LIST OF FIGURES

-		Page
Figure 1-1.	Crystal forms	. 1-2
Figure 1-2.	Cleavage	. 1-2
Figure 1-3.	Fractures	. 1-3
Figure 1-4.	The rock cycle	. 1-7
Figure 1-5.	Intrusive and extrusive rock bodies	. 1-7
Figure 1-6.	Cross section of igneous rock	. 1-8
Figure 1-7.	Bedding planes	. 1-9
Figure 1-8.	Contact metamorphism zone	. 1-9
Figure 1-9.	Metamorphic foliation	1-10
Figure 1-10.	Jointing in igneous rocks	1-12
Figure 1-11.	Cross bedding in sandstone	1-14
Figure 1-12.	Metamorphism of existing rocks	1-18
Figure 1-13.	Crushed shape	1-22
Figure 2-1.	The major plates of the earth's crust	. 2-2
Figure 2-2.	Major features of the plate tectonic theory	. 2-3
Figure 2-3.	Location of rock outcrops	. 2-3
Figure 2-4.	Folding of sedimentary rock layers	. 2-4
Figure 2-5.	Common types of folds	. 2-5
Figure 2-6.	Topographic expression of plunging folds	. 2-5
Figure 2-7.	Fold symmetry	. 2-6
Figure 2-8.	Faulting	. 2-7
Figure 2-9.	Fault zone	. 2-7
Figure 2-10.	Thrust fault with drag folds	. 2-8
Figure 2-11.	Fault terminology	. 2-8
Figure 2-12.	Types of faults	. 2-9
Figure 2-13.	Graben and horst faulting	. 2-9

Figure 2-14.	Jointing in sedimentary and igneous rock	Page 2-10
Figure 2-15.	Strike	2-11
Figure 2-16.	<i>Dip</i>	2-11
Figure 2-17.	Measuring strike and dip with a Brunton compass	2-12
Figure 2-18.	Strike and dip symbols	2-12
Figure 2-19.	Strike and dip symbols of sedimentary rocks	2-13
Figure 2-20.	Symbolic patterns for rock types	2-17
Figure 2-21.	Geologic map symbols	2-18
Figure 2-22.	Placement of strike and dip symbols on a geologic map	2-19
Figure 2-23.	Geologic map and cross section	2-19
Figure 2-24.	Outcrop patterns of horizontal strata	2-20
Figure 2-25.	Outcrop patterns of inclined strata	2-20
Figure 2-26.	Outcrop patterns of an eroded dome	2-20
Figure 2-27.	Outcrop patterns of an eroded basin	2-20
Figure 2-2 8 .	Outcrop patterns of plunging folds	2-21
Figure 2-29.	Outcrop patterns produced by faulting	2-21
Figure 2-30.	Outcrop patterns of intrusive rocks	2-21
Figure 2-31.	Outcrop patterns of surficial deposits	2-21
Figure 2-32.	Ripping in the direction of dip	2-24
Figure 2-33.	Rock drills	2-24
Figure 2-34.	Rock slide on inclined bedding plane	2-25
Figure 2-35.	Rules of thumb for inclined sedimentary rock cuts	2-25
Figure 2-36.	Road cut alignment	2-27
Figure 2-37.	Quarry in the direction of strike	2-28
Figure 3-1.	Typical drainage patterns	. 3-3
Figure 3-2.	Topographic expression of a braided stream	. 3-4
Figure 3-3.	Stream evolution and valley development	. 3-5

Figure 3-4.	A vouthful stream valley 3-7
Figure 2 5	A mature stream valley 38
rigure 5-5.	
Figure 3-6.	An old age stream valley
Figure 3-7.	Meander erosion and deposition 3-10
Figure 3-8.	Point bar deposits designated by gravel symbols
Figure 3-9.	Channel bar deposits, oxbow lakes, and backswamp/floodplain deposits
Figure 3-10.	Meander development and cutoff 3-13
Figure 3-11.	Oxbow lake deposits, natural levees, and backswamp deposits
Figure 3-12.	Alluvial terraces
Figure 3-13.	Topographic expression of alluvial terraces3-15
Figure 3-14.	Growth of a simple delta
Figure 3-15.	Arcuate, bird's-foot, and elongate deltas
Figure 3-16.	Alluvial fan and coalescing alluvial fans
Figure 3-17.	Cedar Creek alluvial fan 3-19
Figure 3-18.	Coalescing alluvial fans 3-20
Figure 3-19.	Major floodplain features 3-21
Figure 3-20.	World distribution of fluvial landforms
Figure 3-21.	Ice sheets of North America and Europe
Figure 3-22.	Continental glaciation
Figure 3-23.	Alpine glaciation 3-25
Figure 3-24.	Moraine topographic expression with kettle lakes, swamps, and eskers
Figure 3-25.	Valley deposits from melting ice
Figure 3-26.	Idealized cross section of a drumlin
Figure 3-27.	Topographic expression of a drumlin field. 3-29
Figure 3-2 8 .	Distribution of major groups of glacial landforms across the United States
Figure 3-29.	World distribution of glacial landforms

-

Figure 3-30.	Three stages illustrating the development of desert armor	Page 3-32
Figure 3-31	Cutting of a ventifact	3-33
Figure 3.39	Folian fastures	3-33
F' . 0.00		0-04
Figure 3-33.	Sand dune types	3-34
Figure 3-34.	Loess landforms	3-35
Figure 3-35.	Topographic expression of sand dunes and desert pavement	3-36
Figure 3-36.	Worldwide distribution of eolian landforms	3-37
Figure 4-1.	Residual soil forming from the in-place weathering of igneous rock	. 4-4
Figure 4-2.	Soil profile showing characteristic soil horizons	. 4-5
Figure 4-3.	Dry sieve analysis	. 4-6
Figure 4-4.	Data sheet, example of dry sieve analysis	. 4-8
Figure 4-5.	Grain-size distribution curve from sieve analysis	. 4-9
Figure 4-6.	Well-graded soil	4-10
Figure 4-7.	Uniformly graded soil	4-10
Figure 4-8.	Gap-graded soil	4-10
Figure 4-9.	<i>Typical grain-size distribution curves for well-graded and poorly graded soils</i>	4-11
Figure 4-10.	Bulky grains	4-11
Figure 4-11.	Volume-weight relationships of a soil mass	4-12
Figure 4-12.	Layer of adsorbed water surrounding a soil particle	4-15
Figure 4-13.	Capillary rise of water in small tubes	4-16
Figure 4-14.	U-shaped compaction curve	4-18
Figure 4-15.	Liquid limit test	4-18
Figure 5-1.	Sample plasticity chart	. 5-3
Figure 5-2.	Graphical summary of grain-size distribution	5-20
Figure 5-3.	Breaking or dry strength test	5-22
Figure 5-4.	Roll or thread test	5-22

		Page
Figure 5-5.	Ribbon test (highly plastic clay)	5-23
Figure 5-6.	Wet shaking test	5-24
Figure 5-7.	Suggested procedure for hasty field identification	5-26
Figure 5-7.	Suggested procedure for hasty field identification (continued)	5-27
Figure 5-7.	Suggested procedure for hasty field identification (continued)	5-28
Figure 5-8.	Group index formula and charts, Revised Public Roads System	5-31
Figure 5-9.	Relationship between LL and PI silt-clay groups, Revised Public Roads System	5-32
Figure 5-10.	US Department of Agriculture textural classification chart	5-33
Figure 6-1.	Laboratory shear tests	. 6-3
Figure 6-2.	Correlation of CBR and AI	. 6-7
Figure 6-3.	Typical failure surfaces beneath shallow foundations	. 6-7
Figure 6-4.	Bearing piles	. 6-8
Figure 6-5.	Principal types of retaining walls	6-10
Figure 6-6.	Common types of retaining-wall drainage	6-12
Figure 6-7.	Eliminating frost action behind retaining walls	6-13
Figure 6-8.	<i>Typical timber crib retaining wall</i>	6-14
Figure 6-9.	Other timber retaining walls	6-15
Figure 6-10.	Typical gabion	6-15
Figure 6-11.	Bracing a narrow shallow excavation	6-16
Figure 6-12.	Bracing a wide shallow excavation	6-17
Figure 7a.	Hydrologic cycle	7-1b
Figure 7b.	Artesian groundwater	7-1c
Figure 7c.	Groundwater zones	7-1d
Figure 7-1.	Capillary rise of moisture	7-1e
Figure 7-2.	Base drains in an airfield pavement	7-1g
Figure 7-3.	Typical subgrade drainage installation	. 7-2
Figure 7-4.	Mechanical analysis curves for filter material	. 7-5

	Page
Figure 7-4a.	Porosity in rocks
Figure 7-5.	Determination of freezing index
Figure 7-6.	Formation of ice crystals on frost line 7-10
Figure 7-7.	Sources of water that feed growing ice lenses
Figure 8-1.	Typical moisture-density relationship. 8-3
Figure 8-2.	Moisture-density relationships of seven soils
Figure 8-3.	Moisture-density relationships of two soils
Figure 8-4.	Density, compaction, and moisture content
Figure 8-5.	Density and moisture determination by CBR design method
Figure 8-6.	Self-propelled, pneumatic-tired roller
Figure 8-7.	Compaction by a sheepsfoot roller
Figure 8-8.	Two-axle, tandem steel-wheeled roller. 8-20
Figure 8-9.	Self-propelled, smooth-drum vibratory roller
Figure 8-10.	Use of test strip data to determine compactor efficiency
Figure 9-1.	<i>Graphical method of proportioning two soils to meet gradation</i> <i>requirements</i>
Figure 9-2.	Arithmetical method of proportioning soils to meet gradationrequirements9-7
Figure 9-3.	<i>Graphical method of estimating plasticity characteristics</i>
Figure 9-4.	<i>Gradation triangle for use in selecting a stabilizing additive</i>
Figure 9-5.	Group index for determining average cement requirements
Figure 9-6.	Alternate method of determining initial design lime content
Figure 9-7.	Classification of aggregates
Figure 9-8.	Approximate effective range of cationic and anionic emulsionof various types of asphalt
Figure 9-9.	Determination of asphalt grade for expedient construction
Figure 9-10.	Selection of asphalt cement content
Figure 9-11.	Typical sections for single-layer and multilayer design 9-27

C1, FM 5-410

		Page
Figure 9-12.	Design curve for Class A and Class B single-layer roads using stabilized soils	9-31
Figure 9-13.	Design curve for Class C single-layer roads using stabilized soils	9-31
Figure 9-14.	Design curve for Class D single-layer roads using stabilized soils	9-31
Figure 9-15.	Design curve for Class E single-layer roads using stabilized soils	9-32
Figure 9-16.	Design curve for Class A and Class B multilayer roads using stabilized soils	9-33
Figure 9-17.	Design curve for Class C multilayer roads using stabilized soils	9-33
Figure 9-18.	Design curve for Class D multilayer roads using stabilized soils	9-34
Figure 9-19.	Design curve for Class E multilayer roads using stabilized soils	9-34
Figure 9-20.	Equivalency factors for soils stabilized with cement, lime, or cement and lime mixed with fly ash	9-36
Figure 9-21.	Design curves for single-layer airfields using stabilized soils in close battle areas	9-38
Figure 9-22.	<i>Design curves for single-layer airfields using stabilized soils in rear areas</i>	9-39
Figure 9-23.	<i>Design curves for single-layer airfields using stabilized soils</i> <i>in rear area 6,000'</i>	9-40
Figure 9-24.	Design curves for single-layer airfields using stabilized soils in tactical rear area	9-40
Figure 9-25.	Design curves for single-layer airfields using stabilized soils in tactical COMMZ areas	9-41
Figure 9-26.	Design curves for single-layer airfields using stabilized soils in liaison COMMZ airfields	9-42
Figure 9-27.	Design curves for single-layer airfields using stabilized soils in COMMZ	9-43
Figure 9-28.	Design curves for single-layer airfields using stabilized soils in semipermanent COMMZ airfields	9-44
Figure 9-29.	Thickness design procedure for subgrades that increase instrength with depth	9-53
Figure 9-30.	Thickness design procedure for subgrades that decrease instrength with depth	9-54
Figure 9-31.	Polypropylene membrane layout for tangential sections	9-64
Figure 9-32.	Polypropylene membrane layout for curved sections	9-64

		Page
Figure 9-33.	Dust control effort required for heliports	9-73
Figure 9-34.	Cross section of dune showing initial and subsequent fences	9-75
Figure 9-35.	Three fences installed to control dune formation	9-75
Figure 9-36.	Three types of solid fencing or paneling for controlof dune formation	9-76
Figure 9-37.	Schematic of dune destruction or stabilization by selective treatment	9-77
Figure 10-1.	Slope of bedding planes	10-2
Figure 10-2.	Normal force	10-4
Figure 10-3.	Downslope or driving force	10-5
Figure 10-4.	Frictional resistance to sliding	10-6
Figure 10-5.	Frictional resistance to sliding with uplift force of groundwater	10-9
Figure 10-6.	Fricitonal resistance to sliding with and without groundwater	10-9
Figure 10-7.	Debris avalanche	10-11
Figure 10-8.	Backward roation of a slump block	10-12
Figure 10-9.	Jackstrawed trees	10-12
Figure 10-10.	Structural features of a slump	10-13
Figure 10-11.	Road construction across short slopes	10-13
Figure 10-12 .	Increasing slope stability with surface drainage	10-14
Figure 10-13.	Using rock riprap to provide support for road cuts or fills	10-15
Figure 10-14.	Installing interceptor drains along an existing road	10-15
Figure 10-15.	Building a road on a blanket	10-16
Figure 10-16.	Block diagram of a Type I site	10-17
Figure 10-17.	Topographic map of Type I site	10-18
Figure 10-18.	Pistol-butted trees	10-19
Figure 10-19.	Tipped trees	10-19
Figure 10-20.	Tension cracks	10-19
Figure 10-21.	Safe disposal site	10-20

C1, FM 5-410

	Page
Figure 11-1.	Comparison of aggregate depth requirements with and without a geotextile
Figure 11-2.	Effect of pumping action on base course
Figure 11-3.	Separating a weak subgrade from a granular subbase with a geofabric
Figure 11-4.	Determining the soil's shear strength by converting CBR value or Cone Index
Figure 11-5.	Thickness design curve for single-wheel load on gravel surfacedpavements11-7
Figure 11-6.	Thickness design curve for dual-wheel load on gravel surfaced pavements 11-7
Figure 11-7.	Thickness design curve for tandem-wheel load on gravel-surfaced pavements11-8
Figure 11-8.	Construction sequence using geotextiles 11-11
Figure 11-9.	Constructing an earth retaining wall using geofabrics
Figure 11-10.	Sand grid
Figure 12-1.	Maximum depth to permafrost below a road after 5 years in a subarctic region
Figure 12-2.	Thickness of base required to prevent thawing of subgrade
Figure 12-3.	Distribution of mean air thawing indexes (o)—North America 12-10
Figure 12-4.	Distribution of mean air thawing indexes (°)—Northern Eurasia 12-11
Figure 12-5.	Distribution of mean air thawing index values for pavements in North America (°)
Figure 12-6.	Determining the depth of thaw beneath pavements with gravel bases
Figure 12-7.	Determining the depth of freeze beneath pavements with gravel bases
Figure 12-8.	Permafrost degradation under different surface treatments
Figure A-1.	CBR design flowchart A-2
Figure A-1.	CBR design flowchart (continued) A-3
Figure A-2.	Grain size distribution of Rio Meta Plain soil A-7
Figure A-3.	Plasticity chart plotted with Rio Meta Plain soil data

Figure A-4.	Density-moisture curve for Rio Meta Plain soil	Page
Figure A-5.	Swelling curve for Rio Meta Plain soil	A-10
Figure A-6.	CBR Family of Curves for Rio Meta Plain soil	A-11
Figure A-7.	Density-moisture curve for Rio Meta Plain soil with density and moisture ranges plotted	A-12
Figure A-8.	CBR Family of Curves for Rio Meta Plain soil with density range plotted	A-13
Figure A-9.	Design CBR from Rio Meta Plain soil from CBR Family of Curves	A-14