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PREFACE

ProPERTIES of dielectric materials are of interest to scientists
in various branches: physicists, chemists, electrical engineers,
biologists. Their interests concern different aspects; thus an
electrical engineer will require the dependence of dielectric loss
on frequency and temperature in order to find a substance
which is nearly loss free in a certain range. The chemist on the
other hand can use this knowledge to draw conclusions on the
properties of molecules. For these, and for many other pur-
poses, it is imperative to have a theory of dielectrics.

The present book is intended to give a systematic account of
the theory of the dielectric constant and of dielectric loss. This
it is hoped will satisfy the requirements of the various branches
of research interested in dielectrics. In writing this account I
found that the subject deserves interest also from a methodical
point of view as an application of classical statistical mechanics.
That this application is far from trivial is shown by some
of the controversies in the literature which have lasted until
very recent years ; also the general theorems derived in § 7 seem
to be novel. -

It was my intention to write this monograph for the use of
applied scientists. I hope, however, that the sections dealing
with the general theory will also be of value to students. The
required mathematical technique only occasionally exceeds
acquaintance with calculus; even so I have been told that its
extensive use might be too heavy for biologists. The reader is
assumed to have a certain elementary knowledge of atomic and
molecular physics, statistical mechanics, and electrostatics.
Quantum mechanics will not be required ; its relation to the
theory of dielectrics is discussed in van Vleck’s book (V1).

Units unless stated otherwise refer to the electrostatic c.g.s.
.ystem. Vectors are represented by bold type. Unfortunately
it was not always possible to avoid repetition of symbols. The
meaning of the symbols oc, ~, ~ is respectively propor-
tional to, approximately equal to, order of magnitude of. As
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usual, £ is Boltzmann’s constant, A is Planck’s constant,
= hf2q.

I am grateful to a great number of colleagues for help of
various kinds. To Dr. F. C. Frank, Professor Willis Jackson,
Dr. H. Pelzer for reading all, or parts of, the manuscript, and
making valuable suggestions; to Dr. R. Sack for his help in
reading the proofs; to Mr. S. Zienau for making the index. My
particular thanks, however, are due to Dr. B. Szigeti who helped
to collect the experimental material, and to Dr. J. H. Simpson
who read the first draft of the manuscript and made many useful
suggestions.

I should like to use this opportunity to express my apprecia-
tion to the British Electrical and Allied Industries Research
Association (E.R.A.) without whose support much of the work
described here would have remained undone.

I also wish to express my thanks to the Physical Society, the
Faraday Society, Nature, and to the authors quoted for the use

of illustrations.
H. F.
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CHAPTER I
MACROSCOPIC THEORY
1. Static fields

THE electric properties of dielectric substances are usually
described in terms of the dielectric constant. For most materials
this quantity is independent of the strength of the electric field -
over a wide range of the latter, but in the case of alternating
fields depends on the frequency. 1t also depends on parameters,
such as the temperature, which define the state of the material.
In the macroscopic (phenomenological) theory, which will be
‘summarized in the present chapter, the dielectric constant is
supposed to be known empirically. The purpose of the rest of
the book will be to derive the dielectric constant (and its varia-
tion with temperature, frequency, etc.) from the atomic structure
of the material.

Throughout this book we shall be interested in homo-
geneous substances only, and in electric fields which are inde-
pendent of the space coordinates, although they may depend
on time.

- Consider now a condenser consisting of two parallel plates in
vacuum whose distance apart d is small compared with their
linear dimensions, and suppose that they are charged electri-
cally with charges +0A4 and —o4 respectively. 4 is the surface
area of a plate, and hence + o is the charge per unit area which
will be denoted as surface density. The charges give rise to an
electric field which inside the condenser is practically homo-
geneous and directed perpendicular to the surface. Its amountis

given by E = 470, (vacuum). (1.1)

In this equation the factor 4= is due to the particular way in
which the unit of electric charge is defined, leading to the electro-
static c.g.s. system of units usually chosen in atomic physics.
Equation 1.1 should be completed by the definition of the electric
field as the force (in dynes) acting on the unit of electric charge

which then leads to a unique definition of this unit.
4980.11 B
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Between the two plates of the condenser a voltage can be
measured whose absolute value @ is given by
o = |Ed. (1.2)
Now suppose the space between the plates to be filled with a
homogeneous dielectric material while the charge on the plates
remains unaltered. This will cause the voltage to drop to a
smaller value, and the ratio of its former value to the present
one is denoted by the static dielectric constant ¢,. Since equation
1.2 still holds, the electric field strength has also decreased, its

present value being E = dnofe (1.3)

From equations 1.1 and 1.3 it follows that the drop in the field
strength accompanying the insertion of the dielectric might also
be achieved by reducing the surface-density o of the electric
charge by the amount

P= a(l_l) .ty (1.4)

€s €s

Therefore the influence of the electric field on the dielectric
is equivalent to charging the two surfaces of the dielectric with
charges of opposite sign in such a way that the positive condenser
plate is faced by the negatively charged surface of the dielectric,
and vice versa. The surface density of the charge is constant,
and amounts to P. This behaviour of the dielectric is to be
expected from the atomic point of view according to which any
substance containing no net charge consists of an equal number
of positive and negative elementary charges. In a dielectric in
particular these charges cannot move freely through the medium
(as in a conductor), but they can be displaced. Clearly negative
charges will be displaced towards the positive plate and con-
versely. The total charge passing through any unit of area
within the dielectric, which is parallel to the condenser plates,
is the same and its amount is equal to P. P, therefore, is called
the polarization of the dielectric.

In macroscopic physics the introduction of the polarization
P through the displacement of charges is rather fictitious
because these charges cannot be removed from the dielectric.
They compensate charges of opposite sign but equal absolute
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value of the condenser plates. These latter charges are some-
times denoted as ‘bound’ charges, whereas the original charges
at the condenser plates are called ‘true’ charges (cf. Fig. 1). It
is customary then to introduce a new field-quantity D, which is
described in terms of the true charge. Thisisthe electric displace-

ment, defined by D — dro. (1.5)
In vacuum, therefore, D = E. In dielectrics, however, using
1.3 and 1.5 D —¢,E. (1.6)
Clearly from equations 1.4, 1.5, and 1.6

D = E+4=P. (1.7)

M N B R & B C) + 4+ 4+ ¥ ¥+

5 I

b S T B

D e 4P | - I[E N } :

\IL ) \!, + 4y 4+ L+

X —"5 o d © - - - - - -

Ta 1b

Fi1g. 1. Dielectric material with dielectric constant ¢, = 2 between condenser
plates. (@) Macroscopic description. The left-hand side of the figure shows
true charges 4+, — as sources of D. The right-hand side shows that the true
charges can be considered as composed of bound charges @, © and of free

charges [+], [=] being sources of 47P and E respectively, and leading to
D = E+4xP.

(b) Atomic description. Only true charges exist, and the field is described

by E only; the polarization of the dielectric (indicated by + —+...—), how-

ever, leads to surface charges which compensate some of the charges on the
condenser plates.

Thus in macroscopic physics the electric field in a dielectric
must be described by two field quantities. The electric field-
strength E and the electric displacement D are usually chosen,
and the polarization P can then be derived with the help of
equation 1.7. D is defined by the (true) charge according to
equation 1.5, and E can be derived from D with the help of a
special relation 1.6 which is characteristic for the particular
dielectric material.

To link up this description with atomic physies it should be
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noted that the surface charges 4 P4 giverise to an electric dipole
moment M of the dielectric given by

M = PAd = PV, (1.8)
where V = Ad isits volume. On the other hand, as shown in § 4,
this electric moment M can be calculated from the configuration
of the positive and negative elementary charges which form the
constituents of the substance. Thus from 1.8 with the use of
equations 1.6 and 1.7 it follows that

ec—1 =4nM|VE = 4nP|E. (1.9)
This equation provides the required link between macroscopic
and atomic theory.

2. Time-dependent fields

Now consider that the charges on the condenser plates, and
hence the electric field, depend on time. As in the static case,
a dielectric which is placed between the plates will be polarized
by the field. The displacement of charges connected with this
polarization usually shows some inertia. Thus if a constant
field is suddenly applied the polarization will not reach its static
value immediately, but will approach it gradually (cf. Fig. 2).

As in the static case, two field quantities are required to de-
scribe the electric field inside the dielectric and one usually
chooses the electric field-strength £ and the electric displace-
ment D. The latter is still defined by equation 1.5, and the
correlation between E, D, and P given by equation 1.7 still
holds. Equation 1.6, however, correlating ¥ and D, is no longer
valid in the present case, but has to be replaced by a more general
relation.

Consider first the important case of a periodic field, e.g.

E = E,coswt, (2.1)
where E is independent of time and w/2# is the frequency in
cycles per second. If a field of this type has persisted for a
sufficient length of time, D too must be periodic in time. In
general, however, D will not necessarily be in phase with E, but
will show a phase-shift ¢, i.e.

D = Dy cos(wt—¢) = D, cos wt+ D, sin wt, (2.2)
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where according to elementary trigonometry
D, = Dycos ¢, D, = D,sing. (2.3)

For most dielectrics D, will be proportional to K, but the
ratio Dy/E, usually depends on frequency. Therefore, two

4 €1
S

time

Fic. 2. Time-dependence of the polarization P of a dielectric when a constant
electric field E is suddenly applied to it.

different dielectric constants, €,(w) and e,(w), both frequency
dependent, can be introduced by

D =¢E, and D, = ¢, E,. (2.4)
Thus from 2.3 and 2.4

tang = g2, (2.5)
€1
It will be shown in § 3 that e, is proportional to the energy loss
in dielectrics.
As the frequency approaches zero the present description
must become identical with that given in § 1. Thus (assuming
that there exists no dielectric loss in static fields)

ex(w) = 0, e1(w) = ¢, as w—0. (2.6)
We shall add the further relation (cf. also § 10)
6(w) > €4, aS w—>00, (2.7)

which is to be understood in such a way that ¢ is the value which
€;(w) approaches at the highest frequencies contemplated in the
present book. They correspond to wave-lengths in the infra-red
region.
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The above equations can be written in a condensed form by
introducing a complex dielectric constant

€ = €+ 1€,y (2.8)
and replacing equation 2.1 by
E = E et (2.9)

considering, however, only the real part of this equation (which
is identical with 2.1). Then the real part of the equation

D=c¢E (2.10)

is identical with equations 2.2 and 2.4.

The two dielectric constants ¢, and e, if considered as functions
of the frequency w are not entirely independent if the relation-
ship between ¥ and D is a linear one.} This linear relation-
ship is usually expressed by the principle of superposition and is
best explained with the help of a more general time dependence
of the field than has been considered above. Assume that during
the time interval between v and v+ du an electric field of strength
E(u) has been applied to the dielectric and that the electric
field vanishes outside this time interval. A displacement D will
result which in view of the inertia of the polarization P will
persist at times ¢ > u-+du, but which will gradually vanish.}
D is thus a function of {—u, i.e.

D(it—u) = Ew)a(t—u)du if t> utdu,
where o(t—u) is the decay function describing the gradual
decrease of D, in particular
at—u) >0 if t-—>oc0. (2.11)
The displacement D contains a part which can follow the field

practically immediately, and which in view of the meaning

given to e, will be assumed to be equal to e, E(u).
Thus ,

Dt—u) = e E(u)+ Eu)a(0)du if » <t <u-+tdu,
t Cf. B. Gross [G4] and S. Whitehead [W5], where further references are

given.
I Note that according to 1.7 .D = 47P if E = 0.
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where « may be considered to remain at the value «(0) during
the short interval du.

Suppose now that at a later time interval between «’ and
u'+du’ another field E(u’) is applied. Then by the principle of
superposition it will be assumed that the corresponding dis-
placement D(t5a’) is superposed linearly on the former one.
This principle of sujaerposition if applied to a continuous time-
dependent field E(u) initiated at the time u = 0 requires that
the displacement D(¢) at the time ¢ is given by

D({t) = e, E(t)+ f{E(u)a(t—u) du. (2.12)
0

This equation will now be applied to periodic fields. Intro-
ducing E from equation 2.1 into 2.12 thus leads to

t
D(t)—e, Eycoswt = B, f a(t—u)cos wu du
0

t
=k, f a(x)cos w(t—z) dx
0
if # = t—wu is introduced. It should be noted that in all integra-
tions t is to be considered as a parameter. Again it will be
assumed that the field has persisted sufficiently long to make D
a periodic function of time. This means that ¢ is larger than the
time ¢, at which «(t) practically vanishes. Then in view of 2.11
the above integration over the coordinate x can be extended to
infinity without appreciably altering the value of the integral, i.e.
D(t)—en Egcoswt = E, f a(x)cos w(t—x) dx,

0

or applying a simple trigonometric formula,

D(t)—e, Egcoswt = Ejcos wt f a(z)cos wx dx +
6

—I—Eosinwtfa(x)sinwx dz. (2.13)
0
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Comparing this expression with equations 2.2 and 2.4 it follows
that

w)—e€, = foc cos wx dx (2.14)
d

€(w) = fa(a,)smwa: dx. (2.15)
0

Both functions €;{w)—e¢, and e,(w) can thus be derived from the
same function «(z) and, therefore, cannot be independent.
A calculation carried out in the appendix (A 1.iii) shows that

2 w
o) —eo = [ et dp, (2.16)
™ pe—w
2 o w
and afw) =2 [{a—ed 2 dn, @17
T w—pu
0

where p is a variable of integration. Both integrals are principal
values.

Equation 2.16 can be used to calculate the static dielectric
constant from e,(w). In this case clearly

(= al0) = et [t 2, (2.18)
w p
0
which indicates that substances for which ¢,—e,, is very small
cannot show appreciable dielectric losses (which are proportional
to e,). ho—

Finally, it should be mentioned that the correlation between
macroscopic and atomic theory is provided by an equation
similar in nature to equation 1.9. It is based on the fact that
equation 1.7 holds in the time-dependent case as well as in the
static one. With a similar argument to that in § 1 it follows that
the polarization P is equal to the electric moment M per unit
volume, leading to equation 1.8. Introducing the complex
dielectric constant ¢ with the help of 2.10, using 1.7, it follows

that (e—1)E — 4= MV, (2.19)
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in which only the real part of the expression on the left-hand side
is considered. Thus if

M = M, cos wt+ M, sin wt, (2.20)
then e—1 = 4nM,|VE,, € = 47 M|V E,. (2.21)

3. Energy and Entropy

A. Static fieldst
In many text-books the expression

K2
€g §T

is stated to represent the electric energy per unit volume of a
dielectric material with a static dielectric constant ¢, in the
presence of an electric field E. This statement is misleading
whenever ¢, depends on temperature. In fact it suggests that
the energy difference per unit volume of the dielectric, first in
the presence and then in the absence of an electric field, is always
given by the above expression. This energy difference ought,
however, to depend on the state in which the dielectric is kept
while the electric field is applied; this might, for instance, be
done isothermally or adiabatically. A more accurate discussion
given below shows that the above expression actually is the
change of the free energy of the dielectric.

Before this discussion is commenced the reader will briefly
be reminded of the two fundamental laws of thermodynamics.
Consider as a simple example a gas of volume v, pressure p,
and temperature 7. By expanding it by the small volume dv,
work amounting to pdv will be done. Conservation of energy,
therefore, requires that

dU = dQ—pdv (3.1)
1s the change in the energy content of the gas if d@) is the influx
of heat during the expansion. Equation 3.1 represents the first
law of thermodynamics in this simple case. An analysis shows
that the quantity d@ is not a total differential, i.e. that no
unique function ¢ of the variables exists such that d@ is the

t Cf. Abraham-Becker [41, Chapter XI].



10 MACROSCOPIC THEORY L§3

difference between two neighbouring values ¢, and ¢,. For a
reversible process, the expression
d
dsS = -,_]?— (3.2)
does, however, represent a total differential of a function S,
the entropy. S is of fundamental importance in connexion with

the second law of thermodynamics (cf. text-books).
With the help of S the Helmholtz frce energy F can be derived

by F=U—TS. (3.3)
It represents the maximum amount of work which the system
can be made to do in an isothermal (i.e. constant temperature)
process.

In the case of dielectric material in an electric field, electro-
magnetic theory (cf. Appendix A 1.i) shows that the quantity

1 gap (3.4)
4

represents the influx of energy into the dielectric (per unit
volume) if the displacement D is increased by the small amount
abD.

Assume now that the volume of the dielectric is always kept
constant, and that the temperature 7' is the only parameter
besides the electric field F considered to be varied. Then the
increase dU of the energy U per unit volume of the dielectric
in a process in which either 7' or E, or both, are varied slightly
1s given by B
aU = dQ-|—EdD (3.5)

if d@) is the influx of heat per unit volume.

This equation is similar in structure to equation 3.1 for a gas
if £ and D are replaced by —p and ». The relation existing in
gases between p, v, and T (the equation of state) is, however,
different from the relation between E, D, and T'. For the latter,
equation 1.6 will be supposed to hold with a dielectric constant
€, which may depend on T but is independent of E. Thus

dD — d(e, B) — ¢, dE+E de, — e, dE—l—E'zifls,dT,
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which means that a variation of D may be due to a change in
the field-strength E at constant temperature, and to a change
in temperature at constant E. For the following it will be useful
to take T and E? as the independent variables. Equation 3.5
representing the first law of thermodynamics then becomes

€ E? oe, . _oU oU
dQ—I— d(E2)+— —TdT aU = —(Ez) d(E2)—|—-——dT
(3.6)

A further relation will now be obtained from the entropy law
according to which dS, given by equation 3.2, is a total differen-
tial. This means that a unique function S(7', £2) must exist

such that
o8 o8 0
) as = T dT—|— BT d(E?). (3.7)
Thus if it is found that
dS = A(T, E?)dT+ B(T, E?) d(E?), (3.8)

where 4 and B are both functions of the two variables 7' and
E?, the condition that dS is a total differential requires that

oB _ o4

oT — o(E?)
because both sides of the equation 3.9 are equal to 828/6T0( E?).
Now according to 3.2, inserting dQ from 3.6,

oU  E? o¢, 8U &

This equation is of the type 3.8, and equation 3.9, therefore,
becomes

a{ oU es}_ o [1(oU E? 2,
oT\T\o(E?) 8xn)| — o(E?)\T\oT 4= oT)|
Carrying out the differentiations one finds
oU 1 Oeg
a(E?) §(€s+Tﬁ)'
Integrating with respect to E? yields the energy density

U= Uo(T)"l"( 3+T663)E

(3.9)

)3 (3.11)
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where Uy(T) is independent of E? but depends on 7' and thus
represents the energy of the dielectric in the absence of a field.

The entropy S can now easily be calculated because on com-
paring equation 3.10 with 3.7, both 0S/0T and 98/6(E?) are
known if U is introduced from equation 3.11. Thus

oS _ 1o, B, 05 _ 1
a7 — T 3T T 8r T o(E*) ~ 8mol’
2
or integrating S = SO(T)—I—% L , (3.12)
oT 8«

where Sy(T') is the entropy in the absence of a field. From
equation 3.3 one finally finds for the free energy
€, E*

8’
where Fy(T) is the free energy in the absence of a field. This
proves our original contention.

The above expressions for U, S, and F are very instructive.
Thus equation 3.13 for the free energy shows (in analogy to the
meaning of ¥ in gases) that the amount of electric energy avail-
able in an isothermal reversible process is ¢, £2/8.

From equation 3.11 for the energy it follows that for
substances such as dilute dipolar gases for which (e, is inde-

pendent of T ¢, = €,-constant/T, (3.14)

the energy change due to the field is given by ¢, E%/87. Thus in
this case the temperature-dependent: part of ¢, does not make
any contribution to the ‘energy. The remaining free energy
(es—e€o) E2/87 available bewes € ££%/87 is thus entirely due to a
change in entropy.f e

Finally, equation 3.12 shows that the entropy is increased by
the field if d¢,/0T is positive, and decreased if this quantity is
negative. Since the entropy is a measure of the molecular dis-
order, an external field creates order in dipolar liquids and gases
for which ¢, decreases with increasing 7'. This may be expected

F = Fy(T)+

(3.13)

Tt Near the absolute zero of temperature this would contradict the third
law of thermodynamics; a temperature dependence of the type 3.14 can,
therefore, not be valid near T = 0.
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because the ficld will orientate some of the dipoles which in the
absence of a field are at random. In some dipolar solids, on the
other hand, ¢, increases with 7', which means that an external
field increases the disorder. This too is understandable if one
assumes that in the absence of a field the dipoles are in a well-
ordered state as may be expected in solids. The field by turning
some of the dipoles into different directions can thus only
decrease the existing order.

Fic. 3. Schematic temperature-dependence of the dielectric constant ¢, and

of the entropy change S o¢ 2¢,/2T' due to the polarization by a field. If S > 0 the

field creates disorder, if § << 0 it creates order. Near the absolute zero of

temperature the substance is already perfectly ordered. Hence 0¢,/0T cannot
be negative near 7' = 0.

B. Periodic fields

The corresponding calculations in the general case of a time-
dependent field become very involved. It is easy, however, to
consider the isothermal case in the presence of a periodic field,
and to calculate on an average over one period the amount of
electric energy which is transformed into heat.

On an average over a period the energy U of the dielectric
cannot change because the temperature is kept constant, and
the field ¥ is periodic. Thus in equation 3.5dU = 0, and hence
integrating over one period

fdQ:-—fEdD_ iﬂfE@dt

The heat produced per second and per unit volume, i.e. the
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rate of loss L of energy from the electric field, is therefore given
by 27w oD
L=2| EZ dt.
82 f ot d
0
Inserting here E from equation 2.1 and D from 2.2 and 2.4,

one finds omr/w
2 .
I — wk} J' COSwt(€123COSwt_I_E 3s1nwt)dt,

82 at 2ot
2
or after integration, L= stﬂ) . (3.15)
Yo

This can be expressed in terms of the phase-shift ¢ (equation

2.5) by 2
ﬁ#tan . (3.16)
T

L =
For this reason ¢ is usually described as the loss angle.
Another derivation of equation 3.15 is given in the appendix
(A 1.ii). The connexion of ¢; and e, with the optical constants
of the material is also discussed in the appendix (A. 1.iv).



CHAPTER II
STATIC DIELECTRIC CONSTANT

4. Survey

Ix the present chapter the intention is to calculate the electric
dipole moment induced by an external field in a dielectric from
its atomic and molecular structure. The dielectric constant ¢
can then be obtained with the help of equation 1.9.

In § 7 a formula of general validity will be derived which
connects the static dielectric constant e, with structural proper-
ties of the substance. The calculation of explicit values of ¢,
and its temperature dependence is usually, however, beset with
great formal difficulties and two types of approximations are,
therefore, introduced.

Firstly, a simple model is in general chosen to represent a
material of much greater complexity. Secondly, mathematical
approximations are often introduced which hold only within a
certain range of some parameter such as the temperature.
Consequently, in order to decide whether an approximate
formula is applicable for a given material, one has to judge (a)
whether the basic model can be chosen to represent the actual
material, and (b) whether the mathematical approximation
holds for the given range of the parameter concerned.

A dielectric substance can be considered as consisting of
elementary charges e;, and

e, =0 (4.1)
if it contains no net charge. The electric dipole momentt of a
charge e, relative to a fixed point is defined by the vector e, 1, if
1;is the radius vector from the fixed point to e;. The total moment
of the whole system is the vector sum of all the individual dipoles,
2 ¢;1;. This quantity is independent of the position of the fixed
1

point if the sum of the charges is zero. For using this fact (cf. 4.1)
the dipole moment relative to a point at a distance b from the
original one is

E e;(1;+b) = E e;1;+b 2 e; = 2 el

T Also referred to as electric moment or dipole moment or moment.
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It will now be assumed that in the lowest energy state (ground
level) of the substance its dipole moment vanishes. Then if 1,,is
the positional vector of the charge e; in the ground level,

Therefore, if r; is the displacement of the charge e; from its
equilibrium position in the ground state, 1, = 1,;+r;. Then

using 4.2, MX) =2 e;1; = > e;1; (4.3)
T T

is the electric dipole moment of the substance for a given set of

displacoments X = (ry, Iy, Tpyenl) (4.4)

which has been expressed in abbreviated form by X. Many such
sets X may lead, of course, to the same moment M.

Very often it is useful to collect some of the elementary charges
into a group forming an atom, a molecule, a unit cell of a crystal,
or some larger unit. Let the jth unit of this type contain the
s elementary charges e;), e;,..., &j,..., €;5, and let

CL'_,’ — (I'Jl, l'j2,..., I'jk,...,r]-s) (4.5)

be an abbreviation for the set of all their displacements r,..., .

Then m,) = 3 exty (4.6)
k=1

is the electric moment of this jth group of charges, and
M(X) = 5 m(z)) (4.7)
J

where the sum extends over all the groups. The vector sum of
their individual moments m(z;) thus forms the total moment
M(X). Our task is to find the average displacements, and hence
the average electric moment under the influence of an external
electric field.

In order to obtain a preliminary idea about the average con-
tributions of certain displacements to the electric moment we
shall consider two cases, each of which has its characteristic
type of displacement:

Case (i) the displaced charge is bound elastically to an equili-
brium position;
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Case (ii) a charge has several equilibrium positions, each of
which it occupies with a probability which depends on the
strength of an external field.

The interpretation of case (i) is that on displacing the charge

e, carried by a particle of mass m a distance r, a restoring force
proportional to —r acts on the particle in a direction opposite
to the displacement (hence the — sign). Thus, if a constant
external field f is applied (¢ = time)

d?r

e
where w,/27 denotes the frequency of oscillation, and —mwjr
is the restoring force. Equation 4.8 can be written

d? - 0. =
@(r—r) = —wj(r—r), (4.9)
where r— mi)ﬁf’ (4.10)

i.e. dr/dt = 0. The charge e, therefore, carries out harmonic
oscillations about the position T which thus represents the time
average of its displacement, i.e. if G and & are constant

r=r+C cos(wqyt+98).

The average electric moment is, therefore,

or — — _f. (4.11)

As an example of case (ii) consider a particle with charge e
possessing two equilibrium positions A and B, separated by a
distance b. In the absence of an electric field the particle has
the same energy in each position. Thus it may be assumed to
move in a potential field of the type shown in Fig. 4. If in
equilibrium with its surroundings it will oscillate with an energy
of order kT about either of the equilibrium positions, say about
A. Occasionally, however, through a fluctuation, it will acquire
sufficient energy to jump over the potential wall separating it
from B. On a time average, therefore, it will stay in A as long

as in B, i.e. the probability of finding it in either A or B is 1.
4980.11 C
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The presence of a field f will affect this in two ways. Firstly,
as in case (i), the equilibrium positions will be shifted by an
amount T which for simplicity will be assumed to be the same
in A and B. Secondly, the potential energies V,, V5 of the par-
ticle in the two equilibrium positions will be altered because

r

Fic. 4. Potential energy of a charged particle with two equilibrium positions.
The dotted curve holds in the presence of an external field f.

its interaction energy with the external field differs by e(bf), i.e.
V,—Vg = e(bf). (4.12)
The particle should, therefore, on the average spend more
time near B than near A. Actually, since according to statistical
mechanics, the probability of finding a particle with an energy
V is proportional to e-V/kT,
o-ValkT o—ValkT

Pa= = AINT | o=V5lkT? P = P (4.13)

are the probabilities for positions A and B respectively. They
have been normalized in such a way as to make
PytPp=1 (4.14)
in agreement with the physical condition that the particle must
be in one of the two positions. Thus from 4.12 and 4.11
cedDET __ ]

Z_%{_‘pﬂ — e®OkT ] > 0. (4.15)
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It follows from the definition of the probabilities p, and pg
that if the condition of the system over a long time ¢, is con-
sidered, the particle will spend a time (use 4.14)

Paty = [3—Hpp—Pd) It
in position A, and a time ppt; = [3+3(pg—p4)]t; in position
B. It has thus been displaced by the distance b from A to B

during the fraction }(pg—p,) of the time ¢;,. The average
moment induced by the field is thus

3eb(pp—p4)- (4.16)
Hence if 8 is the angle between b and £, the projection of the
induced moment into the field direction is, using 4.16 and 4.15,

given by pebf cosOikT __ |

$eb cos b (4.17)

eebJ cos OikT +1 ‘

In most cases it is permissible to assume
ebf L kT, (4.18)

for putting e = electronic charge, f = 300 volts/cm. = 1 e.s.u.,
b = 10-8cm. ~ distance between neighbouring atoms in a
molecule, and 7' = 300° (= room temperature) one finds
ebf  4-8x10710x10-8x1
— ~ 104, 4.19
kT 14X 10718 300 (+19)

Developing 4.17 in terms of ebf/kT, the average induced
moment in the field direction is found to be

(%eb)? cos?d f/kT +er, (4.20)
where e is a term similar to those considered in case (i) which
has been added to account for the elastic displacement.

Often two charges +e and —e are strongly bound, forming an
electric dipole p. = ed where d is the distance between them.
The above case (ii) then leads to the same result as that of a
dipole @ having two equilibrium positions with opposite dipole
direction, but with equal energy in the absence of a field. In
a field f the energy of interaction between field and dipole is

given by — ), (4.21)

so that 2uf cos 0 is the energy difference between the two positions
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if 6 is the angle between w and f. This is equivalent to equation

412t @ = leb. (4.22)
Actually putting an immobile charge —e half-way between A
and B turns case (ii) into the present case. Clearly the induced
moment must be the same for both cases because the charge
—e is immobile, and its distance from A and B is }b, leading to a
dipole moment u, 4.22. Introducing this into 4.20 yields for the
induced moment in the field direction

P Z‘;29 fef. (4.23)
In contrast to case (i) the electric moment now depends on tem-
perature. In view of equation 1.9, a substance consisting of a
great number of such dipoles will have a temperature-dependent
dielectric constant in contrast to a substance in which all charges
are bound elastically. According to equation 3.12 this means
that in the dipolar case (ii) the entropy of the substance is
decreased by the field. This is evident because the field causes
the fraction pg of dipoles with components in the field direction
to be larger than the fraction p, of dipoles with components in
the opposite direction, thus leading to a state which is disordered
to a smaller degree (i.e. having a lower entropy) than the state of
complete disorder in which pg = p,.

The difference between the action of the field in the two cases
(i) and (ii) should be well understood because this is essential for
the whole theory of dielectric constant. In case (i) the field
exerts a force on an elastically bound charge, thus shifting its
equilibrium position. In case (ii) this force of the field on the
charge again leads to contributions of type (i) denoted by e7 in
equations 4.20 and 4.23. It would be wrong, however, to assume
that the field by this force turns a dipole from one equilibrium
position into another. This is effected in a more indirect way
because the field slightly alters the probabilities of a jump,of a
dipole from one equilibrium position to another. This will be
described in greater detail in § 9, where the dynamic properties
of the present model will be investigated.

It should also be realized that though every charge is displaced
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elastically (case (i)) the fraction of dipoles turned by a field of
reasonable strength (case (ii)) is very small. This fraction is
given by }(pp—p,4) which, according to 4.15, 4.18, and 4.19, is of
the order 104 in a field of 300 volts/cm. Even in a field of
100,000 volts/cm. only about 2 per cent. of all dipoles are
orientated.

5. Dipolar interaction

In a dielectric two essentially different types of interaction
forces should be distinguished. Forces due to chemical bonds,
van der Waals attraction, repulsion forces, and others have all
such short ranges that usually interaction between nearest
neighbours only need be considered. Compared with these
forces dipolar interaction forces have a very long range. This
can be readily shown as follows.

As indicated previously (cf. § 4) a polarized dielectric can be
considered as composed of small regions each having a certain
dipole moment, and the total dipole moment of the body is the
vector sum of the moments of these regions. Now it is well
known from macroscopic theory that the energy per unit volume
of a macroscopic specimen depends on its shape (cf. Appendix
A 2.ii). This implies that interaction between dipoles must be
taken into account even at macroscopic distances and illustrates
the great importance of the dipolar interaction forces.

Due to the long range of the dipolar forces an accurate cal-
culation of the interaction of a particular dipole with all the
other dipoles of a specimen would be very complicated. How-
ever, very good approximation can be made by considering that
the dipoles beyond a certain distance, sayt a,,, can be replaced
by a continuous medium, having the macroscopic dielectric
properties of the specimen. Thus the dipole whose interaction
with the rest of the specimen we are calculating may be con-
sidered as surrounded by a sphere of radius a,, containing a
discrete number of particles, beyond which there is a continuous
medium. To make this a good approximation the dielectric
properties of the whole region within the sphere should be equal

T The suffix m stands for macroscopic.
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to those of a macroscopic specimen, i.e. it should contain
a sufficient number of molecules to make fluctuations very
small.

From this point of view we are thus led to H. A. Lorentz’s
[L3] method for the treatment of dipolar interaction: from a
macroscopic specimen select a microscopic spherical region
which is sufficiently large to have the same dielectric properties
as a macroscopic specimen. The interaction between the dipoles
inside the spherical region will then be calculated in an exact way,
but for the calculation of their interaction with the rest of the
specimen the latter is considered as a continuous medium. To
demonstrate this method we shall make use of a very simple
model. It consists of a cubic lattice of ‘atoms’ whose linear
dimensions are very small compared with the lattice distance.
Each atom consists of a positive charge 4e which is rigidly
bound to the lattice point, and of a negative charge —e which is
bound elastically to it. The force acting on a negative charge
when it is displaced while all others are at rest at their respective
equilibrium positions will be denoted as the restoring force. When
other charges are displaced as well, an additional force will act
on the charge due to a change in the interaction between the
charges. It will be assumed that electrostatic interaction only
exists, and in particular that there are no short-range forces.
Furthermore, the temperature will be assumed to be so close to
the absolute zero, T' = 0, that thermal oscillations can be dis-
regarded.

On these assumptions when a macroscopic electric field E is
set up in the substance all negative charges are displaced by the
same amount, say T, each forming a dipole

m = (—e)T. (5.1)

The field f acting on one charge and displacing it against the
restoring force is often referred to as the local field, or the inner
field; it has to be distinguished from the macroscopic field E.
Thus if the restoring force is denoted by —c?r,

(—)g

c?

)
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and hence according to 5.1
m = _f. (5.2)

To calculate f according to Lorentz’s method, separate the
sources of f into those inside the spherical region and those out-
side it, making contributions f; and f, respectively,

f=f+f1,. (5.3)
Since all induced dipoles are identical, the field f must be the
same at every lattice point. To find f; consider therefore the
dipole at the centre of the spherical region and calculate its

interaction energy I with all the other dipoles of the region.
This will depend on #, and

(—e)f, = —grad I(¥). (5.4)
To calculate this interaction energy I assume the field to be
sufficiently weak to make 7 very small compared with the lattice
distance a,. Each dipole m can then be considered as a point
dipole. The electrostatic interaction energy between two parallel
dipoles of equal moment is given by
7 (1—3 cos?y), (5.5)
where [ is the distance between them and i is the angle between
1 and m. For simplicity let m be parallel to a crystal axis, say
in the z-direction. Then the three components of 1 are

X = na,, Y = pa,, Z = qa,

where %, p, ¢ are positive or negative integers. Since cos = Z/I,

the total energy of interaction follows from 5.5 by summation
over all lattice points, i.e.

e N PP— 3Z2 _m n*+p>—
f=m Z - a ;q (n2+p2+q )
Now to each set of three values n, p, ¢, say n = ng, p = ,,
q = q,, two others can be coordinated by cyclic permutation,
namely n = py, p = qo, ¢ =ny and n = gy, p = Ny, ¢ = Po.
These three terms just cancel in the above sum, and hence I = 0.
It thus follows, using 5.4, that

f; = 0. (5.6)
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The external contribution f, has to be calculated macroscopi-
cally. It represents the electric field inside the spherical region
due to all sources except the polarization inside this region. To
understand this clearly it should be rememberéd that the
macroscopic electric field E is partly due to true charges outside
the specimen (or at its surface) and partly due to the polariza-
tion P of the dielectric which acts in the opposite direction.
To obtain f, the contribution to E due to the spherical region
should be omitted. Therefore if E; is this contribution,

f,=E—E,. (5.7)
By definition, E,, the self-field, is the field inside a spherical
specimen with a permanent polarization P. Its direction is

opposite to P. A simple electrostatic calculation (Appendix
A 2.21) shows that

E,—_%p. (5.8)
3
Therefore, using 5.3, 5.6, 5.7, 5.8, and 1.9,
6)
f:fe=E+%"P =“s;“E. (5.9)

It should be noted that this expression is independent of the size
of the spherical region, which means that the contribution of any
homogeneously polarized spherical shell to the field inside it
vanishes. In other words, the interaction between such a shell
and a dipole inside it vanishes. This is in agreement with the
above result 5.6 obtained by considering dipole-dipole inter-
action in detail. The present model, therefore, has been chosen
in such a way as to make macroscopic and microscopic treat-
ment identical. Such a result, of course, could only be obtained
by assuming short-range forces to be entirely absent. The exis-
tence of such a force would modify f;, but it would not alter our
result for f,.

The fact that the interaction energy of the dipoles of a spherical
region vanishes must mean that if a spherical specimen is brought
into a homogeneous field E, in vacuum this field represents the
local field acting on each dipole. Actually from electrostatics
it follows that the field inside a spherical specimen of dielectric
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constant e, is E = 3E/(e,+42) (cf. Appendix A 2.16), and hence
with equation 5.9, f = E,,.

The above result 5.9 can be derived by an alternative method
due to Onsager [O1] which is capable of a generalization and
which will be of use at a later stage of the development of a
general theory.

The reader should realize, however, that in Onsager’s paper
the spherical region contains one single dipolar molecule only.
This is, of course, open to the objection that the spherical region
is certainly not large enough to have the same properties as a
macroscopic specimen. In our use of his analysis, however, the
spherical region is sufficiently large to make it certain that it is
correct to treat the outside macroscopically. Now consider,
in the absence of a macroscopic field, a spherical region which is
polarized homogeneously, thus having a dipole moment M = PV
where V is its volume. If considered separately without the rest
of the specimen the electric field inside the spherical region is the
self-field E,, equation 5.8. If, on the other hand, the spherical
region is considered inside the specimen there will be a certain
interaction between the polarized sphere and the surroundings,
giving rise to an altered field inside the spherical region. Its
difference from E, is denoted as the reaction-field R and is given
by (Appendix A 2.18; a,, = radius of the spherical region)

_ 2Uee—1) M 2 ,—1 47M 2 ,—1
T 2,41 ad, 32,+1 V 32,41

47P.

(5.10)
Thus R is the field produced inside the spherical region by the
surroundings if polarized by the former. If a macroscopic field
E is now produced in the specimen without altering the moment
M of the sphere, the field inside it will be increased by an addi-
tional field, the cavity-field G (cf. Appendix A 2.15),

e,

=5t (5.11)
Thus the total field inside the sphere, due to outside sources, is
f —G+R=_"% Ei2&"1yp (5.12)

2e¢,+1 3 2¢,+1
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This expression holds whatever the value of P. In our particular
case if 47P = (e,—1)E (cf.§ 1) isintroduced, the above expression
becomes identical with 5.9.

Finally to calculate ¢, insert f from 5.9 into 5.2. The polariza-
tion P is then given by

s+2 e2
P=Nm=": = 5 ME,

where N, is the number of particles per unit volume. Hence

using 1.9 e—1 dm e

e A
which is usually known as Clausius—Mossotti formula (cf.
Clausius, C1; Mossotti, M5). The above derivation of this
formula is exact except for the assumption that 7 is a small
quantity. It will be noted, however, that the change in ¢, as 7
increases is essentially a manifestation of the field dependence
of the dielectric constant (since the change in magnitude of
depends only on field strength) and this does not concern us here.
That is, formula 5.13 is correct for the limiting case in which the
dielectric constant is independent of the field. The reader should
realize, however, that this derivation holds for the above model
only; there are few substances which it could claim to represent,
though for simple non-polar substances it will often be a useful
approximation.

(5.13)

6. Dipolar molecules in gases and dilute solutions

Molecules can be divided into two classes, polar and non-polar,
according to whether or not they possess an electric dipole
moment in their lowest energy-level (ground state). In general
it is easy to recognize the class to which a molecule belongs
because a non-polar molecule must have a point of symmetry
defined in such a way that the distribution of charges along (or
near) any straight line passing through it must be symmetrical
with respect to this point. Thus a diatomic molecule is polar
unless its two atoms are equal (e.g. the polar molecules HCI,
CO, and the non-polar molecules H,, O,). Triatomic molecules
of the type AB,, where A and B represent different atoms, are
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polar unless their nuclei lie on a straight line with A half-way
between the two B atoms. Examples are the triangular polar
H,O0 and the straight non-polar CO, molecules. C4Hg is a more
complicated non-polar molecule forming a plane hexagon with
the centre as point of symmetry. On replacing one H atom by
another type of atom, say by Cl, the resultant molecule C;H,Cl
becomes polar.

The magnitude of molecular dipoles is usually of the order
of one electronic charge (~4-8x10-1° e.s.u.) displaced by
3% 10-8 cm., i.e. about 1018 ¢.g.s. units. Often dipole moments
are expressed in Debye units, one such unit being 10-18 c.g.s.
units. Debye was the first to recognize the importance of the
investigation of dipole moments for a study of the constitution
of molecules (cf. his book, reference D2). A detailed discussion
of molecular structure is, however, not intended in the present
book. Our purpose in this section is to determine the properties
of dielectric substances consisting of molecules having per-
manent dipole moments and our model for such a molecule (in
vacuum and free from perturbing influences) will, therefore,
have a dipole moment p.,.

In addition to its translational motion, a free molecule can
carry out oscillations and rotations. However, unless stated
otherwise, it will be assumed that these do not alter the average
value of the dipole moment. In a complicated molecule intra-
molecular rotation of dipolar groups may lead to considerable
changes in the dipole moment of the molecule as a whole (cf.
the book by Le Févre, L2). Such molecules will not be considered
at present.

A constant electric field f will influence the molecule in two
ways. Firstly, it will perturb the free rotation of the dipole,
and secondly, it will induce a further dipole moment, say of,
by elastic displacement of the atomic electrons relative to their
respective nuclei, and to a smaller extent by elastic displacement
of the nuclei relative to each other. The total moment of the
molecule is thus

m = W,+aof. (6.1)
The quantity « has the dimensions of a volume and is called the
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polarizability of the molecule. In anisotropic molecules (that is,
molecules having different polarizabilities along different axes)
the induced moment need not always have the same direction
as the field f; the polarizability « is in this case not a scalar but
a tensor quantity. Its average value, &, obtained by allowing
the molecule to have all possible directions relative to the field,
is, however, a scalar. Assuming that the polarizability of a
molecule is entirely due to electronic contributions, « is deter-
mined by the optical refractive index n. For, according to Max-
well’s relation, n2 is the dielectric constant at optical frequencies
at which there are no dipolar contributions (because the time
required by the dipoles to attain equilibrium with the field is
much longer than the period of the field). Assuming the mole-
cules to be isotropic, it will be shown below that the Clausius—
Mossotti formula holds approximately in this case, i.e.
n?—1

n242’

where a is the radius of a sphere which on an average contains
one molecule.

a = a3

(6.2)

Gases
We shall now proceed to calculate the dielectric constant e,
of a gas of dipolar molecules. In order to simplify calculations,
it will be assumed that the density of the gas is so low that the
dipolar interaction energy is small compared with the thermal
energy (=~ kT per molecule) and can therefore be neglected.
According to § 5 the dipolar interaction energy is of the order
pi/l3 ~ u2 N, if N, is the number of molecules per unit volume.
It will thus be assumed that
piN, < kT. (6.3)
This simplifies the calculation of ¢, considerably because it
implies that the local field f, acting on a dipole, is entirely due to
external sources, i.e. f =D = ¢,E (cf. § 1). Also if N, is small
€,— 1 must be small as well, so that the further assumption
(,—1< 1 (6.4)
leads to f=E. (6.5)
It will be found below that 6.4 follows from 6.3.
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In order to calculate the electric moment M of the gas we make
use of the fact (§ 4) that M is equal to the vector sum of the
moments m of all N molecules. Since, on the other hand, the
time average m of m is the same for all molecules,

M = Nm. (6.6)

Thus from 1.9 ec—1 = 4nN,m/E, (6.7)
where according to 6.1 and 6.5

m = p,+aE. (6.8)

In this expression the first term represents the average value of
the intrinsic moment, and the second one is the average induced
moment per molecule. The calculation of m is similar to that
carried out in case (ii) of § 4. In the present case, however,
instead of having only two possible directions as described in
§ 4, a dipole has a whole continuum of possible directions. As
in § 4, the behaviour of the dipole may be considered on a
statistical basis, without inquiring into its dynamic properties
under the influence of the field E. Thus since — Ep,cosf is
the energy of the dipole in the field, the probability of finding
K, in a direction forming an angle between § and 6+4df with E
is given, according to statistical mechanics, by (27 sin 6d6 is the
element of the solid angle between 8 and 6+4d#)

m™
eEFvéosg/"TsianH/f eBroeosfkT gingdg,  (6.9)
0 %
provided that thermal equilibrium has been attained. At
present in considering static properties this will always be
assumed to be the case.

In evaluating 6.9 we shall assume, as in the case of equation
4.18, that the field is sufficiently weak to make

’;:f < 1. (6.10)

Then developing 6.9 in terms of p, E/kT, and keeping terms up
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to the first order only, one obtains for the average value of
cos 6,
m m
E Ok gj E Ok T oj o B
cosf = | cos@eErocostikT gin § df [ | eErvcosbikT gin § d6 =
0 0

kT
(6.11)

Similarly the components of ., perpendicular to E are found
to vanish, so that the average moment g, of a molecule is a vector
with the same direction as E, amounting to g, = p,cos9, i.e.

™ g 2
="K, 6.1
On using 6.7 and 6.8, therefore,
47ul N, - .
e—1 = gZT 04 47ah, ife—1<1 (6.13)
or introducing €w = 1+4maly (6.14)

as dielectric constant at frequencies so high that the dipoles have
no time to attain equilibrium,
_ 4mpi N

77

In agreement with the conclusions drawn in § 4 the dipolar
contribution to ¢, is temperature-dependent in contrast to the
non-polar contribution e,. Measurement of the temperature-
dependence of ¢, thus malkes possible the separation of the dipolar
contribution, e,—e,, and hence the determination of 1, (examples
in § 16).

Dilute solutions

The above derivation suggests that a formula similar to 6.15
should hold for dilute solutions of dipolar molecules in a non-
polar liquid having the temperature-independent dielectric
constant ¢,. For at sufficiently low densities the interaction
between dipoles can again be neglected. Also, replacing 6.4 by

6—ep < 1, (6.16)

t For withz = cos § and y = p, E/kT <L 1,
1

1 1 1
cos f = f :csV"’dz/ f eYT dx =~ J {z+ yx?) da:/f de = 0+22Y/3 = y[3.
-1 -1 -1

-1

if e,—1< 1. (6.15)

€
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equation 6.5 holds as before, leading to 6.11 because in a liquid,
in the absence of an external field, all directions of the dipole
are equally probable. Furthermore, if €, is again the non-polar
contribution to e, then (e,—1)E/4w represents the non-dipolar
contribution to the electric moment of the solution per unit
volume. Since (e,—1)I/47 is the total moment, (e,—e)E/4m,
in view of the additivity of moments, is, as before, the dipolar
contribution. Assuming that the dipole is rigid, i.e. that « = 0,
equation 6.15 would follow with e, ~ ¢,. Actually a molecular
dipole is not rigid, but can be polarized. In a solution this leads
to a change in the effective dipole moment of the molecule, as
was recognized by various authors (cf. Weigle, W1; Frank, F1I,
Higasi, H2; Frank and Sutton, F'4; these authors also consider
other effects which may lead to an alteration in the effective
dipole moment when the molecule is non-spherical or has a
large quadripole moment). The dipole polarizes its surroundings
which in turn produce a reaction field at the position of the
dipole. This field polarizes the molecule and thus alters its dipole
moment. Thus if we define the resultant moment which the
molecule has in the solution as the ‘internal moment’ u;, the re-
action field will be proportional to w;, say gw,. In the absence
of an external field, therefore, from 6.1 (using f = gw; and

m = y,)

W = By T oy, (6.17)
¥y

A quantitative calculation of the reaction field, and hence
of w;, is very difficult\however, except in the case of spherical
molecules.

It follows from the above that, when a field E, produced by
external sources, exists in the solution the resultant field acting
upon a molecule in the solution will be different from E. Also
the moment p; of the molecule in solution will be different from
that it has in vacuum (namely p,). In order to take account of
these facts in calculating the dielectric constant of the solution
we may consider the dipole in one of two ways. In the first of
these we calculate the field acting upon the ‘internal moment’
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;. This will, of course, depend on the shape chosen for our model
of the molecule. In the second method we calculate the inter-
action between the field of the dipolar molecule in the solution
around it and the applied field E. The same dipolar field might
alternatively be produced by a rigid dipole having in vacuum a
moment g, which will be denoted as the ‘external moment’ of
the molecule.f A solution of rigid dipoles g, should, therefore,
have the same dielectric constant as the solution which we
actually consider.

The former method will be used below in deriving the Onsager
formula. At present the latter method will be chosen because it
enables us to make use of our previous derivation for gases to
determine the dielectric constant e, of the solution, i.e. to employ
equation 6.15 after replacing p, by w,. Thus with the use of 6.18

e o dmuilNy _ 4"#%1\’0( #c/m-)z

£ 3ET 3kT \l1—ag/’
if 6— € K1 and e,—er <L 1. (6.19)
Here the ratio p,/u; of external to internal moment depends on
the shape of the molecule. For spherical molecules, according
to the definitions of 1, and p;, the internal moment p;, is identical
with the moment of a sphere inside the dielectric containing p,
at its centre. An ordinary calculation in electrostatics shows
that in this case (cf. Appendix A 2.31)

3e
= S, 6.20
("'e 2Es+ 1 ("'u ( )
and if @ is the molecular radius (cf. Appendix A 2.19)
2e,—1) 1
=" —. 6.21
2¢,+1 ad ( )

Furthermore, if the polarizability is isotropic and is mainly due
to displacement of electrons, equation 6.2 holds, » being the
refractive index of a pure liquid of the dipolar molecule. Then
with 6.18, using 6.21 and 6.2, the internal moment of a spherical

molecule is 2
(2€s+1 n —|—2) . (6.22)

2¢,+n2 3

+ Compare Appendix A 2.ii for a discussion of dipole moments.

i
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and with 6.20 its external moment is

e (n*+2)
tre =Gz (6.23)

The dielectric constant in this case is (cf. 6.19) given by (replacing
€, by €, on the right-hand side according to 6.16)

 ami Ny [t 2))?
T = TRkT (2eo+n2) (6.24)
— dmrud N, €012 2{1_2(60_1)(50—”'2) 2
=T \ 3 <2eo+n2>(eo+2>}

for spherical molecules and e,—¢,, < 1.

In some cases we might expect the approximation of spherical
molecules to give a correct order of magnitude for the deviation
from unity of the ratio of the dipole moments in vacuum and in
solution, but we should not expect to obtain a more accurate
result than that.

Onsager formula

In the case of spherical molecules Onsager [O1] has shown
that it is possible to go one step farther in the approximate
calculation of the dielectric constant. The interaction between
molecules will no longer be entirely neglected, but one com-
ponent of it, namely the long-range dipolar interaction, will be
taken into account. The following assumptions will, therefore,
be made:

(@) A molecule occupies a sphere of radius a and its polariza-

bility is isotropic;

(b) The short range interaction energy is negligible (i.e.

< kT per molecule).

Assumption (b) means that the surroundings of a molecule
will be treated as a macroscopic continuum with dielectric
constant e, because long-range forces only will be considered.
Estimates on the range of validity of this method can be made
(cf. reference F12), but will be postponed until the more general
Kirkwood formula is derived (§ 8).

On the assumptions made above, the contribution of a single

molecule to the dielectric constant e, can be calculated in the
4980.11 D
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same way for a pure liquid or for a mixture. In both cases the
local field f acting on the molecule is the field inside a cavity of
radius ¢ within a continuous medium of dielectric constant e;,
and is composed of (i) the cavity field G due to external sources,
and (ii) of the reaction field R due to the moment m of the mole-
cule itself. Both G and R were discussed in § 5, although there
the cavity of radius d contained a great number of molecules.
To use the same values for G and R in the present case is only
possible because of the assumptions () and (b). Thus, according
to 5.10, 5.11, and 5.12 (M/a3, of § 5 corresponds now to m/a?)
and using 6.21
3¢,

2e,+1

Inserting this value into 6.1 the moment m becomes

f—G+R =

E+4gm. (6.25)

= Wy+3 1aE+agm

s-l—
or solving with respect to m,
Py 3¢, oE 6.96
m= 1——ag+268—|—1 l1—ag’ (6.26)
With this value for m the internal field f (6.25) becomes
S B L 9 (6.27)

- 2¢,+11—ag ' 1—ag'"®
To calculate the average polarization m we shall require g&,.

Considering that

3¢, Hp,cosb g o
— 6.28
2¢,+1 1—ag l—ag'uv ( )

is the energy of a dipole ., in the field f, the probability of finding
it in a direction forming an angle § with E is (similar to 6.9) given
by

——(va = —

erHkT sin § d6 / f ebIkT 5in § d6), (6.29)
0

where w., f should be introduced from 6.28. It will be seen that
the second term in 6.28 is independent of § and therefore in 6.29
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only the first term remains. Following the same procedure as
in the derivation of 6.11 one finds

cosf = des o B

" 2¢,+1 3kT(1—ag)’

_ 3e py
h =3 p
and hence Mo = 9e 11 3%T(1—ag)

Thus from 6.26, using 6.30 (and @ = « for isotropic polarization),
the average moment m of the molecule is given by

— 3¢ Ho o
= E. 31
M=ot (3kT(1—ag)2+ T—ag (6.31)
Let us consider first the application of 6.31 to the simple case of a
pure liquid of non-polar molecules for which p, = 0. Since by

definition a molecule occupies an average volume of

(6.30)

4 o 1
a3 = = 6.32
3% TN (6.32)
equations 6.7 and 6.31 yield
3e, « 3
ST T 3,41 1—agd® (6.33)

Introducing ¢ from 6.21 and solving with respect to « leads to
the Clausius—Mossotti equation
e—1 o
e+2  ad
This equation can be considered to prove 6.2, which, together
with 6.21, transforms 6.31 into
3¢, E {263—{—1 (n2+2)2 w2 _l_’nz—l
2¢,+n2|2¢,+n2\ 3 3kT 3
The Onsager formula for a pure dipolar liquid is then obtained
by inserting 6.35 into 6.7, making use of 6.32:
o — 3¢, 47rlu,12,1\70(n2+2)2.
s 2¢,+n? 3kT 3
For very small densities this expression becomes identical

with 6.15, as should be expected (because for ¢,—1 < 1 and
nt—1 <L 1, (n®42)/3 ~ 1 and 3¢,/(2¢,+1) ~ 1).

(6.34)

m=

a3}. (6.35)

(6.36)



36 STATIC DIELECTRIC CONSTANT I, § 6

Consider next a mixture containing N,, N,,..., NV,,..., N, mole-
z
cules per c.c. of z different compounds. Then > N,m, is the
8§=1

total moment per c.c. where m, is the average moment of a

molecule of the type s obtained from 6.35 by inserting for w,,

n,and a the respective values u,,, n,, and a, which these quantities

have for the sth kind of molecule. From 1.9 the dielectric con-

stant of the mixture thus follows:

¢,—1 = dn 3 N,i,/E. (6.37)
s=1

As a particular case take a mixture containing per c.c. N}
polar (n,;, 7, @,) and N, non-polar (u,, = 0, 7y, @,) molecules.
Inserting m, and 7, from 6.35, equation 6.37 leads to

11— 3¢, {477/.1.%11\71(263—|-1 n§+2)2+

77 2e+1| BET \2¢,+n2 3
2¢,4+1 , , 4 4 26 +1 477 a3 }
s —1 8 —
(6.38)

For a dilute solution of polar molecules, i.e. when N; <€ N,,
this expression should become identical with 6.24 if n = n,,
n3 = ¢, and N, = N,. Actually since 4mal N,/3 represents the
volume occupied by the N, non-polar moleculesin 1 c.c., Ny < N,
means that 4ma3 N,/3 ~ 1. Since the second term in 6.38 can be
neglected, we find with the above substitutions for n,, n,, and ¥},

1= 3¢, (eg—1)+ 3¢, 477,11,12,11\70(263—]—1 n2+2)2’
2e,+¢€, 2¢,-+1  3kT \2¢,4+n% 3
which, after a simple transformation, becomes identical with
6.24 (since €, ~ €5 ~ €,).

7. General theorems [F10]

The formulae derived in the previous section for the dielectric
constant ¢, have the great advantage of representing ¢, in a very
simple way with the help of a few parameters. It should not be
forgotten, however, that they only hold subject to certain con-
ditions which in many practically important cases are not ful-
filled. In the present section, therefore,  expressions for the
static dielectric constant ¢, will be derived which hold in a very
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general way for any dielectric substance which is not per-
manently polarized. Clearly the derivation of such expressions
requires some mathematical abstractions, but in view of their
importance it was thought desirable to give a detailed account
of their deduction.

As in § 5, select from an infinite homogeneous specimen a
macroscopic spherical region of volume ¥V which is large com-
pared with a region just big enough to have the same dielectric
properties as a macroscopic specimen. The surface of the
spherical region need not be an exact geometrical sphere;
deviations of a molecular magnitude are permitted and the
exact surface will be laid in such a way that no molecules are cut
by the surface. This has no influence on the field at distances
which are large compared with atomic dimensions. We shall
calculate the projection My of the average electric moment of
the sphere in the direction of the macroscopic field E. For this
purpose all particles inside the sphere will be treated according
to the rules of classical statistical mechanics. The outside,
however, will be considered as a continuous dielectric described
by the macroscopic dielectric constant e, It will be assumed
throughout that the macroscopic field ¥ is sufficiently weak to
prevent saturation, so that ¢, is independent of E.

The spherical region consists of a number of elementary
charges ¢;, each of which can be described in terms of its displace-
ment from the position it would have in the lowest energy-level
(ground state) of the whole system. This displacement is a vector
quantity and is denoted by r;: A set of all the displacement
vectors will be collectively denoted by X, according to equation
4.4. Except at the absolute zero of temperature, such a system
of particles does not stay in the same configuration, even if
macroscopically it is in equilibrium. Owing to thermal fluctua-
tions there is a probability

e~ UXLEKT dX/f e~ UXBIET g X (7.1)
of finding it with any set of displacements in a space element

between

X = (ry, Iy, Tppen) gmd X+4dX = (r,+dry,..., r;4dr;,...).
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Here, U(X, E) is the potential energy of the system in the con-
figuration X, in the presence of a field E, and

dX = dr,dr,...,dr,... (7.2)

is the product of the volume elements dr; of all the displacements
r;, each being again a product of its components dr dr;, dr;,.
The integration must be carried out over all possible values of all
the displacements.

Each set of displacements X leads to a dipole moment M(X)
as shown in equation 4.3. Therefore, if 6 is the angle between
M(X) and E, M(X)cos @ represents the projection of M(X) in
the direction of the macroscopic electric field E, and My is
the average value of M(X)cosf. Thus using 7.1,

M, — f M(X)cos 8 e—U<X-E>/deX/ j e-UXERT X (7.3)

The value U(X,0) of the energy in the absence of a macro-
scopic field will be denoted by U(X), and the zero of potential
energy will be chosen so that U(X) vanishes in the ground state,
i.e. when all displacements vanish. The energy U(X) can be
considered as composed of (i) the energy of interaction U;(X)
between the particles of the spherical region, and of (ii) their
energy of interaction U,(X) with the external region,

U(X) = Uy(X)+ U [X). (7.4)
U,(X) will depend not only on X, but also on the dielectric
constant ¢, because the external region is to be treated on a
macroscopic basis.

The fact that U,(X) contains the parameter ¢, which may
depend on temperature requires some consideration. Our
present investigation is a special case of a wider group of pro-
blems—the statistical mechanics of systems containing tempera-
ture-dependent parameters—which has been investigated by
Gross and Halpern [G1]. Applied to our case their investigations
show that ¢, has to be treated as constant parameter whenever
differentiations with respect to temperature are required;
U,(X) is then the energy required to establish at constant
temperature the equilibrium polarization in the outside region.
From the point of view of the whole system (spherical region
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+outside region) U,(X) is thus the corresponding free energy
composed of the energy of interaction of the charges inside the
sphere with the polarization induced by them in the outside
region, and of the free energy of this region (so far as it depends
on X), as shown in the subsequent example (cf. 7.17 and 7.18).
This is reasonable because U(X) is the energy required to estab-
lish the displacement X at constant temperature.

Now for a given configuration X, assume the macroscopic
field E to be applied (which, of course, alters the probability
of this configuration). Inside the spherical region this leads to
an additional homogeneous field G (the cavity field) given by

equation 5.11. It follows from electrostatics that its interaction
with the charges of the spherical region is given by

~M(X)G = — 3¢ - M(X)E cos6. (7.5)

€S

Thus in the presence of a field E,
UX,E)=UX)— +1M(X)Ecos¢9 (7.6)

This expression for U(X, E) must be inserted into equation 7.3.
It should be remembered now that E was to be considered as
sufficiently weak to prevent saturation. Thus if the right-hand
side of 7.3 is developed into a power series in E, only the first
term need be considered, i.e.

3¢, M(X)E
~UX,BkT — o~UXNKT(] 0-+...).
e ¢ ( LT R O )

(1.7)
Now fM(X)cosB e~ UXIKT g X — 0 (7.8)
because this integral is proportional to the average moment in

the E-direction in the absence of a macroscopic field. Therefore,
inserting from 7.7 into 7.3, making use of 7.8,

e,
B 2¢,+1 kT

where 1/J = f e-UXIKT G X (7.10)

f M2(X)cos?0 e-UXIWKT g X | (7.9)

Assume now that the field E may have any direction relative to
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a given M(X), and average over all these directions. Then
cos?d will be replaced by its average value, i.e. by 3. Inserting
this value into equation 7.9, and making use of 1.9, yields

47  3e, M2
1 ==__""8 = 7.11
s 3V 2¢,+1 kT (7.11)
where M2 =J [ M2(X)e-UORT X (1.12)

is the average value of M?(X) in the absence of a macroscopic
field. Equation 7.11 represents our first general result. It
shows that the dielectric constant can be expressed in terms of
M2, the mean square of the spontaneous polarization of a sphere
of the dielectric embedded in a large specimen of the same
material.

Before developing the general theory further, equation 7.11
will be shown to be self-consistent. This means that 7.11 must
be fulfilled identically if the spherical region is treated on
a macroscopic basis. For this purpose the following theorem
will be employed (cf. reference 7). Suppose the free energy
F(ay, ay,...) of a system depends on a number of macroscopic
parameters o, a,,.... Then the probability of finding the system
in a range da; da,... is given by

e-Flayan. kT dal daz.../ J. e~ T, az.)kT dal daz....

Also it will be noted that the quantity (d«; da,...) in the above
expression represents the volume of the ‘a-space’ element
between (ay, a,...) and (a;+day, ap+day,...). In the present case,
since the free energy depends on the absolute magnitude of M
only, this element is the shell between the two spheres of radius
M and M+dM in the M-space, and has the volume 47 M2d M.
Since M may in theory have any value between zero and infinity,
the probability that the spherical region will have a moment
between M and M+4+dM is

-FODKT 12 4] / [ e-ramz pr2apy. (7.13)
0

Hence M2 = sze—F(M)/"TMsz/fe'F(m”‘TMsz. (7.14)
0 0
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Comparing this with equation 7.12, and remembering that
according to 3.3 the entropy § is given by § = (U—F)/T, it

follows that dX ~ eSEM2AM (7.15)

represents the number of states of the spherical region, in a range
between M and M +dM. This equation might have been used as
an alternative starting-point for the macroscopic considerations
based on 7.12.

Following the procedure used in the case of the energy U(X),
the free energy F(M) can be considered as composed of an in-
ternal free energy F;(M), and an external one, F,(}), due to the
interaction with the surroundings. The former is the self-energy
F, calculated in the appendix (A 2.37),

9 M2 ¢+ 2
(M) = =5 :%1

the latter can be obtained with the help of the reaction-field R
(cf. equation 5.10). It is composed of the energy —MR of the
dipole M in the field R, and of the free energy required to polarize
the surroundings accordingly. This latter should be propor-

tional to R2?, say BR2. Then
F(M)= —MR+BR2 (7.17)

To find B, F, can be considered to depend on the parameters
R,, R, R, [for a fixed value of M], and hence since for a system
in equilibrium the free energy should be a minimum

oF, _, OoF, _, OF

(7.16)

e

oR, oR, oR,
or 28R = M.
Inserting this into 7.17, using 5.10,
47 M? e —1
F M = '—MR = — MR —_— — S .
(7.18)
Thus from 7.16 and 7.18
_ 2nM? 3e

F = F(M)+F (M) = : (7.19)

V  (2¢,+1)(,—1)’
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and hence with} 7.14,
7 — ger Y Pt Dle—1) (7.20)

T 3eg ’
which shows that equation 7.11 actually is fulfilled identically.
The derivation of this result demonstrates the importance of the
long-range interaction terms—included in F,(M)—in equation
7.11. This means that in view of this interaction the fluctuations
M2 of a sphere embedded in its own medium are different from
the corresponding fluctuations for a sphere in vacuum. In the
latter case F' = F,, and 7.14 leads to

-7 3V e,—1
Mva.c - ngg 6s+2.

Comparing 7.20 with 7.21 shows that M? becomes relatively
large for substances with high dielectric constant in contrast to
M2, which does not depend appreciably on e, if ¢, > 1.

In returning now to the further development of equation
7.11 a method will be used which forms a generalization of the
method employed by Kirkwood (K4) in the case of liquids con-
sisting of rigid dipoles. Assume that the spherical region is
composed of N molecules or other groups of atoms in such a way
that each group has the same average polarization in an external
field. In a pure liquid, for instance, each group contains one
molecule; in a crystal it contains all the particles of a unit cell.
The spherical region can then be divided into NV ‘units’ each of
which makes the same contribution to M. In view of equations
7.9-7.12 it follows that M2 is also composed of N equal terms.
This finds its mathematical expression in equations 7.31 and
7.32. A more direct proof that all these terms are equal is given
below after equation 7.30. Each such unit contains the same
number, say k, of elementary charges which in each case can be
arranged in a similar way relative to each other, and relative to
their surroundings. Let r;, r;,,...r; denote the displacements
of the k elementary charges of the jth unit, and let

:1:] — (l‘jl, rjz,..., l']-k)

(7.21)

[= o] w
t Using J.:t:ge‘-’“:z:2 dz =3 f e %2 dx.
0 0
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denote the whole set of displacements of the jth unit. Then the
set of displacements X of all the charges in the whole spherical
region is composed of the sets of displacements x;, z,,..., z;,..., Ty
of all the N units. Correspondingly the volume element dX
(cf. 7.21) is the product of the volume elements

dxj = dl‘jldl‘jz,...dl‘jk
of all the units
dX = dx,dx,...dz;...dxy.

This means that in an integration over the displacements of all
the elementary charges of the spherical region one can start
integrating over the displacements of the charges in the first
unit, denoted by dx;, and so on. Alternatively, the volume
element dX may be written as

where dX; = dx,dx,...dx;_;dr;,,...dzy (7.23)

refers to integration over the whole spherical region except the
jth unit.

Now let m(z;) be the electric dipole moment of the jth unit.
Then in view of 4.7 the moment M(X) of the whole region is com-
posed as the vector sum of all the m(z;),

M(X) = 3 m(z,). (7.24)

Therefore = M?*X) = M(XYM(X) = iv m(z;)M(X). (7.25)
=1

7

Inserting this into 7.12 leads to
— N
ME=SJ f m(z;)M(X)e-UVXIKT g X, (7.26)
i=1

" The integrations in each term of this sum will now be carried
out in two steps, as indicated by equation 7.22. In the jth
term the integration will first be carried out over the whole
spherical region except the jth unit, and subsequently over this
unit. Forthe first step (volume element dX;) the quantity m(x;)
must be treated as a constant because it depends only on the
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displacements z; of the jth unit. The term of 7.26 corresponding
to this unit can be written as

J [ ma,)M(X)e- VORI g X
= J [ m)( [ M(X)e- v X )da,

= fm(xj)m*(xj)p(xj)dxj, (7.27)
where
m*(x,) = J. M(X)e—U(X)/"Tde/J. e"UXIRTgX,, (7.28)

and (cf. 7.10)
plx;) = fe‘U‘X)’”'dX,-/f e~ UXIKT g X (7.29)

have been introduced. m*(x;) represents the average moment
of the whole sphere for a fixed set z; of displacements of the jth
unit leading to a moment m(x;). p(x;) is the probability of finding
the jth unit with this particular set of displacements. Inserting
from 7.27 into 7.26 yields

- N
=3 f m(z;)m*(z,)p(x;) d;. (7.30)

Practically all terms of this sum are equal. For m* represents
the moment of a large spherical region polarized by one (say
the jth) of its units whose moment is kept at a value m. Accord-
ing to electrostatics (cf. Appendix A 2.ii) the same moment m*
is contained in any other sphere enclosing the jth unit (not
necessarily co-centric), but with no further restriction of its
position and radius so long as it is sufficiently large to be treated
macroscopically. The actual value of m* is thus determined by
short-range interaction and is independent of the position of the
jth unit as long as its distance from the surface is sufficiently
large to allow its interaction with the outside to be treated on
a macroscopic basis. The number of units for which this does not
hold can be made very small compared with the total number N
if the spherical region is sufficiently large.

The equivalence of all N terms in the sum 7.30 means, of
course, that all units have the same average polarization. This
fact might indeed have been used to show the equivalence of all
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the above terms in a much simpler way. The above considera-
tions give, however, some insight into the forces determining
m*. It follows from these considerations that a region makes a
contribution to m* only if the average moment induced in it
by the jth unit cannot be obtained by treating the jth unit as
either a point dipole or as a polarized sphere with moment m.
Thus it is essentially the short-range forces and the deviation of
the shape of molecules from a sphere which makes m* different
from m.
It now follows that

mm?* = f m(z,)m*(z,)p(z,) dz,
= .= f m(z;)m*(z;)p(z;) do; = ...  (7.31)
and hence with 7.30, )
M? = Nmm*. (7.32)

Inserting this into equation 7.11 leads to our final expression
for the static dielectric constant,

3¢, 4nN, mm*
—1 = s 0 7.
s %, +1 3 kT’ (7.33)
where N, =NV (7.34)

is the number of units per unit volume. By its definition 7.28
m* represents the average dipole moment of a spherical region
embedded in its own medium, if one of its units is kept in a given
configuration leading to a dipole moment m. mm* is the
average value of the product mm* taking into account all
possible configurations and weighing them according to the
probability of finding the unit in such a configuration. m*
differs from m because of the existence of short-range forces
or because of the non-spherical shape of molecules.

Equation 7.33 is perfectly general. It will now be specialized
by separating the contribution to ¢, due to elastic displacements
of electrons by treating them on a macroscopic basis. This con-
tribution can be measured with the help of the optical refractive
index n because at optical frequencies all other contributions
have ceased to exist in view of the higher inertia of the heavier
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particles. If M, is the electric moment due to electronic dis-
placement by a field E, on the assumption that atomic nuclei
are not displaced, then

n2—1 = d=M,|VE. (7.35)

Since according to Maxwell’s law the dielectric constant at
high frequencies is equal to the square of the refractive index,
this relation follows directly from equation 1.9.

The spherical region now consists of charges e, which follow
the laws of statistical mechanics and which are embedded in a
continuous medium with dielectric constant n2. Thus if M is
the moment due to all other displacements, M- M, is the total
moment of the substance. Hence equation 1.9 becomes

€s—'1 = 47T(ME+M81)/VE,
or using 7.35 e,—n? = 4nM,|/VE. (7.36)

Instead of calculating the electronic polarization we may
introduce it through 7.36 as an empirical quantity on the under-
standing that n is the optical refractive index. Nearly all of the
above developments remain unaltered if M(X), m, and m* now
refer to non-electronic displacements. Alterations have to be
introduced only at the following two points:

(i) In equation 7.5 the cavity field G must now be replaced by
G’, the field inside a spherical cavity with dielectric constant
n? instead of in an empty cavity. Then according to Appendix
A 214

’ e,

- 2e,+n2
i.e. the denominator (2¢,+ 1) in 7.5 and in the following equations
must now be replaced by (2¢,4-n2).

(ii) In deriving 7.11 from 7.9 equation 7.36 should be used
instead of 1.9. Hence 7.11 will be replaced by

4 e, M2

GI

(7.37)

= 8 T 7.38
" T 3V Ge, it BT (7.38)
All further developments remain unaltered, leading to
mm*
e, —n? = 5% 4l mm (7.39)

2¢,4+n2 3 kT
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instead of equation 7.33. It should be realized that in consider-
ing the interaction energy U(X) required for the calculation of
m and m* (cf. equations 7.27-7.31) the electronic polarization
has to be included on a macroscopic basis.

Finally, it should be noted that the difference between 7.39
and 7.33 is of rather a trivial nature whenever ¢, > n?,i.e. when
the electronic contributions are small. In this case

e, 3¢, 3 2
: r~ 7.40
et el 2" (7.40)

and 7.39 becomes

m*
—n? = 277]\76 T €, > n? (7.41)

while 7.33 would have ¢,—1 on the left-hand side, which thus
differs from 7.41 by the optical contributions n2—1.

Mixtures

Some substances contain a number of distinctly different
groups of charges such as the different types of molecules in a
mixture, or the positive and negative ions in ionic crystals. In
these cases a unit cell would often be uncomfortably large or
have an undesirable shape. Whenever these groups are well
separated from each other it is possible to derive a formula
for €, in which the contributions of these different groups are
separated. Suppose that there are z different types of these
groups. Then z different kinds of units will exist, each being
representative for one type. If the substance contains per c.c.
N, N,,...,N,,..., N, such units of the 1st, 2nd,...2th kind, then
7.24 can be written as

M X Nl N1+N2
( z m(x > m(z)4.... (7.42)
.’l =Ni+1
For the whole further development each group can be treated

separately, so that instead of 7.33 the final result is

e,
i %N, 7.43
s e, 1 3szm Mg S (7.49)

where m is the average dipole moment of a sphencal region of
the substance embedded in its own medium if one unit of the
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sth kind is kept in a configuration corresponding to a moment
m,. m m¥ is the average value of m;m¥. Asbefore, the spheri-
cal region must be large compared with a region just big enough
to have the same dielectric properties as a macroscopic specimen.

Summary
A short summary of the results of § 7 is given below for the
benefit of the reader who has not studied it in detail.
(i) The static dielectric constant ¢, according to 7.11 and 7.21
satisfies exactly the relations
c1dm 3¢ MEP_ 4me 42 M3,
$ 73V 2,+1kT 3V 3 kT’
where M2 is the mean square of the spontaneous dipole moment
of a sufficiently large sphere of dielectric material of volume V
embedded in its own medium; M2, is the corresponding quan-
tity for a sphere in vacuum.

(7.44)

(ii) If the sphere consists of components all of which on an
average make the same contribution to the polarization, equa-
tion 7.44 can be developed further into equation 7.33 which is
also of a very general nature.

By treating the electronic contribution on a macroscopic
basis the less general equation 7.39 follows.

8. Special cases

The results of the previous section are contained in formula
7.33 [also 7.11] for the dielectric constant e, which is valid in a
very general way, and in the more specialized equations 7.39
and 7.43. All these formulae represent ¢, in terms of quantities
mm* or M2 which refer to properties of the material in the ab-
sence of a field. To calculate these quantities requires a detailed
knowledge of the structure of the substance in question and of
the interaction between the particles of which it is composed.
In general such a calculation cannot be carried out without the
use of approximations. The importance of the general formulae
lies in the possibility of deriving from it approximate formulae
of various types, each with a clearly defined range of validity.
It also shows that even for a restricted class of substances, such
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as dipolar liquids, one cannot hope to find a simple formula
representing e, in terms of a few parameters (e.g. the Onsager
formula), which is valid over the whole stable range of these
substances. Thus it will be found, for instance, that for dipolar
liquids the Onsager formula should hold asymptotically at high
temperatures only, though the deviations from it at lower
temperatures may be very different for different substances.

Asafirst step to get acquainted with the handling of the above-
mentioned formulae one may assume that all short-range forces
can be neglected. For spherical molecules this should according
to§ 6lead to either the Clausius—Mossotti or the Onsager formula,
depending on whether one considers non-polar or polar mole-
cules. The calculations proving this are carried out in the
appendix (A 3). They demonstrate, as the main difference
between these two cases, that for elastic displacement (non-
polar molecules) the energy of a unit depends on its dipole
moment m; hence it is shown that m?2 (which for negligible short-
range interaction is equal to mm#*) increases proportional to
the absolute temperature 7', and the dielectric constant becomes
independent of the temperature. For rigid dipoles, to take the
other extreme, the moment of a unit is equal to the dipole
moment u, and hence m? = u? independent of temperature.
Polar molecules, of course, show always both dipolar and elastic
contributions to e;.

Polar liguids; Kirkwood’s formula

We shall now proceed to consider the general case of polar
liquids consisting of molecules with an intrinsic dipole moment
and with a polarizability «. Liquids of this type have been
already investigated in § 6 on the assumption that short-range
interaction can be neglected; this led to the Onsager formula
6.36. This assumption will no longer be made in the present
calculation.

It was found in § 6 that a molecule in the liquid state has a
dipole moment which is different from that in the gaseous state
(w.). Forspherical molecules the difference is due to the polariza-

tion of the molecule by the reaction field of the surroundings.
4980.11 E
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For no other case than for spherical molecules is it possible to
calculate the ratio of the moments in any simple precise manner.
In view of this difficulty it seems reasonable to treat the effect
of the polarization of molecules in a macroscopic way, assuming
(as in § 6) that the main contributions are due to electron dis-
placement. The liquid will thus be considered as consisting of a
continuous medium with dielectric constant n? (n = optical
refractive index) containing dipoles with a moment w. In this
model a spherical molecule in vacuum consists of a sphere of the
continuous medium containing a dipole w. at its centre. Accord-
ing to the appendix (A 2.32) the moment of such a molecule is

3

By, = n2—+2p., spherical molecules. (8.1)

For spherical molecules the present model permits us, there-
fore, to express the moment . of the dipoles by the moment .,
of a free molecule.

On the basis of our model the general formula for the dielectric
constant is given by equation 7.39. A unit contains just one
dipole @ and its moment is, therefore,

m =y. (8.2)
Since all contributions to m* are due to dipole orientation we
1 *
introduce p* by m* — (8.3)

as the average moment due to the dipoles of a spherical region
if one of its dipoles is kept in a fixed direction. Equation 7.39
contains the quantity mm#*, where the bar indicates averaging
over all possible values-of m. In the present model the only
variable is the direction of the dipole w. Since in a liquid all
dipolar directions are equivalent, pp.* will have the same value
for all these directions. Thus

mm* = pp* = pu*, (8.4)
Inserting 8.4 into 7.39 leads to the Kirkwood [K4] formula
e, 4dnNypp*
—n2 = s 0 . .
T T g tn?  3kT (8.5)

In order to make use of this formula we must calculate w*.
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To simplify this calculation it seems permissible to assume that
short-range interaction between nearest neighbours only need
be considered (cf. first section of § 5). In this case pw* is the
vector sum of the moment @ of the central dipole, kept in a
fixed direction, and of the average of the sum of the moments of
the nearest neighbours. Therefore if z is the average number of
nearest neighbours,

pp* = p*(14-zcosy), (8.6)

where cos y is the average of the cosine of the angle between neigh-
bouring dipoles. This average value has to be calculated by
applying equation 7.28 for m* to the present case. Since the
directions of the dipoles are the only variables, this equation
reduces to

Cosy = f cos ye~UIkT dey dew, /f e~ UkT dw, dw,, (8.7)

where U is the part of the energy of interaction between neigh-
bouring molecules in the liquid which depends on the angle
between their dipoles; this energy may depend on the state of
other molecules of the liquid, and U is then the energy averaged
over all states of the other molecules (considering their proba-
bilities). dw,; and dw, are the surface elements of the solid
angles of the directions of the two dipoles.

The actual value of cos y depends on details of the interaction
between the two molecules which may be very different from
the electrostatic interaction between point dipoles as pointed
out in § 5; repulsion forces, chemical bond, and other types of
interaction must be considered. It should be noted, however,
that a large value of U does not necessarily lead to large values
of cosy; to do so U must also have the correct symmetry. Thus
if, for instance, U is proportional to an even power of cosy
e~UkT jg also an even function of cosy, and cosy therefore
vanishes, in contrast to the case in which U is an odd function
of cosy. This means that an interaction tending to direct dipoles
with equal probability either parallel or antiparallel does not
play any role in the determination of pp*. Either of the two
types of interaction leads, however, to a restriction of free
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rotation of a molecule termed by Debye [ D3] as hindered rota-
tion. Hindered rotation, as we see, does not necessarily have an
influence on the dielectric constant.

The energy U need not only depend on the angle between the
dipoles, but may also be a function of the direction of the vector
joining the dipoles. Even so, we can always put

U= Usvent Usaas (8.8)
where reversal of the direction of one of the dipoles does not
alter Uy, but changes the sign of U,y4.

Now let us consider that the temperature is sufficiently high
to make

ET > |U,a4l (8.9)
for all values of U,34. Then
U,
~UKT ~ ¢—UevenkT|] __Z0dd} 8.10
e e ( T ) (8.10)

and hence, using

f cos ye~ UevenkT ¢, dew, = 0,

one finds cosy ~ ——8, 8.11
4 T (8.11)
where
U, = j e~Uevenlk T 14 cosy dw, dwz/f e~UevenkTd ey, dw, (8.12)
since f e~ UevenkTJ - o dw, dw, = 0.

The energy U, may be positive or negative depending on
whether the interaction tends to orient neighbouring dipoles
anti-parallel or parallel.

Inserting 8.6 into 8.5, we find a specialized form of the Kirk-
wood formula,

€. —n — 3¢, 4Ny p?
d 2¢,+n% 3kT
In the particular case of spherical molecules u can be expressed
by the vacuum moment p, with the help of 8.1, and hence

3e, [n2+2\2 47N, pu2 —
2€s+n2( 3 ) BT (T2 O08Y)

for spherical molecules. (8.14)

This equation differs from the Onsager formula 6.36 by the

(14+zcosy). (8.13)

2
€—n? =
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zcosy term. According to 8.11 this term tends towards zero at
temperatures at which kT > |U,|. Therefore it is found that
the Onsager formula should hold in liquids at temperatures for
which kT is large compared with the directional part U,44 of the
interaction energy. This energy may have different orders of
magnitude for different liquids; and this may lead to very
different ranges of validity of the Onsager formula. In some
liquids this range may fall into the whole liquid range at normal

Fic. 5. Temperature-dependence of the dielectric constent e, in the high-
temperature region. The full line represents Onsager’s formula. Short-range

interaction tending to orient dipoles parallel (cos y > 0) leads to larger values
of ¢; (———-); the opposite case (cos y < 0) leads to smaller values (- - - -).

pressures, whereas for others zcosy may be appreciable in the
normal range of the liquid and may have either sign (cf. Fig. 5)
thus making the Onsager formula inapplicable in these cases.
In gases, in view of the large distance between molecules,
dipolar forces only need be considered. For very small densities
interaction may be completely neglected, leading to equation
6.15 for ¢,. For higher densities Onsager’s formula should hold.
This has been shown more directly by van Vleck [V2].

Dipolar solids

The average potential energy of a polar molecule in a crystal-
line solid in general depends on the direction of its dipole relative
to the crystal axes. In liquids in contrast, though the dipoles of
neighbouring molecules have a tendency to orient themselves
in definite directions relative to each other, the average energy of
a single dipole is the same in all directions because a liquid does
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not possess any preferential direction. The average potential
energy of a molecule in a solid is often described as being due
to a crystalline field acting on the dipoles.t The crystalline
field, being due to the interaction between molecules, normally
depends on temperature. Usually there are several dipole direc-
tions for which the average energy of a molecule has arelative
minimum; they will be called equilibrium directions. The poten-
tial barrier between these equilibrium directions is in general
very high and prevents free rotation of the molecules even at
temperatures near the melting-point. The hypothesis that above
a critical temperature molecules should be able to rotate freely
was introduced by Pauling [PI] to explain the sudden change
of the dielectric properties of many solids at a critical tempera-
ture. This idea was a useful working hypothesis, but the present
evidence seems to indicate that rotation does not occur in most
solids (e.g. LI). Instead, the transition has to be considered as
leading from an ordered arrangement of dipoles to disorder.

This transition from order into disorder will be used as a guid-
ing principle in discussing the general behaviour of the dielectric
constant e, of polar solids. Its detailed properties, of course,
depend on details of the crystalline field, but the main features
can be discussed without such a detailed knowledge. To de-
scribe the main features of an order-disorder transition consider,
a simple two-dimensional model consisting of dipoles arranged
in a cubic face centred lattice. The crystalline field is assumed
to lead for each molecule to two equilibrium positions with oppo-
site dipole direction. At the absolute zero of temperature the
solid will be in its lowest energy state. In this state the
dipoles are arranged in an ordered way, but there are a number
of possibilities for doing this. The energy of these ordered states
depends on the particular interaction between the molecules
which, as has been pointed out before, contains interactions
of various types (e.g. dipolar, repulsive, etc.). These ordered
arrangements can be classified according to whether or not they

+ The effect of various types of crystalline fields on the average dipole
direction was considered by Bauer [BI], Frank [F3], and others.

1 Various calculations of the behaviour of the dielectric constant in order-
disorder transitions have been carried out for special models [K§5, F'§].
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lead to a residual dipole moment of the crystal. Thus, if all
dipoles are parallel (Fig. 6a), the solid has a permanent dipole
moment, but if, for instance, dipoles in the corners have the
opposite direction from those at the centres (Fig. 6 b) the dipole
moment of the crystal vanishes. In the former case the energy

— > — —_— —> = <=
—_— € ——— —

— —> — — =y
6a ob 6c

Fic. 6. Equilibrium positions of dipoles for a simple model of a crystalline

solid. Ordered state: (a) in the case of permanent polarization ; (b) for vanishing

polarization (two dipoles per unit cell); (c) disordered state, both directions
have equal probabilities.

o

VR 0 \B T Oy,
To 7B Ty
F1a. 7. Average potential energy of a dipole (due to short-range interaction)
as a function of its direction for the model of Fig. 6, assuming that all the
other dipoles stay in the fixed directions indicated in Fig. 6: («) for the central
dipole of Fig. 6 b; (B) for a corner dipole of Fig. 6 b or for any dipole of Fig. 6 a;
(y) for the disordered case, Fig. 6 c.

of a dipole is lower when it is directed to the right than for the
opposite directions (cf. Fig. 7 8). In the latter case the energy of
the corner-dipoles behaves in a similar way, but for the centre-
dipoles the two directions are exchanged (Fig. 7«). The internal
fields for these two types of dipoles are, therefore, different;
they transform into each other by a reflection on a plane perpen-
dicular to the dipole direction. In the former case (a) all lattice-
points are equivalent and a unit cell contains one single dipole.
In the latter case (b) two different types of sites, corners and
centres, have to be distinguished, and a unit cell contains two
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dipoles. Alternatively, the crystal may be considered as com-
posed of two lattices of type (a), but with opposite directions of
the dipoles.

Clearly the division of ordered states according to whether
or not they lead to a residual moment holds quite generally
(i.e. for three-dimensional lattices as well), although there may
be structures leading to more than two equilibrium directions
for each dipole. In the following the case of two equilibrium
directions only will be considered; most results hold qualita-
tively, however, for more complicated structures as well.

Now, starting from an ordered state at the absolute zero of
temperature, imagine the temperature to increase gradually.
This will cause some dipoles to turn into the second equilibrium
position in which they have a higher energy, thus creating some
disorder. This in turn will cause a decrease of the average energy
difference between the two directions because the energy of
interaction has its lowest value in the completely ordered state.
The average energy difference of a molecule in the two equi-
librium directions is thus a function of temperature, say

\ V(T) >0,
which decreases with increasing temperature. It is found that a
critical temperature 7} exists at which it vanishes (Fig. 7 y).

Let us now define the direction which a dipole at a given
lattice-point has in the completely ordered state (at T' = 0)
as the ‘right’ direction, and the opposite direction as the ‘wrong’
direction. Thus in Fig. 6a, > is the right direction; in Fig.
6 b, — is the right direction for corner-dipoles and <« is the right
direction for centre-dipoles. Let w be the probability of finding
a dipole in the wrong direction, and (1—w) therefore, the pro-
bability of finding it in the right direction. Since V(T') is the
energy difference between the two positions, it follows from
statistical mechanics that

w ,
T = VAT, (8.15)

and hence
e~V (DIKT 1

= 1+ e~V (TILT’ l—w= 1-fe-V@DIKT

]

(8.16)
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A calculation of the temperature dependence of V(7'), and hence
of w is very difficult, but approximations have been devised to
simplify it. A summary of these methods can be found in
reference [N1]. We shall not give details of such calculations

T T
F1c. 8. Temperature-dependence of the average energy difference V(T)
between opposite dipole directions, schematically.

w

0 T
F1a. 9. Temperature-dependence of the probability w(T') of finding the dipole
in the ‘wrong’ direction, schematically.

here. It is sufficient for us to note (cf. Fig. 8) that near T' = 0,
V(T) is nearly constant, but as T approaches 7}, it decreases
rapidly towards zero, which it reaches at 7' = T;,. Thus

ViT)y=0if T > 1T,
It follows (cf. Fig. 9) that for low temperatures
we e VORT L1 if kT < V(0), (8.17)
whereas w= % it T > T, (8.18)

Thus above 7, both dipole directions have equal probabilities,
i.e. the lattice is disordered (cf. Fig. 6 c). Calculations also show
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that 7, is of the order of V(0)/k; the exact value depends on
details of the structure.

The quantity (1—2w) is a measure for the degree of order of
the lattice because 1—2w =1 at T =0, and 1—2w = 0 if
T > T, This type of order is often called long-distance order
because it defines right and wrong directions for any lattice-
point. In contrast, short-distance order is the order of neigh-
bours relative to each other. It means that, in view of the
interaction, the direction of a dipole is always influenced by the
directions of its neighbours. Each dipole tends to orient itself
in a certain direction relative to its neighbours. Long-distance
order vanishes in the disordered state, or in liquids. Short-
distance order persists, however, though it decreases with
increasing temperature. In fact the absolute value of cosy
introduced above for liquids is a measure for the short-distance
order.

Let us now discuss the dielectric properties of ordered solids
near 7' = 0. If the order is of type (a), the solid is permanently
polarized. This case will not be further considered here. For the
other kind of order the only contribution of the dipoles to the
dielectric constant is due to elastic displacement of the dipole
direction by an external field. Thus near 7' = 0 the dielectric
constant is larger than n?%, say ¢, = €,, where n is the optical
refractive index due to elastic displacement of electrons (cf. §§ 6
and 7). The difference ¢,—n? is usually small.

At higher temperatures, where dipoles are capable of changing
their directions, ¢, increases with temperature, as will be shown
presently. As in the case of liquids, contributions due to elastic
displacements will be treated in a macroscopic way, and the

-following considerations are, therefore, based on equation 7.39.
For the type of order which we consider at present a unit cell
contains two dipoles as mentioned before, and at T' = 0 these
dipoles have opposite direction. For the two-dimensional case
discussed above the unit cell contains a corner- and a centre-
dipole as shown in Fig. 6 b. The moment m of the unit cell
depends on the directions of the dipoles. Since the potential
barriers between the equilibrium directions are very high, it
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seems sufficient to consider equilibrium directions only. The
moment m can thus have a discrete number of values m,,
m,,.... If p,is the probability that the unit cell has the moment
m,, equation 7.31 applied to the present case becomes

mm* = > m,mf p,, (8.19)
where the sum extends over all values of m;. m} is the average
moment of a sufficiently large spherical region around the unit
cell if the moment of the latter is kept at m,.

In our particular case of two equilibrium positions with
opposite dipole direction the following four states exist:

1 | Configuration m; p; energy
1 <~ — m; =0 = (1—w)® | 0

2 << my = —2u| py = w(l—w) | V(T)
3 —- — my = 2pn py = w(l—w) | V(T)
4 - < my = 0 Py = w? 2V(T)

Here the probability p; was assumed to be the product of the
probabilities of finding either of the two dipoles in its respective
direction. Thus for ¢+ = 1 both dipoles are in ‘right’ positions,
each having the probability (1—w). This way of calculating p,
is not free from objections because it does not take into account
the correlation between neighbouring dipoles giving rise to
short-distance order. It is, however, a sufficiently good approxi-
mation for our present qualitative treatment.
With the above four states equation 8.19 becomes

mm* = 8w(1—w)pp*, (8.20)

where +2p* is the moment of a spherical region around the unit
cell if the moment of the latter is kept at 4-2g. '
Inserting from 8.20 into 7.39 [it should be remembered that
this equation holds for poly-crystalline material], we find by
adding e,—mn? (see above) as contribution of elastic dipole-
displacement

3¢, dmlyup* ,

—€y = 4w(l—w). 8.21
§ €o 2€s+n2 3kT ,Sw( w) ( )
Here N, is the number of dipoles per unit volume (not the number
of unit cells as in 7.39).

€
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For temperatures below the transition point, w(l1—w) is
probably the determining factor leading to an increase of ¢
with temperature. Above the transition point w = }, i.e.
4w(l—w) = 1. Equation 8.21 then becomes nearly identical
with the Kirkwood equation 8.5 for liquids. A difference remains
(i) because 8.21 contains e,, instead of n? at the left-hand side,
and (ii) because p* is defined differently.}

A more exact calculation can be carried out, however, above

T T
F1a. 10. Temperature-dependence of the dielcctric constant of a dipolar solid
showing an order-disorder transition, schematically.

T, since the unit cell then contains only one dipole. This calcula-
tion follows the lines given above for liquids and leads exactly
to the Kirkwood formula 8.5. The difference from 8.21 should
thus be due to the approximations made in its derivation.

Thus the dielectric constant of a solid (cf. Fig. 10) which has no
permanent polarization should start at 7' = 0 with a value ¢,
which is slightly larger than n2?, and should rise very slowly at
first and more rapidly as T approaches T;, provided 7} is below
the melting-point. Above T, ¢, should decrease with 7" and
there should be no appreciable variation at the melting-point.
If, on the other hand, 7 cannot be reached below the melting-
point, then ¢, increases up to the melting-point, and then de-
creases.

The similarity of the dielectric behaviour of disordered solids

t Kirkwood: p* is the moment of a spherical region if one of its dipoles is

kept in a fixed direction p/u. Equation 8.21: 2u* is the corresponding moment
if two dipoles (of one unit cell) are kept parallel with a total moment 2p.



I, § 8 SPECIAL CASES 61

and of liquids is not surprising. In fact we have seen before
(§§ 4 and 6) that a dipole having two equilibrium positions with
equal energy behaves similarly to a dipole with a continuous
range of such positions.

Finally, it should be remarked that as for liquids the quantity
lw*—w]/p is a measure for the short-distance order. Above the
transition temperature 7}, this quantity can be found experimen-
tally if ¢, is known over a sufficiently large temperature range.
Near T}, it may be expected to depend sensitively on the structure.

Intramolecular rotation

Consider briefly the case of a liquid consisting of molecules
in which intramolecular rotation is of importance. Again the
unit cell contains one single molecule, but its dipole moment
p(x) may depend on the set of coordinates x describing intra-
molecular rotation. Thus we put m(x) = p(z), and introduce
correspondingly m*(x) = pw*(z) as moment of spherical region.
In the Kirkwood formula 8.5 the term pu* must then bereplaced
by the average w(x)p*(x). If in particular the molecule has a
number of semi-stable states with moments ., &,,..., besides the
ground state whose moment is g, then similar to 8.19

(@) (x)* =i§0 TR Ty 98 (8.22)

where p, represents the probability of finding the molecule in
the state 1.



CHAPTER III

DYNAMIC PROPERTIES

9. The establishment of equilibrium

THE present chapter will be devoted to an investigation of the
dynamic properties of dielectrics. This will be found to be a
much more difficult task than the development of the theory
of the static properties, and in fact it will be seen that only for
dilute solutions of dipolar molecules has it been possible so far to
carry out quantitative calculations. The reason for the greater
difficulties in dealing with the dynamic properties is evident if
we remember that for the static case it was not necessary to
investigate the kinetic properties of molecules. In the present
section a qualitative discussion of the problems involved will be
given.

It will be remembered that in § 2 it was found that in alternat-
ing electric fields the electric displacement shows a phase-shift
with respect to the electric field. This leads to the introduction
of two dielectric constants ¢; and €,, both of which depend on the
frequency w/27 and which according to 2.8 can be considered as
real and imaginary components of a complex dielectric con-
stant e(w). The two quantities ¢; and ¢, are not independent of
each other, but can both be derived from a function «(t) of time
with the help of equations 2.14 and 2.15. Making use of 2.8,
these equations can be written as a single complex equation,

e(w) = ext fa(x)efwr dz, (9.1)
0

where z is a variable of integration.

The function «(t), according to § 2, describes the decay of the
polarization of a dielectric with time if the external field is
suddenly removed. Alternatively the gradual increase of polari-
zation with time to its equilibrium value if the dielectric is
brought into a constant field can also be described with the help
of the decay function «f(t). It is thus seen that with the use of
the macroscopic equation 9.1 the frequency dependence of the
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complex dielectric constant (and hence of dielectric loss, cf. 3.15)
isuniquely connected with the way in which equilibrium is estab-
lished in a dielectric brought into a constant field. We shall
choose this latter process for the qualitative considerations
which follow because it is very suitable for the purpose of showing
in a simple way the difficulties involved.

As in § 4, consider the two characteristic types of displace-
ment of charges, namely (i) elastic displacement, and (ii) dis-
placement to another equilibrium position, and assume that all
interaction forces between particles can be neglected. From § 4
we then know the average position of a charge in the presence
and in the absence of a field, or rather its average displacement
by the field. It is now our task to consider the influence of the
field in more detail by assuming that the dielectric consists of
such an assembly of (non-interacting) charges which, in the
absence of a field, are in thermal equilibrium,

Case (i). Elastic displacement
Each particle of mass m and charge e is bound elastically to its

equilibrium position and will carry out harmonic oscillations
with frequency w, about it. If r is the displacement, then in the

absence of a field d2r
?de- — —w% r, (9.2)
and hence r = G, cos(wyt+3,), (9.3)

where the maximum amplitude C, and the phase &, are indepen-
dent of time, and the energy is given by }mw§.C§. If the motion
is not perturbed, the oscillator will keep this same energy in-
definitely. It should be realized that this is in contradiction to
the postulates of statistical mechanics, according to which
within a sufficiently long interval of time the oscillator should
be found with various energies according to the Boltzmann
theorem, and its average energy at a temperature 7' should be
kT. To achieve this some kind of interaction with other particles
or with the surrounding medium—permitting an exchange of
energy—must be assumed. Frequently it is assumed that this
interaction takes the form of collisions of extremely short dura-
tion. This means that the equation of motion 9.2 holds except
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during a collision. Therefore the solution 9.3 holds between two
collisions, but at a collision both the amplitude C; and the phase
3y usually change their value. The assumption of collisions of
very short duration means that each oscillator actually satisfies
the equation of motion obtained by neglecting all interaction
terms, but as a result of a collision it makes a transition into a
state with different energy (and phase). This, as may be shown
by statistical mechanics, leads to the correct average energy if
averaged over a time which is long compared with the time
between two collisions. It is of great importance that in equili-
brium this average is independent of the nature of the collisions.
Equilibrium properties can, therefore, be derived without con-
sideration of collisions—quite in contrast to the question of
attaining equilibrium which we intend to investigate presently.
It should be remarked first that the collisions need not occur
between the oscillators themselves as one would expect in a gas
of such oscillators. They might be considered as dissolved in
another medium (liquid or solid) which is in thermal equilibrium,
and the collisions to be considered occur between the oscillators
and the particles of the medium.

Assume now a constant field f to be applied at the time ¢ = 0.
Then the displacements satisfy the new equation of motion 4.8
instead of 9.2. A particle now oscillates about a new position of
equilibrium displaced by a vector r relative to the former one,
but the motion is still harmonic (cf. 4.9 and 4.10). Both the
maximum amplitude C and the phase & usually change, however,
at { = 0, although r remains continuous, as is shown in Fig. 11.
This assumes, of course, that no collisions occur during the
represented time interval.

To obtain the polarization P of a dielectric substance con-
sisting of a large number of oscillators the vector sum of all
displacements r has to be formed according to 4.6. At a given
instant of time ¢ < 0 in the absence of a field the phase-angle §,
can be assumed to have any value between 0 and 27 with equal
probabilities. The vector sum of all displacements, and hence
the total electric moment of the dielectrie, will, therefore, vanish
at any instant of time. Now let us assume as a first approach
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that no collisions occur after the field has been applied at ¢t = 0.
Then since all individual displacements vary continuously the
same must hold of the polarization I°. On the other hand, the

(a)

VARVARS

Fic. 11. Time dependence of the displacement r of a harmonic oscillator if a

constant field f is applied at the time ¢ = 0. The displacement and its time

derivative remain continuous at ¢ = 0, but the average displacement is

altered. Two characteristic cases are shown: (a) both phases before and after

application of the field vanish ; the maximum amplitude C for ¢ > 0 is smaller

than it was for ¢ << 0; (b) both phases are equal to —# and the maximum
amplitude is larger for ¢ > 0 than for ¢ < 0.

time average of the displacement of any single oscillator is equal
to r so that the average polarization too is different from zero.
It will therefore oscillate about its average value with the
frequency wy/27. This means that after application of the field
the oscillators are no longer distributed uniformly over all values
of the phase &, as can also be shown by direct calculation.

Collisions, as has been pointed out above, alter the phases.
4980.11 F
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They will tend to suppress the oscillations of the polarization
about its equilibrium value. One should expect, therefore, that
after application of a field the equilibrium polarization is reached
steadily if the average time between two collisions of an oscillator

p
4

Po ———————————————————

F1c. 12. Time dependence of the polarization of a dielectric if a field is applied

at the time ¢ = 0. (a) and (b), the material consists of dipolar oscillators,

(a) without, (b) with collisions, leading to oscillations of the polarization about

its average. (c) The material consists of rigid dipoles with several equilibrium
positions.

is shorter than its period. Otherwise transient oscillations of
the polarization will be excited which last for a time of the order
of the time between two collisions (cf. Fig. 12 a, b, and ¢).

Case (ii). Displacement into another equiltbrium position

Asin § 4 (cf. Fig. 4), a charged particle is assumed to possess
two equilibrium positions 4 and B at distance b from each other
and separated by a potential barrier. In the absence of an
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external field the potential energy of the particle is the same in
A and B. In the presence of a field f according to 4.12 there is a
difference in the potential energies at 4 and B. In an assembly
of a great number of particles of this kind in the absence of a
field an equal number will oscillate about each of the two
equilibrium positions with an average ehergy kT, if thermal
equilibrium is assumed to exist, and if the height of the potential
barrier is large so that the potential energy H of a particle on top
of it is large compared with k7',

H>LT. (9.4)
This means that the fraction of particles with sufficient energy

to go over the top of the potential barrier is extremely small.
Its order of magnitude is given by the Boltzmann factor
exp(—H/kT).

Assume again that at the time ¢ = 0 an electric field f is
applied. Then in the absence of collisions the number of particles
oscillating about 4 and about B is not altered, because the only
action of the field is to alter slightly the equilibrium position—
as pointed out above, case (i). The field is not able, however, to
lift a particle over the potential barrier (cf. §4). On the other
hand, in equilibrium the number of particles near 4 is larger by
a fraction of the order ebf/kT (independent of H) than the num-
ber of particles near B, as was shown in § 4. In the absence of
collisions, therefore, equilibrium cannot be established. This
was also found to be so in case (i), but in the present case lack of
equilibrium has a much more serious effect. For in adding all
the displacements in order to calculate the polarization, lack
of collisions meant in case (i) that the polarization was
oscillating about its equilibrium value. In the present case,
however, the required displacements cannot be carried out
without collisions, which means complete lack of polarization of
the required type.

Collisions will tend to establish equilibrium. The time re-
quired for this process depends on details of the model. It isoften
assumed that collisions on either side of the potential barrier
are very frequent, so that the particles on each side may always
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be considered to be in equilibrium amongst themselves. By thisit
is meant that a particle having sufficient energy to flow over the
potential barrier to the other side will suffer so many collisions
that it is very unlikely to oscillate back to the side from which
it came originally because on an average over many collisions
a particle has an energy kT < H.

Starting now from equilibrium in the absence of a field, the
immediate effect of the application of a field in the A-B direc-
tion is to lift the potential near A by the amount efb. As a con-
sequence the fraction of particles with sufficient energy to move
over the potential barrier is approximately given by

o—(H—ebORT o1 | o—HIET

for the A — B and the B — A4 directions respectively,{ because
the height of the potential barrier measured from 4 is now only
H—ebf. Thusif wy/2n is the frequency of oscillation of a particle,
the probability per second for the transfer of a particle from B
to A is given by
Wyy = Q- HIKT, (9.5)
27

and for the transition 4 — B considering 4.18 it is

- kT
(9.6)

w - w efb efb
Wy = 2_1(:6_(11_@)/“ ~ 2_oe_mu (1 +W) _ w21(1-|— )

Thus if at any instant of time there is a number of particles N,(¢)
at A and a number N,(t) at B, a number N, w,, will flow per
second from 4 to B and a number N, w,, from B to A. Therefore
the rates of change of N, and N, respectively are given by

LA

a — N wyp+Nywyy (9.7)
an, dn,
-# = —Nywy+Nw, = _d—tl' (9.8)

1 By introducing a different normalization of the potential of the external
field the two exponents can be written in a more symmetrical way as H — }e(bf)
and H - }e(bf), leaving the results unaltered.
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It follows that the total number NV of particles,

N = N,+N,, (9.9)
is independent of time, as required, because
dN, ,dN, dN
@ tE @ (9-10)
Subtracting 9.7 from 9.8 with the use of 9.9 yields
d
%(NZ_ZVI) = —(Wyp+ Wy )(Np— Ny) -+ (wyp—wpy)N.  (9.11)
Now according to 9.6 and 4.18,
efb .
Wip+Wyy = 2wz1(1+2 kT) = 20,, (9.12)
efb
Wre—War = 77 War (9.13)
Using these two equations, 9.11 becomes
1 d 1 efb
N,—N, —N. 9.14
2wy, dt(N M) = —( ) 2 kT (9-14)
If we assume
Ny (0) = Ny(0) = 4NV
at t = 0, 9.14 is solved by
N efb
N,—N, = — W( —em2wnl), (9.15)

The induced polarization is proportional to N,—N, and thus
approaches its equilibrium value exponentially, as shown in
Fig. 12¢.

In contrast to case (i), equilibrium is reached in the present
case by the influence of the field on the probability of transfer
of a particle from A to B and B to A4 respectively, according to
equations 9.5 and 9.6 or 9.12 and 9.13. This model can be
generalized by introducing transition probabilities w;, and w,,
measuring the probabilities per second for the transition of a
particle from 4 to B and from B to 4 respectively, without
specifying them by equations 9.5 and 9.6. This means that
equation 9.11 holds as before. Instead of calculating w;, and
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w,; from a model, and then deriving 9.12 and 9.13, these equa-
tions can also be obtained from 9.11 by considering solutions
corresponding to equilibrium which can be obtained from § 4
without the knowledge of the transition probabilities. Thus
since in equilibrium d(N,—N,)/dt = 0, in the absence of a field
N, = N,, and hence from 9.11 w,, = w,,. In the presence of a
field, using 4.13, 4.12, and 4.18,

Ny~ N, = N(py—p) = 5 oF.
This must be a solution of 9.11 if N,— &, is independent of time,
which leads to 9.12 and 9.13.

The model discussed above can be further generalized by
considering dipoles which can have several equilibrium positions
with certain transition probabilities between them. In equi-
librium in the absence of a field the number of transitions from
a given position is just balanced by the number of transitions
from other positions to it. An electric field alters the transition
probabilities, and hence, in equilibrium, the distribution of
dipoles over the various positions. The time required to attain
equilibrium depends on the transition probabilities.

The preceding considerations have thus shown that in the case
of elastic binding the field displaces the charges which then
oscillate about their equilibrium positions. In the case in which
charged particles or dipoles possess several equilibrium positions
the field does not, by immediate action on the charges, transfer
them to their new positions, but it alters the transition pro-
babilities between them. This in turn leads to the establishment
of equilibrium.

(9.16)

10. The Debye equations

In the present section it is intended to derive equations for the
frequency dependence of the complex dielectric constant e(w)
which should hold for the case of dilute solutions of dipoles in
liquids and solids and for a few other cases. These equations
were first established by Debye [D2] and subsequently have
been applied to many substances, not always, unfortunately,
with the necessary discrimination with respect to the intended
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range of validity. We shall base the considerations of this
section on the hypothesis that in constant external fields equi-
librium is attained exponentially with time, as corresponds to
case (ii) of § 9. We thus assume for the decay function «f(t),

a(t) oc e, (10.1)

where 7 is independent of time but may depend on temperature.
That this assumption leads to the required properties can easily
be shown from the relationship 2.12 between the electric field
E(t) and the electric displacement D(t), both of which may de-
pend on time. In 2.12 it was assumed that both D and E vanish
for times ¢ << 0. If this is no longer the case, then 2.12 has to be
replaced by

D(t) = e, B(t)+ f E(w)a(t—u) du. (10.2)
This integral equation can easily be transformed into a differen-
tial equation. For on differentiating 10.2 with respect to the
time and making use of
do(t) 1

o = —=alt) (10.3)

which follows from 10.1, we find after multiplication by +
t

D) _ _ _dE®) _ a(l—
T = 60377""' «(0)E(t) fE(u) (t—u) du.
(10.4)
Adding 10.2 and 10.4 yields
T%(p_ew E)+(D—eo, E) = 1a(0)E. (10.5)

To determine the constant «(0) consider the special case of equi-
librium in a constant field. This means that

d

ﬁ(D—ewE)———O, D = ¢ £,

and hence from 10.5
Ta(0) = €,—é€q. (10.6)
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Therefore inserting 10.6 into 10.5,

T%(D—Gw EY+(D—en E) = (,—€,)E (10.7)
is found as the differential equation connecting D(¢) with E(t)
on the assumption that the decay function «(t) is given by (cf.

10.1 and 10.6) e
aft) = 22", (10.8)

T

We shall now use equation 10.7 in the investigation of the
approach to equilibrium of a condenser. The following two
cases are to be considered:

(a) Constant charge on the condenser plates. Then

dD
dt ’ 0
and hence, using 10.7,
T'd—E—'-l—E' = —Q), ie. Dy—e B oc e, (10.9)
dt €
where r=S=r (10.10)

€s

(b) Constant voltage at the condenser plates, i.e.

adk
7d_t-=0’ E—Eo.

It follows with 10.7 that
‘r%)—]—D = e Ky, i.e. D—e Fyoc e, (10.11)

Both cases thus lead to exponential approach to equilibrium.

In periodic fields assume E to be represented by equation
2.9, i.e. B oc exp(—twt). Then, introducing the complex di-
electric constant e (cf. 2.8), we find, using 2.10,

dE aD

- = —iwk, D = ¢(w)E, = —twe(w)H.
(10.12)
Introducing this into 10.7 leads to
() —ep = 85 (10.13)

1—iwTr
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An alternative way of deriving this equation is to insert 10.8
into 9.1,

@

(w)—ep, = (es—em)1 f elaz=2t g (10.14)
T
0
which after integration results in equation 10.13.
Separating the real and imaginary parts in 10.13 according to

2.8 we find

€,—€,

Gl(w)_ew _— -ls_l_—a)21-2’ (10.15)
(65— €T

=18 "o/ 10.16

€2(0‘)) 1+w27_2 H ( )

and for the loss-angle ¢, using 2.5,

& (eg—ep)wr
tan¢ = o etenwirt
Equations 10.15-10.17 (also 10.13) will be denoted as the
Debye equations and the constant r will be called the relaxation
time. They describe the properties of a dielectric substance in
alternating fields on the assumption of an exponential decay
function «f(t) (cf. 10.8). Some models leading to such a decay

function will be studied in § 11. Most of them require
€—ep L 1, (10.18)
a condition which normally is fulfilled in dilute solutions only.
In discussing the properties of the Debye equations it should
be noted that the dielectric constants €, and €, depend on at least
two parameters, the angular frequency w and the temperature
T. The frequency dependence is expressed explicitly, but the
temperature appears implicitly through e,—e¢,, and =, both of
which usually depend on T'. They may depend on other para-
meters as well, variations of which will not be considered here.
For the following it will be assumed that both ¢, and ¢,, are known
as functions of 7'. If r were known as well, a new variable

(10.17)

z = log wr = logw—+logr (10.19)
could be introduced in terms of which 10.15 and 10.16 become

€—€; 1 e e 1
€¢g—e€p 14e¥  eted €,—€n C e

(10.20)
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Fig. 13 shows these functions. It will be noted that e,/(e,—e€,)
1s a symmetrical function of z.

Actually 7 cannot be assumed to be known but must be
determined from measurements of ¢, and ¢, at various frequencies
and temperatures. Assuming that the Debye equations are
fulfilled +(T') can, however, easily be found from the frequency

= 1

3 -2 -1

F1e. 13. The Debye functions e/(¢;—ey) (full line), and (e} —ey)/(€g—€)
(dotted line), according to equations 10.20.

at which e, has its maximum. In fact at constant temperature
the angular frequency w,, of this maximum is determined by

? =0, if w=w,and T = constant.  (10.21)
” :
Hence using 10.16,
1
T)= —.

Inserting this value into 10.15-10.17 we find for the dielectric
constants and the loss angle

(10.22)

€—€x
b
o em

ifw=w, (10.23)

€ = et e€x)s €, = 3(e,—€a), tan¢ =

Thus from the frequency at which ¢, has its maximum we find
7, and from its height we ought to obtain ¢,—e¢,, if the Debye
equations are fulfilled.

Instead of considering the maximum of ¢, it is often preferred
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to determine the angular frequency wy at which the loss-angle
¢ has its maximum. We then require

dtand
ow

Using 10.17, this yields

=0, if w=wy and T = constant. (10.24)

w¢==1 S (10.25)

T €
In view of 10.18, wy and w,, will be nearly equal for most sub-
stances for which the Debye equations can be expected to hold.

Inserting 10.25 into 10.15-10.17 we find

_ 9 &% = & €w ),
€1 Es+€co, €9 €3+€oo (636 )
tang = @ if w=wy (10.26)
T 2V(ey€n) e

It is an interesting feature of equations 10.23 and 10.26
that the values of ¢; and ¢, at the frequency w,, or wy at which
either ¢, or tan ¢ has its maximum are independent of this fre-
quency and of the relaxation time, and are expressible by the
static dielectric constant e, and the high-frequency dielectric
constant e.

We shall use this occasion to give a more precise definition of
€, than that given previously. According to the Debye equa-
tions ¢, decreases from ¢, to €, in the frequency region in which
€, has relatively large values. Therefore ¢, is the value which is
asymptotically approached by ¢,(w) at frequencies sufficiently
larger than w,, to make e,(w) reiatively small. This value
of ¢, need not coincide with the optical dielectric constant
because most substances absorb in the infra-red region (see
also § 13).

If ¢,—¢,, is very small, as is required by 10.18, then ¢, €., and
€, are nearly equal,

€ ™ € = (w), (10.27)

and very precise measurements would be required to obtain
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€,—€,. This quantity can, however, be obtained with the help
of the phenomenological relation 2.18 if

e(w) = e tand ~ e, tand

is known for all frequencies for which it has appreciable values.
For on inserting €, from 10.16, equation 2.18 becomes

e 2 e do
0fe2(<»)——(s )f do

N

w - 14+ w?r
(10.23)
which is an identity because
(o do_w
14wt w2
0
In the particular case of dilute solutions of dipolar molecules
in non-polar liquids ¢,—e,, can be inserted from 6.24. In this

case the dielectric constant ¢, of the solvent is nearly equal to

€, 1.€. with 10.27,
€g = €0 = €(w) =~ ¢, (10.29)

Thus from 6.24, 10.16, 10.17, and 10.29

dmpd Ny (e,+2 {1_2(53—1)(es—n2) ! wr

3kT \ 3 (2¢,+n2)(e,+2)] 14w?r?’
(10.30)

e,tand ~ e, ~

for spherical molecules and e;—e,, < 1.

Here n is the refractive index of a pure liquid of the dissolved
molecules. The factor containing n is not of great importance
because { }? usually differs from unity by a few per cent.
only.

In the above discussion of the Debye equations we have been
mainly concerned with the frequency dependence of the dielec-
tric constants using the temperature as a parameter. In practice
€; and ¢, are often measured as functions of the temperature 7'
with the frequency as a parameter. This does not permit such an
immediate comparison with the Debye equations because the
latter do not depend on 7T explicitly. Assuming that e,—e,
is known as a function of T', it is advisable in this case to plot the
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function e,/(e;—¢,) against T'. Its maximum is determined by
(cf. 10.16)
0_3(52) 0 ot 3( wT )dT e wr— 1
0T \e.—e,, OT 14+ w22~ or\l+w?72/dT’
as before 10.22. This means that the maximum for a given
frequency occurs at a temperature 7), at which
w(T,) = 1/w. (10.31)

In the case that €, and ¢, are measured as functions of w for a
given temperature 7', the Debye equations can be checked
immediately once 7(T') has been found from the position of the
maximum of ¢, according to 10.22. For = does not depend on
w, and its value can thus be inserted into equations 10.15-10.17
which then contain no unknown quantities. If, on the other
hand, ¢, and ¢, are measured for a given frequency as functions
of T, the value found for +(7),) must not be introduced into
10.15-10.17 because  varies with 7'. Now if 10.18 is fulfilled
and thus an exact measurement of e,—e,, is difficult, knowledge
of the temperature dependence of ¢, at a given frequency does
not permit a check of the Debye equations. If, however, e,—e,,
and ¢;—e, are known as functions of the temperature, wr can
be derived from 10.15, i.e.

(wr)? = ST (10.32)
61—600
and then inserted into 10.16, resulting in
€5 = V{(e,—e;)(e7—€x)} (10.33)

Equations 10.32 and 10.33 are equivalent to the Debye equations
10.15 and 10.16 in their original form. They have the advantage
of showing clearly that the relaxation time = is a quantity which
can be calculated from the measurable quantities acoording to
10.32, whereas 10.33 is a relation between measurable quantities
only. Their disadvantage is that they require measurements of
€,—¢; and ¢;—e,, which in the cases where the Debye equations
are supposed to hold are very small (cf. 10.18 and 10.27). When-
ever this is possible, however, 10.33 affords a very simple test
of the Debye equations whether temperature, frequency, or both
are varied.
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11. Models for the Debye equations

In the previous section it was shown that an exponential
decay function leads to the Debye equations. In the present
section, models for which these equations hold will be studied
and expressions for the relaxation time will be obtained. A very
simple model has already been discussed in case (ii) of § 9 and
§ 4. In this model the dielectric material contains an assembly
of charged particles whose interaction can be neglected. Each
charge has two equilibrium positions separated by a high
potential barrier. It is then assumed that each particle collides
with the surrounding medium and that the number of collisions
per second is such that the average time , between two collisions
is small compared with the average time = which a particle
spends near one of its equilibrium positions before jumping to
the other one. This leads to the linear differential equation 9.11
for the difference of the number of particles occupying the two
positions. Its solution 9.15 approaches its equilibrium value
exponentially with a relaxation time (cf. 9.5)

P Tkt HSET, 1<, (1L1)
2wy, wy

where H is the height of the potential barrier and wy/27 the
frequency of oscillation about either of the equilibrium positions.
For this model, according to 9.5 and 9.6, the transition pro-
babilities w;, and w,, of a particle between the two equilibrium
positions are equal in the absence of a field, but are altered
slightly when an external field is applied.

It should be pointed out that from the assumptions made it
follows that the derived exponential law can be true only on an
average over time intervals which are large compared with 7.
Therefore the derivation of the Debye equations from this law
can hold only if the period of the field is large compared with =,.
It must, therefore, be concluded that this model leads to the
Debye equations only when the following conditions hold:

To L T, 7o € 1/w. (11.2)

Thus, in order to ascertain whether or not the Debye equations
hold in the main region of absorption (near wr ~ 1), it would
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be necessary to determine 7, and this in turn would require a
detailed knowledge of the interaction between the charges and
their surroundings. It will also be seen from conditions 11.2
that even if the Debye equations do hold in this main region
deviations may be expected at higher frequencies.

It is important to realize that an exponential decay function
(and hence the Debye equations) can only be obtained when the
particles can be considered as independent of each other. Inter-
action between particles (which is to be distinguished from that
between a particle and its surroundings) would mean that the
transition probabilities are not constant, but depend on the
positions of the neighbours. Hence equations 9.7 and 9.8 would
be no longer linear and, therefore, could not be solved by ex-
ponential functions.

Dipolar solids

Models more directly applicable to solids, but leading to a
mathematical treatment similar to the above, can easily be
devised. Consider, for instance, the model for dipolar solids
used in § 8. It consists of dipolar molecules, each of which, owing
to the crystalline field, has a number of equilibrium positions
with different dipole directions, which are separated by potential
barriers. In the simplest case only two equilibrium positions
with opposite dipole directions exist. In such a model at low
temperatures the dipoles, because of interaction with each
other, form an ordered arrangement. At a temperature 7; an
order-disorder transition occurs and for 7' > T long-distance
order vanishes. Short-distance order, i.e. order relative to
neighbours persists, however, and can be neglected only at still
higher temperatures. It will be shown that at these temperatures
the Debye equations hold. They should be invalid at tempera-
tures near T, but become valid again if T < Tj,.

Let us consider first the high-temperature region. Then in
the absence of a field the lowest energy-level of a dipole is the
same for both equilibrium directions. To carry out a transition
between them a minimum energy, say H, is required to lift
the molecule over the potential barrier separating the two
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equilibrium positions. In the calculation of the probability of
a transition between the two positions equation 9.5 cannot
now be applied because in general a molecule is also capable of
internal excitation, a fact which was not considered in§ 9. We
shall take account of this by introducing a factor 4 which only
varies slowly with temperature. Then if 1/27 is the transition
probability, 11.1 will be replaced by

7= " AeHIT, (11.3)

2w,

where 7/w, is the average time required by an excited molecule
to turn from one equilibrium direction to the other. In the
presence of a field f the molecule has an additional energy —+puf
and —pf for the two equilibrium directions of its dipole respec-
tively. The minimum energy required by the molecule to enable
it to carry out a transition in the presence of a field is, therefore,
H4pf. Thus, assuming

WfkT < 1, (11.4)
the two transition probabilities are given by
1 1 ut

= — oMkT ~ — (] 4 ™ 11.

Y=gt 27( +kT)’ (11.5)
1 1 uf

— e MkT ~ — (1Y}, 11.6

Yo = g€ 27( kT) ( )

respectively. Hence if V; and N, are the numbers of dipoles in
the two directions, equations 9.7, 9.8, and 9.11 still hold, provided
these new values of w;, and w,, are used. Therefore inserting
11.5 and 11.6 into 9.11 yields

$ - = M+ BN au)
For constant fields this equation leads to exponential approach
to equilibrium and hence according to § 10 to the Debye equa-
tions with a relaxation time 7.
Assuming that a molecule interchanges energy very quickly
with its surroundings, it can be considered as passing through
a number of levels above the energy H during the transition

between the two equilibrium positions. A quasi-thermal
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equilibrium of the excited molecule with its surroundings is
therefore established. Under these conditions the probability
of finding a molecule with an energy above H is approximately
(Dy|Dy)exp(—H|kT), where D, is the number of energy-levels
in a range of the order kT near the ground level and Dy is the
corresponding number in the excited state above H. Now the
transition probability 1/2r+ must be equal to this quantity
multiplied by =/w,, which is the average time required by an
excited molecule to turn by an angle =, and divided by 2 because
only half of the molecules move in the required direction. Hence
by comparison with equation 11.3 it is found that approximately

_ D

A D, (11.8)
Expression 11.3 for the relaxation time is sometimes (e.g.
Frank, F2; Kauzmann, K1) related to similar expressions for the
rate of unimolecular chemical reactions. In general a formula of
this type will be obtained for any process which requires excita-
tion to an energy H, but calculation of the absolute value of a
rate of reaction (requiring the factor 4/w,) is difficult. The first
calculation of this kind is due to Pelzer and Wigner [ P4]. Usually

w, can be assumed to be of the order

w, ~ 1012-10 per second, (11.9)

so that measurement of the temperature-dependence of r leads to
semi-empirical values for the order of magnitude of A (11.8).
Sometimes (e.g. Eyring, E1, E2) it is assumed that the trans-
lational or rotational motion of the excited molecule can be
separated from the other types of motion. In this case if
fiw, < kT, there are about kT /fiw, energy-levels, in an interval
kT, connected with the rotation of the molecule as a whole.
Denoting by Dj; the number of energy-levels due to internal
excitation of the molecule, we then obtain, using 11.8,

Hiw,” = w, DHkT’
In view of the assumptions that have been made in the deriva-

tion of this expression one should not expect it to give more than
4880.11 G

Dy~ D

(11.10)



82 DYNAMIC PROPERTIES II1, § 11

an order of magnitude. And if #w, > kT, a result might be
obtained which is not even of the correct order (cf. Pelzer,
P3). >

Let us now consider our model at lower temperatures. In the
neighbourhood of the transition temperature 7 interaction
between dipoles becomes important. The energy of a molecule
then depends on the dipole directions of its neighbours which
invalidates the assumptions which led to the Debye equations.
It will be shown presently, however, that this is no longer the
case when the temperature is well below the transition point
and the dipoles are therefore in an ordered state. As pointed
out in § 8, the lattice then contains two types of sites; and if the
state is completely ordered, these sites are occupied by molecules
with opposite dipole directions. They may form, for instance,
the centres and the corners of a body-centred cubic lattice. Each
molecule has a second equilibrium position with opposite dipole
direction in which its average energy is higher by an amount
V(T) than in the original position. If the temperature is suffi-
ciently low (well below T}), it is possible to replace V(7T') by ¥ (0),
the value of V when 7' = 0. It is in this region that we can
assume the energy of a dipole to depend on its own direction
only, and not on the directions of its neighbours, because the
latter are nearly always in the state of lowest energy (ground
state). Hence we expect the Debye equations to hold.

To prove this it is sufficient to show that equilibrium is
approached exponentially with time since, as shown in § 10,
the Debye equations then obtain. It will simplify the calcula-
tions if we assume at a given time the existence of a dipole
moment of the substance in the absence of a field and calculate
its variation with time. Let us distinguish quantities referring
to the two types of site by the use of 4 and — indices. Thus,
for instance, wy, is the probability per second for a transition of
a dipole on a 4 site from the ‘1’ into the ‘2’ direction. Similarly
N and N{ arethe numbers of dipolesin the ‘1’-direction for the
two types of site. The total dipole moment is proportional to the
quantity

AN = N} —N#+N;—N;. (11.11)
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Also if N is the total number of dipoles
Nf+Nf = N[ +N; = }N. (11.12)
Furthermore, in the absence of a field the ‘1’ (‘2’)-direction
plays the same role for -sites as the ‘2’ (‘1’)-direction for
—sites. Thus in equilibrium at 7' = 0, N = N; = 1N, and
N = Nj = 0. Also
wih = wy, wy = w. (11.13)
Thus by the same method as that used in deriving equations 9.7
and 9.8 we now find
dN{  dNF
ad —  dt
from which, with the help of 11.12, we obtain

= —wh N +wi N, (11.14)

& @ —Ng) = —2us Ny -+ 2uis Ny

= —(wiz+wH)(N{ — N3 )+3wh—wH)N.  (11.15)
The same equation holds for the — sites, if we exchange + for
— indices. Using equation 11.13 this means that
d . _ _ - -
a(N1 —Ny) = —(wh+wi) (N — Ny )—$wfi —wi)N.
(11.16)

Therefore by adding 11.15 and 11.16 and making use of 11.11
we find

LN —(whtwH) AN, ie. AN oc e~twitwil

dt
(11.17)

which proves that AN approachesits equilibrium value (AN = 0)
exponentially.

Dipolar liquids

It was shown in § 8 that when a disordered solid melts there
should be no appreciable change in the static dielectric constant
because in both the liquid and solid phases the average energy
of a dipole is the same for all equilibrium directions. The fact
that—in contrast to liquids—there is only a discrete number of
equilibrium directions in solids has no influence on the static
dielectric constant.
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There is, however, an essential difference in the dynamic
properties of solids and liquids. In solidsin view of the interaction
of a molecule with its neighbours a dipole has a number of equi-
librium directions. They are separated by potential barriers
over which the dipole must pass in turning from one such direc-
tion to another. In liquids the average distance between neigh-
bours, and hence the interaction, is about the same as in solids.
Therefore, if the positions of all molecules but one could suddenly
be fixed, this selected molecule would behave similarly to a
dipolar molecule in a solid, i.e. it would probably possess a
number of equilibrium directions separated by potential barriers.
It is an essential property of a liquid, however, that its mole-
cules have no fixed positions. Thus, if we imagine one molecule
to be turned out of its momentary equilibrium directions, its
neighbours will tend to rearrange themselves in such a way as to
make this new direction an equilibrium position. So we may
have two conceptions of the way in which a dipole in a liquid
alters its direction. It may jump into a different direction in a
similar way as in solids. This requires—at least for the duration
of this jump—that the arrangement of its neighbours should
remain unaltered. The second possibility is that such jumps may
occur very rarely and that a dipole may alter its direction only
in conjunction with a rearrangement of the positions of its
neighbours. In fact a dipole might be considered as fixed fairly
rigidly relative to its neighbours. The rotation of a dipole would
then affect the motion of molecules at some distance from it.

The average motion of these neighbouring molecules might be
described by replacing them by a continuous medium with the
properties of a macroscopic viscous fluid. This possibility leads
to the model used by Debye [D2] in which a dipolar molecule is
considered to be a sphere of radius @ moving in a continuous
viscous fluid with viscosity n and obeying the macroscopic
equations of flow. The fluid is considered to adhere to the sur-
face of the molecule. On these assumptions the frictional
constant £ of the sphere is given by Stokes’s law,

¢ = 8myad. (11.18)
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This means that when an electric field f, making an angle 8 with
the direction of the dipole ., is applied,

§Z—f= —ufsin g, (11.19)

if no other forces act on the molecule. In this equation it is also
assumed that inertia effects of the dipole—which macroscopi-
cally would lead to an additional term /d%8/dt* (I = moment of
inertia) on the left-hand side—can be omitted. This omission is
justified in so far as this form of the term is concerned since it
would hardly be expected that such effects could be described
adequately by this macroscopic expression.

The macroscopic equation of flow 11.19 can yield correct
values for § only if account is taken of thermal fluctuations due
to the interchange of energy between the molecule and its
surroundings. For the above model the energy of a molecule is
the kinetic energy of rotation of the sphere and has an average
value of order k7. This rotation—corresponding to Brownian
motion in translation—changes its direction and magnitude very
frequently due to collisions with the molecules of the surround-
ing liquid. However, if no external forces act on the dipole its
average displacement from a given direction vanishes because
displacements in all directions have equal probability. The
mean square of these displacements, on the other hand, will
increase steadily with time.

Equation 11.19 may, therefore, be considered to hold for the
average value of § (for a single dipole) when a field is applied.
The actual value of § may, however, only be expected to be near
its average value as long as the mean square displacement due
to thermal fluctuations remains a small quantity. For a macro-
scopic dipole this should practically always be so. According
to 11.19 such a dipole will, therefore, gradually approach the
direction § = 0 parallel to the field. In equilibrium it will remain
in this direction apart from small fluctuations.

It is to be noted that the value # used in 11.19, and assumed
above to be the time average of the f-values of a single
dipole, may also be considered as the average of such angular
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displacements of a large number of (non-interacting) dipoles all
having the same §-value within a small range.

In contrast to a macroscopic dipole the fluctuations of a
molecular dipole are very large. This follows at once from con-
sideration of the equilibrium distribution of an assembly of
dipoles which, according to 6.9 (replacing £ by f), is proportional
to exp(ufcos@/kT). Since uf < kT for all practicable fields
(cf. § 4), the field has only a slight influence on the distribution
function. In other words, a dipole has only a slightly higher
probability of being near § = 0 than in the opposite direction.

In order to derive now the macroscopic dielectric properties
of dilute solutions of dipolar molecules in non-polar liquids,
consider an assembly of non-interacting dipoles and let

N(8,t)sin0do

be the number of dipoles per unit volume in a range df near 6
at time¢. The function N (8, t) in general varies with time because
individual dipoles continuously change their directions. These
changes are either due to thermal fluctuations or to the action
of the field. The latter, according to 11.19, causes all dipoles
to be displaced by an amount 66,
89:3—?8t:—%fsin98t, (11.20)
in a short time interval 8¢. Therefore within &¢ seconds a number
N(8,t)sin 8 68 will pass through the surface of a cone with angle 8.
Owing to the action of the field the rate of change of the number
of dipoles within an interval df near 0 is, therefore, using 11.20,
given by
dg o . wf ,, 0 .
—— —{N(6,)s =" do_—{N 29}.
5 80{ (6, t)sin 0 36} z d089{ (6, t)sin26}
(11.21)
This equation follows because a number N(8,t)sinf 66 will
leave the range df within 8t seconds, whereas the number of

dipoles entering it is given by the same expression replacing 6

by 6—dé.
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From 11.21 it follows that the rate of change of the function
N(8,t) itself due to the action of the field is given by

(aN ;f t)), — *;_fﬁ %{N(e, {)sin?}. (11.22)
In the case of large fluctuations with which we are dealing at
present this equation is more suitable than 11.1% to express the
effect of the field on dipoles.

Equation 11.22 can be used to find the rate of change of the
dipole moment M, in the field direction, of the assembly of dipoles
under the influence of the field. Assuming the dipoles to be rigid,

M, =p f cos 8 N(8,t)sin 6 d8 (11.23)
0

per unit volume. Therefore using 11.22 the rate of change of
M; due to the action of the field is given by

(3_1%) =pu f cos B(M) sin 8 d@
a /, a )
0

B [ 00502 (0. sint
=3 fcosBaB{N(B,t)s1n 6} do,
0

or integrating in parts,

2 H 2 -
a_M,) — f (N (0, t)sin?6}sin 8 46 — M7 N, 5778,
ot |, € ; 3

(11.24)
where N, is the total number of dipoles per unit volume and
sin%f is the average value of sin20. As discussed above, the field
influences the angular distribution of dipoles only very slightly.
Therefore the value of sin? in equilibrium in the absence of a
field can be inserted in 11.24, i.e.

Sin%0 — f sin26 sin 6 de/ f sinfdf = 3. (11.25)
0

0

oM, 2 p*fN,
=y == . 11.26
Hence ( o )f 3 ¢ ( )
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'The total rate of change of M, contains in addition to 11.26 a
term due to thermal motion. This term will tend to restore the
equilibrium distribution in the absence of a field, in which case
M, = 0. On the assumptions which we have made, namely (i)
that there is no interaction between dipoles, (ii) that in a short
time interval 8t the 6-value of a dipole is altered only very slightly,
this second term must be a linear function of the deviation from
equilibrium for f = 0, i.e. it must be proportional to —M,.
Therefore introducing 1/r as proportionality factor, the total
rate of change of M, is given, using 11.26, by

aM, M, 2u¥N,
@~ .13 CE

In view of the linear relatlonshlp between M, and dM,/dt
equation 11.27 leads, of course, to exponential approach to
equilibrium and hence, according to§ 10, to the Debye equations.
This result in fact should always be expected when the following
conditions hold:

(11.27)

(a) Absence of interaction between dipoles.

(b) Only one process leading to equilibrium (e.g. either transi-

tion over a potential barrier, or frictional rotation).

(c) All dipoles can be considered as in equivalent positions,

i.e. on an average they all behave in a similar way.

‘The value of = can be derived from 11.27 by making use of the
equilibrium value of Jl[, in the presence of a field. Thus, using
6.15, , emf W

3kT

This expression must be equal to the equilibrium value for
M, resulting from 11.27 with dM,/dt = 0, i.e.

(11.28)

2 Tu®fN,
M =_ 420 11.
) =32 (11.29)
Hence comparing 11.28 and 11.29 and using 11.18,
_ & 4mad®
T = Tq:' kT - (].]..30)

This important formula due to Debye [D2] is often used
to discuss the rclaxation time of dipolar liquids. It seems
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appropriate, therefore, to recapitulate the assumptions under
which it should hold. Tirst of all the above-mentioned assump-
tions (a), (b), and (c) require
(o) dilute solutions of dipolar molecules in a non-polar liquid;
(B) axially symmetric molecules;
(y) isotropy of the liquid—even on an atomic scale in the
time average over an interval small compared with r.

Here («) follows from (a), and (8) and (y) are both connected
with (b) and (¢). All three assumptions are necessary for the
Debye equations to hold; but they are not sufficient to obtain
the value 11.30 for the relaxation time. Thisrelation, as has been
discussed above, is based on the further assumption that the
dipolar molecule is fixed fairly rigidly relative to its neighbours
so that large jumps of the dipole direction are unlikely. Now
the empirical temperature-dependence of the viscosity,

7 o eHylkT (11.31)
suggests that jumps over a potential barrier of height H, are
carried out by the molecules of the liquid in processes connected
with viscous flow. Therefore if H is the height of the potential
barrier related to jumps of the dipolar molecule, the condition
that these jumps happen only very rarely suggests that

() H> H,

This condition, however, is correct only if the coefficients
A (cf. 11.3) have the same order of magnitude for both types of
transition. In general it should be expected [ #'12, §3] that low
viscosity liquids have small values of H, and they are more likely,
therefore, to satisfy (8) than are high viscosity liquids.

Formula 11.30 can thus be used to find the temperature
dependence of = which is essentially the same as of 7, i.e.

7 oc eHylkT, (11.32)
because the other terms vary only slowly with 7'. It follows that
this temperature-dependence is independent of the nature of
the dissolved molecules and is a function of the viscosity of the
solvent only. To obtain the absolute value of 7 as well would
require knowledge of the effective radius a which is the radius of
a solid sphere having the same frictional constant as the dipolar
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molecule. No theoretical investigations on the correlation of
this radius to the molecular radius normally used have yet been
carried out. One should expect, however, that a depends on
both solvent and solute and, therefore, cannot be assumed to be
a molecular constant. Thus at the present stage of development
equation 11.30 cannot be used to obtain absolute values for the
relaxation time.

12. Generalizations

The derivation of Debye’s relation 11.30—connecting the re-
laxation time of a dipole molecule with the viscosity of the
liquid in which it is dissolved—required the assumption that the
dipolar molecule is bound so strongly to the surrounding mole-
cules that large jumps of the dipole direction are very unlikely.
This may be true for a number of cases, but others may exist in
which the opposite is more likely. A dipolar molecule will then
make many jumps over the potential barrier separating it from
another dipole direction during the time required for an appreci-
able change in direction by viscous flow. Clearly this holds for
solids where flow may be considered as entirely absent; but some-
times it may also be expected in liquids, and in particular in
amorphous substances for which the viscosity is so high that
flow is practically negligible. Inliquids it might also happen that
the process which prevails is different for different kinds of
dissolved molecules. A further possibility mentioned by Schalla-
mach [83] is the coexistence of both types of transitions.

As an example of the type of substance exhibiting the second
type of behaviour mentioned above we may consider a dilute
solution of dipolar molecules in a liquid or in an amorphous solid.
In this case, in contrast to § 11, we assume that the dominant
process for changing the dipole direction is that involving many
large jumps. A single dipole will then behave similarly to a
dipole in a crystalline solid; as in 11.3, the probability for a jump
over the potential barrier (height H) will be proportional to
exp(—H/kT). In contrast to conditions in crystalline solids,
however, the arrangement of the nearest neighbours is not
exactly the same for all dipoles, and hence the heights H of the
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potential barriers will also differ, thus producing different
values of the transition probabilities. The dipolar mole-
cules in such a substance may then be classified according
to the height H of their respective potential barriers. If the
substance has been polarized, and the external field has been
removed, the contribution of the dipoles in a small range of
energies near H will decay exponentially—as shown in § 11—
with a relaxation time r related to H by equation 11.3. There-
fore, instead of H the individual relaxation time ~ may be used
to classify the molecule. Let y(7)dr be the contribution to the
static dielectric constant of the group of dipoles having individual
relaxation times in a range dr near =. Since interaction between
dipoles can be considered to be absent (dilute solution), the
contributions of the various groups superpose linearly. Their
total contribution to the static dielectric constant is, therefore,
given by

€—€p = f y(r)dr. (12.1)
8

The function () which describes the distribution of relaxation
times will be called the distribution function.

To obtain the complex dielectric constant we first consider
the decay function «(t) (cf. §§ 2 and 10). The dipoles with relaxa-
tion times in a range dr near r make a contribution to «(¢) which
is proportional to exp(—t¢/7) and to y(r)dr/r, which corresponds
to the coefficient of the exponential term in equation 10.8.
Therefore the total contribution of all the dipoles is given by

@

aft) = fe—”Ty(T)d—:. (12.2)

0
Using relation 9.1, the complex dielectric constant is now
obtained from 12.2,

W)—€n = f x)eiwr dx = fdx giws f e~2Imy(7)

f d— f dx eiwr-zlt (12.3)
-
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The last step is due to an interchange of 2 and r integration.
The x-integral is then identical with the integral in 10.14. There-

fore
_ _f?/(T ) dr (12.4)

1—iwr’

or separating real and imaginary parts according to 2.8 similarly
to 10.15 and 10.16,

— f1+w2 -, (12.5)
ey(w) = fﬂl(T_l)_‘"—wTTf; (12.6)

0
TFor a substance of the type described in this section these equa-
tions will replace the Debye equations (10.15, 10.16, 10.17), and
the latter will not be satisfied. A clearer insight into the meaning
of equations 12.5, 12.6 will be obtained by a discussion of the way
in which their solutions deviate from those of the Debye formulae.
These deviations are best considered in connexion with the
shape of the power loss—frequency curves e,(w). For a detailed
discussion, knowledge of the distribution function y(r) is, of
course, essential. As a preliminary step, however, we may note
that y(7) is always positive and that ,(w) therefore consists of a
superposition of Debye curves wr/(1+w?7?) (cf. Fig. 13) with
different positions of their respective maxima. The resulting
curve e,(w), therefore—supposing it has a single maximum—
has a larger half-width than that of a single Debye curve whose
maximum coincides with that of e,(w). As a simple example
[ F'7] consider a model in which each molecule has two equilibrium
positions with opposite dipole directions, and with equal energy
in the ground level, as in the case of disordered solids; but in
contrast to the latter the potential barrier between the two
positions has a different height for each molecule. It will be
assumed that the heights H of the potential barriers are equally
distributed over a range between H; and H;+v,, i.e.

H = Hy+v, 0 < v <o, (12.7)
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Thus if N, is the total number of dipoles per unit volume,

N, @ (12.8)
™
is the fraction with H-values in a range dv near Hy-v.

For dilute solutions interaction between dipoles can be
neglected. As shown in §§ 4 and 6, the contribution of a dipolar
molecule to ¢, is then independent of H, and therefore is the same
for all molecules, i.e. (e,—e,)/N, per molecule. The individual
relaxation time 7, however, depends on H according to 11.3 and
11.8. Hence, using 12.7 and considering A as constant,

T =TgT, = %Ae"n’”. (12.9)

a

The individual relaxation times = therefore cover the range
TO < T < 7-1 WheI‘e ’Tl f—t 7-0 e"'olkT' (12.10)

To determine the distribution function y(r) we note that
y(7) = 0 outside the range 12.10. Now consider 7 as a function
of v so that from 12.1, using 12.9,

T1 Vo v

€—€p = f T)dr = f (T)Z—;dv = k_l’_l_’f y(7)7(v) dv.

(12.11)

This means that y(7)r dv/kT is the contribution of the molecules
in the range dv to the static dielectric constant. On the other
hand, we have just seen that this contribution per molecule is
(e,—€x)/N, independent of ». Therefore, since 12.8 represents
the number of molecules in dv,

y(r)rdv  e— dv

= £ Ny — 12.12
T N, Ny 7’ ( )
or
kT 1
y(T) == (Gs_ecn — if T, < T < T, = T el’o/kT
"o 7 ’ P . (12.13)
y(r) =0, if r<7, and 7> 7

The above distribution function—corresponding to an equal
distribution of potential barriers over a range v,—depends on
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temperature. In particular its relative width (r;—7)/7, de-

creases with temperature since
—T
770 _ grkT ], (12.14)

To

The dielectric constants ¢; and e, can now be obtained by

1
075
10 € (w)
]
—0-25
1 1
I/100 /10 1 10 100
w/wm

F1a. 14. Dependence of dielectric loss e,(w) on angular frequency o accord-

ing to equation 12.19 for the three values 1, 5, and 10 of the parameter

+/(71/7o). They correspond to a range of heights of potential barriers of width

vy = kT logmy /7, €(w)/€x(w,,) is plotted against w/w,, on a logarithmic scale;
wy, represents the value of w where ¢, reaches its maximum.

inserting y(7) from 12.13 into 12.5 and 12.6. All integrations can
be carried out in an elementary manner leading to

2.2 20/ T
€1("")_'600 = (63_600)(1 —l;_Tlog M),

12.15
2v, 14 w?r2 ( )

e(w) = (es—em)li—T (tan—YwT, ek T)—tan—lwr,). (12.16)
0

These equations replace the Debye formulae 10.15 and 10.16
for our present model. In this case ¢;(w) and e,(w), considered
as functions of frequency, depend on two parameters—a relaxa-
tion time 7,, and the factor vy/kT determining the width of the
range of relaxation times by 12.14. The Debye formulae are
obtained for vy/kT = 0; they contain, therefore, one para-
meter only. The shape of ¢, can be seen from Fig. 14, where
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€x(w)/es(w,,) is plotted against w/w,,, w,, being the frequency at
which €, has its maximum.

It can be seen that with increasing values of the second para-
meter v,/kT the curves become more and more flattened out.
The position of the maximum is obtained from 12.16, using

Oe .
a—(j =0 lf W = wy,.
. | B 1
This leads to w,, = — e kT — , (12.17)
To \/(7'07'1)
1
2¢,(wy)
Es_em
0:5F
| | !
0 5 10

Vo/kT

F1e. 15. Dependence of the maximum value of the loss, €(wy,), on the
width v, of the range of heights of potential barriers.

which for v, = 0, of course, becomes identical with the corre-
sponding value 10.22 for the Debye formulae. Inserting 12.17
into 12.16 yields the maximum value of e,,
6(w,,) = (es—ew)lc—qj[tan“leév"”‘T—tan_le‘“d"T].
Yo
(12.18)

Again for vy, = 0 this quantity becomes equal to 10.23, but it
decreases with increasing v,/kT, as shown in Fig. 15.

With the help of 12.14, 12.17, and 12.18 equation 12.16 can
be written in the form

o )
(A _ wy, To W, 71
T e

which shows clearly the dependence of e,(w) on the parameter
To/7y < 1. For 7y/7; = 1, equation 12.19 is identical with the

(12.19)
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corresponding equation of § 10, and the smaller =,/7, is, that is
the larger »,, the larger is the deviation from a Debye curve.

The above equations are based on the assumption of equal
distribution of the height of potential barriers over a range v,
leading to a range of relaxation times given by equation 12.14
and to the distribution function 12.13. This may seem to be
rather a specialized assumption. It can be shown quite readily,
however, that the behaviour of ,(w) in the main absorption range
is altered but little, if the distribution function 12.13 is replaced
by any other smooth function which is large between =, and =,
and small outside this range. Quite generally, therefore, in the
neighbourhood of the maximum of e,(w) this function can be
considered to be determined by two parameters, namely the
angular frequency w,, at which the maximum occurs, and the
width of the range of relaxation times v,—7,. It should be
remembered that the absolute value of e,(w) is then determined
by e,—e,, with the help of the phenomenological relation 2.18.

In contrast to the behaviour of €,(w) in the main absorption
region the behaviour outside this region may be very sensitive
to small changes of the distribution function y(r) for r-values
outside the range 7, <t << 7;, which contains the bulk of the
relaxation times. For the latter, though very numerous, make
only small contributions to ey(w) if wry € 1 or wr; > 1. These
may well be smaller than the contributions of a few relaxation
times near * ~ 1/w which make their maximum contribution
at the frequencies outside of the main absorption band.

For many substances the value of ¢,(w) does not approach
zero outside the main absorption range, but remains at a very
small value which changes very slowly with frequency [G2].
This may be explained if a sufficiently wide range of relaxation
times is used. Garton [GI] has suggested that this residual
absorption may be due to the temporary formation of additional
equilibrium positions of the molecules due to thermal fluctua-
tions. The probability for the occurrence of such a potential
well of depth w in a range dw (cf. Fig. 16) is assumed to be pro-
portional to

e~wIkT gy, (12.20)
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This is a plausible assumption, though no proof for it has been
given. We shall proceed to show that such an assumption does,
in fact, lead to a value of ¢,(w) which is substantially independent
of frequency for frequencies well outside of the main absorption
range.

Let H be the height of the potential barrier measured from a

|

w

i

N

F1e. 16. Potential well of depth w due to thermal fluctuations.

normal (permanent) position and consider a molecule near which
a temporary position of depth w has been formed. According to
11.3 the time it spends in the temporary or in the permanent
position is given by

7 = BewlkT and 71, = B,eHkT (12.21)

respectively on the further assumption that the temporary
position exists for a time which is long compared with 7+,
The coefficients B and B, are considered to be independent of w.
Assuming 7 < 7, the relative probability of finding this mole-
cule in the temporary position is given by 7/(v-+7,) =~ 7/7,. The
average number of molecules in such positions, using 12.20 and
12.21, is thus proportional to

Toutrgy = TBM g Brpdt I (1999

To To T T To T T .
Each molecule makes a contribution to e,(w) proportional to
wt/(14+w?r?). Also since w > 0 the smallest value that = can
take is 7 = B. For large values near » = 7, the developments

become invalid, and 7, will be used as the upper limit for 7; this
4980.11 H
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should not be an essential limitation, however, because near
T = 7, the main contribution to ey(w) is due to the transitions

between permanent positions which are much more numerous.
Thus

€o(w) oC f %;272 d7T = tan—lwr,—tan-'Bw (12.23)
B
for frequencies higher than the main absorption range, wry > 1.
If, in particular,

/7 € w L 1/B, (12.24)
then e,(w) is practically independent of w. Here 1/B will
probably be a very high frequency.

The preceding discussions were all based on the assumption
that interaction between dipoles can be neglected. It seems
likely that the influence of interaction will always tend to
broaden the Debye absorption curve, because the energy of a
molecule in an equilibrium position may have a whole range of
values depending on the positions of its neighbours. One would
thus expect the heights of the potential barriers to vary accord-
ingly. In the present case, however, the time which a molecule
spends in a given equilibrium position is of the same order as
the time during which the height of the potential barrier remains
constant. If an attempt is made to include interaction under
these conditions, great mathematical difficulties are encountered
and no solution for this case has yet been obtained.

13. Resonance absorpti_on

In § 9 it was pointed out that two types of power loss should
be expected to occur in dielectrics: (i) The loss due to displace-
ment of charges bound elastically to an equilibrium position.
Such charges have a proper frequency of oscillation, say w,/2m,
and the power loss (and hence ¢,) will be expected to have
a maximum near this frequency (the resonance frequency).
(ii) The loss due to transitions of charges or dipoles between
equilibrium positions separated by a potential barrier. Such
transitions are described by a relaxation time 7, and in this case
the power loss will have a maximum near a frequency 1/2n7 as
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discussed in §§ 10-12. This frequency is usually strongly depen-
dent on temperature, in contrast to the resonance frequency in
case (i). The chief aim of the present section is to derive expres-
sions for the complex dielectric constant when there is resonance
absorption (case (i) above).

It is our intention to consider only the simplest case, and it
will be seen presently that the required formula can be derived
from very general considerations without choosing a particular
model. We shall employ the same method that has been used in
§ 10 to derive the Debye equations. The polarization of the sub-
stances considered there was assumed to approach equilibrium
exponentially with time. This cannot be expected to hold in the
present case of elastic displacement. One would rather expect
damped oscillations with frequency w,/27 about the equilibrium
polarization, as has already been discussed in § 9. Therefore
instead of 10.1 we shall now assume a decay function

a(t) = ye~Urcos(wyt+), (13.1)
and then, making use of equation 9.1, derive an expression for
the complex dielectric constant e. Equation 13.1 contains two
constants y and ¢ which will be determined below.

The reader is reminded that «(t) is a macroscopic quantity
referring to the behaviour of the polarization of the whole sub-
stance. It would be wrong to describe the amplitude of the
oscillations of a single molecule (in the absence of a field) by a
function similar to 13.1, because in equilibrium this would lead
to vanishing amplitude and thus would not take account of the
thermal motion.

By inserting 13.1 into 9.1 we now find for the complex
dielectric constant e,

@
€—€p =Y f e~TTcos(wy x+)et et dx
0

YT e e~ )
) 1—i(w0+w)1+ 141 (wy—w)7

7—2Tcos¢( 14-itany 1—itany

- - ) (13.2)
l—t(wytw)r  1+i(wy—w)r
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As the next step, the two constants y and 4 will be determined
by considering the limiting cases of very low and very high
frequencies. Low frequencies, w <€ w,, are considered to be
outside the main range of absorption, i.e. in a region in which
€, is very small and, therefore, the dielectric constant is prac-
tically real. In this range e will approach a constant value, say

€ = €5+ Ae, w L wy, (13.3)

where Ae is a real quantity. This value of the dielectric constant
will hold down to frequencies at which another absorption range
starts. In the absence of further absorption regions 13.3 repre-
sents the static dielectric constant. The high-frequency dielectric
constant ¢, on the other hand, is the value of € at the high-
frequency side of the absorption peak, again in a region in which
€, is very small.

Comparing 13.3 with equation 13.2 and neglecting w compared
with w,, we find

COS Y—w, 7 Sin ¢
1+ wdr?

l—w,rtan
= 'y‘rCOSt,b H—O—zzl/l
(UO‘T

Ae = yr (13.4)
as a first condition for the determination of y and .

The second condition is of a more subtle nature and concerns
the behaviour of ¢ at angular frequencies w > w, At these
frequencies w, can be neglected compared with w, so that 13.2

becomes )

COoSs
€—€, = YT .
® 14 1—iwr’

w > w,. (13.5)

On the other hand, for w > w, the influence of the restoring force
should be negligible during one period 1/w. Therefore a be-
haviour according to the Debye theory should be expected with
a static dielectric constant given by 13.3. Thus by replacing
€;,—€o DY Ae in 10.13,

€E—€p = A-e , w> w, (13.6)

l—1wr

Combining 13.5 and 13.6 we find
Ae = yrcosy (13.7)

as the second condition for the determination of y and .
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From 13.7 and 13.4 we now conclude that
wyT = —tani. (13.8)
The insertion of this expression and 13.7 into 13.2 finally leads
tot (cf. references V5 and F'9)
l1—twyT 14wy T

e — , 13.
€ %Ae(l—i(wo—l—w)‘r 1—'—'1:(0)0—0))7') (13.9)
or separating real and imaginary parts according to 2.8,
o 14 wy(w+twy)r? | 1—wy(w—awy)r?
ale)—ee = %AG( I+ (@t wPr? | T+ (w—wg)Pr
(13.10)
wT wT

1+ (w—+wgp)?r? T 14+ (w—wo)z'rz). (13.11)

These equations represent the dielectric constants in the
simplest case of resonance absorption. In many practical cases
Ae is a small quantity so that ¢, is approximately equal to €.
In these cases the loss angle according to 2.5 is given by

and 6y(w) = %Ae(

tang =2 ~ 22
€ €x

if Ae < 1. (13.12)

If Ae is small it will be difficult to determine this quantity
experimentally with reasonable accuracy by direct measure-
ment. Following 2.18, however, the relation

[ ]

fez(w)dw =§f€2d(]ogw) (13.13)

w

RN

0
can be used instead. This equation holds for the present case,
as can be checked by inserting ¢, from 13.11.

We shall now proceed to discuss power loss (cc €,) in more
detail. At constant temperature e, as a function of w has a maxi-
mum when w = w,,

1
w,, = ;\/(1—|—w%‘r2), (13.14)

as can be found from the condition 0e,/dw = 0. The maximum
value of ¢, is then given by (inserting 13.14 into 13.11)

€x(wy) = 3Ae(14+wir?) = JAcw, . (13.15)
1 Anothor derivation of 13.9 is given in tho Appendix A 4.
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Consider now that the time of relaxation r depends on tem-
perature and may be expected to decrease with increasing
temperature.

Then
w, =1/t and ew,) = 1Ae if w71, (13.16)

i.e. at very high temperatures. But
w, ~ w, and e(w,) =~ tAewyr If wyT>1, (13.17)

i.e. at lower temperatures. Comparison with 10.23 shows that
case 13.16 leads to behaviour similar to that for Debye absorp-
tion. Without detailed consideration of a special model it is
impossible, however, to say whether this region can be reached
at temperatures corresponding to the solid state. The low-
temperature limiting case 13.17 leads to typical resonance
absorption. In contrast to Debye absorption, the angular
frequency w, of maximum absorption is independent of tem-
perature, but the resonance peak becomes narrower and higher
the lower the temperature, i.e. the larger w,7. Figures 17 and 18
give a comparison of Debye absorption and resonance absorp-
tion for various temperatures.

A number of models have been considered in greater detail,
and equations 13.9-13.11 have been found to hold. These deriva-
tions are much more complicated than the one given above,
but they may be considered to be more rigid (cf. Appendix A 4).
Transitions between rotational levels of gases have been con-
sidered by van Vleck and Weisskopf[ V5] and by van Vleck [V4].
In gases the relaxation process is due to collisions between mole-
cules. Therefore r will be expected to decrease with increasing
pressure and with increasing temperature. At temperatures or
pressures at which w,7 < 1 the absorption peak according to
13.16 is near the frequency w,, = 1/r. In this region, therefore,
w > wy, so that w, can be neglected.

In the main absorption region, therefore, the Debye equations
are fulfilled whenever w,7 <€ 1. At small pressures, however,
wy7 > 1 and the main absorption peak according to 13.17 will
be found near the resonance frequency w,,.

Resonance absorption may also be of importance in solids
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containing dipolar molecules with large moments of inertia
[F9, H3, 811]. The resonance in this case is due to rotational

T T T
¢, a
A€
log w
T
262
Ae T, b
T;
(;’o log w-

Frc. 17. Frequency dependence of dielectric loss for three different tempera-
tures T} << T, < T, (schematically). (a) Debye case; (b) resonance case.

Fig. 18. Dependence of the angular frequency w, at which dielectric loss has
its maximum on the relaxation time. D refers to the Debye case, B to the
resonance case.

oscillations of the molecules about their equilibrium positions.
The behaviour of the relaxation time in this case, however, has
not yet been investigated.



CHAPTER IV
APPLICATIONS

THE present chapter is designed to show by examples how the
general theory developed in previous chapters can be applied
in the discussion of the properties of dielectric materials. It is
the intention to cover some important types of materials (e.g.
non-polar solids, ionic erystals, dipolar liquids, etc.); this should,
however, not be considered as an attempt to discuss systemati-
cally the properties of dielectric materials, but rather as a
selection of typical examples. '

14. Structure and dielectric properties
Atoms

In the present section we shall commence by discussing the
structure and the dielectric properties of atoms and molecules
leading up to a classification of dielectric materials according
to their structure. An atom, as the reader will know, consists
of a positively charged nucleus surrounded by electrons which
just compensate its charge and whose combined mass is very
small compared with that of the nucleus. By adding or removing
one or several electrons one obtains negative or positive ions.
In a stationary state the electric dipole moment of an atom (or
of an ion relative to its nucleus) vanishes.

A very general quantum mechanical theorem says that under
the influence of external (static or alternating) electric fields the
electrons of an atom behave like an assembly of classical har-
monic oscillators whose frequencies and other properties can be
specified, but will not be required by us. Usually the frequencies
are equal to or higher than those of visible light, and, therefore,
are much higher than the frequencies of electric fields contem-
plated in the present book. Under the influence of an external
electric field f an electric dipole m, will, therefore, be induced
which has all the characteristics of a dipole produced by elastic
displacement of electric charges (electrons) as discussed in case
(i) of §§ 4 and 9. In the ranges of field-strengths and frequencies
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to be considered here, the strength of the induced dipole m, is
proportional to the field-strength f, but independent of the
frequency, and it shows no phase-shift relative to the field. These
properties of an atom can be described by a constant polariza-

bility o, m, = o, f. (14.1)

The resulting polarization will be called optical polarization,
to indicate that the characteristic frequencies are usually in the
optical region. Often it is also described as electronic polariza-

tion because it is due to the displacement of the electrons; this
description may, however, be misleading as will be seen presently.

Molecules

Consider now a diatomic molecule A B composed of two atoms
A and B. Inview of the interaction between the atoms—leading
to the chemical bond—the distribution of electrons in the mole-
cule is different from a mere superposition of the electron distri-
butions of the free atoms 4 and B. The distribution should,
however, be axially symmetrical around the line joining the
nuclei of the two atoms. It must, therefore, be expected that a
diatomic molecule will possess a dipole moment in the direction
A-B. An exception occurs in the case of two equal atoms,
A = B, where the dipole moment must vanish for reasons of
symmetry. Thus, for instance, the molecules HCI or CO have a
dipole moment in contrast to H,, O,, or Cl,. The magnitude of
the dipole moment gives valuable information about the distri-
bution of clectrons. Thus the large dipole moment of HCI
(p ~ 1x10"%.5u. = 1 Debye unit) compared with that of
CO (n ~ 0-1 Debye units) gives some justification for considering
the HCI molecule (but not the CO molecule) as composed of a
positive and a negative ion, H+-Cl-.

Under the influence of an external field f an average dipole
moment m is induced in a molecule which, according to §§ 4 and
9, can be considered as composed of contributions of two types:
(1) those due to elastic displacement of charges, and (ii) those due
to a change in the average orientation of the permanent dipole
of the molecule. The former again are composed of the contri-
butions of the various normal modes. In view of the great
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difference in the mass of electrons and nuclei there is one group
of normal modes which is practically entirely due to displace-
ment of electrons relative to the nuclei. Their proper frequencies
are usually in the optical region, visible or ultra-violet. The
proper frequencies of the normal modes connected with
oscillations of the nuclei, on the other hand, are usually in the
infra-red region. They must contain displacements of electrons
relative to their respective nuclei as well, because of the variation
of the interaction between electrons and nuclei with the distance
between the latter. Thus

m = m_ |m,-+m,, (14.2)
where the first two terms are due to elastic displacements with
proper frequencies in the optical and in the infra-red region, and
m, is the moment due to dipole orientation. The quantities m,
and m,, are often denoted as electronic and atomic polarization,
respectively, which may be considered as somewhat misleading
because the latter also contains terms due to electronic dis-
placements. Since the frequencies contemplated in this book
are much smaller than all proper frequencies, the relations

= o, f (14.3)
should hold with constant values of the polarizabilities «, and
«;,, independent of the frequency of the field or of temperature.

Polyatomic molecules behave in a similar way to diatomic
molecules in that the average dipole moment induced by an
external field can be considered as a superposition of three terms
according to 14.2: two terms representing the elastic displace-
ments with proper frequencies in the optical and infra-red
regions respectively, and a dipolar contribution. The former
can be obtained from the optical and the infra-red polarizabilities
a, and «;, according to 14.3; the value of the latter depends on
the dipole moment of the molecule (e.g. § 6). The determination
of the dipole moment is of great interest in investigations on the
structure of molecules. For instance, the fact that CO, does not
possess a permanent dipole moment leads to the conclusion that
the three atoms must be arranged in a straight line with the car-
bon atom half-way between the two oxygen atoms. In contrast

m, = q,f, m

ir
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to this the H,0O molecule has a permanent dipole moment, which
means that H,O is a triangular molecule.

A great number of interesting applications to stereochemistry
have been made, but a detailed discussion of this subject is
beyond the scope of the present book. The reader will find
examples and reference to the literature in the fairly recent book
by Le Fevre [ LZ] or in the article by Sutton [S10]. The earlier
developments are to be found in the books by Debye [D2] and
by Smyth [S8].

Two qualitative rules concerning large molecules should be
mentioned. Such molecules often contain a number of dipolar
molecular groups such as the hydroxyl group O—H, or the ketone
group C=0. To a fair approximation these groups contribute
the same dipole moment in whatever molecule they occur. The
total moment of such a molecule is then the vector sum of the
moments of all groups present in the molecule. Clearly this rule
cannot hold exactly for several reasons; one of these is the in-
fluence of the interaction between the various groups on their
individual moments.

The second rule refers to the optical polarizability of large
molecules. As mentioned above, optical polarization is due to
displacement of electrons on the assumption that all nuclei are
kept in fixed positions. Clearly the largest contributions will
arise from the electrons with the smallest binding energies, i.e.
from valency electrons. The behaviour of these electrons is
different in a compound than it is in the atomic state of the atoms
contained in the compound. Thus the optical polarizability of
CO, is different from the sum of the polarizabilities of a carbon
and two oxygen atoms. On the other hand, the distribution of
electrons in certain molecular groups is to a fair approximation
independent of the type of molecule in which they occur, as in
the above case of the dipole moment of such groups. Inapplying
this rule it should be remembered that frequently the polariza-
bility of such a group depends on direction; for the ketone group
C==0, for instance, the polarizability in the direction of the
line connecting the two atoms would be different from that in a
direction perpendicular to it.
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Classification of dielectrics

The division of polarization into three types which was intro-
duced above is of a very general nature. It leads at once to the
following division of dielectric materials into three classes:

(1) Non-polar substances showing optical polarization only.

(ii) Polar substances having optical as well as infra-red
polarization.

(iii) Dipolar substances which in addition show also polariza-
tion due to dipolar orientation.

In the first class of materials, non-polar ones, an electrical
field produces elastic displacement of electrons only. This class
contains all dielectrics consisting of a single type of atom,
whether they form gases, liquids, or solids. Examples are
diamond, oxygen (solid, liquid, or as vapour), the inert gases,
and many others. The dielectrics of the second class, polar
materials, are capable of infra-red polarization as well as optical
polarization. Substances of this type may contain dipolar
groups of atoms, but these groups must show only elastic dis-
placement. If, on the other hand, there are several equilibrium
positions for the dipole, then the substance belongs to the third
class of materials.

The second class contains, first of all, substances consisting
of molecules whose total dipole moment vanishes, though they
contain dipolar groups of atoms. lixamples are CO,, paraffins
CH,—(CH,),—CH, (cf.§ 15), benzene C¢Hg, carbon tetrachloride
CCl,, and many others in the solid, liquid, or vapour phase. In
most of these substances the infra-red polarizability is only a
small fraction of the optical polarizability. From a practical
point of view, therefore, their behaviour is very similar to that of
non-polar substances. At sufficiently low temperatures many
solids consisting of dipolar molecules fall into the same category
because the dipoles in these solids freeze in, i.e. the thermal
energy is insufficient to turn them in a reasonable time into
other equilibrium positions. The most representative substances
of the polar type are, however, ionic crystals which may show
very large infra-red polarizability. Examples arc rock-salt
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Na(l, other alkali halide crystals, TiO, crystals, and most other
crystals of salts. In contrast to molecular lattices, which have a
whole molecule at each lattice-point, ionic lattices contain one
ion at each lattice-point. Thus rock-salt, for instance, forms a
simple cubic lattice of Na* and Cl- ions (cf. § 18). In contrast
to other dielectrics, most salts on melting become (ionic) con-
ductors.

All materials consisting of dipolar molecules belong to the
third class, except in the very low temperature range men-
tioned above where the dipoles are frozen in. Often in solids
this process starts just below a critical temperature at which the
substance undergoes a phase transition. In nearly all of these
materials the turning of a dipole into another equilibrium posi-
tion is connected with a turning of the whole molecule (e.g. for
ketones, § 17). Exceptions are ice and some other crystals where
a turning of the direction of a dipole may be obtained by a
transfer of a H+* ion from one equilibrium position to another.

15. Non-polar substances
The simplest type of dielectric substances show elastic dis-
placement of electrons only, and in the classification of § 14 are
designated as non-polar. For such substances the lowest fre-
quency v, at which appreciable absorption occurs is usually in
the visible or int he ultra-violet region. For all frequencies v
which are less than v, by a sufficient amount, the dielectric con-
stant should be independent of frequency. Thus for v < v, the
dielectric constant e should be equal to the static dielectric
constante,and should satisfy the Maxwellrelatione = n2. Thatis,
€, = (15.1)
should hold between the static dielectric constant and the refrac-
tive index » at frequenciesy < v,. Whitehead and Hackett [ W6]
have recently checked this relation on diamond and found that
it holds within the range of accuracy of the measurements. They
measured the dielectric constant at frequencies between 500
and 3,000 cycles per second and obtained the value 5:684-0-03.
The refractive index n was obtained by extrapolating measure-
ments at various wave-lengths in the optical region to long
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waves where # is independent of wave-length. The accuracy of
this procedure can be seen from Tig. 19 and leads to the value
n? = 5-66. This agreement means that absorption of electric
waves at frequencies between 3,000 cycles per second and optical

frequencies must be so weak that (cf. 2.18) (2/7) f e dv/v < 0-:03

if integrated over this range. Actually diamond absorbs at
infra-red frequencies, but the reason for this absorption has not

2'5

2.4

2-3 L L
1 2
Wave number per cm.X 1074

F1a. 19. Dependence of the refractive index = of diamond on the wave num-
ber according to measurements collected by Whitehead and Hackett [ W6].

yet been found. The above condition, by the way, need not
imply that €, is small provided the absorption bands are suffi-
ciently narrow. _

Gases of non-polar molecules fulfil fairly closely the conditions
required for the validity of the Clausius—Mossotti formula,
(cf. §§ 6 and 8 and Appendix A 3). These conditions require
(i) elastic displacement only, (ii) absence of non-dipolar (short-
range) interaction between molecules, (iii) isotropy of the
polarizability of a molecule, (iv) isotropy or cubic symmetry in
the arrangement of the molecules. Condition (i) is fulfilled for all
non-polar molecules; (ii) holds so long as the distance between
molecules is sufficiently large; (iii) holds for spherical molecules
only, and (iv) holds always in gases. Hence deviations may be
expected for non-spherical molecules (condition (iii) violated)
and at very high pressure (condition (ii) violated). All conditions
are thus fulfilled for the rare gases. The main check of the
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Clausius-Mossotti formula consists in measurement of the
dielectric constant of a gas as a function of its density. For,
since the number N, of molecules per c.c. is obtained with the
help of the Avogadro number (6-02 X 10%3),

d
N, = = 6:02x 1023 .
b= 77 6:02 (15.2)

(d = density, W = molecular weight).
It follows with 6.34 and 6.32 that

“—1_ opow10ul
ol X W (15.3)

8

€

Often the quantity
p = 252X 10%q (15.4)
is defined as molecular polarizability. Using 15.3 and the Max-
well relation (cf. 15.1),
_ el
P= d e+2
should be a constant independent of density, temperature, or

frequency. For the rare gases the following values for p have
been found:

(15.5)

He Ne Ar Kr X
p =05 1-0 4-2 6-3 10 c.c.

The increase of polarizability with atomic weight is mainly due
to the increase in the number of electrons per atom. Also,
relation 15.1 has been found to hold very accurately.

Agreement of equation 15.5 with experiment holds for many
other non-polar substances over a very wide range of densities.
Thus we notice with van Vleck [V 3] that for O, the right-hand
side of 15.5 has the magnitude 3-869 for the gas and an almost
identical value 3-878 for the liquid despite the fact that the den-
sities differ by a factor of over a thousand. Similar agreement is
found in many other cases, and since the Maxwell relation holds,
e in 15.5 can be replaced by n2. In nitrogen, for instance, it was
found from measurements of the refractive index that the right-
hand side of 15.5 varied by less than 1 per cent. in a range of
pressures between 1 and 2,000 atmospheres.
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In judging the significance of such a striking agreement it
should be noted that in spite of the large variation in the magni-
tude of e—1, the largest values of this quantity are usually
smaller than unity. In this case, even with the assumption of
complete absence of interaction between molecules, there is
fair agreement with experiment. This assumption (cf. 6.14,
using 15.4 and 15.2) leads to

e—1=p. (15.6)

In order to compare 15.5 and 15.6 we note that if we introduce

the molecular volume v given by

154
= —, 15.7
v= (15.7)
equation 15.5 is equivalent to
e—1—= 2P (15.8)
1—p/v

Thus

3p p ., [r\? P e—1

O
The first term in this series is identical with 15.6. The higher
terms which are characteristic of the Clausius—Mossotti formula
are usually small. Thus in the above-mentioned case of nitrogen
p/v is only slightly larger than 0-1 at 2,000 atmospheres. Com-
pared with equation 15.6 the Clausius—Mossotti formula intro-
duces a correction of only about 10 per cent.

Kirkwood [ K 3] hasinvestigated the influence of the anisotropy
of the polarizability of molecules and found that 15.9 has to be
replaced by

e—1 = 3—53(1—]—(1—}—0‘)%4—...), (15.10)

where o is a quantity measuring the anisotropy of the polariza-
bility. The effect of this and other corrections on the magnitude
of € are usually small, since they affect the small second-order
term only.
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There are a great number of materials which according to the
classification of § 14 are polar, but which, for all practical pur-
poses behave like non-polar substances. They comprise mole-
cules which contain a number of polar groups in such a way that
their resultant dipole moment vanishes. The infra-red polariza-
bility of these molecules is very often so small that its contri-
bution to the dielectric constant is negligible. Important
examples are the paraffins, and in the following we shall show
why the dipole moment of a paraffin molecule vanishes.

A molecule of a normal paraffin CH;,—(CH,),—CH, consists
of a chain of CH, groups with a CH, group at each end. The bond
angle C—C—C is very nearly equal to the tetrahedral angle
6 = 2cos~1(1/¥3) ~ 109°. In solids the chain forms a plane
zigzag (e.g. § 16, Fig. 28), but in liquids and gases this is not the
case in general. Here rotation around the C—C bonds as axes
may occur, but it will be assumed that this does not alter the
bond angle. Each CH, and CH, group has a dipole moment
whose direction will be discussed on the assumption that all
four bonds of a C-atom make angles of 2 cos—1(1/+3) with each
other.t Thus, if a C-atom is considered to occupy the centre of a
regular tetrahedron, the bonds are directed towards the vertices.
Now, according to § 14, the C—C bonds should have no dipole
moment in contrast to C—H bonds which will have a moment.
The resultant moment of a CH, group is then always in the
C—C—C plane (cf. Fig. 20) bisecting the C—C—C angle, where-
as the CHy moment has the direction of the adjoining C—C bond.
To show this we consider a cube with a C-atom at its centre
(Fig. 21). Then the four bond directions point towards four of
its corners which are not neighbours. These corner points form
the vertices of a regular tetrahedron. Thus, if p is the C—H
moment, the CH, moment is 2u cos§/2 = 2u/v3. This may be
considered as composed of two dipoles of strength u in the direc-
tions of the C—C bonds (dotted arrows in Fig. 20). Furthermore,
the moment of a CH, end-group is also equivalent to a dipole u
in the direction of its adjoining C—C bond. For the resultant of

1 It should be noted that in Fig. 28 the distance refers to CH, groups as
found from X.ray measurements and not to the C—C distance.
4980,11 i
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any pair of H-atoms of the CH; group is a dipole of strength
2u/43 in the direction perpendicular to a surface of the cube,
as has just been shown (this assumes that C—H dipoles in a
CH, and in a CH, group are equal). The resultant thus forms an
angle cos~11/43 with the diagonal in which the residual dipole
lies, and thus contributes (1/v3) (2u/v3) = 2u/3 to the CH,
dipole. Now three CH, groups can be selected from CHj, but
then each CH dipole is counted twice. Thus the moment of the

R e o

2pf/3
//,*

\.~
s

Fia. 20. Fia 21.

F1c. 20. The full arrow represents the dipole of a CH, group seen to lie in the
C—C—~C plane of a paraffin molecule. It can be decomposed into the two
dotted arrows in the C—C directions.

Fie. 21. A C-atom of a paraffin molecule with its four neighbours, two C-
and two H-atoms. The former are indicated by rings, the latter by dots; the
arrow indicates the dipole of the group. The lines joining the central atoms
with its neighbours indicate the directions of the latter rather than their
distance ; actually the C—H distance is smaller than the C—C distance.

CHj group is $(21/3) = pu. It follows that the paraffin chain
can be considered as composed of C—C rods with a dipole p
on each end. These end dipoles point in opposite directions, so
that the dipole moment of each rod, and hence of the whole
chain, vanishes exactly.

As an example we mention pentane C,H,, which at 30° C.
under a pressure of 1 atmosphere has a dielectric constant
e = 1-82. The refractive index is » = 1:36, i.e. n2 = 1-85 which
shows that the Maxwell relation 15.1 is fulfilled—probably
within experimental error. Hence the contribution of the
infra-red polarization must be very small. The following table
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of measurements by Danforth [DI] shows that the Clausius-
Mossotti formula also holds to a good approximation.

) Pressure € (e—1)/(e+2) : 1/v | P =7v(c—l)/(e+2)
1 atm. 1-82 0-216 0-613 0-356
12000 atm. 2-33 0-308 0-907 0-339

Again it can be seen that (cf. 15.9) p/v < 1 so that the zero
approximation of 15.9 accounts for more than two-thirds of
e—1. More accurate comparison with equation 15.10 shows that
a value o ~ —0-05 is required to account for the experimental
data. This shows that the next approximation—i.e. the first one
which is significant for the Clausius—Mossotti formula—deviates
by only 5 per cent. from 15.9.

For an example exhibiting a larger contribution of infra-red
polarization we turn to the measurements of Michels and
Hamers [ M2] and Michels and Kleerekoper [M 3] on CO,. This
molecule is rectilinear and has, therefore, no dipole moment.
Dielectric measurements give the value 7-5 for v(e—1)/(e+42);
from refractive index measurements, on the other hand, the
value 6-7 is found for v(n2—1)/(n?+2). Hence about 10 per cent.
of the static polarization is due to infra-red contributions in this
case.

Relatively large infra-red contributions are obtained in dipolar
solids at low temperatures at which dipoles are frozen in, so that
these substances behave in a similar manner to non-polar
materials (temperature-independent dielectric constant in a
certain range). As an example, the case of ketones will be dis-
cussed in more detail in § 17.

16. Dipolar substances

Gases and dilute solutions

Provided the pressure is not too high, the static dielectric
constant e, of a dipolar gas satisfies the relatione,—1 < 1. There-
fore ¢, should satisfy equation 6.15, which, with the help of 15.2
can also be written as

47 d ,u.2
e = T e0ax1082 B 16.1
o = 5 6:02X10% 5 o (16.1)
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or, inserting numerical values and expressing , in Debye units
(cf. § 6) and 7" in degree Kelvin,

d w2

€—€w = 1-83><104W’i7’;. (16.2)
This equation, according to § 6, has been derived on the assump-
tion that the interaction between dipoles is negligible. This

CH, CL
8k 3
6_
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F1q. 22. Temperature-dependence of the dielectric constant of
various gases according to Sanger [S1].

involves an error of the order of (¢,—1)2, as can be seen by com-
parison with formulae where the interaction has not been
neglected (e.g. 6.36).

Since no assumptions about the interaction have to be made for
the derivation of 16.1 or 16.2, measurement of the temperature-
dependence of the static dielectric constant of gases should make
possible a reliable determination of the dipole moment p, of free
molecules. As an example Fig. 22 shows the results of measure-
ments of the dielectric constants of CH,, CH,Cl, CH,Cl,, CHCl,,
and CCl, gas plotted against the inverse temperature 1/7 (from
Sanger, S1). Since the highest value of e,—1 is only about 10-2,
the above equations should hold very well. As required, the
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experimental points lie on a straight line whose slope allows us
to calculate the dipole moment with the help of 16.1 or 16.2 if
the density is also measured.

The results are also of interest in the field of stereochemistry.
Thus the fact that the dipole moments of methane (CH,) and of
carbon tetrachloride (CCl,) both vanish (because ¢, is indepen-
dent of 7") is evidence in favour of a molecular structure in which
the four hydrogen (or chlorine) atoms form the corners of a
regular tetrahedron with the carbon atom at the centre.

Figure 22 also permits a determination of €,, which is obtained
by extrapolating the straight lines to 1/T" = 0. The value
obtained should be slightly larger than the square of the optical
refractive index n. But, as already mentioned in § 15, the differ-
ence e,—n? is very small for most molecules; in gases it is prob-
ably too small to be measurable using present experimental
techniques.

There should be no appreciable frequency dependence of the
dielectric constant, and hence no loss, up to the absorption
frequencies of the molecules, which often lie in the infra-red
region. For a number of molecules absorption begins at the still
longer wave-lengths of the ultra-short electric wave region.
Such gases will then show resonance absorption in this region
following the laws derived in § 13. Relevant experiments will be
discussed in detail in the book by Jackson and Saxton [J{].
Here we merely wish to discuss briefly the shape of the absorption
spectrum of ammonia which, following Cleeton and Williams
[C2], has been investigated in the centimetre region in great
detail by Bleaney and Penrose [ B3]. Ammonia, NH,, forms a
pyramidal molecule and the absorption is connected with the
swinging of the nitrogen atom through the plane of the three
hydrogen atoms. The spectrum shows considerable structure,
which is resolved at pressures below 5 cm. Hg, asshown in Fig. 23.
The shape of a single absorption line should be given by equation
13.11, provided the concept of a single relaxation time = can be
applied. Assuming 1/ to be proportional to the gas pressure,
the shape of the absorption spectrum at a pressure of 10 cm. of
mercury has been calculated by Bleaney and Penrose with the
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help of 13.11 using data from measurements at 0:-5 mm. Figure
24 shows excellent agreement with the measured absorption.
At a pressure of 60 cm., however, agreement is no longer so
good.

We shall now turn to dilute solutions of dipolar molecules in
non-polar substances. The concentration will be assumed to be
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Fic. 23. The ammonia absorption spectrum at 1, 2, 5, and 10 em. pressure
according to Bleaney and Penrose [B3].

sufficiently small so that interaction between dipoles may be
neglected. It then follows from equation 6.19 that the static
dielectric constant ¢, satisfies an equation similar to those of
gases, but with an effective dipole moment which depends on the
nature of the solvent and on the structure of the dipolar mole-
cule. This effective dipole moment can be calculated in a simple
way only when the molecule can be approximated by a point
dipole at the centre of a sphere with refractive index n. In this
case equation 6.24 should hold. In general, we may put (¢, =
dielectric constant of solvent; N, = number of dipole molecules
per unit volume)

L 4mlENpfet2,
€€ — 3LT ( 3 )(1—‘)’)’ (163)
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where y is unknown except in the case of spherical molecules for
which, according to 6.24,
2(eg—1)(eg—mn?) )
= for spherical molecules. 16.4
YT Gatndatd) T (164
It follows that |y| is usually much smaller than unity, but, in
view of the factor ¢,—n?, may be either positive or negative.

Absorption per unit frequency

L I
0-6 07 0-8 0-9 cm-!

F1c. 24. Calculated and measured absorption spectrum of ammonia at
10 em. pressure according to Bleaney and Penrose [B3].

The main conclusion to be drawn is that by using experimental
values for the temperature-dependence of ¢, it is not possible to
calculate the dipole moment p, of the free molecule but only the
quantity p,(1—y) which differs from p,, though usually only by
a small amount.

Besides the solvent effect, one of the main differences between
gases and dilute solutions is their bebaviour in alternating fields.
The interaction between the dipolar molecules and the mole-
cules of the solvent leads to an energy loss whose maximum at
most temperatures falls within the frequency region of electric
waves. This affords a new way of obtaining the important
quantity e,—e,, without measuring the static dielectric constant
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e,; for if the dielectric loss, and hence the imaginary part e,(w),
of the complex dielectric constant e(w) (cf. § 2) is known as a
function of frequency, ¢,—e,, is obtained from equation 2.18,
which may also be written as

€—€p = g f €s(w)d(log w), (16.5)

and which holds independently of the special shape of the func-
tion e,(w). The integration has to be carried out over the whole
range of frequencies in which ¢,(w) has appreciable values. The
present method can be expected to yield more accurate values for
€,—€, than measurement of the static dielectric constant
because ¢,, is nearly equal to the dielectric constant ¢, of the
solvent and e,—e,, is small compared with ¢, in the case of dilute
solutions. Very high accuracy in the measurement of ¢, would
therefore be required to give reasonably accurate values of
€—€qy-

The investigation of dilute solutions permits a study of the
behaviour of single molecules independent of dipolar interaction;
and the results obtained will be of interest in attempts to under-
stand the properties of less dilute solutions, or of pure dipolar
substances. To obtain full information the dielectric loss should
be measured over a large range of frequencies at different
temperatures. Absorption can usually be described by the
Debye formulae (§ 10) or by a generalization (§ 12). Frequency
measurements will establish whether the Debye equations hold;
if they do, they will lead to a value for the relaxation time, but
otherwise they will permit an estimate of the width of a band of
relaxation times. Temperature measurements will then yield
the temperature-dependence of the relaxation time—or of the
width and position of the band of relaxation times. No complete
system of measurements is available at present.

As an example, we shall now discuss the experiments by Jack-
son and Powles [J3] who have measured at one temperature
(19° C.) the frequency dependence of dielectric loss of dilute
solutions of dipolar molecules in benzene and in paraffin. In
Fig. 25 the experimental values of tan¢ (¢ = loss angle) for
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benzophenone solutions (1 gm./100 c.c. at 19° C.) are plotted
against frequency. For the solution in benzene these values
lie on a curve which represents the Debye formula. According
to 10.17, 10.22, and 10.23, making use of 10.29, this formula can
be written in terms of the angular frequency w,, at which the
maximum loss-angle ¢, occurs:

2w/w
tan¢ = tand,, ——— 2, 16.6
where tan ¢, = 1 S e L 1. (16.7)
2 e
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Fic. 25. Loss angle of dilute solutions of benzophenone in benzene (maximum

near 10! cycles) and paraffin; experimental values according to Jackson and

Powles [J3]. The full line represents a Debye curve (equation 16.6, or 16.8
with 8 = 1); the dotted line represents equation 16.8 with g8 = 5.

From 10.22 the relaxation time is then given by » = 1/w,),.

In contrast to benzene the solution of benzophenone in
paraffin leads to a broader absorption curve than could be satis-
fied by a Debye curve. According to § 12 this can be described
by introducing a whole range of relaxation times. If, in par-
ticular, we introduce a model where the relaxation times are
distributed between the two values =, and =, according to the
distribution function 12.13, then tan¢ can be obtained after
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division by €,(w) ~ ¢, (cf. 10.29) from 12.16 or from 12.18 and
12.19. Thus with the use of 12.17,

ta»n_l(wﬁ/wm) _ta’n_l(w/lgwm)

tané = tandg,, tan-18—tan-1(1/B) ,  (16.8)
where tan ¢, = %es:em tan—lﬁi);a;—l(l/ﬁ)’ (16.9)
and B = J(r1/70) = 1. (16.10)

For B = 1, equations 16.8 and 16.9 are identical with the Debye
equations 16.6 and 16.7. For B > 1, however, the curves are
broader and flatter. Figure 25 shows that the curve with 8 = 5
satisfies the experimental points fairly well; appreciable devia-
tions occur only at frequencies very far from w,, where tan ¢
is relatively small. This is rather to be expected, as follows from
the discussion in § 12 following equation 12.19, because the
distribution function 12.13 can be considered to represent
position and width of the distribution of relaxation times but
not finer details.

It will be of interest to see how the time 1/w,, which in the
Debye case represents the relaxation time is now connected
with the two limits =, and =,, between which the relaxation
times are distributed. According to 12.17,

l/wm:'\/(ToTl) :BTOZTI/B' (1611)
Thus, in the present case 1/w,, = 57y = 7,/5.

Since no experiments at other temperatures are available at
present, it is not yet possible to make use of the temperature-
dependence of the relaxation times to discuss the relaxation
mechanism. On the assumption of a model in which the relaxa-
tion time is determined by the frequency of jumps of a dipole
over potential barriers (cf. § 11), the factor B allows us to calcu-
late the maximum difference v, in height of these potential
barriers on the assumption that they are equally distributed
between the values H, and Hy+v, (cf. 12.7).

Thus from 12.17, using 16.10,

vo/kT = log(m/74) = 21ogB. (16.12)

In our case, therefore, vy/kT = log 25 ~ 3.
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It would be of interest to investigate the variation with tem-
perature of the ratio 7,/7;, as well as that of =, (or 7,) itself.
Measurements at various temperatures were carried out by
Whiffen and Thompson [ W2], though unfortunately, up to the
time of writing, the range of frequencies has been rather re-
stricted. The dielectric loss in solutions of chloroform in hep-
tane seems to follow a Debye curve as indicated in Fig. 26, but it

tan ¢

1
10 10-5 n
log frequency

Fi16. 26. Loss angle of a dilute solution of chloroform in heptane according to
Whiffen and Thompson [W2]; the curve represents the Debye formula 16.6.

must be realized that in the available frequency range there is
only a variation of a factor of three in tan¢. The temperature
was varied in a range between —70° C. and 80° C. It was found
that the logarithm of the relaxation times is proportional to 1/T'.
A similar result was obtained for solutes, as shown in Fig. 27.
To test the validity of the Debye model (§ 11), according to which
the temperature variation of = should be the same as that of the
viscosity 7 of the solvent, log 7 is also plotted in the same figure.

Putting 7 oc eHdKT, n oc eHnlkT, (16.13)

Debye’s model according to 11.32 requires H, = H,. The experi-
mental values are as follows:

H, in k.cal.
a-Bromo-naphthalene . . . 18
Methyl benzoate . . . . 18
Camphor . . . . . L7
Chloroform . . . 15

On the other hand, for heptane H, = 2-0, which thus is larger
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than H, for all the above molecules. This indicates that in the
above cases the Debye model probably does not apply exactly.
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Fig. 27. Temperature-dependence of the relaxation time r of various solutions
in heptane, and of the viscosity 7 of heptane, according to Whiffen and
Thompson [W2].

In all experiments on dilute solutions the value of e,—e,, can
be obtained from dielectric loss measurements by carrying out
the integration indicated in equation 16.5. It should be remem-
bered that for dilute solutions both quantities ¢;(w), ¢, are nearly
cqual to €, the dielectric constant of the solvent, so that (cf.
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2.5) e5(w) can be replaced by ¢ tané. From e,—e,, then, the
dipole moment p, can be obtained according to 16.3 if y can be
neglected. This method was first used by Sillars [S6] in the case
of dilute solutions of dipolar long-chain molecules in solid
paraffin-wax. Although equation 16.4 for y is certainly not
applicable in this case, it nevertheless indicates that y should be
particularly small if the square n? of the refractive index of the
pure solute is nearly equal to the dielectric constant of the sol-
vent. For long-chain molecules this should be very well fulfilled.

'7CHZ CHZ CH-_)

— — Chain axis
CH, " (e I77A— CH, CH,

Fia. 28. Paraffin chain. The indicated distances rofer to X-ray scattering
centres of CH, groups according to Muller [M6]; they are slightly different
from C—C distances.

The investigation of the solid solutions mentioned above
are of great interest for the elucidation of the mechanism of
dielectric loss and will, therefore, be discussed in greater detail.
We shall start with a discussion of the structure of substances
built up of long-chain molecules. Most of these structures can
be derived from that of paraffins, which was investigated by A.
Muller [M6]. A paraffin molecule, in a crystal, consists of a
plane zigzag with a CH, group at each corner and a CH, group at
each end (cf. Fig. 28). The distance between neighbouring
CH,, groups is about 2 A (1 A = 10-8cm.), while the distance of
their projections to the chain axis is about 1-25 A. In a paraffin
crystal the chains are arranged in layers whose thickness is
approximately equal to the chain length. Within such a layer
the molecules form rectangular cells with side length a, b, ¢,
wherea ~ 5 A, b = 7-5 A, and c is slightly larger than the chain
axis and is parallel to it. Figure 29 shows how the chain planes
cross the a-b plane which is perpendicular to the chain axes. It
is of importance to notice that in the subsequent layer the whole
arrangement is shifted by about 1 A in the direction of the b-axis.
This is indicated in Fig. 29 by the dotted lines.

A paraffin molecule carries no dipole moment, as has already
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been mentioned in § 15. Now suppose that some dipolar long-
chain molecules, e.g. esters or ketones, are dissolved in a paraffin
crystal. This means that some of the paraffin molecules are
replaced by dipolar long-chain molecules. These latter can be
usually derived from paraffin molecules. A ketone molecule, for
instance, is obtained from a paraffin molecule by replacing one
CH, group by a CO group. This latter carries a dipole moment
whose direction is perpendicular to the chain axis and probably

| ~

—p—>
.
/

Fi1a. 29. F1a. 30.

Fi1G. 29. Section of paraffin crystal perpendicular to chain axis indicating the
chain planes, according to Muller [M6]. The dotted lines indicate the section
of chain planes in a subsequent layer.

F1e. 30. The two equilibrium positions of a ketone molecule—indicating its
dipole directions—replacing a paraffin molecule of longer chain length. The
size of the rectangular cell is the same as in Fig. 29.

lies in the chain plane. Also assume that the length of the ketone
molecule is shorter than that of a paraffin molecule so that it
can easily replace a paraffin molecule. There should then be two
possible directions for the dipole which differ by 180°, as indi-
cated in Fig. 30. For, if the ketone molecule is shorter than the
paraffin molecule, the former should still fit into the structure if
it is turned through 180° and shifted by the length of one link
along the chain axis (cf. Fig. 31). In a dilute solid solution such
a dipolar molecule has thus two equilibrium positions with
opposite dipole directions. From the similarity of the two
positions it can be assumed that the energy of the molecule is
the same in both.

In general, a molecule will oscillate about either of the two
equilibrium positions. Occasionally, due to a thermal fluctua-
tion, it will acquire sufficient energy to turn into the other
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equilibrium position. Such asubstance thus may well be described
by the high-temperature model of dipolar solids discussed in
§ 11, where a dipole was supposed to have two equilibrium posi-
tions separated by a potential barrier; the minimum energy
required to lift it over the barrier was denoted by H. The energy
loss of such a substance is described by the Debye formulae
(e.g. 16.6 and § 10) and the relaxation time is given by equation
11.3 (cf. also 11.8).

Loss measurements on dilute solutions of the type described
above have been carried out by W. Jackson [J 1, 2], Sillars [S6],

VN

Fi1a. 31. Result of turning a ketone molecule by 180° and shifting it by one
chain length. The arrow indicates the dipolar CO group.

and Pelmore [ P2]. These authors find that the dielectric loss
curvessatisfy the Debyeequations fairly well, though notexactly.
This slight deviation from the Debye equations may be due to
the fact that a dipolar molecule which is shorter than a paraffin
molecule, say by z links, has z possible locations (apart from the
two dipole directions) corresponding to different positions on
the c-axis. Its energy in these positions may not be exactly the
same, and the same may be true of the energy H required to lift
a molecule over the potential barrier. This would lead to a distri-
bution of relaxation times. It should be realized that in calcu-
lating the relaxation time r according to the Debye formula
10.22 some error is introduced (cf. 16.11), though it may be negli-
gible if the variation of logr with temperature, and not the
absolute value of 7, is considered.

The most interesting result of these experiments is the
measurement of the dependence of the relaxation time on the
chain length of the dipolar molecule. If the molecule is con-
sidered to be rigid, and if therefore each link has to be lifted over
the barrier at the same time, the total energy H,, required to lift
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a whole molecule of chain length m over the barrier should
increase in proportion to m. Thus, since according to 11.3

log 7 = constant+H,, /T, (16.14)

the experimental values of log = plotted against m should lie on
a straight line. This is not the case. Actually molecules are not
rigid but have a certain flexibility, and, if this is taken into
account (cf. reference F'5), satisfactory agreement with experi-
ment is obtained. The influence of the flexibility on the value of
H,, can easily be discussed qualitatively. Suppose for a moment
that the chain is rigid. Then the whole chain has to be lifted over
the potential barrier at the same time. Thus if H, is the energy
required to lift a single link over the barrier, the total energy
H,, would be equal to mH, where m is the number of carbon
atoms in the chain. Actually, however, the chain has a certain
flexibility. This allows the chain to be gradually lifted over the
potential barrier so that a total energy less than mH, is required.
On the other hand, a twisting of the molecule requires a certain
energy; but this energy decreases with increasing chain length
for a given angle of twist of the two ends of the chain. Thus
for short chains H,, oc m, but for long chains H,, will tend to a
constant value independent of the chain length. A simple
calculation [ F5] yieldst

H, = H,mytanh~, (16.15)
m

where 7 is a constant which separates short chains (m <,
little torsion) from long chains (m > 7, appreciable torsion).
Comparison with experiments shows that H; ~ 1/30 e-volt,
while 7 = 26, both reasonable values. To obtain = a further
constant is required according to equation 16.14. Thus three
experimentally determined constants are included in the final
formula (7 in seconds)

log 277 = —50‘4—{—@9

T

Here the relaxation time r depends on two parameters, the tem-
perature 7" and the chain-length m. The formula holds, however,

tanh 2. (16.16)
26

T Note that tan hx = (e®*—e™7)/(eT+e7%).
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only if m is smaller than the chain length of the paraffin in which
the dipolar chains are dissolved. Figure 32 shows that the results
obtained from equation 16.16 agree well with the experimental
results. The expression tanh(m/26) is plotted as a function
of m/26 and is compared with the experimental values of
(log 277+ 50+4)T'/13800 for four different chain-lengths (m = 20,
22, 24, 32). Two of the constants in equation 16.16 have
been determined from the experimental values for m = 20 and
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Fia. 32. Comparison of the theoretical dépendence of the relaxation time on
chain length with experimental values, according to [F5].

m = 22, while the third was determined from the temperature-
dependence of m = 20. For m = 24 and 32 no more adjustable
constants are available, which shows that formula 16.16 leads
to a correct dependence of the relaxation time on chain lengths.

From the numerical value —50-4 for the constant in equation
16.14 (comparing with 16.16) it might appear that the order of
magnitude of the constant 4 of equation 11.3 (cf. also 11.8) could
be estimated. For assuming for the frequency of oscillation
w,/2m ~ 10'2 one finds log 4 ~ —25. Not much significance
should be attributed to this value, however, in view of the un-
certainties connected with the experimental determination of
the absolute value of 7; for, as mentioned above, the deviation of
the loss curve from a true Debye curve brings with it some un-
certainties in determining = which cannot be adjusted by apply-

ing equation 10.22 as in the Debye case. This would probably
4980.11 K
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influence the value of 4 to a much greater extent than the less
sensitive H,,.

In all examples discussed above the concentration of dipolar
molecules was assumed to be so small that dipolar interaction
would be neglected. In this range, therefore, the quantity
€,—€s as well as dielectric loss should increase proportionally
with the concentration. For further increases of concentration
the effects of dipolar interaction should start to appear, and an
investigation of the deviations of e¢;—e, from equation 16.3
would be of great theoretical interest. In particular, it would
be of interest to see to what extent and in which range of con-
centration the Onsager formula 6.38 can account for such devia-
tions. This would be of particular interest for a solute which in
the pure state does not satisfy the Onsager formula for the
temperature range contemplated. It will be remembered (§ 8)
that the Onsager formula takes into account the long-range
dipolar forces, but neglects short-range forces. Then with
increasing concentration we should expect three stages: (i) all
interaction can be neglected, leading to equation 16.3 for (,—¢,,);
(ii) long-range dipolar forces have to be considered, but short-
range forces can still be neglected, leading to the Onsager formula
6.38; (iii) short-range forces have to be considered as well. This
leads to the Kirkwood formula 8.14.

Of very great importance would be the investigation of the
dependence on concentration of the shape of the dielectric loss-
frequency curve. The deviations from a Debye curve would
probably increase with increasing concentration owing to the
interaction between dipoles. As yet no theoretical investiga-
tions on this subject have been carried out.

17. Dipolar solids and liquids

Survey

From the developments of §§ 7 and 8 it follows that no formula
exists which represents in a simple manner the dielectric

+ Measurements on the dependence of ¢; on concentration have been
carried out, of course. They do not extend, however, to the region of very low
concentration where ¢;—ey i8 best obtained from loss measurements with the
help of 16.5.
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behaviour of dipolar solids and liquids. Qualitatively, however,
most of these substances behave in a very similar way. At very
low temperatures in the solid state all dipoles are frozen in, and
if the solid has not become permanently polarized the dipoles will
not contribute to the dielectric constant. In thisregion (7' — 0),
therefore, the dielectric constant €,(0) should be nearly inde-
pendent of temperature, and its magnitude should be approxi-
mately equal to that of the dielectric constant ¢,(7") at a higher
temperature but at a frequency which is so high that the dipoles
do not take part in the polarization. This equivalence holds
only, of course, if the volume of the substance is the same at both
temperatures, and it includes the assumption that upon turning
a molecule from one equilibrium position into another its con-
tribution to the high-frequency dielectric constant is not
altered. Then

€(0) =~ €,(T) = n*+Ae, constant volume.  (17.1)

In this formula it has been indicated that e, is composed of
the square of the optical refractive index » (cf. § 15), and of a
term Ae due to elastic displacement of nuclei or of dipoles. The
corresponding polarization was called infra-red polarization in
§ 14. Aspointed outin§ 15, this type of polarization is frequently
negligibly small in non-dipolar substances. In dipolarsubstances
Ae usually has small but noticeable values, mainly due to a dis-
placement of the equilibrium directions of the dipoles by the
field. The frequency of the rotationary oscillations which the
dipoles carry out about their equilibrium positions is normally
in the far infra-red region, but there are indications that in large
molecules it may approach the centimetre region (cf. reference
F9). Such substances would thus show resonance absorption
(§ 13) at ultra-high frequencies. Substances which are expected
to show such absorption have been discussed by Szigeti [S1I]
and a further theoretical investigation on the expected fre-
quency-dependence of the absorption has been carried out by
Huby [H3] leading to a generalization of equation 13.11. In
this connexion it should be mentioned that Girard and Abadie
[G3] found that normal liquid long-chain alcohols absorb in the
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centimetre region besides showing Debye absorption at longer
wave-lengths. It was suggested by Magat [ M 7] that this is an
example of resonance absorption. Ifurther experiments would
be required to establish the validity of this interpretation.

Let us now turn to the regions of higher temperatures and
lower frequencies where dipole orientation plays an important
role. Within creasing temperature an increasing number of

o
T

Melting

0 | I
80 120 160 200°abs.

Fic. 33. Temperature-dependence of the dielectric constant of solid hydrogen
sulphide according to Smyth and Hitchcock [S9] showing an order-disorder
transition near 103° abs. A further transition and melting are of little influence.

dipoles can turn into other equilibrium directions, as pointed
out in § 8. The static dielectric constant e, will thus increase
with temperature, at first according to the relation

€,—€q OC e VORT (17.2)
as follows from 8.17 (V(0) is a constant energy discussed in § 8).
At higher temperatures the rate of rise of ¢, gets increasingly
larger until at the temperature T, the solid carries out an order-
disorder transition beyond which (T > T,) the dielectric con-
stant ¢, falls with increasing temperature. The order-disorder
transition may occur in the solid state; a number of examples are
shown in Figs. 33 and 34. In this case there is usually no appre-
ciable change of ¢, at melting. In other substances melting occurs
before the order-disorder transition is completed. In these
cases the decrease of ¢, starts at the melting-point.



Iv,§17 DIPOLAR SOLIDS AND LIQUIDS 133

As shown in the discussion of entropy in § 3, a positive value
of 9¢,/0T indicates that the degree of order is decreased when
the field is applied, while a negative value of de /0T indicates the
opposite, namely, that the degree of order is increased by the
application of the field. It follows that in a substance in which
the dipole directions are completely disordered ode, /6T must be
negative, whereas if the dipole directions are completely ordered

>
75}k 5
[
=
|
50+ :
25
0 - ] L
-40 0 40 80°C

Fi6. 34. Temperature-dependence of the dielectric constant of solid ethylene
cyenide according to White and Morgan [W4{] showing an order-disorder
transition near —40° C. without a discontinuity at melting.

9¢,/0T must be positive. Thus from purely thermodynamical
reasoning it follows that the transition from positive to negative
values of d¢,/6T must be connected with a change in the order
of dipole directions. - A large number of examples of such transi-
tions has been reviewed in a recent article by Smyth [87].
Dielectric loss due to dipole orientation is expected to occur
at T' > T, as well as for T' < T, (I'igs. 35a and b give examples
for the latter). Except very close to T, the latter will, of course,
be much smaller than the former because of the much smaller
value of e,—e,. Thus (cf. Fig. 36) at any temperature we expect
resonance loss in the far infra-red or ultra-high frequency region,
and loss of the Debye type (but requiring a distribution of
relaxation times) at longer wave-lengths. For the latter, no
satisfactory theoretical treatment of the shape of dielectric
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I16. 35. (a) Dielectric constant ¢,, and (b) dielectric loss o« ¢, of di-isopropyl

ketone according to Schallamach [S§4]; —O— at a frequency of 1-2 Me./s.,

—0—at 44 Mc./s., —e— at 20 Mec.[s. Melting occurs near —73° C. and there is
no previous transition.
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loss-frequency curves exists at present. Compared with dilute
solutions the difficulty consists in accounting for the influence

€; KT
‘i
h
;i/;<i¥
Wo
Fia. 36. Frequehcy-dependence of dielectric loss, ———— above and — — ——

below the transition temperature 7', (schematically). w,/27 represents the
lowest resonance frequency which is usually in the far infra-red or in the ultra-
high electric frequency region.
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F1c. 37. Frequency-dependence of loss angle according to Hartshorn, Megson,
and Rushton [H1] for various materials.

(1) Phenolic resins. (2) Benzyl alcohol resins. (3) Rubber-sulphur compounds

(Scott, McPherson, and Curtis, S85). (4) Cetyl palmitate in paraffin wax

(Sillars, S7). (5) Chlorinated diphenyl (Jackson, J2). (6) Represents a Debye

curve; comparison with Fig. 14 shows that curves (1)-(5) can be represented

by equation 12.19 with suitable values of the parameter 7,/7,.

of interaction. This, one should expect, would lead to a broaden-
ing of the Debye curves similar to that obtained through the
existence of a whole range of relaxation times (cf. examples in
Fig. 37). The width of the latter ought to be larger in amorphous
substances than in crystalline solids. It would be of interest,
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therefore, to investigate substances which at the same tempera-
ture exist in various states of order; e.g. amorphous substances
which have been quenched from different temperatures, or
substances existing at the same temperature as super-cooled
liquids and as crystalline solids.

Analysis of e, T curves

Without any knowledge of the structure of a dielectric, in-
teresting conclusions about the behaviour of its dipoles can be
drawn from the experimental ¢, 7' curves with the help of our
general theory. For from equation 7.39 it follows that we can
obtain the quantity

4’771\70——; . 2€3+n o
3 kmm = (;—n?) —=2— 3. T (17.3)

provided thatthe optical refractive index nis known in the correct
region (cf. § 15). If this is not the case, we can make use of the
fact that the infra-red contribution Ae = ¢, —n?is usually small
(except in ionic crystals) compared with n? and will replace n?
by €, and hence, according to 17.1, by ¢,(0). Thus, if

4 Ny——— *
17.4
B(T) = 37 —mm ( )
we find approximately
2¢,(T)+<,(0)
~ _ s ) 17.

This value 17.5 for B(T') differs from the correct one by

TAEGS(T)+§€S(O)_A€, (17.6)
€,

8

which is of the order T'Ae. Using approximation 17.5, it is thus
possible to obtain B(T) from measurement of the static dielec-
tric constant ¢, at various temperatures. Theoretically B(T),
according to 17.4, is proportional to mm*, and the value given
by 17.5 is thus constant (subject to the small correction 17.6)
independent of temperature, if Onsager’s formula holds, i.e. if the
dipole moment of a molecule can be considered as a constant and
if there are no short-range forces leading to mutual orientation
of dipoles. Since for T -0 all interaction can be neglected
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and the dipole orientation is completely random, a function
B(T) which increases with decreasing temperature points to an
increasing tendency towards parallel orientation of dipoles.
Similarly if B(T) decreases with decreasing temperature the
dipoles tend towards anti-parallel orientation. It should be
pointed out again (cf. §§ 7 and 8) that this orientation is due to
non-dipolar short-range forces. Long-range dipolar forces too
lead to a certain tendency for dipole orientation. But averaging
over all angles between dipole direction and radius vector, this
orientation cancels in an isotropic substance. Since m* is the
average moment of a sphere if one of its units (molecules) has
the moment m, dipolar interaction alone leads to m* = m,
i.e. to a value of mm* which is independent of temperature if
m is a constant.

If the assumption is no longer made that the dipole moment
m of a single unit is constant, then similar conclusions to those
above can be drawn from the temperature-dependence of B(T').
A decrease of B(T') as the temperature is lowered can now mean
either an increasing tendency towards anti-parallel orientation
between the dipoles of neighbouring units (molecules or unit
cells) or a decrease of the dipole moment of a single unit, or
vice versa if B(T') increases.

In Figs. 38(i) and (ii) a few examples of this analysis are
given. We shall now show how in the case of a known structure
the general theory can be applied.

Water | K4, 02, K6]

Water no doubt is one of the most important dielectrics, and
the correct calculation of its dielectric constant must be con-
sidered as a great success of Kirkwood’s [ K4] formula 8.5, 8.14
which applies to dipolar liquids in general. A water molecule can
be considered as a negative O~ —ion with the two positive H+ions
attached in such a way that the lines connecting the latter with
the centre of the oxygen ion form an angle of 105°, as can be con-
cluded from the infra-red absorption bands of H,O vapour. The
dipole moment of the H,0O molecule is a vector directed along
the line dividing the H—O—H bond angle into two equal angles
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of 524°. In the liquid state the position of an individual molecule
is strongly correlated with those of its neighbours, and X-ray

MN (i)
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F1e. 38. Bxamples of ¢;— 1" analysis. (ii) Temperature-dependence of the
function B(T) obtained from e,(1") (cf. i) with the help of equation 17.5.
(a) Dichloro-propane, (CH,),CCl,, solid, using €,(0) = 2-23. (b) Tertiary-
butyl-chloride, (CH,),CCl, liquid, using €,(0) = 2-45. (c) Penta methyl-
chlor-benzene, (CHj;);Cl, solid, using ¢,(0) = 2-8. Measurements: (a),
(b) Turgewich and Smyth [T'2]; (¢} White, Biggs, and Morgan [W3].

With decreasing temperature, (a) indicates increasing tendency to
anti-parallel—(b) to parallel—orientation of dipoles. (c) points to
random orientation, and to validity of Onsager’s formula.

investigations show that the average number of nearest neigh-
bours is close to four. Also, X-ray investigations of liquids show
that in general the nearest neighbours of a molecule are arranged
in a fairly ordered way corresponding to a certain type of crystal
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structure. In contrast to solids, however, this order gradually
disappears for more distant molecules. In water, according to
the model of Bernal and Fowler [B2], the four nearest neigh-
bours of a given molecule form a nearly regular tetrahedron with
that molecule at its centre. The bond between neighbouring
molecules, called the hydrogen bond by
chemists, is supposed to be directed /H H
along the O—H bond of one molecule /L_.H
towards the oxygen ion of the other. \H 7
The arrangement of a molecule and its . /
four neighbours may be represented >
schematically as in the diagram, (Fig. \H
39) in which the hydrogen bonds are / ™
indicated by dotted lines. o\ T_'H
To simplify the following considera- H R
tions we shall assume the bond angle Fia. 39. A H,0 molecule
to be 2 cos~! 1/V3 ~ 109° instead of xgﬁmﬁwfﬁf ?ﬁhbﬁr:é
105°. This should make little differ- represent ordinary chemical
ence to the final result. It enables usto bond, dotted lines indicate
consider the tetrahedron formed by the hydrogen band.
four neighbours of a given molecule as regular, with that mole-
cule at the centre. A simple way to picture the arrangement of
molecules and their dipoles is to start with a cube with four
of its vertices forming a regular tetrahedron, and the centre
occupied by H,0 molecules (Fig. 40). The four bonds emanating
from the centre, namely two —O—H---0¢ bonds and two
50- - - H—O— bonds, follow the lines joining the centre with
the vertices. A dipole can have any one of the six directions
perpendicular to the faces of the cube. Once the direction of
the central dipole is fixed, however, each of the neighbouring
dipoles can have one of only three possible directions: for the
two molecules bound by —O—H. - -O( bond the dipole direc-
tions are away from our cube, and for the other two towards
it, as can be seen from the figure. The other three directions
are excluded ‘because they would require —O—H- - -H—0O—
bonds. It will now be further assumed that correlation with
more distant neighbours need not be considered. Then the threc
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possible dipole directions of the neighbours will be equally
probable. Hence the average value cosy of cosy, where y is
the angle between neighbouring dipoles, is

cosy = %, (17.7)
because in two positions the dipoles are perpendicular to each

.
Foo-

H O
P W/

\
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Fic. 40. An H,0 molecule with its four neighbours; dotted lines represent
hydrogen bond. The arrows at the corners show the possible dipole directions
of the neighbours for a fixed dipole direction of the central molecule.

other (cosy = 0) and in one they are parallel (cosy = 1). The
same result can be obtained if the O—H bond outside the centre
is permitted to have any direction which does not destroy the
O—H- - -0 bond; in other words, if free rotation around the
O—H- - -0 bond is assumed (cf. Fig. 41). For this leads to an
average value @ = u;/v3 in the direction of the O---H—O
bond, if p, is the dipole moment of a molecule, and hence to a
value i/v¥3 = p,/3 in the direction of the fixed dipole.

Upon inserting the value of cosy from 17.7 into 8.14, using
z = 4 for the number of neighbours, we find since

14+2zcosy = 14+4/3 = 7/3,
2 2 2
3¢, (M 2\ dm o 7 (17.8)
2¢,+n%\ 3 3 kT 3
or since the refractive index n = 1-33, i.e. n? < ¢,
3e/(2e,+n?) ~ 3/2,

_ ldmn242\2 u2 N,
€, ~ 3( 3 ) el (17.9)

2 __
€,—n? =
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Now substituting the following numerical values: Avogadro’s

number = 6Xx10%, density = 1, molecular weight = 18,
k= 14%x1071 4y = 1:9x 10718 »?2 = 1-77, we find, using 15.2,
(
¢, = 22000 . e, ~ 63 for T = 300°abs.,

s — T‘
(17.10)

which compares favourably with the experimental value of 78.

TF1a. 41. Direction of the dipole relative to an O—H...O bond.

At 80° C., i.e. at about 353° abs., the experimental value of
€, is 60 and the theoretical one is 53. This shows that the ex-
perimentally determined temperature-dependence is also in fair
agreement with the 1/7 law given by 17.10.

In judging the approximations made above it must be remem-
bered that the rigid structure assumed for a molecule and its
neighbours does give only an approximate picture of the correla-
tion between neighbours. X-ray investigations [ M 4] show that
the average number of neighbours is slightly larger than four;
this may be the reason for the larger experimental value of e,.
Also, with increasing temperature the restriction placed on the
relative orientations of neighbouring dipoles by the hydrogen
bond may occasionally be overcome. This would decrease the
dielectric constant and account for a stronger temperature-
dependence than that given by equation 17.10.

It thus seems that on the whole the Kirkwood formula
accounts in a satisfactory way for the static dielectric constant
of water.

No satisfactory theoretical treatment of the frequency-
dependence of the dielectric properties of water is available at
present. This would require a generalization of the Kirkwood
formula applicable to time-dependent fields. The experimental
results by Collie, Hasted, and Ritson [C3] and by Saxton and
Lane [82] point to very simple properties. It seems that the
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Debye formulae 10.15-10.17 are satisfied, and moreover that
the relaxation time 7 is connected with the viscosity n by Debye’s
relation 11.30. This means that = and »/7" have the same tem-
perature-dependence; hence  must be a linear function of /7.
Figure 42 shows that this holds for water as well as for heavy
water.

3_
D,0
= /H,0
.
2._
‘|..
n[T—>
0 A 1 L
1 2 3

Fic. 42. Dependence of relaxation time r on 7/T' (y = viscosity) for water
and heavy water, according to Collie, Hasted, and Ritson [C3].

Ketones [ F§]

As an example of long-chain substances we shall consider solid
ketones, and we shall begin with a discussion of their structure
in the lowest energy states which is realized at sufficiently low
temperatures. A ketone molecule is obtained from a paraffin
molecule by replacing one (or several) CH, group(s) by one (or
several) CO group(s). In a solid a ketone molecule forms a plane
zigzag, as shown in Fig. 28, § 16. The dipole lies in the chain
plgne and is directed perpendicular to the chain axis. In the
simplest case the crystal structure is similar to that of paraffins
which has been investigated by Muller [4/6]. The molecular
chains are arranged in layers whose thickness is approximately
equal to the chain length. Within such a layer the molecules
form rectangular cells with side length

a~ 510-8%cm., b ~ 7-5x10-8cm.,
and ¢ slightly larger than the chain length. The dipoles of such
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a layer are all in one plane, the dipolar plane, and they are
arranged as shown in Fig. 43. These dipolar planes are thus
polarized in the b-direction, and it is of great importance in
studying the behaviour of the whole crystal to know the relative
directions of the polarization of successive dipolar planes. First
then consider the position of successive layers in paraffins.
According to Muller, distinction must be made between two
cases, depending upon whether the number of C-atoms in a
chainisevenorodd. Fig. 44 shows the positions of two successive

pd

Fic. 43. Dipole directions in the ground state of
a dipolar plane.

layers for the two cases. Now let us attach a dipole to each
molecule at distances ¢, and ¢, from the two ends so that ¢;+c, is
equal to the chain length. For both even and odd chains there
now exist two possibilities. Except for the gap between the
chains the distance between successive dipolar planes is (a)
¢,+c,, or (b) it is alternately 2¢, and 2¢,. Figure 45 shows that
for odd chains both cases lead to opposite directions of the
polarization of successive dipolar planes. For even chains,
however, this is only so in case (b), whereas in case (@) successive
layers have the same direction of polarization. This latter case
will thus lead to a strong polarization of the crystal with all its
dipoles nearly parallel, while in the other cases the polarization
of successive layers cancel.

For paraffins both cases, (a) and (b), are identical. Their
energies, therefore, differ only by the contributions of the
dipoles.

Theinteraction between dipoles can be considered as composed
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of the interaction between the dipoles of each single layer and
of the interaction between dipolar layers. Since the distance
between neighbouring dipolar layers is large compared with the
distance between neighbouring dipoleswithin alayer,it is possible
toapproximate a dipolar plane by a continuously polarized plane.
The interaction of a given dipolar planc with all the others is

kO—— O ———]

odd even Odd even

Fi16. 45. The two possible positions of
F1c. 44. Position of paraffin chains dipoles in the ground state of odd and
in successive layers (schematically). even ketones (schematically).

then equal to its interaction with the surface charge which the
other planes produce at the surface of the specimen. For a
sufficiently large specimen this interaction energy should be
nearly equal to the self-energy of a continuously polarized
specimen of the same size and with the same total moment.
According to the appendix (A 2.iii) this energy is positive, but
its value depends on the shape. It thus follows that the energy
of the spontaneously polarized structure is higher than that of
the other structures, so that we cannot expect the spontaneous
formation of permanently polarized crystals, corresponding to
ferro-magnetic substances in the magnetic case. On the other
hand, if such a structure could be obtained in an even ketone,
it would probably persist for a very long time, because to reach
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an unpolarized state the chains of some dipolar planes would be
required to reverse the direction of their chain axis; this should
hardly be feasible in the solid state. It is possible that the
required structure can be obtained by solidifying an even ketone
in the presence of a strong electric field. The strength of the field
required depends on the shape of the specimen; the most favour-
able case would be that of a needle-shaped specimen with its
axis parallel to the field, because such a shape leads to the
smallest self-energy.

Now let us. consider the dielectric properties of ketones which
are not permanently polarized. At low temperature the only
effect of the field will be to displace slightly the equilibrium
direction of the dipoles, apart from the displacement of electrons.
By comparing, at these temperatures, the static dielectric con-
stant of a ketone with that of a paraffin of equal chain length,
Muller [ M 7] found that the contribution of dipole displacement

is of the order Ae ~ 0-1. (17.11)

This value can be used to estimate the frequency wy/27 of the
rotational oscillations of the dipoles. Suppose that the field E
makes an angle § with the equilibrium direction of a dipole p.
It then exerts a couple uwEsinf on the dipole. The restoring
couple is Jw3 ¢ if I is the moment of inertia and ¢ the average
angular displacement of the dipole direction towards the field
direction; hence wEsin 6
¢ = Tw?2
For weak fields, ¢ < 1, so that u¢sin 6 is the projection of the
induced dipole in the field direction. Averaging over all direc-
tion between p. and E, i.e. replacing sin?§ by %, leads to an in-
duced moment per unit volume

2 p?EN,

My = 3 JTw?
if N, is the number of dipoles per unit volume. Hence using 1.9
the contribution to the dielectric constant is
87 u2l,
Ae = 3 Tt
For the ketone used in Muller’s experiments N, ~ 2 10% per
4980.11 L

(17.12)

(17.13)

(17.14)
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c.c., p =~ 2-5xX 10718 e.s.u. To obtain I we first assume that the
C-atom remains in its initial position and the O-atom can be
displaced. Then I = Ar%, where A = 16X 2 X 10-%4 gramme is
the atomic mass of oxygen, and » ~ 10-8 ¢cm. Hence using
17.11 and 17.14, the resonance wave-length A, is of the order

2m¢  2mc (31 Ae
/\0 = —=

Wo © (SﬂNo
On the other hand, if we were to assume that the chain oscillates
rigidly, then I would be larger by a factor of the order of the
chain length (~ 20), and hence A, would be larger by about v20.
Thus we expect a resonance wave-length between 1/10 and
1/100 cm. This may well lead to a measurable absorption in the
centimetre region.

It was shown in § 16 (cf. Fig. 30) that for dilute solutions of
ketones in a paraffin crystal with longer chain length there are
two equilibrium positions for each molecule with opposite
dipole direction and about equal energy. In a pure ketone crystal,
too, it seems likely that an equilibrium position can be obtained
by turning a chain plane by 180° around the chain axis. This new
position must, however, have a higher energy than the former
one, partly due to the alteration of the interaction between the
dipoles and partly due to non-dipolar interaction. The inter-
action between dipoles is mainly restricted to those of the same
dipolar plane. Hence, in view of the strong anisotropy of ketone
crystals, calculation of this interaction is reduced to a two-
dimensional problem. In this case the interaction with nearest
neighbours is a good approximation to the total interaction.
Since the non-dipolar interaction is also restricted to nearest
neighbours it is not necessary to take into account any long-
range interaction if we consider non-polarized states of the
crystal. It follows from these considerations that with increasing
temperature an increasing number of dipoles will turn in the
opposite direction, leading to an order-disorder transition in the
way discussed in § 8 and in the first section of the present para-
graph. The dielectric constant should, therefore, rise with tem-
perature, asindicated in Fig. 10, until the transition temperature

)% ~ 10-2 cm. (17.15)
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has been reached. Actually Muller’s experiments show that the
crystal melts before the transition temperaturehasbeenreached.
This possibility was envisaged in our previous discussion.

A transition of the type considered here was found, however,
by Ubbelohde [U1]in a paraffin by measurement of the specific
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F16. 46. Temperature-dependence of the specific heat ¢, of a paraffin (m = 15)

according to Ubbelohde [U1I], showing a transition at about —3°C. and
melting. Extrapolations of ‘normal’ specific heat is indicated.

heat ¢, at constant pressure. The turning of molecules into
different equilibrium positions makes a contribution Ac, to c,
which is characteristic of order-disorder transitions. It leads to
a sharp increase of ¢, near the transition temperature followed
by an abrupt fall beyond it. Figure 46 shows that Ac, can be
separated from the normal specific heat with fair accuracy.
The transition is connected with a change AS in entropy which
is given by the well-known thermodynamic relation

AS = fA_;sz (17.16)

integrated over all temperatures. If AS is the entropy increase
per molecule, then in the disordered state a molecule has ¢AS/k
positions for each one in the ordered state. We should thus

expect AS = klog?2. (17.17)

+ This transition has now been found by Dr. Vera Daniel (Nature, 1949) in a
paraffin-ketone solution, Added in proof.
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Actually, however, the experimental value of AS'is 3k ~ klog 20.
This means that above the transition temperature a chain must
have many more than two positions. It is likely that this is due
to twisting of chains [F6]. This may be expected in view of
the flexibility of chains which has been demonstrated previously
in the discussion of the relaxation times of dilute solutions of
ketones (§ 16).

Additional evidence of the twisting of chains near the transi-
tion temperature has been given by Muller [M8]. He measured

12r \)\/\/Y\(u)
I {2
8- "\ AAAAD
€s
4_
] 1 1 |
10 25 40 55 70 °C

F1c. 47. Temperature-dependence of the dielectric constant of the two di-

ketones C,,H,30,(1) and C,;H,,0,(2) according to Muller [M8]. The mole-

cular chains in the untwisted state are shown as zigzags, the arrows indicating
the directions of the dipolar ketone groups.

the dielectric constant of ketones containing two ketone groups,
i.e. two equal dipoles, for two different cases: (i) the number of
links between the ketone groups is odd, and (ii) it is even. In
case (i) the dipoles of the ketone groups are anti-parallel in the
untwisted chain, so that the total dipole moment vanishes where-
as in case (ii) they are parallel. Nevertheless, in this case the
dielectric constant showed a similar increase below the melting-
point to that of case (i) (cf. Fig. 47). Thisis possible only if chain
twisting occurs in this temperature region, for otherwise the
ketone in case (i) would behave as a non-polar molecule and
have a dielectric constant independent of temperature.
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18. Ionic crystals

Ionic crystals are materials in which each lattice point is
occupied by an ion. Examples are the alkali halides such as
rock-salt, NaCl, which forms a simple cubic lattice consisting of
two interlocking face-centred cubic lattices of Na* and of Cl-
ions. Normally the negative ions are much larger than the posi-
tive ones and often the negative charge of the former overlaps
into the region of the neighbouring positive ions so that it is
not always possible to refer to the charge of an ion as an integral
multiple of £-e. In the case of alkali halides the success of Born’s
[ B4] lattice theory suggests, however, that the charges of posi-
tive and negative ions are well separated. For in this theory the
binding energy and other properties of the crystals are calculated
on the assumption that the interaction between ions is composed
of (i) the attraction between the ions of charge e, (ii) the repul-
sion between nearest neighbours, and (iii) some corrective terms
due to van der Waals forces.

The polarization of ionic crystals is entirely due to elastic
displacements, in both the optical and the infra-red regions.
Optical polarization, as indicated in § 14, is due to displacement
of electrons relative to the nuclei and the corresponding reso-
nance frequencies are in the visible or ultraviolet region. Infra-
red polarization is connected with the displacement of nuclei,
and usually is accompanied by a displacement of electrons
relative to the nuclei. In contrast to its relatively minor part in
other substances, infra-red polarization plays an essential role
in the case of ionic crystals. We shall, therefore, have to consider
it more closely than has been done hitherto. The most general
(not necessarily homogeneous) polarization can be considered as
a superposition of plane polarization waves whose wave-lengths
range from the order of the lattice distance to infinity, the latter
corresponding to homogeneous polarization. The frequencies
of polarization waves fall into two main regions corresponding
to the frequencies of ultra-violet and of infra-red electromagnetic
radiation, but the wave-lengths in both regions may range from
values of the order of the lattice distance to infinity. Polariza-
tion waves whose wave-lengths are smaller than the size of the
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specimen can be divided into longitudinal and transverse
waves, assuming the crystal to be electrically isotropic. For a
plane wave moving in the k direction with wave-length 2=/k
and frequency w/2m,

P oc eikr=iol F o eikr—iot D = E4-4nP oc ekr—iel, (18.1)
where D and E are the electric displacement and the electric
field-strength due to the polarization wave. If a magnetic field
is also assumed to be connected with the polarization wave, then
with the use of 18.1 the Maxwell equations lead to the well-
known formula & = nw/c (n = refractive index). Thus if we
exclude polarization waves with this wave number, i.e. if we
exclude the presence of electromagnetic radiation, then the
magnetic field and the magnetic displacement must vanish.
Assuming also the absence of free electric charges and of con-
duction currents, we have p = 0,5 = 0, B = 0, and hence from
the Maxwell equations conclude that (cf. A 1.1 and A 1.3) for
polarization waves

divD =0, curl E=0, (18.2)
or using D = E+447P and 18.1,
div E = —4n div P = —47ikP. (18.3)

It follows that the three vectors E, P, and D are parallel. Now
for longitudinal waves k is parallel to P or D, so that

divD =+tkD =0
requires that D = 0. Ifor transverse waves, however, k is
perpendicular to D or P, so that 18.3 yields div E = 0, which
together with the second condition 18.2 leads to E = 0. We
have thus shown that

D = 0, i.e. E = —47P for longitudinal wavés; (18.4)
E = 0,i.e. D = 4#P for transverse waves. (18.5)

Consider now a spherical specimen whose radius is large com-
pared with the lattice distance, but small compared with
c/vet where v is the frequency of the applied electric field. Prac-
tically we are thus interested in homogeneous—or nearly homo-
geneous—polarization of the sphere. In this case there is no
difference between longitudinal and transverse waves. Moreover,
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it will be shown presently that the frequencies of these long
polarization waves in a sphere are different from those of a
specimen which is large compared with the wave-length. For
this case of homogeneous polarization, if P, and P,, are, at any
instant, the optical and infra-red polarizations respectively
(cf. § 14), the total polarization is given by
P=P-+P,. (18.6)

As shown in § 14, the optical polarization P, is entirely due to
the displacement of electrons relative to the atomic nuclei
(electronic polarization). The infra-red polarization, however, is
due in part to the displacement of whole ions (considered as
rigid; atomic polarization) and in part to a displacement of
electrons which results directly from this change in position of
the ions. This electronic displacement ‘induced’ by the motion
of the ions vanishes only in exceptional cases. There are thus
two displacements of the electrons superimposed upon each
other. However, since the second one is considered produced by
the change in position of the ions it is essentially an infra-red
frequency phenomenon and should be lumped with the ‘atomic’
polarization to form P,,. The two components of the polariza-
tion P, and P, can then be considered as independent of each
other, i.e. they superpose linearly without perturbing each
other.7 If the total polarization were divided into components
in a different manner—for instance ‘atomic’ and ‘electronic’
components—these could not be considered independently since
the atomic displacement is usually accompanied by a certain
amount of electronic displacement.

Assume now that the sphere is brought into a homogeneous
field E, due to sources outside the sphere. Then in equilibrium,
according to A 2.16, the field inside the sphere is

3E, .
= tatic case, 18.7
oy stati (18.7)
if B, is static. Hence, using 1.9,
3 ¢—1 .
= 2% "F  stat , 18.8
Tre 2 static case (18.8)

t Vibrations are called normal vibrations if they superpose linearly.
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If the external field £, is not static, but has a frequenoy which
is large compared with the infra-red resonance frequency but
smaller than the optical resonance frequency, then only optical
polarization will be excited, and the dielectric constantise = n2.
Thus corresponding to 18.8 we find

3 n2—1

o — 4_7rn—2+2 0 (18.9)

This equation holds for all frequencies smaller than those
within the optical resonance band, including frequencies smaller
than the infra-red resonance frequency, although in the latter
case the relation ¢ = %2 is no longer valid.

Now let «, «, and «;, be the total, the optical, and the infra-
red polarizability of the sphere, respectively. Then by definition
(§ 14), if V is the volume of the sphere,

P = %EO, P = f;f—OEO, P, = %EO, static case,

(18.10)

holds for the equilibrium polarizations in a static field. Hence,
using 18.9, 18.8, and 18.6, if a,, is the radius of the sphere, i.e.
V = 4ma3 /3,

o, €—1 mnP—1  3(e,—n?)
a3, ,+2 n+2 (e, 42)(n®+2)
We shall now consider vibrations of homogeneous polariza-
tion (i.e. polarization waves of infinite wave-length) of a sphere.
We shall assume the material to have one infra-red frequency
only for this type of polarization and denote by w,/27 its value
in the absence of an external field. Assuming the vibrations to be
harmonic, P, must thus satisfy the equation B,+w2 P, = 0 in
the absence of an external field. Apart from a constant factor,
the first term in this equation represents the rate of change of
momentum of the ions, and the second term is the restoring
force except for its sign. In the presence of an external field K,
which may depend on time, the right-hand side of the above equa-
tion must be equal to the force exerted by this field (apart from
the constant factor), i.c. it must be proportional to #; where the

(18.11)
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proportionality factor is independent of the frequency. This
factor can, therefore, be obtained by considering the static case
where P,. = 0 and where the last equation of 18.10 must be ful-
filled. Thus -
We shall now return to the study of polarization waves in a
specimen which is large compared with the wave-length. To
calculate the infra-red frequency in this case we shall consider,
within this specimen, a spherical region whose radius a,, is small
compared with the wave-length but large compared with the
lattice distance. The polarization within such a sphere is thus
nearly homogeneous, so that the equations derived above can
be applied. In particular, equation 18.12 will hold, if £, now
represents the field inside the sphere produced by the polariza-
tion of the surroundings. This means that E; must be periodic
with the same period as the polarization wave, and it may be
expected to be proportional to B, (cf. below, equation 18.15).
Now within the sphere such a field E, gives rise to an induced
optical polarization P, (proportional to E,) which can be calcu-
lated from 18.9 as well as the infra-red polarization given by
18.12. Thus, assuming that 18.12 gives the same value for P,
as was previously considered to exist in the small isolated sphere
with no applied field, there will be superimposed upon this an
optical polarization due to the field E, produced by the remainder
of the specimen when the small sphere is merely a region in that
specimen. Hence in a large (compared with the wave-length)
specimen an infra-red polarization wave is connected with a
polarization P+ P, in contrast to the case of a small (compared
with the wave-length) sphere where a polarization wave is con-
nected with a polarization P;,. only (this was the definition of
P,). This means that the polarlzatlon P, +P, due to an infra-
red polarization wave in a large specimen is composed of atomic
and electronic polarization in a different way than in a small
sphere.t We shall show presently that this composition is

1 P;,, which was n normal vibration of the sphere, is no longer a normal
vibration of a wave in a largo specimon.
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different for longitudinal and for transverse waves, and that the
frequencies of these two types of waves are different as well.

The external field E, may be expected to be proportional to
the total polarization P, say

Ey= g5 P =7 (B+R,), (18.13)

where the constant ¢ will be determined later. Inserting 18.13
into 18.9, and solving for P, yields

q(n*—1)
 — n2+2_q(n2_1)1>1.,. (18.14)

Introducing this again into 18.13 leads to
3 q(n2—1) n2-+2
—E, =¢P,|1 = ¢qP, .
el "( +n2—|—2—q(n2—1) g T ni4-2—q(nt—1)
(18.15)
Hence with the use of 18.11 and 18.15, equation 18.12 becomes

1 s €,—n? 3q
—_P . +P_ == P.. 18.1
wg ‘Lf—l_ r €s+2 n2+2_q(n2_1) ar ( 6)
This can be written as
1 =
Jl)ﬂcr+l:,~ir =0, (18.17)
leading to vibrations with a frequency w/27 given by
w? e,—n? 3q
=1 . 18.18
w? e+2 n242—q(n*—1) ( )

To determine g we notice that the macroscopic electric field
E inside the sphere can be considered as composed of the contri-
bution E, of the region outside the sphere, and of the self-field
E, of the sphere. According to A 2.21 the latter is equal to

—47P/3, so that 4
E = Eo—?P, (18.19)

or inserting E from 18.4 and 18.5,

dm P for transverse waves
E,—E+¥p- . (18.20)
—Tﬂ P for longitudinal waves.
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Comparison with 18.13 shows that

1 for transverse waves ,
q= o (18.21)

—2 for longitudinal waves.
Denoting the angular frequencies of longitudinal and transverse
waves by w; and w, respectively, we find by inserting 18.21 into
18.18, wf n?+2 wf ¢ n?4-2

w2 e+2° w2 e +2°

The ratio of longitudinal to transverse frequency is thus given
by (cf. references F11, L4, L5, K2)

i S (Es)%, (18.23)

wt 'n/2

(18.22)

We thus see that the frequency of longitudinal polarization
waves is greater than that of transverse waves with an inter-
mediate value for the frequency of a sphere whose radius is
small compared with the wave-length. We also find, inserting
18.21 into 18.14, that the induced optical polarization has
opposite sign for the two types of waves. Finally it should be
emphasized again that these conclusions hold only for wave-
lengths which are large compared with the lattice distance.
We shall now proceed to calculate the static dielectric constant
in terms of the infra-red frequencies. We shall again consider a
sphere homogeneously polarized by a constant external field
E, leading to a static polarization P = P,+P;,.. The change
F—F, in free energy due to the infra-red type of polarization
» can be considered as composed of a self-energy proportional
to P2 due to the elastic displacement, and the interaction
energy —P, E, V. Thus following a procedure similar to that
in Appendix A 2.iii we obtain
F—F = —P,E,V+1C?VP%, (18.24)
where the constant y in that appendix has now been denoted as
$C?%V. Inequilibrium F must be a minimum if P, is treated as
a vector parameter, because P, and P, are independent of each
other in the case of a sphere. Hence, as in the development in

the appendix, E,

= oo (18.25)
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Inserting this expression into the last equation of 18.10 and
making use of 18.11 we find
e,—n?  dnni4-2 1

=33 o (18.26)

Now for elastic displacement a generalized displacement co-
ordinate Q referring to a single unit cell can always be found so
that the self-energy of the sphere is given by

3N,V Myoq w3 @2, (18.27)

where M, .4 is the reduced mass of the ions and A} is the number of

unit cells per unit volume. This expression must be equal to

1C?VP%., so that ,
) - o = Dodloa s @ (18.28)

P}
Furthermore, the polarization P;, must be proportional to the
displacement Q and to-the number of cells per unit volume. We
thus can introduce an effective ionic charge e* by

P, = e¢*N, Q. (18.29)
Inserting the value of C?% from 18.28 into 18.26 and making use
of 18.29 we thus find{ (cf. Szigeti, S13)

&N _dmnitd BN, (18.30)

T2 " 3 3 Mot

If instead of w, we introduce the transverse angular frequency

w, from 18.22 the above cquation becomes

n2+2)2 e*2N,
3 M, 4 w?

e,—nd = 477( (18.31)

t It should be remembered here that P;, was defined as polarization due to
the infra-red normal vibrations of a small sphere. The effective charge e* is
therefore a quantity which specifically refers to a sphere.

t An alternative way of deriving cquation 18.30 would be to make use of
the general theory of § 7 according to which (7.21, 7.44)

o—1 _ dm M,
&2 3V 3T’

where M2, is the average square of the spontaneous fluctuation of the moment

of a dielectric sphere of volume V in vacuum. M2, is in our case of harmonic
vibrations tho sum of optical and of infra-red terms and is proportional to &1
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In deriving this formula we proceeded on macroscopic lines,
except when introducing M, and e* by means of equations
18.27 and 18.29. Of these two constants the reduced mass can
always be obtained from the mass of ions and from a knowledge
of the structure with the help of Born’s [ B4] lattice theory.
Calculation of the effective charge e*, however, would require a
detailed knowledge of short-range interactions and of the charge
distribution in the lattice. Thereason for this different behaviour
of mass and charge is due to the fact that the mass is concentrated
in the nuclei and contributions by the electrons are negligible,
whereas the charge cannot be considered as concentrated at
points except for long-distance interaction.

As an example consider a crystal of the NaCl type. Let M+
and M- be the masses of the positive and negative ions and let.
rt+and r- be their displacements. In an oscillation of the sphere
corresponding to a polarization wave with infinite wave-length
the polarization is homogeneous at any instant. This means
that the displacements r+ and r— have the same value in each
unit cell, and that r+is opposite in direction to r-. The restoring
force must then be proportional to [r*—r—| and act in opposite
direction on the positive and the negative ions. This suggests

the relation Q = r+—r-, (18.32)
because then if we put the restoring force as equal to 4+ M4 w2 Q

we obtain 18.27 as the self-energy of the sphere. This assump-
tion for the restoring force requires

M+i:+—}—]lfredw30 = O, M_i:_—Mred(J.)gQ = 0.
(18.33)

Dividing by M+ and M- respectively and subtracting the two
equations we obtain, using 18.32,

.e 1 1
Q-I-Med(m-l-—ﬂr)ng =0, (18.34)
which leads to oscillations of the required angular frequency
w, if 1 1 1
= . 18.35
Mo M+ + M- ( )



158 APPLICATIONS Iv,§18

We have thus calculated the reduced mass and now require the
effective charge e*, which has to be obtained by calculating the
polarization of the sphere for a given displacement ¢ according
to 18.29. On the assumption that no non-dipolar interaction
exists, and that the charges of neighbouring ions do not overlap,
it is easy to show that e* is equal to e, where 4-e is the charge of
an ion. The assumption of the absence of non-dipolar forces is
entirely fictitious, however. In fact the restoring force is mainly
due to short-range repulsion between neighbours. A satisfactory
calculation of e* has not yet been carried out.

We have thus shown that at the present stage of development
of the theory all quantities in equation 18.31 except ¢* can be
obtained from experiment. Use of this equation, therefore,
allows a semi-empirical determination of e*. The following table
(Szigeti, 813) shows that for alkali halides e*/e is smaller than
unity. This need not be taken as an indication of pronounced
overlapping of charges, however. It may also indicate that on
setting up a homogeneous polarization by a displacement of
the nuclei of ions, an electronic polarization in the opposite
direction is induced by the short-range forces.

TABLE
A = 2mc/w,)

€s n? A; X 104 em. e*le

LiF 9-3 1-92 32:6 0-83
NaF 6-0 1-74 40-6 0-94
NaCl 5-6 2:25 61-1 0-76
NaBr 6-0 2.62 74-7 0-85
Nal 6-6 2:91 85-5 0-71
KCl 4-7 2:13 70-7 0-80
KBr 4-8 2-33 88-3 0-76
KI 4-9 2-69 10-2 0-69
RbCl 5-0 2-19 84-8 0-86
RbBr 50 2-33 114 0-88
RbI 50 2-63 129-5 0-78
CsCl 7-2 2-60 102 0-88
CsBr 6-5 2-78 134 0-81
TIC1 32 5-10 117 1-11
CuCl 10 3-57 53 1-10
CuBr 8 4-08 57 1-0
MgO 10 2-95 17-3 2x0-88
CaO 12 3:28 274 2x%0-76
SrO 13 3:31 47 2% 0-60
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For the oxides a factor 2 is separated from the e*/e value to
indicate that an ideal oxygen ion is doubly charged. We see that
3e*/e in this case is somewhat smaller but of the same order as
e*/e for alkali halides. Itisalsonoticeable that the high dielectric
constant of TICl does not lead to an excessive value of e*/e, but is
largely due to the high refractive index. In fact, even in the case
of TiO,, whose dielectric constant is larger than 100, a value
}e*/e ~ 0-7 is obtained (referring to the oxygen ions), as has
been shown by Szigeti[S13]. The high refractive index, together
with the high charges of the ions, are mainly responsible for the
high dielectric constant.

In the above discussion we have made use of equation 18.31
and not of 18.30 because w, and not w, can be obtained from
experiment. Equation 18.31 is very similar to an equation
derived by Born [ B4] by an approximate method. This equation

2 2
r ;_2) and it replaces e* by the

does not contain the factor (

actual ionic charge.

It should be remembered that, in view of the relation 18.22
between w, and w,, equations 18.31 and 18.30 are equivalent.
This raises the question of the possibility of permanent polariza-
tion of ionic erystals. For on solving 18.30 for ¢, it is found that
47 n®+2 e*2N,
3 3 Mg w?
On the other hand, equation 18.22, for ¢, — co, requires w, > 0
(if we exclude w, — 00), which with 18.31 would also lead to
€, > 0. Investigations on these lines should be of importance
in view of the properties of crystals like barium titanate. They
have not been developed far enough, however, to be included in
the present book.

€, —>00 as - 1. (18.36)




APPENDIX
A 1. ELECTRO-MAGNETIC THEORY

(i) Conservation of energy

Macroscopic electromagnetic theory is based on the Maxwell equa-
tions,

curl E = —(—t %? (A1), divD = 47p (A 1.3),
curl H =% %-}-4;—”] (A 1.2), divB=0 (Ald),

where H and B are the magnetic field strength and induction respec-
tively, p is the density of the true charge, j the density of the conduction
current; for E and D cf. § 1. To allow a unique calculation of the ficld
vectors E, D, H, B from p and j, the Maxwell equations must be supple-
mented by two further relations of the type

E = E(D) and H = H(B). (A 1.5)

These relations are not included in the fundamental equations for the
electromagnetic field, but are characteristic of the type of material
employed. For substances of interest in this book

H=B (A 1.6)

can be assumed to hold to a good approximation.
To introduce the energy law, multiply equation A 1.2 by E, and sub-
tract from it equation A 1.1 multiplied by H. Use

H curl E—E curl H = div[E x H].
Then with equation A 1.6, after multiplication by c¢/4w,

L(g® y ), oy o

Books on electromagnetic theory discuss in detail the fact that the
last term of this equation represents, per unit volume, the rate of con-
version of electromagnetic energy into other types of energy (heat,
kinetic energy of particles, ete.) in so far as this is connected with con-
duction currents. c[E X H]/47 is the Poynting vector representing the
rate of flow of energy; the second term, therefore, gives per unit volume
the rate of efflux of electromagnetic energy. Then from conservation of
energy it follows that the first term must represent the rate of change
of energy content per unit volume, provided that there is no flow of energy
of another type (e.g. heat currents).

1o o B
47" ot ot8w’
so that H?/8x is readily recognized as the density of the magnetic energy.

Now
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It is, then, often suggested that

1
Ef E(D)dD

should represent the density of the electric energy. The integral is con-
sidered to extend from E = 0 to the actual value. In fact,if E = D/e,,
one finds, for a field-strength E,,

17
o | EdD = ;T"TE(, (A 1.8)
0
if ¢, can be considered as constant. Such a procedure is, however, possible
only if E is a univalent function of D, for otherwise the integral has no
unique meaning. Thus only in this case can the electric energy be defined
without further investigation.

In general, the conclusion to be drawn is that
iE dD (A 1.9)
47

represents the change of energy density (not necessarily electric energy)
connected with a variation of D by dD, if there is no flow of energy of any
other type. It has been shown in § 3 how the total energy dan be calcu-
lated from this expression.

(ii) Conduction current and energy loss in periodic fields
As in § 2, assume a homogeneous field with £ = E,coswt, and

. oFE
D = ¢ Ejcoswit+te, Eysinwt = ¢, K cosm—fu—2 TR
Then using 82E/ét* = —w?E, and assuming the conduction current j to

vanish, the right-hand side of equation A 1.2 becomes
- ==—4—=2"FE. (A 1.10)

If, on the other hand, 7 # 0, and if Ohm’s law holds, i.e. if (¢ is the con-
ductivity)

j=ock,
and if furthermore ¢, = 0, then the right-hand side of equation A 1.2
reads
= —+—0ok. 1.11
c ot + c o ( )

Comparing equations A 1.10 and A 1.11 it follows that in periodic
fields the introduction of two dielectric constants €,(w) and e,(w) (cf. § 2,
equation 2.8) is equivalent to using a single ¢;(w), putting €, = 0, but
introducing instead a frequency dependent conductivity og(w). The two

representations are connected by
olw) = “'ff’(r“’). (A 1.12)
4980.11 M
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Joule’s law for the rate L of loss of energy per unit volume then becomes
L = oE® = ok}, (A 1.13)

where the bar has been used to represent the average over one period.
Inserting o from A 1.12, this expression is found to be equivalent to equa-
tion 3.15.

(iii) Relation between ¢,(w) and e,(w)

To derive equations 2.16 and 2.17 apply the theorems of Fourier
transformations to equations 2.14 and 2.15.
Then from 2.14,

w
a(z) = % f {e,(n) —ep}cos ux du, (A 1.14)
0
[~ o]
and from 2.15, afr) = 7—?_ f €x(u)sin px du. (A 1.15)

0
Introducing A 1.15 into 2.14 yields
w @
6(w)—ey, = 2 f dx(cos wx f €x(p)sin ux d,u,)
0
© R

im f dp,(e2(p,) f €OS w Sin px dx)
0 0

3

l1—cos(p+w)R  1—cos(u—w)R
( ptw p—w )le"
(A 1.16)

Now the integrals containing the cos-terms vanish if BR— oo, The re-
maining terms lead immediately to equation 2.16.
Finally, introducing A 1.14 into 2.15 gives

@D a

€(w) = ;fdx(sinwxf {e1(p)—egicos pux dp.), (A 1.17)
0 0

which yields equation 2.17 by & similar method.

(iv) Relations between dielectric constants and optical constants

From the Maxwell equations A 1.1-A 1.4 the wave equation can be
derived. For this purpose apply the operator curl to A 1.1 and 1/c &/ot
to A 1.2, Then, using A 1.6, H can be eliminated. Assuming periodic
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solutions, we have D = ¢(w)E, and hence in the absence of free charges
(i.e. p = 0) and of conduction currents (j = 0) we find

€ 0*E
"VZE_EéW:o (A 1.18)
if use is made of the relatiq‘m (since from A 1.3 and p = 0, divE = 0)
curl curl E & graddivE—V2E = — V2E.
Now assume a solution }epresenting a wave penetrating the dielectric
in the z-direction, E — Ae-(x=imwlog—int, (A 1.19)

where A is a constant vector perpendicular to the z-direction. Here by
the usual definition of the optical constants n is the refractive index and
K is the absorption coefficient. They can be expressed in terms of the
complex dielectric constant e (cf. 2.8), for after inserting A 1.19 into

A 1.18 we find (n+ik)? = € = €, +1e,.

Hence € = n?>—? (A 1.20)
€, = 2nk. (A 1.21)
Alternatively, using A 1.12,
nKk = gz-Tcr. (A 1.22)
w

A 2. DIPOLE MOMENTS AND OTHER ELECTROSTATIC
PROBLEMS
(i) The basic problem

We consider an infinite homogeneous dielectric with static dielectrict
constant €;, which contains a spherical region of radius a and dielectric
constant €,, We wish to calculate the electric field due to any of the
following sources:

{(a) Outside sourcesleading to a constant field E, (say in the z-direction)

at a large distance from the sphere.

(b) A point dipole . (say in the z-direction) at the centre of the sphere.

(c) An extended dipole M (say in the z-direction) inside the sphere

arising from a homogeneously polarized sphere of radius a,

M = ‘g-’aspc, (A 2.1)

P, being the polarization.
Let @ be the electrostatic potential so that

E= —grad © (A 2.2)
is the field-strength. ® satisfies the Laplace equation
V2P =0 (A 2.3)

1 In contrast to the denotation in the main sections, ¢, and ¢, now represent
static dielectric constants.

4980.11 M2
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subject to the following conditions: if 7 is the distance from the centre of
the spherc and 8 the angle between r and the z-axis, then in

case (a) E=E_ie. ® = —E_rcosfifr>a, (A 24)

case (b) o=* 0020 if r— 0, (A 2.5)
€ 7

case (c) D =¢E+47P, ifr < a, (A 2.6)

D=¢E ifr>a, (A 2.7)

where D is the electric displacement. In all three cases the normal com-
ponent D, of D and the tangential compound E, of E must be continuous
at r = a.

The calculations are simplified by treating all three cases together
because they all lead to the same angular dependence of ®. In general
theory @ is developed into a series of spherical harmonics. Owing to our
three conditions, and to the boundary conditions, only terms proportional
to cosf appear. For this angular dependence the general solution of
A 2.3 is given by

D= — (g—i-Br)cos 8,

containing two arbitrary constants 4, B. They will have different values
outside (4,, B;) and inside (4,, B;) the sphere and have to be determined
from the boundary conditions. Using A 2.4 it follows that B = E, and
hence

D = —(%-{—Ewr)cosﬂ, r > a. (A 2.8)
Also using A 2.5, we have —Afl = pfe,, i.c.
D = (e—'u;'z—Bzr)cosB, r < a. (A 2.9)
2
According to the boundary conditions
100
B=—%
must be continuous at r = a, so that
A ©
2171+E°° = _@_}_Br (A 2.10)

Similarly, using A 2.6 and A 2.7, continuity of D,= Dcosf at r = a
yields

A 2
—26 46, By, = ;*;.m B,+4nP,. (A 2.11)
From these two equations one finds
A, e—e, 3 up 4xF
el G S T /S Luog < .
a® 2+e€ ° 2+ead 2e+e,’ (A 2.12)
y=a g 2aap ink (A 2.13)

2,+€ © € 2 +€ @ 2,+€;
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Inserting A 2.12 and A 2.13 into A 2.8 and A 2.9 gives the solution of the
general problem.

For the discussion we shall now separate the threc cases.

Case (a): No internal sources, p = 0, P, = 0. In this case the field
inside the sphere is equal to B, and will be denoted as cavity field G’.
Thus from A 2.13 with A 2.2

’_ 361
T 2,4,

is the field inside the sphere. If in particular €, = 1, i.e. for an empty
.sphere 3¢
1

2¢,+1 Eo

(A 2.14)

Gle,=1)=G= (A 2.15)

If, on the other hand, the sphere is in vacuum, then ¢; = 1, and the field
inside becomes 3

i (A 2.16)

The field outside the sphere according to A 2.8 is composed of the field
E, at infinity and of a dipolar field with potential (using A 2.12)

El - 62 3 CcOS 9 17,

T 2+€ 0 17 ‘o

(A 2.17)

Case (b): Point dipole, no external field, E,, = 0, P, = 0. In this case,
according to A 2.9 and A 2.2, B, represents the deviation of the field
inside the sphere from a purely dipolar field, i.e. B, is the reaction-field
R’ acting on u. Hence with A 2.13

2 e,—e€; p
r_ - 2 "o —3 A 2,18
R €, 2¢;+€, a® ( )

if in particular €, = 1, then the reaction field will be denoted by R, and

. _ =1 2
R = gu, where ¢ = e Tl a (A 2.19)
Outside the sphere we have a dipolar field with potential
_ A,cosf 3 pucosf
D= — = St # (A 2.20)

Case (¢): Homogeneously polarized sphere, no external field, E, = 0,
p = 0. Consider first the sphere in vacuum, i.e. ¢, = €, = 1. Then B,
represents the self-field inside the sphere which using A 2.13 and A 2.1is
thus given by
._‘%"Pc= M (A 2.21)

E, = —_——
8 aa

Now surround this sphere by & medium with dielectric constant ¢;,. Then
the increase of the field inside the sphere, B,— E,, is the reaction-field R,
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Thus using A 2.13 with e, = 1,

4w P, 4x 2e,—Ddny,  20e—1)M
t3 k= 2¢,+1 3 F= 2¢,+1 a?

(A 2.22)

T 26, +1

in formal agreement with A 2.19.

Thus, if the sphere contains a point dipole p. surrounded by a homo-
geneously polarized sphere with moment M, then its reaction field is given
> 2 a1 M A2.23

= & 2,71 M) = 4 1), (A 2.23)
where g is defined in A 2.19 and M +-u is the total dipole moment of the
sphere.

For regions outside of the sphere also case (b) turns into case (c) if @
isreplaced by M. This holds even if e, ¢ 1. Thus as far as the field in the
region external to the sphere is concerned, cases (b) and (c) lead to the
same results.

(ii) Dipole moments

The potential of a rigid (non-polarizable) dipole with moment w, in an
infinite medium of dielectric constant e, is given by

o — He 00 (A 2.24)
€ T

Now let us consider a model of a molecule consisting of a rigid dipole
at the centre of a sphere with dielectric constant ¢,. (The same model will
of course apply to an extended dipole with the same moment correspond-
ing to case (¢).) If this molecule is embedded in a medium of dielectric
constant ¢;, then according to A 2.20 (and to the remarks at the end of the
discussion of case (c)) the potential outside of the sphere can be repre-
sented by equation A 2.24 if
3¢
T 2¢t€, b
Therefore ., is defined as the external moment of the molecule in the
medium e;.

It should be realized that the moment of the molecule in vacuum, y.,,
is different from @. For w, is defined as the external moment in a medium
for which ¢, = 1. Thus the vacuum moment is given by

3
€42
It follows that the external moment y, in a medium ¢, can be expressed
in terms of w,. Using A 2.25 and A 2.26,

_ €2+ 2 361
He="3 2el+ezp""

In contrast to the external moment g,—which is the moment a point

dipole must have to produce the same field as the molecule—the internal

e (A 2.25)

= . (A 2.26)

(A 2.27)
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moment y; is the actual moment of the molecule if embedded in the
medium ¢,. In vacuum (¢; = 1) the external and internal moment are,
of course, equal. In another medium, the internal moment differs from
the vacuum moment u, by the polarization of the molecule through the
reaction field. Hence equation 6.18 for y; is obtained and this, in turn,
with the help of A 2.19, leads to equation 6.20. Equation 6.20 can also be
derived by using directly the properties of the external moment. As we
have seen above, the field produced outside the sphere does not depend
on whether the moment is produced by a point dipole or by uniform
polarization of the sphere if this leads to the same moment. Therefore
the molecule (as represented by a sphere with dielectric constant €, and
a dipole u at its centre) must have the same moment as a sphere with
dielectric constant €, which is in a medium with the same dielectric con-
stant ¢, and has a moment p, at its centre, because by definition of p,
both produce the same field outside the sphere. Thus

B = e+ f P dr, (A 2.28)

sphere

showing that w; is composed of the moment of the rigid dipole &, and the
moment contained in a sphere around it. Now if g, points in the z-direc-
tion, the integral must be a vector with the same direction for reasons of
symmetry. Hence using

0
47P, = (e,—1)E, = —(el—l)—ég (A 2.29)
d cosf z 3(1)
an 2 3 az\r)’
we find with the help of A 2.24 that
| Gl = ey [ el - 57
szdT 47r € J c2\r dr = = 41r .3 v 3¢, Her
(A 2.30)
. et (1)
sinee [ zal)ar = [ 256G)er = [ &)
and f VZ(;_-) dr = —4m.
Inserting A 2.30 into A 2.28 yields
L _el—l) _ 2¢+1
w = w(1-9) = 5w (A 2.31)

which is identical with 6.20.

The above calculation also shows that the dipole moment contained
in a sphere surrounding a dipole is independent of the size of this sphere.
Hence the moment contained between two spherical surfaces inside the
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dielectric vanishes. This holds even if the two spheres are not con-
centric.t

Thus, if we consider a large sphere inside an infinite dielectric of dielec-
tric constant €;, and this sphere contains a molecule with internal moment
;> then the moment of the large sphere is also ;.

This is, however, no longer the case if the large sphere is not embedded
in its own medium because then the field outside the molecule is different
from the field of a point dipole. By analogy with A 2.26 one should expect
the moment in this case to be

3
W = El—_i_—'zl-'-i’ (A 2.32)

as is actually confirmed by calculation if the radius of the sphere is large
compared with that of the molecule.

We have thus introduced five different dipole moments, p, py, i pes
us. To prevent confusion we give a brief summary.

p has a meaning only in terms of the special model used.
i, = moment of the molecule in vacuum.
p; = moment of the molecule in a medium ¢,

= moment of a sphere (containing the molecule) within an infinite
medium e,.

1t = moment of a rigid point dipole producing in a medium ¢, the same
dipolar field as the molecule.

1, = moment of a dielectric sphere in vacuum containing the molecule.
To summarize the formulae:

= 3 2EI+€2 _ 2€1+€2
Mo = 2 26, 115 = (et o)
€12 2 +e 3

= s st = et (A 2.33)

Tt The moment in any direction, say with radius vector s, is proportional to
the integral _[ 2®/os dr extended over the space between the two spheres with
radii 7, and r;. This integral can be transformed into the difference of two
integrals over the surfaces of the two spheres (which are designated as external
surface e¢ and internal surface 7):

72 f @, cos ¢ dQQ —73 J‘ D; cos ¢ dQ.
L4 i

Here dQ is the element of the solid angle for each sphere, ®, and ®@; are the
values of @ at the two surfaces. i is the angle between s and the normal to
the surfaces pointing away from the centre. Both @, and ®; can be developed
into spherical harmonics of which only the first representing & dipolar poten-
tial of a dipole at the centre of the sphere concerned gives a contribution to
the integral. These terms are proportional tocos y/r? and cos /r? respec-
tively, which means that the two surface integrations just cancel.
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(iii) Self-Energy
The free energy F of a dielectric polarized by a field can be considered
as composed of three terms: (1) the free energy F; of the field and of the
dielectric before the latter is brought into the ficld; (2) the energy of
interaction between the polarized dielectric and the field; and (3) the free
energy required to polarize the dielectric. The latter will be called the
self-energy F;. If the dielectric is polarized homogeneously, then it will
be assumed that F; = yM?, where M is the moment of the dielectric.

The energy of interaction is equal to — (ME,) if E, is the field (supposed
homogeneous) before the dielectric is inserted. Thus

F—F = —(ME,)+yM-®. (A 2.34)
In equilibrium F must be a minimum where M = (M, M, M,) is treated
as a parameter. Hence from
oF oF oF

M=3717,,=m=0’ (A 2.35)
E,
we find 2yM =E, or ¥y 53l (A 2.36)

Hence our assumption F; = yM? implies that M is parallel to E,. The
value of v depends on the shape of the dielectric. Thus a spherc of radius
a brought into a homogeneous field E, has a moment
M = @®E(e;,— 1)/(€;+2).
_leg+21 _ 1 g+2 M2
T 2¢—1a% 8T 2¢6—1 a®’
A slab of volume V with surface perpendicular to E;, on the other hand,
has a moment M = VE(e,—1)/4me,. In this case
_ 2 € €& 2mM?

YEV -1’ Tee—1 VO
In both cases, of course, F, is proportional to the volume if the polariza-
tion M/V is constant.

Hence

(A. 2.37)

F, (A 2.38)

A 3. THE CLAUSIUS-MOSSOTTI FORMULA ‘

In § 5 an equation for the static dielectric constant e, was derived
(5.13) which holds exactly for the model used in that section. This is
usually called the Clausius-Mossotti formula. Later in § 6 it was found
that a similar formula holds approximately for liquids of non-polar
molecules, but that the approximation required negligible short-range
interaction. In § 8 it was pointed out that by neglecting short-range
interaction the general theory of § 7 will lead to either the Clausius—
Mossotti or to the Onsager formula, depending on whether one considers
non-polar or polar spherical molecules. The proof of this will be given at
the end of this section.

Discussions as to whether or not the Clausius—Mossotti formula holds
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exactly have formed part of the literature on dielectrics over a period of
maeany years. Controversial conclusions have been drawn, mainly due to
a misunderstanding of the significance of this formula. In fact one should
distinguish between a macroscopic and a molecular formula. The same
mathematical symbols are normally used in the two cases and, as a
result, they are often confused with each other. The macroscopic formula
is valid exactly, but the molecular formula holds only subject to the
conditions mentioned in § 15.

To derive the macroscopic formula, consider a sphere of a continuous
isotropic dielectric to be brought into a constant electric field f. Accord-
ing to equation A 2.16, the field inside the sphere is then given by

_ 3
T e+2
if €, is the dielectric constant. Let Mg be the dipole moment induced in

the sphere. Then the polarizability a,, of the sphere will be defined by
(the suffix m indicates ‘macroscopic’)

Mg = o, f. (A 3.2)
On the other hand, in view of 1.9,

£ (A 3.1)

My — “*‘4_#1) VE = %a;&n B (A 3.3)

if V is the volume and a,, is the radius of the sphere. Equating A 3.3 and
A 3.2 and introducing f from A 3.1 leads to the Clausius—Mossotti formula

&—1 o
af2= (A 3.4)

An alternative way of deriving this formula is to consider a spherical
region within a homogeneous dielectric. If a constant ficld E is produced
in the dielectric, the part of the field inside the spherical region which is
due to sources outside this region (the inner field) is given by expression
5.9 and is therefore identical with our field f (A 3.1). The remaining
development is then identical with the one given above.

Equation A 3.4 is always correct if the spherical region is sufficiently
large, so that the material contained in it may be considered from a
macroscopic point of view. From a molecular point of view equation
A 3.4 has, however, no significance. To give it such a significance the
polarizability o must bt expressed in terms of other quantities whose
values will not be found experimentally by measurement of the static
diclectric constant but by experiments of a different nature.

Equation A 3.4 finds its main application in the case of dielectrics in
which polarization ¥s connected with elastic displacement of charges
(case (i) of § 4). The most general displacement of the dielectric material
in a sphere may then be developed in terms of its normal vibrations
(cf. van Vleck, V3), and it is then found that the polarizability « is a con-
stant independent of temperature if the density of the substance is kept
constant. This procedure is of importance because it shows in a very
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general way that the assumption of elastic displacement leads to a
temperature-independent dielectric constant.

We shall now discuss the ‘molecular’ Clausius—Mossotti formula. In
this case it is assumed that the macroscopic polarizability «, can be
expressed in terms of a molecular polarizability a—which is a constant
independent of temperature or density—by

a, = Na (A 3.5)

if IV is the number of molecules in the macroscopie sphere of radius a,,.
Furthermore, if '
P === = (A3.6)

is the volume occupied per molecule, insertion of equation A 3.5 and

A 3.6 into A 3.4 yields
e—1 «

&+2  a’’
This molecular formula has the same mathemadtical structure as formula
A 3.4, but its significance is different. In equation A 3.7 the polariza-
bility « is a property of a single molecule independent of macroscopic
parameters. The quantity 3/4ma® is equal to the number N, of molecules
per unit volume which is determined by the molecular weight W and the
density d,

(A 3.7)

3 d
dna® = T W
where A is Avogadro’s number. Hence «/a® is proportional to the density
of the dielectric, which may be varied by altering the external pressure.
No such conclusion can be drawn from equation A 3.4, where the macro-
scopic polarizability «,, may depend on the density in an unspecified way.

The crucial step leading from equation A 3.4 to A 3.7 is contained in
the hypothesis A 3.5. One should expect A 3.5 to be correct only in the
absence of short-range interaction between molecules, because such an
interaction would influence the reaction of a given molecule to the
field. Actually in the two cases in which we have derived the molecular
Clausius—Mossotti formula (5.13 and 6.34) short-range interaction was

absent.
Finally let us derive A 3.7 and the Onsager formula by applying the

general theory of § 7 to a model in which short-range forces are entirely
absent. Also it will be assumed that the unit cell is spherical and that the
average polarization outside the unit cell is equivalent to that of an
isotropic continuum polarized by the moment m of the unit cell. In
this case the average moment m* of a sphere (embedded in a larger speci-
men) containing the unit cell is equal to the moment m of the unit cell,
as was shown in § 7. Hence the spherical region introduced in § 7 may be
taken as equivalent to the unit cell, and equations 7.11 and 7.33 become
identical if 7.34 with N = 1 is taken into account. Thus, using A 3.8,
1= 3¢, E
2¢,+1 kTa®’

A, (A 3.8)

(A 3.9)

€s—
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where m? is the average square of the spontaneous dipole moment of the
spherical cell embedded in its own medium. Assuming first that the unit
cell contains a rigid dipole with moment w, m = w, and m? = u?, the
Onsager formula follows from A 3.9. Consider, on the other hand, a
spherical polarizable molecule without a permanent moment. Such a
molecule can be represented by an elastically bound charge e. Then if r
is the displacement, the internal energy U; must be quadratic in r, i.c.

U= 21, (A 3.10)
where ¢ is a molecular constant. To express this constant in terms of the

polarizability, assume the molecule to be brought into an external field f.
Then its potential cnergy is given by

%rz—efr. (A 3.11)

The equilibrium value T of r is obtained by making this expression a
minimum. Hence

6F = _f (A 3.12)

is the average moment of the molecule. Since this must be equal to of,
we obtain

82
a=—, (A 3.13)

and hence with A 3.10 .
U =2 pe (A 3.14)

2a

To obtain m? we require the energy U = U;+ U, because, as in 7.12,
using m = er,

@ @
m? = e? J. r2e=UlkTy2 dr/ f e~ UlkTy2 gy, (A 3.15)
0 0

Now the external energy U, is given by —imR where R is the reaction
field, as can be shown by the argument which led to 7.18. Therefore
making use of 5.10 and the fact that 47a?/3 = V,

m? e, —1 e? ¢—1 ,
e T ad 2,41 @ 263—}-17" (4 3.16)
Introducing U = U;+ U, into A 3.15 and integrating yields
— 3 kT 2a%2¢,+1)x

2 __ 2
T2 a¥(2+1)—2(g,— 1)a”

Inserting this expression into A 3.9 leads at once to equation A 3.7.

In the above derivation the importance of the external energy U,
including the interaction with the reaction field should be stressed

It is interesting to compare this with the case of a non-polarizable
molecule with dipole moment p. (Onsager case), where the interaction
with the reaction field is irrelevant. In this latter case the only variable

(A 3.17)
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is the direction of ., but its amount, p, is & constant. Thus sincem = p.
in this case, m? = u? = constant, so that U, according to A 3.16 is a
constant as well. Hence in A 3.15 the terms containing U, can be taken
outside the integrals and, therefore, cancel.

A 4. SHAPE OF ABSORPTION LINES (F9)

We shall consider a set of linear harmonic oscillators of mass M,
charge e, proper frequency wy/27w. Their number N per unit volume is
assumed to be so small that interaction between them can be neglected.
Then in an external field £, which may depend on time,

& = —w%a:+lT64E0050 (A 4.1)

if = is the displacement of the charge ¢, § the angle of E with the z-diree-
tion, and a dot represents differentiation with respect to time t. The
oscillators are supposed to make frequent collisions with a medium which
is in thermal equilibrium so that they also tend to reach equilibrium. To
describe their behaviour we introduce a distribution function f(z, ) so
that f(x, ) dvdz represents per unit volume the number of oscillators
with a displacement between x and x+dz, and a velocity between  and
z-+dz. Hence

f 7 flx, &) dzds = N. (A 4.2)

With the help of the distribution function the polarization P in the field
direction is obtained as

P = ecosf [ [ af(z,2) dads. (A 4.3)

Let us first consider the static case for which the field is independent of
time, £ = E,. If U is the energy of an oscillator, i.e.

U = U,—eEzcosd, (A 4.4)
U, = iMw} x®+1Ma?, (A 4.5)

then, in equilibrium, according to the Boltzmann theorem,
flx, &) = Ce~U@DET, (A 4.6)

where C is independent of x and 2 and can be determined with the use
of equation A 4.2. Now using A 4.4 and E = E,,

. Ezxcosf 1{eExcosf\?
~U@HKT — o~UokT|1_% —( ) ] .
eVeaRt — g-vapr() P00 S(CBRERTN, ), a4
and hence we can write, considering A 4.5,
eE cos 8 of,
= fi—— Jo, 4,

where the dots represent terms proportional to higher powers in E,.
In the calculation of the polarization P we shall be interested in linear
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terms in E only. Therefore we need not consider these higher terms; to
be exact we should also prove that the series for P, in terms of E; con-
verges, but we shall omit this. In A 4.8

fo = Ce~UdlkT (A 4.9)
represents the equilibrium distribution in the absence of a field. The fac-
tor C is the same as in A 4.6 if in calculating the integral A 4.2 for the

latter case only terms which are linear in, or independent of, F, are con-

sidered.
Now inserting A 4.8 into A 4.3 we find for the polarization F, in a con-
stant field

=]

@
. . eEcosf o ,
Fy = ecosB(J.f xfy deds — M f{ v dxdx). (A 4.10)
—m —

Here the first term vanishes because f, is an even function in z. Inte-
grating the second integral by parts we find, using A 4.2,
e2E cos?0 N

Mw?
Averaging over all directions of the field leads, of course, to a replacement
of cos20 by 1/3. Hence the contribution Ae to the static dielectric con-
stant is given by

P, — (A 4.11)

P, 2N
AG:—E—m. (A4.12)
Consider now the case of a periodic field £ described by
E = E,e-iot, (A 4.13)

Again we shall introduce the distribution function f satisfying A 4.2, but
now depending on time ¢. We shall calculate f by considering its rate of
change of/ot for a given value of x and 2. This is composed of two terms,
one due to collisions of the oscillators with the surrounding medium and
the other due to their motion. Denoting by (8f/¢¢)con the rate of change of
J due to collisions the simplest assumption we can make is to put

(al) = —%(f—fequ), (A 4.14)

ot coll o

in which the relaxation time 7 is assumed to be independent of z and z.
This implies that equilibrium (feq,) is approached exponentially.

For time-dependent fields we shall assume that A 4.14 still holds if
Jequ 1s the equilibrium distribution corresponding to the field at the time
in question. Thus making use of A 4.8 and A 4.13,

eEye~iwt cos B of,

fequ =f0——M—an— ax. (A 415)

For the distribution function f in this case we shall assume
[z, &,t) = fo(z, £)+g(x, 2)E, cos § e—iwt, (A 4.16)
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where g(x, %) is a function of « and %, independent of ¢. To satisfy A 4.2
this requires

a
” g(x, %) dads = 0. (A 4.17)
Inserting A 4.16 and A 4.15 into A 4.14 now leads to
ﬂ) _ 1( e 3fo) Ciwt
(8t w= g+Mw2 o E,e-iwtcos . (A 4.18)

There is a second contribution to ¢f/ét due to the motion of the oscilla-
tors. This contribution will be denoted by (&f/e?),,, so that

To find an expression for (9f/0t),, we notice that all the oscillators contained,
at a time ¢, in an interval AzAZ, the number of such oscillators being
flz, &,t) AxAz, were at the time {— 6t in an interval of the same sizet AzAz
with coordmates x—a 8t, ©—& 3¢ provided the number has not been
changed by collisions; all f(z, 2, t—8t) AzAz oscillators contained in this

interval at the time ¢— 8¢ have meanwhile passed into another interval.
Thus

Sl—t{f(x—d: St, &— i 8t, t— 8t)— f (, &, t— 8¢)}

is the rate of change of f due to motion. Hence with 8 — 0,

of 8f af .

or making use of A 4.1,

6_]') of . 6f eE,cosf et of
(ac =t B4wf s — 2 (A 4.21)
Now from A 4.9 and A 4.5 it follows that

af" ot oaf"x — 0. (A 4.22)

Thus inserting from A 4.16 into A 4.21 and neglecting terms proportional
to Ky, we obtain

of ) _ ( ag e afO) —iwt
(_2% | ={- :c-l— °3 ~7 7z E, et cos §. (A 4.23)
of . »
Also from A 4.186, %= —twgE, et cos f. (A 4.24)

Inserting now A 4.24, A 4.23, and A 4.18 into A 4.19 we find that ¢
satisfies the differential equ&tion

09 i1 (229, e __e U
(—zw-}-) =T st 081: T Moz Mwirtox' (A 4.25)

1 This can be proved with the help of A 4.1.
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To solve it we put g= 6f0+b3f0 (A 4.26)
where a and b are constant.

This does not represent the most general solution of A 4.25, but it has
been shown by Huby [H3] that it is the only solution satisfying all
requirements.

The polarization P according to A 4.3, A 4.16, and A 4.26 is thus given

by -
P = ecos’0 Eye~it ff x(a%’.}.b%) deds = —ecos? Eye~ivta,

—® (A 4.27)
To find the constant a insert A 4.26 into A 4.25. Making use of
. i 2 )afo 2%
( —% +wiz 53)an = —Yigg (A 4.28)
9 )3fo _ %,
and ( :ca +w°x8x %% = 52" (A 4.29)
. 1) e
we obtain (—zw-{— a=>b— Mair (A 4.30)
(—'iw—|—1)b = —wla——. (A 4.31)
T oM
Hence

e  wit+tl—iwr
T Mw? ot (1 —iwr)?

e l( 1—iwy7 14+iwer )
T Mot 2\1—i(wFwy)r | 1—i(w—wy)T/’
Together with A 4.27 and A 4.12 this leads to equation 13.9.

a =

(A 4.32)
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a-Bromo Naphthalene, 123-4.
Absorption, 70 ff., 90 ff.

— cocfficient, 98 ff., 117 ff., 173 fi.
Alkali halides, 158.

Ammonia, 118-19,

Anisotropy of polarization, 112.
Argon, 111.

Atomic polarization, 106 ff.
Atoms, 104 f.

Benzene, 108.
Benzophenone solution, 120-1.
Benzyl alcohol resin, 135.

Caesium halide, 158.

Caleium oxide, 158.

Camphor, 123, 124.

Carbon dioxide, 106, 107, 108, 115.

— monoxide, 105.

— tetrachloride, 108, 116, 117.

Cavity field, 25, 34, 39.

Cetyl palmitate, solution in paraffin
wax, 138.

Chlorinated diphenyl, 135.

Chlorine, 105. -

Chloroform, 116, 123, 124.

Clausius-Mossotti formula, 26, 28, 35,
110, 169 ff.

Copper halide, 158.

Debye equations, 70 ff., 78 ff., 120 fi.

Decay function, 6 ff.

Diamond, 108, 109, 110.

Dichlor methane, 116.

Dichloral propane, 138.

Dielectric constant, 1 ff. passim.

— — (static), 2, 15 ff.

— — — general statistical theory,
36 ff.

— — — of dilute solutions of polar
molecules in nonpolar substances,
30 ff., 118 ff,

— — — of gases, 28 fi., 115 ff.

— — — of ionic crystals, 149 ff.

— — — of mixtures, 47 ff.

— — — of polar liquids, 49 ff., 130 ff.

— — — of solids, 53 ff., 130 ff.

— — — spherical molecules, 31, 33 fi.

— — — temperature-dependence of,
12-13, 28 ff., 46, 48-61, 115-17,
186 ff.

— — (complex), 6, 62 ff.

— — — frequency dependence of, 8,
62 ff., 73, 115 ft., 118 ft., 130 fT.

— — — temperature-dependence of,
76 ff.

Dielectric constant, relation between
real and imaginary parts, 8, 162.

Di-isopropyl ketone, 134.

Dilute solutions of polar molecules,
in benzene, 120.

non-polar
30 fi., 89, 118 ff.

— — — — in paraffin, 120.

— — — —in solids, 118 ff., 125 f1.

Dipolar gases, 28 ft., 115 ff.

— interaction, 21 ff., 33 ff., 38 fi.,
51 ff.

— liquids, 49 ff., 83 ff., 130 ff.

— solids, 53 ff., 79 ff., 130 ff.

Dipole, 19 passim.

— molecular, 26, 105 passim.

Distribution of relaxation times, 91 ff.

—— — —in

liquids,

Electric dipole moment, 4, 15 ff.
27 fi., 105 ff., 166 fI. passim.

— displacement, 3.

Energy, static electric field, 9 ff., 160.

— loss in periodic electric field, 5 ff.,
13, 161.

Entropy, 9 ff.

Ethelyne cyanide (solid), 133.

Forces between dipoles, 21 ff., 33,
36 fI., 48 ff.

Free energy, 9 ff., 40.

Frequency dependence of dielectric
constant, see Dielectric constant
(complex).

Gases, 28 ff., 110 ff., 115 ff.

Halides, 158.

Harmonic oscillator, 16, 63.
Helium, 111.

Heptane, 123.

Hindered rotation, 52.
Hydrogen chloride, 105.

— peroxide, 105.

— sulphide (solid), 132.
Hydroxyl radical, 107.

Inert gases, 108, 111.
Internal field (Lorentz), 22 ff., 163 ff.
— — (Onsager), 25 f1., 163 ff.

Ketones, 107, 126 ff., 142 ff.
Kirkwood’s formula, 49 ff., 137.
Krypton, 111.

Longchain molecules, 113 ff., 125 ff.
Loss angle, 14, 73 ff., 101, 121 ff,
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Magnesium oxide, 158.

Methane, 116, 117.

Methyl benzoate, 123, 124.

— chloride, 116.

Models, for crystalline solids, 54 fi.

— for Debye equations, 78 ff.

— for complex dielectric constant,
63 fi.

— for static dielectric constant, 16 ff.

Molecules, 105 ff. passim.

Neon, 111.
Nitrogen, 111.
Non-polar molecules, 26, 105 fi.

Onsager’s formula, 33 ff., 49 ff., 53,
130, 171.

Optical constants, 14, 162.

— polarization, 105 ff., 149.

Order-disorder transitions in dipolar
crystals, 53 ff., 132, 146.

Oxygen, 108, 111.

Paraffin, 108, 113 ff., 125 ff.
Penta-methyl chlor-benzene, 138.
Pentane, 114.

Phenolic resin, 135.

Polar molecules, 26 ff., 105 ff. passim.
Polarizability, 28, 105 ff.
Polarization, 2, 64.

Polarization waves, 149 ff.
Power loss of dielectrics in periodic
field, 13, 73 fi., 92 ff., 98 f1.

Rate of unimolecular reactions, 81.
Reaction field, 25, 31, 34, 41, 165.
Refractive index, 28, 163.
Relaxation time, 73 ff., 88, 91 fi.,
121 ff., 128 ff.
Resonance absorption, 98 ff., 173 ff.
Rubber-sulphur compounds, 135.
Rubidium halide, 158.

Self-energy, 144, 145, 155, 169.

Sodium chloride, 109, 157.

Strontium oxide, 158.

Superposition principle, 6.

Tallium chloride, 158.

Temperature-dependence of dielectric
constant, see Dielectric constant.

Tertiary butyl chloride, 138.
Titanium oxide, 109,

Viscosity, 84 fi., 89, 123.
Water, 107, 137 fi.

Xenon, 111.
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