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CHAPTER 1

THE DIFFERENTIAL EQUATION AS AN
EXPRESSION OF A LAW OF NATURE

1. Law of causality

Any differential equation expresses a relation between
derivatives or between derivatives and given functions
of the variables. It thus establishes a relation between
the increments of certain quantities and these quantities
themselves. This property of a differential equation
makes 1t the natural expression of the principle of
causality which is the foundation of exact natural sci-
ence. The ancient Greeks established laws of nature in
which certain relations between numbers (harmony of
spheres) or certain shapes of bodies played a privileged
role. The law was supposed to state something about a
process as a whole, or about the complete shape of a
body. In more recent times (Galileo, Newton, etc.) a
different concept has been adopted. We do not try to
establish a relation between all phases of a process
immediately, but only between one phase and the next.
A law of this type may express, for example, how a
certain state will develop in the immediate future, or it
may describe the influence of the state of a certain
particle on the particles in the immediate neighbour-
hood. Thus we have a procedure for the description of a
law of nature in terms of small (mathematically speak-
ing, infinitesimal) differences of time and space. The
increments with which the law is concerned appear as

1



2 THE DIFFERENTIAL EQUATION

derivatives, i.e., as the limits of the quotient of the
increments of the variables which describe the process
over the increment of space or time in which this
development takes place. A law of nature of this form is
the expression of the relation between one state and the
neighbouring (in time or space) states and therefore
represents a special form of the principle of causality.

2. Ordinary and partial differential equations

A differential equation is called ordinary if there is
only one independent variable, and partial if there are
several independent variables. In an ordinary differen-
tial equation only ordinary derivatives appear, while a
partial differential equation contains partial derivatives.
The difference between these two types of differential
equations appears more significant from the standpoint
of physics, and is related to the deepest physical prob-
lems. There exist two fundamentally different concepts
of physical processes upon which physical theories are
based. According to the first point of view, matter con-
sists of single particles which move in space without
undergoing any changes. The position of each particle
is determinable as a function of time, the only indepen-
dent variable of all processes. This point of view pro-
vides the foundation of Newtonian mechanics, of atom-
ism, in which the motion of elementary particles is con-
sidered as the sole basis of all physical processes. The
ordinary differential equation is the mathematical ex-
pression of laws of this kind, since there is only one
independent variable, namely the time.

On the other hand we have the field theory in physics,
employed particularly in the domains of electromag-
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netism and optics. In this theory, all processes are de- -
termined by field quantities which have a well defined |
value at each point of space. This value is usually a |
function of the time. We thus have four independent
variables (the three space coordinates and the time).
The laws which are based on this concept are expressed
by partial differential equations.

Ordinary and partial differential equations are thus
the mathematical expressions of the two fundamental
points of view, the synthesis of which in quantum
theory is one of the major problems of contemporary
physics. '

Ordinary differential equations may occur, however,
in physical problems which have nothing to do with the
atomistic point of view, e.g., in the theory of electrical
oscillations or the bending of beams. But in these cases
the ordinary differential equation is not a direct expres-
sion of any fundamental law, but rather an approxima-
tion which neglects the influence of all but one of the
variables.

3. Initial and boundary conditions

The differential equation alone does not express a
specific physical problem. It expresses the general law
under consideration, but not the specific case. A specific
case is defined by initial or boundary conditions. Any
integration implies arbitrary constants and, moreover,
the integration of a partial differential equation in-
volves arbitrary functions. In order to formulate the
problem completely in mathematical terms and to solve
the differential equation, there must be given as many
physical boundary conditions as there are arbitrary
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functions or constants in the integrated equation. In
the following, we shall always be careful about the
necessary number of conditions.

4. Scalars and vectors

The mathematical quantities which are used to de-
scribe a physical quantity or a process are of different
kinds. They differ principally in the number of numerical
values which are required for their determination. A
quantity which can be completely determined by only
one number is called a scalar (e.g., temperature, density,
time.) Before we can specify this single number, we
must, of course, choose a system of units.

The position of a point in space, however, can not
be determined by a single number, but must be given
by three of them, since the space has three dimensions.
The manner in which the three numbers are deter-
mined is not important. They may be the coordinates of
the point in a rectangular coordinate system, or the dis-
tance of the point from a fixed origin and two other
numbers which determine the direction from the origin
to the point. In any case, we must use three numbers
in order to determine the position of a point in space.
There exist many quantities which can be characterized
by a line segment in three-dimensional space as, for
instance, the forces in problems of graphical statics. Any
such quantity which is determined by three numbers is
called a vector.

There exist many complicated physical quantities
which require more than three numbers for their de-
termination (e.g., the stress and the strain in an elastic
body, each of which is defined by six numbers). Quan-
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tities of this kind are called tensors. In general tensor
theory, vectors appear as tensors of the first order,
while scalars are tensors of the zero-th order. In modern
physics, other quantities exist which can be represented
as segments in a four-dimensional space. They are
called four-dimensional vectors. Furthermore, there
exist four-dimensional tensors, etc. We shall be con-
cerned here only with scalars and vectors (3-dimen-
sional).

The limited space which is at our disposal in this book
does not allow us to enter into the deeper special prob-
lems of physics, so that even the most elementary cases-
of wave mechanics and the theory of relativity cannot
be presented. As tools we shall use only the fundamental
theorems of differential and integral calculus. This intro-
duction strives for a close connection between the phys-
ical concepts and their mathematical formulation. As a
basis for further studies we suggest the book: Die
Differential- und Integralgleichungen der Mechanik und
Physik by Ph. Frank and R. von Mises."

12nd ed., Photo-reprint, M. S. Rosenberg, New York, 1945.



CHAPTER 1II

THE ORDINARY DIFFERENTIAL
EQUATIONS OF THE MECHANICS OF
PARTICLES

1. The motion of a particle

The elementary unit of mechanics is the particle, the
physical behaviour of which is completely determined
by its mass m which is an invariable scalar quantity,
and by its position in space which depends on the time
and which may be described by the rectangular coordi-
nates z, ¥, 2. The quantities z, ¥, z are the components
of a vector r, which is drawn from the origin of the coor-
dinate system to the point z, y, z. The only independent
variable is the time &.

The motion of a particle is described by two quan-
tities which represent the change in the position of the
particle in a very short interval of time by means of a
limiting process. To begin with, let the point move
along the z-axis, so that ¥y = 0 and z = 0 at every in-
stant. If we designate the z-coordinate at the time ¢
by x and that at time #, by z,, then the ratio (differ-
ence of position)/(difference of time) = (x;, — z)/
(t, — t) is called the “average velocity’’ in the interval
(t, — t), and the limit dz/dt the ‘““instantaneous velocity”’
at the time { or just the “speed’” ». The speed is
usually not a constant, but depends on the time. If
one forms the ratio (difference of speed)/(difference of

6
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time) and then proceeds to the limit for (¢, — ¢) — 0,
one obtains the “acceleration” b = dv/dt = d*z/d¢’.
If the motion does not have a fixed direction, so that
y and z can also be different from 0, we obtain three
components of the velocity by the same limit processes
dx dy dz

v, = Et’ v, = dt’ v, = d_t (2.1)

and three components of acceleration

dv, _d'z , _dv, _dy , _ dv, _ d2
TR T TR T ZL il T R )

b, =

Thus velocity and acceleration are also vectors, and as
such will be designated by the bold-face letters v and
b = dv/dt.

The fundamental law of Newton constitutes a rela-
tion between the ‘‘acceleration” vector and the ‘‘force”
vector P which acts on the particle. The law is expressed
by the differential equation,

dv

m oy =P (2.3)

or in component form by

2 2
mi—a-;-(_ dv>—'P3, mﬂ:Py’

dt ™
(2.3a)
d*z

ma?=P..

In this book it is not possible to discuss all the phy-
sical and philosophical problems which are connected
with the conceptions of ‘“force’”’ and ‘‘mass”. Our
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only guide is the intuition we develop from everyday
experiences in moving heavy masses, stretching elastic
ropes, etc., by muscular exertion. The nature of a force
as a vector having direction as well as magnitude is
apparent in these actions. Any force causes a change of
velocity and consequently a change of position. These
changes are expressed as derivatives. The law, therefore,
has the form of a differential equation.

2. Free fall

In order to pass from the general law of nature to a
specific case, we take a body which is under the influence
of gravity only, such that the sole force acting on it is
its weight G. This weight acts in a certain direction,
“downwards’’. We take the negative y-axis in this direc-
tion. Then the three components of the force are

P, =0, P, = —Q, P, =0, (2.4)
and we have the differential equations of the problem

d’ d’ d’
md—;=0, mayg=—G, md—;=0. (2.5)

Our task is to determine the three quantities z, y, 2z as
functions of ¢{. For this purpose we require additional
information so that the special case under consideration
becomes separated from all the others enabling us to
determine the constants of integration.

We have three differential equations of the second
order, i.e., equations in which second derivatives occur.
The two integrations which transform the second deriv-
atives into the functions yield two arbitrary constants,
so that we have six constants in all. For their determina-
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tion we need six given values. This may be expressed
physically as follows; the natural law is only concerned
with the acceleration, and while a particle may have a
definite acceleration, it can have any velocity or posi-
tion. The fact that velocity and position are not
determined but characterize the special case and there-
fore must be given in order to deal with this case, is
expressed mathematically by the order of the differ-
ential equations. If, however, at any moment the three
velocity components and the three position coordinates
are given, their future development is subject to the
differential equation and we can calculate their values
at any instant, assuming of course that we are able to
integrate the differential equation.

As an example we shall take as the “initial values’
at the time ¢t = 0:

x =0, y = h, z = a,
dt ’ dt ’ dt '

This means physically that at the moment ¢ = 0 a
particle at the point 0, &, a, which has no initial velocity
is allowed to fall under the-sole influence of its weight.
This is “free fall”.

The three differential equations (2.5) are simultane-
ous, i.e., they contain three unknowns and are valid at
the same time. In this case they are very simple, since
each equation contains only one unknown. Since the
same 1s true for the initial conditions,the mathematical
problem is reduced to the integration of three indepen-
dent differential equations of the second order, for each
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of which two initial conditions are given. The general
solution is also elementary in our case. With the arbi-

trary constants C, - -- C,, we obtain
gt’
x=01t+02,y= —_2_+03t+04,
(2.7)
= C5t + Ce ,

where ¢ = G/m is the acceleration of free fall. These
equations are equivalent to the differential equations
(2.5). From them we obtain the solution of the special
case if we form dz/dt --- , then introduce in all ex-
pressions ¢ = 0 and the corresponding values accord-
ing to (2.6), and finally solve the six linear equations
with respect to the six unknowns C, - -- C,. A problem
of this kind can be very difficult to evaluate. In our
case, however, it is elementary. It is sufficient to give
the result:

2
z=0, y=—g2t—+h, c=a (2.8)

These expressions and their derivatives with respect to.¢
give us the position and the velocity of the point at any
time, and all questions concerning the trajectory can
be answered numerically. Often the main task of the
physicist begins here, namely the physical interpreta-
tion of the mathematical results. We can not treat this
third part of the problem here, but must be satisfied
with the two preliminary parts: 1. Translation of the
physical problem into the mathematical form ((2.5) and
(2.6)), 2. Transformation into the mathematical solu-
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tion (2.8). Two other simple examples are given to
illustrate the procedure.

3. Trajectory of a projectile

A particle is thrown from a height % at an angle o,
and with an initial speed v,, How does the motion
develop?

Y4

p 4
Fig. 1. Trajectory of a Projectile

The differential equations remain the same (2.5) as
above. We note, incidentally, that the ratio G/m has
the same value for all bodies. This value g is the ‘“accel-
eration due to gravity’’. The vertical line through the
initial position of the particle may again be chosen as
y-axis, and we let the projection of the direction of
the initial velocity on the horizontal plane determine
the direction of the z-axis.

Then we have for the initial position (¢ = 0).

$=0, y=h) Z=O,

and for the initial speed,

dr _ dy _ . az _
dt—vocOSa, Fr Yo SIN a, 4 0.
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Without regard to the initial econditions, the solution
is again (2.7). By use of the initial conditions we obtain

z = (v, cos a)t,

2 (2.9)
y=—g2—+(vosina)t+h z=0.

The position and the velocity at any moment ¢ follow
immediately from these formulae. The same is true for
the times corresponding to prescribed values of the coor-
dinates, such as the time corresponding to y = 0.
Furthermore, by elimination of ¢ one obtains a relation
between r and y, describing the ‘‘trajectory’” of the
particle; from this relation the range, altitude, and
similar quantities can easily be determined. The equa-
tion z = 0 shows that the whole motion takes place
in a plane.

4. Friction

A particle which moves along a straight line with an
initial speed v, i1s subjected to a force due to friction
which is proportional to the speed of the body and
therefore equal to cv. How does this motion develop?

The direction of the motion may be chosen as the
z-axis. We have only one differential equation. But this
time it is a bit more difficult to solve. It is the following:

2 -
m%:g = mj—; = —. (2.10)

In addition we have the initial conditions that at ¢t = 0,
v = vy and £ = 0. We obtain the solution of the differ-
ential equation for v by the method of ‘‘separation of
variables”’. This means that the equation is trans-
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formed in such a way that on one side there are only
quantities depending on v, while those depending on ¢
are all on the other side. Doing this and integrating we
obtain

d_ _ oy (2.108)
v m
or
Inv = — < ¢ 4 const (2.10b)
m
or
v = Ce ", (2.11)

The constant of integration C, is a factor here because
we have written (2.10b) in exponential form. The
initial condition for v gives C; = v,. For further inte-
gration we write

o=
From this it follows that
mo.e <™

z= - 4o,

c

and from the initial condition for z,

™o+ ¢, or Cp =12

0=-— .
c c

Thus the result is —

T = %’ 1 — &™), (2.12)
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Discussing this we see that the velocity never becomes
zero, while the body approaches the point x = mwv,/c
asymptotically.

5. The motion of a planet

Our differential equation, however, is not always of
such a simple type that it can be integrated by such
easy methods as simple integration
or separation of variables, etc. As an
example we have the classical prob-
lem in the mechanics of particles—
the motion of a planet under the in-
fluence of the gravitational force of
the sun. If M and m are the masses
of the sun and the planet respec-
tively, Newton’s law of gravitation states that (with
the notations of Fig. 2) P = fMm/r’ (f = gravitational
constant). Suppose now that we know the position and
the velocity at a certain instant, and let us choose our
coordinate system so that the z, y-plane contains the
sun (as origin) and the direction of the planetary
motion at the instant { = 0. Then for £ = 0 we have
z = 0 and dz/di = 0, and we obtain the differential
equations

Fig. 2.
Sun and planet

d’z M fMx
it~ T @2 seT T P’
i (2.13)
dy _ . _ My
di2. T sme= _—TT’

while d’z/dt* is proportional to 2z, and by the initial
conditions is always equal to zero. Thus r* = z* 4 ¢,
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and we have two simultaneous differential equations
and four initial conditions. Both contain z and y in
a rather complicated manner, however, and an ele-
mentary solution is not possible. There still exist funda-
mental methods for a solution, which we now intend
to deduce from the general equation and which we shall
later apply to the special case of the planetary motion.

6. Energy

We start with the general vector equation

dv

moy = P (2.14)
and form the scalar product of either of its sides with
the vector v. The scalar product A-B of two vectors
A and B is the quantity AB cos a,
where A and B are the lengths (mag- A
nitudes) of the two vectors Thus the
scalar product is the product of the a B
length of one of the vectors and the
projection of the second vector on to Fig. 8. Scalar
the first (Fig. 3). In rectangular coor-  product of two
dinates this is simply vectors

A-B= A.B,+ AB,+ A.B, . (2.15)

From the elements of differential calculus, it follows that
i _d (m)
mar YT a2 )

Since v = dr/dt, multiplication of
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by dt gives the general equation
2
d(ﬂ”—) = P.dr. (2.16)

This equation expresses the energy theorem of mechan-
ics; “The increment of the ‘kinetic energy’ mv®/2 is
equal to the ‘work’ done by the force P on the corre-
sponding element dr of the trajectory.”’” This equation
can be integrated immediately, if P depends only on the
position (and not on the velocity). In this case the
integral — S P-dr (which contains an arbitrary eon-
stant) is called the ‘‘ potential energy’’ of the mass m at
the point which is given by the upper limit of the inte-
gral. This potential energy is the work which must be
done against the force P in order to move the particle
from the arbitrary initial point to the point r under
consideration. The energy theorem now appears in this
simple form; ‘“The sum of the potential and kinetic
energies is constant during the entire motion”.

With this integral we have derived a relation in
which the time does not occur and in which there are no
second derivatives, but only the first derivative v =
dr/dt appears.

In our example of the planetary motion we can ob-
tain the same result by multiplying the first equation
(2.13) by dz/dt, the second by dy/dt and adding both,
corresponding to (2.15). We obtain

d [g{(%)z + (%yt)z}] = _ft{m (xdx + y dy). (2.17)

The expression (dz/dt)® 4+ (dy/dt)® is the square of the
velocity (which is formed from the two velocity com-
ponents) and may be designated by v°.
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This equation is integrable. We take the values cor-
responding to ¢ = 0 (which may be characterized by a
subscript 0) as the lower limits. Then we obtain

%l @ — ;)
_ T dI v y dy 1)
= _me[ —%—3—2 + ————j'
L: " + vy '/; (=" + y*)"*

L P
(=" + y°)’ (370‘{"1’10)i

_ 1 1
B me(T 7‘.-))
or
-z’ﬁvz—fM—Tm=2mv§—fﬁizn (2.18)

Thus for each position we know the magnitude of the
velocity which the planet must have there, but not the
direction. Also we cannot obtain any information in
this way about how the point moves with time.

It is important to note that (2.18) contains only first
derivatives [v* = (dz/dt)* + (dy/dt)’] and no second
derivatives, and thus is only of the first order.

7. Moment of Momentum

We can find a first integral of the Newton equation
with only first derivatives in a similar way to the above

DIn the first integral y has the constant value y,, and in the
second z has the constant value z,.
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by multiplying the differential equation

dv
moay = P
by r (vector product). The origin of the vector r, al-
though arbitrary, must be fixed.
The vector product A X B is, so far as magnitude is
concerned, the area of the parallelogram shown in
Fig. 4, i.e., AB sin &. The orientation of this plane sur-

face in space can be charac- C B oooe oo
terized by two angles. \ i
Therefore the vector-prod- “

uct can be determined by A

three numbers, similar to a
vector. The simplest way to
choose these numbers is to
take the areas of the projections of the parallelogram on
three perpendicular planes. Since it can be determined
by three numbers, the vector product can be repre-
sented by a vector. (However, it is not a vector). For
this representation one takes a vector C perpendicular
to the parallelogram and with a length numerically
equal to the area of the parallelogram. Furthermore,
the orientation of C shall be such that A, B, C in this
order form a right-handed coordinate system. Then we
have A X B = —B X A. The three rectangular com-
ponents of C are

Fig. 4. The vector product
of two vectors

[AXB]. = AB, — AB.;
[AXB],=AB, — AB,;
[A XB],= AB, — AB,.
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We obtain

mZ—ZXr—PXr (2.19)
The expression on the right is called the “moment’” of
the force P with respect to the origin. Fig. 5 shows us
the relation between this definition of “moment”’ and
the usual one which uses the per-
pendicular from the origin to the % \

direction of the force, for in Fig. 5 = : “
I

h = r sin a. The expression on the
left-hand side can be transformed
by the use of Fig. 5. The moment

dr

(vX)— X+th

Since dr/dt = v, and the vector product of any vector
with itself is equal to 0 (a = 0), it follows -from (2.19)
that

g—t(mv X1)=PXr (2.20)

The quantity mv X r is called the ‘“moment of mo-
mentum”’ of the particle with respect to the origin. The
derivative of the moment of momentum with respect
to the time is equal to the moment of the force (for any
position of the origin). This theorem can be used for
integration whenever the origin can be so chosen that
the moment of the force is a simple expression, for
example zero. This can always be done for all ““central
forces”. These are forces which at any position are
always directed towards a fixed point. If this fixed
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point is used as the origin, then the moment of the force
is equal to zero in the whole space. Our problem of the
motion of a planet may serve as an example'if the sun
is taken as the origin. This can also be seen formally if
in our equation (2.13) we write the vector multiplication
in coordinate form. Multiplying the upper equation by
y, and the lower one by x and subtracting, we find the
right-hand sides will cancel out.
This means physically that the
moment i1s equal to zero. We
obtain then

dz _dy L _
m dt* y dt® T = Fig. 6. The vector
product as an area
or by a simple transformation

d Jdz = dy | _
mdt{dty dtx} 0.

From this we obtain for the moment of momentum

m{% y — % :v} = const. (2.21)
Thus we again obtain an integral of the equations of
motion which is only of first order. The vector product
in this equation is the area of the parallelogram formed
by the velocity vector and the radius vector of the sun.
This is twice the area of the triangle which is covered in
unit time by the moving radius vector. This is the
second law of Kepler. We have thus shown this law to
be a consequence of the general theorem on moments. It
states ‘“The moving radius vector sweeps equal areas
in equal times”’.
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We were able to transform the equations (2.13) into
the simpler equations (2.18) and (2.21) with the aid of
the two general theorems. From these we could obtain
the other laws of Kepler by further integrations. These,
however, are not of a general nature. They hold only for
the special case and therefore we shall not consider them.

8. Systems of particles

We proceed from the problem of the mechanics of a
single particle to examples with several particles. The
particles are acted upon by exterior forces and by in-
terior forces which represent the mutual influences of
the particles of the system on each other. The interior
forces occur only as couples of two forces, equal in mag-
nitude but opposite in direction. Not only are the two
forces J,, and J,, exerted by the point 1 on point 2
and vice versa, equal and opposite but the same is true
for the moments of these forces with respect to an
arbitrary point. The motion of such a system of =
points can be described by n vector equations or by 3n
equations for the components of the forces and the
accelerations. They are '

ml%vtl=P1+le+Jla+ "'+J1n

dv,
mz E

P2+le+123+ +J2n (2-22)

mn dt = Pn + Jnl + Jn2 + v + Jn.n—l5
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The signification of the J;,, and the relations between
them follow from Fig. 7. To the exterior forces corre-

dim Jmi1
Fig. 7. Interior forces

spond opposite forces of the same strength, but since
they act on points exterior to the system we need not
consider them. The limitation of a mechanical system
in space, and consequently the distinction between
interior and exterior forces is arbitrary and suggested
by practical considerations.

In order to integrate the system (2.22) we must try
to eliminate the interior forces. The integrals without
interior forces express the main theorems of mechanics
of systems of particles.

9. Momentum theorem (motion of the center of
gravity)

If we add all equations (2.22), the J,. cancel one

another because they exist in couples of equal but

opposite forces. The following vector equation remains

Z_t(m‘“"' ceemv) =P, 4 -+ + P, . (2.23)

The product m,v, is called the ‘“momentum” of the
particle 1. The vector sum of all exterior forces is called
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the “resultant”’ of the exterior forces, and the vector
sum of all momenta the ‘“total momentum’ of the
system. The “momentum theorem’ of mechanics is
contained in equation (2.23) which, for a system of
- particles, corresponds to Newton’s equation for a single
particle. “The derivative of the total momentum with
respect to the time is equal in magnitude and direction
to the resultant of the exterior forces.” Let us introduce
an ideal point having the same mass and the same
momentum as the total system. This point is called
the center of gravity. The same equation holds for this
point as for a particle on which all the exterior forces
act at the same time.

10. Moment of momentum theorem

The moments of the interior forces also exist in
couples of equal but opposite moments. If then we
form the vector product of the equations (2.22) with
the radius vectors r;, r,, - - - of each point from an arbi-
trary point of origin and add the equations, we will
again obtain a vector equation without interior forces,
namely

d av,
ml[dltlx 1'1:|+ +mn[(;t Xrn]

=P, Xrn+---+P, Xr,.

If we use here the same transformations as in Section 7,
we obtain

d
7 [myv, X 1y + -+ + m,v, X ] (2.24)

=P X+ - --+P, Xr1,.
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“The derivative with respect to the time of the total
moment of momentum of a system of points is equal to
the resulting moment of the exterior forces”. This is the
“moment of momentum theorem.”

The following is a simple but important special case.
A rigid system of an arbitrary number of particles is
allowed to rotate about a fixed axis (a system is rigid
if the distance between all particles of the system is
invariable). Of the three equations (2.24) only the
one containing the components in the plane perpen-
dicular to the axis is important here. Let the distance
of the nth point from the axis be r, and the angular
velocity of the rotation w. The velocity of the nth
point is then 7,w. Since the velocity vector in this
motion is always perpendicular to r, we have | v X r | =
wr’. From (2.24) the simplified equation

Z—t{w Z m,,rf,} =M,

follows, if M is the moment of the exterior forces with
respect to the axis. Thesum ) _ m, 72 is called the moment
of inertia J. The equation now becomes similar to
the Newton equation (2.3a)
dw _
J T M (2.25)
If on the other hand we take the angle of rotation as a
variable, the derivative with respect to the time of
which is equal to the angular velocity, then
d’e
J Fthe M. (2.25a)
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The two theorems (2.23) and (2.24) are general conse-
quences of Newton’s principles, namely of equation
(2.3) for a particle, and the law that to each force there
corresponds an equal and opposite reaction. The theo-
rems therefore are generally valid.

11. Energy theorem

The integral of equation (2.22) which corresponds to
our previous theorem is, however, not quite so gen-
eral. If we multiply each one

of the equations (2.22) by the T AN
corresponding velocity (scalar -
product) and add, we obtain ex- 2

pressions originating from the in- \ 3
terior forces such as J,,-v; + v o

J.1-v,, etc. By projecting the ﬂl/hz

vectors v, and v, on the direc- 1

tion of J,, and J,; we see that Fig. 8. Work done by
this sum is equal to zero if the the interior forces
two projections are equal and

opposite, that is, if during the motion the distance of
the two points is constant. The components of v, and
v, perpendicular to the line m;m, and the direction of
this line may change. Thus we obtain an energy
theorem independent of the interior forces only if the
distances of the points from one another are constant,
i.e. if the system is rigid. In this case we obtain the
relation corresponding to (2.16) above,

d<m+ +%>

2 2 (2.26)

= P,dr, + --- + P,-dr, .
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“The increment of the total kinetic energy of a rigid
mechanical system is equal to the total work of the
exterior forces.” If the forces are functions of the posi-
tions only, this equation is again easily integrated as in
(2.16). If the system is not rigid, the work of the interior
forces must be taken into consideration. Thus this
theorem often becomes impractical for calculation.

Most problems of mechanics are solved with the aid
of one or several of the three theorems mentioned. in
certain cases they simplify (e.g., for rigid bodies, for
pure rotation, ete.). It is not feasible to consider further
examples here, since we would not gain any further
experience concerning the construction and integration
of differential equations, but only learn more about
physical questions. One problem, however, is an excep-
tion, since a more direct approach gives us the solution
and since it is probably the most important one in prac-
tice—the theory of oscillations.

12. Equation of oscillation

Oscillations originate wherever there is an exterior
force tending to bring a displaced system back to its
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restoring force is P, = —cxz. The motion is then charac-
terized by the differential equation
d’z
moE = cxT. (2.27)

For the exact determination of a single case we again
require two given values of initial position and velocity.
If, for example, at the beginning the particle is. dis-
placed from the equilibrium position and then released
without any initial velocity, we have fort = 0, z = z,
and dz/dt = 0. If on the other hand the particle at its
equilibrium position receives a blow at the time ¢{ = 0,
we have at this instant: x = 0, dz/dt = v,. In this
example it is possible to find the essential properties of
the motion from the differential equation alone without
the aid of the initial conditions.

The differential equation (2.27) is homogeneous and
linear, that is, the unknown z or one of its derivatives
is contained in the same power (the first) in every term.
Differential equations of this type can be integrated
directly (for any order and any number of unknowns)
by using exponential functions. A solution of a differ-
ential annatinn of this tvne is given bv
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integration (in our case two). We also can determine all
the a’s. For by introducing (2.28) in (2.27) we obtain

£
ma’Ae* = — cAe™,

and this is an algebraic equation for « since we can
divide both sides by the exponential factor. The degree
of the algebraic equation is determined by the order of
the differential equation, and we thus obtain just the
necessary number of solutions. We have in our case

and it follows that
r = Ae' /™' 4 Bemtle/m (2.29)

Using the well known formula

+iy

e’ = cosy + v8iny (2.30)

we can write (2.29) in the form
c\} : . (c\}
z=(A+ B) cos(;) t + (A —B)sm(;) t
(2.31)
¢\ . {c\
= ( cos(—) ¢t + Dsm(—) ,
m m

Since the solution of the problem must be real, ' and D
are two real constants which can easily be determined
from the initial conditions.

The trigonometric functions represent oscillations.
The “frequency’’ of these oscillations (number of oscil-
lations in 2r units of time) is » = (c/m)}, and the
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“period” is T = 2x(m/c)}. Both results are independent
of the initial conditions and the constants of integra-
tion. On the other hand the amplitude A and phase
constant ¢ (Fig. 10) are determined solely by the initial

X

AN /N

=2 ; t

- 1

Fig. 10. Oscillation

conditions. In the majority of problems of oscillation
theory the most important thing to know is the fre-
quency, so that the initial conditions are not very
important. We now generalize the problem in three
ways.

13. Damped Oscillations

We assume that in addition to the restoring force
which pulls the particle back to the equilibrium position
there is also a force acting due to friction. This resisting
force may be proportional to the speed dz/dt (factor k).
This, however, is not always the exact form of a resisting
force, but in most cases can be used as an approxima-
tion. The differential equation is now the following

2
m%=—cx—k% (2.32)
This is again homogeneous and linear and integrable in
the form z = Ae"’.
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AT

R\//}N\//\t

Fig. 11. Damped oscillation

We now have

and

o= -2 4 (3 ~ ":)i. (2.33)

Using (2.30) again we obtain solutions of the form

—kt/2m COS _c_ _ k2 )* :I
¢ X sin [(m am?)

These are damped oscillations of “frequency”’

c E*\}

(;1, - 4m2>
and the logarithmic decrement £/2m. The latter term
means that the values of x which correspond to the in-
stants ¢t and ¢t 4 T (the values, for example, marked z,
and z, in Fig. 11) have the ratio e **/>", so that the ratio

of their logarithms is equal to k7T'/2m.

The influence of the damping constant on the fre-
quency is small when the restoring force is much larger
than the frictional force. If the friction is great, how-
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ever, the motion may not be periodical. This is true if
k*/4m® > c¢/m. In this case the oscillation is aperiodi-
cally damped.

14. Forced oscillation

Now in addition to the restoring and the friction
force there may exist another force which is not a funec-
tion of z but of the time ¢&. For example, an exterior
force tending to move the particle. We designate it by
P(?). The equation governing the motion is now

2

m%= —cx—k%+P(t) (2.34)
and is no longer homogeneous. It represents a “forced”
and not a “free’’ oscillation. In order to find its general
solution we first look for any special function z,(f)
which satisfies the equation (2.34). This is only a par-
ticular solution and does not contain any constant of
integration. If we add the general solution z,(f) of the
homogeneous equation

d’z
2—_61;2_]0

m — dz,
de?

E:

which we already know, then the sum z;, 4 z, is also a
solution of (2.34), and moreover it is the complete one.
In our case the particular solution z, is often called the
“forced oscillation’’ while z, is called “free oscillation”’.
The latter is superposed on the former in a way which is
determined by the initial conditions. The remaining
task, to find a particular solution, is solved by the so
called method of “variation of parameters”’, and it is
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assumed that the reader is familiar with this method
from elementary courses.

We shall restrict our considerations to the case where
the exterior force is periodical. This case is the most
important one in practice and can be handled easily.
The differential equation is

2
md—a§:+k

dx
di d

y + ¢z = P, cos wit, (2.35)
where P, is the amplitude, and w the frequency of the
exterior force. We want to know the amplitude, the
frequency, and the phase of the forced oscillation x,
which is any particular solution without a constant of
integration. If £ were equal to 0, we could use a function
proportional to cos wt for z,. For then each term would
contain the factor cos w¢, which consequently would
cancel out. Since k is different from zero, x, will be more
complicated. There will be a difference of phase between
the force and the oscillation. The most convenient
practical method to find a particular solution of (2.35)
is the following. By the addition of 7P, sin wt, the right
hand term of the equation becomes equal to Pge’“’.
The solution of the complex equation

d2]
m—d—xt§+k

L2] + cx, = Py’ (2.36)
dt

is now a complex function z,, the real part of which is
the solution of (2.35) we are looking for, while we are
not interested in the imaginary part. This transition
from trigonometric functions to complex exponential
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functions is often used to simplify the integration of
differential equations. If in (2.36) we put z, = Ae*“’, the
factor e'“‘ cancels out in all terms and the remaining
equation is

A(—mo’ + ko + ¢) = P,
or

P, _ Py(—mw’ + ¢ — tko)
—mw’ + ¢ + ko (—me + ¢)° + k¥

A =

We shall write A in the form A = Ce’*, where

- Py d tang = —F —
(C—mw2)2+k2w2 an an ¢ me’: — ¢

C

Then our particular solution of (2.35) is
z, = real part of [Ce’ ' ™®] = C cos (wt + ¢), (2.37)

"From this we immediately obtain the amplitude and
the difference of phase between the forced oscillation
and the exterior force. The most important result of
(2.37) is the possibility of ‘“resonance’’, that is large
amplitudes in the solution if & is small and w = (¢/m)},
the frequency of the free oscillation.’

15. Coupled oscillations

Two or more oscillating systems can be coupled. We
shall demonstrate the setting up and the integration of

'The determination of the free oscillation has been given in
Section 13.
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the corresponding differential m‘@z&m

equations for the most simple ex- —
ample of two particles, the first of  ——
which is pulled into a certain —T—
position of equilibrium by a i\
spring (as above), while the other  m,

particle is connected with the first

one by yet another spring. We <>
assume no friction or exterior 2 <>
forces. We designate the dis- <D
placements of the two particles

from their respective equilibrium Y
positions by z and y. The force Tz
exerted on the first particle by Fig. 12.

the first spring is of the form  Coupled oscillations
c,z, while the second spring acts

on the second particle with a force ¢,(y — z), as the
extension of the second spring is given by the difference
of z and y. The differential equations are now

d2
m, dtxi = —r + Cz(y - x) = —(Cl + Cz)x + Czy,
(2.38)
d2
my —djé = —c(y — ).

These are again two simultaneous and homogeneous
equations. Equations of this kind can be reduced to a
single equation by elimination of one of the unknowns.
We can, for example, solve the second equation in (2.38)
with respect to z and then introduce the expression for
z so obtained into the first equation. Then we will have
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an equation of fourth order which can be integrated by
the method we used previously. There are four con-
stants of integration corresponding to the two initial
positions and the two initial velocities of the two points.
However we are particularly interested in the conse-
quences of the differential equations themselves.

We can also apply the method of exponential func-
tions without the above-mentioned elimination, and
this is usually the simpler way. We try the following
expressions

T = A, y = A, (2.39)

and obtain from (2.38) the expressions

A,(mlaz + Cy + c2) - A2c2 O)

(2.40)
—A102 + Ag(mzaz + 62) = 0.

These are two homogeneous linear algebraic equations
for A, and 4,. Whenever the equations are independent
of one another, the only solution is A, = A, = 0. If the
equations are dependent on one another, they only de-
termine the ratio A,/ A, while the absolute values of the
unknowns are still undetermined. This corresponds to
the free choice of one integration constant. Since for
A, = A, = 0 we would have z = y = 0, the latter case
(the two equations dependent) is the one which actually
occurs. That means that the determinant of the system
of equations is equal to zero, which for our example
means that
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md + ¢ + ¢, —c,
= 0. (2.41)
—c, mea’ + ¢,

This relation can also be obtained by direct caleulation
of A,/A, from both equations. However, to set the de-
termination equal to zero is more convenient when
there are more than two unknowns.

Equation (2.41)

(Mmoo +c¢ + c)(ma® +¢) —c; =0

gives us two values for o’ corresponding to the two
frequencies. To each frequency there corresponds an
amplitude and a phase constant. But for the term —c;
on the left-hand side, the two frequencies furnished
by this equation would equal the frequencies of the
masses m, and m, on the springs ¢, and ¢, + ¢, , re-
spectively. The quantity c, is thus characteristic for
the coupling by spring 2. The two afore-mentioned
frequencies are changed by the coupling. In acoustics
this is called ‘“being out of tune’’. The equation for the
frequencies in the general case is of a higher degree,
and usually not of the second degree for o’ as in our
example.

16. Coupling by friction

The coupling also can be obtained by friction or
similar forces. A simple mechanical example is the fol-
lowing one. Two disks are restored to the equilibrium
position by springs which permit rotational oscilla-
tions (Fig. 13). Between the two disks there may be
a small amount of a viscous liquid, the frictional force
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Fig. 13. Rotational oscillations coupled by friction

of whieh is proportional to the relative angular velocity
of the disks. This example has technical significance
in connection with the performance of anti-rolling tanks
in ships.

The differential equations are, according to (2.32),

$EE o~ d2)

dt’ dt dt
(2.42)
J d2¢P2 = —¢ — _dﬂ —_ (_l"J)
274 22 dt  dt)

where ¢, and ¢, are the angular displacements of the
disks, and J, and J, are the moments of inertia. Since we
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are interested only in the frequency and in the damp-
ing of the oscillations which follow from (2.42), we

do not require any initial conditions.
With the aid of

¢l — Aleat’ qu — A2eat’

we obtain

Al(J1a2 + ka + Cl) + A2(—ka) = O,

A(—ka) + Ax(Jd® + ka + ¢c,) = 0.

Since the principal determinant must be equal to 0, we
have the following equation of the fourth degree for a:

(J10® + ka + ¢,)(J0° + ka + ¢;) — Ka® = 0. (2.43)

In the general case it is difficult to solve this equation
which gives us four (complex) values for «. Since this
solution constitutes a different problem in each case,
we are not able to say anything general about it. Each
of the complex values of a represents an oscillation, the
frequency of which is given by the imaginary part of «,
while the damping is given by the real part [compare
(2.33)]. Since the four solutions form two couples of
conjugate imaginary numbers, we only have two values
for the frequency. Two or four of the solutions can be
real. The corresponding oscillation is not periodic in
this case.

17. Stability

The problem of stability is another one of the many
cases in which the equations of motion of a mechanical
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system are homogeneous and linear differential equa-
tions. If a system is in stationary equilibrium (for
example a rigid body (airplane) in a motion that does
not change with time), this motion satisfies as many
conditions of equilibrium as there are degrees of free-
dom. A rigid body for example, can move in three di-
rections and rotate about three axes. It has six degrees
of freedom. Its stationary motion satisfies the six con-
ditions of equilibrium which express the balance be-
tween forces and moments. We now assume that the
equilibrium is slightly disturbed so that one or several
variables of the motion have values different from
those in the equilibrium. We shall assume in addition
that the disturbance is so small that all forces and
moments can be represented as linear functions of the
disturbances (in the same way as a curve in a small
neighbourhood of a point can be represented by the
tangent). As a consequence of the disturbance, the
motion is now accelerated ; the equilibrium is disturbed.
The linear and angular accelerations also are linear func-
tions of the variables which describe the disturbance,
and so the differential equations are linear in these
variables. The differential equations are also homo-
geneous, for the components of the forces and moments
which are free from disturbance correspond to the
equilibrium condition and therefore cancel one another.
Thus problems of stability are described by equations
of the same type as the equation of oscillation, and
therefore can be solved by using exponential functions
Ae®'. This method is called “method of small oscilla-
tions’’, although in special cases the result may not be
periodical.
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For a we obtain as many values as correspond to the
number and the orders of the differential equations.
If the real parts of all quantities a are negative, all
oscillations are decreasing as the time proceeds, and this
happens the faster the greater the absolute values of
these negative quantities a are. The original motion is
stable in this case. If, on the other hand, one or several
of the quantities « have a positive real part, then the
disturbance increases. The original motion will not be
restored and is instable. Any problem of stability can
be solved on this basis. Nevertheless the numerical
diffculties can be very great particularly for the de-
termination of the quantities a as solutions of an
algebraic equation of a higher degree.



CHAPTER III

THE SIMPLEST PARTIAL
DIFFERENTIAL EXPRESSIONS

1. Gradient

In all field equations, the unknowns (which are
scalars, vectors, or tensors) depend on the time and on
the three space coordinates. It is clear that in equations
describing physical reality, the derivatives can not be
contained in arbitrary combinations. Thus only those
expressions which have a meaning independent of the
coordinate system can appear in equations of this kind.
The coordinate system is arbitrarily chosen and has as
little meaning for the natural phenomena which are
described by the differential equations as has the frame
of the glasses for the house which we see through them.
If, for example, u is a scalar and z a space coordinate,
then du/dzx by itself cannot have a physical meaning.
Since the coordinate system is arbitrary, what at one
instant is the z-axis can at some other instant be the
y-axis. Similarly the vector P appeared in the differential
equations which we have already encountered, but
never the component P, alone. The component only
appeared in component equations together with the
corresponding equations for the other components.

Our task is to find differential expressions which have
a physical meaning and, being independent of the coor-
dinate system, are defined in any system. The first
expression of this kind corresponds to the derivative

41
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itself and describes the variations of a scalar field at a
certain point (z, y, z) of space. This variation is evi-
dently not a scalar as in the case of differentiation with
respect to the time. It is different in different directions.
There exist, however, relations between the derivatives
in different directions. We assume the concepts of par-
tial and total derivatives to be known. Let us start from
the point (z, ¥, 2) and move along the vector dr, which

Ky P
K «k
ar
¥ ay
YT @r
dr
xry "l:” ax
—Ar
Fig. 15. Vector- Fig. 14. Element of
Ky components of path and components

may have the length dr and the components dz, dy, dz
(Fig. 14). Then if & is any scalar function, we have

ad 0P 0P 0P
or dr = ézdx + @dy + 6_de

or (3.1)

0% _ 09 0% 2%

o — 3z % (x,r) + 3y cos (y, r) + 35 COS (z, 7).
‘Thus the derivative in any direction can be expressed by
the three quantities d®/dx, 0®/dy, d®/9z, and this
expression has the same form as the expression of a com-
ponent K, of a vector K by means of three perpendicular
components K., K,, K,. The direction of the vector K
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is the direction for which the component in this direc-
tion has a maximum absolute attainable value. This
length is equal to the Pythagoric sum of the three com-
ponents. In the same way we can easily calculate (we
assume this to be known) that in a certain direction
r,, 0%/dr has a maximum value and is equal to zero in
all directions perpendicular to this. In the direction
opposite to r,, we have a minimum of the same absolute
value as the maximum. Thus a vector in the three-
dimensional space corresponds to the derivative in the
case of one variable. This vector corresponds in length
and in direction to the maximum rate of increase of the
scalar ® from the point under consideration. Its com-
ponent, in any direction is equal to the partial derivative
in this direction. This vector is called the ‘‘gradient’
(grad).

The vector grad ® has the components d®/dz,
d®/dy, 0®/9z and in general the component d®/dr in
the direction r.

o 1= (2] + (2 + () 02

The variation of a scalar with respect to the space coor-
dinates can be contained in any physical equation in the
form of the vector grad (or V, pronounced ‘‘del”’) only.
As an example, we may choose a heat flow q which is
proportional to grad T everywhere (T = temperature).
If T is a function of position, then grad T is the vector
which gives the increment of T in every direction and
at every point. The heat flows in the direction oppo-
site to the gradient (from higher to lower temperature).
The factor of proportionality, A, is called the conduc-
tivity of the material. The equation is
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q= —Agrad T. 3.3)

For any direction there is a certain heat flow; the great-
est flow is in the direction opposite to grad T. No heat
flows in the directions perpendicular to grad T, for
which T is constant.

2. Cylindrical and spherical coordinates

The vector grad ® has a significance independent of
the coordinate system. It represents the properties of
variation of the scalar ® at a certain point. All we have
to do to find the component of this vector in any direc-
tion is to take two points in this direction and to divide
the corresponding difference of ® by the distance be-
tween the points. We may use any coordinate system

Fig. 16. Cylindrical and spherical coordinates

for this purpose. Consider, for example, cylindrical
coordinates. In this system, the elements of length are

dr, r de, dz.
The corresponding components of the gradient are

9  19® 9

o rep o 3.4
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In spherical coordinates, the length elements are

dp, pd¥, psinddy,

and the components of the gradient

w0 1o 1o
dp’ p 3%’ psSind dp’

3.5)

3. Vector fields

Besides scalar fields, there exist vector fields defined
by a vector (e.g. q) which is variable in the space. Such
a vector is not always the gradient of a scalar field,
as in the case of the heat flow q. The condition under
which a vector field is a gradient field will be established
below [(3.23)].

As an example of a vector field we shall use the flow
of a fluid. At every point where there is any fluid, the
velocity has a certain magnitude and direction (which
can vary with time). Other examples are electric and
magnetic fields. It is possible to denote these vectors by
some points in a diagram, but a better representation
can be obtained by drawing only the directions of the
vectors and not the lengths. In this case we obtain con-
tinuous lines which at every point have the direction of
the vector to be represented. Best known of all are the
lines in a magnetic field, which can be seen as the pat-
tern formed by iron filing placed in the magnetic field.
They are called ““lines of force” in this case. The corre-
sponding lines in a fluid are called ‘‘streamlines”. Any
section of the field whose surface is composed of lines of
force or streamlines is called a tube of force or a stream
tube. The component of the field vector in the direction
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perpendicular to the surface of such a tube is always
equal to zero.

4. Divergence

Assume now a vector field in which there is a closed
surface dividing the space into two parts—the interior
and the exterior of the surface. For each element of
this surface, the product ‘“element of surface df times
the normal component of the field vector (exterior
normal)”’ has a value which is independent of the
coordinate system. It can be represented by the scalar
product of the field vector with another vector whose
length is equal to the area of the element and the
direction of which is that of the direction of the ex-
terior normal to the element. The integral of this

Vn’/’_\~

Fig. 17. Source, element of an arbitrary surface

product over the whole closed surface has a physical
significance. If the field vector is the velocity of a fluid
flow, then the product is the volume of liquid which
flows through the element from the interior to the ex-
terior in unit time. Thus the integral represents the
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volume of fluid leaving the interior. At points on the
surface where v is directed into the interior the inte-
grand becomes negative, of course. The integral thus
represents the total strength of all sources in the in-
terior. If the latter is not equal to zero, this can be
caused either by streamlines originating in the in-
terior or by streamlines along which the flow rate in-
creases or decreases. In the

hydrodynamical example, t
the first case corresponds to .
a flow with a source in the
interior (Fig. 17), while the
second case corresponds to
the stationary flow of a gas
in which the density decreases in the direction of the
flow (Fig. 18). For, in the latter case, the same mass of
gas enters the region bounded by the two walls and two
cross sections (Fig. 18) in unit time as it leaves it. Thus
the product “density times velocity times area of en-
trance or exit”” must have the same value for both cross
sections. Since the density is different on the two sec-
tions, the products ‘“velocity times area of cross section”
are different, so that the integral, which in this case is
equal to the difference of the two products, is different
from zero.

In order to find the mathematical expression for the
‘“magnitude of a source’’ at a point in space, we have to
take a closed surface which contains an infinitely small
neighbourhood of this point. In this way the integral
becomes infinitesimal of third order (the surface itself
is of second order, but the difference between the field
vector at the point of entrance and point of exit also
becomes infinitesimal). Thus if we divide by the volume

]
il

Fig. 18. Flow with
variable density
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V of the enclosed region, we shall have a finite limit.
We call this limit the “divergence’’ (div) of the field,

div A = lim - f A, df. (3.6)
yoo V

The divergence is a scalar.

5. Mathematical expression of the divergence

The calculation of the divergence in various coordi-
nate systems is now simple. In rectangular systems we
use an infinitesimal cube in the field. A, the edges of

Yy 7 2

4_’ P/ 4] Al.fo)ngA't-a
Ao |
3’

.

Fig. 19. Derivation of the formula for the divergence

which are of length a parallel to the axes of the system.
In this case the normal components of the vector on the
surface elements of the cube are either A, or 4, or 4,.
The positive direction is the one which points per-
pendicularly into the interior for the planes 1, 2, 3, and
to the exterior for the other planes. Therefore we have
A, = —A,onland A, = A, on 4. The integral taken
over 1 is equal to —A,,-a” if A,, is the average of A,
on 1. The difference between A, on 4 and A, on 1 is so
small that we can assume linear dependence. For con-
stant ¥ and z we then have
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oA, a
or

and the value of the integral over 4 is

{A:o + <§"A—z> a}az’
ar /o

if (0 A,/dx), 1s the average value of the derivative over
1. The same consideration is valid for the other planes.
Since the average values go over into the values them-
selves in the limiting process when a — 0, we obtain

A.(a) = A,(0) +

div A = lim > [ A, af

a-+0 @
- liml—q[AI—i—a—A’a — A+ A,
a—0 @ ax
o8, oA 4
+6ya Ay+Az+aza A,]a,
dA,
div A = 34 | 9A, | 94, (3.7)

dx ay dz

Similar calculations are easy for any other coordinate
system if one constructs the volume element with the
elements of coordinates. Fig. 20 shows an element in

W

Fig. 20. Calculation of the divergence in cylindrical coordinates

(Note: dr, dz, de in Fig. 20 should be replaced by Ar, Az, Ap)
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cylindrical coordinates. The difference here is that the
three coordinates are not equivalent. The finite but
small dimensions of the element may be Ar, rAp and Az.
The integral over the different parts of the surfaces are
again (if A, efc. again are the averages)

A,
or

1) —ArdpAz  4) (A, + Ar)(r + Ar)ApAz

2) —A,ArAz  5) (A,, + Qaiﬂ Agp)ArAz

aAz
oz

3) —ArArAp 6) (A, + AZ)TATAgo.
The volume element is rArAgAz. By addition and the
proper limiting process we obtain

A _3A A 10A,
leA—ar+r+r "

dA,
+ 0z
(3.8)
194,
r do

19 dA,
;5 A+ + 5
In a similar way we obtain for spherical coordinates

div A = 28, 24, | 10A, | cotd
9p P p 39 o

A,

1 aAﬁ
psmmd Jo (3.9)

1o . 1 9
02 ap (o A,) + p sin ¢ ¢

(A; sin ¢)

L_oA,
psmmd Je
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6. Examples and the theorem of Gauss

As an illustration of the application of the divergence
in a physical example we shall use the electric and mag-
netic fields. The first one originates from charges only,
the charges being its sources. The relation between
the density of charge p and field E is

div E = p. (3.10)

On the other hand, there exist no magnetic charges, so
that there are no sources, positive or negative, in the
magnetic field H. We have here

divH = 0. (3.11)
Let us now form the integral
S div A dV over a finite region.
This region can be divided into an A

infinite number of infinitesimal

parts, for each of which the sur- % 21. Derivation of
! the theorem of Gauss

face integrals can be evaluated

as above. Each surface element which is in the interior

of the original region appears in two integrals (of the

two adjoining parts), and A, has opposite signs in these

two cases. Those integrals therefore cancel out one

another and we obtain the ‘‘theorem of Gauss”

fdiv AdV = f A, df. (3.12)

Here the first integral is to be taken over the interior,
and the second one over the surface of the region.
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7. Curl

Let C be a closed plane curve in the vector field.
Along this curve we shall form the integral of the scalar
product of the field vector and
the element ds of the curve. Nat- GS/-\AV
urally we have to determine (ar- A
bitrarily) the direction in which
we shall integrate along the
curve. This integral is indepen-
dent of the coordinate system.
If A, is the vector component in
the direction of the tangent to the curve and ds the
length of ds, of an element of the curve, the value of the
integral is /" A, ds. If the curve is now subjected to a
limiting process where its length tends to 0, the value
of the integral becomes small of the second order. For
on one hand the length of the curve becomes small, and
on the other hand the differences of the field vector on
different parts of the curve are small. Dividing the in-
tegral by the area f of the plane surface enclosed by the
curve, we shall therefore obtain a finite limit. This limit
is called the ‘“curl” of the vector A:

Fig. 22. Line element,
and vector

curl A = lim [ A as (3.13)
=0 f
Now let us take any surface (not necessarily plane)
which is limited by a finite curve C, and let us divide
this surface into small parts, which can be eonsidered as
plane. For each one of these parts we shall form the in-
tegral as discussed above. If we add all these integrals,
those parts which correspond to arcs of curves in the
interior of the surface cancel out one another. Only the



CURL 53

integral over C remains and we obtain
fcurl Adf = f A, ds, (3.14)

since the line integral around any one of the infinitesi-
mal parts is equal to curl A df corresponding to (3.13).
This is the ‘theorem of Stokes”. The nature of the curl
is determined by the orientation of a plane in space, thus
the curl can not be a scalar. A simple consideration
shows that the values corresponding to different orien-
tations of the curve are determined by three numbers.
We shall take a triangle (Fig. 24) which may have an

Fig. 23. Derivation of the Fig. 24. Geometrical repre-
theorem of Stokes sentation of the curl

arbitrary orientation in a z, y, z system as a surface
element. The areas of its projections on the three coor-
dinate-planes are f,, = f cos (n, z) - - - , where n is the
normal to the plane of the triangle. For infinitesimal

dimensions, we have:
feeurl,,;ne A = S A, ds over the three sides of the

triangle,

f..-curl,, A = S A, ds over one side of the triangle
and two axes.
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If we form f,, curl,. A and f,, curl,, A in the same way
and add the three expressions together, we have
taken every side of the triangle once, while the axes
occur twice each and in opposite directions. Thus we
have

f curltrian;le A = f:w cur]:nl A

+ f,. curl,, A 4 f,. curl,, A
or
curl, ;iaqe A = (curl,, A) cos(nz) + (curl,, A) cos(nz)

+ (curl,, A) cos(ny). (3.18)

so that the value of the curl is known for any direction

if we know the three components of curl,, A ---. The

curl is determined by three values, like a vector.

Nevertheless the curl is not a vector

since its orientationinspaceisnotgiven ¥

by a line but by the orientation of a

plane. It can, however, be represented

by a vector, the length of which is x

equal to the absolute value of the curl, “x

and the direction of which is normal to  pig. 25. Corre-

the plane of rotation. For this purpose spondence be-

we require a relation between the vec- tween the direc

tor and the direction of rotation. Usu- tion of a vector
and the direc-

ally one uses the first three fingers of . . . ..

the right hand, keeping them perpen-  in a plane

dicular to one another like the axes of

a coordinate system. Then the definition that the

vector in the direction of the first finger corresponds to a
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rotation from the second to the third finger is used.
Henceforth, we shall write curl, A not curl,, A as in
(3.15). Equation (3.15) then becomes identical in form
with (3.1) which is valid for the calculation of vector
components.

8. Physical significance of the curl

To illustrate the physical significance of the curl
let us consider a rotating rigid circular disk of radius
r. We shall form the integral J° v, ds along the edge
of the disk. The velocity v has the tangential direction
and its absolute value is wr, where w is the angular
velocity. Thus the integral is equal to wr2rr and the
expression f~' S v, ds which corresponds to the curl
is equal to 2w. This means that the angular velocity
is of the same nature as a curl. For another inter-
pretation of the curl we can use the example of the
mechanical work done in moving a particle along a
closed curve. If A is a field of force, /° A, ds is the work
which the force does if the point upon which the force is
acting moves along the curve. This definition is par-
ticularly useful for explaining the relation between
electric current and magnetic field. We must keep in
mind that this work depends on the orientation of the
curve. The vector character appears only in this de-
pendence on the orientation; the work itself is a scalar.

9. Mathematical expression of the curl

We shall first calculate the curl in rectangular coor-
dinates. As a closed curve we use a rectangle which lies
in the field. We designate the average of A, for the first
side of the rectangle by A.,. Then this average on side
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3 has the value A,, + Ay 6 A,/dy, if Ay and Az are small
enough. We find A,, and A,, + Az d A,/9z for the
average of the tangential components on sides 2 and 4.
The integral over the whole curve in the direction
corresponding to a rotation from the y- to the z-axis is
thus,

f A, ds = + AlAy + <A,0 + %‘:— Ay>Az

dA
0z

~ (A,,o + L2 Az)Ay — A,oAz.

Dividing by Az Ay and proceeding to the limit, we
obtain

24
curl, A = 0A. oA, 3.16) Ayo'b'i'”“

Yy oz I ‘ 2 ]
(According to our rule con- ax hzo Am'g;—l‘ﬂl
cerning signs, the positive | [’ . A J
z-axis is directed toward us ' - Lo
in Fig. 26). By interchang- - BYy---
ing the subscripts we ob-  pj; 26, Derivation of the
tain formula for the curl

_0A. _JdA,
curl, A = 9z Y
(3.16a)
dA dA
1 = — —=,
curl, A Py 3y

For the calculation of the curl in any other coordinate
system, we must again select the curve according to the
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system. As an example, in cylindrical coordinates Fig.
27 shows that

Fig. 27. Calculation of the curl in cylindrical coordinates

[ A, ds = A, Ar + < A, + A, Ar)(r + Ar)Aep
— ( ro )Ar — A rlp
and
cur],,A=a £ —i—ﬂ—laA'
r r r Jde

The other components are

_aA oA,
curl, A Py >
(3.17a)
1A JA
| = = £ — £
curl, A — Py
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In spherical coordinates we have

_ 1 (eA, & : )

curl, A—psinz?(ago aﬂ(A"smﬂ)
_13A, _13(oA))

curl, A > 99 P (3.18)
_1[8  ,y_ 1 0A,

curl; A = pl:ap (pA, n o a¢].

As an example we shall deduce the p-component. The
element of surface perpendicular to the radius p is
bounded by two arcs of meridians with lengths pA#
and two arcs of parallels with lengths p sin #A¢ and
psin (¢ + AY¥)Ae (Fig. 28). We have

Fig. 28. Calculation of the curl in spherical coordinates

f A, ds = —(A,, + a—c%ﬂ M)p sin (8 + A®)Ap

n (A., + 2 A¢)pAo
(74

+ A, psin dAp — A,;pAd.
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Using the development sin (3 4+ A¢) = sin ¢ +
A¢ cos ¢, dividing by the area p® sin #AdA¢ and taking
the limit for Ag—0, A9—0, we obtain the first of the
formulae (3.18).

10. Divergence and curl of a gradient

Some combinations of our differential expressions are
very important for physical applications. For example,
we can investigate the special properties of the diver-
gence and the curl of a vector field which is itself the
gradient of a scalar or the curl of another vector.

Suppose we have A = grad ®. Forming the diver-
gence of this in rectangular coordinates, we obtain the
following simple expression,

div grad & = 9 (arp) + o : (acb) + 2 (a—q))

oz \ oz dy \ dy 9z \9dz
a & ’cp
=37 + ” + (3.19)

This expression, which is named after Laplace, is most
frequently encountered in the differential equations of
physics. We designate it by A® (or V®). Its repre-
sentations in rectangular, cylindrical and spherical
coordinates are

AQ — axz I ay2 + 822 (3.20)
16 ( 0% 1 9® , 9’®

_ 1 | F— 21

A% rar(r ar> r 3o F) @3.21)
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Lo (o) 1o (on )
AP p26p<p 3,) T 7sinv o0 \as Y

(3.22)
1 8'®
p°sin® @ 9p°

If we calculate the curl of grad ® in rectangular coor-
dinates we obtain

9 (0®\ o (9®
curl, grad ® = 3y < az> 9z < 3.1/>

_ 9P P _ 0
oydz 020y ’

and the same is true for the other components. It is
quite clear that this result is independent of the coor-
dinate system and so we have, in general,

curl grad & = 0. (3.23)

11. The divergence and the curl of a curl

If B = curl A we see immediately that div B = 0.
For as we have seen earlier /° curl A df has the same
value for two surfaces which
are limited by the same curve
(Fig. 29). These two surfaces
enclose a region of space, and
the vectors representing the
curl on the surfaces are di-
rected towards the interior for Fig. 29. Proof that
one surface and towards the curl A =0
exterior for the other. Since both integrals are equal, the
outward flow is equal to the inward flow, and there is
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thus no source or sink so that the divergence is equal to
zero. This can easily be verified by calculation in any
coordinate system. The general formula is

div curl A = 0. (3.24)

We shall finally compute the curl of a curl in rectangular
coordinates:

curl, (curl A) = % (curl, A) — (—%(curl, A)

=i<a_A~_a_4_:) _0_<3_A:_QL>

oy \ 9z oy 0z \ 0z ox
= i (%’_’ + a_A‘> — aZA" —_ azA‘
dz \ Iy 9z dy® 0z
By addition of
0’A, A,
oz’ oz’

we obtain
curl, (curl A) = c:’% (div A) — AA,

or
curl curl A = grad div A — AA. (3.25)

It is remarkable that the operator A appears in this
formula. This time it operates on a vector, ie., the
single components of the vector.

We can also express the operators in (3.25) in any
coordinate system. Then, however, we must remember
that in this equation A stands for the Cartesian compo-
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nents A,, A,, A,. The computation is more complicated
if we decompose A itself into the components corre-
sponding to another system, for example, if we use A,,
Ay, A, in cylindrical coordinates.

12. Physical significance of the operator A

Since A® is very important in the differential equa-
tions of physics we shall try to find a simple interpreta-
tion of this operator.

At a certain point 0 of the scalar field, ® may have
the value ®,. We construct a cube around 0, the sides of
which are of length a. For the average value & of ® in
this cube we have

+a/2

= ff ® dx dy dz.

—a/2

The Taylor representation gives for any point z, y, z

e ad ad
o =2+ (5) =+ (G + (5):
1 6<I> 2 a@ 2 a(p 2
+2|:(6:c)x +(6y>y +<6z) ]

a’cb) ( a”qa) ( a”q>>
+ (axay oxy + dyoz Oyz T 9207/ T

If we integrate from —a/2 to a/2, the odd functions
cancel out while from the other terms we obtain

+a/2

fffx dx dy dz = 12,etc

-a/2
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We have finally

9P ’d ’d
3 = od® + o (a + 57t )
:c
or
2
a
® <I>o—24 o®P.

The quantity AP therefore is a measure of the difference
between the value of the scalar ® at a point (0) and the
average value of ® in an infinitestmal neighbourhood of
this point.



CHAPTER IV

THE SIMPLEST PARTIAL DIFFERENTIAL
EQUATIONS OF PHYSICS

1. The potential equation

In many important cases, the difference between the
local value of a function and the average in the neigh-
bourhood is essential for describing the space-time de-
velopment of the field. Thus the operator A appears
very frequently in differential equations.

a. There exist fields such that the value of ® at any
point is equal to the average value for the neighbour-
hood. Then we have the Laplace equation

A® = 0. 4.1)

An illustration is given by the gravitational field in a
region free of mass. The force K which acts on a particle
of unit mass in such a field is a function of the position
of the particle only. In general, (positive or negative)
work must be done to move the particle in the field.
If the path along which the particle is moved is closed,
however, the total work done is equal to zero. According
to III 8, this can be expressed by

curl K = 0. 4.2)

This system of three equations (one for each compo-
nent) can be reduced to one equation if we use (3.23).
According to (3.23) equation (4.2) is satisfied by K =
grad ®. Now the gravitational field has the further

64
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property that its sources appear only where there is
mass. Thus in empty space there are no sources in the
gravitational field and we have

div K = div grad ® = A% = 0. (4.3)

We shall show later that this equation is identical
with Newton’s law of gravitation (VII, 1).

We shall find fields of the same kind in electrostatics,
in magnetostatics, and in fluid dynamics. Wherever
there is a vector field the curl of which is equal to zzro,
we can reduce the number of unknowns from three to
one by representing the field as the gradient of a scalar.
® is called the ‘‘potential’”’ of the vector field. The
difference of potential between two points 0 and 1 is
equal to

1
¢1_¢0=f K,ds
0

where the path of integration is any arbitrary curve
joining the points 0 and 1. If K is a force, the integral
represents the work to be done along the path, and in
this case ® is called the ‘potential energy’’ (of a unit
mass in the case of the force of gravity).

b. There exist physical conditions such that the value
of a scalar at a point differs from the average value in
the neighbourhood. We then have the Poisson equation

AP = P, (4.4)

where P is a given function of the space. When the
force is due to gravity, the density of mass p is pro-
portional to the magnitude of the divergence of the
force K. Then we have,
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AP = Kp. 4.5)

(K = gravitational constant). The density of charge
plays the same role in electrostatics, while there is no
corresponding phenomenon in magnetostatics.

2. The equation of heat conduction

c. There are several physical processes in which the
value of ® at any point may be different from its average
value in the neighbourhood at some time, but not for
all values of time. In these cases this difference causes a
tendency towards equalization with time. The smaller
the local value than the average, the greater is its rate of
increase with time. This is expressed mathematically by
(k is factor of proportionality):

0d
AD = [k 5% (4.6)
The conduction of heat is the classical example of such
a tendency towards equalization. Equation (4.6) is
thus usually called the equation of heat conduction.
In this particular example ® is the temperature 7. The
heat low q = —X\ grad T (see 3.3) causes an amount
of heat dV div q to leave any volume element dV in
unit time, and consequently the temperature decreases
at the rate dV c¢p(dT/dt), where ¢ is the specific heat
and p is the density of the material. It follows then that

divq = —AAT = —Cp%

or
_cpoT
\ ot

A/cp is called ‘“heat conductivity”’.

AT (4.7)
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The laws of diffusion are expressed by the same
differential equation. In this case ® is the density of the
diffusing material. This density changes at a rate
proportional to the difference between its local value
and the average value. The speed of diffusion is also
proportional to the rate of change of density, as in the
case of heat flow.

From the physical standpoint, friction in liquids and
gases also is a similar phenomenon. This analogy is im-
portant in the kinetic theory of gases and supplies a
relation between the constants of heat conduction and
friction of the materials in question. These latter prob-
lems are rather difficult from the mathematical point of
view, however, since these phenomena of friction cannot
be described by a scalar or a vector, but require the
concept of a tensor. Thus we cannot consider this
problem here.

3. Wave equation

d. Finally, the deviation of a local value from the
average in the neighbourhood can also have the same
effect as a displacement from the position of equilibrium
in the phenomena of oscillation (II 12). A force can
appear which tends to give the variable the average
value and so to restore the system to the equilibrium
position. Thus we obtain a motion for which the de-
pendence on time is expressed by a quantity analogous
to the acceleration, namely the second derivative. This
equation must be of the form
15

AP = elry

=

(4.8)
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Here 1/c* is written as a square since it is a positive
factor. The value of & is ‘“accelerated”’ and hence in-
creases at those places where it is smaller than the aver-
age. The essential properties of this differential equa-
tion can be found by comparing it with mechanical
oscillations (IT 12). As a result of the acceleration,
dd/dt is not equal to zero in the equilibrium position
as it is in (4.6). The system ‘‘“moves”’ through the posi-
tion of equilibrium and the same process begins anew.
The variable ® oscillates about its value in the equili-
brium position. (4.8) is the general wave equation.
The constant ¢ is the speed of propagation, as we
shall see in (V 5).

4. Differential equations of perfect fluids

The hydrodynamical field can be described by the
hydrostatic pressure p (which is a scalar) and the
velocity v (vector). We shall express both quantities as
functions of position and time and not as functions of a
fixed particle in the fluid. At a certain position in space
there are different particles at different times, thus p
and v are functions of the time and the coordinates of a
point which does not move with the fluid. We have one
scalar and one vector differential equation according to
the number of unknowns. The first equation expresses
the theorem of the conservation of mass. The mass
contained in a volume element is equal to p dV, where p
is the density. The mass which leaves the element in
unit time is dV div (pv). This decreases the mass con-
tained in the element which results in a decrease of the
density of the remaining fluid in the volume element.
In terms of the derivative of the density, the decrease
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of mass in dV in unit time is equal to —dV dp/dLt.
Hence the equation of continuity of fluid dynamics
has the form

g—f + div (ov) = 0. 4.9)

[f the fluid is incompressible (p = const), it has the
simpler form

divv = 0. (4.92)

The vector equation of hydrodynamics contains the
fundamental Newtonian law (2.3) for a single volume
element dV. The mass is p dV. Now in the Newton
equation the acceleration is the derivative of the veloc-
ity of a definite particle and not the derivative of the
velocity at a fixed point. This change of velocity is
composed of two parts; first there is the change in veloc-
ity at the position of the particle, and second the change
in velocity due to the change in position of the particle.
The first change is expressed by the partial derivative
dv/dt, while the second is equal to

dvdr  dvdy , dvdz
or di * 3y dy dt t o 3z dt - (4.10)
In this equation, dz/dt, - -- denote the derivatives of
the position of the particle with respect to the time.
That means that they are identical with the components
of the velocity v at the point. If we denote these com-

ponents by u, v, w, the three components of the expres-
sion (4.10) are
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Ju u au
Uu— +v— +w—,
oz oy 0z

v

ov av
Chrw + v 3y + w %’ (4.10a)

Jw . Jw ow
“ax+”ay+“’az'

As an abbreviation we shall write the vector symbol
(v grad) v for the three expressions (4.10a). The force
acting on the volume element dV consists of a volume
force (for example the weight) K dV and the resultant
of the pressure forces on the surface of the element,
which is equal to —dV grad p. We can derive this result
by considering the element dz dy dz in Fig. 30. The

P p+g§-dx

Fig. 30. Hydrostatic pressure

pressure is normal to the surface, so that the force
p dy dz acts in the direction of the positive z-axis and
the force —[p + (dp/dz) dz] dy dz in the negative direc-
tion. The resultant component in the z-direction is
—(dp/9zx) dy d=.

Thus we obtain the vector equation of fluid dynamics
(Euler’s equation):
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ov
P {a 4+ (v grad)v} = K — grad p. (4.11)

If the fluid is incompressible (e.g., water), p is a con-
stant, while if the fluid is compressible p is a given func-
tion of p for adiabatic processes, for instance. In the
following we shall consider only the case p = const.

5. Vortices

Wherever possible we must reduce these four differ-
ential equations with four unknowns to one equation
containing one unknown only for mathematical treat-
ment. First we shall eliminate the pressure from (4.11)
by calculating the curl of the right hand term (curl
grad p = 0 according to (3.23)). If the volume force K
is derived from a potential Q@ (see IV 1), it too drops
out and we have

g—t(curl v) + curl {(v grad)v} = 0. (4.12)
We shall write this equation in Cartesian coordinates.

The following calculations, however, are only made for
the z-component. This equals

a_(a_u_@)+g{ua_zt+vg_;+w@e_»}

at\dy Oz dy | oz 0z
d v v o | _
6:1;{ ax+”ay+waz}“0

or

d (du dy dudu , dwdu , dwdu
6t<6y ax) + ay 6:c+ dy 6y+ dy 0z +
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0%u
d0yoz

" d*u
0xdy

+ +v3%+w
Y

du v dv v ow v

% , v » 9%
ox 0xdy 010z

or, in a clearer form,

d 9 % 9 \/du Bv)
(at TUuGe TV T ¥ az)(ay dz

T T T D 4 T .

dy dx/\dxr = 9dy dy 0z dr 9z
By use of
L v ow_
divv = Y + 3y + . 0, (4.9a)

and addition of

yl0du_oudw | (u_ o) ow_(u_ &) o
dy oz dy dx dy Odzx/ 0z

we finally obtain the simpler form
d d d d \(du (o 1)
(a_t tu x T dy tw az)(ay 6:1:)

(o @) (n_ ow)ou

dy dz/ oz 9z dy/ oz
ow du)\dw
- (ax - 62) dy 0. (4.13)
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This is an equation for the three components of the curl.
In addition we have two other equations. Now, the
first term in (4.13) is equal to the derivative with re-
spect to time of the curl at a fixed particle (according to
page 70) and (4.13) expresses the fact that this deriva-
tive is equal to zero if the curl itself is equal to zero. The
physical significance of the curl is the ‘“vortex” (see
IIT 8). Thus we see that a particle of the fluid which is
not rotating at a certain instant will never rotate. This
is true as long as our assumptions of perfect fluid and
conservative volume forces hold. If a fluid particle moves
in a curved path it does not necessarily mean that the
particle itself rotates. If, as shown in Fig. 31, we produce

/\/\
\C/\C

Fig. 3la. Circular motion Fig. 31b. Circular motion
without rotation (Ferris with rotation (moon ecircling
wheel) the earth)

a vortex at the origin, the other particles which were
not rotating before and which are moved only by the
pressure, will remain without vorticity. They move as
shown in Fig. 31a, not as in Fig. 31b.
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6. Potential flow

While it is quite possible to treat vortex flows from
(4.13), we shall only consider here flows without vor-
ticity, since these represent a very clear example of the
application of differential equations. If curl v = 0
everywhere at a certain instant, the same will be true
for any time. It follows then from (3.23) (and in
analogy to (4.3)), that v is the gradient of a scalar &
which is called the ‘“‘velocity potential”

= grad ®. (4.14)
From the equation of continuity (4.9a) it follows that
div grad ® = A® = 0. (4.15)

Furthermore we have the following boundary condi-

tions: a. at a rigid wall, the fluid cannot penetrate into

the wall and thus there is no velocity component normal

to the wall; b. the pressure is constant at a free surface.
By a simple calculation we obtain

ou ou ou 0P 0 (9P
“ax+”ay+waz_ 61:6:1:(6:5)

b 9 [od b o [(9d
+a_ya—x(az)+a—za(a>
19 J/ad\* 9d\* ad\?
= 23_{(6_) +(6_y> +<“a;)} (4.152)

or (v grad) v = % grad »*. If we replace v by grad & in
(4.11) and use (4.15a) we Obtain

ad 1 o®\* 0P\’ o®\*
p[grad T + 5 grad {(6_1:) + (6_3/) + (5) }:l

= — grad @ — grad p.
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We integrate this once, obtaining
NN
p[at +2{(6x> + oy + dz

+ @ 4+ p = const.

(4.16)

Hence we find p if we know ® and if the constant is
determinable from the given values of ® and p at some
point.

Flows without vorticity (potential flows) are only a
special simplified case of real flows. However, a great
number of practical problems can be solved by a poten-
tial flow approximation. Airfoil theory and related
questions in the theory of airplanes, propellers, and
turbines as well as surface waves and fluid jets are
treated in just this way.

7. Differential equations of electrodynamics

The electromagnetic field in empty space is described
by the two vectors of the electric and magnetic field
(E and H). The differential equations of this field can be
derived according to Maxwell from two empirical facts.
The first is Faraday’s law of induction: the rate of
change 0H/dt of the magnetic field is associated with
an electric field E such that

1 _ _ wlE. (4.17)
¢ 0t

The constant c is a factor of proportionality and has the
dimension of a velocity, if E and H are defined by means
of the forces in the electrostatic and magnetostatic
field. This factor, which we shall again meet in (4.18),
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is just equal to the velocity of light. This fact was one of
the first which led to the electromagnetic theory of
light.

The second empirical fact which was generalized into
a fundamental law by Maxwell concerns the generation
of a magnetic field by an electric current. The connec-
tion between both is an example of the concept of the
curl. Originally the differential equation is

J = curlH

where ¢ is the same quantity as in (4.17) if the density
J of current is also defined in the electrostatic system.
Maxwell, with reasoning based on certain properties of
alternating currents and with the intention of finding an
analogy between light and electromagnetic fields, com-
pleted this equation by introducing the concept of a
‘““displacement current’’ dE/dt. This current should be
capable of generating a magnetic field in the same way
as an ordinary current J and analogous to 6H/d¢ in
(4.17).
The differential equation now becomes

1 (0E

c<at + J) = curl H. (4.18)
According to the electronic theory, one can write the
current density J as the product of the density of

charge p by the velocity v of the charge.
From (4.17) and (3.24) we obtain

0 i e
a—t(dIVH)—O
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which means that div H is independent of the time.
According to our experience no magnetic sources
(charges) exist, thus we have

div H = 0. (4.19)

If we take the divergence of both sides of (4.18) we
obtain the ‘““continuity equation”

%wwm+dwj=o (4.20)

The density of charge p is defined by the following
equation,

div E = p. (4.21)

With J = pv, (4.21) takes the form (4.9) of the contin-
uity equation of hydrodynamics. This analogy is
already expressed in the word ‘“ current’’.

8. The field equation in material bodies

Hitherto we have only talked about the field in empty
space under the influence of electric currents and
charges. From the standpoint of the electronic theory,
this case covers all possibilities, for this theory only
considers currents and charges and explains the influ-
ence which these bodies have upon the field by assuming
distributions of charges and currents in the material
bodies. The exact manner in which these currents and
charges are distributed in the bodies is the object of
special theories which lack of space does not allow us to
consider here.

The older Maxwell theory avoids these difficulties by
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assigning a generalized form to the fundamental equa-
tion whereby they contain certain constants of the
material. These general equations containing the per-
meability u, the dielectric constant ¢ and the conduc-
tivity o, are
f%l—;l = — curl E, div (uH) =

(4.22)

lcl} %% + aE] = curlH, div (E) =

We shall now try to simplify the system of the Maxwell
equations by the elimination of variables. For this
purpose, however, we shall again consider the electro-
magnetic field in empty space.

9. Energy theorem

We can obtain a simple relation if we form the scalar
product of (4.18) with E and of (4.17) with H and use
the relation

E-curlH — H-curl E = — div (E X H)

(This relation can be easily verified by using rectangular
coordinates). We then obtain the following equation

1 0

%0t @& +E2)+ E-J + div (E X H) = 0. (4.23)

This equation is an energy theorem: 1 E® is the electric
energy, 1+ H® the magnetic energy per unit volume,
E-J is the Joule heat which is produced in a unit vol-
ume in unit time, cdiv (E X H) is the energy leaving the
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volume in unit time and thus it follows that ¢cE X H is
the flow of energy through the surface in unit time.
This vector is called the ‘“Poynting vector’.

10. Electromagnetic waves

Whenever we have p = 0 and J = 0 the Maxwell
equations can be reduced to a single equation contain-
ing only one unknown. If in

1 6H

c o1 curl E
1 0E

CE = curlH

we take the curl of the first equation and the derivative
with respect to time of the second and then multiply
the latter with 1/¢ and add, we obtain

1 6°E

Ry curl curl E.
Using (3.25) and div E = 0, we obtain the wave
equation

=

L3
o 1

= AE. (4.24)

Each component of E satisfies this equation. The same
equation is valid for H. This result is of great theoretical
significance, since it proves the existence of electro-
magnetic waves and shows that their velocity of propa-
gation is equal to the velocity of light. The propa-
gation of light can therefore be treated by the Maxwell

theory.
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If we eliminate H from (4.22) in the same way we
obtain

o OB _

. ot AE. (4.25)

2
In this differential equation there is a term which corre-
sponds to a wave having a velocity ¢/(ex)! and another
term which corresponds to a damping of the oscillations.
If we compare this term with (4.7) we see that the
damping is greater the smaller the conductivity of the

material.

11. Electromagnetic potentials

We can obtain another simplification of the Maxwell
equations by introducing the concept of potentials. In
this respect the static cases present nothing new, since
if curl E = 0 or curl H = 0 the situation is similar to
that previously considered for the gravitational field
or for the (potential) flow of a fluid. Let us introduce
a potential ® such that E = —grad . We then obtain
from div E = 0

A® = 0. (4.26)

In the general case we can introduce a so called
‘““vector potential”’ by

H = curl A (4.27)

This 1s possible since div H = 0 (see (3.24)). The intro-
duction of A does not have an immediate advantage,
since A is again a vector. Instead of the three original
unknowns we have three others. However, if we intro-
duce this expression of H in (4.17) we obtain
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10A) _
curl (c 6t> = curl E.
From this we can not conclude that E = —9A/c L.

Since the curl of a gradient is always equal to zero
[(3.23)], two quantities with equal curls may differ by
the gradient of a scalar. Thus we have

_ _10A
E = o1 grad ¢. (4.28)

If we introduce these relations into the two other Max-
well equations (4.18) and (4.21), we obtain

10 ,,.
—cat(dlvA)—At?b—p,

A 1
at* ¢

= grad div A — AA.

Since the potentials have only to be chosen such that
(4.27) and (4.28) are satisfied, we are free to prescribe
another relation between the two potentials. We chose
a relation that simplifies (4.29) essentially, namely

14® 4 div A = 0. (4.30)
c dt

In this case we obtain a couple of equations from (4.29)
which again are very similar to the wave equation

—grad & + clJ (4.29)

_1 9
¢ at

1 3°A 1
cz—a—ta—AA——J,

(4.31)
1 9*®
— — Ad = p
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These four differential equations contain only four
unknowns, while the original ones contained six. The
importance of the symbol A should be noted, and also
the importance of differential equations of the type we
found in IV 1 to 3.

12. Boundary conditions

Let us consider a surface element f which contains a
part of the boundary between two materials (Fig. 32)

whose extension perpendicular ——en d o
to the boundary is infinitely . __Epi
small in comparison to its ex- - i
tension parallel to the bound- Ep2

ary. If the difference of the Fig. 32. Theelectricforce
components parallel to the _ at the boundary of two

boundary (E,, and E,, in Fig. materials

32) were finite, the curl would be infinite. For the line
integral S~ E, ds would be finite while the area f is
infinitesimal. Since 9(uH)/6t cannot be infinite in
(4.22), we have

E, =E, . (4.32)

The same holds true for the magnetic components
which are parallel to the boundary because the left hand
term of the other equations (4.22) also cannot be
infinite. '

If we apply the two divergence equations to a pris
matic region of base f (Fig. 32) and height 2 (normal to
plane of Fig. 32), we obtain two boundary conditions
for the normal components of E and H. Since divH = 0,
the two normal components cannot be different from
each other, and thus we have
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pH, = p.H,, . (4-33)
On the other hand we have
div (EE)fh = (E2En2 — elEnl)lh)

and therefore

¢E., — ¢E.. = lim p{ = o (4.34)

/=0
w can be different from zero, since at the boundary of
the two materials there exist densities of charge so
large that in the limit they may approach f/I. Charges
of this kind (finite charge in an infinitesimal volume)
are called ‘“‘surface charges”.



CHAPTER V
SOLUTIONS BY EIGENFUNCTIONS

1. The product method

There may exist solutions of a partial differential
equation which are the product of several functions,
each of which depends only on one variable. This idea
often allows us to reduce the solution of a partial differ-
ential equation to the solution of several ordinary ones.
A solution of this kind is not general, of course, and the
method can only be used if the boundary conditions
satisfy certain conditions of symmetry and homogene-
ity. In many practical cases, however, the method is
sufficiently general.

We demonstrate the method with the potential
equation

6 U 0%u

= + 2 + (5.1)

We try v = XYZ, where X is a function of z alone,
Y of y alone and Z of z alone. If we denote differentiation
by primes, we obtain from (5.1)

X"YZ + Y'XZ +Z"XY =0 (5.2)
After division by XYZ we obtain

X// YI' ZII
x Ty tz =0

84
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Now X”/X is a function of z alone etc. These three
functions of different variables can have the sum zero
only if they are constants. Thus we have

X! Y’ VAL
X = Ta, Y = _ﬂy Z— = -, (53)

where the constants a, 8, vy satisfy the condition
a+B8+vy=0. (5.4)

The negative signs in (5.3) were chosen for practical
reasons.

Now the three ordinary differential equations (5.3)
are to be solved; their solutions involve six constants of
integration. The nature of the boundary conditions
determines whether or not the constants can be deter-
mined and if they are sufficient to satisfy the boundary
conditions. This also decides whether or not the method
can be used at all. We shall now specialize our problem
physically and formulate several boundary conditions.

2. Example: steady flow of heat

The equation Au = 0 gives the temperature « in a
body in which there is a steady distribution of heat, i.e.
throughout which the temperature depends only on the
position but not on time. We assume that the body is
rectangular and that its edges have the lengths q, b, c.
We chose a rectangular coordinate system which has
its axes parallel to the edges of the body. Four sides of
the body may be completely insulated so that there is
no heat flowing through them. One side (x = a) may be
subjected to a constant temperature (zero). On the
remaining side (z = 0) the temperature may be given
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by a function u = f(y, z). What is the temperature in
the interior of the body? We have the six boundary
conditions

u= f(y,z)forz =0,u =00rX = 0forz = a.

Furthermore, since the flow of heat is proportional to
grad u (according to (3.5)) we have

%1—;=0,or Y =0fory = 0Oand fory = b

(5.5)
du ’
a=0,orZ = 0fory = Oand forz = c.

These boundary conditions are homogeneous and
linear except for the first. This means that they contain
the first power of the unknown in each term.

We shall first make use of the second equation (5.3):
Y” 4+ BY = 0 with the boundary conditions Y’ = 0
for y = 0 and y = b. The most general solution is

Y = Asin (8%) + B cos (8%).

In order to satisfy Y’ = 0 for y = 0, we must have
A = 0, and since

Bgtsin (8*b) = 0
(from the second condition), we have either B = 0 or
sin (8%) = 0. In the first case (B = 0) we have Y = 0
which is of no use. In the second case we have
B' = nxr/b (n = arbitrary integer). (5.6)

At the beginning of our computation we introduced 8
as an arbitrary constant. It has been determined to a
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certain extent by the calculation. (5.6) gives an infinity
of possible values for 8. They are called the “eigen=
values”. To each eigenvalue corresponds an eigenfunc-
tion cos (nwy/b), which satisfies the second equation in
(5.3) and its boundary conditions. Moreover, each one
of the infinitely many eigenfunctions multiplied by
an arbitrary constant (B,), is a solution. We now have
the problem of deciding which of the eigenfunctions
we can use in our case and how to determine the
constants B,.

First, however, we note that in a similar way we find
that the eigenvalues

v} = mx/c (m = arbitrary integer) (6.7)

and the eigenfunctions cos (mwz/c) correspond to the
equation

Z" +~Z = 0with Z’ = 0forz = 0and z = c.
From (5.6), (5.7) and (5.4) it follows that
__(nm\ _ (mw)2
- < b) ¢ (58

If we introduce the above into X" + aX = 0, we

obtain
, o ,'ﬂrz m2 _
X [(b) +(c)]X 0

with the boundary condition X = 0 for £ = a. With
the abbreviation

() + (=) =
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the solution is
X = A,..[cosh(y,..x) — coth(v,.a) sinh(y,..z)]. (5.9)

In this way we have found a double infinitude of solu-
tions u = XYZ of the differential equation with the
homogeneous boundary conditions. Since the differential
equation is linear the sum of several solutions is again a
solution and now we must find a linear combination of
solutions which also satisfies the inhomogeneous boun-
dary condition for z = 0.

If f(y, 2) is of the form

fly,2) = A,.. cosn—l;r Y cos?z

the problem is, however, already solved by one of the
particular solutions of the homogeneous problem.

3. Fourier series

Since the particular solutions of the differential
equation can be additively combined to yield the
general solution, we have the following result: if the
function f(y, z) can be represented in the form

f,2) = 2. D, Amn cosr% cos "Z—Tz, (5.10)
m=0 n=0

then the temperature field is

u = Z Z A.alcosh v,.x

m=0 n=0

— coth »,,,a sinh »,,,x] cos n;)ry cos m:z (5.11)
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= () + ()
b c

Thus our method is sufficient for all functions which can
be expanded into a trigonometric series of the form
(5.10).

For the sake of simplicity we now assume that in
(5.10) all coefficients 4,,, are equal to zero, when m is
different from one. This means that f(y, z) has the form

F(y) cos (wz/c) and the problem is reduced to the ex-
pansion of F(y) into a series

where

Fly) = 3. A, cos ’—"g—y (5.12)
n=0

Series of the type (5.12) are called Fourier series, after

the mathematician who first used them and established

their general properties.

The functions on the right-hand side of (5.12) are
periodic. The greatest period is (if we omit » = 0) the
one that corresponds to n = 1. I'ts magnitude is 2b. The
other periods are equal to 2b divided by some integer.
'The function on the right hand side of (5.12) is thus
periodic with period 2b. The function F(y) is given for
one half of the period only, namely between y = 0 and
y = b. For our purposes it is sufficient if the series in
(5.12) represents F(y) in this interval. The values out-
side of this interval do not concern us. To extend F(y)
from the interval (0, b) to an interval which is the whole
period, i.e. (—b, b), we may define F(—y) = F(y) for
any y in (0, b). Indeed, any function represented by
(5.12) is an even function, since only terms containing
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cosines appear in the series. The function can be de-
fined over the whole y-axis in a unique way, since it
must be periodic.

First we obtain a'simple representation for the A4,:
multiplying equation (5.12) by cos (Ixy/b) (I = integer)
and integrating from y = 0 to y = 2b, we obtain

2b
f F(y) cos hr_by dy
0

«©

25
= > A, f cosr—ui;—y cos hr_by dy. (5.13)
n=0 0

Now we have

20 .
nrY os Y
'/; cos == cos — dy

2b
= %/; [cos (n + l)’%y + cos (n — I) Lg/:l dy (5.14)

and all these integrals are equal to zero except in the
case n = [. In this case the integral in (5.14) reduces
to

2b
f dy = 2b.
0

This operation makes all terms in (5.13), for which
n # [ equal to zero, and the remaining term is Ab.
This enables A4, to be calculated in a simple way:

20
4, =1 f F(y) cos ™Y dy. (5.15)
b/, b
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Let us introduce n = ny/b as a new variable, whose
period is equal to 27 instead of 2b. We then obtain the
nicer mathematical form

A, = ;ll_fh F(n) cos (ny) dy. (5.16)

The case n = 1 is a special one. If in (5.12) we take the
average value of all terms on the right side, we obtain
zero as the result, since each cosine term is equally often
positive as negative. For n = 0, cos 0 = 1 and thus we
have

1 2% 1 2x
o= 5 f Fy) dy = 5 f F(n) dn. (5.17)

We thus have a method of calculation for the coefficients
4,. No restrictions on F(y) were necessary if only the
integrals in (5.15) and (5.17) have a meaning, i.e., F(y)
must be integrable. However continuity and differen-
ciability at every point are not necessary.

‘We must omit here the proof of the statement that
the series with the calculated coefficients has F(y) as
limit. This method for the calculation of the coefficients
is valid in much more general cases than our example,
as we shall show later.

4. Example

We shall now carry through the computations for a
specific example. The temperature may be a linearly
dependent function of y for £ = 0. Then we have
F(y) = C(b — y). This function and its continuation as
an even periodic function is represented in Fig. 33.
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According to this representation we have F(y) =
C(y — b) in (b, 2b). From (5.17) follows that

Ao=%|:/; (b—y)dy+j; (y—b)dy]=Cg-

From (5.15)

[[ (b — vy cos—dy

2b
— nmry
Y

= 2 gbz (l COS nﬂ’)

or

An = 4 9 2 for Odd n,

A, =0 for even n.
Thus we have the Fourier series

3y

) 1
Fy) = (;b[s”f“c Yt ga cos
(5.18)

1 .oy
+5zcosb :l
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and the solution of our problem is

2
u 402b cos"—r—zl:1r ( h—— coth—smh )
y c c
1\} 1, 1\
{cosh rr(b2 cz) z — coth r(? + =
b ,,(1_ " _1)’ my
sin g1tz cos 7
i 1 %
lg{cosh r(bz 2 ) x — coth ”<92 -—)
. 9 1
sinh ﬂ(? + E§> } COS—— + - ] (6.19)

This gives us the temperature at any point z, y, z in the
body. Fig. 33 shows how rapidly the series converges.

Fig. 33. Decomposition of a function F(y) into a Fourier series
—- Sum of the first three terms of the Fourier expansion

5. Oscillations of a string

The mathematical method of Fourier series becomes
very clear in the theory of acoustic oscillations. The
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decomposition of a sound into fundamental and har-
monic tones is an idea familiar to the reader. The
importance of trigonometric functions in the calcula-
tion we just completed suggests taking an example
from the theory of oscillations in which we have already
encountered these functions (II 12). The equation
(4.8) is valid for all instruments which generate tones.
According to the particular case under consideration,
this equation may be derived from the theory of elastic
materials (strings, diaphragms) or the theory of com-
pressible fluids (for pipes).

We shall consider the simple example of a string which
is fixed at the points £ = 0 and z = [ and is under
the tension S (the force per unit cross section). We
seek u, the perpendicular displacement from the equilib-
rium position as a function of the position z and
the time ¢. The differential equation can be deduced by
examining one element with mass p dr (p = mass of
per unit length) (Fig. 34). Its acceleration in the
u-direction is 9*u/d¢>. The force component in this direc-
tion is S sin ¢; — 8 sin p,. For small angles, sin ¢ ~ tane
= du/dz and we have

s{3) - (o - 533 e

From Newton’s law it follows that

o’ 9’
p 6—; = S 6—.’; (5.20)

If we put S/p = ¢, we obtain the simplest form of (4.8):
*u . O°U

98 = ¢ 3 (56.21)
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If we put u = X(z)T(t) here, we obtain the equations

§ = —a  and %—- = —ac’, (5.22)

where a is an undetermined constant and the negative
sign was chosen in order to simplify the equations. To
the first equation (5.22) there correspond the boundary
conditions

u =0 forx = 0and z = {.

From X = A sin (a’z) + B cos (a'z) we again obtain
either the trivial solution X = 0 unless the number «
equals one of the eigenvalues n’x’/I’ (n = integer).
The eigenfunctions are sin (nwz/l), where nr/l is the
space frequency of the oscillations. The wave length
is 21/n, which is equal to twice the length of the string
or an integral part of it (Fig. 35). This is the well
known representation of fundamental and harmonic

p -
ra L} ~
”
[}
L
=X

- -
_____

Fig, 35. Fundamental and harmonic oscillation:
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oscillations. The time frequencies follow immediately
from the second equation (5.22), the solutions of which
are

T = A, cos
The frequencies are equal to nwc/l, and the period of
oscillation is 2I/ne. The velocity of propagation is gen-
erally equal to wave length/time of oscillation, which is
equal to ¢ (see IV 3).

We obtain the constants 4, and B, here from the
values corresponding to ¢ = 0. The position u of the
string and the speed du/dt must be given as functions
of z at the beginning of the oscillation. In the case of
plugging the initial position is given, in the case of
striking the initial velocity. The precise manner of
excitation differs widely for the various string instru-
ments; it determines the constants A, and B, and
hence the intensity of the harmonics and the quality
of the sound.

If the initial conditions are u = f(x) and du/dz = 0,
all B, are equal to 0 and f(x) must have the form of
a sum

= . NAT
D> A,sin —-.
n=1 l

If the initial conditions are ¥ = 0 and du/dx =
g(z), the A, are equal to zero and

g(x) = Z_;lB,"—l‘-’sm’ﬂ;f.
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The coefficients of a sine series can be calculated in the
same way as in the case of a cosine series. If the initial
position and the initial velocity are both different from
zero, the best thing to do is to represent the solution as a
sum of two functions for one of which the initial velocity
is zero and for the other of which the initial position is
equal to zero. There are instruments which are able to
decompose an oscillation into ‘‘partial oscillations’” as
they occur in the Fourier series. These are mostly
based on the phenomenon of resonance. This is the
principle of the ear. Other natural means are dispersion
where the partial oscillations have different speeds, and
finally damping where the harmonic oscillations are
annihilated faster than the fundamental oscillation.
We shall later consider an example of this latter
phenomenon.

6. Generalization

We shall now show the extent of our method. Our
previous considerations seem to have been dependent on
the use of trigonometric functions which seem to satisfy
the relation

ir
f cosny cos lnpdn =0 for l # n,
0
by mere chance, thus resulting in a great simplification.
It can easily be seen that the method is not restricted
to pure cosine series, but that it can be extended to pure

sine or even mixed series with the aid of

a2
f sin nysin lpdy =0  for I = n
0
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and

2%
fcosnnsinlndn=0 for all I and n.
0

Also the simplification from (5.10) to (5.12) was made
only for convenience. In the general case we could
determine the coefficients A4, in the same way, since

2T 2x
f f cos ny cos m¢ cos In cos ki dpdf = 0,
0 0

unless n = land m = k.
This double integral is equal to 7’ if n = land m = k
and therefore we have in (5.10)

2b 2¢
A = 1 f f fy,2) cos ¥ ooy T2 dy dz. (5.23)
beJo Jo b c

In order to see the general content of these relations,
we must ask how we happened to use the functions
cos (nwy/b) cos (mwz/c). We obtained them as eigen-
functions of a differential equation which was of the
form

2
Au =0 or Au=1—26t

N

o
Q

with certain boundary conditions. These homogeneous
linear differential equations from IV 1-3 (the method
_naturally does not work in the case of equation (4.5))
can always be transformed into the form

Av = v, (5.24)

by representing the unknown function as a product.
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Here v depends on one, two, or three variables; Av has
one of the forms given in III 10 and the region under
consideration is a curve, a surface, or a volume accord-
ing to the number of variables. The constant A\ corre-
sponds to the constants «, 8, v in our examples and has
different values which can be used for solutions. They
are again called eigenvalues. ‘We shall choose the func-
tion v such that it will satisfy homogeneous linear

boundary conditions only. The most general condition
of this kind is

v _
hv + k% = (. (5.25)

Here n is the normal to the boundary of the region. In
the example of the temperature field, the expression
YZ in (5.2) corresponds to the present ». According to
(5.2) and (5.3) we have the equation

_ XII

b= Y'Z+2"Y = - %

YZ = av.

The region of the function v is the y, z-plane between
the limits 0 and b and 0 and ¢ respectively. The boun-
dary conditions are linear and homogeneous: du/dn = 0.

However the functions Y and Z themselves satisfy
the conditions (5.24) and (5.25), since we have

X,/ Z//
x T3

AY=Y”=—< )Y=(a+‘Y)Y.

This time the region is a line, namely the y-axis between
0 and b, and the boundary conditions are Y’ = 0 corre-
sponding to (5.25) with » = 0. In the example of the
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oscillating string X satisfies all conditions for v, since
we have

AX = X" = —aX;
The region is the segment from = 0 to x = [ and the
boundary conditions are X = 0, corresponding to
k = 0in (5.25).

7. Green’s theorem and orthogonality

There exist certain theorems concerning functions of
the type v which satisfy (5.24) and (5.25). We shall
find them with the aid of Green’s theorem which follows
from the theorem of Gauss (3.12). In (3.12) we write

A= dgrad vV — ¥ grad o, (5.26)

instead of A, where & and ¥ are scalars. Since, for
example, we have

div{® grad ¥}
_ 0 (p3%), 0 (,0%) 0 ( 0¥
Y (q’ a:c> + Ay (q’ 6y> * % (‘b az>

P v 0P v 0d IV
_¢AW+6x6x+6y6y+ dz 07’

in rectangular coordinates, then
div-A = dAV — VAD.

Furthermore
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We thus obtain Green’s theorem
0P
‘[@mp VAD) dV = /(@———w )df(am)

Here V is any region (one, two, or three-dimensional)
and f is the boundary of the region.

We shall now apply (5.27) for two eigenfunctions
v, and v,, which satisfy (5.24) and (5.25). According to
(5.24) we introduce in

f(v,Av,,, —v,400,) dV = f(v, ?—;’” — v, Qﬁ) df (5.28)

the expressions
A'l)l = )\,vl and Avm = Amvm
and notice that according to (5.25) the integrand on
the right hand side is equal to zero. Thus we have
x@fm%dv=a (5.29)
If now X\, and A, are two different eigenvalues, we have

fm%dV=0, (5.30)

and this is a generalization of a formula which we have
already met and which enabled us to calculate the
Fourier coefficients in a simple way. The property of
the eigenfunctions which is expressed in (5.30) is called
‘““orthogonality”. If m = [, (5.30) is not true, of course,
since S v2dV is positive.
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8. Particular solutions in rectangular
Cartesian coordinates

By the use of rectangular coordinates the solutions
of the equations for X, Y, Z in our examples were ex-
pressed by trigonometric functions, and the same is
true for T in the oscillation problem. Exponential
functions appear in the solution of the equation for the
conduction of heat. For if we write u = v»T(¢) in the
equation

Au =

Q)'Q.’

cp
A
we obtain

e

T = const = —a,

the solution of which is given by

T =¢"". (6.31)

9. Particular solutions in cylindrical coordinates

If the problem has cylindrical symmetry, we shall
express Av in cylindrical coordinates according to (3.21).
Equation (5.24) then takes the following form

14 1 0% %
; ar< ) “I" 7“2 a‘Pg + v. (5.32)

If we put v = R(r)®(¢)Z(2) in (5.32) and divide by
R®Z, we obtain

1d(dR\ 1 ., g'_'_
err( dr)+ xr A (5.33)
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Since Z"”’/Z and &’’/® are independent of z and of ¢
respectively, the following relations follow from (5.33)
Z// 144
7 = —a and % = —f. (5.34)
These relations are satisfied by trigonometric functions
if @ and B are positive, and by hyperbolic functions if
they are negative. 8 can only be positive, however.
From (5.33) and (5.34) we obtain the equation

}j,,(d;i) {(x+a)+} = 0

for R. If we put —(A\ + a) = k* and 8 = p® we have

d’R 1dR

2 _ P\p _
e plies v dr + (/c r”)R 0. (5.35)

This can be simplified by introducing the variable
kr = p. Thus,

B LB (1-Br-0 63
p p

This is Bessel’s differential equation. Its solutions are
called Bessel functions. If one wants to use these func-
tions for calculations, one must use tables as for the
trigonometric functions. p is called the order of the
Bessel function. Since (5.36) is of order two, there must
exist two independent Bessel functions of order p. If p
is rational these two functions are called “of orders
+p and —p’’ and are denoted by J,(p) and J_,(p). For
integer p’s the tables usually contain a Bessel function
J,(p) and a “Neumann function” K,(p) which is
sometimes denoted by N,(p) or Y,(p).
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There will be a short discussion in a later section on
the most important methods in the theory of these
functions (V 11 and 12).

The special case A 4+ a = 0 can occur if, for example,
we have the equation Av = 0 and v is independent of z.
The equation then has the form

2
ELLE 2Ry (5.37)

r dr r

and the two particular solutionsare R = r"and R = r™".

10. Particular solutions in spherical coordinates

If the problem has spherical symmetry, we use equa-
tion (3.22):

19 ,_a_v) 1 _a_(. gg)
o’ ap(” ap) T oFsnvos \°" % 5

1 % o
p’sin® 3 dp° ~ T

(5.38)

We put v = R(r)e(o)cb(¢) and divide by E6®. Thus,

_1_i 2D 1 ’
(56.39)
1 "
T T esniel M

We now obtain that #’’/® is independent of ¢-and con-
sequently is a constant (= —a). The left-hand side of
(5.39) is thus the sum of a function of p and a function
of ¢,
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].d 2D 2
[Ed—p(pR) >\p:|

1 d ., . _a |
+ |:6 sin ¢ dd¢ (87sin 9) sin® 0:| =0

(5.40)

Since, however, the sum is equal to zero, each term
must be zero. The general theory of these problems is
difficult and we shall consider only special cases.

First we shall simplify the equation

1d oy 2 _ _
R dp (pR’) — \p const. = 8 (5.41)

by taking the special case A\ = 0 which corresponds to
the differential equation Av = 0. It is easy to see that

4oy A
o (pP'R) = p . (pR).

The differential equation

p ;—;2 (pR) = BR (5.42)
can be solved by setting B = p". We then obtain
vp + 1) = 8. (5.43)
If we now write 8 = m(m + 1), we have
yv=m or v = —m — 1. (5.44)

The other limiting case 3 = 0 corresponds to oscil-
lation and heat problems which are independent of &
and ¢. The equation is
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d2
a7 (pR) = pRX; (5.45)
The solutions are pR = sin (A!p) and cos (\}p) or
; L] L]
R = SlD(TXp) and EOS_QL) (5.46)
The second equation following from (5.40) is
1 d, ., . _a Yo
sinz?ZiT?(e sin 4) 4+ ('y pree: 0)9 = 0. (5.47)

Here we shall only consider the case a = 0, that is, the
case of independence ct the ‘‘longitude”.

In order to find the usual form we puty = m(m + 1).
This is somewhat arbitrary as long as we do not know
anything about ¥ and m. However, if A = 0 and « = 0
for the problem under consideration, m has the same
significance as in (5.44), since in this case we have
v = 8. We obtain

1 d (do

L4 (% sin 0) + m(m+ 1)0 = 0 (5.48)

or with £ = cos ¢

%[(1 — %) %2] + m(m + 1)6 = 0. (5.49)

The solutions of this differential equation are called
spherical functions and are denoted by P.(x) and
Q.(z), where m is the order of the function. Since cos ¢
varies between —1 and +1 and is an even function, it
suffices to know the spherical functions in the interval
0<z<1lor0 < ¢ < 7/2. There also exist tables for
these functions.
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The solutions of (5.47) with arbitrary « can be ex-
pressed by spherical functions. They are called associ-
ated Legendre functions. Again lack of space does not
allow us to consider this case here.

11. Solution of ordinary differential equations
by expansion in series

We have twice encountered differential equations
whose solutions are not elementary and known from
previous courses. We found it necessary to use tables
for practical calculations. We shall now use these func-
tions as an example in order to demonstrate the pro-
cedure for finding the properties of functions which
satisfy a given differential equation.

We assume that the solution of the differential
equation (5.36)

2 2
¢k  1dk (1 = %)R -0 (5.50)
dp p dp p

can be expanded in a power series about the point p = 0.
The coefficients of this series are unknown and will be
determined by introducing the series into the equation.
Assume that the series is of the form

R — pr + alpv+l + azpv+2 + R
(5.51)
+ a"pv+n + .

The coefficients a,, --- and the first exponent » are
unknown. From the series we find
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%§=w”+m@+nﬂ+-~+m@+mf”
@i + 0+ 1)p"" + - -
%ﬁ =»p — Do+ av + Lo + -

Ui + 1+ D@+ n)p"™"'

Ui+ +2)0+n 4+ 1)p""" + -+

By introducing these expressions in (5.50) and grouping

the terms of equal powers of p we obtain

o’ by — 1) + v — p’]
+ 07 + 1y + a6 + 1) — ap’]

+ p'la.(v + 2)0b + 1)

(5.52)

+ab+2 — a1+
+ p i + 1+ 2)v + 0 + 1)

+ G20 + 1+ 2) — @ap” + @) + - = 0.

If this equation is to be satisfied for all values of p in a
certain neighbourhood of p = 0, then the coefficient of
each power of p must be equal to zero. The first coefli-
cient contains only the first exponent » as an unknown.

Thus we find

v = £p. (5.53)
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We now have two solutions in the form of a series, as
was to be expected. One begins with p” and the other
with p~?. One is equal to zero for p = 0, the other has an
infinite value for p = 0. From the second coefficient it
follows that a, = 0. If in the third we put v = £ p, we
obtain

af(kp + 2(xp+2) —p*} +1 =0
or

1
T 2(x2p + 2)

a, =

Similarly we obtain the general recurrence formula

—_— a”
2 = Tt 222+ 1+ 2

Thus the two series representing the solutions of our
differential equation are

R,=p {1 2(2p + 2)+2.4(2p + 2)2p + 4)

(5.54)

6

— P 4 ...
2-4:6-(2p + 2)(2p + 4)(2p + 6)

(5.55)

2 4

— - — p p
R,=p {1 2(2 — 2p)+2-4(2 — 2p)(2 — 4p)

8

P
t346C-206@ — 206 —2p) T

In the tables of Bessel functions these functions are
multiplied by a conventionally selected constant. The
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caries are convergent for each value of p. If p is large,
however, they converge very slowly.

The series R, has no meaning if p is a positive integer,
nor has R, if p is a negative integer. In these cases we
can only use one series as a solution. Also for p = 0 we
have only one solution. Here we can find the second
solution in the following way; p shall not be equal to
zero initially, but merely small. R, and R, do not differ
much from each other. The difference is of the same
order of magnitude as p. If, therefore, we take the limit
asp—0

. R, — R,
,1,1131 2p
we obtain a new solution of the equation which is iden-

tical to the one we previously called the Neumann
function K,(p). The limit of the first term of the series is

p __ _—P p logp __ -p log p
lim 2 £ _ lim @ e
s 2p s 2p
li +plogp+ ---)— (1 —plogp+ ---)
»—0 2p
= log p,
and the second term is
1 pp+2 -p+2
li
pmo 2P [2(2 +2p) 22— 2,,)]
1+ plogp + -
= li
v SP[ 1+4p
_1—plogp+ ]
1—09 (5.56)
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2

= lirglg—p[(1+plogp+ ) =p 4+ )

~ (@ —plogp+ )1 +p+ >:|

_ P _
g (ogp —1)

etc. We do not require the complete series, since we can
already see the most important property. The series
begins with the term log p and therefore for p = 0
becomes infinite as the logarithm and not like any power
p". This is the reason why we did not find this solution
amongst the power series.

We shall now use this method of expansion into a

series to determine the spherical functions which are
defined by

d

- [(1 — 27 ‘Z_i] + m(m + 1)6 = 0. (5.57)

The series
O=z2"4az""'+ - +ax""+ --- (5.58)
gives us the relations
v — 1) =0, ie.,v, =0 and v, = 1

al=a3=-o-=0

mim + 1) — v + 1)
o+ Do+ 2)

A, = —
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and

Ons2 G+nt Do +n+2

Thus we obtain the two solutions

m(im + 1) — 0-1 2
1-2

e|=1—

{m(m + 1) — 0-1}{m(m + 1) — 2-3}
+ 1-2-3-4 *

(5.60)
_ _m(m+1)—1¢2m;;
% =7 2-3

(mim + 1) — 1-2}{m(m + 1) — 3-4} ,
t 2.3-4-5 T

A most important property of these functions is that
one of the series has a finite number of terms whenever m
is an integer. (This is always so in physical problems.)
The coefficients of z”**** and all the higher powers are
equal to zero if v + n = m. This behaviour is visible in
0, for even m, and in 6, for odd m. We have, for
example, for m = 2

(]

-7 23 .
0, =1 1.235

o
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and for m = 3

— 1'2:03.

0 = =253

These finite series (after multiplication by a normaliza-
tion factor) are called spherical functions of the first
kind and are denoted by P,(z). The infinite series are
called spherical functions of the second kind and are
denoted by Q,,(x). They have infinite values for z = 1.

12. Asymptotic expansions

The expansion which we have found is sufficient for
the determination of the properties of spherical func-
tions, since these functions are defined in the interval
0 < z < 1 only. However, in the case of Bessel func-
tions, the argument can have greater values and in
some cases it may not be possible to use the series. In
such cases the differential equation can be integrated
‘“asymptotically’’ for very great values of the variable.
We shall demonstrate this method with the Bessel
functions. In equation (5.50),

d +MR+<1 —%>R=0, (5.61)
dp p

we shall first neglect the terms containing the large
values p and p® in the denominator. We then have the

equation.

2
dR+R—O

a solution of which is B = ¢***. Now weshall try to find
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a solution of (5.61) which can be represented as the
product of this R by a series in decreasing powers of p

R=e"[p +ap " F+ap” >+ ---]. (5.62)

(We do not continue to write =4-¢, since the two corre-
sponding solutions will simply be conjugate.) We
obtain

Z_R = ¢"[p"t + "7 (i, + »)
p
+ 2" (a, + (¢ — Da) + -]
L = (=) + P (—a + 2i)
p

+ M —a, + i — Da,

+ ¢ — D@a, +9)} + -]

If we introduce these expressions in (5.61), we obtain
e¢*” multiplied by a descending power series. The coeffi-
cient of each power of p in this series must be equal to
zero (as in V 11). The coefficient of p” is identically
zero. The next term is equal to —a, + 2iv + 7 + a,.
Thus we obtain v = —1/2. The coefficient of p* 2 is

—a; + (v — 1)(2a, +v) + ia, + v+ a, — P
and it follows that

4pt — 1

o7 2 2
z —
_—p)_

& = 2v— 1 8
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Thus we obtain the asymptotic series

ip

R = ‘% (1+z‘§7’8;1+ ) (5.63)
p p

The following fact is specially interesting; for large val-
ues of p the Bessel functions behave like periodic fune-
tions whose amplitude is decreasing like 1/p%.

Asymptotic expansions are not convergent, they are
‘““semiconvergent’’, i.e., the higher terms do not de-
crease but increase. Nevertheless they can be used for
calculations if one stops before the terms start to
increase.

13. Example: heat flow with cylindrical symmetry

Assume that we have an infinitely long cylinder
composed of two half cylinders each of which has a semi-
circular cross section. Let one of the cylinders have the
temperature 7, and let the other have zero temperature.
Furthermore, let us assume the following law governing
heat conduction through the surface to the exterior; the
heat flow is proportional to the difference of tempera-
ture between the cylinder and exterior space, which is at
zero temperature. We want to find the temperature u as
a function of the time and of the position in the cylinder.

According to (4.7) and (3.21) the differential equation
is

du  ldu , 1 du _ cpdu
+ = -

ar + rdr " Pde® N (5.64)

The direction of ¢ = 0 is taken along the middle of the
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area with temperature 7. Then u will certainly be an
even function of ¢. If we introduce « = R®T, we have

71/ @Il
7= Ta and s . B

and hence
T =¢e and ® = cos (8'p).

We have not inserted any arbitrary factors here. Also,
we have not added the particular solution sin (8p),
since it is an odd function of ¢. The constant 8 is
determined by the condition that ® must have the
period 2x. This corresponds to a boundary condition.
The eigenvalues are

gt =n (= integer).

For R we now obtain the equation

d’R | 1dR n’
_d7+;3;+<‘;\—'° —%)R=0. (5.65)

The solutions of this equation are Bessel functions of
order n with the argument cpar/A. Since n is integer
these functions are the Bessel functions J,(cpar/\) and
the Neumann functions K,(cpar/\), the values and
fundamental properties of which are well known and
can be found in tables. If »r = 0, K, is infinite; we thus
cannot use this particular solution.

At the surface of the cylinder (r = r,) we have in
addition the condition that

d : :
d—l: + bR =0 (b = proportionality constant).
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From this and with cpar,/\ = v we obtain the tran-
scendent equation for »:

:—OJ;(V) + bJ.@) = 0. (5.66)

The infinitely many solutions of this equation are real.
However, we are not able to prove this fact here. If we
denote them by v,,, we can write the result of our com-
putations as

u= ) 2 A,,.,.J..(v,,. :{—) oS N
(6.67)
"€xXp (_V,,J\t/CpTO)

The A,.. can be determined by means of the initial
condition which states that in the region from r = 0 to
r = r, we have, fort = 0,

' ™
u=T for —2<¢<§
and
u=20 for "2—r<<p<g1r.

The general theorem (5.30) is valid here and therefore
we have for m > [ and n ## k the orthogonality condi-
tion

f . f J,,(v,,. T——)cosnga J,,(v, ZL)cos kerdrde = 0.
0 - To To

We must keep in mind here that the volume element is
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r dr dp (and not dr dy). Therefore we now find the
coefficients 4 ,,, from the equation

aTo +v/2
f [ TJ,.(V,,. 7—‘-) cos ne r dr de
0 J-xs2 To
(5.68)

= A,. j;” fj: {J,.(v,,. :_O)}z cos’ ne r dr dp.

The evaluation of these double integrals is a mere
calculation which we shall not perform here.

The calculations become much simpler if there is no
dependence on ¢ at all. This is the case when the tem-
perature in the cylinder is constant initially. We then
have n = 0. We only need the function J,, for which
there exist very extensive tables. The solutions of the
transcendental equation can also be found in tables.

We can see in (5.67) (from the exponential function)
that the terms are more highly damped the higher their
order. After some time (which depends on \/cpr,), only
the term with the smallest v,, will remain.

14. Patential of a circular ring

The calculation of the potential u of a charged
circular ring illustrates the use of spherical functions.
(The ring may have an infinitesimal cross section.) Let
the radius of the ring be a and the total charge, which
is equally distributed, be M. We shall use spherical
coordinates. This system may be chosen such that all
points on the ring have the coordinate ¢ = =/2. Then
everything is independent of ¢ and the differential
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equation (4.1) has the form (5.40) with A = « = 0.
The particular solutions are

1

m+1

p

R =),p" and R =

0 =P,(cosd) and O = Q.(cosd).

Only integral values of m are considered in the solution,
because R must be unique. According to V 11 the func-
tions P,, are algebraic of degree m in x = cos ¢#. They
are even for even m and odd for odd m. Each @,, has an
infinite value for cos# = 1 or# = 0 and thus cannot be
used for our problem. We therefore try an expression of
the following form

u = i Anp"P.(cosd) + i lj’fl P,(cosd). (5.69)

m=0 m=0 p

In order to determine the coeffi-

cients A4,, and B,, we need an in- —
homogeneous boundary condi- ¢

tion. We can obtain this condition

from the values of the potential «

on the axis # = 0. Each point on

this axis has the same distance Fig- 36. Potential of a
from all points of the ring (Fig. circular ring

36) namely (a* + p°)!. Each element of charge M de/2r
therefore produces the potential M dp/2x(a® + »°)*.
(See VII 1). The total potential for ¢ = 0 is then

M

- (5.70)

U
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In order to compare this expression with (5.69), we
must expand it in a power series in increasing powers of

(P/a) if p < a,
1-

OD

1p°
u=—1—__+
’ ( 2 a’

ﬂ
a a'

<~l\’.)
e

6
- ;:%:g% + ) (5.71a)

and in decreasing powers of (p/a) if p > aq,

- . ae
S N 5.71b
S rR ) (5.71b)

For ¢ = 0 all P,(1) are equal to one. By comparing
(5.69) with (5.71) we find that for p < a

A0=M, A2=M< 2cll>etc

and consequently
2
- M {Po(c osd) — le ? 2(cos ¥)

4

+ %—i (—':; P,(cos ¥) — -- } (5.72a)

IF'or p > a we obtain
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_ M [a 1d°
w= {; Py(cos &) — EEP2(cos &)
5
+ 132 b cos9) — } (5.72b)
2:4 p

15. Example: charged hemispheres

In order to illustrate the expansion in spherical
harmonics we consider two hemispheres with radius a
and the potentials +M and — M. They are so arranged
as to form a complete sphere. For the potential we
again have the equation (5.40) with @ = A = 0. The
houndary conditions are

[e e}

u=0 for p=0 and for p

and for p = a we haveu = +M for 0 < ¢ < /2 and
u = —M for 7r/2 < & < = . The solutions are again

u= ) A,p"P.(cosd)
0
or

w= >, —!% P.(cosd)
o p

according to whether p < a or p > a. The coefficients
are again found from the inhomogeneous condition for
p = a. According to the condition of orthogonality we
have

2ra’ [ P, (cos?)P,(cos¥)sind dd = 0
<0

(5.73)
for m #= [
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and therefore

x/2 x
f MP,(cos #) sin & d¥ — f MP,(cos #) sin & do
0 x/2

— A" f D (Po(cos®) sins ds  (5.74)

and a corresponding formula for B,,.

16. Example: propagation of waves

The properties of certain functions which are de-
pendent on xz, 7, or p only become very clear if we
compare the solutions of the equation

_190%
T
for a given time frequency w. If Au depends on the Car-

tesian coordinate z only, we obtain the equation of a
plane wave

u = e*iuz/ceiut, (5.75)

if we again use complex exponential functions for the
sake of simplicity. With cylindrical symmetry we have

u = Jo(z-’ r)e""", (5.76)

and with spherical symmetry

iwp/ec

e .
= ot 5.77
U Py e ( )
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The Bessel function of order zero represents a cylin-
drical wave. Bessel functions of higher order represent
cylindrical waves which depend on ¢. The expression

st eiwp/c

p
decreases like 1/p for increasing p. The energy of each
wave pulse emitted remains constant as the wave ex-
pands. Since, however, the surface over which the
energy is distributed increases like p®, the amplitude
must decrease like 1/p (since the energy is proportional
to u®). The energy of the cylindrical wave is distributed
on a surface which increases like r. Thus the amplitude
must decrease like 1/(r)}. The Bessel functions actually
have this property in an asymptotic fashion, i.e., it is
fulfilled more exactly the greater the value of r. This fol-
lows from (5.63). Also the subsequent zeros of the
transcendent equation have asymptotically constant
distances from each other like sine and cosine.

17. The Fourier integral

All of the problems which we have considered so far
were concerned with a finite region. We can use the
same methods for the whole space (propagation of
oscillations or heat flows in the whole space). Here we
must perform a limiting process which transforms the
sum of the Fourier series into an integral.

For example, the function f(x) may have the constant
value 1 for z between —a and +a and the value 0
elsewhere. The process which we are considering shall
not be restricted to the interval —a, a as it was in the
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case of the string. It may vary along the whole z-axis.
It is not possible to work with a periodic function in
this case. We must consider the function in the whole
region from — « to -4 «, which is the same as saying
that we must give the value « to the period. Since our
method yields the eigenfunctions sin ax and cos ax,
we must construct the given non-periodic functions from
these functions. An infinite limit for the period is
equivalent to a zero limit for the frequency of the funda-
mental oscillation. The separated harmonic frequencies
form a continuous sequence in the limit and the sum
becomes an integral. The general Fourier series for a
given period —b, +b is

flx) = Z A, cos — mrz + 2 B, sin —— nrx

ne=0 n=l b

with

1 +b 1+
Av=gp [ 1@ de Ac= [ 5 o™ d,

1 +b . nmt
B, = [ f®sin™ de.

Here we have written ¢ for the variable of integration in
order to have z at our further disposal. We now change
the order of integration and summation and obtain

0= [ e m i S w -] 679

n=1

We put nr/b = « and keep in mind that only the large
values of n have any influence if b— =, while a goes
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through all values from 0 to . The sum has a factor
1/b = a/an which becomes very small. In order to
determine the limit, the term 1/2b can be neglected
with respect to the sum. The sum, whose terms are
infinitely small (order a/n), becomes equal to

1 @
;j; cos a(r — £) da,

if we write da for a/n. We now have a representation of
our arbitrary function by a Fourier integral:

f@ =1 [ &0 [ cosalz — p da. (6.79)

As an example we consider the conduction of heat in an
infinitely large body whose temperature is equal to T
in the strip x = —a to £ = +a and equal to 0 at any
other point at the time ¢ = 0. The differential equation

du _ cpdu
ar? N ot

has the functions cos az and sin ar (and hence also
cos a(z — §£)) multiplied by the time factor

—a\t/cp
€

as particular solutions. This can easily be proven by
our method, or verified directly. Thus the solution for
the initial temperature field v, = f(z) is

= % f: dt f®) fe TN sos a(z — £) da. (5.80)
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In our example we have

fx) = %f:’ dt f: cos a(z — &) da

and therefore

u = —Z_:f dEf e~ ™M cos alz — &) da.



CHAPTER VI
SOLUTION BY CHANGE OF VARIABLES

For many differential equations we find general
solutions if we use certain linear combinations of the
space-time variables as new variables. This is a special
case of the method of characteristics which is very im-
portant in the theory of partial differential equations.
Since we shall only consider very simple cases we need
not go into the general theory of characteristics.

1. Propagation of waves

The equation

u _ 1 0%
2

a:t:2 c tE (6 . 1)

is satisfied by any function of the variables z =4 ct as
can be easily verified. If we set

u = f(z <+ ct), (6.2)
we have
9” o’u
5:; = f"  and rr i cf,

and hence (6.1).

In our case the curves having the equations  + ¢t =
const. and x — ¢t = const. are called the characteristics.
The solution

u = filx 4+ ct) + f.{z — ct) (6.3)
127
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contains two arbitrary functions which must be de-

termined so that the solu- T
tion satisfies the boundary con- A N

tions., The function f,(z + ct) L0 Lee
represents a wave 6f constant Fig. 37. Propagation of
shape given by u at the time a wave

¢ = 0 moving in the direction of the negative z-axis.
(Propagation of a disturbance along a rope, or a tidal
wave in a canal.) In the same way f,(x — ct) represents
a wave moving in the positive direction of the z-axis.
If the propagation occurs in a body of infinite extent,
the boundary conditions are easy to satisfy. u and du/a¢
must be given initially for every z. Assume

t=0:u = F(z) g—;‘ = G). (6.4)

Then for the determination of f; and f, we have the
relations.

fi(®) + fi(x) = F()
cfi(x) — cfi(x) = G(z).
With f° G(x) dz = H(z) we obtain from these equations

1@ = 3| F@ + 1 H)

~-

fa(z) =

and the complete solution of the problem is

DO = DO

Fo) — S H@) |,

Y= %[F(z + ct) + F(z — cb) +§H(:c + ct)
(6.5)

- %H(x - ct)].
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The method can also be used if the body is finite, e.g., an
oscillating string. The string (Fig. 38) may be displaced

[P, e

‘\-.-l/(b)\/' e

Fig. 38. Oscillation of a string as a superposition of two
motions of opposite directions (b) from the initial state (a)

and then released with no acceleration (i.e., with
G(z) = 0) at the time ¢ = 0. Then we have f, = f,, and
the disturbance propagates in the same way in both
directions. We can picture the oscillation of the string as
due to the superpositions of two such waves travelling
in opposite directions without change of shape. In
order to satisfy the condition « = 0 at both ends we
must continue the function (which is given physically
for 0 < z < lonly) in both directions so that it becomes
antisymmetric and so that the disturbances propagating
to the left and to the right continually cancel out one
another at the points z = 0 and £ = 1. We say physi-
cally that the waves which arrive at those end points are
reflected with a loss of half a wave length (inversion of
the sign). The analogy between this extension of the
functions and the Fourier series is evident.
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2. Two-dimensional potential problems

The best known field of application of this method is
in the solutions of the equation

9°® | 9P _

9 + —a? =0 (6.6)

by functions of the form
® = filx + 1y) + f. (x — 1) (6.7)

Here 7 is the imaginary unit. Since & is real, fiand f,
must be conjugate.
The solution can be simplified formally by addition
of an imaginary solution #¥ which satisfies
v | IV
dx’ + Ve

0. (6.8)

Furthermore ¥ shall be chosen so that the sum
® 4 ¥ = f(z + 7y) (6.9)

is a function of the complex variable x 4 7y. We then
have the Cauchy-Riemann equations relating the de-
rivatives of ‘® and ¥:

9P _ ¥

oz oy’

(6.10)
03 _ _ov
oy oz’

The two sides of the first of these equations represent
the real part of f’, those of the second, 7 times the
imaginary part of f’.
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The physical significance of these equations becomes
clear, if we consider the origin of the equation (6.6)
(IIT 10 and 11). A vector field v, which may represent
the velocity in a potential flow or the force in a static
field, satisfies the equations

curlv=20 (6.11)
and
div v = 0. (6.12)

In addition we have the independence of the z-coordi-
nate. We have previously introduced a scalar potential
v = grad ® because of (6.11), and this potential func-
tion must satisfy A® = 0 (because of (6.12)).

In the same way we can introduce a vector potential
according to (6.12), for which A¥ = 0 from (6.11). In
this case of a plane problem, the vector potential only
has one component and is therefore a scalar like & for
the purposes of our computations.

3. Lines of constant potential and stream lines

The components u and v of the vector v are

0B _ov  _0v_ _ov
T ox oy v ay dx (6.13)

The curves & = const. (curves of constant potential)
are given by

9d b
axd:c—}- aydy— 0
or

A= 2 (6.14)
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Similarly we have for the curves ¥ = const.

%ﬂ =2 (6.15)
T wu

This means that the direction of these curves is the
same as the direction of the vector v. The curves have
the direction of the field vector at every point in the
field. For this reason these curves are called stream
lines or lines of force (according to the nature of the
problem). Equations (6.14) and (6.15) show that stream
lines and the lines of constant potential are perpendicu-
lar to each other at every point.

By sketching this network of lines we may obtain a
clear picture of the whole process. The direction of the
field vector at any point is given by the direction of the
stream line in this sketch. We can also find the length
of the vector by the following
consideration. Let us give to

the constants in ® = const. and PP |PPore

¥ = const. a sequence of values ¥ ]
having a constant difference 5y Yore
¢ which is sufficiently small. Now St

if we choose the coordinate sys- ‘1_:%

tem at any point such that the
direction of the z-axis is the di- Fig. 39. Element of a
rection of the stream line and the = Met of potential and
direction of the y-axis that of the stream lines
line of constant potential (Fig. 39), then the distance
6z between the two equipotential lines whose difference
of potential is e satisfies

Jad

E;51E=e.
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The distance dy of two stream lines with V-difference
of ¢ satisfies

Thus according to (6.10) we have éz = 8y and the net
is composed of small squares. Keeping e fixed, the
squares of this net are smaller the greater the absolute
value of the field vector v, since the latter is equal to
d%/dzx. As an illustration we shall later show the repre-
sentation of a potential flow and of the electric potential
in a condenser.

In order to obtain such solutions we still must learn
how to satisfy the boundary conditions. They can also
be expressed in terms of ® and ¥ in the simplest cases.
In the case of the flow of a fluid, for example, the surface
of any rigid body must be a stream line (¥ = const.)
since the direction of flow must be tangential to the
surface. In electrostatic problems, the lines of force
are always normal to a conducting surface, along which
the potential is constant. (# = const.). The two cases
are equivalent from the mathematical standpoint. If

w =& 4+ ¥
and

2= 2+ wy,
we have the complex equation

w = f(z) (6.16)
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It is easy to find the function f in certain simple
cases. For example, if the potential flow has a constant
velocity U parallel to the z-axis we have

w = Uz, (6.17)
and by differentiation we find

0% _ 8% _
"—ax_U and v—ay 0

The electrostatic field produced by a condenser which
consists of two infinite planes at ¥y = 0 and y = a
having the potentials 0 and &,, respectively, is

w = —izd,/a (6.18)

This means that & = &,y/a and thus satisfies the
boundary condition. All the lines of force ¥ = —&,z/a
are normal to the plates.

4. Conformal mapping

Difficult cases, like the flow around a cylinder (Fig.
40), are treated by the following method. One intro-
duces the new variable { = ¢ 4+ 7% and tries to find a
function z = ¢(¢) which establishes a correspondence
between the boundary values ¢ of the difficult problem
with the boundary values z of a simple problem whose
solntion is known. For example, we may try to es-
tablish a correspondence between the central stream
line of the simple parallel flow (6.17) and the stream
line which curves around the cylinder.
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']

:3/ @ @ iv
i

Fig. 40. Conformal mapping of a twice traversed segment onto *
circle

If then f(2) is the solution of the simple problem, the
function

w = fle(®)] = £,(§) (6.19)

is the solution of the difficult problem. For every
(analytic) function of a complex variable is a solution
according to our fundamental idea. In addition, this
solution satisfies the boundary condition and is therefore
the solution we are looking for.

The variables x and y have been replaced by the
variables £, n through the equation z = ¢(¢). This is
usually expressed by saying that we have mapped the
complex z-plane onto the complex {-plane. This map-
ping transforms the solution for the simple case of the
variables z and y into the solution of the more difficult
case as described by the variables ¢ and ». For our
example (parallel flow — flow around cylinder) we can

use the function
2

z=¢ +%_‘ (6.20)

Forif { = ae‘” (which is a point on the circle), the corre-
sponding z is real and equal to 2a cos ¢, This is a
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point on the z-axis between —2a and +2a. All real
values of { are also mapped into real values of z. Thus
the z-axis of the z-plane is mapped onto the £-axis plus
the circle of the {-plane. In both cases this is a stream
line (¥ = 0). Each stream line in the z-plane is trans-
formed into a stream line of the {-plane by the same
mapping, and the same is true for the lines of con-
stant potential. This can be calculated by introducing
(6.20) in (6.17)

w = U(; + ‘;—) (6.21)

From this we obtain

N . a’
® + ¥ = U(:r+zy+x+z.y>
or

2

_ _az _ _ azy)
® U(x+x’+y2)andw U(y r’ + o

The result is represented in Fig. 42. . . . .
. . m

This method and the properties of @
conformal mapping are a subject of %\\

major interest in the theory of func- \U/
tions. One of the most important ‘\,\\\::—//

N
properties is the invariance of the M
angle between any two directions Fig. 41. Flow
under a conformal mapping, except  around a cylinder
at singular points. This means, in ¥ = const.,
particular, that the stream lines and "++ @ = const.
lines of constant potential remain normal if a conformal
mapping is applied to them.
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5. Examples

For many cases the mapping functions are completely
known. There also exist general theorems concerning
the mapping of a polygon onto a half plane or a circle,
etc. However, we cannot consider special questions
here. The example of the flow around a circle is of par-
ticular importance because it is possible to map the
circle into the contour of an airfoil. As another illustra-
tion we shall use the example of a condenser by map-
ing from the trivial case (6.18). The mapping

e=%og ¢ (6.22)
™

maps every real z into a positive real {. Since
log (—r) = @w + logr,

there corresponds a negative real { to every point on
the line z = z + ¢a which represents one of the con-
denser plates in (6.18). Thus (6.22) maps the two
plates into the two parts of the £-axis and the equation

w= —1 %3 log ¢ (6.23)

describes the electrostatic field produced by two paral-
lel plates at different potentials. By separation of the
real and the imaginary part in (6.23) we find

®+ W= —1 kL log (re*’) = —i% (log r + ©¥)

™

d
= —iglogr-}- 9.
T T
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Fig. 42. Mapping of a strip into a half-plane

The lines of constant potential are the lines through the
origin (¢ = const.) and the lines of force are the circles
with the origin as center (r = const.). We shall now
apply another mapping to the ¢-plane transforming it
into the Z-plane by the function

Z = arcsin { or { =sin Z. (6.24)

The real axis of the {-plane is then transformed into the
contour of the Z-plane which is shown in Fig. 43. To

Fig. 43. Example of a conformal mapping
— ¥ = const., -+ & = const.
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the values of { between —1 and +1 there correspond
real values of Z between —x/2 and +w/2. To the
larger and smaller values of { there correspond Z-values
whose real part is —7/2 or +7/2.

The field quantities are contained in the equation

w = —i%’ log sin Z (6.25)

and numerical calculation gives the curves of Fig. 43.



CHAPTER VII

SOLUTION BY THE USE OF
SINGULARITIES

It is often easy to find the solution of a differential
equation which is defined in all space and is equal to
zero at points at infinity, but which has a singularity at
one point, i.e., becomes infinite at this point. Whether
or not this function has a physical meaning depends on
the nature of the singularity.

1. Source

The clearest example of the above is the potential
flow produced by a source. The differential equation

AdD =0 (7.1)

must be valid in the whole space, but at the origin
where there is a source. The equation cannot be valid
there, for according to (4.15) it expresses the fact that
there is no source in the region of its validity. The
solution evidently has spherical symmetry with the
point of origin as center and is therefore a function of
the radius only. From the form (3.22) of the differential

equation
d( , d@)
dp (p a = 0, (7.2)

we obtain the two particular solutions & = const./p
and & = const. The latter has no physical meaning.
The former is equal to zero at infinity and has a singu-
larity at the origin. It is therefore the representation of

140
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the source flow we seek. The constant depends on the
magnitude of the source. If we write ® = —C/p, the
vector v which is free of sources in the whole space
except at the origin has the magnitude

For the integral of the divergence of v over any sphere
which encloses the origin we obtain, with the use of the
theorem of Gauss (3.12),

Q = fdwvdV f Y ot do (7.3)

where dw is the element of the solid angle and p, is the
radius of the sphere. We find

Q = 4rnC. (7.4)

The quantity of fluid leaving the sphere in unit time
must be independent of the radius of the sphere, since
otherwise the region between two spheres would not be
free of sources. The solution of (7.2) is

Q

= — . (7.5)
This is the mathematical expression for a point source.
The result is the same for the potential in the gravita-
tion field of a single mass point, since the differential
equation is the same (4.3). To the constant @ there
corresponds the number —4xfM, if f is the constant of
gravitation and M the mass of the point. By differen-
tiation with respect to p we obtain Newton’s law that
the force per unit mass is —fM/r*.
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2. Superposition of positive and negative sources

By summation of such fundamental solutions we can
find solutions of more complicated cases, since the equa-
tion is linear and homogeneous. In this way we find the
potential of a continuous distribution of sources whose
strength per unit volume is a function x of position,

_ _ [waV
P = f 4mp
(7.6)
pE 1, 8
= — ’ dt dn dt.
f47rp( y My (;ﬁ?,y,Z) % dn of
This is a solution of the differential equation
AP = p, (7.7)

since A® = div v is the strength per unit volume. In
order to calculate the integral (7.6) we must remember
that the origin of p depends on the point here. If the
potential at the point z, y, 2 is to be calculated, for
example, we have in the integrand

p=lE—8"+@w—n"+¢E— ). (7.8

r can also have negative values. A particularly impor-
tant case is the one where a positive
and a negative source (for example
electric charges) of equal magnitude
are very close together. This is
called a dipole (Fig. 44). If the dis- ~~
tance p from the dipole is large com-
pared with the length ¢ of the dipole,
the potential can be written in the following way

Fig. 44. Dipole
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_Q(l 1)_ Qe cos ¢
o=2(——-—)= =3 .
P+ P- + 4mp (7.9)

Qe is called moment of the dipole.

3. Satisfying the boundary conditions

Simple boundary conditions can also be satisfied
with our fundamental solutions if we use the method of
reflection. If, for example, we have a source and a wall
on which the normal component must be zero (poten-
tial flow), then we introduce an ideal source of the same
magnitude whose position is symmetrical to the first
source with respect to the wall. If on the other hand the
wall has a constant potential (electric potential), the
second source must be assumed to have the same mag-
nitude but opposite sign (Fig. 45).

Fig. 45. Reflections

In the first case the field is

-9 Q
2= ot T (7.10)

and in the second case it is

Q@ _ @ (7.11)

" dwp,  4mps’
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The boundary conditions can be satisfied for other
than plane walls by superposition of negative and posi-
tive sources and dipoles. By superposition of a parallel
flow along the z-axis and a dipole at the origin we
obtain, for example,

Qe

¢ = (7x+w= (Up+ )COSgo (7.12)

47p 4rp’

If we calculate the component d®/9p (the radial com-
ponent of the velocity) on the sphere with radius p, =
(Qe/2xU)} we obtain zero. Thus (7.12) represents a
potential flow around a sphere. By point sources or a
continuous distribution of sources along the z-axis, we
obtain bodies of revolution (other than the sphere) for
which the potential flow can be easily calculated.

If the flow is plane, we have cylindrical symmetry.
In this case the potential of the source can be cal-
culated from the differential equation

d dd
a;("d7>‘°

and we obtain
= —Q M
) or log r. (7.13)

The corresponding dipole potential is

& = Qe cos ¢
2nr

We obtain the flow around a circular ecylinder by super-
position of this dipole with a parallel flow
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&= Uz + % cos e (7.138)

r

With Q/2ra® = U we again obtain formula (6.21).

4. Solutions with the aid of the theorem of Green

From Green’s theorem (5.27) we obtain a general and
physically clear solution of A® = g, if we introduce
¥ = 1/p. As origin for the coordinate p we take the
point at which we want to know the potential. Since
A(1/p) = 0, we obtain

Jaotar - [ (22202 (9)ar 0o

We shall apply this equation to a region whose exterior
is arbitrarily limited or unlimited, but from which we
have cut out a small sphere of radius p, whose center is
at p = 0. On this sphere we have

a1\ _ , L
a_ﬁ<_p)_+p2

(n is the outward normal, i.e., in this case the direction
toward the point of origin!). Furthermore we have
df = p® dw (dw = solid angle). If we now take the
limit p,—0, the first term of the integral on the right
side of (7.14) cancels out and the second becomes equal
to —4wd,, if &, is the potential at the origin which we
are looking for. Thus we have

4rd, = —fAcp dV+f199df

- f «r)é%(%) a5, (7.15)
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where we must now integrate only over the exterior
surface of the region.

The three terms on the right hand side of (7.15) have
a special physical meaning. The
space integral, which is the same dn
as (7.6), represents the potential V\’d,‘,
of the charges or masses. The
surface integrals show the influ- G)
enceof theboundaryvalues. 3®/dn o
is the normal component of the
vector grad & at the boundary
and thus is equal to the intensity
of the field vector which enters
the region V through the surface f. If the region is
limited by a metallic cover d®/dn can be considered as
“surface charge” according to (4.34).

For an interpretation of the last integral in (7.15) we
shall consider a region of infinitesimal thickness, which
in the limit is “bounded by the two sides of a sur-
face”. On both sides of this region, d(1/p)/dn has the
same magnitude but opposite signs. If, therefore, ® is
the same on both sides, the integral is equal to zero. It
is finite if the potential is not continuous through the
surface. Such a discontinuity is caused by a distribution
of dipoles (opposite charges on both sides of the
surface).

Fig. 46. Charge on a
surface and on a point

5. Heat source

This method is also useful in the theory of the con-
duction of heat. We shall consider a one-dimensional
region in which the differential equation

% _ 13u

axz = E a_t' (7.16)
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is valid. Let us assume that at the point z = 0 thereis a
‘““heat source”. This means that at the instant { = 0
the temperature at this point becomes infinite, but in
such a way that the total quantity of heat remains
finite. The solution of (7.17), which describes the flow
of heat from the source is then

=L (7.17)

(4wkt)
as is easily verified. In Fig. 47 we have drawn this func-
tion for various times. By the use of reflections it is
also possible to satisfy the most important boundary

Fig. 47. The flow of heat from a heat source

conditions in this case. An arbitrary initial temperature
f(z) can be considered as the sum of heat sources of
strength f(¢) dt at the points z = ¢ and produces a
solution in the form of an integral

[T ieeeeds @)

(4 kt)*

This formula is equivalent to the formula (5.80) which
we obtained from the Fourier integral, since

® }
j; e—aibt cOoS a(x E) da (47krt) e—-(z—E) /4kt.
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This formula, however, cannot be proved here. In the
two-dimensional case, (7.17) is replaced by

— 1 —r?/4kt
U= e (7.19)

and in the three-dimensional by

) R
= s4kt (7.20)

6. Flash of light

We can also find a solution containing a singularity
for the wave equation. A light flash which is emitted
from the origin at the instant { = O obeys the differ-
ential equation

139 26_u> _ I__u

in spherical coordinates. A solution of this equation
is
C
u = > F(p — ct) (7.22)

as can be easily verified.

Now let F(z) be the‘“delta’”’ function Whlch is equal to
zero everywhere except at £ = 0. At this point the
function is infinite in such a way that

f_ C F@)dz = 1. (7.23)
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(For a more exact theory, we should consider a sequence
of functions which have the formulated properties in
the limit). The constant C is determined by the magni-
tude @ of the flash. We obtain the relation by calculat-
ing the flow from a region with the small radius p, and
the point of origin as center (df = surface element)

t— - a-it == — ? 2g_ —_—
Q= fo di [ 5. df fo 4mp}s = Flpo = cf) dt,
since
Mo _Crilp
dp p

and since the second term with p,—0 becomes equal to
zero on integration. According to (7.23) we now have
_ 4aC

s

Q (7.24)

This representation is of special importance in elec-
tronic theory. There we have the equation (7.21) for
the scalar potential and the three components of the
vector potential in empty space, according to (4.31).
At the distance p from the point where we seek the
scalar potential ®, there may now be a volume element
dV which at the time ¢ = 7 contains the charge u dV
during the time dr. According to (7.22) and (7.24) we
have

g = S L dViFp — ot — D] dr. (7.25)
4 p

We obtain the total potential by integrating over the
whole space and all time elements from — « to 4 .
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4rd = 4:—/ T (7.26)

Here u* is the charge density in the volume element dV
at the time ¢ — 7 = p/c. This instant is earlier than the
time ¢ at which we want to know the potential. The dif-
ference of time is p/c, which is just the time required
by the impulse to travel the distance p. That is why the
integrand in (7.26) and the corresponding expressions
for A are called the retarded potentials.

7. Transition to integral equations

The solutions which we obtained by the method of
singularities are expressed by an integral, the domain of
which is the whole domain of an auxiliary variable. The
typical form is clearly illustrated in the example (7.18),
which contains only one variable

ue, ) = [ JOK@ -0  (7.20)

The function K is a solution of the equation which has a
singularity at x = & The dependence on ¢ is of no im-
portance in evaluating the integral. The elementary
process with the singularity at x = £ is described by
the function K. Here we need no longer bother about
the deduction of K from the differential equation.

It may be that the function f(z) is not given initially.
The function «(x) might be given instead (for a certain
£), and then the problem is to determine f(x). In this
case f(x) is the unknown in the equation (7.27) which
is an inlegral equation of the first type. K is called the
kernel of the equation.
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The problem of finding the initial heat sources from
the heat function at a certain

instant seldom occurs in prac- 4
tice. However, problems of B s
this kind occur frequently in
other fields. If, for example,
x-0 x-E xl

one has to determine the flow
around an airship of a certain
shape, one uses an integral
equation similar to (7.6) in
order to calculate the sources which can generate the
flow according to VII 12 from the given form of the
stream lines.

The representation by an integral equation becomes
even more important if u itself is unknown, while there
exists a known relation between u and f(¢). We have
such a case in the example of the oscillating string. The
oscillation is caused by the equilibrium between the
forces of inertia and the tension. In order to find a
fundamental solution we consider a string which is
deplaced by a single unit force (see Fig. 48). If u is
the displacement and S the tension, then we have the
equations

Fig. /8. String, stretched
by a single force

K(z, ¢ = éx(l — §) for x <&
(7.28)

K(z,¢) = é&(l — ) for x > &

This function K(z, £) is the kernel of the integral equa-
tion. The force of inertia at the point ¢ corresponds to
the function f(¢). If the oscillation is
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u = y(¢) sin v, (7.29)

this force is pr’y(£) d¢ sin »t. Thus we obtain the integral
equation

v@ = » [ yOK@ B (730)

which is a so-called homogeneous integral equation of
the second type. If, on the left hand side, we have an
additional known function of z besides y(z), the equa-
tion is inhomogeneous and of the second kind. The
parameter » has here the same properties as an eigen-
value in the case of differential equations. In our exam-
ples, the same problem can be expressed by a differential
equation with boundary conditions or by an integral
equation. The boundary conditions are automatically
satisfied by the form of the kernel in the latter case.
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