
Training Large Language Models for Advanced
Typosquatting Detection

Jackson Welch, MBA

Email: welchjk@mail.uc.edu

Abstract -- Typosquatting is a long-standing cyber
threat that exploits human error in typing URLs to
deceive users, distribute malware, and conduct
phishing attacks. With the proliferation of domain
names and new Top-Level Domains (TLDs),
typosquatting techniques have grown more
sophisticated, posing significant risks to
individuals, businesses, and national cybersecurity
infrastructure. Traditional detection methods
primarily focus on well-known impersonation
patterns, leaving gaps in identifying more complex
attacks. This study introduces a novel approach
leveraging large language models (LLMs) to
enhance typosquatting detection. By training an
LLM on character-level transformations and
pattern-based heuristics rather than
domain-specific data, a more adaptable and
resilient detection mechanism develops.
Experimental results indicate that the Phi-4 14B
model outperformed other tested models when
properly fine tuned achieving a 98% accuracy rate
with only a few thousand training samples. This
research highlights the potential of LLMs in
cybersecurity applications, specifically in
mitigating domain-based deception tactics, and
provides insights into optimizing machine learning
strategies for threat detection.

I. Introduction

Since the early days of the commercial

internet, typosquatting has exploited the simplest of
human errors, mistyping a URL, to serve as a potent
tool for cybercriminals. Initially observed as an
opportunistic tactic, typosquatting involves registering
domain names that closely match that of reputable
brands, thereby redirecting users to counterfeit

websites. This has evolved into a sophisticated form of
cyberattack used to conduct phishing schemes,
distribute malware, and harvest sensitive data. Now
with billions of domain names and TLDs in
circulation, the scale and impact of typosquatting have
grown exponentially. This poses significant risks to
individuals, businesses, and national cybersecurity
infrastructure. This whitepaper explores how emerging
large language model (LLM) techniques can enhance
the detection of typosquatting attempts, ultimately
fortifying defenses against one of the internet’s most
enduring cyber threats.
 Cybercriminals employ various domain
squatting techniques to deceive users and bypass
traditional security measures. These methods include
but not limited to:
Character Substitution: These attacks swap similar
looking characters like replacing "o" with "0" in
go0gle[.]com to trick users into believing they are
visiting the legitimate site.
Omission or Addition: This method involves
removing or adding a character, creating domains such
as gogle[.]com or gooogle[.]com, which often go
unnoticed by unsuspecting users.
Homoglyph Attacks: By using visually similar
character combinations (e.g., “rn” for “m”), attackers
create domains like rnicrosoft[.]com that closely
resemble the original.
Common Misspellings: Attackers exploit frequent
typos, resulting in domains such as facbook[.]com,
banking on common human error to divert traffic.
TLD Manipulation: Instead of the typical ".com"
ending, an attacker might use a different TLD—like
paypal[.]co to deceive users who overlook the subtle
difference.
Phonetic Similarity: Domains like nute1ix[.]com
mimic the sound of trusted sites such as netflix[.]com,
relying on auditory similarity to mislead visitors.

Deceptive Additions: By appending words like
"support" or "login" to a domain (e.g.,
apple-support[.]com), attackers create a false
impression of legitimacy and security [1].
Punycode: A standardized encoding method that
converts Unicode characters, including those from
non-Latin scripts, into an ASCII-compatible format for
use in domain names, enabling internationalized
domain names (IDNs) like müller[.]de to be
represented as xn--mller-kva[.]de. Threat actors
exploit Punycode for typosquatting by registering
domain names with visually similar but different
Unicode characters, such as replacing the Latin 'a' with
the Cyrillic 'а,' tricking users into visiting malicious
websites that appear identical to legitimate ones [2].

Significant progress has been made by
registrars, legal frameworks, and cybersecurity firms
to mitigate these attacks. Modern web browsers have
also increased defenses against typosquatting. Today’s
browsers employ several strategies to alert users to
suspicious or potentially fraudulent sites. For instance,
browsers such as Google Chrome and Mozilla Firefox
now display domain names in Punycode when
non-ASCII characters are detected, helping users
recognize when a homograph attack might be at play.
Browsers also incorporate robust phishing detection
systems that analyze web page content and domain
reputations in real time, often displaying warnings
when a site appears suspect or the security certificate
seems mismatched. These built-in features, alongside
continuous updates and improved safe browsing
protocols, significantly enhance the user’s ability to
spot and avoid typosquatting attacks [3]. While
significant challenges still persist, research has
advanced the understanding of fraudulent domain
practices. Current detection systems tend to
concentrate on established impersonation patterns tied
to prominent brands, leaving them less effective
against innovative tactics or those targeting
lesser-known entities. Techniques that manipulate
lower levels of the Domain Name System (DNS), for
example, often evade these conventional methods,
while the continuously evolving nature of these attacks
further strains current defenses. Bridging these gaps is
essential for developing a more resilient and
comprehensive approach to safeguarding online

identity. This, in turn, would ultimately enhance
overall cybersecurity for both individuals and
organizations. In response, this study introduces a
technique of training an LLM on thousands of
common and not so common domains against their
typosquated counterparts to learn the patterns, rather
than the domains themselves, to conduct analysis. This
innovation not only offers a more adaptable
countermeasure against the dynamic threat landscape
but also exemplifies how LLMs can revolutionize the
processing of extensive security logs to mitigate online
deception.

II. Retrieval-Automation Generation
(RAG) vs Fine Tune Training

Training a dedicated LLM specifically for

typosquatting detection has several advantages over a
retrieval-augmented generation (RAG) approach.
LLMs, trained on specialized data, develop a
foundational understanding of the subtle
character-level changes with context-specific patterns
that differentiate malicious domains from legitimate
ones, enabling accurate identification of typosquatting
attempts. In contrast, RAG, which combines a retriever
for sourcing external documents with a generative
model, can be limited by the quality and coverage of
its external knowledge base. While RAG can leverage
more up-to-date data and a broader context, it may not
always capture the evolving and nuanced nature of
typosquatting techniques. The reliance on an external
knowledge base can introduce vulnerabilities, as it
may not be comprehensive or current enough to detect
the latest typosquatting strategies. Below, it is
discernible that models with fewer parameters
struggled to consistently follow the prompt
instructions, rendering a RAG-based approach
impractical. By training an LLM directly on targeted
data, the model inherently learns to detect these subtle
variations and can rapidly adapt to new adversarial
strategies without needing to consult external
repositories, resulting in lower latency and enhanced
detection accuracy. Furthermore, a dedicated LLM can
be continuously fine-tuned on new data as
typosquatting techniques evolve, ensuring that the
model remains effective against emerging threats.

2

III. Training Data

The initial phase of any machine learning

initiative is to establish an accurate representation of
the ground truth data. The website
haveibeensquatted[.]com provided known examples
of typosquatted domains paired with their legitimate
counterparts [4]. For example, the alteration of
facebook[.]com to faceb0ok[.]com illustrates the
underlying concept of swapping an “o” with an “0”.
This methodology was applied to hundreds of
domains, including those associated with companies
such as Accenture, Amazon, Cisco, IHG, Tesla,
Trendmicro, and Walmart, yielding approximately
500+ real-world domain examples. However, this
dataset alone was insufficient for developing a
comprehensive model. To address this limitation, a
process known as self-distillation through synthetic
data generation was employed. This approach
leverages a LLM such as ChatGPT O1 or O3-mini,
with many more parameters, to generate synthetic
training data based on a subset of authentic data points.
The larger, more capable "teacher" model produces
high-quality datasets that capture specific patterns and
domain-specific knowledge, enabling smaller
"student" models to internalize nuanced behaviors
without the computational burden of training on
massive datasets [5]. This methodology accelerates
model development, reduces training costs, and allows
for the deployment of specialized models optimized
for specific applications. The list of true typosquatting
domains was provided to ChatGPT O3-mini, along
with the prompt: “Expand on this list and generate
many more domain pairings for typosquatting
methods.” The results closely resembled the ground
truth dataset, producing examples such as
facebookk[.]com and netf1ix[.]com. To further
expand the dataset, a list of companies from the
Standard and Poor’s (S&P 500) was incorporated, with
a similar prompt strategy applied, resulting in an
augmented dataset comprising approximately 2,300
verified domain examples for the training set. The
validation set was generated using a comparable
approach but focused on domains associated with
national security, banking, and defense sectors, which

are particularly susceptible to spoofing or disguising.
By combining authentic domain examples with
synthetically generated data via self-distillation, this
approach significantly enhances the robustness of the
dataset, expedites model development, optimizes
resource utilization, and enables the creation of
specialized models capable of addressing
domain-specific challenges in typosquatting detection.

IV. Model Selection and Training Setup

Fine-tuning an LLM can require hundreds of

graphic processing unit (GPU)-intensive hours.
However, to combat this, the Python library Unsloth
was leveraged. Unsloth is a lightweight library
designed to efficiently fine-tune LLMs, optimizing
performance even in resource-constrained
environments. It is easily integrated into Google
Collab and Linux systems [4]. Many different models
were tested such as Meta LLaMA3.2 1B, 3B and
LLaMA 3.1 8B, along with DeepSeek R1 distilled 8B.
However the best performance was achieved with the
Phi-4 14B parameter model. Due to resource
limitations, models with more parameters could not be
tested. The use of a single RTX 3090 GPU with 24GB
of RAM was leveraged. The next step was crafting a
system prompt for training. A system prompt sets the
initial context, tone, and behavior guidelines for a
large language model, shaping how it interprets user
input and generates responses. It effectively guides the
LLM's role, style, and focus throughout the
interaction. ChatGPT was leveraged in a combination
of trial and error approaches with the following system
prompt:

“You are an advanced cybersecurity analyst
specializing in detecting typosquatting attacks. Your
task is to analyze a given domain and determine if it is
designed to mislead users by imitating a well-known,
legitimate domain. Perform the following detailed
analysis:

1. Character-Level Comparison

Edit Distance Metrics
Employ Levenshtein or Damerau-Levenshtein

3

distances to quantify domain differences.
Measure and interpret the number and type of
modifications, including insertions, deletions,
substitutions, or character transpositions.

Substitution Analysis
Identify and evaluate visually or phonetically similar
character replacements, such as:

● Letter 'o' replaced by number '0'
● Letter 'l' replaced by number '1'

Transposition and Omission Detection
Examine domains for swapped characters or
missing/extra characters that deviate from expected
legitimate domain patterns.

2. Pattern Recognition and Heuristic Analysis

Common Typo Patterns
Detect and classify domains based on prevalent
typosquatting techniques, including:

● Character Substitution: e.g., go0gle.com vs.
google.com

● Omission or Addition: e.g., gogle.com,
gooogle.com

● Homoglyph Attacks: e.g., rnicrosoft.com vs.
microsoft.com

● Common Misspellings: e.g., facbook.com vs.
facebook.com

● TLD Manipulation: e.g., paypal.co vs.
paypal.com

● Phonetic Similarity: e.g., nute1ix.com vs.
netflix.com

● Deceptive Additions: misleading terms such
as support, login, secure, update, verification,
helpdesk

○ Examples: apple-support[.]com,
bankofamerica-login[.]com

Visual and Phonetic Similarity Assessment
Evaluate domains for visual or phonetic changes
designed to cause confusion or misunderstanding.

Contextual Domain Structure
Assess the use of deceptive prefixes, suffixes, and
domain extensions that may indicate malicious intent.

Final Verdict

● Return True if the domain is identified as a
typosquat.

● Return False if no intentional deceptive
practices are detected.

● No additional explanations or details beyond
the binary verdict are required.”

Once a system prompt has been created, the
fine tuning model parameters can be adjusted. Unsloth
makes this exceptionally easy with just a single block
of code and a few parameters.

WARMUP_STEPS = 20 gradually increases the
learning rate over the first 100 steps to stabilize
training and prevent sudden weight updates that could
cause divergence, especially when working with
smaller datasets.
NUM_TRAIN_EPOCHS = 1 ensures the model
makes a single full pass over the dataset, which is
useful for quick fine-tuning runs, avoiding overfitting
on large datasets, and enabling faster experimentation,
since there are only a few thousand data points.
MAX_STEPS = 80 limits training to 80 optimization
steps, which helps control overfitting, allows for early
stopping, and ensures efficient resource usage,
especially for smaller datasets. In testing it was
discovered the most optimal performance reached at
around 80 samples as overfitting occurred past this
point.
LEARNING_RATE = 1E-5 provides a stable, low
learning rate that fine-tunes our pre-trained model
without drastically altering their weights. This was set
low in this case as the model at times would overfit.

The validation dataset consisted of over 400 domains
from various companies with 150 of them being valid
domains from popular brands like WhatsApp, Chevron
and ESET. The typosquat variants were generated
using a combination of synthetically generated data
and real valid domains. The goal was to create a
unique dataset across various industries with a focus
on sectors like energy and banking as those tend to be
likely targets for typosquatting but would not appear in
our training dataset.

4

V. Evaluation

 To assess the effectiveness of various models
in detecting typosquat domains, extensive training was
conducted on multiple open-source models, including
variants of LLaMA 3.1, 3.2 and DeepSeek R1 8B
distilled. Each model was evaluated on its accuracy in
distinguishing typosquat domains from legitimate ones
as well as its inference speed. The Phi-4 14B model
consistently outperformed the others, achieving an
impressive 98% accuracy after fine tuning. In contrast,
even though the DeepSeek R1 distilled model
demonstrated promising reasoning capabilities, it
suffered from slower inference times and lower
accuracy. It often overthought and would not follow
the prompt; usually outputting a nonsensical analysis.
Notably, the non-fine-tuned versions of the LLaMA
models (1B and 3B) exhibited significant
shortcomings also. They both either failed to follow
the prompt or outright refused to engage with the task,
often flagging the activity as illegal. This behavior
underscores the limitations of deploying models
without targeted fine tuning, especially in scenarios
that demand strict adherence to domain-specific
instructions. This highlights the power of Unsloth that
with just a few training samples LLaMA 3.2 1B
model improved dramatically from a mere 2%
accuracy to 92% after fine-tuning. The older LLaMA
3.1 8B variant performed worse compared to the
smaller yet newer LLaMA 3.2 3B model, emphasizing
advances in newer model architectures. The table
below summarizes the performance of each tested
model:

Model Name
Not Fine
Tuned Fine Tuned

Time
(seconds)

LLaMA 3.1 8B
DeepSeek R1 0% 81% 3645

LLaMA 3.2 1B 2% 92% 127

LLaMA 3.2 3B 77% 94% 143

LLaMA 3.1 8B 66% 94% 145

Phi-4 14B 91% 98% 167

Phi-4 14B model’s superior performance is likely
attributed to its higher number of parameters, allowing
for greater contextual comprehension and pattern

recognition. A closer examination of the model’s fine
turned misclassifications reveals interesting patterns in
its decision-making process. One notable false positive
occurred with the domain duke-energy[.]com, which
is the legitimate domain for Duke Energy but was
flagged as a likely typosquating attempt. This indicates
that while the model effectively identifies deceptive
patterns, it may occasionally mistake certain valid
domains as fraudulent due to their structural
similarities to common typosquatting techniques.
These cases highlight the challenge of differentiating
between legitimate corporate branding choices and
domain names that exhibit characteristics typically
associated with phishing or impersonation attempts.
The model did however successfully classify domains
such as ihg-hotels[.]com and dellsupport[.]com as
typosquating attempts. These results demonstrate the
model’s ability to detect common deception strategies,
including deceptive additions and slight character
modifications. The performance disparity between
fine-tuned and non-fine-tuned models underscores the
necessity of targeted training to ensure that models can
reliably execute specialized cybersecurity tasks. The
results also highlight the limitations of smaller models
in following complex heuristics, as demonstrated by
the underwhelming performance of the non-fine-tuned
LLaMA 3.2 1B and 3B models. Without additional
training, these models either performed poorly in
classification or outright refused to generate outputs,
making them unsuitable for this specific cybersecurity
use case.

VI. Future Work

Future work could potentially focus on
broadening and refining the dataset to encompass a
wider variety of industries and emerging typosquatting
tactics. This would allow the model to adapt to a more
diverse threat landscape. It may also be beneficial to
enrich the model with additional cybersecurity
information by incorporating more varied threat
intelligence and real-world attack patterns to further
enhance its detection capabilities. Investigating
occasional false positives, such as the misclassification
of legitimate domains, could help guide further
fine-tuning of both the model and system prompts,

5

potentially improving precision. There is also the
possibility of testing with larger models to explore
whether increased parameter counts might deliver even
greater accuracy and robustness. Additionally,
integrating this LLM based detection mechanism into
live, real-time cybersecurity frameworks and
considering hybrid approaches that blend
retrieval-augmented strategies with fine-tuning might
offer promising avenues for bolstering defenses
against evolving adversarial techniques.

VII. Conclusion

 This research demonstrates the potential of
fine-tuned LLMs in proactively detecting
typosquatting attacks with high accuracy using a
relatively small training dataset. By shifting the focus
from static domain lists to pattern-based heuristics, the
solution developed a more adaptive and resilient
detection approach that can generalize across different
typosquatting techniques. While traditional browser
security measures and phishing detection systems offer
reactive defenses, LLM-driven detection provides a
proactive layer of protection, identifying deceptive
domains before users fall victim to them. As cyber
threats continue to evolve, leveraging advancements in
machine learning and cybersecurity will be crucial in
safeguarding individuals, businesses, and national
critical infrastructure against domain-based deception.

VIII. References

 [1] D. Chiba, H. Nakano, and T. Koide,
“DomainLynx: Leveraging Large Language Models
for Enhanced Domain Squatting Detection,” in Proc.
IEEE CCNC 2025.

[2] Wikipedia, "Punycode," Wikipedia: The
Free Encyclopedia. Available:
https://en.wikipedia.org/wiki/Punycode. [Accessed:
Mar. 9, 2025].

[3] Wikipedia, "Typosquatting," Wikipedia:
The Free Encyclopedia. Available:
https://en.wikipedia.org/wiki/Typosquatting.
[Accessed: Feb. 18, 2025].

[4] Have I Been Squatted?, "Check if a
domain has been typosquatted," Have I Been
Squatted?, [Online]. Available:
https://haveibeensquatted.com. [Accessed: Feb. 18 ,
2025].

[5] A. Shirgaonkar, N. Pandey, N. C. Abay, T.
Aktas, and V. Aski, "Knowledge Distillation Using
Frontier Open-source LLMs: Generalizability and the
Role of Synthetic Data," arXiv preprint
arXiv:2410.18588, Oct. 2024. Available:
https://arxiv.org/abs/2410.18588. [Accessed: Mar. 9,
2025].

[6] Unsloth AI, "Fine-tuning Guide," Unsloth
Documentation, 2025. Available:
https://docs.unsloth.ai/get-started/fine-tuning-guide.
[Accessed: Feb 18, 2025].

6

https://en.wikipedia.org/wiki/Punycode
https://en.wikipedia.org/wiki/Punycode
https://en.wikipedia.org/wiki/Typosquatting
https://en.wikipedia.org/wiki/Typosquatting
https://haveibeensquatted.com
https://haveibeensquatted.com
https://arxiv.org/abs/2410.18588
https://arxiv.org/abs/2410.18588
https://docs.unsloth.ai/get-started/fine-tuning-guide
https://docs.unsloth.ai/get-started/fine-tuning-guide

