebook page. You bid for ad placement for given demographics
and pay for the placement. Try different ads and aim at different demographics to see
which are the most productive.

Let’s look at how we might promote our SceneCaster application. You can start a new
ad by visiting http://www.new.facebook.com/ads/create/. First we are asked what we
want to advertise. Choose the application you want to promote from the drop-down
menu shown in Figure 10-1.

Figure 10-1. Getting started with Facebook ads

Next, you are asked to choose your target demographic. You don’t want to take a
scattershot approach here. Understand who might use your application and target them
specifically. In this case, we assume that we want to target people in the U.S. who are

372 | Chapter 10: Marketing Your App

http://www.new.facebook.com/ads/create/

over 18 and have expressed interest in interior design, interior decorating, or architec-
ture, as shown in Figure 10-2. We’ll later craft our messaging explicitly for them.

Figure 10-2. Choose Audience page

Now we’re ready to create the ad. Choose a tagline, some descriptive text, and an image
(Figure 10-3).

Figure 10-3. Create Ad page

10.1 Attracting Users Through Facebook Ads | 373

We’re now ready for the final step: setting your budget. In this dialog (Figure 10-4),
you will be asked whether you want to pay per click or pay per view. Try each and see
which performs best. You’ll also be prompted to set a bid price. Facebook suggests
values that correspond to current bids for similar demographics. It’s a good starting
point, but you should try different values and see which gets you the best results per
unit cost. Facebook also builds in a safety net so that you don’t blow your budget with
an unexpected success.

Figure 10-4. Set Budget page

Another approach to consider is buying ads on the large app aggregators, such as Slide
or Rock You. Buying ads on their apps (which include Super Wall and FunWall) can
gain you large numbers of viewers at a reasonable cost.

There is no single solution that works in all cases. Your best approach is to try several
and see which campaigns work best for your app. The key to success is to measure the
success of each campaign, and to keep doing this over time. Your success rate will
change as users become familiar with your ad, and so refreshing the ad and measuring
its success will help you acquire a maximum number of users.

To get a sense of how well this can work, let’s take SceneCaster as an example. We
launched the application in late September 2007 and did not promote it at first. We
wanted to get the kinks out before launching our marketing effort to promote it. In
early December we had reached a total of 3,000 users and decided to launch our
marketing campaign, using a combination of Facebook ads and ads with Rock You.
Within two weeks we skyrocketed to become the most active application on Facebook.
By Christmas we had reached a total of 100,000 users. Roughly six months later we
reached 1,000,000. We’ve now ramped down our spending in terms of dollars spent
per total number of users we have, and let the viral nature of the app kick in to help
attract new users.

374 | Chapter 10: Marketing Your App

For me, the key to a successful launch is to pay attention to your promotion. Set yourself
a budget for how much you want to spend to kick-start your app. This will help you
decide how long you want to maintain your ad campaigns and give you a clear under-
standing of how much you are willing to spend. The next step concerns how you main-
tain and maximize your viral aspect. Facebook gives you several tools to achieve this,
specifically Notifications, requests, and friend invitations. Your key challenge will be
to find a good trade-off between communicating enough and being perceived as spam.
There is no magic formula here. Once again, the best way to find this out is to measure
your success. Whenever you modify the number of Notifications and request oppor-
tunities, you should check to see the percentage of new users compared to the total
number of users. One thing to look at specifically is the number of remove requests.
This is often linked to over-communication and means that your communications are
being perceived as spam. At one point we dramatically increased the amount of mes-
saging we were generating and immediately saw a decrease in our rate of net new users.
We quickly pulled back and tried alternate approaches.

The final recommendation that I would make is to keep refreshing the content of your
app. Users will tend to come back more often if they expect to find new content. Taking
the SceneCaster app as an example, our landing canvas shows you the top users and
creations of the day, every day. We also update our catalog once a week; that way, users
who create content expect to find new objects to work with every week. Finally, you
want to establish a sense of relationship with your users. Again, using the SceneCaster
example, we asked one of our best designers to be the community leader. He selects
the user of the day and the scene of the day every workday. He also maintains a blog
that is frequently updated and posted on the landing page, so that we are constantly
communicating with our users to keep them abreast of what is new.

10.2 Monetize, Measure, and Market with SocialMedia
Problem
I need a toolkit of services and opportunities to earn revenue and attract users to my app.

Solution
SocialMedia Networks offers a whole platform for app developers to monetize, meas-
ure, and market their applications on Facebook, Bebo, MySpace, and hi5. You can find
more information and sign up at http://www.socialmedia.com.

Discussion
SocialMedia shares a lot in common with other ad platforms for social networks, such
as Cubics (see Recipe 10.3). SocialMedia’s platform is divided into three pieces, as
shown in Figure 10-5.

10.2 Monetize, Measure, and Market with SocialMedia | 375

http://www.socialmedia.com

Figure 10-5. SocialMedia’s Three-M platform (from http://socialmedia.com/developers)

Monetize
SocialMedia has developed a number of innovative ad formats for display inside
of your applications that are designed for Facebook Platform, not just the Web at
large, including Canvas (645 × 60 pixels), Television (300 × 250 pixels), Interstitial
(600 × 500 pixels), and Leaderboard (728 × 90 pixels). You simply need to register,
specify one of your apps, and paste the generated fb:iframe tag into your page.

Measure
Once you have a SocialMedia account, you’ll have access to their dashboards and
Appsaholic app-tracking tools (see Recipe 2.1 for more info on Appsaholic). The
dashboards offer most of the same information that you can find in Facebook
Insights, but also lets you compare your performance against other, similar apps.

Market
The flip side to monetizing through SocialMedia is buying ads in other apps to
promote your own. SocialMedia has built a useful little viral calculator (http://
socialmedia.com/?q=market) that will help you get a sense of how far you can stretch
your budget in terms of new user acquisitions.

If you’re running an ad blocker such as AdBlock Plus in Firefox, you’ll
have some trouble browsing SocialMedia’s website. Most ad blocker
blacklists have something like *.socialmedia.com/*, preventing the site’s
CSS and images from loading. Make sure to disable it or add some better
filters so you can learn more about their services.

376 | Chapter 10: Marketing Your App

http://socialmedia.com/developers
http://socialmedia.com/?q=market
http://socialmedia.com/?q=market

10.3 Social Network Advertising with Cubics
Problem
I keep hearing about Cubics as an alternative to AdSense or SocialMedia. What is it?

Solution
Cubics is a platform for inserting ads into social networks, including Facebook, My-
Space, Friendster, Bebo, and hi5. They both buy and sell ad inventory, so you can work
with them to monetize your app and promote it into other apps.

Discussion
Cubics and SocialMedia are fairly closely related, in that they’re both ad platforms for
social networking sites (see Recipe 10.2). In Cubics parlance, you’re either an Advertiser
(you have purchased ads to promote your app or product) or a Publisher (you have an
app in which you host Cubics ads). You have the option of doing either CPM (cost per
thousand impressions) or CPC (cost per click) campaigns, and they have a bunch of
targeting options, as shown in Figure 10-6, that are quite similar to Facebook’s (see
Recipe 10.1).

Figure 10-6. Cubics targeting options

10.3 Social Network Advertising with Cubics | 377

Again, if you’re running an ad blocker such as AdBlock Plus in Firefox,
you’ll have some trouble browsing Cubic’s website. Most ad blocker
blacklists have something like *.cubics.com/*, preventing the site’s CSS
and images from loading. Make sure to disable it or add some better
filters so you can learn more about their services.

10.4 Other Ad Networks
Problem
I already know about SocialMedia and Cubics. Are there any other Facebook ad
networks?

Solution
Sure are! Among many others (which are just a Google search away), take a look at:

fbExchange
http://www.fbexchange.com

Lookery
http://www.lookery.com

Slide
http://www.slide.com/advertise

Rock You
http://www.rockyou.com/corp/facebook/ad.php

Discussion
It’s always worth experimenting with different ways of attracting users, but make sure
it’s not detrimental (e.g., if it’s a really annoying experience, you’ll attract the wrong
kinds of users or scare the right kind off) and that the cost you’re paying is worth it
compared to other platforms that fit in the same budget.

10.5 Spreading Your App via Google AdWords
Problem
I’d like to advertise my app on Google AdWords. Will that generate a lot of traffic?

Solution
AdWords is a great platform for promoting non-Facebook sites, but it’s not ideal for
getting people into your app. Most of the people who are in the right frame of mind to
install Facebook apps are on Facebook, which means that ads they see while they’re

378 | Chapter 10: Marketing Your App

http://www.fbexchange.com
http://www.lookery.com
http://www.slide.com/advertise
http://www.rockyou.com/corp/facebook/ad.php

on Google are going to be less effective at getting them to install. You can find out more,
and sign up, at http://adwords.google.com.

Discussion
As with everything else, you might find that AdWords works extremely well for your
app’s unique circumstances where it has failed for others. Keep close tabs on the traffic
you earn from it by driving users to unique AdWords landing pages within your app,
and make sure that you’re getting your money’s worth by checking what users do after
they’ve arrived. (AdWords is always pay-per-click, so it’s more a question of whether
they install or invite friends.)

10.6 Measuring Your Success
—Jeffrey Tseng (see his bio in Contributors)

Problem
Which metrics are important to measure in order to ensure a successful application?

Solution
The two key metrics that need to be closely monitored to ensure a successful application
are:

• The viral factor, sometimes known as the “k-factor,” an indication of viral growth

• An engagement metric, oftentimes application-specific, as an indication of how
much the user interacts with your application

Discussion
Metrics are one of the keys to developing a Facebook application. Similar to any con-
sumer web application, it is almost impossible to predict user behavior. As such, the
most successful application developers tune their apps extensively through the process
of trial and error. To accomplish this, developers must use metrics to measure the
effectiveness of the changes they have made to their applications so that they can
quickly iterate to achieve their goal of creating a successful application.

Virality

K-factor = [(total number of users converted through installs) + (total number of users
converted through Notifications) + (total number of users converted through emails)
+ (total number of users converted through Feeds) + (total number of users converted
through Profiles)] / total number of installs.

10.6 Measuring Your Success | 379

http://adwords.google.com

The k-factor indicates how viral, or how rapid and self-sustaining, the growth is. This
number represents the number of new users that an existing user gets to install your
application. If the k-factor is less than 1, the application cannot have self-sustaining
organic growth. When the k-factor is 1, the application has linear growth. If the number
is greater than 1, the application has “gone viral” and has self-sustaining organic
growth. The goal is to obtain a k-factor of greater than 1.2 for rapid growth of your
application.

Engagement

Although user session time is a good indication of engagement on the Web, there are
more appropriate engagement metrics for Facebook applications. With Facebook apps,
the goal is to increase the interaction of the user with the application itself, because
increased engagement results in increased monetization. Engagement can be broadly
classified in two categories:

• Application-specific engagement (for a gaming app, this could be how often a user
performs a specific game action)

• Social engagement, which is a count of the number of Facebook channels used by
users who already have the application installed

Optimizing for both types of metrics will result in the user performing the desired
actions on your site (application-specific engagement), or re-engaging other app users,
in turn generating more active users of your application (social engagement).

How to measure

So, how does one actually go about acquiring these metrics? The first step should be
to instrument your application with Google Analytics. Though Google Analytics is
really designed for the broad Web, it gives you basic information about the overall
health of your Facebook app by providing you the page view count and average session
time, as well as other basic metrics.

To calculate and tune the k-factor, there are a couple of possible approaches. One is to
query your application data to mine for these metrics. This may seem relatively simple
to do, but as your applications grow larger, the queries will become slower and start to
interfere with the performance of your app. Therefore, it is not a recommended long-
term solution, but it is a good starting point. The alternative is to use third-party soft-
ware, such as the Kontagent analytics suite, to collect and process this data for you. It
generally takes a few hours to instrument your existing application, but the result
provides you deep social analytics, much like Google Analytics, tailored for social net-
works. Kontagent analytics provide you with virality rates, conversion, and deep
metrics on all your communication channels, as well as metrics that correlate user
characteristics with social behavior. You can find more information at http://www.kont
agent.com.

380 | Chapter 10: Marketing Your App

http://www.kontagent.com
http://www.kontagent.com

10.7 Work the Integration Points
Problem
I don’t really have a budget to spend on advertising my app to attract users. Is there
anything I can do on-Facebook?

Solution
Work the integration points like there’s no tomorrow. See Recipe 2.8 for more infor-
mation about the different points and how best to use them.

Discussion
Spreading through the social graph is still the most powerful mechanism for attracting
users because those users tend to be much higher-value (they are drawn to your app
because their friends use it, rather than because they come across it in an ad). Experi-
ment aggressively during the early days of your app to figure out what works as content
in invitations, requests, message attachments, etc., and then make sure you don’t get
lazy and allow competitors to bypass you on any one of the points. As with the different
ad networks, make sure you’re measuring your success at the different points so that
you can quickly adjust if things aren’t panning out (see Recipe 10.6).

10.8 Continuous Improvement Through A/B Testing
Problem
I want to continuously improve my ability to attract new users, but I don’t know how
to keep evaluating what’s working.

Solution
A/B testing comes from the world of hi-fidelity audio systems, in which people stand
in neutral rooms and toggle back and forth between the “A” and “B” speakers con-
nected to an amplifier, to decide whether they should buy the ones that cost twice as
much as your mortgage or the ones that are more expensive than a university education.
Luckily for you, A/B testing isn’t just for audiophiles anymore! The same principle can
be applied to web or Facebook apps: develop “A” and “B” alternatives, show “A” to a
test group and “B” to another test group, and see which one is better at a predefined
metric. You might, for example, try different invite texts to see which attracts users
faster or at a higher response rate.

10.8 Continuous Improvement Through A/B Testing | 381

Discussion
Implementing your own A/B test framework is doable, but that’s like saying it’s possible
to climb Mount Everest. If you’re just getting started, don’t invest a huge amount of
time in building something that isn’t core to your application, because it just drags you
away from the important stuff. Take a look at efforts such as The Fountain Project
(http://www.fountainproject.com/), which provides an A/B system for testing Facebook
invitations.

10.9 The Great Apps Program
Problem
My app is a really outstanding example of building on Facebook Platform and I’d like
to see it celebrated by Facebook.

Solution
Apply to the Facebook Great Apps Program! You can learn more at http://developers
.facebook.com/greatapps.php.

Discussion
Facebook, recognizing the need to celebrate truly great applications, launched the
Great Apps Program at the f8 conference in July 2008. If your app does an exceptional
job of meeting Facebook’s 10 Guiding Principles (http://developers.facebook.com/get
_started.php?tab=principles), has a minimum user base, and has a consistent record of
complying with Platform policies, you stand a chance of being accepted, although it’s
worth noting that they expect to add only 10–15 apps over the first year.

As a Great App, you’ll enjoy:

Increased visibility
Your app will get promoted at the same level as Facebook’s own apps, including
the weight and visibility given to your News Feed items.

Early access to features
Great Apps will be given sneak peaks at new stuff and will be able to help test these
features before the general masses.

Support from Facebook
The Facebook team has committed to working closely with the developers of Great
Apps, providing them with feedback and better usage data to help improve their
user experience.

The program launched with two Great Apps in place: iLike and Causes. It’s too early
to really provide any guidance about how to shape your app to get accepted, other than

382 | Chapter 10: Marketing Your App

http://www.fountainproject.com/
http://developers.facebook.com/greatapps.php
http://developers.facebook.com/greatapps.php
http://developers.facebook.com/get_started.php?tab=principles
http://developers.facebook.com/get_started.php?tab=principles

to say that it’s worth reviewing what these apps have done and how they excel at the
Guiding Principles.

10.10 Application Verification Program
Problem
The world of apps is getting too crowded, and I feel like users just don’t trust apps the
way they used to. How can I get them to know that my app is legit?

Solution
If you’re faced with being MC Hammer (i.e., being 2 legit, 2 legit 2 quit), consider the
Application Verification Program launched at the 2008 f8 conference. More informa-
tion is at http://developers.facebook.com/verification.php.

Discussion
Interested developers can submit their apps, along with a processing fee, and Facebook
will verify and certify that the app:

• Uses major integration points in the manner they were intended

• Triggers communication between users and friends appropriately

• Has relevant and appropriate content in communications

Verified applications will receive a badge on their About Page, heightened presence in
the Application Directory, and more visibility in some Facebook communication chan-
nels compared to their unverified peers. Generally speaking, if your app complies with
Facebook’s Platform Policy (http://wiki.developers.facebook.com/index.php/Platform
_Policy) and meets (or exceeds!) the Guiding Principles (http://developers.facebook
.com/principles.php), you should have no trouble.

10.10 Application Verification Program | 383

http://developers.facebook.com/verification.php
http://wiki.developers.facebook.com/index.php/Platform_Policy
http://wiki.developers.facebook.com/index.php/Platform_Policy
http://developers.facebook.com/principles.php
http://developers.facebook.com/principles.php

Index

Symbols
" (double quotes)

PHP, 104
& (ampersand)

return by reference, 323
' (single quotes)

PHP, 104
.NET library, 314
100-class errors, 369
200-class errors, 369
37signals, Getting Real, 11, 87
4-1-1 information, 320
600-class errors, 299
<> angle brackets

FBJS code, 230
{} (curly braces)

fb:intl tag, 214

A
A/B testing, 29, 381
abort attribute, 243
About Page, 67
about_me field, 297
about_url property, 320
absolute positioning, 219
Accelerators

Joyent Facebook developers program, 113
accounts, xxiv

(see also test accounts)
AWS, 115, 121

Action FBML, 64
action parameter, 167, 190
ActionScript library, 314
actiontext parameter, 191

active_users field, 269
activities field, 297
{*actor*} token, 330
ad blockers

conflict with Cubic’s website, 378
conflict with SocialMedia’s website, 376

addClassName( ) method, 235
addEventListener( ) method, 241
Admin.getAppProperties( ) method, 318
Admin.getMetrics( ) method, 316
Admin.setAppPropoerties( ) method, 318
Adobe Flash, xxiv

(see also Flash video)
embedding, 152–156

AdSense (see Google AdSense)
advertising, 21, 371–375
AdWords (see Google AdWords)
affiliation field, 291
affiliations field, 296
Agarwalla, Jayant

bio, xv
on the winning formula for Facebook, 19

Agarwalla, Rajat
bio, xv
on scalability, 77

aggregating stories, 333
aid field, 265, 293, 305
AideRSS, 83
Ajax (asynchronous JavaScript and XML)

Backface library, 253
dialogs, 198–203
retrieving data, 241–244

albums, xxiv, 264–267
(see also photo albums)
counting user photos, 266

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

385

retrieving, 265, 266
table, 259, 264

alerts
using, 272

Align parameter, 153
AllFacebook website, 124
Allocations

about, 43
Notifications, 348
retrieving, 315

allowScriptAccess parameter, 153
Altura 1 Facebook Investment Fund, 24
Amazon EC2 (Amazon Elastic Cloud

Computing), 114
Command Line Tools, 122
using, 120–123

Amazon S3 (Amazon Simple Storage Service),
114–120

Amazon Web Services (AWS), 84, 114, 115
ampersand (&)

return by reference, 323
analyzing traffic, 211
Andreessen, Mark, 9, 74
angle brackets (<>)

FBJS code, 230
Apache, 83, 221
API Test Console, 107
APIs, xxiv

(see also FaceBook API)
defined, 301

api_calls field, 269
api_key, 321
api_key parameter, 308
App Factory (see Bay Partners)
AppHound, 14
applicant names

displaying, 144
application design process, 86
Application Directory, 12

listing applications, 26
application name, 60
Application Programming Interface, xxiv

(see also FaceBook API)
defined, 301

application properties
retrieving and setting, 318

application public information, 320
application users

displaying content to, 140

Application Verification Program, 383
Application.getPublicInfo( ) method, 321
Applications menu

navigating, 31
application_name property, 319
Appsaholic, 14
app_id property, 321
architecture, 71–86

databases versus memcached, 82–84
Drupal, 85
hosting Facebook applications, 71, 84
open web applications, 73
programming languages, 78–81
scaling, 75–78

artists_we_like field, 291
associations

Data Store API, 363
Facebook API, 361

asynchronous JavaScript and XML (see Ajax)
Attachments

application setting, 66
Hello World example, 66
using, 45

attire field, 290
auth tokens

authenticating users, 308
desktop, 314

authenticating users, 306
auth_token parameter, 308
awards field, 290
AWS (Amazon Web Services), 84, 114, 115

B
Backface Ajax library, 253
band_interests field, 291
band_members field, 290
Batch API, 322
batching calls, 322
Bay Partners

App Factory, 24
BBEdit, 110
Beighley, Lynn, 256
bgcolor parameter, 146
bio field, 291
birthday field, 291, 296
birthdays

friends, 298
Blanchard, Jeremy, 353
BML.refreshImgSrc( ) method, 327

386 | Index

boards (see Discussion Boards)
body_general parameter, 332
booking_agent field, 291
books field, 297
border_color parameter, 188
box titles

setting, 160
branding

about, 20
browsers

displaying content to, 143
JavaScript development, 102
testing, 100

bug tracking, xxiv
(see also Facebook Bug Tracker: debugging;
testing)
systems for, 59

Bugzilla
Facebook bug tracking system, 109

built field, 291
Burka, Daniel

bio, xvi
on Facebook’s global user interface, 95–97

bypass parameter, 191

C
cached counters, 263
caching

applications for, 82–84
CSS, JavaScript, images, 221
FBML, 210, 327

Callback URL, 59
callbackurl parameter, 180
callback_urls property, 319
calls

batching, 322
desktop, 314

cancreatetopic parameter, 178
candelete parameter, 178, 179
canmark parameter, 178
canpost parameter, 178, 179
Canvas, xxiv

(see also Facebook Canvas)
dialogs, 198

Canvas Footers, 94
Canvas Page URL, 59
canvas parameter, 309
canvas_fbml_render_time_avg field, 270
canvas_http_request_time_avg field, 270

canvas_name property, 320, 321
canvas_page_views field, 270
canvas_page_views_http_code_0 field, 270
canvas_page_views_http_code_200 field, 270
canvas_page_views_http_code_200ND field,

270
canvas_page_views_http_code_404 field, 270
capitalize parameter, 133, 135
CAPTCHA (Completely Automated Public

Turing test to tell Computers and
Humans Apart)

using, 208
caption field, 294
Cascading Style Sheets (see CSS)
categories

applications, 29
category field, 286
cats field, 286
Causes application, 26–29
checkUsername( ) method, 242
Chesnais, Alain

bio, xvii
on attracting users, 371
on SceneCaster, 371

classes, xxiv
(see also modes)
CSS names, 234–236

Click Mojo, 273
clickrewriteform parameter, 198
clickrewriteid parameter, 198
clickrewriteurl parameter, 198
clicktoshowdialog attribute, 196, 199
Client Libraries (see Facebook Client Library;

JavaScript, Client Library; PHP,
Client Library)

about, 79
Amazon S3, 120
support for, 101

clients
development environment, 101

close_dialog parameter, 198
Coda, 110
code samples

setting up, xxi
col parameter, 160
comments, xxiv

(see also Wall posts)
from users, 178

community building

Index | 387

Will Pate on, 50
company_name property, 321
company_overview field, 290
concat(string, ...) function, 258
condensed parameter, 191
condition field, 286
config.php file, 303
Connect (see Facebook Connect)
console.assert(expression) function, 252
console.dirxml( ) function, 252
console.dir( ) function, 252
console.log( ) function, 251
console.profile( ) function, 252
console.time( ) function, 252
consoles, xxiv

(see also test consoles)
testing FQL, 256

content
displaying, 138–144
hiding, 141, 147
setting dynamically, 237
textbox selections, 238
visible in Profile Boxes, 145

content parameter, 190
contextual dialogs

displaying, 247
conventions

user interface, 93
cookies, 267

retrieving, 268
retrieving and setting, 324
table, 259, 267

Cooper, Alan, 87
counting operations, 263
cover_pid field, 265
created field, 265, 294
create_listing permission, 359
Creative Commons–licensed photos, 201
creativity

about, 51
ideas for applications, 51

creator field, 274, 283
Crist, Jason, 315
cross-language development

using Thrift, 80
crossstreet field, 287
CSS (Cascading Style Sheets)

class names, 234–236
FBML, 219

styles, 233
Cubics, 377
culinary_team field, 290
curly braces ({})

fb:intl tag, 214
current_location field, 290, 297

D
daily_active_percentage property, 321
daily_active_users property, 321
dashboards

using, 170–173
dashboard_url property, 319
data

retrieving via Ajax, 241–244
Data Store API, 361–364, 362
Data.getUserPreferences( ) method, 362
databases

building, 78
Facebook API, 305
normalization versus denormalization, 262
versus memcached, 82

debugging (see bug tracking; Facebook Bug
Tracker; testing)

decoration parameter, 176
deep integration, 4
Default FBML, 64
Default iFrame Canvas Size, 62
Default Profile Box Column, 65
default_action_fbml property, 320
default_column property, 320
DeFillippo, Jason

bio, xvi
on PHP, 103–106

Deft Labs
AppHound (see AppHound)

deleting
Marketplace listings, 345

demo applications, 106
denormalization, 263, 287
description field, 265, 273, 283, 286
description property, 319, 321
descriptions

applications, 28
design process, 86–97

about, 86–91
Facebook's global user interface, 95–97
user interface widgets, 91–94

desktop property, 319

388 | Index

desktops
Facebook API, 313

Developer app (see Facebook Developer app)
Developer Email Address, 59
Developer Forums, 108
Developer Mode switch, 65
Developer Status Feed, 56
Developers list, 61
developers property, 321
development environment (see environment)
dev_mode property, 320
dialogs

displaying, 245–248
using, 196–203

directed_by field, 290
Discussion Boards

about, 57
creating, 177

displaying
application icons, 169
content, 138–144
dialogs, 245–248
tables of users, 159

display_name property, 321
div tag, 130
document.createElement( ) method, 240
documentation, xxiv

(see also Facebook Developers Wiki)
about, 106, 124
Ajax, 242
Amazon EC2, 122
blogs, 123
books, 126, 227, 242, 256
Facebook API, 362
FBML tags, 125
indexed tables for queries, 259
JavaScript, 227
Rails, 264
SQL, 256
web standards, 132

dogs field, 286
DOM elements

accessing, 252
adding dynamically, 231
creating dynamically, 240
retrieving, 230

DOM structure
changes to, 248

DOM tree

accessing and modifying, 226
Dorsey, Jack, 76
double quotes (")

PHP, 104
downloading

Facebook Client Library, 304
Drupal, 85
DuBois, Paul, 256

E
E Text Editor, 111
e-commerce, 22
EC2 (Elastic Compute Cloud) (see Amazon

EC2)
Eclipse, 111
edit_url property, 319
education_history field, 297
efault_fbml property, 320
efficiency (see optimizing; performance)
eid field, 273, 274, 305
elements (see DOM elements)
email addresses

Gmail accounts, 100
email property, 319
emails_per_day allocation, 316
email_disable_message_location allocation,

316
embedding

Adobe Flash, 152–156
Facebook photos, 150
Flash video, 156
iFrames, 149
MP3s, 151
Silverlight, 157

end_time field, 269, 274
engagement metrics, 379
environment, 99–124

Amazonian backends, 114–123
demo applications, 106
developer documentation, 106, 124
Developer Forums, 108
Facebook bug tracking system, 109
Facebook clients, 101
Facebook Open Platform, 109–111
Facebook weekly pushes, 112
hosting applications, 112
JavaScript Client Library, 101
PHP, 103–106
RSS feeds for developers, 123

Index | 389

test accounts, 99
test consoles, 107

epoch seconds, 144
errors

600-class, 299
and messages, 92
displaying error messages in applications,

175
error 604, 278, 279, 299
Facebook API, 369
onerror error handler, 243
user interface, 92

escaping JSON-encoded URLs, 333
event listeners

adding and removing, 241
event member table, 260, 274
events, 273–277

linking to, 137
retrieving, 275, 325
table, 260, 273

Events.get( ) method, 325, 326
event_subtype field, 273
event_type field, 273
examples (see code samples; demo

applications)
exclude_ids parameter, 185, 188, 191
expires field, 267
explanation messages

displaying, 175
extended permissions

about, 359
checking, 360

F
Facebook ads, 373, 374
Facebook API, 301–370

about, 301–304
allocations, 315
application 4-1-1 information, 320
application properties, 318
authenticating users, 306
calls, 322
cookies, 324
Data Store, 361–364
databases, 305
desktops, 313
error codes, 369
events, 325
Facebook Client Library, 304

FBML caches, 327
FQL queries, 337
friends, 337–340
groups, 341
Info sections, 335
logging out, 315
Marketplaces listings, 342–345
metrics, 316
Notifications, 346
pages, 348
performance compared to FQL, 255
permissions, 359, 364
photo albums, 350
photos, 352–354
PHP Client Library methods, 367
Post-Remove URL, 366
REST, 304
session keys, 310–313
stories, 332–335
template bundles, 328–332
users, 354–361

Facebook Blog, 123
Facebook Bug Tracker, 109
Facebook Canvas, 33
Facebook Client Library, 101

downloading, 304
Facebook Connect, 7
Facebook Developer app

installing, 55
Facebook Developer Blog, 123
Facebook Developer Terms of Service, 305
Facebook Developers Wiki

about, 107
FBML tags, 125
pages to watch, 123

Facebook environment (see environment)
Facebook JavaScript (see FBJS)
Facebook Markup Language (see FBML)
Facebook Open Platform

about, 109–111
Facebook Pages Blog, 123
Facebook Photos, 150

mockup, 90
wireframes, 88

Facebook Platform, 1–9
about, 1–5
integration points, 25
off-Facebook, 7
skill requirements, 5

390 | Index

versus Google OpenSocial, 7
Facebook Platform Status Feed, 123
Facebook Polls

testing applications, 16–18
Facebook Query Language (see FQL)
Facebook Thrift, 80
facebook.php file, 303
FaceReviews website, 124
FB.CanvasClient.add_windowSizeChanged( )

method, 103
FB.CanvasClient.get_timerInterval( ) method,

103
FB.CanvasClient.remove_windowSizeChanged()

method, 103
FB.CanvasClient.setCanvasHeight( ) method,

103
FB.CanvasClient.setSizeToContent( ) method,

103
FB.CanvasClient.set_timerInterval( ), 103
FB.CanvasClient.startTimerToSizeToContent()

method, 102
FB.CanvasClient.stopTimerToSizeToContent()

 method, 103
fb:18-plus tag, 146
fb:21-plus tag, 146
fb:action tag, 162, 170
fb:add-section-button tag, 181
fb:application-name tag, 144
fb:attr tag, 214
fb:board tag, 177
fb:captcha tag, 208
fb:comments tag, 178
fb:create-button tag, 170, 172
fb:dashboard tag, 170
fb:date tag, 213
fb:dialog tag, 196, 198
fb:dialog-button tag, 197
fb:dialog-content tag, 196
fb:dialog-title tag, 197
fb:editor tags, 163
fb:editor-custom tag, 167
fb:editor-text tag, 167
fb:editor-textarea tag, 167
fb:else tag, 139, 140, 141, 148
fb:error tag, 175
fb:eventlink tag, 137
fb:explanation tag, 175
fb:fbml tag, 128
fb:fbml-attribute tag, 213

fb:fbmlversion tag, 128
fb:flv tag, 156
fb:friend-selector tag, 184, 187, 193
fb:google-analytics tag, 211, 212
fb:grouplink tag, 138
fb:header tag, 169, 173
fb:help tag, 170, 172
fb:if tags, 172
fb:if-can-see tag, 147
fb:if-can-see-photo tag, 148
fb:if-is-app-user tag, 140
fb:if-is-friends-with-viewer tag, 140
fb:if-is-group-member tag, 138, 139
fb:if-is-user tag, 141
fb:if-user-has-added-app tag, 140
fb:iframe tag, 23, 149
fb:intl tag, 213
fb:intl-token tag, 213
fb:is-in-network tag, 139
fb:js-string tag, 194
fb:mediaheader tag, 174
fb:mp3 tag, 151
fb:multi-friend-input tag, 186, 192
fb:multi-friend-selector tag, 190
fb:name tag, 133, 214
fb:narrow tag, 158
fb:networklink tag, 138
fb:photo tag, 150
fb:profile-pic tag, 136
fb:prompt-permission tag, 183
fb:pronoun tag, 135
fb:random tag, 142
fb:random-option tag, 142
fb:redirect tag, 207
fb:ref tag, 210
fb:req-choice tag, 189
fb:request-form tag, 189, 190
fb:share-button tag, 203, 205
fb:silverlight tag, 157
fb:submit tag, 208
fb:subtitle tag, 161, 162
fb:success tag, 175
fb:swf tag, 149, 152
fb:tab-item tag, 174
fb:tabs tag, 173
fb:tag tag, 213
fb:tag-attribute tag, 213
fb:tag-body tag, 213
fb:time tag, 144

Index | 391

fb:title tag, 160, 180
fb:typeahead-input tag, 193
fb:typeahead-options tag, 194
fb:user-agent tag, 143
fb:user-table tag, 159
fb:visible-to-app-users tag, 146
fb:visible-to-connection tag, 146
fb:visible-to-owner tag, 146
fb:visible-to-user tag, 146
fb:wall tag, 179
fb:wallpost tag, 179
fb:wide tag, 158
fbExchange, 378
fbFund, 24
FBJS (Facebook JavaScript), 225–253

about, 225
angle brackets (<>), 230
Backface Ajax library, 253
CSS, 233–236
displaying dialogs, 245–248
DOM elements, 230–233, 240, 252
DOM structure, 248
event listeners, 241
Firebug, 250
FMBL, 194
linking to external FBJS files, 249
renaming objects and functions in Sandbox,

227
retrieving data via Ajax, 241–244
setting content dynamically, 237
text field length, 239
textbox selections, 238

FBML (Facebook Markup Language), 125–
223

about, 125
advantages of, 97
analyzing traffic, 211
caching, 210, 327
CAPTCHA, 208
categories of tags, 127
content visible in Profile Boxes, 145
CSS, 219
dashboards, 170–173
dialogs, 196–203
discussion boards, 177
displaying applicant names, 144
displaying application icons, 169
displaying content, 138–144
displaying media, 174

displaying messages, 175
displaying tables of users, 159
displaying user names, 133
embedding Adobe Flash, 152–156
embedding Facebook photos, 150
embedding Flash video, 156
embedding iFrames, 149
embedding MP3s, 151
embedding Silverlight, 157
FBJS, 194
forced renaming, 129
formatting relative time, 144
forms, 163–169
friends, 184–188
hiding private photos, 148
hiding private Profile content, 147
HTML validation, 218
image submitting, 208
Info sections, 181
invitations and Requests, 189–193
language translation, 213–218
linking to events, 137
linking to groups, 138
linking to networks, 138
loading files and images, 221–223
Mini-Feed stories, 205
permissions, 183–184
pictures, 136
Profile Boxes, 158, 162, 181
pronouns, 135
redirecting URLs, 207
Share buttons, 203
tabs, 173
titles, 160
type-ahead controls, 193
versions, 128
Wall posts, 178–180
web standards, 130–132

FBML Test Console, 107
FBML.setRefHandle( ) method, 328
fbtype attribute, 206
fb_sig parameter, 153, 366
fb_sig tag, 154
fb_sig_added parameter, 153
fb_sig_api_key parameter, 153, 366
fb_sig_expires parameter, 153
fb_sig_profile parameter, 153
fb_sig_session_key parameter, 153
fb_sig_time parameter, 153, 366

392 | Index

fb_sig_uninstall parameter, 366
fb_sig_user, 153
fb_sig_user parameter, 366
features field, 291
Feed Preview Console, 108
Feed.publishUserAction( ) method, 332
fields (see text fields)
files

linking to external FBJS files, 249
loading, 221–223

Firebug, 102, 250
Firefox

Amazon S3, 116
JavaScript development, 102

firstnameonly parameter, 133
first_name field, 296
Flanagan, David, 227
Flash (see Adobe Flash)
Flash video

embedding, 156
{*flash*} tag, 331
Flashvars parameter, 153
Flickr

Creative Commons–licensed photos, 201
flid field, 280, 281, 305
FogBugz, 59
Footer Bars, 94
Footprints demo application, 106
forced renaming, 129
Forde, Pete

bio, xvii
on relational database optimization, 262

forms, xxiv
(see also Mini-Feed, forms)
creating, 163–169

form_id parameter, 198
forums (see Developer Forums)
founded field, 290
FQL (Facebook Query Language), 255–300

600-class errors, 299
about, 255
albums, 264–267
alerts, 272
cookies, 267
events, 273–277
friends, 277–282, 298
functions, 258
groups, 282–287
listings, 286–289

metrics, 269–271
operators, 258
pages, 289–293
performance, 255, 300
photos, 293–295
preloading, 300
query structure, 256
tables, 259–265
users, 296

FQL queries, 337
frameborder parameter, 149
friend lists

retrieving, 340
friend requests

checking and retrieving, 279
table schema, 277

friendlist member table, 260, 280
friendlist table, 260, 280
friends, 277–282, 337–340

determining if users are friends, 337
displaying content to, 140
inviting, 189–193
listings, 288
picking, 184–188
retrieving, 278, 339
table, 260, 277
users, 298

Friends.areFriends( ) method, 338
Friends.getAppUsers( ) method, 339
Friends.getLists( ) method, 340
Friends.get( ) method, 323, 339
friend_request table, 260
FROM clause in FQL, 257
functions

DOM mappings, 232
FQL, 258
renaming in Sandbox, 227

funding for Facebook development, 24
future proof

defined, 74

G
gender

tagging, 135
general_info field, 291
general_manager field, 290
genre field, 290
getting (see retrieving)
Getting Real, 11, 87

Index | 393

getValue( ) method, 239
gid field, 283, 284, 305
Gmail addresses

for Facebook test accounts, 100
goal-oriented design, 88
Golding’s Law, 249
Google AdSense

using inside Facebook, 23
Google AdWords, 378
Google Analytics, 211, 380
Google OpenSocial

versus Facebook Platform, 7
granting

permissions, 364
Great Apps Program, 382
grep

running on URLs, 222
Grigorik, Ilya

bio, xvi
on caching, 83

group member table, 261, 283
group members

displaying content to, 138
groups, 282–287

linking to, 138
retrieving, 284, 341
table, 261, 282

Groups.getMembers( ) method, 341
Groups.get( ) method, 341
group_subtype field, 283
group_type field, 283
Guiding Principles

about, 48

H
hasClassName( ) method, 235
has_added_app field, 289, 297
headers (see media headers)
height parameter, 149, 151, 153, 158
Hello World example, 55–70

installing applications, 67
installing Facebook Developer app, 55
setting up, 57–67

Help URL, 65
help_url property, 320
Hewitt, Joe, 251
Hick, Rowan

on database optimization, 264
on relational database optimization, 262

hide_checkbox parameter, 309
hiding

content, 141
private photos, 148
private Profile content, 147

Hillis, Danny, 74
hometown field, 290
hometown_location field, 296
host field, 273
hosting

Facebook applications, 71, 84, 112
hours field, 290
href parameter, 198
hs_info field, 297
HTML

and FBML, 125, 128
forced renaming of ids, 129
validation, 218

HTTP
detecting versus HTTPS, 211

I
icons

applications, 26
displaying, 169

icon_url property, 320, 321
ideation

about, 11
defined, 6

ids
forced renaming, 129

ifcantsee parameter, 133
iFrame

embedding, 149
iLike, 75

attachment, 46
scalability, 75
templates, 40

images, xxiv
(see also photos; pictures)
loading, 221–223
wrapping, 208

{*images*} tag, 331
image_urls field, 286
imgclass parameter, 153, 158
imgsrc parameter, 153, 158
imgstyle parameter, 153, 158
importing

CSS files, 220

394 | Index

include_lists parameter, 186
include_me parameter, 185, 188
indexing

in FQL, 257
infinite session keys

creating, 311
influences field, 291
Info sections, 36

adding, 181
setting, 335

Inside Facebook website, 124
inspiration

Alistair Morton on, 51
installable property, 320
installing

applications, 67
Facebook Developer app, 55

installs, 22
integration points, 381

Facebook Platform, 25
interests field, 297
interfaces (see user interfaces)
internationalization, 62
Internationalization Best Practices, 218
invitations

creating, 189–193
invite parameter, 190
IP Addresses, 60
IP Blocking Exceptions, 61
ip_list property, 319
isbn field, 286
is_app_user field, 297
is_mobile property, 319

J
Java library, 315
JavaScript, xxiv

(see also FBJS)
Client Library, 101
history of, 225

JetS3t, 120
Joyent Facebook developers program, 113
JSON-encoded URLs

escaping, 333
JungleDisk, 117

K
k-factor, 379

Kallen, Ian, 222
keys (see session keys)
Kontagent, 380
Krug, Kris, 204
Kuplens-Ewart, Martin

bio, xvii
on web standards, 130–132

L
label parameter, 167
labelwidth parameter, 167
Lagorio, Jay, 315
language

clarity of, 51
translation, 62
Translations application, 213–218

Language Selection, 62
languages, xxiv

(see also PHP)
for programming, 78–81

Laporte, Leo, 204
lastnameonly parameter, 133
last_name field, 296
libraries, xxiv

(see also Facebook Client Library;
JavaScript, Client Library; PHP, Client
Library)
list of, 314

Lighttpd, 83
link field, 265, 294
linked parameter, 133, 136
linking

to events, 137
to external FBJS files, 249
to groups, 138
to networks, 138

listings, 286–289
applications in Application Directory, 26
retrieving, 287
table, 261, 286

listing_id field, 286, 305
loading

files and images, 221–223
FQL, 300

local time zones
converting and formatting, 144

location field, 265, 274, 290
logged-in users

FBML tags, 128

Index | 395

uid, 357
loggedinuser parameter, 185
logging out

Facebook API, 315
login sessions

persistence, 100
login URL, 308
logos

applications, 28
logo_url property, 320, 321
Lookery, 378
loop parameter, 153
loss leaders, 23
lower(string) function, 258

M
Mac OS X

text editors, 110
mappings

DOM manipulation functions, 232
marketing, 371–383

A/B testing, 381
advertising, 371–375
Application Verification Program, 383
Cubics, 377
defined, 6
Google AdWords, 378
Great Apps Program, 382
integration points, 381
metrics, 379
SocialMedia Networks, 375

Marketplace
about, 57

Marketplace listings, 342–345
categories and subcategories, 344
creating/modifying, 342
deleting, 345
retrieving, 343
searching, 345

Marketplace.createListing( ) method, 342
Marketplace.getCategories( ) method, 344
Marketplace.getListings( ) method, 343
Marketplace.removeListing( ) method, 345
Marketplace.search( ) method, 345
mass distribution, 4
max parameter, 188, 191
maxlength parameter, 167
media headers

using, 174

meeting_for field, 297
meeting_sex field, 296
members

events, 326
members field, 291
memcached, 82–84
menus (see Applications menu)
messages

displaying, 175
user interface, 92

message_actions property, 320
message_url property, 320
Metcalfe’s Law, 3
method parameter, 190
methods

JavaScript, 102
not requiring keys, 310
PHP, 101

metrics, 269–271
application success, 379
marketing, 379
retrieving, 270, 316
table, 259, 269

Microsoft Silverlight (see Silverlight)
Microsoft Windows (see Windows)
Mini-Feed

forms, 205
publishing stories, 332
using, 37–42

mission field, 290
Mobile Integration, 60
modes

Share buttons, 204
modified field, 265
mod_rewrite, 222
monetizing applications

with SocialMedia Networks, 375
strategies for, 21
timing, 20

monitoring software, 77
Moore, Brian, 222
Moose Tracks ice cream, 199
Morton, Alistair

bio, xv
on finding inspiration, 51

movies field, 297
{*mp3*} tag, 331
MP3s

embedding, 151

396 | Index

mpg field, 291
music field, 297

N
name field, 265, 267, 273, 280, 283, 289, 296
name parameter, 149, 167
names (see applicant names; classes, CSS

names; users, names)
namespaces

defined, 129
JavaScript, 226

Narrow Profile Boxes (see Profile Boxes)
network field, 290
network members

displaying content to, 139
networks

linking to, 138
Neurofuzzy’s Amazon PHP class, 120
new applications

setting up, 57–67
News Feed

using, 37–42
next parameter, 309
next_fbjs parameter, 184
Nginx, 83
nid field, 273, 283, 305
normalization

versus denormalization, 262, 287
Notepad++, 111
notes_count field, 297, 305
Notifications, xxiv

(see also Requests)
retrieving, 348
sending, 346
using, 43
Wall posts, 180

Notifications.get( ) method, 348
Notifications.send( ) method, 346
notifications_per_day allocation, 316
now( ) function, 258
nselected_rows parameter, 191
num_baths field, 286
num_beds field, 286

O
obj.addClassName(newClass) method, 235
obj.getSelection( ) method, 238
obj.hasClassName(someClass) method, 235

obj.removeClassName(oldClass) method, 235
obj.setInnerFBML(newContent) method, 237
obj.setSelection( ) method, 239
obj.setTextValue(newContent) method, 237
obj.toggleClassName(someClass) method,

235
object types

Data Store API, 362
object-oriented programming (OOP), 77
objective parameter, 135
objects, xxiv

(see also DOM elements)
renaming in Sandbox, 227

office field, 283
onerror error handler, 243
online_presence, 297
OOP (object-oriented programming), 77
open web applications

architecture for, 73
OpenSocial (see Google OpenSocial)
operations

FQL, 258
optimizing, xxiv

(see also performance)
databases, 264
PHP, 104
relational database tables, 262–264

OS X (see Mac OS X)
owner field, 265, 280, 293
O’Neil, Nick, 124
O’Reilly, Tim, 19

P
PackRat

About Page, 26
Notifications, 347

page fan table, 261, 291
page headers, 92
page parameter, 212
pages, 289–293

properties, 349
retrieving, 292, 348
table, 261, 289
titles, 160

Pages.getInfo( ) method, 349
Pages.hasAppAdded( ) method, 350
Pages.isAdmin( ) method, 349
page_id field, 289, 292, 305
Paging, 93

Index | 397

Parakey, 251
parking field, 290
Particle Tree, 221
Pate, Will

bio, xv
on building community, 50

path field, 267
pay field, 287
payment_options field, 290
Pazirandeh, Kevin, 353
PengoWorks’ Autocomplete plug-in, 126
performance, xxiv

(see also optimizing)
Facebook API versus FQL, 255
indexes in FQL, 257
pages that require FQL for initial rendering,

300
period field, 269
period parameter, 317
permissions, xxiv

(see also extended permissions)
discussion boards, 178
granting, 364
prompting for, 183–184

Permissions.grantApiAccess( ) method, 365
personal_info field, 291
personal_interests field, 291
personas, 87
photo albums

creating, 350
retrieving, 351

photo tag table, 261, 294
photos, xxiv, 293–295, 352–354

(see also images; pictures)
counting, 266
Creative Commons–licensed, 201
embedding, 150
retrieving, 295, 352
table, 261, 293
tags, 354
uploading, 353

Photos (see Facebook Photos)
Photos.addTag( ) method, 354
Photos.createAlbum( ) method, 350
Photos.getAlbums( ) method, 351
Photos.get( ) method, 352
Photos.upload( ) method, 353, 367
photo_upload permission, 359
PHP

about, 103–106
Client Library, 367
missing methods, 101
starting out, 103

phpinfo( ) method, 272
phps3tk, 120
pic field, 273, 283, 289, 296
pictures, xxiv

(see also images; photos)
applications, 28
Profile, 136

pic_big field, 273, 283, 289, 296
pic_large field, 289
pic_small field, 273, 283, 289, 296
pic_square field, 289, 296
pid field, 293, 294, 305
Platform (see Facebook Platform)
plot_outline field, 290
political field, 297
Polls (see Facebook Polls)
pop-up dialogs

displaying, 245–247
using, 196

popularity of applications, 12–14
popup parameter, 308
positions field, 284
possessive parameter, 133, 135
post attribute, 244
Post-Add URL, 63
Post-Authorize URL, 64
Post-Remove URL, 64, 366
postal field, 287
poster field, 286
post_install_url property, 319
Powers, Shelley, 227
precalculated values, 263
preferences

storing and retrieving, 362
prefill_ids parameter, 188
prefill_locked parameter, 188
preloading

FQL, 300
preload_fql property, 320
price field, 286
price_range field, 290
privacy

checking whether two users are friends,
279

Mini-Feed, 41

398 | Index

photos, 148
Profile content, 147

Privacy URL, 65
privacy_url property, 320
Private Installation, 65
private_install property, 320
produced_by field, 290
product placement, 22
products field, 290
Profile

getting and setting, 354
pictures, 136

Profile Boxes
adding, 181
content visible in, 145
subtitles, 162
titles, 160
wide versus narrow, 158

Profile content
hiding, 147

Profile Tab Name, 60
Profile Tab URL, 60
Profile.setFBML( ) method, 158, 355
Profile.setInfoOptions( ) method, 337
Profile.setInfo( ) method, 336
profile_update_time field, 296, 305
Profle.getFBML( ) method, 355
ProgrammableWeb website, 303
ProgrammerMeetDesigner, 26
pronouns, 135
properties

applications, 318
Pages, 349

public_transit field, 290
Publish Content to Friends/Self, 66
Publisher, 66
pushes

Facebook weekly, 112

Q
Qt+KDE library, 315
quality parameter, 153
queries (see FQL)
quotation marks

PHP, 104
quotes field, 297

R
random content

displaying, 142
rand( ) function, 258
reCAPTCHA service, 209
recent_news field, 283
record_label field, 290
redirecting

URLs, 207
reflexive parameter, 133, 135
relational database tables

optimizing, 262–264
relationship_status field, 297
relative time

formatting, 144
release_date field, 290
reliability

defined, 18
religion field, 296
removeClassName( ) method, 235
removeEventListener( ) method, 241
renaming

forced, 129
rent field, 287
Requests

creating, 189–193
using, 47

requests_per_day allocation, 316
requireLogin attribute, 243
resizable parameter, 149
resources (see documentation; Facebook

Developers Wiki)
responseType attribute, 243
REST (Representational State Transfer)

Facebook API, 304
Restaurants demo application, 106
restaurant_services field, 290
restaurant_specialties field, 290
retrieving

allocations, 315
application properties, 318
cookies, 324
events, 275, 325
friend lists, 340
friends, 278, 298, 339
groups, 284, 341
listings, 287
Marketplace listings, 343
metrics, 270, 316

Index | 399

Notifications, 348
Pages, 292, 348
photo albums, 351
photos, 295, 352
Profile, 354
uid of logged-in users, 357
user information, 357
user preferences, 362

return by reference, 323
return by value, 323
returnurl parameter, 180
Richlin, Eli, xxiv
Ridruejo, Daniel López, 222
robots

identifying versus people, 208
Rock You, 378
Ross, Blake, 251
rows parameter, 168, 191
rsvp_status field, 274
Ruby on Rails

scalability, 76
Ruby on Rails library, 315
RVSP

retrieving events, 276

S
S3 (see Amazon S3)
S3Fox, 116
salign parameter, 153
Sandboxes

renaming objects and functions, 227
using, 129

scale parameter, 154
scaling

about, 20
application architecture, 75–78
memcached, 82

SceneCaster, 374
schedule field, 290
schema

albums, 264–267
events, 273
friends, 277
groups, 282
listings, 286
metrics, 269
pages, 289
photos, 293
users, 296

Scoble, Robert, 76
Scrabulous, xxii, 43, 77
screenplay_by field, 290
<script> tags, 230, 250
scrolling parameter, 150
searching

Marketplace listings, 345
season field, 290
security

Adobe Flash, 154
seeallurl parameter, 162
see_all_url property, 320
SELECT *

support for in FQL, 265
selected_rows parameter, 191
selections

textboxes, 238
sending Notifications, 346
session keys

creating, 310–313
sessions

desktops, 313
setInnerFBML, 237
setStyle( ) method, 234
setting

application properties, 318
cookies, 324
Info sections, 335
Profile, 354
user status, 358

setting up new applications, 57–67
sex field, 296
Share buttons

using, 203
showborder parameter, 191
showMessage( ) method, 245
shownetwork parameter, 133
Side Nav URL, 65
sidebars, 94
signal-to-noise ratio

defined, 49
significant_other_id field, 297
Silverlight

embedding, 157
silverlightsrc parameter, 158
single quotes (')

PHP, 104
size field, 265
size parameter, 136, 150

400 | Index

skill requirements
for Facebook Platform, 5

skipcookie parameter, 308
Slee, Mark

bio, xvi
on cross-language development, 80

Slide, 378
smartsize parameter, 150
Smith, Justin, 124
smoking field, 286
social ads (see Facebook ads)
social graphs

defined, 2
moving user data into, 34

SocialMedia Networks, 13, 375
Software-as-a-Service, 59
source code, 77
SQL

differences with FQL, 257
relationship to FQL, 255

square_footage field, 286
src field, 294
src parameter, 149
src_big field, 294
src_small field, 294
standards compliance, xxiv

(see also web standards)
elements of, 131

starring field, 290
start_time field, 273
status

users, 358
status field, 297
status_update permission, 359
Stay, Jesse, xxiv, 126
Stone, Biz, 76
storage

Amazonian backends, 114–123
stories, xxiv

(see also Mini-Feed, forms)
aggregating, 333
publishing, 332

strategy
about, 11
defined, 6

street field, 287
strings

PHP, 104
strlen(string) function, 258

strpos(haystack, needle) function, 258
strpos( ) function, 298
studio field, 290
style parameter, 150
styles

CSS, 233
subcategory field, 286
subject field, 294
subjectid parameter, 134
substr(string, start, length) function, 258
subtitles

Profile Boxes, 162
success messages

displaying, 175
swfbgcolor parameter, 154, 158
Swfsrc parameter, 153

T
tabbed navigation, 92
tables, xxiv

(see also schema)
Facebook API, 361
list of in FQL, 259
optimizing, 262–264
queries, 259–262
of users, 159

tabs
creating, 173
using, 47

tagline field, 273
tags, xxiv

(see also photo tag table)
HTML, 218
photos, 354
tokens, 331

Tahaghoghi, Seyed M.M. “Saied”, 256
{*target*} token, 331
template bundles, 328–332
Terms of Service (see Facebook Developers

Terms of Service)
test accounts

creating, 99
test consoles

about, 107
testing, xxiv

(see also verification)
A/B testing, 381
applications, 16–18
FQL using consoles, 256

Index | 401

text editors, 110
text field, 294
text fields

length, 239
textboxes

selections or contents, 238
TextMate, 110
TextPad, 111
Thrift (see Facebook Thrift)
time zones

converting and formatting, 144
timezone field, 296
title field, 286
titles

setting, 160
toggleClassName( ) method, 235
tokens, xxiv

(see also auth tokens)
template bundles, 329

TOS URL, 61
tos_url property, 320
traffic

analyzing, 211
Translations application, 62, 213–218
trust, 50
Tseng, Jeffrey

bio, xvii
on marketing metrics, 379

tv field, 297
tvClickr

About Page, 67
Twitter, 75–76
twttr (see Twitter)
type field, 289, 292
type parameter, 190, 197
type-ahead controls

using, 193
Tzu, Sun, 13

U
uanchor parameter, 212
uccn parameter, 212
ucct parameter, 212
ucid parameter, 212
ucmd parameter, 212
ucno parameter, 212
ucsr parameter, 212
uctm parameter, 212
ucto parameter, 212

uctr parameter, 212
udn parameter, 212
uflash parameter, 212
ufsc parameter, 212
ugifpath parameter, 212
uhash parameter, 212
uid

logged-in users, 357
uid field, 267, 274, 281, 284, 292, 296, 305
uid parameter, 133, 135, 136, 185
uid1 field, 277
uid2 field, 277
uid_from field, 278
uid_to field, 278
ulink parameter, 212
uninstalling applications

by users, 366
uninstall_url property, 319
unique_adds field, 269
unique_api_calls field, 269
unique_blocks field, 269
unique_canvas_page_views field, 270
unique_removes field, 269
unique_unblocks field, 269
update_time field, 274, 283, 286
uploading

photos, 353
upper(string) function, 258
url field, 286
URLs, xxiv

(see also login URL)
callbacks in Ajax, 242
escaping JSON-encoded, 333
Hello World example, 63
redirecting, 207
running grep, 222
Wall posts, 180

usample parameter, 212
user interfaces

building, 78
global, 95–97
widgets for, 91–94

user-agent, 143
users, 354–361

applications added, 358
authenticating, 306
displaying/hiding content, 141
events created by, 276
extended permissions, 359

402 | Index

friends, 278, 298, 337
groups, 285
growth rate on Facebook, 2
listings, 288
names, 133
pages, 293
photos, 295
preferences, 362
Profile, 354
retrieving cookies for, 268
retrieving information about, 357
status, 358
table, 159, 262, 296
uid, 357

Users.getInfo( ) method, 357
Users.getLoggedInUser( ) method, 357
Users.hasAppPermission( ) method, 360
Users.isAppAdded( ) method, 358
Users.setStatus( ) method, 358
usethey parameter, 136
useyou parameter, 134, 136
use_iframe property, 319
utcp parameter, 212
utility software, 78
utimeout parameter, 212
utitle parameter, 212
utsp parameter, 212

V
v parameter, 308
validation

HTML, 218
validity

defined, 18
value field, 267
value parameter, 167, 198
values

precalculated, 263
VB.NET library, 315
venture capital funds, 24
VentureBlogs.com, 25
venue field, 274, 283
verification, xxiv

(see also testing)
Application Verification Program, 383

version numbers
in file names, 222

versioning systems, 78
versions

Adobe Flash, 154
FBML, 128

{*video*} tag, 331
viral factor, 379

W
waitforclick parameter, 154
Walker, James

bio, xvi
on Drupal, 85

Wall posts
using, 178–180

wall_count field, 297
web standards

FBML, 130–132
website field, 283
weekly Facebook pushes

about, 112
Wells, Paul, 353
Who’s Showing Up demo application, 106
Wide Profile Boxes (see Profile Boxes)
widgets

Facebook user interface, 91–94
width parameter, 150, 151, 154, 158, 167, 188
wikis (see Facebook Developers Wiki)
Williams, Ev, 76
Williams, Hugh, 256
Windows

text editors, 111
wireframes, 88
wmode parameter, 154
Wordscraper (see Scrabulous)
work_history field, 297
wrapping

images, 208
written_by field, 290
Wufoo, 221

X
xcoord field, 294
XHTML

validity, 166
xid parameter, 177, 179

Y
ycoord field, 294

Index | 403

Z
Zerofootprint Calculator

About Page, 67
Zuckerberg, Mark

announcing Facebook Platform, 1
uid, 185

404 | Index

About the Author
Jay has been providing a human side to technology for over 10 years, as a technologist,
user experience specialist, and visual designer. His career has been focused on the in-
teraction between people and technology, and his insights have helped greatly improve
products on mobile, web, and desktop platforms, including IBM DB2, Mozilla Firefox,
and several Facebook apps. Jay led Radiant Core’s Professional Services Team on a
wide variety of award-winning engagements across many industries, and he is now
helping tech startups change the world as a consultant on products, technology, and
design. He has been instrumental in the continued growth of the BarCamp community
in Toronto and was one of the co-conductors of the very successful TransitCamp event
held in partnership with the Toronto Transit Commission. Jay has been published in
Harvard Business Review and lives in Toronto with his beautiful wife, Bianca, and their
lovely little dog, Mr. Findley Mordecai Goldman.

Jay can help make your project better—find him at http://jaygoldman.com.

Colophon
The animal on the cover of Facebook Cookbook is a slow loris (Nycticebus coucang).
The loris likely gets its name from the Dutch word lores, which means sluggish. Also
known as the bashful monkey, the slow loris is about 10 to 15 inches long and weighs
3 to 5 pounds. It has a round head, small ears covered by fur, and a tail so short it’s
almost invisible. The loris has large, circular eyes that are fixed in place—like an owl,
it must rotate its head to change points of view. Slow lorises vary in color from gray to
white, depending on location, and they have dark rings around their eyes and a dark
stripe running along their backs. They live in tropical evergreen rain forests across
southeast Asia.

Lorises are nocturnal and arboreal, sleeping by day in tree hollows or branches and
becoming active at sunset. Unlike most primates, lorises do not leap through trees.
They move slowly and deliberately, using their strong opposable thumbs to grab hold
of branches, although they can move quickly if alarmed. Slow lorises are excellent
climbers and are able to hang from branches for long periods of time, as specialized
blood vessels allow them to grip on for hours.

The slow loris is one of only a few poisonous primates. A special tissue in its inner
elbows secretes a toxin. When the loris feels threatened, it folds its arms around its
head, allowing it to take the toxin into its mouth. The loris then delivers the toxin via
biting. It may also make a buzzing or hissing sound when disturbed.

The cover image is from Lydekker’s Royal Natural History. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

http://jaygoldman.com

	Table of Contents
	Contributors
	Preface
	Who Should Read This Book
	What’s in This Book?
	Code Samples
	Keeping Up with the Facebookers
	Using Code Examples
	Safari® Books Online
	Comments and Questions
	Thanks!
	Apologies to Eli

	Chapter 1. Introducing Facebook Platform
	1.1 What Exactly Is Facebook Platform?
	1.2 Skills to Pay the Bills
	1.3 Facebook Platform Off-Facebook
	1.4 Facebook Platform Versus Google OpenSocial
	What Exactly Is OpenSocial?
	Who’s Going to Win?
	What Should I Do?

	1.5 Saddle Up!

	Chapter 2. Ideation and Strategy
	2.1 Which Types of Apps Are the Most Popular?
	Problem
	Solution
	Discussion

	2.2 Which Apps Are Most Popular?
	Problem
	Solution
	Discussion

	2.3 Test-Driving Ideas with Facebook Polls
	Problem
	Solution
	Discussion

	2.4 The Winning Formula for Facebook
	Problem
	Solution
	Discussion
	Try to build an application that is social in nature
	Clean or vibrant look
	Seasonal or long-term prospects
	When to monetize
	Scalability
	Branding and appeal

	2.5 Where’s the Money?
	Problem
	Solution
	Discussion

	2.6 Google AdSense and Facebook
	Problem
	Solution
	Discussion

	2.7 Funding Facebook Development
	Problem
	Solution
	Discussion

	2.8 Facebook Platform Integration Points
	Problem
	Solution
	Discussion

	2.9 Application Directory
	Problem
	Solution
	Discussion
	Application icon
	Application logo
	Application description
	Application picture
	Application categories
	Measuring About Page success

	2.10 Navigating the Applications Menu
	Problem
	Solution

	2.11 Facebook Canvas Pages
	Problem
	Solution
	Discussion

	2.12 Think Outside the Profile Box
	Problem
	Solution
	Discussion

	2.13 Info Sections
	Problem
	Solution
	Discussion

	2.14 News Feed and Mini-Feed
	Problem
	Solution
	Discussion

	2.15 Noteworthy Notifications
	Problem
	Solution
	Discussion

	2.16 Understanding Allocations
	Problem
	Solution
	Discussion

	2.17 Attachments and the Publisher
	Problem
	Solution
	Discussion

	2.18 Requests
	Problem
	Solution and Discussion

	2.19 Tabs
	Problem
	Solution
	Discussion

	2.20 Guiding Principles of App Strategy
	Problem
	Solution
	Discussion

	2.21 Community Gardening
	Problem
	Solution
	Discussion

	2.22 Finding Inspiration
	Problem
	Solution
	Discussion

	Chapter 3. Hello World
	3.1 Installing the Facebook Developer App
	Problem
	Solution
	Discussion

	3.2 Setting Up a New App
	Problem
	Solution
	Discussion
	Base Options
	Internationalization Options
	Installation Options
	Integration Points

	3.3 Hello World
	Problem
	Solution
	Discussion

	3.4 Installing Your App: It’s All About the About Page
	Problem
	Solution
	Discussion

	Chapter 4. Architecture and Design
	4.1 Under the Hood: How Facebook Apps Work
	Problem
	Solution
	Discussion

	4.2 Architecting for the Future: Open Web Apps
	Problem
	Solution
	Discussion

	4.3 Build Now, Scale Later: Getting Real
	Problem
	Solution
	Discussion

	4.4 Scalability
	Problem
	Solution
	Discussion
	Monitoring software
	Application source code
	Database
	Hardware/OS/software utilities
	User interface/support systems

	4.5 Language Selection As Architecture
	Problem
	Solution
	Discussion

	4.6 Cross-Language Development with Facebook Thrift
	Problem
	Solution
	Discussion

	4.7 The Database Is Dead! Long Live memcached!
	Problem
	Solution
	Discussion

	4.8 Advanced Caching with Nginx and memcached
	Problem
	Solution
	Discussion

	4.9 Standing on the Shoulders of Giants: Hosting with Amazon Web Services
	Problem
	Solution
	Discussion

	4.10 Integrating Drupal and Facebook
	Problem
	Solution
	Discussion

	4.11 App Design Process
	Problem
	Solution
	Discussion
	Know thy user
	Gooooooooooooaaaaaaaaaal!
	Frame the problem
	Making a mockery
	Build it!

	4.12 The Facebook User Interface Widgets
	Problem
	Solution
	Discussion
	Simple UI widgets
	UI conventions

	4.13 Facebook’s Global User Interface
	Problem
	Solution
	Discussion

	Chapter 5. Setting Up Your Environment
	5.1 Creating a Test Account
	Problem
	Solution
	Discussion

	5.2 Facebook Clients
	Problem
	Solution
	Discussion

	5.3 JavaScript Client Library
	Problem
	Solution
	Discussion

	5.4 Starting Out in PHP
	Problem
	Solution
	Discussion

	5.5 Demo Applications
	Problem
	Solution and Discussion

	5.6 Developer Documentation
	Problem
	Solution
	Discussion

	5.7 Test Consoles
	Problem
	Solution
	Discussion

	5.8 Developer Forums: Help!
	Problem
	Solution
	Discussion

	5.9 Facebook Bug Squashing
	Problem
	Solution
	Discussion

	5.10 Facebook Developer Software Toolbox
	Problem
	Solution
	Discussion
	Mac OS X
	Windows
	Linux
	Eclipse

	5.11 Weekly Facebook Pushes
	Problem
	Solution
	Discussion

	5.12 Hosting
	Problem
	Solution
	Discussion
	Joyent Facebook developers program
	Amazon Web Services (AWS)

	5.13 Amazonian Backends: Simple Storage Solution
	Problem
	Solution
	Discussion
	Setting up your AWS account
	Getting foxy with S3Fox
	Buckets of files
	Interacting with S3’s API

	5.14 Amazonian Backends: Hosting on Elastic Cloud Computing
	Problem
	Solution
	Discussion

	5.15 Staying Up-to-Date
	Problem
	Solution
	Discussion

	Chapter 6. Facebook Markup Language (FBML)
	6.1 What Is FBML?
	Problem
	Solution
	Discussion

	6.2 Categories of FBML Tags
	Problem
	Solution
	Discussion

	6.3 FBML Versions
	Problem
	Solution
	Discussion

	6.4 A Rose by Any Other Name: Forced Renaming
	Problem
	Solution
	Discussion

	6.5 Web Standards
	Problem
	Solution
	Discussion
	Resources

	6.6 Displaying a User’s Name
	Problem
	Solution
	Discussion

	6.7 He Said, She Said: Dealing with Pronouns
	Problem
	Solution
	Discussion

	6.8 Worth a Thousand Words: Profile Pictures
	Problem
	Solution
	Discussion

	6.9 Linking to Events
	Problem
	Solution
	Discussion

	6.10 Linking to Groups
	Problem
	Solution
	Discussion

	6.11 Linking to Networks
	Problem
	Solution
	Discussion

	6.12 Display Content to Group Members
	Problem
	Solution
	Discussion

	6.13 Display Content to Network Members
	Problem
	Solution
	Discussion

	6.14 Displaying Content to App Users
	Problem
	Solution
	Discussion

	6.15 Displaying Content to Friends
	Problem
	Solution
	Discussion

	6.16 Displaying/Hiding Content to/from Specific Users
	Problem
	Solution
	Discussion

	6.17 Displaying Random Content
	Problem
	Solution
	Discussion

	6.18 Displaying Content to Specific Browsers
	Problem
	Solution
	Discussion

	6.19 Displaying Your Application’s Name
	Problem
	Solution and Discussion

	6.20 Formatting Relative Time
	Problem
	Solution
	Discussion

	6.21 Making Content Visible to Some Users in Profile Boxes
	Problem
	Solution
	Discussion

	6.22 Hiding Private Profile Content
	Problem
	Solution
	Discussion

	6.23 Hiding Private Photos
	Problem
	Solution
	Discussion

	6.24 Embedding an iFrame
	Problem
	Solution
	Discussion

	6.25 Embedding Facebook Photos
	Problem
	Solution
	Discussion

	6.26 Embedding MP3s
	Problem
	Solution
	Discussion

	6.27 Embedding Adobe Flash
	Problem
	Solution
	Discussion
	Enhancing security in your Flash

	6.28 Embedding Flash Video
	Problem
	Solution
	Discussion

	6.29 Embedding Microsoft Silverlight
	Problem
	Solution
	Discussion

	6.30 Wide Versus Narrow Profile Boxes
	Problem
	Solution
	Discussion

	6.31 Tabling Users
	Problem
	Solution
	Discussion

	6.32 Page and Box Titles
	Problem
	Solution
	Discussion

	6.33 Profile Box Subtitles
	Problem
	Solution
	Discussion

	6.34 Forms the Facebook Way
	Problem
	Solution
	Discussion
	fb:editor
	fb:editor-custom
	fb:editor-text
	fb:editor-textarea
	fb:editor-time
	fb:editor-month
	fb:editor-date
	fb:editor-button

	6.35 Heads Up! Heading Your App Pages
	Problem
	Solution
	Discussion

	6.36 Dashing Dashboards: Heading Your App Pages
	Problem
	Solution
	Discussion

	6.37 Tabs Ahoy!
	Problem
	Solution
	Discussion

	6.38 Media Headers
	Problem
	Solution
	Discussion

	6.39 Errors, Explanation, and Success: Displaying Messages (Oh My!)
	Problem
	Solution
	Discussion

	6.40 Discussion Boards Made Simple
	Problem
	Solution
	Discussion

	6.41 Giving Users a Voice: Wall Posts in Your App
	Problem
	Solution
	Discussion

	6.42 Adding Profile Boxes and Info Sections
	Problem
	Solution
	Discussion

	6.43 Prompting for Extended Permissions
	Problem
	Solution
	Discussion

	6.44 You Can Pick Your Friends
	Problem
	Solution
	Discussion

	6.45 You Can Pick Your Friends (in Batches)
	Problem
	Solution
	Discussion

	6.46 Invitations and Requests
	Problem
	Solution
	Discussion
	Inviting/requesting friends in bulk
	Inviting/requesting a small number of specific friends
	Inviting/requesting a single user

	6.47 Predicting the Future with Type-Ahead Controls
	Problem
	Solution
	Discussion

	6.48 Using FBML Inside FBJS
	Problem
	Solution
	Discussion

	6.49 Dialogs That Pop
	Problem
	Solution
	Discussion

	6.50 Dialogs in Context
	Problem
	Solution and Discussion

	6.51 Dialogs with Ajax
	Problem
	Solution

	6.52 Facebook Share Buttons
	Problem
	Solution
	Discussion

	6.53 Feed Forms: Publishing Feed Stories from FBML
	Problem
	Solution
	Discussion

	6.54 Redirecting to a Different URL
	Problem
	Solution
	Discussion

	6.55 Painless Image Submitting
	Problem
	Solution
	Discussion

	6.56 Hunting for Robots: CAPTCHA in Your App
	Problem
	Solution
	Discussion

	6.57 FBML Caching
	Problem
	Solution
	Discussion

	6.58 Analyzing Traffic with Google Analytics
	Problem
	Solution
	Discussion

	6.59 Translations
	Problem
	Solution
	Discussion

	6.60 Valid HTML Tags
	Problem
	Solution
	Discussion

	6.61 Facebook and CSS: FBSS?
	Problem
	Solution
	Discussion

	6.62 Beating the CSS, JavaScript, and Image Cache
	Problem
	Solution
	Discussion

	Chapter 7. Facebook JavaScript (FBJS)
	7.1 Dealing with Sandbox Renaming
	Problem
	Solution
	Discussion

	7.2 Losing Your < >s
	Problem
	Solution
	Discussion

	7.3 Retrieving DOM Elements
	Problem
	Solution
	Discussion

	7.4 Manipulating DOM Elements
	Problem
	Solution

	7.5 Manipulating CSS Styles
	Problem
	Solution
	Discussion

	7.6 Manipulating CSS Class Names
	Problem
	Solution
	Discussion

	7.7 Dynamically Setting Content
	Problem
	Solution
	Discussion

	7.8 Textbox Selections
	Problem
	Solution
	Discussion

	7.9 Limiting the Length of Text Fields
	Problem
	Solution
	Discussion

	7.10 Creating Elements Dynamically
	Problem
	Solution
	Discussion

	7.11 Adding and Removing Event Listeners
	Problem
	Solution
	Discussion

	7.12 Retrieving Data via Ajax
	Problem
	Solution
	Discussion

	7.13 Displaying Pop-Up Dialogs
	Problem
	Solution
	Discussion

	7.14 Displaying Contextual Dialogs
	Problem
	Solution
	Discussion

	7.15 Avoiding Heartache When the DOM Changes
	Problem
	Solution
	Discussion

	7.16 Linking to External FBJS Files
	Problem
	Solution
	Discussion

	7.17 Use Firebug (No, Seriously)
	Problem
	Solution
	Discussion

	7.18 Accessing the DOM Behind FBJS
	Problem
	Solution and Discussion

	7.19 Ajax Library: Backface
	Problem
	Solution
	Discussion

	Chapter 8. Facebook Query Language (FQL)
	8.1 Playing with FQL
	Problem
	Solution
	Discussion

	8.2 FQL Query Structure
	Problem
	Solution
	Discussion

	8.3 Functions and Operators
	Problem
	Solution
	Discussion

	8.4 Indexed Facebook Tables and Fields
	Problem
	Solution

	8.5 Advanced Relational Database Table Optimization
	Problem
	Solution
	Denormalization
	Cached counters
	Precalculated sums

	Discussion
	Next steps

	8.6 Album Table
	Problem
	Solution
	Discussion

	8.7 Retrieving an Album
	Problem
	Solution
	Discussion

	8.8 Counting All of a User’s Photos
	Problem
	Solution
	Discussion

	8.9 Retrieving Five Albums for a User
	Problem
	Solution
	Discussion

	8.10 Cookie Table
	Problem
	Solution
	Discussion

	8.11 Retrieving All Cookies for a User
	Problem
	Solution
	Discussion

	8.12 Retrieving a Specific Cookie
	Problem
	Solution
	Discussion

	8.13 Retrieving All Cookies for a Specific Path
	Problem
	Solution and Discussion

	8.14 Metrics Table
	Problem
	Solution
	Discussion

	8.15 Retrieving Yesterday’s Metrics
	Problem
	Solution
	Discussion

	8.16 Retrieving Metrics for a Date Range
	Problem
	Solution
	Discussion

	8.17 Alerting Yourself
	Problem
	Solution
	Discussion

	8.18 Event Table
	Problem
	Solution
	Discussion

	8.19 Event Member Table
	Problem
	Solution
	Discussion

	8.20 Retrieving an Event
	Problem
	Solution
	Discussion

	8.21 Retrieving Events Created by a User
	Problem
	Solution
	Discussion

	8.22 Retrieving a User’s Events
	Problem
	Solution
	Discussion

	8.23 Retrieving a User’s Events with a Specific RSVP
	Problem
	Solution
	Discussion

	8.24 Retrieving Events Two Users Are Attending
	Problem
	Solution
	Discussion

	8.25 Friend Table
	Problem
	Solution
	Discussion

	8.26 Friend Request Table
	Problem
	Solution
	Discussion

	8.27 Retrieving a User’s Friends
	Problem
	Solution
	Discussion

	8.28 Checking Whether Two Users are Friends
	Problem
	Solution
	Discussion

	8.29 Retrieving a User’s Pending Friend Requests
	Problem
	Solution
	Discussion

	8.30 Checking for a Friend Request Between Two Users
	Problem
	Solution
	Discussion

	8.31 Friend List Table
	Problem
	Solution
	Discussion

	8.32 Friend List Members Table
	Problem
	Solution
	Discussion

	8.33 Retrieving a User’s Friend Lists
	Problem
	Solution
	Discussion

	8.34 Retrieving a Specific Friend List
	Problem
	Solution
	Discussion

	8.35 Retrieving Friends in Friend Lists
	Problem
	Solution
	Discussion

	8.36 Retrieving Friends in a Specific Friend List
	Problem
	Solution
	Discussion

	8.37 Groups Table
	Problem
	Solution
	Discussion

	8.38 Group Member Table
	Problem
	Solution
	Discussion

	8.39 Retrieving a Specific Group
	Problem
	Solution
	Discussion

	8.40 Retrieving a User’s Groups
	Problem
	Solution
	Discussion

	8.41 Checking Whether Two Users Are in the Same Group
	Problem
	Solution
	Discussion

	8.42 Listing Table
	Problem
	Solution
	Discussion

	8.43 Retrieving a Listing
	Problem
	Solution
	Discussion

	8.44 Retrieving a User’s Listings
	Problem
	Solution
	Discussion

	8.45 Retrieving a User’s Friends’ Listings
	Problem
	Solution
	Discussion

	8.46 Retrieving a User’s Listings by Category
	Problem
	Solution
	Discussion

	8.47 Page Table
	Problem
	Solution
	Discussion

	8.48 Page Fan Table
	Problem
	Solution
	Discussion

	8.49 Retrieving a Page
	Problem
	Solution
	Discussion

	8.50 Retrieving a User’s Pages
	Problem
	Solution
	Discussion

	8.51 Photo Table
	Problem
	Solution
	Discussion

	8.52 Photo Tag Table
	Problem
	Solution
	Discussion

	8.53 Retrieving the 10 Most Recent Photos from a User
	Problem
	Solution
	Discussion

	8.54 Retrieving All Photos a User Is Tagged In
	Problem
	Solution
	Discussion

	8.55 User Table
	Problem
	Solution
	Discussion

	8.56 App Friends
	Problem
	Solution
	Discussion

	8.57 Birthday Friends
	Problem
	Solution
	Discussion

	8.58 600 Errors
	Problem
	Solution
	Discussion

	8.59 Preload FQL
	Problem
	Solution and Discussion

	Chapter 9. Facebook API
	9.1 What’s an API?
	Problem
	Solution
	Discussion

	9.2 Getting Started with the Client Library
	Problem
	Solution
	Discussion

	9.3 RESTing with Facebook
	Problem
	Solution
	Discussion

	9.4 Storable Data
	Problem
	Solution
	Discussion

	9.5 Authenticating Users
	Problem
	Solution
	Discussion

	9.6 Creating a Session Key
	Problem
	Solution
	Discussion

	9.7 Creating an Infinite Session Key
	Problem
	Solution
	Discussion

	9.8 Getting a Session (Desktop Only)
	Problem
	Solution
	Discussion

	9.9 Creating an Auth Token (Desktop Only)
	Problem
	Solution
	Discussion

	9.10 Making Calls (Desktop Only)
	Problem
	Solution
	Discussion

	9.11 Logging Out
	Problem
	Solution and Discussion

	9.12 Getting Allocations
	Problem
	Solution
	Discussion

	9.13 Getting Metrics
	Problem
	Solution
	Discussion
	FQL equivalent

	9.14 Getting and Setting Application Properties
	Problem
	Solution
	Discussion

	9.15 Getting an App’s 4-1-1
	Problem
	Solution
	Discussion

	9.16 Batching Calls
	Problem
	Solution
	Discussion
	Return by reference

	9.17 Getting and Setting Cookies
	Problem
	Solution
	Discussion
	FQL equivalent

	9.18 Getting Events
	Problem
	Solution
	Discussion
	FQL Equivalent

	9.19 Getting Event Members
	Problem
	Solution
	Discussion
	FQL equivalent

	9.20 Refreshing FBML Caches
	Problem
	Solution
	Discussion

	9.21 Getting a (Ref) Handle on FBML
	Problem
	Solution
	Discussion

	9.22 Three Story Sizes: Working with Template Bundles
	Problem
	Solution
	Discussion
	Feed story example: Causes
	About tokens
	Getting all of your templates
	Getting a template bundle
	Deactivating a template bundle

	9.23 Publishing News and Mini-Feed Stories
	Problem
	Solution
	Discussion

	9.24 Story Aggregation
	Problem
	Solution
	Discussion

	9.25 Setting Info Sections
	Problem
	Solution
	Discussion
	Getting Info sections
	Adding options
	Getting Options

	9.26 FQL Queries
	Problem
	Solution and Discussion

	9.27 Friends?
	Problem
	Solution
	Discussion
	FQL equivalent

	9.28 Get Friends
	Problem
	Solution
	Discussion
	FQL equivalent

	9.29 Get Friends Who Use My App
	Problem
	Solution
	Discussion
	FQL equivalent

	9.30 Get Friend Lists
	Problem
	Solution
	Discussion
	FQL equivalent

	9.31 Get Groups
	Problem
	Solution
	Discussion
	FQL equivalent

	9.32 Get Group Members
	Problem
	Solution
	Description
	FQL equivalent

	9.33 Creating/Modifying Marketplace Listings
	Problem
	Solution
	Discussion

	9.34 Get Marketplace Listings
	Problem
	Solution
	Discussion
	FQL equivalent

	9.35 Get Marketplace Categories and Subcategories
	Problem
	Solution
	Discussion

	9.36 Deleting Marketplace Listings
	Problem
	Solution
	Discussion

	9.37 Searching the Marketplace
	Problem
	Solution
	Discussion

	9.38 Sending Notifications
	Problem
	Solution
	Discussion
	Sending to friends
	Monitoring allocations

	9.39 Get Notifications
	Problem
	Solution
	Discussion

	9.40 Get Pages
	Problem
	Solution
	Discussion
	FQL equivalent

	9.41 Checking Page Properties
	Problem
	Solution
	Discussion

	9.42 Create a Photo Album
	Problem
	Solution
	Discussion

	9.43 Get Photo Albums
	Problem
	Solution
	Discussion

	9.44 Get Photos
	Problem
	Solution
	Discussion
	FQL equivalent

	9.45 Uploading a Photo
	Problem
	Solution
	Discussion

	9.46 Adding Tags to Photos
	Problem
	Solution
	Discussion

	9.47 Getting and Setting Profile FBML
	Problem
	Solution
	Discussion

	9.48 Get a User’s Info
	Problem
	Solution
	Discussion
	FQL equivalent

	9.49 Get Logged-In User
	Problem
	Solution
	Discussion

	9.50 Has a User Added My App?
	Problem
	Solution
	Discussion

	9.51 Setting Status
	Problem
	Solution
	Discussion

	9.52 Extended Permissions
	Problem
	Solution
	Discussion

	9.53 Checking Extended Permissions
	Problem
	Solution
	Discussion

	9.54 Storing Data with the Data Store API
	Problem
	Solution
	Discussion

	9.55 Granting Permissions to Other Applications Via the Permissions API
	Problem
	Solution
	Discussion

	9.56 Post-Remove (Uninstall) URL
	Problem
	Solution
	Discussion

	9.57 Adding Missing PHP Client Library Methods
	Problem
	Solution
	Discussion

	9.58 Error Codes
	Problem
	Solution
	Discussion

	Chapter 10. Marketing Your App
	10.1 Attracting Users Through Facebook Ads
	Problem
	Solution
	Discussion

	10.2 Monetize, Measure, and Market with SocialMedia
	Problem
	Solution
	Discussion

	10.3 Social Network Advertising with Cubics
	Problem
	Solution
	Discussion

	10.4 Other Ad Networks
	Problem
	Solution
	Discussion

	10.5 Spreading Your App via Google AdWords
	Problem
	Solution
	Discussion

	10.6 Measuring Your Success
	Problem
	Solution
	Discussion
	Virality
	Engagement
	How to measure

	10.7 Work the Integration Points
	Problem
	Solution
	Discussion

	10.8 Continuous Improvement Through A/B Testing
	Problem
	Solution
	Discussion

	10.9 The Great Apps Program
	Problem
	Solution
	Discussion

	10.10 Application Verification Program
	Problem
	Solution
	Discussion

	Index

