conirincaitial

Approved For Release 2000/08/10 : CIA-RDP96-00787R000200150006-0 departure from random expectation during the successful run, and therefore, the significant result cannot be attributed to machine malfunction. At a later time, subject S 2 was asked to repeat the entire experiment, and he was able to replicate successfully a high mean scoring rate $(27.88 / 100$ average over 2500 trials, a result whose a priori probability under the null hypothesis is $p=4.8 \times 10^{-4}$).

We thus conclude from this part of the study that of the six subjects tested, one subject (S2) generated a significant result replicable and not attributable to machine malfunction.

Finally, the study taken as a whole (15,750 trials) was significant, yielding an average scoring rate 26.47 hits/l00 trials, a result whose a priori probability under the null hypothesis is $p=1.1 \times 10^{-5}$. The bit rate associated with the information channel can be calculated from

$$
R=H(x)-H_{y}(x)
$$

where $H(x)$ is the uncertainty of the source message containing symbols with a priori probability P_{i}

$$
H(x)=\sum_{i=1}^{4} p_{i} \log _{2} P_{i}
$$

and $H_{y}(x)$ is the conditional entropy based on the a posteriori probabilities that a received symbol was actually transmitted

$$
H_{y}(x)=-\sum_{i, j=1}^{4} P(i, j) \log _{2} P_{i}(j) .
$$

Approved For Release 2000/08/10 : CIA-RDP96-00787R000200150006-0 For S^{\prime} 's first run, with $\mathrm{P}_{\mathrm{i}}=1 / 4, \mathrm{P}(\mathrm{k}, \mathrm{k})=0.2936$, and an average of 30 seconds per choice, we have a source uncertainty $H(x)=2$ bits and a calculated bit rate \therefore

$$
R \approx 0.007 \mathrm{bits} / \text { symbol }
$$

or

$$
\mathrm{R} / \mathrm{T} \approx 2 \times 10^{-4} \mathrm{bits} / \mathrm{sec}
$$

