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Abstract

This paper presents SANDMAN, an architec-
ture for cyber deception that leverages Lan-
guage Agents to emulate convincing human
simulacra. Our ‘Deceptive Agents’ serve as ad-
vanced cyber decoys, designed for high-fidelity
engagement with attackers by extending the ob-
servation period of attack behaviours. Through
experimentation, measurement, and analysis,
we demonstrate how a prompt schema based on
the five-factor model of personality systemat-
ically induces distinct ‘personalities’ in Large
Language Models. Our results highlight the
feasibility of persona-driven Language Agents
for generating diverse, realistic behaviours, ul-
timately improving cyber deception strategies.

1 Introduction

Autonomous agents are systems embedded within
environments, capable of autonomous interaction
to influence future conditions, driven by pro-
grammed objectives (Franklin and Graesser, 1996;
Bösser, 2001). Historically, agent autonomy was
enabled through simple heuristic policies or learned
behaviours within defined constraints (Schulman
et al., 2017; Mnih et al., 2015; Lillicrap et al.,
2015). However, recent advances in the field
of Generative Artificial Intelligence (Gen-AI) are
radically transforming intelligent agent technolo-
gies. The most noteworthy and pertinent are Large
Language Models (LLMs) which have demon-
strated a remarkable ability to generate human-like
text, answer complex questions, and perform other
language-driven tasks with high accuracy (Floridi
and Chiriatti, 2020; Kasneci et al., 2023). As such,
there is growing interest in applying these mod-
els as autonomous agent controllers to yield more
human-like decision-making capabilities (Chen
et al., 2019; Shinn et al., 2024; Shen et al., 2024).
This approach exploits an LLM’s comprehensive in-
ternal model of the world, enhanced by transformer
architectures that capture long-range dependencies

in text (Vaswani et al., 2017), to inform actions
without domain-specific training. In parallel, re-
searchers have extended LLMs with memory and
planning functions to enhance an agents’ human-
like capabilities (Park et al., 2023; Hong et al.,
2023; Qian et al., 2023), leading to the concept
of Language Agents (Kenton et al., 2021; Zhou
et al., 2023; Sumers et al., 2023).

Novel applications using autonomous agents
within security-centric applications include: au-
tomating red teaming exercises (Happe and Cito,
2023; Deng et al., 2023), enhancing anomaly detec-
tion systems (Ott et al., 2021; Su et al., 2024) and,
streamlining threat intelligence analysis (Bayer
et al., 2023). However, to the best of our knowl-
edge, no research has explored their application
suited for Active Cyber Defense strategies (Den-
ning, 2014), aimed at disrupting early stage cyber-
adversary activities (Yadav and Rao, 2015). Cyber
Deception research focuses on game-theoretic tech-
niques (Pawlick et al., 2019) and deception technol-
ogy (Spitzner, 2003) to deceive malicious actors
via means of mimicry, camouflage, obfuscation etc.
This paper introduces the concept of Deceptive
Agents as entities employing generative models to
deceive attackers with plausible (mis-)information
and behaviours to disrupt attack progress. Our
work presents an architecture to endow agents with
the capability to accumulate, synthesise, and utilise
memories facilitating the generation of contextu-
ally relevant, plausible behaviour that dynamically
adjusts to experiences and environments. In sum-
mary, this paper makes the following contributions:

• Deceptive Agents architecture to create plausi-
ble simulacra of human behaviour for defen-
sive deception in digital environments;

• A prompting schema to control the generation
of Deceptive Agent personalities;

• An evaluation method to demonstrate the im-
pact of induced personality within agents.
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The paper is structured as follows: Section 2 out-
lines related work, Section 3 presents the SAND-
MAN architecture to operate deceptive agents, Sec-
tion 4 outlines experiments and analyses performed
concerning the controlled induction of personas
within LLMs based on the five-factor model (FFM),
Section 5 provides a discussion of the findings, in-
cluding directions for future work, and Section 6
presents the conclusion.

2 Related Work

Prior research has explored design considerations
and behaviours of autonomous agents, the utility
and efficacy of LLMs in security-focused applica-
tions, and identifying existing issues within tradi-
tional defensive deception strategies. These are key
domains of study to realising Deceptive Agents.

LLMs in Defensive Applications: Gen-AI
presents a series of new opportunities for cyber-
security. Researchers have explored utilising LLMs
within security-focused applications, demonstrat-
ing their potential in automating and streamlining
complex security processes. Notable advancements
include their application to software security test-
ing (Happe and Cito, 2023), log-based analytics
(Ma et al., 2024; Setianto et al., 2021), unstruc-
tured text analysis for threat intelligence (Bayer
et al., 2023), and security-based training (Gundu,
2023).

Language Agents: An emerging class of au-
tonomous agent leveraging LLMs as central con-
trollers to direct actions (Sumers et al., 2023; Hong
et al., 2023; Kenton et al., 2021; Zhou et al., 2023).
Research has introduced bespoke architectures and
frameworks for language agents (LAs) providing
varied applications across diverse environments.
These include the simulation of multi-agent sand-
box environments to study inter-agent behaviour
(Park et al., 2023), collaborative frameworks in soft-
ware development (Qian et al., 2023), and the inte-
gration of agents within video games (Wang et al.,
2023). These studies underscore the proficiency of
LLMs to manage complex, autonomous agent be-
haviours. However, the existing literature primarily
explores these agents in non-security contexts or
in scenarios where the environment or application
sets inherent limitations on their utility.

Agent Architectures: Whilst the concept of LAs
is relatively straightforward (i.e., using a LLM as
an autonomous agent controller), achieving the

intended effect (i.e., long-horizon task comple-
tion) is typically far more complex (Wang et al.,
2024). This has led to new frameworks to cat-
egorise existing agents and plan future develop-
ments. The Cognitive Architecture for Language
Agents (CoALA), is a comprehensive approach
which draws on cognitive science and symbolic
AI to characterise general purpose architectures
for LAs (Sumers et al., 2023). CoALA organ-
ises agents along three key dimensions: their in-
formation storage (memories); action space (in-
ternal/external); and decision-making procedures
(interactive loop with planning and execution). The
core components of the CoALA framework are
provided below:

• Decision Procedure: Engine to interconnect
modular components and execute agent code

• Procedural Memory: Implicit (LLM) and ex-
plicit (programmatic) knowledge for dictating
functionality and decision-making

• Semantic Memory: Agent’s repository of
structured knowledge about itself which
evolves following interaction with the envi-
ronment, enhancing its knowledge base

• Episodic Memory: Dynamic module to cap-
ture and store experiences and decisions from
past interactions to inform and contextualise
decisions and actions

• Working Memory: Temporarily holds and
manages information (i.e., active knowledge)
relevant to the current decision cycle

Gray Agent Simulation: Effective and plausi-
ble pattern-of-life behaviour emulation within gray
agents and non-playable characters (NPCs) remains
an active area of research. A pertinent example in
the context of this work is the GHOSTS framework
(Updyke et al., 2018). Agents in GHOST emulate
user behaviour within digital environments to ex-
hibit stochastic behaviour which is suited toward
training and cyber-based exercises.

3 Deceptive Agent Architecture

In this section we provide the architecture for
SANDMAN, a software platform for AI-driven
autonomous agents in generating plausible be-
haviours within a digital environment. At its core,
SANDMAN represents a novel contribution to the
emerging research field concerning cognitive archi-
tectures and language agents (Sumers et al., 2023).



Modular and extensible by design, SANDMAN en-
ables fine-tuning of agents to support various appli-
cations, ranging from human-like gray agent sim-
ulation for cyber-warfare exercising and defender
emulation, to augmenting deception platforms to
provide dynamic and plausible environments.

Figure 1: Architecture for SANDMAN agents, inspired by
CoALA framework (Sumers et al., 2023).

The goal of SANDMAN is not to interact with
other humans or agents. Rather, it is intended to
produce plausible simulacra representing human-
like actions in digital environments that, to the ob-
server, cannot be distinguished from human. A
particular focus area SANDMAN seeks to address
concerns generative deception, a novel concept
that, to the best of our knowledge, has not yet been
explored in the context of autonomous agents.

Agent Profile: The crux of definable agent be-
haviour is rooted within agent profiling, a method
to construct the personalities of singular agents
(Wang et al., 2024). For SANDMAN, whose pur-
pose is to facilitate its agents in generating human-
like patterns of thought and belief, by virtue of
their actions, considerable emphasis is placed upon
controlled personality induction. Construction of
an agent’s personality is discussed in Section 4.1,
whereas its induced effect is empirically evaluated
and analysed in Section 4.

Decision Engine: Central to a SANDMAN
agent is its ability to decide what to do at any given
time. Pivotal to task selection and execution is
a decision engine: the central processing compo-
nent. The Decision Engine can be considered the
top-level or "main" agent program. It dynamically
observes and handles all internal processes at run-
time, acting as overseer; synergising various mem-
ory components with task-oriented modules whilst
managing decision-making.

Memory: A critical pillar in LA design, serving
various functions to support reasoning and learn-
ing (Wang et al., 2024). SANDMAN uses a com-
mon memory architecture that can be used for se-
mantic, episodic, and procedural purposes (Sumers
et al., 2023). In addition, the platform extensively
uses ’working’ memory, a generic store across all
components to facilitate reflective operation, a nu-
anced form of reasoning and retrieval. Memory
ensures agents remain on-task, contextually rich,
and grounded in the environment whilst adhering
to specifications, such as prompt templates (proce-
dural) and structured profiling (semantic).

Task List: Represents all possible actions made
available to an agent at a given point. Task cat-
egories are inspired by those in GHOSTS (Up-
dyke et al., 2018), featuring work and non-work re-
lated tasks. Initialised by the bootstrap task (BST),
the task list also embodies episodic memory–
recursively queried to contextualise future actions
based on previous decision-cycles. The task list is
designed to shrink and grow as an agent completes
tasks and as new tasks are generated, enabling dy-
namic and continuous behaviour. Task modules
can be reflectively loaded by SANDMAN enabling
easier modular development. The Bootstrap Task
is essential to the planning of the agents activi-
ties for the day. Section 4 explores the use of an
LLM (GPT3.5-Turbo) to generate schedules from a
list of available tasks which SANDMAN can load.
Our LLM-based BST module is PlanScheduleTask,
which prompts the LLM with its agent profile (se-
mantic), other forms of memory, and the available
task list. The LLM will then return a list of tasks
and add them to an agent’s task list, with the deci-
sion engine then deciding on what task to perform
next.

Channel: For agents’ actions to manifest and
become tangible to the observer, an intermediate
channel module is required. Channels are situ-
ated between tasks and the environment. Their
purpose is to hook an assigned task to the appro-
priate end-application, in essence bringing SAND-
MAN to ’life’ by eliciting an action in the environ-
ment. The positioning of channel modules enables
SANDMAN to interact with various parts of the
underlying system it is interfacing with. Chan-
nels can therefore be considered abstraction lay-
ers wrapped around user applications providing a
common API. For example, the WebChannel mod-
ule wraps around the Firefox browser, enabling



user-like interactions with the browser itself (e.g.,
typing in the address bar, scrolling the page). All
these procedural actions are governed within dis-
tinct channels. The key strength of this is extensibil-
ity; channels can be added, modified, or removed
depending on the intended purpose by the end-user.

Generators: API calls for LLM-generated con-
tent needed to complete tasks is performed by gen-
erators. The models are prompted with an agent
persona, memory and task metadata to generate the
necessary content to complete a task. This content
is then passed to a channel that accepts generated
content as an input to use when interfacing with
a program. For example, a ’write document’ task
will have a ’Microsoft Word’ channel to interface
with Microsoft Word. Content to populate the Word
document will be provided by a generator with an
LLM that the channel uses as an input to then type,
in a simulated manner to reflect human-like type
speed which may features mistakes, the generated
content into the word document.

4 Persona-based Task Planning in LLMs

Planning modules are essential for autonomous
agents, enabling structured and controlled be-
haviour (Sumers et al., 2023; Wang et al., 2024). As
demonstrated in existing studies (Park et al., 2022;
Hong et al., 2023; Qian et al., 2023), planning heav-
ily influences activities performed by agent(s).

In SANDMAN, the planning functionality is pro-
vided by the Bootstrap Task. Initial debugging and
development used a simple rule-based approach to
generate an agent’s plan, validating that the exe-
cution flow aligned with the architecture’s design.
This approach involved appending tasks sequen-
tially in a straightforward, deterministic manner.
However, task scheduling via an LLM presents
a novel and unexplored opportunity. Although
LLMs have been used similarly in other contexts
(Park et al., 2023), there has been no systematic
investigation into the relationship between persona
generation and the resulting task outputs. Typi-
cally, the variance in outputs is either asserted or
assumed without rigorous analysis. In this section,
we demonstrate the structured creation and induc-
tion of personas into LLMs presents distinct effects
on associated, LLM-generated schedules.

4.1 Inducing Personality Types in LLMs

Autonomous agents in recent studies which lever-
age LLMs typically perform tasks by assuming

specific roles, such as coder, teacher, domain ex-
pert etc. (Wang et al., 2024). Agent profiling is
an approach to construct unique personas, either
through handcrafting (Park et al., 2023), LLM-
based generation (Zhang et al., 2023), or dataset
alignment (Argyle et al., 2023), to encompass defin-
able characteristics such as name, role, occupation,
and passion etc. As per the CoALA framework
and prior approaches, these are stored in seman-
tic memory and passed in at various stages within
decision-cycles to contextualise internal and exter-
nal action spaces, such as reasoning and retrieval,
and grounding, respectively (Sumers et al., 2023).
For instance, "John Lin is a pharmacy shopkeeper
at the Willow Market and Pharmacy who loves to
help people. He is always looking for ways to make
the process ..." (Park et al., 2023).

The choice of information to profile the agent
is largely determined by the specific application
scenario(s) (Wang et al., 2024). Therefore, if the
intended purpose is to generate believable proxies
of human behaviour, peronas ought to be crafted
using descriptors rooted in psychology theory. The
recent work of Safdari et al. (2023); Jiang et al.
(2024) demonstrates that LLMs can be induced
to appropriately respond to human psychometric
assessment methods through crafted prompts.

The Machine Personality Inventory (MPI) by
Jiang et al. (2024) systematically evaluates ma-
chines’ personality-like behaviours in psycho-
metric tests against the Big-Five Personality
Traits: Openness, Concientiousness, Extraversion,
Agreeableness, Neuroticism (OCEAN) (Costa and
McCrae, 1999; McCrae and Costa Jr, 1997). The
MPI adapts the International Personality Item Pool
(IPIP) (Goldberg et al., 1999, 2006; Johnson, 2014)
to psychometrically test LLMs akin to how psy-
chologists evaluate humans. The MPI features 24
distinct statements pertaining to each OCEAN fac-
tor. For instance, "Love to help others" is associ-
ated with an individual high in Agreeableness. The
LLM is then instructed provide an answer to this
statement based on its own self-perception, ranging
from "(A). Very Accurate" to "(E). Very Inaccu-
rate". Once complete, the results are calculated and
evaluated as one would with a human subject. Jiang
et al. (2024) demonstrated that, through crafted
prompts, it is possible to induce personalities traits
correlating with specifc persona prompts. However,
it is noted the evaluation and results of this work
primarily emphasise the effect of positive-induction



only, largely discarding the effect following nega-
tive induction. Moreover, results from the experi-
ments performed therein are not rigorously scruti-
nised or subjected to statistical testing to measure
for significance between OCEAN scores from the
experimental (LLM) and control (human) groups.

4.1.1 Experimental Method
We incorporate the MPI to verify that our choosen
LLM for task planning (GPT-3.5-Turbo) exhibits
similar performance to that of previous models
evaluated by Jiang et al. (2024), such as BART,
GPT-Neo 2.7B, Alpaca 7B etc. To that end, an
adapted prompt strategy is employed in our exper-
iments, combining what is referred to as Naive-
and Words-based prompting methods (Jiang et al.,
2024). In the context of personality, the former
involves using a standard naive natural language
prompt (i.e., "You are extraverted"), and the latter
involves prompt search (i.e., "outgoing, energetic,
public"), one of the most effective prompting meth-
ods (Prasad et al., 2022; Shin et al., 2020). This
was done to ensure for clear causal linkage between
dependent (personality trait) and independent (MPI
Score) variables without introducing uncertainty
via any intermediate interpretation (such as through
an LLM). The personality trait schema is therefore:

"Imagine you are a/an X person characterised by being Y ",
where X is the naive title of the Big-Five trait, for example
Extraverted and where Y are descriptive words assocated

with the trait such as outgoing, energetic, public.

Each personality prompt is passed through the
MPI 5 times, with the averages across all the re-
sponses recorded. A baseline, control data set is
produced by prompting the LLM without a person-
ality trait statement in the prompt. The LLM has
Temperature (0.7) for all trials. As per Jiang
et al. (2024), we calculate the mean (µ) and stan-
dard deviation (σ) of the personality items, but we
use two-sampled t-test for significance (p ≤ 0.05).

Table 1 presents the computed MPI scores across
experimental conditions, highlighting the efficacy
of controlled personality induction within an LLM.
Each induced OCEAN trait (+/-) yielded a statis-
tically significant score for the targeted trait when
compared against the control condition (Neutral),
thereby confirming the effectiveness of our prompt-
ing schema and method of induction on the opted
model (GPT-3.5-Turbo). A bleed-through effect is
also observed, indicating cross-trait influences.

While the personality trait schema is appropriate
for the experiments discussed later in the paper, the

evaluation method described could also be used to
refine trait schemas to achieve specific outcomes.
For example, word-based selection can be adjusted
to either reduce or enhance bleed-through, or to
modulate the t-score to either strengthen or weaken
deviations from the baseline while maintaining sta-
tistical significance.

Dir O C E A N

O Pos 4.30∗ 3.72 4.02 4.23 2.29
Neg 2.07 4.10 2.10∗ 3.49 2.64

C Pos 3.36 4.83∗ 3.25 4.28 1.96
Neg 4.00 2.02∗ 2.35 3.66 3.64

E Pos 3.66 3.64 4.67∗ 3.98 2.36
Neg 3.17 2.98 1.46∗ 3.69 3.48

A Pos 3.57 3.94 3.31 4.72∗ 2.40
Neg 2.73 2.65 2.92 2.12∗ 3.40

N Pos 3.54 2.55 2.60 3.82 4.50∗

Neg 3.44 4.22 3.35 4.27 1.32∗

B1 N/A 3.33 3.55 3.65 3.39 3.04

Table 1: Single-factor personality analysis on opted LLM
(GPT-3.5-Turbo). Highlighted cells in gray denote statistical
significance at p ≤ 0.05 level. 1 Control group.

4.2 Persona-based Task Selection

Given the capability to instil personality traits in
LLMs, it is crucial for SANDMAN to show that
these traits lead to appropriate variations in sched-
ule generation. We measure variation via two de-
pendent variables: (1) frequency of task occurrence
in a schedule, and (2) duration of tasks within
schedules, analysed on a per-task basis. To as-
sess the impact of the independent variables (the
OCEAN traits), it was necessary to establish and
evaluate a suitable baseline or neutral sample. For
comprehensive analysis, we generate 500 sched-
ules using the opted LLM with Temperature=0.7.
The fundamental procedure involves passing a list
of tasks to the Boot Strap Process, which then gen-
erates the schedule for the agent to execute.

4.2.1 Neutral Task Behaviour
In psychometric testing, establishing a baseline is
essential for comparing variations across different
persona types. This is equally important here, en-
abling observations regarding whether a given in-
duced persona fails. Initial trials revealed a strong
correlation between the order of tasks in a list and
their subsequent positions in the schedule. To ad-
dress this, two interventions were tested: introduc-
ing a system message and uniformly randomising
the order of tasks presented in the list:



Baseline Sys Rand Sys & Rand

Task Duration Frequency Duration Frequency Duration Frequency Duration Frequency

Call 59.51 (5.06) 0.98 (0.15) 55.08 (15.24) 0.97 (0.18) 53.63 (12.49) 0.72 (0.45) 46.44 (14.50) 0.92 (0.29)
Coffee 56.07 (10.22) 0.86 (0.34) 31.09 (7.74) 0.88 (0.32) 44.31 (18.37) 0.70 (0.46) 31.35 (12.65) 0.89 (0.32)

Creative 61.98 (7.93) 1.00 (0.00) 73.19 (14.46) 1.00 (0.08) 61.52 (9.78) 0.90 (0.34) 62.27 (14.19) 1.00 (0.24)
Email 57.23 (8.83) 1.01 (0.13) 36.78 (12.15) 1.16 (0.37) 53.44 (12.78) 0.77 (0.44) 43.42 (13.79) 0.97 (0.32)

Exercise 59.35 (5.89) 0.93 (0.26) 52.82 (12.05) 0.91 (0.29) 58.20 (9.25) 0.76 (0.43) 55.78 (11.95) 0.93 (0.26)
Reading 57.53 (8.26) 0.93 (0.26) 42.65 (12.33) 0.94 (0.24) 54.81 (11.58) 0.68 (0.48) 47.11 (13.27) 0.94 (0.25)

Lunch 60.18 (3.00) 1.00 (0.00) 63.95 (11.09) 1.00 (0.04) 60.06 (3.57) 1.00 (0.04) 60.00 (9.23) 1.00 (0.04)
Meeting 61.86 (7.49) 1.00 (0.00) 69.37 (15.78) 1.00 (0.06) 60.17 (9.32) 0.91 (0.30) 60.95 (14.35) 0.96 (0.24)

Break 55.23 (10.99) 0.94 (0.25) 37.57 (13.08) 1.01 (0.28) 49.92 (14.57) 0.75 (0.47) 36.69 (12.95) 0.99 (0.34)
Personal 57.48 (8.85) 0.96 (0.21) 44.25 (14.44) 0.98 (0.23) 56.92 (11.44) 0.88 (0.37) 48.39 (14.26) 1.06 (0.34)

Plan 59.75 (3.83) 0.98 (0.13) 59.57 (13.68) 0.98 (0.17) 57.55 (9.25) 0.87 (0.35) 54.09 (13.84) 1.00 (0.19)
Reflect 53.16 (13.91) 0.95 (0.23) 40.32 (12.69) 0.99 (0.20) 54.45 (11.80) 0.98 (0.26) 46.48 (14.09) 1.05 (0.30)

Research 59.24 (5.88) 0.88 (0.32) 58.14 (13.91) 0.98 (0.14) 59.57 (8.60) 0.93 (0.29) 60.31 (14.28) 1.00 (0.13)
Media 57.35 (9.77) 0.96 (0.21) 42.29 (13.26) 0.93 (0.25) 53.55 (13.09) 0.75 (0.46) 42.64 (13.30) 0.94 (0.29)

Collab. 61.27 (7.19) 0.96 (0.20) 63.33 (13.11) 0.99 (0.12) 62.32 (10.14) 0.97 (0.17) 66.25 (15.80) 1.01 (0.13)
Work 122.84 (32.84) 1.01 (0.13) 80.76 (14.54) 1.16 (0.37) 68.97 (19.24) 0.93 (0.31) 73.17 (15.93) 1.06 (0.36)

Reject ... ... 14 4 10 2 12 9

Table 2: Comparison of treatment groups (Sys, Rand, Sys & Rand) for task duration and frequency. Values are means (µ) and
std. dev. (σ) in parentheses. Highlighted cells in gray denote statistically significant deviations (p ≤ 0.05) from either the
corresponding task duration or frequency within the control (baseline) condition.

Rand Sys & Rand

Task µ (σ) ρ µ (σ) ρ

Call 8.56 (4.78) 0.75 8.77 (4.42) 0.63
Coffee 7.51 (5.52) 0.68 7.87 (5.92) 0.54

Creative 6.42 (3.87) 0.68 7.31 (3.86) 0.5
Email 7.39 (5.29) 0.73 7.35 (5.69) 0.5

Exercise 6.84 (4.04) 0.82 7.82 (3.5) 0.71
Reading 9.97 (3.01) 0.49 11.24 (2.24) 0.39

Lunch 4.06 (1.92) 0.3 4.12 (1.22) 0.24
Meeting 4.07 (3.92) 0.64 4.63 (4.07) 0.54

Break 9.77 (3.34) 0.43 11.34 (3.62) 0.34
Personal 8.92 (3.34) 0.55 10.44 (3.97) 0.29

Plan 6.56 (4.17) 0.8 7.0 (4.6) 0.56
Reflect 7.37 (3.69) 0.62 8.89 (4.19) 0.43

Research 5.2 (3.76) 0.65 5.62 (3.47) 0.63
Media 8.66 (3.76) 0.67 10.04 (3.41) 0.53

Collab. 4.14 (3.38) 0.68 4.11 (3.26) 0.52
Work 3.31 (4.25) 0.47 3.96 (4.93) 0.4

Table 3: Schedule positions. Values are means (µ) with std.
dev. (σ) in parentheses, and correlation coefficient (ρ).

The Effect on Position of tasks in schedules from
the use of the system message alone was not signifi-
cant—there was a high correlation between the task
list and schedule position—with the variance in po-
sition being minimally affected. Table 3 shows the
results of randomisation (Rand) and randomisation
with a system message (Sys & Rand). Given a uni-
formly randomised task list in the prompt across the
500 samples, we observe variability in the position
of the tasks with greater variance in many of those
positions. The introduction of the system message
(Sys) has the effect of weakening the correlation
(a reduction in the coefficient) across all tasks. In
many cases, it also reduces the positional variance.
Note all correlations are statistically significant at
the p ≤ 0.05 threshold.

The Effect on Task Frequency and Duration is
presented in Table 2. The results show the impact
of the introduction of both task list order randomi-
sation and the use of a system message. Both inde-
pendent variables significantly impact the duration
of tasks, notably increasing variance. However,
independently, there is minimal impact on the num-
ber of task populations regarding task occurrence
frequency. The combination of randomisation and
a system message has a broader impact on the de-
pendent variables.

Taken together, these results indicate that the
combination of a system message and randomi-
sation produces the optimum variation across the
tasks, meeting the goals of producing a baseline
dataset for further persona experiments.

4.2.2 Induced Personality Experiments
Given a suitable baseline set, we can explore the
impact of induced personalities in schedule cre-
ation. Our approach extends the prompt schema to
include personality trait statements. We use both
positive and negative personality statements as in-
dependent variables and examine their impact on
task frequency and duration. Additionally, we ap-
ply a probabilistic algorithm to compute the ex-
pected schedule for each condition by calculating
and returning the most frequent task in a given
schedule slot (sequence). The expected schedule
for each condition is provided in Table 5.

After generation, validation, and processing of
the experimental and control group(s), statistical
tests were performed on the metrics of task du-
ration and task frequency. For task durations,
two-sample t-tests were performed to identify sta-



Task Neutral O (+) O (–) C (+) C (–) E (+) E (–) A (+) A (–) N (+) N (–)

Call 51.6 (19.7) 50.3 (18.3) 48.4 (19.6) 46.5 (19.6) 51.2 (17.3) 55.3 (19.7) 45.3 (16.2) 48.6 (18.5) 62.2 (22.4) 51.0 (18.4) 49.0 (18.9)
Coffee 40.9 (17.3) 37.5 (15.6) 38.1 (17.8) 32.1 (12.7) 49.6 (19.3) 36.9 (13.9) 43.0 (20.5) 34.9 (14.4) 44.4 (21.3) 43.0 (19.3) 37.5 (40.4)
Creative 62.0 (19.9) 66.5 (16.5) 62.6 (18.5) 72.6 (20.0) 61.4 (21.0) 67.5 (16.8) 69.7 (19.6) 65.6 (18.8) 71.8 (19.6) 63.0 (17.5) 69.0 (17.8)
Exercise 57.1 (17.1) 59.0 (14.6) 51.1 (13.1) 59.1 (13.1) 57.1 (18.6) 62.5 (13.8) 54.4 (14.5) 57.6 (12.7) 64.3 (19.0) 57.2 (16.5) 60.9 (13.5)
Reading 51.9 (18.6) 54.4 (17.9) 50.4 (13.0) 47.4 (17.0) 55.1 (17.3) 54.5 (16.7) 62.1 (17.3) 53.1 (37.6) 51.4 (15.4) 52.2 (16.5) 52.9 (16.4)
Lunch 65.1 (19.8) 63.1 (15.5) 65.6 (20.1) 64.5 (19.5) 72.2 (26.8) 65.0 (14.9) 66.2 (18.4) 65.1 (18.1) 72.6 (23.8) 65.3 (21.5) 63.0 (14.2)
Meeting 59.0 (17.8) 63.8 (16.1) 69.8 (23.0) 69.5 (17.7) 60.1 (20.2) 68.0 (16.5) 55.8 (16.1) 65.4 (17.1) 72.0 (20.5) 63.5 (17.4) 66.8 (18.6)
Break 45.0 (18.7) 45.8 (41.4) 43.2 (16.4) 41.1 (17.1) 52.1 (20.8) 46.0 (18.4) 47.3 (20.9) 41.7 (17.2) 52.2 (21.2) 47.5 (18.7) 43.0 (17.5)
Personal 51.1 (19.5) 48.9 (16.9) 50.0 (16.9) 46.7 (18.0) 54.5 (19.9) 51.9 (18.6) 51.2 (23.0) 49.2 (20.1) 55.0 (20.1) 49.9 (20.6) 48.5 (19.4)
Plan 55.5 (18.9) 58.3 (17.6) 60.1 (20.2) 50.1 (20.4) 53.4 (15.5) 56.9 (18.8) 60.7 (19.6) 57.8 (17.7) 63.5 (21.2) 56.2 (17.3) 56.1 (17.9)
Reflect 51.1 (19.0) 48.4 (17.3) 51.8 (19.4) 48.5 (20.9) 52.4 (18.0) 52.9 (19.4) 52.5 (21.8) 46.9 (20.0) 53.7 (19.6) 52.0 (19.8) 47.7 (18.8)
Research 59.5 (19.8) 62.7 (16.0) 71.8 (24.7) 71.1 (21.1) 57.4 (18.8) 63.9 (19.9) 67.3 (20.5) 62.8 (20.0) 71.4 (22.8) 63.0 (21.0) 65.0 (19.2)
Media 48.3 (15.6) 52.5 (19.6) 43.3 (13.7) 44.2 (17.9) 51.1 (18.0) 57.0 (16.7) 50.9 (18.2) 49.2 (20.4) 52.4 (16.9) 51.6 (17.4) 47.4 (18.1)
Collab. 62.5 (19.5) 62.5 (15.7) 69.5 (21.9) 70.3 (17.6) 60.2 (21.7) 67.8 (16.6) 61.9 (18.5) 66.5 (19.4) 74.5 (23.5) 64.7 (20.9) 67.5 (16.6)
Work 63.9 (19.2) 69.6 (20.4) 82.3 (25.2) 85.1 (19.0) 66.3 (23.3) 74.2 (18.8) 78.3 (21.5) 74.1 (19.0) 78.8 (20.7) 75.0 (24.6) 77.3 (18.6)

Reject ... 9 9 14 6 10 9 10 14 5 8

Table 4: Individual task durations (minutes) per OCEAN (+/-) condition with sample size n = 500. Values are mean (µ) with std.
dev. (σ) in parentheses. Highlighted cells in gray denote statistically significant deviations (p ≤ 0.05) from the corresponding
task duration within the control (Neutral) condition.

tistically significant population differences at the
p ≤ 0.05 level. This analysis is given in Table 4.
As frequencies of task occurrences is a form of
discrete data, the Chi-square test of independence
was employed. Results are displayed in Table 6.

n O + O - C + C - E + E - A + A - N+ N -

1 Wrk. Cof. Wrk. Pla. Cof. Cof. PT Ref. Wrk. PT
2 Wrk. Cre. Wrk. Wrk. Med. Tea. Wrk. Wrk. Wrk. Wrk.
3 Tea. Res. Mee. Tea. Wrk. Tea. Cof. Tea. Mee. Cof.
4 Lun. Tea. Lun. Mee. Lun. Lun. Lun. Tea. Lun. Lun.
5 Lun. Lun. Lun. Lun. Lun. Lun. Lun. Lun. Lun. Lun.
6 Lun. Lun. Lun. Lun. Lun. Lun. Lun. Lun. Res. Lun.
7 Res. Pla. Res. Res. Exe. Exe. Bre. Res. Cal. Res.
8 Cre. Exe. Ref. Cre. Tea. Exe. Bre. Exe. Exe. Res.
9 Pla. Med. Ref. Ref. Exe. Res. Bre. Exe. Cre. Exe.

10 Pla. Med. Ref. Ref. Cre. Ref. PT Rea. Exe. Bre.
11 PT Rea. Exe. Exe. Rea. Rea. End. Rea. Med. Exe.
12 Med. Rea. Rea. Med. Pla. Rea. Med. Rea. Med. Rea.
13 Rea. Rea. Rea. Rea. Pla. Rea. Med. Med. Rea. Rea.
14 Rea. Cal. Rea. Rea. Pla. Rea. Med. Cal. Rea. Rea.
15 Cof. Ema. Med. Cal. Pla. Ema. Cal. Cal. Rea. Rea.
16 Bre. PT Bre. Bre. End. Bre. Mee. Bre. Bre. Cal.
17 End. End. End. End. End. End. End. End. End. End.

Table 5: Calculated expected schedule per OCEAN (+/-) con-
dition. n = sequence slot. 1Task abbreviation keys.

In each experimental group, the duration and
frequency of at least 5 and 7 tasks significantly
differed from the control, respectively. This indi-
cates the induction of personality, based on FFM,
notably affects planning-based behaviours on both
of these metrics given the downstream task pre-
sented herein. Many of these differences correlated
with the expected changes for the specific OCEAN
trait under evaluation. For instance, positively in-
ducing Conscientiousness increased the average
duration (µ) of the Work task (85.1m vs. 63.9m)
while slightly reducing its variance (σ) (19.0 vs.

1Key: Call (Cal.), Coffee (Cof.), Creative (Cre.), Exercise
(Exe.), Reading (Rea.), Lunch (Lun.), Meeting (Mee.), Break
(Bre.), Personal Time (PT), Plan (Pla.), Reflect (Ref.), Re-
search (Res.), Media (Med.), Teamwork (Tea.), Work (Wrk.)

19.2). Conversely, negative induction resulted in an
increased average duration (µ) (66.3m vs. 63.9m)
with a higher variance (σ) (23.3 vs. 19.2). Ad-
ditionally, non-work tasks (e.g., Break, Personal
Time) were scheduled for longer periods.

5 Discussion

This study demonstrates the controlled induction of
personality traits, based on FFM, can produce dis-
tinctly different planning-based behaviours within
an LLM. This is essential for the deceptive agents
herein proposed, operated by the SANDMAN ar-
chitecture, to be effective in their capacity to create
plausibly deniable behaviours and misinformation
which cannot be distinguished from human and
machine. The aim hereby is to enable defenders
the capability to craft and refine various simulacra
personas of autonomous agents in security-focused
applications. While the central focus is on deploy-
ing decoys to gather intelligence on attackers, the
concept and research herein raises question toward
the efficacy of low-cost, large-scale deployment
of deceptive agents to achieve a dazzling effect to-
ward adversaries. Here, numerous agents operate
autonomously to simulate entire networks of inter-
connected systems and individuals, thereby making
it difficult for attackers to distinguish between real
assets and decoys.

Lastly, it must be noted that this study is obser-
vational in nature. Its central aim is to investigate
whether induced personas within an LLM presents
considerable effect upon planning-based behaviour
within a downstream task. Exploration of any ob-
served correlation or relationship between a given
OCEAN trait and associated output is suited toward
future work, outlined below.



Task Neutral O (+) O (-) C (+) C (-) E (+) E (-) A (+) A (-) N (+) N (-)

Call 0.99 (0.18) 0.97 (0.18) 0.87 (0.34) 0.96 (0.21) 0.93 (0.25) 0.96 (0.22) 0.52 (0.50) 0.99 (0.11) 1.01 (0.15) 0.97 (0.19) 0.97 (0.17)
Coffee 0.97 (0.21) 0.99 (0.15) 0.91 (0.30) 0.95 (0.21) 1.07 (0.26) 1.00 (0.20) 0.79 (0.42) 1.00 (0.11) 0.95 (0.26) 0.99 (0.16) 0.99 (0.11)
Creative 1.04 (0.21) 1.07 (0.26) 0.90 (0.32) 1.00 (0.09) 1.00 (0.18) 1.00 (0.12) 0.97 (0.29) 1.01 (0.08) 1.00 (0.13) 1.00 (0.16) 1.00 (0.09)
Exercise 0.98 (0.15) 0.99 (0.08) 0.83 (0.38) 0.97 (0.17) 0.98 (0.14) 1.00 (0.00) 0.60 (0.49) 0.99 (0.13) 0.98 (0.14) 0.98 (0.15) 0.99 (0.09)
Reading 1.00 (0.11) 1.01 (0.12) 0.89 (0.32) 0.98 (0.16) 1.01 (0.13) 1.01 (0.13) 1.01 (0.20) 1.00 (0.08) 0.98 (0.13) 1.01 (0.15) 1.00 (0.10)
Lunch 1.01 (0.08) 1.00 (0.04) 1.01 (0.09) 1.01 (0.08) 1.00 (0.09) 1.00 (0.04) 1.01 (0.10) 1.00 (0.04) 1.00 (0.09) 1.00 (0.06) 1.00 (0.04)
Meeting 1.00 (0.16) 0.97 (0.16) 0.98 (0.18) 1.00 (0.09) 0.94 (0.27) 1.00 (0.17) 0.52 (0.50) 0.99 (0.12) 1.04 (0.20) 0.97 (0.17) 0.98 (0.15)
Break 1.02 (0.23) 1.02 (0.22) 0.90 (0.33) 0.98 (0.21) 1.10 (0.31) 1.01 (0.22) 1.25 (0.48) 1.04 (0.23) 0.94 (0.27) 1.12 (0.35) 1.03 (0.23)
Personal 1.04 (0.26) 1.06 (0.26) 0.97 (0.34) 1.05 (0.28) 1.07 (0.34) 1.08 (0.30) 1.49 (0.68) 1.06 (0.26) 1.00 (0.18) 1.12 (0.37) 1.11 (0.35)
Plan 1.04 (0.20) 1.01 (0.11) 1.00 (0.13) 1.00 (0.09) 0.94 (0.24) 0.98 (0.16) 0.89 (0.31) 1.00 (0.13) 1.00 (0.13) 1.01 (0.17) 1.00 (0.08)
Reflect 1.09 (0.29) 1.05 (0.23) 1.03 (0.21) 1.06 (0.25) 0.99 (0.15) 1.02 (0.15) 1.41 (0.59) 1.10 (0.32) 1.03 (0.18) 1.16 (0.38) 1.08 (0.27)
Research 1.01 (0.14) 1.03 (0.18) 0.99 (0.12) 1.00 (0.06) 0.95 (0.22) 0.95 (0.22) 1.00 (0.23) 0.99 (0.10) 1.00 (0.14) 1.01 (0.18) 0.99 (0.10)
Media 1.02 (0.19) 1.00 (0.13) 0.86 (0.35) 0.96 (0.19) 1.19 (0.43) 1.06 (0.26) 0.69 (0.46) 0.99 (0.13) 1.00 (0.14) 1.03 (0.21) 0.99 (0.09)
Collab. 1.02 (0.17) 1.00 (0.08) 0.99 (0.11) 1.00 (0.06) 0.97 (0.20) 1.02 (0.13) 0.61 (0.49) 1.00 (0.06) 1.00 (0.04) 0.99 (0.13) 1.00 (0.04)
Work 1.18 (0.46) 0.89 (0.36) 1.18 (0.40) 1.11 (0.33) 0.92 (0.36) 0.93 (0.30) 0.78 (0.43) 0.95 (0.27) 1.32 (0.52) 1.02 (0.30) 1.00 (0.18)

Reject ... 6 6 7 10 5 8 7 8 7 8

Table 6: Individual task frequency per OCEAN (+/-) condition with sample size n = 500. Values are mean (µ) with std. dev.
(σ) in parentheses. Highlighted cells in gray denote statistically significant deviations (p ≤ 0.05) from the corresponding task
frequency within the control (Neutral) condition.

5.1 Future Work

As discussed, further examination is warranted
to understand how certain personality traits, and
combinations thereof, modify task scheduling be-
haviour and whether these remain consistently
aligned with expectations based on extant and
emerging understandings regarding the underly-
ing trait induced to the LLM. Additional dependent
variables should be explored to characterise and
evaluate the output schedule populations compre-
hensively. While task duration and frequency are
valuable metrics, other measures are required for a
more thorough comparison.

Currently, the SANDMAN decision engine pro-
cesses schedules sequentially. Future work will
focus on enhancing this decision-making task by
incorporating LLMs to account for execution con-
text and personality traits, leading to more com-
plex behaviours and effectively distinguishing be-
tween intention and action within the deceptive
agent. Future research will also involve implement-
ing multi-agent communication to create a realistic
simulacrum of a community exhibiting human-like
behaviour. Incorporating vision-based models and
other modalities will support complete autonomic
behaviour and reasoning, enabling more intricate
tasks and richer interactions.

Lastly, real-world deployment of SANDMAN
against actual observers, such as potential adver-
saries within safe and sandboxed virtual environ-
ments, will provide valuable insights into the prac-
tical effectiveness and limitations of the system,
particularly within a defense-oriented context pred-
icated on denial, deceit, and misinformation. Defin-
ing and measuring the "believability" or "plausibil-
ity" of agent behaviour will be crucial for assessing

how convincingly Deceptive Agents mimic human
actions. Incorporating dynamic task chaining and
adaptive learning capabilities will enable agents to
continuously learn from previous decisions and sub-
sequent interactions to thus adapt their behaviour,
making the agents more resilient and unpredictable,
further complicating attackers’ efforts. Future work
will thus focus on advancing SANDMAN’s archi-
tecture and assessing its capabilities as a fully au-
tonomous deceptive agent, enhancing its realism,
adaptability, and effectiveness in cyber deception.

6 Conclusion

This paper introduces the concept of Deceptive
Agents–a new class of autonomous agents leverag-
ing LLMs as its central controller whose purpose
is to deceive adversaries by exhibiting plausible,
human-like behaviour. Agents operate on a novel
architecture, inspired by the CoALA framework,
which offers an extensible, modular platform for
developing language agents. This study highlights
the use of LLMs in generating context relevant to
the operation of the deceptive agent and, impor-
tantly, utilises LLMs for task planning, which is
influenced by the induction of one of the Big-Five
(OCEAN) personality traits, based on FFM. The
work introduces a schema for personality prompt
generation that produces statistically significant
schedule populations in terms of task frequency
and duration. The results underscore the utility
and effectiveness of using LLMs in such decision-
making processes in Language Agents, employing
personality traits as a control mechanism to craft
distinct personas.



7 Limitations

In this work, we introduced SANDMAN, a novel
architecture for developing deceptive agents de-
signed to mimic human behaviour in digital envi-
ronments. While this study extends prior research
in autonomous agents, several limitations accom-
pany the current implementation and evaluation.

Dependency on LLMs SANDMAN relies heav-
ily on LLMs for decision-making. Any imperfec-
tions in these models, such as biases or inaccura-
cies, can be mirrored in the agents’ behaviours, po-
tentially replicating existing stereotypes or flawed
behavioural patterns, which is particularly concern-
ing for deceptive agents.

Static Nature of Agent Scheduling Our inves-
tigation focused on the initial planning process,
where agents generate schedules based on induced
personality traits. This static approach does not
reflect the dynamic nature of human activities. Hu-
mans continuously adjust their schedules in re-
sponse to new information and unforeseen events.
SANDMAN agents’ inability to adapt in real-time
limits the realism of their actions.

Isolated Effect of Single-Agent Environments
SANDMAN agents currently operate indepen-
dently without interacting with other agents. This
isolation is a significant departure from real-world
environments, particularly workplaces, where in-
teractions and collaborations influence behaviour
and task management. The lack of multi-agent in-
teraction capabilities restricts the agents’ utility in
more complex scenarios.

Overemphasis on Personality The assumption
that personality alone dictates detailed daily sched-
ules and actions overlooks other critical factors.
Personal interests, relationships, workplace dynam-
ics, and spontaneous decisions play significant
roles in shaping human behaviour. Sole emphasis
on personality may oversimplify human behaviour,
leading to less realistic agent actions.

Evaluation and Validation Challenges Evaluat-
ing SANDMAN agents is constrained by the sim-
plistic scenarios in which they operate. More ro-
bust testing frameworks with actual observers are
needed to assess these agents in varied environ-
ments. Additionally, the criteria for "believable"
or "plausible" behaviour by a language agent in a
digital environment need to be rigorously defined
and measured.

8 Ethics

The design of autonomous agents, specifically "De-
ceptive Agents" as outlined in our SANDMAN
architecture, offers significant capabilities for en-
hancing cyber defense through strategic deception.
However, due to the human-like nature of these
agents, a thorough examination of the ethical im-
plications and societal impact is necessary.

Ethical Use of Deception Deceptive Agents are
designed to deceive unauthorised users attempt-
ing to access or compromise digital systems, ex-
tending existing deception technologies like hon-
eypots (Spitzner, 2003). The primary purpose of
these agents is defensive, not malicious. They
mimic human behaviour to create plausible yet non-
functional digital decoys, misleading attackers to
protect sensitive data and systems. This approach
is ethically justified on the principle of "rightful de-
ception" in response to unauthorised and malicious
actions, where the deceived party has no legitimate
claim to truth due to their unethical intent.

Ethical Use of SANDMAN SANDMAN agents
are designed to operate in isolated environments,
strictly for deceiving malicious actors. Although
the architecture is general-purpose and modifiable,
it is not intended for use as a "virtual employee" in
real networks. Using a Gen-AI agent as an actual
employee raises ethical concerns about account-
ability and responsibility, which should be avoided
until further research on the feasibility of Gen-AI
in the workplace is conducted.

Exacerbated Misinformation Generation
There is a risk that Deceptive Agents could
exacerbate existing risks associated with Gen-AI,
such as deepfakes, misinformation generation, and
tailored persuasion (Park et al., 2023).

Controlled Behaviour There is a risk of Decep-
tive Agents operating outside their intended scope
or generating concerning material due to their inter-
action with digital environments. If entirely driven
by LLMs, safety constraints are applied to min-
imise this risk.
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