PATHOLOGICAL SCIENCE

1 Langmuir

(Colloquium at The Knolle Research Laboratory, December 18, 1953)
Trangeribed and edited by R. N. Hall

preface

On Decamber 18, 1953, Dr. L-ving Langmuir gave a colloquium at the Regearch Laboratory that will long be remembered by thase in his audiance. The talk was concermed with what Langmuir called "the science of thinga that aren't so, "and in it he gave a colorful account of aeveral examples of a particular kind of pitiall into which acientists may sometimes atumble.

Langmuir never published his investigations into the aubject of Pathalogical Science, • A tape recording Was made of his speech, but this has been lost 0 or erased. Recently, however, 2 microgroove diak transeription that was mede from this tape was found among the Langmuir papera in the Library of Congreas. This disk recording in of poor quality, but most of What he said can be underatood with a little practice, and it constisutes the text of this report.

A small amount of editing was felt to be desirble, Some abortive of repetitious gentences were eliminated. Figures fram corresponding publications were used to represent his blackboard aketches. and some references were added for the benefit of anyone wishing to undertake a further investigation of this subject. The disk reconding has been transcribed back onto tape, and a copy is on tile in the Whitaey - Idbrary.

Gratitude is hereby expressed to the stalf of the Manuseript Division of the Library of Congress for their cooperation in lending us the disk recording so we could obtain the best possible copy of the Langmuir speech, and for providing access to other related Langmuir papera.

COLLOQUIUM ON PATHOLOGTCAL SCIENCE, by lyotage Langmuir

This is fecorded by leving Langrouif on Mareh 8. 1954 It 15 tranieribed ifom a tape recording, eection number.thret, of the jecture on "Pathological Sctence" that I gave on December 28, 1953.

Contente:

Page
Characteristic Symptoms of Pathological Science Allison Effect
Extrasensory Perception
Flying Saucers 9

Question Period 11

Epilogue 11
Eplogue 12
References 13

Davis-Barnes Effect

The thing started in this way. On April the 23rd; 1929. Professor Bergen Davis from Columbia University came up and gave a colloquium in this Laboratory, in the old building, and it was very inter= esting. He told Dr. Whitney, and myself, and a few others something about what he was going to talk about beforehand and he was very enthusinstic about it and he got us interested in it, and well. I'Il show you right on this diagram what kind of thing happened (Fig. 1).

Fig. 1 Diagram of Ilrat experimental tube. S, radioactive Eource; W, thin glase window; F, flament; G, grid; R, lead to ailvered eurface; A. second anode: M, magnetic field; C, copper seale; $Y_{\text {a }}$, and Z, zine gulfide gereens.

He produced a bearn of alpha rays from polonium in a vecuum tube. He had perabolic hot cathode electron emitter with a hole in the middle, and the elpha rays came through it and could be counted by seintillationg on a zinc sulfide seretn with a microscope over here (Y and Z). The electrons werefor cused on this plate, co thet for a distance there was

A stream of electrons moving along with the alpha particies. Now you could accelerate the electrons and get them up to the velocity of the alpha particles. To get an electron to move with that velocity takee about 590 voliss; so if you put 590 volts here, accelerating the electrons, the electrons would travel along with the alphe particies and the idea of the experiment was that if they moved along together at the game relocity they might recombine so that the alpha parifcle would los one of ita charges, would pick up an electron, so thxt instead of being a helium atom with two positive charges it would only have one oharge. Well, if an alpha particle with a double charge had one electron, it's like tha Bohr theory of the hydrogen atom, and you know its energy levela. It'a jugt like a hydrogen atom, with a Balmer series, and you can calculate the enerpy mecessary to knock off this election and so on

Well, what they found, Davis and Barnes, was that if this veloctiy was made to be the same an that of the alpha particle there was a loss in the number of deflected particies. If there were no electrons. for example, and no magnetic fleld, all the alpha particles would be collected over here (X) and they had something of the order of 50 peir minute which they counted over here. Now if you put on a magnetic field you could denect the alpha particles so they go down here $\langle Z$. But if they pieked up an electron then they would only have half the charge and therefore they would only be dellected hall as'much and they would not strike the acrech

Now the resulte that they got, or said they got at that time, were very extraordinary. They found that not only did these electrons combine with the alpha particles when the electron velocity was 390 volts, but alao at a aeries of discrete differences of voltage. When the velocity of the electrons was less or mote than that velocity by perfectly discrete amounts, then they could also combine. All the results seemed to show that about 80% of them combined. In other words,
\therefore there was about an B0\% change in the current when the conditions were right Then they found that the velocity differeaces had to be exactly the velocities that you can ealculate from the Bohr theory. In other words, if the electron coming along here happened to be going with a velocity equal to the velocity that it wauld have if it was in a Bohr orbit, then it will be captured.

Of course, that makes a dirficulty right away because in the Bohr theory when there is an electron coming in from frinity it has to give up hall its energy to setile into the Bohr orbit. Since it must conearve energy. it has to radiate out, and it radiates out in amount equal to the energy that it hal left in the orbit. So, if the electron comes in with an amount of energy equal to the amount you are going to end up with, then you have to radiate an amorint of ensrgy equal to twice that. Which nobody had any evidence for. So there whe a litle difficulty which never was quite resolved although there were two or three people including some in Germmy who worked up theories to
nccount for how that might be. Sommerfeld. for example, in Germany. He worked up a theory to account for how the electron could be captured if it had a velocity equal to what it was golng to have ufter it getthed down into the orbil.

Well, there were these discrete peaks, each one corresponding to one of the energy levels in the Bohr theory of the helium atom, and nothing else. Those were the only thinga they recorded. So you had these diacrete peaks. Well, how wide were they? Well, they were one hundredsh of a volt wide. in other words, you had to have 590 volta. That would give you equal velocitiea but there were other peaks, and 1 think the next velooity would be about 325.1 volts. If you had that voliage, then you got beautiful capture. If you didn't, if you changed it by one pundredth of a volt-nothing. It would fo right from BO\& down to nothing. It wis aharp. They were only able to measure to a hundredth of a volt so th wan an all-or-none effect. Well, besides this peak at this point, there wereten or twelve different lines in the Balmer deries, all of which could be detected, and all of which had in 80% efficiency. (See Fig. 2.) They'dmost completely eaptured all the electrons when you got exactly on the peak.

Fig. 2 Electron capture as a function of accelerating voltage. [Copy from Barnes. Fhys. Rev. . 35, 217 (1930).]

Well, in the discuseion we questionsd how. experimertally, you could examine the whole spectrum; because each count, you see, takes a long ture. There wan a jong serien of alpha perticle counts, that took two minutes at a time, and you had to do it ten or fifteen times and you had to adjust the voltage to a hundredth of a volt. If you have to go through efeps of a hundredth of a volt each and to cover all the range from 330 up to 900 volts, you'd herve quite a job. (Laughter) Well, they maid thet thay didn's do it quite that way. They had found by some preliminary work that they did check with the Bohr orbit veloalties 80 they knew where to look for them They found them eometimes not exactly where they expected them but they explored around in that naighbortiood and the result was that they got them with extroordion ry preclaton So high, in fact, that they wert aure they'd be able to check the Rydberg conatant more aceurately
than it can be done by studying the hydrogen spectrum, which it something like one in 10°. At any rate, they bad no inhibitions at all as to the accuracy which could be obtained by thds method eapecially since they were measuring these roltages within a hundredth of a volt.

Anybody who looks at the getup would be a ditule doubtful about whether the electrons had velocities that were fixed and definite vithin $1 / 100$ of a volt because this is not exactiy a homogeneous field The distance was only about 5 mm in which they were moving along together.

Well. in his talk, a few other thinge came out that were very interesting. One wis that the percentage of capture was always aroundi 80%. The curves would corne along lide thic as a function of voltage (Fig. 2) The curve would come along at about sos and there would be a tharp peak up here and another sharp peak here and, well, all the peaks were about the game height.

Well, we asked. how did this depend upon ourrent denstiy? "That's very Interesting," he said. "It doesn't depent at all upon current denaity. ${ }^{\circ}$

Wo asked, "How much could you change the temperature of the cathode here?"

WWell," he gaid, "that's the queer thing about it. Tou can change is all the way down to room temperature. " (Laughter)

WWell, "I said, "then you wouldn't have any electrons."
"Oh. 5es." he sald, "if you check the Hichardson equation and cateulate, you'll isind that you get electrons even at room temperature and those are the ones that are captured.
"Well," I said, "there woulda't be enough to com" bine with all the alpha particles and, besidee that, the alpha particles are only there for a ahort time as they pass through and the electrond are a long way apart at euch low eursent densities, at 10^{-20} amperes or bo. " (Laughter)

He sald, Thit aeemed like quite a great difftculty. But," he maid, "you see it isn't so bad because we now know that the electrons ase waves. So the elecitron doesn't have to be there at all in order to combine with something. Only the waves have to be there and they can be of lóm intenaity and the quantum theory eauges all the electrons to plie in at just-the Mght place where they are needed. ". So he saw no difficulty. And so it went

Well. Dr. Whitacy 1 iken the experimemal method; and these were experimenta, very careful expentments, described in great detall, and the results seemed to be very interestiog from a kheoretical point of Fiew. So Dr. Whitney suggested that he would like to see theae expertments repeated with a geiger
counter instead of counting saintillations, and C. W. Hewlett. Who was here working on gelger counters. had a setup and it was proposed that we would give him one of these, maybe at a cost of aeveral thougand dollarit of so for the whole equipment, so that ho could get better data. But I was a little more cautious. I said to Dr. Whitney that bofor we wetually give it to him and just turn it over to him. It would be well to go down and take a look at these experfments and see what they really mean. Well. Hewlett was very much interested and I wae interested so only about two days later, after this colloquium, we went down to New York. We went to Davin's Laboratory at Columbia Jniversity, and wo found that they were very glad to see us, very proud to show us all thetr results, so we atarted in early in the morning.

We gat in the darix room for half an hour to get our eyes adapted to the darkness so that we could count scintulations. I said, first I would like to see these scintillations with the field on and with the field off. So I looked in and I counted about 50 or 60. Hewlett counted 70, and I counted somewhat lower. On the other hand, we both agreed aubstantially. What we found was this. These scintillations were quite bright with your eyes adapted, and there was no trouble at all about counting them, when these alpha particles struck the ecreen. They came along ata rate of about 1 per second. When you put on a mag. netic field and dellected them out, the count came down to about 17, which was a pretty high percentage, about 25% bacliground. Barnes was sitting with us, and he Eaid that's probably radiapetive contamination of the acreen. Then, Barnes counted and be got 230 on the first count and about 200 on the next, and when he put on the field it went down to about 25. Well, Hewlett and I didn't know what that meant but we couldn't see 230, Later. We understood the reason.

I had seen, and we discussed a little at that point, that the syepiece was such that as you looked through. you got some flashes of light which I took to be flashes that were just outside the field of view that would give a diffuse glow that would be perceptible, And you could count them as eventa. They clearly were not particles that atruck the acreen where you saw it, but nevertheless, they seemed to give a diffuse glow and they came at disorete intervals and you could columt those if you wanted. Well. Hewlett counted those too and I didn't. That accounted for zome difference. Well, we djen't bother to oheok into this, and we went on.

Well. I don't want to apend too much timie on this experiment. I have a 22 -page letter that i wrote about thete thinss and I have a lot of notes. The glat of it was this. There was a long table at which Barnes was sittlag, and he had another table over heie where he had an assistant of his samed Hull who gat here looking at a big scale voltmeter. or potentiometer really, but it had a scale thit went from one to a' thousand volts and oin that acale that wert irom one to a thousand, he read hundredths of a'volt. (Laughter) He thought he might be able to do a little better than
that. At any rete. you could interpolate and put down figuret. you know. Now the rooun was dark except for a dittje light here on which you could read the ecale on that meter. And it wan dery except for the dial of a clock and he counted seintllazions for two minutes.
'He sald he elwaye counted for two minutes. Actually, I had a thop watch and I checked him up. They sometime were as low as one minute and ten seconds and mometimes one minute and fifty-five seconds but he counted them all as two minute日, and yet the resulta were of high accuracy!

Well, we made various suggestions, One was to tarn oft the voltage extirely, Well, then Barnes got mome low valuea around 20 or 30 , or mometimes as high as 50. Then to get the conditions on a peak he adjusted the voltage to two huadred and ..., well come of those readinge are interesting; 325. 01. That's the figture I put down and there he got only a reading of 52 , whereas before when he was on the peak, he got about 230. He didn't like that very much so he tried changing this to.02; a chenge of one hundredth of a volt And there be got 48 . Then he went in between (Laughter) They fell off, you zep, Bo he tried 325. 015 and then be got 107. So that was a peak.

Well. a lutle later, I whispered to 'Eull who was over here adjusting the voltage, holding it constant. I euggested to hirm to make it onc tenth of a volt diffarent Barnen didn't know this and he got 96 . Well. when I suggeated this change to Hull, you could see frumediately that he wis amazed. He asid, "Why; thet'a koo big a change. That will put it way oft the peak." That was almost one tenth of a volt, you see. Later I auggeated taking a whole volt. (Laughter)

Then we had lunch We gat for hall an hour in the dark room so as not to spoll our eyes and then we had some readings at zero valta and then we went back ta 325.03. We changed by one hundredth of a volt and there he got 110. And now he got two or three readings at 110 .

And then I played a dirty trick I wrote out on a eard of paper 10 differeat sequences of V and 0 . 1 meent to put on a certain voltage and then take it off again Later I reallzed that that wann't quite right becauge when Hull took off the voltage, he sat beck in hia chatr-there was nothing to regulate at zero, so he didn't Well, of course, Bernes saw him whenever be alt back in his chaif. Although. the light wasi't very bright, the could ace whether ho wea aitting beck is his ciratr or aot so he know the voltage wasn't on and the $x=y$ ult way that he gote correspond. Ing result. So later - mhapered, "Don't let him know that you're not readi. sa" and I anked him to change the rotiage from 323 down to 320 so he'd have something to regulate and I aaid, "Regulate it fuat as carefully as if you went witting on a peak." go he played the part from that inme on, and from that tyme on Barrea' geadinga tid nothisg whatevar to do with the
voltrges that were applied. Whether the voltage Fas at one palue or another didn't make the slightest difforence. After that he took twelve readings. of which about half of them were right and the other half were wrong, which was ebout what you would expect out of two sete of velues.

1 gadd, MYou're through. You're notmeasuring anything at all. Youn never have measured anything at all.
"Well," he said, "the tube wan gasey. (Laughter) The semperature has changed and therefors the nickel platea must have deformed themselves so that the electrodes are no longer lined up properly."
"Well," I said, "ian't this the tube in which Davis agid he got the eame results when the fllament wat turned off completely?
"Oh, yea," he eaid, "but we lways made blanks to check ourselves, with and without the voltage on"

He immediately--without giving any thought to it--he immediately had an excuse. He had a reabon for not paying any atteniton to any wrong results. It' Just was built into him. He just had worked that way all along and always would. There is no question but what he is honest; he belleved these things, absolutely.

Hewlett stayed there and continued to work with him for quite a while and I went in and talked it over with Davis and he was simply dumblounded. He couldi't belleve a word of it. He sajd, "It absolutely cen't be," he said. "Look at the way we found those peaks before wo knew arvihing sbout the Bohz theory. We took those values and calculated them up and they checked exnctly. Later on, after wo got confirmation, in order so anve time, to see whether the peaks were there we would calculate ahead of time." He was so sure from the whole history of the thing that fo wes utterly impoasible that there never had been any measurements at all that he just wouldn't believe it.

Well. he had just read a paper before the Resesrch Laboratory at Sehenectady, and he was golng to fead the paper the following Saturday before the National Academy of Sciences; which he did, and gave the whole paper. And be wrote me that he-was going to do so on the 24 th. I wrote to him on the day after I got back Orx letters crossed in the mails and'he said that he had been thinking over the verious thinge that I had told him, and his confldence wasn't ahaken, so he went a head and presented the paper before the National Academy of Sciences.

Then I wrote him a 22 -pege letter giving all our data and showing really that the whole approach to the thing wat wroagt that he was counting halluctnations, which I find is oommon among people who Work with aciutillations if they count for too long. Earnea counted for aix hours a day and it never fatigued ham. Of course it didnlt fatigue him, because It was all made up out of his head. (Laughter) He
told us that you muatn＇t count the bright particles． He had a beautiful reason for why you mustn＇t pay any witention to the bright fasshes．When Hewlett sried so check his dare he said．＂Why，you must be counting thase bright lashes．Those things are only due．to radioactive contamination or something else．＂He had a reason for rejacting the very essence of the thing that was importart．So I wrote all this down in this letser and I got no response，no encourkgement． For a long time davis wouldn＇t have anything to do with it Fe wept to Europe for a six months leave of absence，camie back later，and I took up the matter with him agajn（1）

In the meantime，I aent a copy of the letter that I had written to Davis to Bohr asking him to hold it confidential but to pess it on to various people who would be trying to repeat these experiments．To Pratessor Sommerfeld and other people and it headed off a lot of experimental work that would have gone oni And from that tsme on nobody ever made another experiment except one man in England who didn＇t know about the letter that I had written to Bohr，(2) And he was not able to confirm any of ft．Well，a year and a half later，in 1931，there was yust a short little article in the Phybical Review in whtch they $7 a^{2} y^{\prime}$ that they haven＇t been able to reproduce the effect（3） TThe results reported ta the earlier paper depended upon observations made by counting scintillations Fisually．The scintillations produced by alpha par－ ticlea on a zinc gulfide ecreen are a threahold phe－ nomenom it is posible that the number of counts may be influenced by extermal auggestion or auto－ auggestion to the observer，＂and later in that paper they said that they had not been able to check any of the older data．And they didn＇t even eay that the tube wee gassy．（Leughter）

To me，the thing ts extremely interesting，that men；perfectly honest，eathusiastic over their work， can so completely fool themselves．Now what was it about that work that made it so easy for them to do that？Well，I began thinking of other thingg．I had aeen R．W．Wood and told him about this phenom－ enon beczuse he＇s a good experimenter and doesn＇t make such mistakes himself very often，if at all． And he told me about the \mathbb{N}－mays that he had an ex－ perience with back in 1904 So I looked up the data on the N－rays．（4，5）

N－ratys

In 1903．Blondlot，who was a woll－thought－of French scientist，member of the Academy of Sciences． was experimenting with x－rtys at almoat everybody Whe in those dayt．The effect that he observed was something of this sort．I won＇t give，the whole of it． I＇ll jugt give a few outstanding points．Fe found that if you have a hot wire，a platinum．wire，or a Nermat filament or aroything that＇s heated very hot inside an fron tube and you have a window cut in it and jou have a piece of aluminum about $1 / 8$ of an tach thick on it，that some riys come out through that aluminum window． Ob ，it can be as much an two or three inched
thick and go through aluminum，thege rays can，but not through iron The rays that come out of this little window fall on a faintly liluminated object，so that you can just barely see it．You must sit in a dark room for a long time and he used a oalcium sulflde sereen which cain be thlumanated with light and gave out a very faint glow which could be seen in a dark room．Or he used a source of light irom a lamp shining through a pinhole and maybe through another pinhole so as to get a falnt light on a white surface that was just barely visible．

Now he found that if you turn this jamp on so that these rays that come out of this littie sluminum slit would fall on this piece of paper that you are looking at，you could see it much better．Oh much better， and the refore you could tell whether the rays would go shrough or not．He ald later that a great deal of skill is nesded，He said you mustn＇t ever look at the source．You don＇t look directly at it．He said that would tire your eyes．Look away from it，and he axid pretty soon you＇ll sée it，or you don＇t see it． depending on whether the N－rays are shining on this plece of paper．In that way，you can detect whether or not the N－rays are acting．

Well，he found that N－rays could be stored up in thangs．For example，you could take a brick．He found that N －rays would go through black paper and would go through aluminum．So he took some black papor and wrapped a brick up in it and put it out in the etreet and let the sun shine through the black paper into the brick and then he found that the brick wordd store N－rays and give off the N－rays even with the black paper on it．He would bring it tato the lab－ orafory and you then hold that near the piece of paper that you＇re looking at，iaintly illuminated，and you can bee it much more accurately．Much better，if the N－rays are there，but not if it＇s too far away．Then he would have very faint strips of phosphorescent paint and would let a beam of N －raya from two slite come over and he would find exactly where this thing intenstified its beam．

Well，you＇d think he＇d make such experiments as this．To aee If with ten bricks you got a atronger effect than jou did with one．No，not at all．He didn＇t get any gtronger effect．It didn＇t do any good to inorease the Intensity of the light．You had to de－ pend upon whether you could set it or whether you couldn＇t see it．And there，the N －ray were very important．

Now，a little Later，he found that many kinda of things gave off N－gaye．A human being gave ofi N－rays． for example．If eomeors elve came into the room， then you probably could see it．He also found that if someone made a loud noise that would apoll the effect． You had to be sllent．Heat，however，increased the effect，radiant heat．Tot that waen＇t N－rey itself． N－mays were not heat becalue heat wouldn＇t go through aluminum．Now he found a very intereating thing about it was that if you take the briok that＇s giving off N－rays and hold is elose to your head it goes
through your akull and it allows you to wee the paper better．Or jou cat hold the brick near the paper． thet＇s all right 200.

Now he found that there were some other things that were ilke negative N－raje．He called them N^{1-} rays．The effect of the N－rays to to decrease the viafibility of a faintly illuminated silt．That worke too，but only if the angle of incidence in right．If you look at it tangentially you fird that the thing ir－ creases the intenaity when you look at it from this point of view．It deareases if you look at it normally and it increages if you look at it tangentially．All of which is very finteresting．And he publlaned many papers on th．One right after the other and other people did too，confirming Blondiot＇s reaults．And there were lots of papera published and at one time ebout hall of them that were confliming the regults of Blondiot．You ace，N－rays ought to be tmportant because x－rays were known to be importam and alpha rays were，and N－crays were somewhere in be－ twecen 00 N－rays muat be very important．（Laughter）

Wey．R．W．Wood heard bbut these experin ments－～everyboty did more or lees．So R．W．Wood Went over there and at that time Blondlot had a priam， quite a large prigio of aluminump with a 60° angle and he had a Nernst clament with a litile silt about 2 min wide．There were two silts， 2 mm wide each． This beam fell on the prosma and was refracted and he meanured the refractive index to three aignificant figures．He found that te wasn＇t monochromatic， that there were several differant components to the N－rays and he fornd diflerent refractive indicea for esch of these componente．He could measure three or four different refractive indices each to two or three aigntileant figares，and he wan repeating nome of these and showing how accurately they were re＊ peatable，ahowing to to R．W．Wood in this dark room．

Well，atter this had gone on for quite a while， and Wood found that he was checking these results very accurately，measuring the position of the Ittile plece of paper within a tenth of a millimeter although． the slits were 2 mm wide，and Wood asked him about that He said，＂Eow？How aould you，irom just the optice of the thing．With alita two millimeters wice， how do you get a beam so．flre that you can detect its position within a tenth of a millimeter？＂

Blondiot said，＂rhat＇s one of the fascinating thinga about the N －rays They don＇t follow the or－ dinary lawe of ectance that you ordinarily think of．＂ Ele said，＂You have to consider theese things all by themselven．They are very interesting，but you have to discover the laws that fovern khem．＂

Well．in the menpricas，the 200 b being very dark，Wood asked him to repent some of these mea－ surements which he wat ondy 100 glad to do．But in the meantime，R．W．Wood put the prism in his pocket and the results checked perfectly with what he had before．（Laughter）Well．Wood rather cruelly published that $(6,7)$ And that was the and of Blondiot．

Nobody mecounte for by what methoda he could reproduce those results to a terth of a minumeter． Wood said that he ofemed to bo able to do it but no－ body understanda that．Nobody underatanda lots of things．But some of the Germans came out lafer－ Pringaheim was one of them－－game out with an ex－ tremely interesting atory．They had tried to repent some of Blondlot＇s expertments and had tound this． One of the expertments wae to have a very falith source of Hight on a berect of paper and to make eure that you are seelng the sereen of paper you hold your hand up like thia and move it back mind forth．And if you can see your hand move back and forth then you know it is illumipated．One of the experiments that Blondiot made was that the experiment was made much better If you had some N－rays falling on the plece of paper． Pringaheim was repeating these in Germany and he found that if you didn＇t know where the paper was． Whether it was bere or here（in front or behind your hand），it worked just as well．That 1s，you could see your hand just as well if you beld it back of the paper as if you held it in front of tt ．Which is the natural thing，because thia is a threshold phenomenoh And a threshold phenomenoin meane that you don＇t know， you really don＇t know，whether you are geeing it or not But if you have your hand there，well．of course． you see jour hand because you know your hand＇s there， and that＇s fust enough to win you over to where you know that you see it．But you know it just as well it the paper happens to be in front of your＇hame instead of in back of your hand，becauge you don＇t know where the paper is but you do know where your hand in． （Laughter）

Mitogenetic Pays

Wall，jet＇s go on About 1923，there was a whole gemes of papers by Gurwitach and others．There were hundreds of them published on mitogenetic rays．${ }^{(8)}$ There are still a few of them being publiahed．I don＇t know how many of you have ever＇heard of mitogenetic rayn．They are rays that are given off by growing planta．living things，and they were proved．accord－ ing to Gurwitach，that they were aomething that would go through quate but not through giaga．They aeemed to be some sort of ultraviolet light．

The way they stucied these weat thit．You had some onion roots－oonions growing in the dark or in the light and the roots wril grow itraight down．Now If you had another onion root nearby，and this onion root was growing down through a tube or something， going atraight down，and another onion root oame nearby，thia would develop ato that there were more celle on one oide than the other．One of the teste they had made at first whe theit thie root would berid away．And as it grew thic would change in direction Which was evdience that something had traveled from one onfon root to the other．And if you had a plece of quarit in between it would do it，but if you put glase in between it wouldn＇t So this radiation would not go through giags but it would go through quartz．

Well，it started in that way．Then everything
gave off mitogenetio rays, anything that remotely had anything to do with living things. And then they started to use photoelectric cells to check it and whatever they did they practically always found that if you got the conditions just wight, you could just detact it and prove it. But if you looked over those photographic plates that showed this ultraviolet light jou found that the amount of light was not much bigger than the natural particles of the photographic plate 80 that people could have different opinions as to whether is did or didn't show this effect and the result was that lege than half of the people who tried to repent these experiments got any confirmation of it; and so it went. Weil, ill go on before I get too far along.

Characteristic Symptoma of Pathological Science

The characteristics of this Davis-Barnes experiment and the \mathbf{N}-rays and the mitogenetic rays, they have things in common. These are cases where there is 10 dishonesty Invoived but where people are trifired fato false reoulte by a lack of understanding about what human beings can do to themselves in the way of being led astray by aubjective effects, wishful thinking or threahold joteractions. Theat are examples of pathological ycience. These are things that attracted a great deal of attention Usually hundreds of gapera have been published upon them. Sometimes they have lasted for fifteen or twenty years and then they gredually die eway,

Now, the charecteristic rules are these (ace Table 1t.

TABLE I

Symptoms of Pathological Saience:

1. The maximum effeck that is observed is produced by a causative agent of barely detectable intenstity, and the magritude of the effect is substantinlly independent of the intengity of the cause.
2. The effect is of a magnitude that remains close to the limalt of detectability; or, many measuremente are necessary because of the very low statistical significance of the retults.
3. Clatins of great aceuracy.
4. Fantantic theories contrary to experience.
5. Crdticiams are met by ad hoc excusea thought up on the spur of the moment.
6. Ratio of supporters to critice rises up to somewhere near 50\% and then falls gradually to oblivion

The maximum atfect that is observed in produced by agugative agent of barely detectable intensity. For arample, you might thinli that if one onion root would affeet anothef due to ultraviolet Light, you'd think
that by putting on an ultraviolet source of light you could get it to work better. Oh nol OH NO It had to be just the कmount of intensity that's given off by an onton root. Ten onion rootw wouldn't do suy better than one and it doesn't make any difference about the distance of the sourct: it doesn't follow and inverae square law or anything as aimple an that, and so on In other words, the effect is independent of the intensity of the cause. That was true in the mitogenetic raye, and it wap true in the N-rays. Ten bricks didn't have any mort effect than one. It had to be of Jow intensity. We know why it had to be of low intensity: so that you could fool youraelt so easily. Otherwise, it wouldn't work Davis-Bames worked just as well when the fllament was turned off. They counted scintillations.

Another chiracteristic thing about them all is that, these observations are near the threshold of viaibility of the eyes. Any other sense, I auppose, would work as well. Or many measurements are necessary, many measurements becaube of very low Etatietical gignificance of the resulks in the mitogenetic rays particularly, it akazed out by seeing something that was bent Later on, they would take a hundred onion roots and expose them to something and they would get the avarage position of all of them to see whether the average had been affected a little bit by an appreciable amount. Or statíatical measurementa of a very small effect which by taking large numbers were thought to be aigaticant. Now the trouble with that is this. There is a habit with most people, that when measurements of low signiticance are taken they find means of rejecting data. They are right at the threshoid value and there are many reasons why you'cen discard data. Davis and Barnes were daing that right along U things were doubttul at all why they would ciacard them or not discard them depending on whether or not they fit the theory. They didn't know thit, but that's the was it woried out.

There are claims of great accuracy. Bames we going to get the Rydberg constant more accurately than the apectroscopists could. Great eensitivity or great specifleity, we'll come acroas that particulars in the Allison effect.

Femtastio cheorios cortrary to experience. In th Bohr theory, the whole iden of an electron being cap tured by an alphe particle when the alpha particlea aren't there just because the waves are there doesn' make a very sensible theory.

Criticiamo are mat by ad hoc excrages thought un on the gpur of the moment. They alwaye had an andwer--alwayg.

The ratio of the supportera to the oritice rimes up comewhere near 50¢ and then falle graduany to oblivion The oritics can't reproduce the efrects. Only the supporters could do that. in the end, nothi, was alvaged. Why should there be? There isn't anything there. Ther never wes. That'e
charmeteristic of the effect．Well，IIl go quickly on so epme of the other thinge．

Alligon Effect

The Allizon effect is one of the mont extrmor－ dinary of all（S）It atarted in 1927．There were hun－ dreds of pepers published in the Amertean Physical Society，the Fhyajeal Review，the Jourmal of the American Chemical Society－hundreds of papera． Why，they discovered five or alx different elements that were Iisted in the Diacoveries of the Year．Thare were new elements diacorered－aAlabimine，Vir－ gininm，whole series of elementa and isotopts were discovered by Allison．

The effect was very eimple．There is the Earaday effect by which a beam of polarized light passing through a liquid which is in a magnetic field is rotated－－the pizne of polarization is rotated by e Jongitudinal magnetic fleld．Now that idea has been known for a long time and it has a great deal of for－ portanee in conpection with Light shuttere．At any rake．you can let 1tght through or not depending upon the magnetic fleld．Now the oxperiment of Allison＇s was this（Fig．3i They had a glass cell and a cail of wire around it $\left\langle B_{1}, B_{2}\right\rangle$ and you have wires coming up bere，a Lecher system，Here you have a epari gap， 80 ：\＄1ash of light comes through here and goep through a dieol prism over here and anothar one over here，and you edjust this one with a Hquid like water or carbon disulide or something like that in the cell so that there was a eteady light over here． If you have a beam of Ifght and you polarize if and then fou furin on a magnetic Ileld，why you gee that Jou could rotate the plane of polarization．There will be an tracetse in the brightress of the light when you put a magnetic field on here．Now they wanted to find the timo delay，how long it takes．So they had a spark and the sarne Ifeld that produced the opark ina duced a current through the coll，and by sliding this wire long the tralley of the Lecher aystem，they could cause a eompeasating delny．The sensivity of this thiag was 50 great that they could detect differ－ ences of about 3×10^{-10} seconda．By looking in hers

Fige Diagram of apparatus and cornections．［Copy from Fr．Allisor，Fhys，Rev，， 30.66 （192T），Fig．1）
they could see these nashes of light．the light from the mpriks，and they tried to decide as they changed the position of this trolley whether it gof brighter or dinamer and they set it for minimum，and mearured the postition of the irolley．They put in here－in this glasa tube＝－they put a water solution and added some ealt to it．And they found that the time lag was changed，so that they got a change in the time lag de－ pending upon the presence of salts．

Now they itrst lound－－very quickly－－that if you put in a thing like athyl aleohol that you got one char－ acteristic time lag，and with acetic acid another ons， quite different．But if you had ethyl acetate you got the sum of the two．You got two peaks．So that you－ could amalyze ethyl acetate and find the acetic acid and the ethyl alcohol．Then they began to atudy salt solutions and they found that only the metal elements counted but they didn＇t act as an ion That ia，all potassium lons weren＇t the same，but potassium nitrate and potasaium chloride and potassium suifate all had quite characteristic difterent polns，that were a characteristic of the compound．It was only the positive Ion that counted and yet the negative ions bad a modifylng effect．But you couldn＇t detect the negative lons directiy．

Now they began to gee how aengitive it wat． Weil，they found that any intenaity more then about 10^{-8} molar solution wonld always produce the max－ imum effect，and you＇d think that that Fould be kind of discoureging from the analyticel point of view，but no，not at all．And yous could make quantitative mea－ eurements to about three significant figures by di－ luting the solutions down to a point where the effect disappenred．Apparently，it dimappeared quite sharply when you got down to about 10^{-4} or $3.42 \times 10^{-1} \mathrm{in}$ concentration，or something of that sort and then the effect would disappear．Otherwise，Jou would get it，so that you could detect the 1imit within this extraordinary degree of eccuracy．

Well，they found that thinge were entircly dif－ ferent，even in these very dilute solutions，in podium nitrate from what it was with sodium chloride． Neverthelea日，it was a characteristic which deperned upon the compound even though the compound wes disassociated into lons at those concemiations． That didn＇t make any difforence but it was fact that Was experimentally proven They then went on to ind that the isotopes all stick right out like sore thumbs with great regularity．In the case of lead， they found sixteen isotopes．These iecotopes wexe quite regularly apaced so that you could get 16 different positions and you could aseign numbers to thoue to that you can fientify them and tell which they are．Unforturately，you couida＇t get the con－ centration quantitasively，even the dilution method didnt work quite right beceure they weten＇t all equally aensitive．Xou could get them relatively but only mpproximately．Well，it bectme important en a means of detecting elemems that hadn＇t yet been disoovered，like Alabamine and elements that ary now known，and filling out the periodic table：All the
elements in the periodic table were nuled out that way and published．

But a Ittie later，in 1945 or 46．I was at the University of California．Owen Latimer who is now Head of the Chemisiry Department there－－not Owen Latimer，Wendell Lathoer－had had a bet with G．N． Lewis（in 1932）．He aidd，＂There＇s something tunny about this Allison effect bow they can detect isotopes．＂ He had known eomebody who had been down with Allison and who had been very much impressed by the effect and he said to Lewis，＂I think I＇ll go down and see Allinon，to Alabsina，and see what there is in it．I＇d luke to use some of these methods．${ }^{\circ}$

Now people bad begun to talk about apectroscopic evidence that there might be traces of hydrogen of atomic weight three II wasn＇t apoken of an tritium at that time but hydrogen of atomic weight three that might exist in emall amoupts．There was a ditile spectroscoplo evidence for it and Latimer asid，＂Well． this might be a way of ftading it．I＇d like to be able to find it＂So he went andiscent three weeks at Alabama with Allison and before he went he talked is over with G．N．Lewls about what he thought the prospecta were and Lewia said，＂Illl bet you ten dollars you＇ll tind that there＇s nothing in it＂And 80 they had this bet on He went down there and he came back．He set up the apparatus and made it work 50 well that G．Ni．Lewis paid him the ten dollara， （Leugheer）Ele then diacovered tritium and he pub－ lished an article in the Physical Review．（10）Justa little short note saying that using Allison＇s method he had detected the laotope of hydrogen of atomic weight three．And he made some nort of eatimate as to dits concentration

Well．nothing more was heard about it I saw him then seven or eight years after that．I had written these things up before，about this Allison effect，and I told him about this point of view and how the Allison effect fits all these characteristics．Well， I know at that time et one of the meetings of abe Ameriean Chemical Society there was great discuseion as to whether to socept papers on the Allison effect． There they dectdod No，they would not necept any more papers on the Allison effect；and I guess the Physical Review did toa At any rate，the American Chemical Society dectied that they would not accept eny more mamuscripts on the Alligon effect How－ ever，afteg，they had adopted that as a firm policy． they did accept one more a year or two later because here was a case where all the people in the facuty here had ohosen twenty or thirty different solutions that they had made up and they had labeled thera all eecretly and they had taken every procaution to make sure that nobody knew what was in these solutions． and they had given them to Allison and he had ueed his method on them and he had gotton them all right， although meng of them ware at concentretion of 10^{-6} and 80 on，molas．That was sufficiently defi－ nite－－good experimental methods－and it was accepted for publication by the American Chemical Society but thet was the last．（11）You＇d think that would be
the beginning，not the end．
Anyway，Latimer meid，＂You know，I don＇t know what was wrong with mo at that timo，＂He uaid， ＂After I publiohed that paper I never aould reptat the experiments again I haven＇t the least idea why．＂
＂But，＂he sutd．＂rhose results were woaderful，I showed them to G．N．Lawis and we both agreed that it wae all right．They were clean cut I checked myself every way I knew how to．I don＇t know what else I could have done，but jater on I just couldn＇t ever do it egain＂＂

I don＇t know what it ia．That＇s the kind of thing－ that happens in all of these：All the people who had anything to do with these things find that when you get through with them－－you can＇t account for Bergen Davis akying that they didn＇t calculate those thinge from the Bohr theory，that they were found by eme－ plrical methods without any idea of the theory．＇Barnes made the experimente，brought them in to Davis，and Davis calculated them up and discovered all of a gudden that they fit the Bohx theory．Ee baid Barnes didn＇t have anything to do with that．Wen．take it or leave it，how did he do it？It＇s up to you to decide． I can＇t aecounif for it．All I know IE that there was nothing salvaged at the end，and therefore none of it Wag ever right，and Barnes never did see a peak． You can＇t have a thing halfway right

Extrasensory Perception

Well，there＇a Rhino，I spent a day with Rhine at Duke Uaiversity at the mesting of the Ame rican Chemical Society，probably about 1934．Rhine had published a book and I＇ll just tell you a few thinga． First of all，I went in and told Rhins these thangs． I told him the whole atory．I aald these things （Table I）are the characteristics of those things that are＇t sa．They are all characteristics of your thing too．（Laughter）He agid，＂I wiah you＇d publish that I＇d love to have you publish it．That would stir up an awful lot of interest，＂He said，＂I＇d have more gradutite students．We ought to have more graduate students．This thing in no important that we ahould have more people realize its importance．Thif should be one of the biggest departmente in the univarity．＂

Well．I won＇t tell you the whole atory with phine， because I talked with him all，day．He usesi cards which you guess at by turning over．You have extra－ sensory perception You have 25 earde and you deal them out lace down，of one person looks at them． and the other person on the other side of the acreen looks at them and you read his mind．The other thing in for nobody to know what the cards are，in which eage they are turined over without anybody looking at them．You record thein and then you look them up and wee ti they chook and that＇s telepathy，of cleirvoyance rather．Telepathy is when you can read another peraon＇s mind．

Now a later form of the thing would be for you to decide now and write down what the carda are going
to be whan they are shufiled tomorrow. That works too. (1,Aughter)

All of these thinga are nice examples where the magnitude of the effect is entirely independent of magnitude of the cause. That is, the expectments worked fust as well where the shuftinig is to be dose tomorrow as when it was done some time aga it doesn't meke eny difference in the reault. There is no appreciable difference between cinirvoyance and telepathy. Although, if you try to think of the meehanisms of the two, it should be quife different. In order to get the casda to telegraph you all the information that's in them an to how they are erranged, and ao on, when they are stacked up on top of each other and to have it given in the right sequence, it is rather diftievit to think of a mechanism. On the otber band. it is conceivable that there may be some sort of mechanism in the brain that might aend out some sort of unknown messages that could be picked up by comp other brain. That's a different order of .magnitude. : A different order of difficulty. But they were all the game from Rhine' point of view.

Well, now, the littze thinge that I have are these. There are many more I could give you Rhine said being in quite a phillosophicil mood, "It's funny how the mind tries to trick you" He sadd, "People don't like these experiments. I've had milliona of these cases where the average is about 7 out of 25 ." You'd erpect 5 out of 25 to comes aght by chance and on the grand average they come out, oh, out of millions, or huodrede of millions of cases, they average around 7. Well. to get 7 out of 25 would be a common asough oceurrence but il you take a large number and you get 7. well you doubt the statistica. or the etatistical application or, above all, what I think of and I want to give you reasons for thinking, is the rejection of a amall percentage of the data.

I'll go firut, before I get into what Rhine arta, and say thiat Devid Langmuir, a nephew of mine. Who was in the Atomie Energy Commiasion, when he was with the Radio Corporation of Amerjea a few years agor, he and a group of other young men thought they would iike to check up Rhine's work so they got some cards and they apeint many eveninge togethor finding how these cards turncd up and they got well above 5. They began to get quite exefted mbout it and they kept on, and thoy kept on, and they were zight on the point of writiog Rbine about the thing, And they kept on a little longer and things began to tall off, and fall aff a 2 ittle more, and they fell aff a ittlle mores. And after many, many, many dayo. they fell down to an average of dive--grand averageso they didnlt write to Rhine. Now if Rhine had recelved, that information thet this reputable body of men had gone ahead and gotten a value of 8 or 8 or 10 after 80 many trials, why be would havo put it in. tis book. How much of that soxt of thinge when you are fed information of that sort by people who are. interested--how are yon going to weigh the thing" that are published ta the book?

Now an illustration of how it works is thin. He told me that, "People don't Jike me," he waid "I took a lot of cardes and aesled them up in envelopea and I put a code mumber on the outside, and I didn't amast anybody to know that code. Nobody! "
(A efction of the epeech is miasing at thia point. It evidenthy deacribed some tests that gave ecorem below 5.) ". . . zhe iden of havitg this thing sealed up in the cards on though I didn't trast them, and therefore to apite mo they inade it purposely low."
"Well," I said, ribat's intereating--interesting a lot, because you gaid that you'd published a aummary of all of the dete that you:had. And it comes out to be 7. It in now within your power to take a larger percentage inciuding those crarts that are sealed up in those envelopes which could bring the whole thing back down to fire. Would you do that?

[^0]"Why would it be dishonest**
"The low acores are fuat me bignificant an the high ones, aren't they? They proved that there's something thera just as much, and therefore it wouldn't be fair. "

1 brid, Are you golng to count them, are you going to reverse the sign and count them, or count them as eredts?"
"No, No," he asata.
I gaid. "What have you done with them? Are they in your book?"

No.
"Why, I thought you aatd that all your maluea were in your book. Why haven't you put those in?
"Well, "he aaid, "I haven't hed time to work them up."

Well. you know all the results, you tald me the resulta,"
"Well, "he said, "I don't give the resulte out until I've had time to digest them,"

I aaid. "How many of theae thinga have you ?" He ahowed me flung cabluets--n whole row of them. Maybe hundreds of thousands of carde. He bas a flling cibloet that contaiped nothing but these thinge that were done in sealed up envelopes. And they Tere the ones that geve the averege of eive.
. Well. we'll let it siend at that, A year or mo later, he publiahed a naw volume of his book. In that, there's in chapter on the senled up pards in the
eavelopes and they all come up to around seven And nothing is siaid about the fact that for a long time they came down below five. You aee, he knowit if they come beiow five, he knows that isn't hair to the public to misrepresent this thing by including those things that prove just as much a positive result as though they came above. It's just a trick of the mind that these people do to try to spite you and of couree it wouldn't be fair to pablioh (12)

Flyting Saucers

I'm not going to talk zbout hying baunera very much except just this. A Hying aaucer is not exactly acience, although sorne acientific people have written things about them. I was a member of Gerseral Schwartz's (?) Advisory Committee arter the war. and wa held some very secret meetings in Washington in which there was a thing called project SIGN. I think it's e-i-g-n. Anyway, it was hushed up. It was hardly even taliked about ard it whe the flying saucer atuff, gathering the evidence, and welghing and evaluating the date on fiying asucers. And he said, "You know, it's very serious, it really looks as though there is something there." Well, I told him afterwarde- I told him this atory here. I bald that it meem to me from what 1 know about flying saucers they look like this sort of thing. Well. any" way. it ended up by two men being brought to Schenectady with a bolled down group of about twenty or thitty best casea from huadreds and hundreds that they knew all about. I didn't writt thern all. I said to pick out about thirty or forty of the best cases, and bring them to schenectady, and we'll apend a couple of day going over them, and he did.

Mont of thern were Venus aeen in the evening through a murky atmosphere. Venus can be seen in the middie of the day af you know where to look for it. Almost any clear bright day eapecially when Vanus is at its brightest, end sometimes it's caused almost panic. It har caused tratfic congegtion in New York City when Vemus is seen in the evening near some of the buildings a found Timea Square and people thought it was a comet about to collide with the earth, or somebody irom Mars, of something of that gort: That was a long time aga. That was thirty or forty years aga Vema atill caused flyigg eaucers:

Well. they only had one photograph or two photographe taken by one man. It looked to me like a piece of tar paper when Iflret maw it and the two photographa showed the thing in entirely different shapes. I asked for more decaile about it. What was the weathes at the time? Well, they didn't know but they'd look it up. ind they got out some papera and there it was. It in. 9 taken ebout fifteep or twenty minute after a vic ont thunderstorm out in Ohio. Well, whit's more natural than some piece of tar peper picked up by a little mindature twister asd baing carried a few the wand feet up fato the clouda and it whe coming dow-y that's all. So what could it be? "But it wise going at an enormove apeed" Of course the man who eav : ididn't have the vagueat Idea of
how tar way it was. That's the trouble. If you see something that's up in the aky. a light or any kind of an object. you haven't tho vaguent iden of how big it 18. You can guesa anything you like about the opeed, You ask people how big the moon 18. Some asy it is us big as your fist, or as big as a bageball. Some gay as big es a house. Well. how big is it really? You can't tell by looking at it. How can you tell how big a flying saucer is? Woll. anyway. alter I went through these thingy I didn's find a eingle one that made any tense at all. There wan nothing consistent about them. They were all things that suffered from these facta. They were all subjective. They wereall near a threshold. You don't know what the threshold is exactly in detecting the veloeity of an object that you see up in the sky, where you don't know whether it's a thousend feet or ten thousand feet or a hundred thousand feet up. But they all fitted in with this general pattern, monely, that there doesit seem to be any evidence that there is anything in them. And, anyway. thesemen were convinced and they ended project SIGN. And leter the whole thing was declassified and the thing was written up by the Saturday evening Post about four or five yeare ago, At any rate, that seemed to be the erd of it Eut, of course, the newspepers wouldn't let a thing like that die. (Laughter) it keeps coming up again, ind again, and again, and the oid atory keeps coming back again. It always has. It's probably hundreds of years old anyway.

Well. I think that's about all. If there are any questions, I'd be happy to say more.

Queation Perfod

(W, C. White)

People may want to go now because it's quarter after five though I'm aure Dr. Langmuir would be glad to diecuse this some more.

I was going to add another one to these characteristics. Isn't the desire for publioity another of the charapteriatice?
A. Well, it is in Rhine's case. There is no question about that Rhine, I think, thinks he's honest, but I know perfectly well that he-everything he eaya, he talk. about the tmportance of getting more atudents, and the importance of heving the people in his own univeraity understand the importance of this thing and so on And then the fact that no man in hifa aenses could diecard data the way be did those thinge sealed up in the cerds. So 1 dor't hold a very high value on his work. Now the other peopla, I don't have the slightest doubt but what these men are really homest. They are sincere. They loved publicity; Allison, of course, loved to publish ibout new elements one after the other. These were publiahed by the American Chemlcal Society, and Lenimer liked to publish hia little artiele on tritium, the first
discovery of tritium. So I think that hat something to do with it, but I don't think that that's the driving force. I think the driving force is quite anomal scientific desire to make diecoveries and to understand things. Davia and Barnes wore finding' thinge and it was wonderful while it lasted.
Q. (Luebhafskyh I just wanted to point out that porhops the nestest comment on tem four was made at the University of California when this busineas was discussed.at the Research Conference there in about 1830 or 32. Frofessor Birge gaid that this effect was just Allison wonderland. (Laughter) (Langmirir) Did you evar hear Latimertalk about it?
(Liebhafaky): Well, Latimer was pushing it and you've got to allow for Latimer's persungiveness. There were people on the faculty that I'm sure never believed it.
(Lengmuir) But it wat funny that G. N. Lewis would believe it.
(Liebhafoky): Well. you know that there is a very close personal relationship between Latimer and Lewis.
(Langimuir): I understand that Lewis got back his ten dollars. (Leughter)
Q. How would an analysis like this apply to religious experiences?
A. Well, the method of approach to religious questions--a lot of people think you don't want to have any evidence, you want faith; and if that's your attitude why I don't think this thing applies. But if aome religious performer of a certain belied tries to argue with me, my reactions would be very much like this.
Q. In setting up these criterin, you may In a way jimit the possibilities of scientific investigation It occurred to me that suppose sornething happened in the heavens--gome astronomical event--that iobody had ever seen before. Something that happens once in milion yearn. Really. I mean, supposing that you could tell. it would fit the same criterion, wouldn't it?
A. No, I don't want to depend on any one of these. I've been reading the life of Pasteur. Pasteur had the idea of germe. Everybody thought that he wes a fool-rthought there couldn't be any sense to the tubject It took a long time beforo germe were belleved. Prople beliaved in spontinneous generation of new formi of life. They happened spontaneounly not by the introduction of apores from the outside but epontaneously -and Fasteur had to fight that. The teat of time is the thing that uitimately ahecke this thing. In the end, something is ealveged. You can't
do that while the thing is growing, while the thing is being discuaged, but in the end you do know that the Allison effect is gone. It never would be anything. And that's what I mean about these other thinga. We'va waited long enough now. This whole pattern of thinge fits together with the idea that you're at a threahoid. You're right at the point where thing are very diftucult to see--that's whak I want to bring out. Now, in Pasteur'ı experiments, when he killed anthrax in animals, be got 25 right out of 25 . The sheep all died or they didn't die. There was no threshold value about it, People who didn't know anything about it might have thought so, but when they saw one experforent they were convincect.

One more question -
Q. These criteria that you put down would apply very, well to the theory of relativity with meat surements of very smatil fractions of a degree of are in the neighborhood of a bright disk of the sun.
A. Yea, well now take an example I've often thought of. There are lots of scientific instances. They go through the same sort of atage. For instance. in Laue and Brage's theory of $x=r a y s$ being electromagretic waves. When the first reports came out you had to kcep an absolutely open mind about them. You didn't know but what this was just another case of wishful thinking. But how long did it take? Within three or four years they were making preciaion meadurements of the wavelengths of x-rays--very, very few years. Now, that's just what doesn't happen in these things. So you have to waita litile time for these things to prove themselves but I don't think that you will find that there'a anything more than a superficial reaemblance. Take the flrat experiments of the wave theory of electrons. The firat evidence was very poor, and more people had to be brought in, but to me the important thing was not how it looked at the time but the quickness with which those reaults were resolved as contrasted to these thinga that hang tire and hang fire. Now the Davis-Barrses effect and the N-cays were quenched suddenly; but most of thege other thinge go on, and on, and on, and on
(White) I believe that this is the latest lasting colloquium we've ever had that I remembor. It wae a great privilege to have such a apeaker. We thank you, Dr. Lengmuir.

EPILOGUE (R.N. Hall)

Pathologieal teience is by no means a thing of the past. In fact, a number of oxamples can be found among current litarature, and it is reamonable to suppose that the incidence of this kind of "science" will increase at least linearly with the increase in

sclentific activity．

Profegsor allison has retired，but in a recent letter he wrote that his investigations of the Allison Eftect have suffered long interruptions but were never abandoned，and he spends aummers and oc－ casional weekends working on it with atudents at Auburn Univeraity．The elfect ia aloo being invegti－ gated under a contract with the Air Force Aero Pro． pulsion Laboratory at the Driversity of Dayton（9a）

Fhying gaucers are still very much with ua．As Langmuir said，＂Of courge，the newspapers wouldn＇t let athing like that die．＂How right he was！

REPERENCES

1．Eight months after the visit of Langmutr and Frewlett to Columbia and this exchange of lettern， Barnes submitted a paper on the Davis－Barnes effect and it was published as＂The Capture of Electrons by Alpha－Farticlen，＂Phys，Rev．，35， 217 （1930）

2．H．C．Webster，Natur＊，126． 352 （1930）
3．B．Devie and A．H．Barneb，Phys．Rev．．37， 1368 （1931）．

4．R．Elondlot，The N－Rays，Longmans，Green and Co．，Landon（1905）

5．J．G．McKendrick，Nature，12， 195 （1905）．
6．F．W．Wood，Nature， 70 （1004）；R W．Wood， Physik．2．．5． 789 （1904）．

7．W．Seabrook，Docyor Wood，Harcourt．Brace， and Ca（1941），Chap． 17.

8．For a reflew and bibliography，fee Hollnader End Claus，J．Opt．Soc．Am．，25，270－286 （1935）．

9．The following references on the Allison Effect make interesting reading（a）F．Alligon and E．S．Murphy，J．Am．Chern Spe．．52， 3798 （1930）（b）F．Allison Ind Eng．Chem．\＆ （1932）．（c）S．S．Cooper and T．R．Ban，${ }^{2}$ ． Cherm．Ed．13． 210 （1038）；also pp．278 and 325．（d）M．Keppesen and In．M．Bell，Fhyi． Rev．．47， 546 （1935）．（e）．BL．F．Mildrum end B．M．Schmidt，Air Forge Aero Prop，Inb， AFAPL－TR－66－52（May 1956）．

10．W．M．Latimer and E．A．Young．Phyg．Rev．44， 600 （1933）．

11．This may have referred to the paper by J．L McGhee apd M．Lawrens，J．Ami．Chem．Soc．， 54． 405 （1952）．which contains the atatement， Ir December 1930 one of us（McGhee）handed out by number to Prof．Allison twolve（to tim） unknowna which were teated by him and checked
by two asbigtants 100 percent correctly in three hours．＂See also，T．R．Bell．Phyt．Ref．，47， 548 （1935），who describen addstiongl test in which unknowns were identifled．

12．Some more recent discussion of Rhine＇s work is to be found in：（a）O．R．Price，ScL．122， 359 （1055），and replies on January 6，1956，（b）M． Gardier，Fada and Fallacies in the Name of Sclence，Dover（1957）．

[^0]: "Of course not," be adid. "That would be dishonsat."

