"VISAGES": A COMPUTER-BASED TEST OF FACE PRECOGNITION

MARIO VARVOGLIS ${ }^{1}$ \& MICHEL-ANGE AMORIM

LABORATOIRE DE RECHERCHE SUR LES INTERACTIONS PSI

A computer-based psi experiment was conducted to explore whether subjects could precognize the features of a randomly composed face. The experlment was based upon a subset of the "Photo fit" Kit used by police to help identify the facial characteristles of a missing person or a criminal. Forty subjects partlcipated, each contributing a mlnimum of four runs (16 trials).

Subjects were presented with 4 target packs each containing 16 different instances of a particular facial feature (eyes, nose, mouth and faclal-outline with halr). The instances for each element were grouped, so as to suggest different degrees of resemblance between them, and, hence, between the subject's cholce and the target.

There were two task-modalitles. In the Scanning psi task instances were arranged as a 4×4 Image array, allowing the subject to consciously choose a particular image using the computer "mouse". In the Timing psi task, the images were presented in a rapidly shifting sequence; here the subject could only choose when to stop the "lmage roulette" with the mouse. Once the subject had chosen all elements of the face, the program randomly selected an lnstance for each of the four elements, constructed the target face, and presented it to the subject.

Results were evaluated through goodness-of-fit tests, comparing the obtalned distribution of hits, for 5 different levels of scoring, agalnst the expected distribution. The global test ylelded a signlficant chi-square for the experimental condition $\langle p=.013\rangle$, and chance results for a simulation study. Further analyses, examining scoring under the two different task-modalltles, ylelded a slgnificant chi-square for the Tlming task modallty alone ($p=.006$).
(i) Main author and experimenter

INTRODUCTION

The possibility of applied parapsychological research has been recelving considerable attention in recent years, both in the U.S. (Agor, 1984; Harary, Targ and White, 1985; Mishlove, 1986; Morrls, 1986) and In Europe (Amorim, in press). An appllcation which seems to hold particular promise is the use of psi to help locate missing persons or identify criminals. A number of popular or semi-popular accounts have referred to instances in which psychics helped the pollce, but little has been done by way of experimental research. One of the few systematlc investigations in this area is reported by Relser et al (1979) who presented 12 psychics with sealed envelopes contalning lnformation on two solved and two unsolved crimes. According to the authors, the elicited "psychic impressions" offered little support for the clalm that psychics could contrlbute information necessary for the resolution of crimes. However, in their book "Psychic Criminology", Hibbard \& Worring (1982) cite a number of cases resolved with the help of psychics, and criticize the Reiser et al approach as being insensitive to psychological and interpersonal factors. Osis (1984) also cites numerous cases resolved with the help of psychics, and emphasizes the difficulties involved in attempting to address this topic in laboratory contexts.

It is clear that the motivational characterlstics of reallife sltuations cannot be reproduced in the artificiality of laboratory contexts. On the other hand, even lf it is impossible to recreate the motivational dynamics of real-life psychic criminology, laboratory experimentation could explore certaln facets of this area. One such facet ls the Identification of an individual. In many crimes, pollce rely upon eyewitnesses to try to reconstruct the faclal characterlstics of the criminal. However, witnesses may not be avallable, or may be unrellable. Can "psychlc witnesses" be rellably used to identlfy the facial characteristlos of an unknown person?

The exploration of faclal characteristlcs as psi targets is also interesting in and of ltself, Independently of any lmmediate applications. Our perception of the face appears to be a very basic process in human belngs; like language, lt may constitute an inborn, "hardwired" function, rather than being an acquired capacity. Could the fact that we are "prlmed" toward face-recognition translate into a special sensitivity toward face -precognition or -clalrvoyance? If experimental data were to indicate that faces constitute unusually good psi targets, then this would lend some credence to the ldea that psl capacitles are tied in to basic neurophyslological and cognitive functions.

The current study, then, was concelved as a preliminary step In exploring the use of faces as psl-targets. Speciflcally, we explored "face precognition" through a computer-based version of the "Photo-flt" Kit, employed by pollce to interrogate eyewitnesses, and explored in a number of investiga-

Approved For Release 2000／08／11 ：CIA－RDP96－00792R000700610002－2

tiona of face recall and recognition（e．g．，Ellig，Sheperd 8 Davies．1975；Sergent，1984）．This kit contalns a very wide range of noses，eyes，mouths，jaws，etc．，drawn on transpa－ rencles；it thus allows an interviewer to＂mlx and match＂
different lnstances of facial features，so as to approxlmate the face recalled by a wltness．

In our study，we selected a subset of facial features（face－ outline，eyes，nose，mouth）and a small subset of instances sor each feature，and passed these into the computer，Then， we created a program which can randomly mix and match these instances，and compose a face．The subject＇s task was to三ttempt to choose the facial characterlstics which would －．ost approximate the features of the computer－chosen face．

Despite certain superficial similarlties，however，this task －es not quite analogous to psychic criminology．For one Ening，we used＂normal＂（rather than special）subjects． ․：so，the psl task was＂elementarlstic＂in nature，insofar三s subjects would be focusing upon faclal features，rather Eran attempting to precognize the face as a whale．Some Eesearchers（e．g．，Ellis，1975；Sergent，1984）suggest that ：－portant facets of face perception are hollstlc，and are $\therefore=$ captured by elementarlstic approaches．In order to ＝ompensate somewhat for thls problem，we declded not to ここovide＂plecemeal＂feedback following each trial，but give Eeedback only once the entlre face has been composed（l．e．， \equiv Eser all four elements have been chosen）．Though subjects \because sild still make their selections one feature at a time，at ：east the moment of feedback would involve a holistic ＝ここception；if precognitlve lnformation derives from this Eeectback point，then it would orient the person＇s psi toward ＝－e whole face，rather than an lsolated feature．
：＝sre important deviation from psychic criminology，in our ミミミこoach，was that the experlmental context Included none of ：5e human elements which lend meaning and significance to ：－e task in real life．Rather，it involved guessing the Eeミこures of a fictlonal face，one strlpped of any meanlngful eescriptors or history．To address thls，we sought to give ste Eictional target－face some identity，associating it with \equiv＝andomly selected name and biography；these were derived $\pm=2$ a large pool of posslbilities．The relevance of this ＂Eeaningfulness＂device was to be explored by comparing s．ject scoring with the blography present vs．absent．

Anezher factor explored，＂psi－task modallty＂，was meant to aoress the potential problem of response blases．There is ：$:=$ ：e doubt that，to different degrees，we are attracted or Fese：led by different faces（or faclal characteristics）．In © Fis task in whlch subjects can freely choose from among a：possibllities within a target pack，such aesthetic Ez＝ここrs could easily drown out subtle psi information， leミa：ng people to choose lmages they llke and avoid those the dislike．As it seemed that thls could not be completely traised，as long as the subject is free to choose among the Pess：silities，we decided to add a psi－task modality in

This second modality was a "timing" psi task, demanding of the the subject only a decision as to when to stop a rapidiy changing "image roulette" contalning all possibllitles. Thus, there were two task-modallties: one based upon the implicit question "when is the target passing by" (the timing task), the other based upon the question "where is the target", and involving the usual scanning of possibillties ln order to make a cholce (the scanning task).

METHOD

Subjects
The subjects of this study were 35 female and 5 male volunteers, ranging in age from 19 to 59 years old. Thirty four of these participants came to the laboratory following an article in a popular woman's magazline, which presented the laboratory's computer-based psi research. The remaining 6 subjects were either acquaintances, or had heard about the laboratory through acquaintances. Personal and psychological data on all subjects were collected uslng french versions of the Personal Inventory Form (PIF) and the Myers-Briggs-TypeInventory (MBTI); these data have not yet been analyzed.

Hardware
The experiment was run using an Amiga 1000 with a color monitor, two disk-drlves, a 2 -megabyte random-access memory extension, and a "mouse" for subject inputs. The transfer of Photo-fit images into the computer was accomplished using a surveillance camera and an interface which permits the "digitization" of video inputs.

Software
The program controlling the present experiment was based upon a compller-language named "The Director", simllar to BASIC, but explicitly oriented toward graphlcs- and soundmanipulations.

Pseudo-Random function: The random numbers for the program are generated by the Director language's pseudo-random function, reseeded every cycle by the Amlga clock (read in in micro-seconds). A "Cyclic Redundancy Check" scheme scrambles the clock values and ensures the adequacy of the random distribution. In a personal commulication, the creator of the Director language stated that tests of the random function have shown that it yields the expected range and frequency of values. While no detalled assessment of the random function was undertaken by the experimenter, a oneline program was wrltten to at least ensure that the function was reseeded each time. Run immedlatly after the
 ylelding different number sequences each time it was run.
"Vleages" program: The Vianges preaognitlon tegt, writen by the first author, presents subjects wlth 4 graphic target packs, each containing 16 distinct instances of a facial element, and, on the basls of the subject's choices, progressively constructs a graphic face. Then, once the subject is satisfled with the face as constructed, the program uses the Amiga's pseudo-random function four times, selecting, for each faclal element, one of 16 possible Instances. Flnally, the program calculates feedback scores (l.e.. measures of the proximity between the subject-chosen and the randomly-chosen elements), stores the results, provides feedback (showing the target-face and the score), and offers the subject options to continue or quit.

A slightly modifled version of the program serves to collect control or "slmulation" trials, in which no subject is present. The program essentially creates two faces, on the basls of two sets of random numbers; the flrst set substitutes for the subject's guesses, whlle the second deflnes the target face as described above.

A more detalled description of the program's operation is given in the Target-preparation and Procedure sections.

Target-preparatlon
The Target pool was based upon a portion of the Penry Photofit Kit, kindly provided by the central police department of Paris (Ministere de l'interleur), in photocopy form. The kit involves transparencies showing different male facial elements (eyes, noses, mouths, etc.); these can be freely combined and mixed, and so as to produce a very wide range of possible male faclal types.

Four faclal elements were used for this study: eyes, nose, mouth, and faclal outline (showing hair, forehead, and jaw). To select from among the many instances provided, we used our subjective judgement and several criteria; for example, selection of as wide a range of characterlstics as possible, for each faclal element and avoldance of facial characteristics which are too striking or welrd. We then passed this subset of photo-fit images into the computer through a "digitization" process, and each digltized image was treated with diverse computer graphic tools, so as to maximize definition and clarlty. Then, for each element, we selected 16 different instances (l.e., sixteen noses, sixteen mouths, etc.), and arranged these images into 4 computer bit-map screens or "pages", which would serve as target packs (Two of these pages are $11 l$ ustrated in Figures 1 and 2).

The 16 instances of each page were arranged \ln a 4×4 array, images being grouped according to different levels of resemblance between them. Taking Figure 1 as an example, we see that the top two rows are distingulshable from the bottom two ("little halr" vs. "lots of halr"). Then, the 4 Instances of a faclal element 1 popplardfordR000700640002-2
 Approved For Refease20 333

Figure 1. Target pack for
face-outline

Figure 2. Target pack for Lips

Figure 3. Face with three elements selected

full halr and long-halr). Flnally, within each row, 2 groups are distingulshable (e.g., in row D, D1 / D2 and D3/D4).

The ldea behind thls arrangment was to create a psl task which could allow for different degrees of psl -accuracy or -resolution - from vague feellngs to detailed information. The scoring scheme, accordingly, was meant to reflect different degrees of resemblance between subjects' cholces and the target lmage. For example, let us assume that the target for faclal-outline were D2. Selection of any instance within row C - the other row of the same half-page - implies having correctly ldentlfled that the target-face generally has "lots of hair"; thls would be a "half-page" hit. Selecting D3 or D4 - the other palr on the same row, or a "row" hit implles having identifled the target face as having specifically long halr. Selecting D1, the other member of the pair, would be a "palr" hit - whereby the subject has found the instance which most resembles the actual target. Selecting D2, of course, is a direct hit.

As mentioned in the Introduction, the target face was accompanied by a name and, In half the trials, a biography. The names were drawn from a flle containing 80 names commonly found $1 n$ France. The blography was drawn from a second flle, contalning 200 statements, organized into 10 themerelated groups sports and lelsure, llving quarters, childhood and education, mood and temperament, social life, paranormal experlences, reactions to world events, beliefs and phllosophy, favorlte saylngs, health).

Procedure

Upon arrival at the laboratory and preliminary exchanges, the subject was placed in front of the Amiga, and instructed on the utillsation of the mouse. The subject then took computer-based (French) versions of the PRL Personal Inventory Form (PIF) and the Myers-Briggs-Type-Inventory (MBTI). Following feedback on the MBTI, the subject was switched to the Apple-based computer-RNG test "Volition". Then, after a minimum of two Volltion runs, the subject was brought back to the Amlga, for the Vlsages precognition test; the experimenter remalned present throughout the Visages session.

The subject was told that, unlike Volltion, the Visages test was geared toward receptive psi. It was explalned that the computer would create a face, randomly selecting instances for the four faclal elements; the person was asked to use thelr intuition to guess which instances of each element would be selected by the computer. It was emphaslzed that the computer would not select those instances on the basis of any aesthetic criterla, but on the basls of random decisions.

The run, conslsting of four trials cone for each facial element), begins with the presentation of a Menu on the monltor screen, naming the four elements as "Halr" "Eyes"
"Nose", "Llpe". The program awalte the subject e eelegtion of one of these, using the mouse. (For the first run, the experimenter encouraged the subject to start with faceoutline, and progressively flll in the other elements of the face). Once an element is selected, the computer presents the subject with the target pack, l.e., the 16 Instances of that element.

Depending on the psi-task modallty, the target-pack is presented in one of two dlfferent ways. In the scanning condition, all 16 possibillties are present on the screen simultaneously, arranged in the 4×4 array described above; the person uses the mouse to place the cursor over one of these 16 instances and then "clicks" to select it. In the timing condltion, only one of the 16 instances ls visible on the screeen at any moment; the lmages succeed each other very rapldiy in a random sequence (giving the impression of a nose changing shape, a mouth talklng, etc.), and selection is made by clicking on the mouse and stopping the "image roulette" at some particular image. The image actually selected, however, is not the one last seen by the subject, but rather one which is randomly generated just after mouse input; irrespective of how fast thelr reaction time might be, subjects cannot consciously select a partlcular target.

The order of task presentation, fixed across subjects, was based upon a predetermined schedule allowing for different permutations of the biograhpy and task-modality variables. The first four runs were scanning/blography, scanning/no blography, timing/blography, timing/no blography.

In both scanning and timing modes, the speciflc instance chosen by the person is immedlately added to those previously selected. Thus, as subjects proceed through the four faclal elements and select a particular face-outiline, set of eyes, nose, and mouth, they see the face being constructed. (Flgure 3 lllustrates a face with three features already chosen and lips not yet selected). The process of face construction is automatic: placement of the feature chosen on the face depends not upon the subject, but upon predefined coordinates.

Following the subject's selection of all four elements, and thus the completion of the face, the individual is presented with options 5:"Review Face", and 6:"See target". Option 5 allows subjects to review the face constructed, in case they've changed their mind about a particular selection (in which case, they can re-initiate the selection process by clicking on the correspondling number, in the Menu).

Option number 6 , once cllcked, launches the construction of the target face. The program generates four random numbers, between 1 and 16 , each corresponding to a particular instance of the four features. The program also randomly selects a name out of the name-flle, and, in the "biography" condition, constructs a biography by randomly selecting 6 then stores all results on a 336 sk 49 , andof $1961100 Q 2-2 j e c t s$
the target face on the screen, along with a name, a graphlc "button" for re-vlewling the subject-chosen face, and another button for reading the blography (*).

The screen with the subject-chosen face allows for comparisons with the target-face; it also shows the scores obtained for each of the four elements. These scores give subjects a numerical estimate of the proximity of their cholces to the target-instances. For each element, the possible scores are 0 (no relation between target and cholce), 2 (half-page success), 4 (row success), 8 (pair success) and 16 (direct hit). Thus, the total score for the run could range from 0 to a very unlikely 64 (direct hits on every trial).

Subjects were asked to complete at least four runs (sixteen trials), but were allowed to contribute addltional runs, if so desired. Thus, following feedback they could either cllck on a Replay button, to inltiate a new run, or, if they had completed 4 runs, cllck on a Stop button to close the Vlsages program and end the session.

Simulation Runs: In order to ensure that the RND function of the Amiga operates correctly, and that there were no problems in the program's loglc, we conducted a simulation study, based upon a slightly modifled version of the Visages program. In thls progam, the subject's scanning or timing guesses for each element were replaced by the generation of random numbers between 1-16. Thus, the program would construct a face on the basis of 4 random numbers, and then a second, target-face on the basis of 4 more random numbers.

Once launched, the slmulation program ran automatically, until it completed 9 runs; it was then re-launched by the experimenter. This process continued until the number of runs accumulated equalled the total of experimental runs.

[^0]
REGULTE

Collectivly, the 40 participants contributed a total of 212 experimental runs (848 trials). Individuals' contribution to this database was quite uneven: 28 of the 40 particlpants completed just the minimum of 4 runs each, whlle the remalning 12 contributed between 5-14 runs. Using subjects' mean feedback score as an index of individual performance, we find that the average score for the group contributing 4 runs is 10.16, while for the group contributing more runs it is 9.18. A t-test for independent means shows no difference between the two groups $(t=.752,38 \mathrm{df}, \mathrm{ns})$. Flgure 4, depicting mean feedback scores for all subjects, also shows that there are no consistent trends distinguishing the scores of the 28 subjects who contributed exactly 4 runs, from the 9 contributing 5-9 runs, and the 3 contributing 10-14 runs.

The evaluation of overall results, utllizing the trial as unit, was based upon two goodness-of-flt tests - one for experimental and one for slmulation data. These analyses examine whether the observed distributlon of hits, for all scoring levels, conforms to the binomlal expectation (the probabillty corresponding to each scoring level multiplled by the number of trials). The probabllities used to estimate expectation for each scoring level represent the likelihood of obtaining exactly (rather than "at least") a palr hit, a row hit, etc.; they thus allow each scoring level to be treated independently. The probablllties corresponding to each level of hitting are direct hit, 1/16; palr hit, 1/16; row hit, 1/8; half-page hit, 1/4; and miss, 1/2. (For example, in the facial-outline example clted earller, with D2 as target, there $1 s$ exactly 1 way to obtain a direct hit, 1 way to obtain specifically a pair hit (D1), 2 ways to obtain a row hit (D3, D4), 4 possibilitles for a half-page hit (all of row C) and 8 ways to obtain a mlss (rows A and B)).

Table 1 summarlzes the results of the goodness-of-fit tests. The first row represents the expected number of hits for each scoring-level, given a total of 848 trials. The second and third rows show the obtained number of hits for simulation and experimental trials (respectively). As can be seen from this table, simulation trials conformed quite closely to expectation. In contrast, the distrlbution of scores in experimental trials departs signlflcantly from expectation (chi-sq [4 df] $=12.632 ; p=.013$). This latter result is associated with an effect size of .076 cobtalned by converting the p-value to a one-talled z-score, and dividing the latter by the square root of $\mathrm{N}, 1 . e$. , of 848).

The slgnificant effect for the experimental trials was mainly due to a shlft from the expected number of hits in the three partial-hit levels (palr, row and half-page). Post-hoc chi-square analyses, comparing each of the flve hitting levels with the other four, suggest that the main Apppofferat cod Redue to
 338

FIGURE 4: MEAN FEEDBACK SCORES FOR 40 SUBJECTS

MEAN SCORE BASED UPON: 4 RUNS: $/ 5-9$ RUNS: $x / 10-14$ RUNS: \times

Table 1: Frequency of hits for 5 scoring levels for Experlmental and Simulated trials

| DIR | PAIR | ROW | H.PGE | MISS | CHI-SQ 4 DF | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EXPECTED | 53 | 53 | 106 | 212 | 424 | |
| SIMULATION | 50 | 56 | 112 | 213 | 417 | .799 |
| EXPERIMENTAL | 60 | 36 | 88 | 238 | 426 | 12.632 |

Table 2: Frequency of hits for 5 scoring levels for Scanning and Timing task modalities

| | DIR | PAIR | ROW | H.PGE | MISS | CHI-SQ 4 DF$]$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EXPECTED | 26.5 | 26.5 | 53 | 106 | 212 | |
| SCANNING | 33 | 20 | 47 | 104 | 220 | 4.207 |
| TMING | 27 | 16 | 41 | 134 | 206 | 14.453 |

these values remain significant when corrected for multiple analysis (i.e., by multiplying each p-value by 5).

Table 2 examines the experimental results for scanning vs. timing psi tasks separately (424 trials each). For the scanning task, the chi-square was non-signiflcant (chi-sq ${ }^{\circ} 4$ dfs $=4.207$, n.s.) For the timing task, the result is significant (chi-sq [4 df] =14.453; $p=.006$).

Post-hoc chi-square analyses, comparing each of the five hitting levels with the other four, suggest that the effect in the timing-task condition was largely due to an excess of hits at the half-page level (chl-sq $\{1 \mathrm{df}]=9.861, \mathrm{p}=.0017$). This value remalins significant even when corrected for multiple analysis.

DISCUSSION

As Indicated in the Results, whereas the chl-square for the simulation trials conformed to expectation, the chi-square for experimental trials was significant. The overall chi-square analysis thus suggests a relationship between subjects' guesses, and the targets which were randomly selected following thelr guesses.

As mentioned, subjects had the option to stop after a minimum of four runs, or continue. Thls option had been introduced because pllot sessions had suggested that some subjects tlred quickly of Visages, whereas others liked it. As it turned out, only 12 of the 40 subjects contributed more than the required 4 runs. It might therefore be suspected that it was the few subjects who scored well that kept on going; this, of course, would detract from the generalizability of the results. However, as shown earlier, the mean scores for those who stopped after four runs was not lower than those who continued; if anything, they were silghtiy higher. Overall results cannot be attributed to the scorlng of a few subjects who contrlbuted large amounts of data.

What does seem clear is that the overall slgniflcant results were largely due to the timing condltion runs. When the data were broken down in terms of psi-task modality, we found that the distribution of scores in the scanning condltion did not depart slgnlflcantly from chance, whereas the result for the timing task was signlflcant.

The effect observed in thls study thus appears to be associated with the relatlvely effortless and game-like task-modallty rather than with the one obliging subjects to consciously choose the elements of the face. The lack of results in the scannlng condition may well reflect the operation of response biases, and subjects' frustration in having to fight their feellings durling the task. During the scanning condition, participants repeatediy complalned about difficulties in discriminating between their intultion and
 though instructed

[^0]: * The screen with the biography text was intended to examine the meaningfulness factor mentioned in the Introduction. From the first few sessions, subjects appeared to be confused as to the role and purpose of the statements; the blography seemed incongruent with the stated nature of the task-precognizing a randomly constructed face. Following repeated negative comments by several subjects, the experimenter reallzed that the biography was not appropriate for assessing meanlngfulness, and decided to drop assessment of this factor from the study. From that point on, he no longer directed subjects to click on the blography button, and practically no one did.

