
Finding Unknown Unknowns using Cyber-Physical
System Simulators (Extended Report)

Semaan Douglas Wehbe

Stony Brook University

Stony Brook, New York, USA

swehbe@cs.stonybrook.edu

Stanley Bak

Stony Brook University

Stony Brook, New York, USA

stanley.bak@stonybrook.edu

ABSTRACT
Simulation-based approaches are among the most practical means

to search for safety violations, bugs, and other unexpected events

in cyber-physical systems (CPS). Where existing approaches search

for simulations violating a formal specification or maximizing a

notion of coverage, in this work we propose a new goal for testing:

to discover unknown rare behaviors by examining discrete mode

sequences. We assume a CPS simulator outputs mode information,

and strive to explore the sequences of modes produced by varying

the initial state or time-varying uncertainties. We hypothesize that

rare mode sequences are often the most interesting to a designer,

and we develop two accelerated sampling algorithms that speed up

the process of finding such sequences. We evaluate our approach on

several benchmarks, ranging from synthetic examples to Simulink

diagrams of a CPS, demonstrating in some cases a speedup of over

100x compared with a random sampling strategy.

KEYWORDS
Cyber-physical Systems, Simulation, Testing

ACM Reference Format:
Semaan Douglas Wehbe and Stanley Bak. 2025. Finding Unknown Un-

knowns using Cyber-Physical System Simulators (Extended Report). In

Proceedings of 7th International Workshop On Design Automation For CPS
and IoT (DESTION ’25). ACM, New York, NY, USA, 8 pages. https://doi.org/

10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The systems engineering process [1] begins with a concept of op-

erations, followed by requirements, design, implementation, inte-

gration and test, and fielding. During the course of the process,

detecting misbehavior or errors earlier can result in substantial

savings in time and cost. In this work we propose an additional use

for integrated and CPS component simulators: finding previously

unknown behaviors.

Specification-guided testing searches for known potential prob-

lems by looking for an unknown test input (known unknowns). In

contrast, our method searches for unknown issues with unknown

test inputs (unknown unknowns). Although not all unprecedented

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DESTION ’25, May 6, 2025, Irvine, CA
© 2025 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

behaviors are necessarily problematic, we believe this process can

often identify a small set of interesting candidate simulations that is

feasible for manual review. In order for this idea to work, we must

have a way to detect that a simulation exhibits a rare behavior.

The goal of this work is to analyze a cyber-physical system

for which we have access to a simulator 𝑆 . Simulators for CPS

are often designed by engineers using languages like MATLAB

Simulink [2], or via large and mostly opaque domain-specific simu-

lators like CARLA [3]. Our accelerated testing approach does not

require any visibility into the simulator’s implementation, only

its simulation outputs. We require 𝑆 to be a deterministic func-

tion of 𝑛 input variables, which may represent disturbances, con-

trol inputs, or initial state uncertainty. We refer to a valuation

𝑥 ∈ R𝑛 of the input variables as an input point. For each sys-

tem, we analyze a finite interval of input points I = [𝑙, 𝑢] ={
𝑥 ∈ R𝑛 | 𝑙 (𝑑) ≤ 𝑥 (𝑑) ≤ 𝑢 (𝑑) , 𝑑 = 1, . . . , 𝑛

}
.

Tools like MATLAB Stateflow can output information about the

discrete state of the simulation trace over time. Given the system’s

set of discrete states Σ, we define a simulation’s mode sequence to
be the sequence of discrete states visited during the simulation. We

assume that the mode sequence 𝑦 is the output of the simulator,

𝑆 (𝑥) = 𝑦 ∈ Σ∗. We assume that each mode sequence represents a

distinct behavior of the system, and that any two mode sequences

can be compared for equality.

Let 𝑌 = {𝑦 ∈ Σ∗ | ∃𝑥 ∈ I, 𝑆 (𝑥) = 𝑦} be the set of all mode

sequences that can be produced by simulating the CPS of interest.

For all 𝑦 ∈ 𝑌 , we construct a mapping from the mode sequence 𝑦 to

its preimage, the set of input points that produce𝑦 upon simulation:

𝜙 (𝑦) = {𝑥 ∈ I | 𝑆 (𝑥) = 𝑦}. The input space I can be partitioned by

mode sequence, I =
⋃

𝑦∈𝑌 𝜙 (𝑦). Random simulations may waste

much of the simulation budget by running simulations that repeat

common or expected behaviors. We propose an accelerated test-

ing method that finds rare mode sequences in fewer simulations

than random sampling, allowing potentially unexpected or incor-

rect behaviors to be discovered earlier in the process. This work

makes the following assumption about mode sequences and their

corresponding input points:

Assumption 1 (Convex Mode Seqence Assumption).

∀𝑦 ∈ 𝑌, 𝜙 (𝑦) = CH(𝜙 (𝑦))

where CH is the convex hull operator

CH(𝑃) = {𝜆𝑝 + (1 − 𝜆)𝑞 | 𝑝, 𝑞 ∈ 𝑃, 𝜆 ∈ [0, 1]} (1)

Intuitively, Assumption 1 makes sense in that nearby input points

should behave similarly, up to some boundary where simulations

switch from producing one mode sequence to another. Although

Assumption 1 is unlikely to be strictly true in real CPS with many

ar
X

iv
:2

50
3.

22
64

6v
1

 [
ee

ss
.S

Y
]

 2
8

M
ar

 2
02

5

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DESTION ’25, May 6, 2025, Irvine, CA Semaan Douglas Wehbe and Stanley Bak

possible behaviors and large input spaces, in practice, it offers a

useful criterion by which to select input points that efficiently

discover rare mode sequences.

Of the first 𝑖 input points, we refer to the subset that produces

mode sequence 𝑦 as 𝜙𝑖 (𝑦) = {𝑥 𝑗 | 𝑆 (𝑥 𝑗) = 𝑦, 𝑗 ∈ [1, 𝑖]}We define

𝑌𝑖 to be the set of all mode sequences produced by at least one of the

first 𝑖 simulations. Assumption 1 gives us the following property:

∀𝑥 ∈ CH(𝜙𝑖 (𝑦)), 𝑆 (𝑥) = 𝑦 (2)

Therefore, there is no need to simulate any input point 𝑥 that lies

inside the convex hull of an existing set of simulated input points

𝜙𝑖 (𝑦). We refer to 𝑅𝑦 = CH(𝜙𝑖 (𝑦)) as a mode sequence region, or
simply the region, corresponding to the mode sequence 𝑦 after 𝑖

simulations. Each region constitutes a convex subset of the input

space whose elements behave the same as one another. We define

R𝑖 = {CH(𝜙𝑖 (𝑦 𝑗)) | 𝑗 ∈ [1, |𝑌𝑖 |]} to be the set of all regions after 𝑖

simulations.

Given a finite budget of 𝜅 simulations, our goal is to maxi-

mize the number of distinct mode sequences |𝑌𝜅 | produced by

𝑆 (𝑥1), . . . , 𝑆 (𝑥𝜅). Our accelerated testing approach takes advan-

tage of Assumption 1 to bypass simulations with familiar mode

sequences. By leveraging our knowledge of prior simulation out-

comes, we can focus our simulation effort on promising input points,

allowing us to discover rare and potentially unexpected behaviors

earlier in the testing process.

2 RELATEDWORK
Many techniques have been proposed to analyze CPS models, rang-

ing from verification to testing approaches. Formal methods such as

reachability analysis [4, 5] compute sets of states that a hybrid sys-

tem can enter in bounded time, providing strong guarantees about

system behaviors. These methods usually require white-box infor-

mation about symbolic differential equations, and are not applicable

for most large CPS simulators that are given either in Simulink or

as custom simulators in large code bases. Discrepancy function ap-

proaches [6, 7] can be used to provide probabilistic guarantees for

systems by sampling trajectories from a black-box simulator. This

process has been extended to gray-box simulators [8] where the

discrete mode behavior of a simulator is known, as well as to con-

trol synthesis problems [9]. The assumptions for these approaches

are stronger than our work, since they require knowledge of the

mode transition graph and symbolic switching conditions, whereas

we only require mode information as an output signal over time.

When specifications are given in a formal language like Signal

Temporal Logic (STL) [10], falsification techniques can use gen-

eral optimization algorithms to search for counterexamples. These

methods convert a system trace to a scalar robustness score [11],

seeking traces that minimize the robustness and violate the specifi-

cation. Like our work, tools such as S-TaLiRo [12] and Breach [13]

search over initial state and time-varying uncertainty. Falsification

approaches can be effective, but they require the user to provide an

STL specification, unlike our approach.

Several approaches use partial simulation segments to explore

CPS behaviors. One line of work builds on the Rapidly-Exploring

Random Tree algorithm [14] from robot motion planning in order to

search for safety violations [15–17]. Multi-shooting methods [18],

in contrast, use partial simulations to construct a discrete abstrac-

tion of a system and bridge gaps between partial simulations using

abstraction refinement. To construct simulation segments, these

approaches require simulators that are fully observable and can be

started and stopped from arbitrary states, which may be inapplica-

ble for many large domain-specific simulators such as CARLA.

Software testing schemes often strive to search for inputs that

improve code coverage, with common metrics being line cover-

age, condition coverage, or Modified-Condition Decision Coverage

(MCDC). For CPS control software, commercial tools like Reac-

tis [19] can automatically run tests to improve MCDC, although

these only analyze software. Another approach [20] adapts fuzz test-

ing methods from software to CPS, by defining a notion of coverage

related to the physical variables. This method is also specification-

free, but unlike our work, it ignores discrete mode information from

the simulator and focuses only on coverage in a continuous space.

Rare event simulation methods [21] strive to accurately esti-

mate the probability of rare events using the importance sampling

technique from statistics. These methods have been used for high

fidelity autonomous driving simulators [22], but they require a

continuous measure of safety, similar to a robustness score in STL,

to direct the search for known rare events.

3 ACCELERATED TESTING ALGORITHM
In this section, we describe two strategies for accelerated testing:

Convex Rejection Sampling (CRS) and Region Distance Maximiza-

tion (RDM). Each method uses the assumption that regions are

convex sets of input points with identical behavior. By leveraging

this assumption, these methods avoid redundant simulations, focus-

ing simulator effort on parts of the input space where it is possible

to increase the number of distinct mode sequences |𝑌𝜅 |.

3.1 Convex Rejection Sampling
The first proposed procedure, called Convex Rejection Sampling,
selects new input points that lie outside all existing regions using

rejection sampling. CRS begins by choosing a candidate input point

𝑥𝑖 ∈ I at random.We then perform |R𝑖−1 | convex hull containment

checks to see if 𝑥𝑖 lies within any of the existing regions. Each

containment check is formulated as a linear program (LP). Because

LPs scale efficiently to high dimensions, our accelerated testing

approach can be applied to CPS simulators with high-dimensional

input spaces. Any candidate 𝑥𝑖 that lies within a region is rejected,

since we know by Assumption 1 that simulating 𝑥𝑖 will produce

the mode sequence corresponding to the region. The procedure

ends once an 𝑥𝑖 is selected that lies outside all existing regions.

One drawback of CRS is that it may select an input point that

is outside—but still very close to—an existing region. Such input

points contribute little toward the total explored volume of I.

3.2 Region Distance Maximization
We introduce a second input point selection strategy called Region
Distance Maximization. The high-level idea of this strategy is to

choose an input point 𝑥𝑖 as far away as possible from all existing

regions. We expect that such an 𝑥𝑖 will either produce a new mode

sequence (thus aiding in the main goal of maximizing |𝑌𝜅 |), or else
contribute significantly toward the volume of an existing region

Finding Unknown Unknowns using Cyber-Physical System Simulators (Extended Report) DESTION ’25, May 6, 2025, Irvine, CA

Algorithm 1 Accelerated Testing

Require: CPS simulator 𝑆 : R𝑛 → Σ∗, random input point selec-

tion function 𝑔 : [R𝑛,R𝑛] → R𝑛 , input point selector NextPt
(one of CRS or RDM), simulation budget 𝜅

Ensure: The set 𝑌𝜅 of mode sequences produced by 𝜅 simulations.

1: 𝑥1 ← 𝑔(I), 𝑦 ← 𝑆 (𝑥1), 𝑌1 ← {𝑦}
2: 𝜙1 (𝑦) ← {𝑥1}
3: R1 ← {𝜙1 (𝑦)}
4: for 𝑖 = 2 to 𝜅 do
5: 𝑥𝑖 ← NextPt(I, R𝑖−1), 𝑦 ← 𝑆 (𝑥𝑖)
6: if 𝑦 ∉ 𝑌𝑖−1 then
7: 𝑌𝑖 ← 𝑌𝑖−1 ∪ {𝑦}
8: 𝜙𝑖 (𝑦) ← {𝑥𝑖 }
9: R𝑖 ← R𝑖−1 ∪ {𝜙𝑖 (𝑦)}
10: else
11: 𝑌𝑖 ← 𝑌𝑖−1

12: 𝜙𝑖 (𝑦) ← 𝜙𝑖−1 (𝑦) ∪ {𝑥𝑖 }
13: R𝑖 ← (R𝑖−1 \ {CH(𝜙𝑖−1 (𝑦))}) ∪ {CH(𝜙𝑖 (𝑦))}
14: end if
15: end for
16: return 𝑌𝜅

(and the total explored volume of I). To choose an input point

using RDM, we require a notion of the distance from a point to

the existing regions. In Appendix A, we discuss two metrics for

calculating the distance between a candidate input point 𝑥𝑖 and a

region 𝑅𝑦 .

3.3 Rare Mode Sequence Discovery with
Accelerated Testing

Using one of the two input point selection strategies, we now give

the overall algorithm for discovering rare mode sequences. This

procedure is given by Algorithm 1. First, an initial input point from

I is randomly selected and simulated. This initial point forms the

first region. Note that on lines 3 and 9, the new region consists of a

single point, so there is no need to take its convex hull. For each

subsequent simulation, we use either CRS or RDM to generate an

input point that is both within I and outside all existing regions.

If simulating the point produces a new mode sequence, then we

create a new region. Otherwise, we add the point to the existing

region corresponding to its mode sequence. The addition of a new

point expands the region’s convex hull and contributes toward the

total explored volume of I.

4 EVALUATION
In this section, we evaluate the use of accelerated testing for finding

rare mode sequences in CPS simulators. We compare accelerated

testing against the baseline technique of random sampling on four

CPS benchmarks, from a synthetic example to a Simulink diagram

of a CPS. To perform the hull-wise and point-wise distance maxi-

mizations for RDM, we use the open source tool ZOOpt
1
[23].

Because random sampling and accelerated testing both select in-

put points non-deterministically, we take the average over ten trials,

unless noted otherwise. The curves in Figures 2, 4, 6, and 7 show

1
https://github.com/polixir/ZOOpt

0 20 40 60 80 1000

20

40

60

80

100

Figure 1: A 2-dimensional Voronoi diagram created using the
given Gaussian distribution, representing the input space for
the Voronoi system. A few large regions take up the majority
of the input space, while many smaller regions occupy a
small portion in the top-right.

the simulations required to discover a given number of distinct

mode sequences. Lines become dashed to indicate that at least one

of the ten trials has already terminated. Following the trial’s termi-

nation, all subsequent mode sequences in that trial are considered

to be discovered at 𝜅 simulations, for the purposes of computing

an average. Note the logarithmic scaling of the simulations axis.

4.1 Scalable Convex Voronoi Regions
We first construct a scalable synthetic example system to evalu-

ate the improvement in mode sequence discovery afforded by our

approach. The 𝑛-dimensional input space consists of 100 convex

regions, so |𝑌 | = 100. The size and placement of these regions

are determined by the Voronoi sites. Since we expect real systems

to have mode sequence regions of different sizes, we place the

Voronoi sites using a Gaussian, rather than uniform, distribution.

100 𝑛-dimensional Voronoi sites 𝑣 are generated using a truncated

normal distribution, with 𝑣 (𝑑) ∈ [0, 100] ∀𝑑 ∈ [1, 𝑛], 𝜇 = 100,

and 𝜎 = 10. Figure 1 shows the approximate sizes and locations of

the Voronoi regions under this distribution for 2 dimensions. To

perform a “simulation,” we return the unique ID of the Voronoi site

closest to the 𝑛-dimensional input. The Voronoi site ID serves as

the mode sequence of a simulation.

The Voronoi system’s input space has several properties that

make our approach especially advantageous. First, each region is in-

herently convex. Having convex regions conforms to Assumption 1,

and guarantees that no mode sequences are missed by skipping in-

put points inside existing regions. Second, the specific distribution

from which the Voronoi sites are selected creates a low number of

large regions, and many small regions. Having a few large regions

is advantageous for our approach because we are able to skip input

points anywhere inside their large convex hulls. Compared to uni-

form random sampling, our approach spends more time sampling

from the remaining unexplored portion, thus discovering more of

the small regions. Figure 2 plots the mode sequences discovered

by the four techniques in five dimensions, where RDM provided

DESTION ’25, May 6, 2025, Irvine, CA Semaan Douglas Wehbe and Stanley Bak

1 11 21 31 41 51 61 71 81 91
Distinct Mode Sequences

100

101

102

103

104

105

106

Si
m

ul
at

io
ns

Voronoi 5D

Random
CRS
RDM (hull-wise)
RDM (point-wise)

Figure 2: Results for the Voronoi system.

an average speedup factor of over 350x. Additional results for the

Voronoi benchmark are given in Appendix B.1.

4.2 Navigation
The navigation benchmark (NAV) models an object’s movement

through the plane [24]. The plane is divided into a grid of 1 ×
1 cells with unique IDs, where each cell is encoded with one of

eight possible desired velocities. While inside a cell, the object

experiences linear dynamics that bring its velocity toward that

cell’s desired velocity. The 4-dimensional continuous state consists

of the object’s velocity and position in the plane. The object begins

within a given interval I of 4-dimensional initial states in the grid.

The discrete state of the system is the ID of the current cell. Discrete

state transitions occur when the object touches the boundary of a

neighboring grid cell. Some cells are designated as terminal cells;
simulation ends once the object transitions to a terminal cell. The

mode sequence of a simulation is the ordered list of cells that the

object visits. A cell may appear in the mode sequence more than

once. Figure 3 shows one of the rare behaviors in the NAV 10

benchmark, where the object exits the initial mode to the right

instead of the left.

Figure 4 shows mode sequence discovery in the NAV 10 bench-

mark. Accelerated testing discovered an average of over 136 mode

sequences in 5000 simulations, while random testing failed to dis-

cover even half as many mode sequences in 100000 simulations.

Additional results for other NAV benchmarks appear in Appen-

dix B.2. Across the 16 NAV benchmarks analyzed, CRS provided an

average speedup of 2.63x, and RDM provided an average speedup

of 6.24x.

4.3 Gearbox Meshing
The gearbox meshing benchmark (Gearbox) models the meshing of

a sleeve with a gear during automotive motor-transmission from

first to second gear [25]. If the sleeve is properly aligned with

the gear when they meet, then the meshing process will complete

successfully. Otherwise, the sleeve will collide with a gear tooth,

bounce away, and reattempt the meshing process. The sleeve is

modeled by a point in the 4-dimensional plane, where the position

and velocity of the sleeve relative to the gear comprise the contin-

uous state. The discrete state is one of meshed or free. Discrete
transitions occur whenever the sleeve collides with the upper or

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
NAV 10

Expected
Rare

Figure 3: A rare behavior in one of the navigation bench-
marks, where the object transitions out of the initial cell to
the right, then proceeds clockwise to the terminal cell.

1 21 41 61 81 101 121 141
Distinct Mode Sequences

100

101

102

103

104

105
Si

m
ul

at
io

ns
NAV 10, 4D

Random
CRS
RDM (point-wise)

Figure 4: Mode sequence discovery rates for the NAV 10
benchmark. RDM was able to discover more than twice as
many distinct behaviors in 20x fewer simulations than ran-
dom sampling.

lower gear tooth—altering the sleeve’s velocity and accumulating

impact impulse—as well as once the meshing process completes.

The simulation ends once the meshed state is reached. The sequence
of discrete transitions serves as the mode sequence. We refer to

the transition free→ free as 1 when the sleeve bounces against

the lower tooth, and 2 when the sleeve bounces against the upper

tooth. We refer to the transition free → meshed as 3. An exam-

ple simulation and its corresponding mode sequence are shown in

Figure 5. Compared to the original benchmark, we choose the ex-

panded input interval 𝑝𝑥 ∈ [−0.017, −0.016], 𝑝𝑦 ∈ [−0.005, 0.005]
proposed in [26] to allow for a larger number of distinct behaviors.

Additionally, we allow the initial velocities, 𝑣𝑥 and 𝑣𝑦 , to take on

a range of values, 𝑣𝑥 ∈ [−0.2364, 0.2364], 𝑣𝑦 ∈ [−0.1260, 0.1260].
Figure 6 plots the number of mode sequences discovered by each

of the input point selection strategies. RDM provided more than an

8x improvement, finding 30 mode sequences in 515.8 simulations

compared to 4358.4 random simulations.

Finding Unknown Unknowns using Cyber-Physical System Simulators (Extended Report) DESTION ’25, May 6, 2025, Irvine, CA

0.016 0.014 0.012 0.010 0.008 0.006 0.004

0.006

0.004

0.002

0.000

0.002

0.004

0.006

Figure 5: An example trajectory of the gearbox meshing
benchmark. The sleeve bounces once against the upper tooth,
then twice against the lower tooth, before successfully mesh-
ing with the gear; thus, the mode sequence of this simulation
is 2,1,1,3.

1 6 11 16 21 26 31
Distinct Mode Sequences

100

101

102

103

104

Si
m

ul
at

io
ns

Gearbox 4D
Random
CRS
RDM (hull-wise)

Figure 6: Results for the 4D gearbox meshing benchmark.
RDM testing on average found novel mode sequences that
random simulations never produced.

4.4 Automatic Transmission
The Automatic Transmission benchmark (AT) simulates a vehicle

equipped with an automatic transmission system [27]. The system’s

continuous states are the engine speed𝜔 (RPM) and vehicle velocity

𝑣 (mph). The discrete state of the system is the gear𝑔𝛼 for𝛼 ∈ [1, 4].
The system is 𝑛-dimensional and depends deterministically on two

control inputs, throttle and brake, which are piecewise constant over

(𝑛/2) fixed intervals. In the experiments below, we select 5 pairs

of throttle and brake inputs, applied every 6 seconds throughout

the 30-second simulation. This amounts to an 𝑛-dimensional input

space for the system, with 𝑛 = 10.

We define the mode sequence for the AT benchmark using an

Extended Bit Vector of 13 pass/fail bits. We consider 13 STL safety

specifications based on the STL properties from [27]. The mode

sequence of a simulation is the 13-bit vector consisting of 1s and
0s, determined by whether each safety specification was satisfied.

Although this mode sequence definition uses information besides

discrete modes, it only requires simulation outputs that would be

1 3 5 7 9 11 13 15 17 19 21 23
Distinct Mode Sequences

100

101

102

103

Si
m

ul
at

io
ns

AT, Extended Bit Vector
Random
RDM (hull-wise)

Figure 7: Results for the 10-dimensional automatic transmis-
sion benchmark. Using the Extended Bit Vector definition of
mode sequence, RDM produced 17 distinct behaviors with
less than half as many simulations as random.

available from a black-box simulator. The 13 STL specifications are:

□[0, 10] 𝑣 < 𝑣, 𝑣 ∈ {80, 85, 90, 95} (four bits)

□[0, 8] 𝜔 < �̄�, �̄� ∈ {4500, 4600, 4700} (three bits)

□[0, 30] 𝜔 < 2000→ □[0, 8] 𝑣 < 𝑣,

𝑣 ∈ {80, 100} (two bits)

□[0, 30]
(
(¬𝑔𝛼 ∧ ◦𝑔𝛼) → ◦□[0,1] 𝑔𝛼

)
,

𝛼 ∈ {1, 2, 3, 4} (four bits)

where ◦𝜑 ≡ ⋄[0.001, 0.1] 𝜑 . For the Extended Bit Vector definition of

mode sequence, RDM discovered an average of 22 mode sequences,

whereas random sampling averaged 18.2 in the same number of

simulations. All ten trials produced at least 17mode sequences; how-

ever, accelerated testing with RDM required only 231.9 simulations,

compared to 530.7 simulations with random sampling.

5 DISCUSSION AND FUTUREWORK
The results indicate that considering convex mode sequence regions

constructed from simulated input points is a promising strategy for

rapidly discovering new mode sequences (and thus, unprecedented

behaviors) in CPS simulators. Many system characteristics can

affect the performance of our approach. Depending on the inherent

convexity of mode sequence regions in the input space, accelerated

testing could sometimes miss interesting areas with many distinct

mode sequences. We therefore expect accelerated testing to perform

well on systems with inherently convex mode sequence regions,

such as the Voronoi benchmark. In the future, we intend to devise

a metric that estimates the inherent convexity of a hybrid system’s

regions before simulating. Occasionally sampling within existing

regions could also act as a safeguard against non-convex regions.

Another factor that influences the performance of our approach

is the relative sizes of the regions. Accelerated testing has the great-

est impact when there are a few large regions, and many smaller

regions. The early input points quickly approach the hulls of the

large regions, preventingmany redundant simulations. On the other

hand, when all regions are of uniform size, random sampling will

quickly uncover all the distinct mode sequences. Another metric

we intend to develop will estimate a system’s distribution of region

sizes and predict the improvement afforded by accelerated testing.

DESTION ’25, May 6, 2025, Irvine, CA Semaan Douglas Wehbe and Stanley Bak

The dimension of a system also contributes to our approach’s

mode sequence discovery rate. In higher dimensions, the volume of

the input space becomes exponentially larger. Furthermore, many

more input points are needed in order to enclose the convex hull of

a region. CRS provided almost no improvement in 10 dimensions

or higher, since very few of the first several thousand input points

were inside an existing region. The RDM approach quickly explores

portions of the input space far from previous input points. It is

therefore less reliant on existing regions with large volume, and

tends to discover mode sequences than CRS, particularly in higher

dimensions.

6 CONCLUSION
In this work, we proposed a new goal for simulation-based analy-

sis of cyber-physical systems: finding rare behaviors by analyz-

ing mode sequence outputs of a black-box CPS simulator. We

hypothesize that rare behaviors often correspond with unknown

unknowns—unanticipated problems that can manifest in a complex

system. As an engineer’s time is limited and expensive, our method

identifies the most interesting situations for manual review. We

proposed two algorithms, Convex Rejection Sampling and Region

Distance Maximization, that accelerate the process of finding these

rare behaviors, in some cases by over two orders of magnitude.

As our approach does not require a specification be provided, we

believe it can be a complementary tool in a comprehensive CPS

testing framework, which includes other approaches like manual

feature testing, regression testing, and falsification methods.

ACKNOWLEDGMENTS
This material is based upon work supported by the Office of Naval

Research under award number N00014-22-1-2156, and the National

Science Foundation under Award No. 2237229. Any opinions, find-

ings, and conclusions or recommendations expressed in this ma-

terial are those of the author(s) and do not necessarily reflect the

views of the United States Navy.

REFERENCES
[1] B. S. Blanchard, W. J. Fabrycky, and W. J. Fabrycky, Systems engineering and

analysis. Prentice hall Englewood Cliffs, NJ, 1990, vol. 4.

[2] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts, “Powertrain control

verification benchmark,” in Proceedings of the 17th international conference on
Hybrid systems: computation and control. ACM, 2014, pp. 253–262.

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open

urban driving simulator,” in Conference on robot learning. PMLR, 2017, pp. 1–16.

[4] M. Althoff, G. Frehse, and A. Girard, “Set propagation techniques for reachability

analysis,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, pp.
369–395, 2021.

[5] X. Chen and S. Sankaranarayanan, “Reachability analysis for cyber-physical

systems: Are we there yet?” in NASA Formal Methods Symposium. Springer,

2022, pp. 109–130.

[6] C. Fan and S. Mitra, “Bounded verification with on-the-fly discrepancy computa-

tion,” in International Symposium on Automated Technology for Verification and
Analysis. Springer, 2015, pp. 446–463.

[7] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2E2: a verification

tool for stateflow models,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2015, pp. 68–82.

[8] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “DryVR: Data-driven verification

and compositional reasoning for automotive systems,” in International Conference
on Computer Aided Verification, vol. 10426 LNCS. Springer, 2017, pp. 441–461.

[9] B. Qi, C. Fan, M. Jiang, and S. Mitra, “Dryvr 2.0: a tool for verification and

controller synthesis of black-box cyber-physical systems,” in Proceedings of the
21st International Conference on Hybrid Systems: Computation and Control (part
of CPS Week), 2018, pp. 269–270.

[10] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-valued

signals,” in International Conference on Formal Modeling and Analysis of Timed
Systems. Springer, 2010, pp. 92–106.

[11] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications

for continuous-time signals,” Theoretical Computer Science, vol. 410, no. 42, pp.
4262–4291, 2009.

[12] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-taliro: A tool

for temporal logic falsification for hybrid systems,” in International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer,

2011, pp. 254–257.

[13] A. Donzé, “Breach, a toolbox for verification and parameter synthesis of hybrid

systems,” in International Conference on Computer Aided Verification. Springer,

2010, pp. 167–170.

[14] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[15] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Hybrid systems: from verification to

falsification by combining motion planning and discrete search,” Formal Methods
in System Design, vol. 34, no. 2, pp. 157–182, 2009.

[16] J. Kim, J. M. Esposito, and V. Kumar, “An rrt-based algorithm for testing and

validating multi-robot controllers.” in Robotics: Science and Systems. Boston,

MA, 2005, pp. 249–256.

[17] T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. V. Deshmukh, “Efficient

guiding strategies for testing of temporal properties of hybrid systems,” in NASA
Formal Methods Symposium. Springer, 2015, pp. 127–142.

[18] A. Zutshi, J. V. Deshmukh, S. Sankaranarayanan, and J. Kapinski, “Multiple

shooting, cegar-based falsification for hybrid systems,” in Proceedings of the 14th
International Conference on Embedded Software, 2014, pp. 1–10.

[19] Reactive Systems, Inc., “Reactis product description,” http://www.reactive-

systems.com/index.msp.

[20] S. Sheikhi, E. Kim, P. S. Duggirala, and S. Bak, “Coverage-guided fuzz testing

for cyber-physical systems,” in 2022 ACM/IEEE 13th International Conference on
Cyber-Physical Systems (ICCPS). IEEE, 2022, pp. 24–33.

[21] J. A. Bucklew and J. Bucklew, Introduction to rare event simulation. Springer,

2004, vol. 5.

[22] M. O’Kelly, A. Sinha, H. Namkoong, R. Tedrake, and J. C. Duchi, “Scalable end-to-

end autonomous vehicle testing via rare-event simulation,” Advances in neural
information processing systems, vol. 31, 2018.

[23] Y.-R. Liu, Y.-Q. Hu, H. Qian, C. Qian, and Y. Yu, “Zoopt: Toolbox for derivative-free

optimization,” arXiv preprint arXiv:1801.00329, 2017.
[24] A. Fehnker and F. Ivančić, Benchmarks for Hybrid Systems Verification. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2004, pp. 326–341. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-24743-2_22

[25] H. Chen, S. Mitra, and G. Tian, “Motor-transmission drive system: a benchmark

example for safety verification.” in ARCH@ CPSWeek, 2014, pp. 9–18.
[26] P. S. Duggirala and S. Bak, “Aggregation strategies in reachable set computation

of hybrid systems,” in Special issue of ACM Transactions on Embedded Comput-
ing Systems (TECS) associated with 16th International Conference on Embedded
Software, ser. EMSOFT, 2019.

[27] B. Hoxha, H. Abbas, and G. Fainekos, “Benchmarks for temporal logic require-

ments for automotive systems.” ARCH@ CPSWeek, vol. 34, pp. 25–30, 2014.

http://www.reactive-systems.com/index.msp
http://www.reactive-systems.com/index.msp
http://dx.doi.org/10.1007/978-3-540-24743-2_22

Finding Unknown Unknowns using Cyber-Physical System Simulators (Extended Report) DESTION ’25, May 6, 2025, Irvine, CA

A POINT-TO-REGION DISTANCE METRICS
The first metric, which we call the hull-wise distance, measures the

distance from 𝑥𝑖 to the convex hull of a region. In order to formulate

the hull-wise distance calculation as an LP, we seek the smallest

radius 𝑟 ∈ R such that an axis-aligned hypercube, with radius 𝑟 and

center 𝑥𝑖 , intersects the region. Note that the intersection can be

any convex combination of the previously simulated input points.

We represent the axis-aligned hypercube𝐶 centered at 𝑝 ∈ R𝑛 with

radius 𝑟 ∈ R as

𝐶 (𝑝, 𝑟) = {𝑞 ∈ R𝑛 | 𝑝 − 𝑟 ®1(𝑛) ≤ 𝑞 ≤ 𝑝 + 𝑟 ®1(𝑛) } (3)

where ®1(𝑛) is the 𝑛-dimensional vector of all ones; 𝑟 ®1(𝑛) represents
scalar-vector multiplication; and 𝑎 ≤ 𝑏 performs element-wise

comparison, satisfied only if 𝑎 (𝑑) ≤ 𝑏 (𝑑) ∀𝑑 ∈ [1, 𝑛]. We calculate

the hull-wise distance between an input point 𝑥𝑖 and a region 𝑅𝑦 :

HullDist(𝑥𝑖 , 𝑅𝑦) = min 𝑟

s.t. 𝐶 (𝑥𝑖 , 𝑟) ∩ 𝑅𝑦 ≠ ∅ (4)

The second distance metric is point-wise distance. The point-wise
distance between 𝑥𝑖 and region 𝑅𝑦 is the squared distance between

𝑥𝑖 and the nearest previously simulated input point 𝑝 ∈ 𝜙𝑖−1 (𝑦) ⊆
𝑅𝑦 . Assume that region 𝑅𝑦 has access to the data structure contain-

ing the mapping from 𝑦 to 𝜙𝑖−1 (𝑦).

PointDist(𝑥𝑖 , 𝑅𝑦) = min

𝑝∈𝜙𝑖−1 (𝑦)

𝑛∑︁
𝑑=1

(
𝑥
(𝑑)
𝑖
− 𝑝 (𝑑)

)
2

(5)

We wish to optimize over the input space I in search of an input

point 𝑥𝑖 whose distance from the closest region is as far as possible.

Formally, we seek the 𝑥𝑖 returned by the following optimization:

𝑓 (I, R𝑖−1) = argmax

𝑥𝑖 ∈I
min

𝑅𝑦 ∈R𝑖−1

Dist(𝑥𝑖 , 𝑅𝑦) (6)

where Dist is one of HullDist or PointDist. To solve the maxi-

mization problem, we use zeroth-order optimization, also known

as derivative-free or black-box optimization. Given a budget of 𝛽

optimization iterations, the solution is the input point 𝑥𝑖 with the

largest distance to its closest region. We perform a convex hull

inclusion check (an LP) per region for each intermediate solution,

to ensure that the input point lies outside all existing regions.

A discussion of the trade-offs between the two distance metrics

follows. One disadvantage of performing optimization using the

hull-wise distance metric is that for every input point 𝑥𝑖 , RDMmust

perform 𝛽 LPs (one at each optimization iteration, to calculate the

hypercube radius of each intermediate solution). However, hull-

wise distance has the benefit that with a large enough optimization

budget 𝛽 , the returned solution approximates the global optimum.

The point-wise distance metric offers the advantage of faster

computation time by avoiding the need to solve an LP for each

intermediate solution. Instead, the primary calculation required

to find the point-wise squared distance is a simple dot product

𝐷 ·𝐷𝑇
, where 𝐷 represents the difference between the intermediate

solution 𝑥𝑖 and each of the previously simulated input points:

𝐷 =

𝑥
(1)
1
− 𝑥 (1)

𝑖
. . . 𝑥

(1)
𝑖−1
− 𝑥 (1)

𝑖
.
.
.

. . .
.
.
.

𝑥
(𝑛)
1
− 𝑥 (𝑛)

𝑖
. . . 𝑥

(𝑛)
𝑖−1
− 𝑥 (𝑛)

𝑖

 (7)

Table 1: Voronoi Mode Sequence Discovery

𝜅 |𝑌𝜅 | Random Speedup

𝑛 = 2

CRS 1000 95.2 16329.5 16.3

RDM (hull) 300 90.6 10830.8 36.1

RDM (point) 1200 99.7 30551.2 25.5

𝑛 = 3

CRS 2000 75.1 22133.4 11.1

RDM (hull) 500 88.3 46719.5 93.4
RDM (point) 2500 95 84934.2 34.0

𝑛 = 5

CRS 5000 27.8 9907.2 1.98

RDM (hull) 1000 69.8 354345.9 354.3
RDM (point) 10000 50.5 111991.1 11.2

𝑛 = 10

CRS 1000 24.4 765.3 0.77

RDM (hull) 1000 51 369151.7 369.2
RDM (point) 10000 40.1 56578.3 5.7

The disadvantage of performing optimization with point-wise dis-

tance is that it might converge to an 𝑥𝑖 that is inside an existing

region. Take for example a region that is a large 𝑛-dimensional

simplex. Using point-wise distance, RDM might return the center

of this simplex as its optimal solution, because it is technically far

from all previously simulated input points. To prevent this solution

from being returned in future optimization attempts, when using

point-wise distance, we insert every input point returned by the

optimizer into the region, but we only simulate input points when

they lie outside all existing regions.

B ADDITIONAL EVALUATION
Tables 1 and 2 give the number of distinct mode sequences |𝑌𝜅 |
found by accelerated testing within a simulation budget of 𝜅. We

compare this against the average number of random simulations

required to find this number of mode sequences. In cases where

accelerated testing averages to a non-integer number of mode se-

quences, we consider the number of random simulations required

to find the floor,

⌊
|𝑌𝜅 |

⌋
. In these cases, the listed speedup factor is

a conservative estimate, since the extra mode sequence discovered

by some accelerated testing trials could be exceedingly rare.

The speedup factor is calculated as:

Speedup Factor =
Avg. Rand Sims

𝜅
(8)

Note that we are underapproximating the true speedup, as acceler-

ated testing may have discovered the |𝑌𝜅 |th mode sequence earlier

than the 𝜅th simulation, whereas random simulations were halted

immediately upon finding the |𝑌𝜅 |th mode sequence.

B.1 Scalable Convex Voronoi Regions
Table 1 lists the full results for each input point selection strategy in

the synthetic scalable Voronoi regions benchmark. Figure 8 plots the

average number of mode sequences discovered. All four strategies

struggled when searching for mode sequences in 10 dimensions,

finding roughly half as many mode sequences (about 50) as in lower

DESTION ’25, May 6, 2025, Irvine, CA Semaan Douglas Wehbe and Stanley Bak

Table 2: Navigation Mode Sequence Discovery

𝜅 |𝑌𝜅 | Rand Sims Speedup

NAV 10
CRS 5000 54.5 56519.5 11.30

RDM 2000 57
2

72133.6 36.07
NAV 11

CRS 5000 63 23494.9 4.70

RDM 5000 84.2 72779.3 14.56
NAV 16

CRS 5000 88.8 7445.2 1.49

RDM 5000 95.7 19634.2 3.93

NAV 17
CRS 5000 60.1 11837.1 2.37

RDM 5000 63.2 18061.1 3.61

NAV 18
CRS 5000 130.1 10262.9 2.05

RDM 5000 134.6 14113.5 2.82

NAV 20
CRS 2500 38.2 7093.4 2.84

RDM 2000 38.2 7093.4 3.55

NAV 21
CRS 5000 83.8 14249 2.85

RDM 5000 89 20258.3 4.05

NAV 22
CRS 5000 147.3 15678.6 3.14

RDM 5000 192.6 49203.1 9.84
NAV 23

CRS 5000 399.6 7655.7 1.53

RDM 3500 386.7 7120.8 2.03

NAV 24
CRS 5000 857.1 7618.3 1.52

RDM 5000 901.2 8287.4 1.66

NAV 25
CRS 1000 31.4 1844.3 1.84

RDM 5000 48 23869.6 4.77

NAV 26
CRS 1000 54.4 1352.8 1.35

RDM 5000 92.1 18085.2 3.62

NAV 27
CRS 1000 109.8 1168.5 1.17

RDM 5000 208.9 11778.8 2.36

NAV 28
CRS 5000 116.5 8945 1.79

RDM 5000 126.3 17894.1 3.58

NAV 29
CRS 1000 188.9 1020 1.02

RDM 10000 535.8 20295.6 2.03

NAV 30
CRS 7500 790.9 8811.3 1.17

RDM 5000 733.6 7037.6 1.41

1 11 21 31 41 51 61 71 81 91
Distinct Mode Sequences

100

101

102

103

104

Si
m

ul
at

io
ns

Voronoi 2D

Random
CRS
RDM (hull-wise)
RDM (point-wise)

1 11 21 31 41 51 61 71 81 91
Distinct Mode Sequences

100

101

102

103

104

105

Si
m

ul
at

io
ns

Voronoi 3D

Random
CRS
RDM (hull-wise)
RDM (point-wise)

1 11 21 31 41 51
Distinct Mode Sequences

100

101

102

103

104

105

Si
m

ul
at

io
ns

Voronoi 10D

Random
CRS
RDM (hull-wise)
RDM (point-wise)

Figure 8: Additional results for the Voronoi system.

dimensions (about 90). However, the RDM method was still over

300 times faster in this case compared with random sampling. The

reduced performance of all methods can be explained by the curse

of dimensionality. For example, in 10 dimensions, we would need

2
10 = 1024 input points to enclose the convex hull of a hypercube,

whereas in 2 dimensions, we would only need 2
2 = 4 input points.

The number of rejections experienced during CRS per successful

simulation is nearly zero in 10 dimensions.

B.2 Navigation
Table 2 provides details about the exact speedup factor for each

NAV benchmark. Note that all RDM trials for the NAV benchmarks

use the point-wise distance metric. In the evaluations, we omit NAV

benchmarks for which we witnessed ten or fewer distinct mode

sequences, since random testing tends to be sufficient for finding

the behaviors in a low number of simulations.

2
Due to the amount of computation time required for random testing, we only consider

the first 57 mode sequences discovered by RDM in NAV 10. To find the full 136 mode

sequences that RDM discovered, a single random trial required multiple days and more

than 800000 simulations. We were therefore unable to compute the precise speedup

factor for the full 136 mode sequences, but we predict that it would be around 160

times.

	Abstract
	1 Introduction
	2 Related Work
	3 Accelerated Testing Algorithm
	3.1 Convex Rejection Sampling
	3.2 Region Distance Maximization
	3.3 Rare Mode Sequence Discovery with Accelerated Testing

	4 Evaluation
	4.1 Scalable Convex Voronoi Regions
	4.2 Navigation
	4.3 Gearbox Meshing
	4.4 Automatic Transmission

	5 Discussion and Future Work
	6 Conclusion
	Acknowledgments
	References
	A Point-to-Region Distance Metrics
	B Additional Evaluation
	B.1 Scalable Convex Voronoi Regions
	B.2 Navigation

