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Abstract -- Typosquatting is a long-standing cyber 
threat that exploits human error in typing URLs to 
deceive users, distribute malware, and conduct 
phishing attacks. With the proliferation of domain 
names and new Top-Level Domains (TLDs), 
typosquatting techniques have grown more 
sophisticated, posing significant risks to 
individuals, businesses, and national cybersecurity 
infrastructure. Traditional detection methods 
primarily focus on well-known impersonation 
patterns, leaving gaps in identifying more complex  
attacks. This study introduces a novel approach 
leveraging large language models (LLMs) to 
enhance typosquatting detection. By training an 
LLM on character-level transformations and 
pattern-based heuristics rather than 
domain-specific data, a more adaptable and 
resilient detection mechanism develops. 
Experimental results indicate that the Phi-4 14B 
model outperformed other tested models when 
properly fine tuned achieving a 98% accuracy rate 
with only a few thousand training samples. This 
research highlights the potential of LLMs in 
cybersecurity applications, specifically in 
mitigating domain-based deception tactics, and 
provides insights into optimizing machine learning 
strategies for threat detection. 
 

I. Introduction  
 
Since the early days of the commercial 

internet, typosquatting has exploited the simplest of 
human errors, mistyping a URL, to serve as a potent 
tool for cybercriminals. Initially observed as an 
opportunistic tactic, typosquatting involves registering 
domain names that closely match that of reputable 
brands, thereby redirecting users to counterfeit 

websites. This has evolved into a sophisticated form of 
cyberattack used to conduct phishing schemes, 
distribute malware, and harvest sensitive data. Now 
with billions of domain names and TLDs in 
circulation, the scale and impact of typosquatting have 
grown exponentially. This poses significant risks to 
individuals, businesses, and national cybersecurity 
infrastructure. This whitepaper explores how emerging 
large language model (LLM) techniques can enhance 
the detection of typosquatting attempts, ultimately 
fortifying defenses against one of the internet’s most 
enduring cyber threats.  
 Cybercriminals employ various domain 
squatting techniques to deceive users and bypass 
traditional security measures. These methods include 
but not limited to: 
Character Substitution: These attacks swap similar 
looking characters like replacing "o" with "0" in 
go0gle[.]com to trick users into believing they are 
visiting the legitimate site. 
Omission or Addition: This method involves 
removing or adding a character, creating domains such 
as gogle[.]com or gooogle[.]com, which often go 
unnoticed by unsuspecting users. 
Homoglyph Attacks: By using visually similar 
character combinations (e.g., “rn” for “m”), attackers 
create domains like rnicrosoft[.]com that closely 
resemble the original. 
Common Misspellings: Attackers exploit frequent 
typos, resulting in domains such as facbook[.]com, 
banking on common human error to divert traffic. 
TLD Manipulation: Instead of the typical ".com" 
ending, an attacker might use a different TLD—like 
paypal[.]co to deceive users who overlook the subtle 
difference. 
Phonetic Similarity: Domains like nute1ix[.]com 
mimic the sound of trusted sites such as netflix[.]com, 
relying on auditory similarity to mislead visitors. 

 



 
Deceptive Additions: By appending words like 
"support" or "login" to a domain (e.g., 
apple-support[.]com), attackers create a false 
impression of legitimacy and security [1]. 
Punycode: A standardized encoding method that 
converts Unicode characters, including those from 
non-Latin scripts, into an ASCII-compatible format for 
use in domain names, enabling internationalized 
domain names (IDNs) like müller[.]de to be 
represented as xn--mller-kva[.]de. Threat actors 
exploit Punycode for typosquatting by registering 
domain names with visually similar but different 
Unicode characters, such as replacing the Latin 'a' with 
the Cyrillic 'а,' tricking users into visiting malicious 
websites that appear identical to legitimate ones [2]. 

Significant progress has been made by 
registrars, legal frameworks, and cybersecurity firms 
to mitigate these attacks. Modern web browsers have 
also increased defenses against typosquatting. Today’s 
browsers employ several strategies to alert users to 
suspicious or potentially fraudulent sites. For instance, 
browsers such as Google Chrome and Mozilla Firefox 
now display domain names in Punycode when 
non-ASCII characters are detected, helping users 
recognize when a homograph attack might be at play. 
Browsers also incorporate robust phishing detection 
systems that analyze web page content and domain 
reputations in real time, often displaying warnings 
when a site appears suspect or the security certificate 
seems mismatched. These built-in features, alongside 
continuous updates and improved safe browsing 
protocols, significantly enhance the user’s ability to 
spot and avoid typosquatting attacks [3]. While 
significant challenges still persist, research has 
advanced the understanding of fraudulent domain 
practices. Current detection systems tend to 
concentrate on established impersonation patterns tied 
to prominent brands, leaving them less effective 
against innovative tactics or those targeting 
lesser-known entities. Techniques that manipulate 
lower levels of the Domain Name System (DNS), for 
example, often evade these conventional methods, 
while the continuously evolving nature of these attacks 
further strains current defenses. Bridging these gaps is 
essential for developing a more resilient and 
comprehensive approach to safeguarding online 

identity. This, in turn, would ultimately enhance 
overall cybersecurity for both individuals and 
organizations. In response, this study introduces a 
technique of training an LLM on thousands of 
common and not so common domains against their 
typosquated counterparts to learn the patterns, rather 
than the domains themselves, to conduct analysis. This 
innovation not only offers a more adaptable 
countermeasure against the dynamic threat landscape 
but also exemplifies how LLMs can revolutionize the 
processing of extensive security logs to mitigate online 
deception. 
 

II. Retrieval-Automation Generation 
(RAG) vs Fine Tune Training 

 
Training a dedicated LLM specifically for 

typosquatting detection has several advantages over a 
retrieval-augmented generation (RAG) approach. 
LLMs, trained on specialized data, develop a 
foundational understanding of the subtle 
character-level changes with context-specific patterns 
that differentiate malicious domains from legitimate 
ones, enabling accurate identification of typosquatting 
attempts. In contrast, RAG, which combines a retriever 
for sourcing external documents with a generative 
model, can be limited by the quality and coverage of 
its external knowledge base. While RAG can leverage 
more up-to-date data and a broader context, it may not 
always capture the evolving and nuanced nature of 
typosquatting techniques. The reliance on an external 
knowledge base can introduce vulnerabilities, as it 
may not be comprehensive or current enough to detect 
the latest typosquatting strategies. Below, it is 
discernible  that models with fewer parameters 
struggled to consistently follow the prompt 
instructions, rendering a RAG-based approach 
impractical. By training an LLM directly on targeted 
data, the model inherently learns to detect these subtle 
variations and can rapidly adapt to new adversarial 
strategies without needing to consult external 
repositories, resulting in lower latency and enhanced 
detection accuracy. Furthermore, a dedicated LLM can 
be continuously fine-tuned on new data as 
typosquatting techniques evolve, ensuring that the 
model remains effective against emerging threats.  
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III. Training Data  
 
The initial phase of any machine learning 

initiative is to establish an accurate representation of 
the ground truth data. The website 
haveibeensquatted[.]com provided known examples 
of typosquatted domains paired with their legitimate 
counterparts [4]. For example, the alteration of 
facebook[.]com to faceb0ok[.]com illustrates the 
underlying concept of swapping an “o” with an “0”. 
This methodology was applied to hundreds of 
domains, including those associated with companies 
such as Accenture, Amazon, Cisco, IHG, Tesla, 
Trendmicro, and Walmart, yielding approximately 
500+ real-world domain examples. However, this 
dataset alone was insufficient for developing a 
comprehensive model. To address this limitation, a 
process known as self-distillation through synthetic 
data generation was employed. This approach 
leverages a LLM such as ChatGPT O1 or O3-mini, 
with many more parameters, to generate synthetic 
training data based on a subset of authentic data points. 
The larger, more capable "teacher" model produces 
high-quality datasets that capture specific patterns and 
domain-specific knowledge, enabling smaller 
"student" models to internalize nuanced behaviors 
without the computational burden of training on 
massive datasets [5]. This methodology accelerates 
model development, reduces training costs, and allows 
for the deployment of specialized models optimized 
for specific applications. The list of true typosquatting 
domains was provided to ChatGPT O3-mini, along 
with the prompt: “Expand on this list and generate 
many more domain pairings for typosquatting 
methods.” The results closely resembled the ground 
truth dataset, producing examples such as 
facebookk[.]com and netf1ix[.]com. To further 
expand the dataset, a list of companies from the 
Standard and Poor’s (S&P 500) was incorporated, with 
a similar prompt strategy applied, resulting in an 
augmented dataset comprising approximately 2,300 
verified domain examples for the training set. The 
validation set was generated using a comparable 
approach but focused on domains associated with 
national security, banking, and defense sectors, which 

are particularly susceptible to spoofing or disguising. 
By combining authentic domain examples with 
synthetically generated data via self-distillation, this 
approach significantly enhances the robustness of the 
dataset, expedites model development, optimizes 
resource utilization, and enables the creation of 
specialized models capable of addressing 
domain-specific challenges in typosquatting detection. 

 
IV. Model Selection and Training Setup 

 
Fine-tuning an LLM can require hundreds of 

graphic processing unit (GPU)-intensive hours. 
However, to combat this, the Python library Unsloth 
was leveraged. Unsloth is a lightweight library 
designed to efficiently fine-tune LLMs, optimizing 
performance even in resource-constrained 
environments. It is easily integrated into Google 
Collab and Linux systems [4]. Many different models 
were tested such as Meta LLaMA3.2 1B, 3B and 
LLaMA 3.1 8B, along with DeepSeek R1 distilled 8B. 
However the best performance was achieved with the 
Phi-4 14B parameter model. Due to resource 
limitations, models with more  parameters could not be 
tested. The use of a single RTX 3090 GPU with 24GB 
of RAM was leveraged. The next step was crafting a 
system prompt for training. A system prompt sets the 
initial context, tone, and behavior guidelines for a 
large language model, shaping how it interprets user 
input and generates responses. It effectively guides the 
LLM's role, style, and focus throughout the 
interaction. ChatGPT was leveraged in a combination 
of trial and error approaches with the following system 
prompt: 

 
“You are an advanced cybersecurity analyst 
specializing in detecting typosquatting attacks. Your 
task is to analyze a given domain and determine if it is 
designed to mislead users by imitating a well-known, 
legitimate domain. Perform the following detailed 
analysis: 
 

1. Character-Level Comparison 

Edit Distance Metrics 
Employ Levenshtein or Damerau-Levenshtein 
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distances to quantify domain differences. 
Measure and interpret the number and type of 
modifications, including insertions, deletions, 
substitutions, or character transpositions. 

Substitution Analysis 
Identify and evaluate visually or phonetically similar 
character replacements, such as: 

● Letter 'o' replaced by number '0' 
● Letter 'l' replaced by number '1' 

Transposition and Omission Detection 
Examine domains for swapped characters or 
missing/extra characters that deviate from expected 
legitimate domain patterns. 

2. Pattern Recognition and Heuristic Analysis 

Common Typo Patterns 
Detect and classify domains based on prevalent 
typosquatting techniques, including: 

● Character Substitution: e.g., go0gle.com vs. 
google.com 

● Omission or Addition: e.g., gogle.com, 
gooogle.com 

● Homoglyph Attacks: e.g., rnicrosoft.com vs. 
microsoft.com 

● Common Misspellings: e.g., facbook.com vs. 
facebook.com 

● TLD Manipulation: e.g., paypal.co vs. 
paypal.com 

● Phonetic Similarity: e.g., nute1ix.com vs. 
netflix.com 

● Deceptive Additions: misleading terms such 
as support, login, secure, update, verification, 
helpdesk 

○ Examples: apple-support[.]com, 
bankofamerica-login[.]com 

Visual and Phonetic Similarity Assessment 
Evaluate domains for visual or phonetic changes 
designed to cause confusion or misunderstanding. 

Contextual Domain Structure 
Assess the use of deceptive prefixes, suffixes, and 
domain extensions that may indicate malicious intent. 

Final Verdict 

● Return True if the domain is identified as a 
typosquat. 

● Return False if no intentional deceptive 
practices are detected. 

● No additional explanations or details beyond 
the binary verdict are required.” 

Once a system prompt has been created, the 
fine tuning model parameters can be adjusted. Unsloth 
makes this exceptionally easy with just a single block 
of code and a few parameters. 

WARMUP_STEPS = 20 gradually increases the 
learning rate over the first 100 steps to stabilize 
training and prevent sudden weight updates that could 
cause divergence, especially when working with 
smaller datasets. 
NUM_TRAIN_EPOCHS = 1 ensures the model 
makes a single full pass over the dataset, which is 
useful for quick fine-tuning runs, avoiding overfitting 
on large datasets, and enabling faster experimentation, 
since there are only a few thousand data points. 
MAX_STEPS = 80 limits training to 80 optimization 
steps, which helps control overfitting, allows for early 
stopping, and ensures efficient resource usage, 
especially for smaller datasets. In testing it was 
discovered the most optimal performance reached at 
around 80 samples as overfitting occurred past this 
point.  
LEARNING_RATE = 1E-5 provides a stable, low 
learning rate that fine-tunes our pre-trained model 
without drastically altering their weights. This was set 
low in this case as the model at times would overfit. 

The validation dataset consisted of over 400 domains 
from various companies with 150 of them being valid 
domains from popular brands like WhatsApp, Chevron 
and ESET. The typosquat variants were generated 
using a combination of synthetically generated data 
and real valid domains. The goal was to create a 
unique dataset across various industries with a focus 
on sectors like energy and banking as those tend to be 
likely targets for typosquatting but would not appear in 
our training dataset.  
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V. Evaluation 

 To assess the effectiveness of various models 
in detecting typosquat domains, extensive training was 
conducted on multiple open-source models, including 
variants of LLaMA 3.1, 3.2 and DeepSeek R1 8B 
distilled. Each model was evaluated on its accuracy in 
distinguishing typosquat domains from legitimate ones 
as well as its inference speed. The Phi-4 14B model 
consistently outperformed the others, achieving an 
impressive 98% accuracy after fine tuning. In contrast, 
even though the DeepSeek R1 distilled model 
demonstrated promising reasoning capabilities, it 
suffered from slower inference times and lower 
accuracy. It often overthought and would not follow 
the prompt; usually outputting a nonsensical analysis. 
Notably, the non-fine-tuned versions of the LLaMA 
models (1B and 3B) exhibited significant 
shortcomings also. They both either failed to follow 
the prompt or outright refused to engage with the task, 
often flagging the activity as illegal. This behavior 
underscores the limitations of deploying models 
without targeted fine tuning, especially in scenarios 
that demand strict adherence to domain-specific 
instructions. This highlights the power of Unsloth that 
with just a few training samples  LLaMA 3.2 1B 
model  improved dramatically from a mere 2% 
accuracy to 92% after fine-tuning. The older LLaMA 
3.1 8B variant performed worse compared to the 
smaller yet newer LLaMA 3.2 3B model, emphasizing 
advances in newer model architectures.  The table 
below summarizes the performance of each tested 
model: 

Model Name 
Not Fine 
Tuned Fine Tuned 

Time 
(seconds) 

LLaMA 3.1 8B 
DeepSeek R1 0% 81% 3645 

LLaMA 3.2 1B 2% 92% 127 

LLaMA 3.2 3B 77% 94% 143 

LLaMA 3.1 8B 66% 94% 145 

Phi-4 14B 91% 98% 167 

Phi-4 14B model’s superior performance is likely 
attributed to its higher number of parameters, allowing 
for greater contextual comprehension and pattern 

recognition. A closer examination of the model’s fine 
turned misclassifications reveals interesting patterns in 
its decision-making process. One notable false positive 
occurred with the domain duke-energy[.]com, which 
is the legitimate domain for Duke Energy but was 
flagged as a likely typosquating attempt. This indicates 
that while the model effectively identifies deceptive 
patterns, it may occasionally mistake certain valid 
domains as fraudulent due to their structural 
similarities to common typosquatting techniques. 
These cases highlight the challenge of differentiating 
between legitimate corporate branding choices and 
domain names that exhibit characteristics typically 
associated with phishing or impersonation attempts. 
The model did however successfully classify domains 
such as ihg-hotels[.]com and dellsupport[.]com as 
typosquating attempts. These results demonstrate the 
model’s ability to detect common deception strategies, 
including deceptive additions and slight character 
modifications. The performance disparity between 
fine-tuned and non-fine-tuned models underscores the 
necessity of targeted training to ensure that models can 
reliably execute specialized cybersecurity tasks. The 
results also highlight the limitations of smaller models 
in following complex heuristics, as demonstrated by 
the underwhelming performance of the non-fine-tuned 
LLaMA 3.2 1B and 3B models. Without additional 
training, these models either performed poorly in 
classification or outright refused to generate outputs, 
making them unsuitable for this specific cybersecurity 
use case. 

VI. Future Work 

Future work could potentially focus on 
broadening and refining the dataset to encompass a 
wider variety of industries and emerging typosquatting 
tactics. This would allow the model to adapt to a more 
diverse threat landscape. It may also be beneficial to 
enrich the model with additional cybersecurity 
information by incorporating more varied threat 
intelligence and real-world attack patterns to further 
enhance its detection capabilities. Investigating 
occasional false positives, such as the misclassification 
of legitimate domains, could help guide further 
fine-tuning of both the model and system prompts, 
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potentially improving precision. There is also the 
possibility of testing with larger models to explore 
whether increased parameter counts might deliver even 
greater accuracy and robustness. Additionally, 
integrating this LLM based detection mechanism into 
live, real-time cybersecurity frameworks and 
considering hybrid approaches that blend 
retrieval-augmented strategies with fine-tuning might 
offer promising avenues for bolstering defenses 
against evolving adversarial techniques. 

VII. Conclusion 

 This research demonstrates the potential of 
fine-tuned LLMs in proactively detecting 
typosquatting attacks with high accuracy using a 
relatively small training dataset. By shifting the focus 
from static domain lists to pattern-based heuristics, the 
solution developed a more adaptive and resilient 
detection approach that can generalize across different 
typosquatting techniques. While traditional browser 
security measures and phishing detection systems offer 
reactive defenses, LLM-driven detection provides a 
proactive layer of protection, identifying deceptive 
domains before users fall victim to them. As cyber 
threats continue to evolve, leveraging advancements in 
machine learning and cybersecurity will be crucial in 
safeguarding individuals, businesses, and national 
critical infrastructure against domain-based deception. 
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