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Beamed-Energy Propulsion (BEP) Study

Patrick George and Raymond Beach
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

1.0 Executive Summary

The official scope of this study was (1) to review and analyze the state-of-art in beamed-energy
propulsion (BEP) by identifying potential game-changing applications, (2) to formulate a roadmap of
technology development, and (3) to identify key near-term technology demonstrations to rapidly advance
elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest
were launching payloads and space propulsion. More generally, the study was requested and structured to
address basic mission feasibility.

The attraction of BEP is the potential for high specific impulse (/;,) while removing the power-
generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past
20 years warranted a fresh look at the technology. BEP could help meet the known needs of NASA and/or
the Department of Defense (DOD), providing low-cost, rapid access to space for operationally responsive
military systems, scientific payloads, and the commercialization of space.

For launching payloads, the study concluded that using BEP to propel vehicles into space is
technically feasible if a commitment to develop new technologies and large investments can be made over
long periods of time. Such a commitment would include specific technologies like multimegawatt power
lasers and microwave sources as well as building new launch facility infrastructure. The costs of the
infrastructure are high. From a commercial competitive standpoint, if an advantage of beamed energy for
Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads.

For space propulsion, the study concluded that using beamed energy to propel vehicles from low
Earth orbit to geosynchronous Earth orbit (LEO-GEQO) and into deep space is definitely feasible and
showed distinct advantages and greater potential over current propulsion technologies. However, this
conclusion also assumes that upfront infrastructure investments and commitments to critical technologies
will be made over long periods of time. BEP energy source requirements are much less than for the
launch applications. Lower propulsion costs with shorter transit times for LEO—GEO servicing missions
and faster science missions to the outer planets are the major benefits. The chief issue, similar to that for
payloads, is high infrastructure costs.

Since cost (nonrecurring and recurring) emerged as a critical element of this study for both launch
and space missions, the following should be noted. The cost estimate method used in this study was the
same as is used by the NASA Glenn Research Center on all of its spaceflight projects, and the expert
personnel involved in such estimates were employed for this study. Launch facility requirements were
obtained by working with the NASA Kennedy Space Center, which has extensive experience with launch
facilities. Per specific direction received at the final outbrief to the study’s sponsors, independent
estimates for the laser portions of the infrastructure were gathered from knowledgeable DOD personnel;
their estimates of cost were considerably higher than the NASA Glenn estimate, that is, the Glenn cost
estimate was nearly an order of magnitude too low. On the other hand, outside expert consultants to the
study have stated their belief that the Glenn estimates were somewhat too high; the study’s authors and
the expert cost estimators believe that the consultants’ estimates fail to include several elements of the
necessary infrastructure.

It was hoped that beamed-energy technology would be a “silver bullet” solution to low-cost access to
space and less-expensive deep space missions, or that at least it would find a niche where the benefits
could be great. The authors of this report would like to make it clear that there are factors, as with all
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studies, that, if the ground rules of the study change or if costs for critical elements (e.g., lasers, ground
facilities) come down significantly, it follows that the conclusions could change.

As can happen in detailed examinations of innovative approaches, the study uncovered two
unanticipated areas that appear to have great potential and therefore are worthy of consideration for new
investment, at least at the “detailed study” level. BEP could provide the key to combining propulsion,
power, and communications systems for in-space applications, thus creating a new class of small
spacecraft with minimal systems and reducing their complexity, cost, and mass. Beaming energy to a
thermal optical plasma engine could provide a highly efficient technology for high-thrust and high-/,
space propulsion. The specifics of these concepts are provided in the main body of the report.

Finally, the intention of this study was to work within the time and resources allotted to determine the
feasibility of BEP. This involved achieving a single closed-design solution for each mission analyzed
which is, in all probability, not the optimum solution. As such, proponents of the investigated concepts
may not agree with the study’s findings and final design solutions, citing that better performance could be
achieved with additional design effort. The authors do not disagree with that perspective. Nonetheless, the
study management team was satisfied that the results were sufficient to meet the primary objective, which
was to prove or disprove the feasibility of the concept and missions. It is also noted that at this time all
possible future demonstrations of beamed energy and power transfer will be pursued solely by NASA.

2.0 Study Synopsis

The following subsections summarize the detailed reports from the design analysis team, consultant
team, and cost team, which appear in full in Section 3.0.

2.1 Study Background

In June 2010, NASA and the Defense Advanced Research Projects Agency (DARPA) agreed to
co-fund this study to determine the feasibility of using beamed energy for propulsion. The reason for the
study stemmed from a joint interest in the technology, but without a definitive in-depth review clearly
stating the case. NASA’s main area of interest is in-space applications, and DARPA’s is for launch to
LEO, although each organization has at least some interest in both areas. The study concluded in January
2011, with the Summary Presentation containing the basic results given on April 14, 2011.

2.1.1 Rationale

Since the early conceptualization/realization of the laser in the late 1950s, one of its theoretical
applications has been to utilize photonic energy for wireless power transmission and propulsion. By the
early 1970s, BEP was envisioned as a launch system using conventional gas-dynamic expansion of laser-
heated propellant to accelerate payloads up to a ton into orbit, with the hot gas using a de Laval nozzle to
produce thrust. Another early concept was the use of laser energy that was subsequently converted into
electric energy for propulsion. This type of power transmission has been constrained primarily by the
electrical-to-photonic conversion efficiencies at the laser source and the ability for a photovoltaic receiver
device to efficiently reconvert the beam back to electrical energy at high levels of irradiance. Other
limitations are described later in this document.

Since the 1970s, the continual development of low-cost, compact, and efficient high-energy sources
and supporting optics has enabled a limited number of directed energy demonstrations. For example, in
the late 1980s, under the Strategic Defense Initiative Organization (SDIO)-sponsorship, Prof. Leik
Myrabo developed a laser-propelled vehicle concept envisioned to propel a 120-kg sensor payload using a
100-MW-class laser. At that time, a goal of $100/kg was set. By the late 1990s, ambitious estimates of
$1000/kg for a 1- to 10-kg lightsat were being reported. Myrabo’s concept used a reflector on the
underside of the vehicle to increase the intensity of the beam and produce a region of extremely high
temperature. The result was a pulsed-detonation concept that propels the vehicle. This concept was
validated with the Air Force Research Laboratory’s (AFRL’s) 10-cm Lightcraft flight test demonstrations
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at White Sands in the late 1990s. In 2000, these flight demonstrations reached 233 ft and lasted 12.7 s.
Succeeding this work was a 9-year effort including a scaled-up X—25LR bench model demonstration, and
the X—50LR program, in which propellant and vehicle fabrication techniques were advanced through a
series of successful test flights of a 50-cm laser ramjet vehicle.

In 2003 NASA demonstrated a sustained flight of an indoor aircraft by providing 7 W of power to the
electrical system through 24 triple-junction photovoltaic cells with a near-infrared laser.

A more recent system demonstration concentrated on utilizing optical directed energy as a solution to
provide power to space elevators ascending a composite cable, with the eventual desire to carry payloads
into space. This was and is the fundamental premise of today’s Spaceward Foundation’s Power Beaming
(Climber) Competition. The competition’s recent success, LaserMotive’s competitive system, was able to
achieve a successful power transfer of several hundred watts to the climber over a distance of 1 km, to
accomplish a climbing rate of 2 m/s.

Microwave technology has been used to demonstrate wireless power transmission. In 1975, the joint
Jet Propulsion Laboratory (JPL)/Raytheon program at the Goldstone complex was able to achieve
ground-to-ground system conversion efficiencies up to 84 percent at 30 kW at a range of 1 mile. Since
then, flight demonstrations such as the Stationary High Altitude Relay Platform (SHARP) in Canada and
the Phased Array Model Airplane Experiment in Japan have successfully demonstrated the high-
efficiency benefit of microwave-power-beaming utilizing rectennas. This work has extended into endo-
atmospheric applications, such as the successful firing of an “lon Breeze” engine from a 6-kV rectenna,
and orbital concepts, such as a space-based microwave power station to provide a boost to lightcraft
ascending from LEO—-GEO.

2.1.2  Previous Component Demonstrations

At the component level, recent advancements in both diode laser technology and high-energy vertical
multi-junction (VMJ) photovoltaic cells allowed for significantly higher power optical systems to be dem-
onstrated, such as the AFRL’s high-intensity laser-power beaming program, which has demonstrated up to
20-W/cm’ output at the receiver and 44-percent optical-to-electrical conversion efficiencies for recharging
electric aircraft. This performance was achieved with nonoptimized commercially available components.
Multikilowatt systems may be assembled by fiber-combining several diode sources. At this point in time,
the end-to-end system efficiencies are around 10 to 15 percent, with the primary limitations residing in the
diode laser efficiency (30 percent typical). Future advances in laser technology—fueled by an emerging
market demand for high-power, highly efficient sources—and a refinement in chemical composition and
antireflective coatings in the photovoltaic cells will continue to improve overall system performance.

In 2007, the NASA Goddard Space Flight Center demonstrated creating, modulating, and detecting
x rays for communication applications, and this has implications for both power beaming and propulsion.
The ability for an x ray to penetrate through hypersonic plasmas and exhibit narrow beamwidths because
of their short wavelengths makes this an attractive region in which to operate in a point-to-point directed
energy system. The potential applications for x-ray-directed energy may be limited to the space
environment, because of high ionospheric attenuation. The concepts for x-ray power have grown from
driving nanorobots to large 1-TW sources with 1-km apertures propelling a craft to circumnavigate the
universe. Although large controllable x-ray sources do not exist today, the growing need for this
technology beyond biomedical imaging will facilitate its development into higher output energies, which
may eventually be used for power transmission and propulsion.

The attraction of BEP is the potential for high-/;, while removing the power-generation mass. The rapid
advancements in high-energy beamed-power systems and optics over the past 20 years warrant a fresh look
at the technology and potential game-changing applications. For example, BEP could help meet the
following known needs of NASA or DOD, providing low-cost, rapid access to space for operationally
responsive military systems, scientific payloads, and the commercialization of space through

e Launch to Earth orbit of small selected payloads
e Stationkeeping at very low Earth orbit (DOD use—reconnaissance; NASA use—Earth observing)
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e LEO-GEO transportation system
e Deep space exploration

2.1.3  Study Scope

The study scope was to review and analyze the state-of-art in BEP and to identify potential game-
changing applications, formulate a roadmap of technology development, and identify key near-term
technology demonstrations to rapidly advance elements of BEP technology to TRL 6. The study includes
the following specific areas:

ETO and space-to-space BEP

Thermal propulsion using beamed power

Electric (plasma) propulsion using beamed power

Synergies of integrated systems (i.e., beamed power and the propulsion implications)

Candidate technologies and solutions to achieve the reference missions (drawn from the

categories of the electromagnetic spectrum: microwave, optical, and x ray)

e Trades to evaluate not only the directed-energy trades but also the various energy-conversion
mechanisms from the beam into thrust

e Concepts defined to a level that will allow effective comparison of performance and operation

costs with those of conventional combustion-based, self-contained fuel/oxidizer systems

2.1.4 End Goals of Study

Initial goals were established and later refined at the mid-term review to provide a more precise focus
of the study. The following list provides the combined DARPA/NASA direction.

e Via analysis, prove or disprove the feasibility of ETO via BEP, or at a minimum provide
significant new insights into the limiting performance factors of BEP technology, quantify
efficiency losses, and analyze atmospheric and environmental considerations

e Identify synergies of BEP, if any, with crew servicing at GEO, horizontal launch access to space,

and deep space exploration

Identify a list of proposed ground-based and space-flight demonstrations

Develop rough order-of-magnitude (ROM) nonrecurring costs for vehicles and ground systems

Develop ROM vehicle and ground facility costs for recurring launches

Investigate and analyze the effects of thermal blooming on laser and millimeter-wave propagation

through the atmosphere

e Emphasize concepts utilizing and extending from high-TRL commercial lasers like diode-
pumped lasers; descope concepts that require low-TRL lasers

e The primary product of this study needs to be a determination of TRLs for near-term concepts of
beamed-energy technology and rocket vehicle technology in BEP

2.2 Study Approach

The study incorporated the use of Design Reference Missions (DRMs) to determine BEP feasibility.
Having specific missions on which to focus allowed preliminary design efforts to be conducted at a high
level, although not with a complete systems analysis, with the intention of including all aspects of
aerospace design practices, including applying standard design margins. The approach was successful in
exposing major and minor issues and allowed exploring potential solutions to arrive at closed designs for
feasibility evaluation.

The study team consisted primarily of external experts selected for their depth of knowledge in the
following fields: advanced propulsion technology, high-power microwave and lasers, continuous- and
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pulsed-laser satellite pointing and tracking, and aerospace mission design. Experts from industry, the U.S.
Air Force, and academia were included. Resumes of team members are shown in Appendix B. The full
team worked together to create a set of DRMs that covered a wide envelope of applications.

The intention of this study was to work within the time and resources allotted to determine the
feasibility of BEP. This involved achieving a single closed-design solution for each DRM, which is, in all
probability, is not the optimum solution. As such, proponents of the investigated concepts may not agree
with the findings and the study final design solutions, citing that better performance could be achieved
with additional design effort. However, the study management team was satisfied that the results were
sufficient to prove the feasibility of the technology.

Existing mission integrated-design-analysis teams were utilized to speed the process of mission
design. Glenn’s COllaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team
was assigned to the launch DRMs and the LEO-GEO DRM. Goddard’s Integrated Design Center Mission
Design laboratory team was assigned to the deep space DRM. In both cases, the assignments were based
on previous experience with the type of mission, team availability, and cost. Both are multidisciplinary
collaborative engineering teams whose primary purpose is to perform integrated vehicle systems analyses.
Through these analyses, the teams conduct and provide system designs based on trades studies.

In order to narrow the trade space for the launching payload (laser) and space propulsion (space
DRMs), an initial comparison was made between electric and thermal engines to determine which offered
the best efficiency. Our results indicated that thermal engines would be the better choice. The details are
shown in Figure 2.1 and were based on technology previously demonstrated at system and component
levels in projects like Integrated Solar Upper Stage (ISUS) and High Delta-V (HiDVE).

Beamed thermal system efficiency - launch and space
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Figure 2.1.—Beamed thermal system efficiency—launching payloads and space propulsion. DDCU, DC-DC
conversion unit; PPU, power processing unit.

The DRMs were selected and created during the first meeting with the consultants. The collaborative
effort signified concurrence within the group that the technologies selected were indeed the major ones to
consider and spanned the envelope of those available.

The cost estimates shown in this report represent the estimated “prime contractor” cost for each
spacecraft based on Glenn’s COMPASS mission design team analysis. These estimates were generated at
the subsystem and component levels using mostly mass-based, parametric relationships developed with
historical cost data. Commercial costs also were estimated on selected DRMs as part of the trade space.
These commercial estimates also were based on the COMPASS spacecraft design but were generated
using PRICE System’s costing model. These estimates followed a methodology delineated by PRICE
Systems for estimating commercial satellites with their software. A more detailed description and a list of
cost assumptions for each of the various estimates are included in the individual reports. In addition,
several lifecycle cost estimates were generated to evaluate the total cost of the technology over an
assumed time horizon. The ground facilities necessary to beam energy proved to be the major cost driver
in each case. The launch facility cost estimates are based mainly on data provided by the NASA Kennedy
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Space Center and were adjusted to address each case. A detailed description of the lifecycle and facility
costs is included with each DRM report.

2.3 Study Findings

This section brings together the information generated by the mission design teams, consultant teams,
and cost teams in each of the major study areas.

2.3.1 Launch DRMs

Three launch concepts were selected for evaluatio