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Abstract
Motivation: Early detection and isolation of COVID-19 patients are essential for successful implementation
of mitigation strategies and eventually curbing the disease spread. With a limited number of daily COVID-
19 tests performed in every country, simulating the COVID-19 spread along with the potential effect of each
mitigation strategy currently remains one of the most effective ways in managing the healthcare system
and guiding policy-makers. We introduce COVIDHunter, a flexible and accurate COVID-19 outbreak
simulation model that evaluates the current mitigation measures that are applied to a region and provides
suggestions on what strength the upcoming mitigation measure should be. The key idea of COVIDHunter
is to quantify the spread of COVID-19 in a geographical region by simulating the average number of new
infections caused by an infected person considering the effect of external factors, such as environmental
conditions (e.g., climate, temperature, humidity) and mitigation measures.
Results: Using Switzerland as a case study, COVIDHunter estimates that the policy-makers need to
keep the current mitigation measures for at least 30 days to prevent demand from quickly exceeding
existing hospital capacity. Relaxing the mitigation measures by 50% for 30 days increases both the daily
capacity need for hospital beds and daily number of deaths exponentially by an average of 23.8×, who
may occupy ICU beds and ventilators for a period of time. Unlike existing models, the COVIDHunter
model accurately monitors and predicts the daily number of cases, hospitalizations, and deaths due to
COVID-19. Our model is flexible to configure and simple to modify for modeling different scenarios under
different environmental conditions and mitigation measures.
Availability: https://github.com/CMU-SAFARI/COVIDHunter
Contact: alserm@ethz.ch, omutlu@ethz.ch
Supplementary information: Supplementary data is available at Bioinformatics online.

1 Introduction
Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 virus,
which was first detected in Wuhan, the capital city of Hubei Province in
China, in early December 2019 (Du Toit, 2020). Since then, it has rapidly
spread to nearly every corner of the globe and has been declared a pandemic
in March 2020 by the World Health Organization (WHO). As of January
2021, COVID-19 has since resulted in more than 96 million laboratory-
confirmed cases around the world, and has killed nearly 2.2% of the
infected population. As there are currently no anti-SARS-CoV-2-specific
drugs or effective vaccines widely available to everyone, early detection
and isolation of COVID-19 patients remain essential for effectively curbing
the disease spread. As a result, many countries across the world have
implemented unprecedented lockdown and social distancing measures,
affecting millions of people. Regardless of the availability and affordability

of COVID-19 testing, it is still extremely challenging to detect and isolate
COVID-19 infections at early stages due to three key issues. 1) It is very
difficult to accurately identify the initial contraction time of COVID-19
for a patient. This is because COVID-19 patients can develop symptoms
between 2 to 14 days (or longer in a few cases) after exposure to the
new coronavirus (Lauer et al., 2020; Li et al., 2020). This variable delay is
referred to as the virus’ incubation period. 2) The coronavirus genome can
exhibit rapid genetic changes in its nucleotide sequence, which may occur
during viral cell replication, within the host body, or during transmission
between hosts (Andersen et al., 2020). This genetic diversity affects
the virus virulence, infectivity, transmissibility, and evasion of the host
immune responses (Phan, 2020; Pachetti et al., 2020; Toyoshima et al.,
2020). 3) The situation becomes even worse as the coronavirus can survive
and therefore remain infectious outside the host, on common surfaces
such as metal, glass, and banknotes (both paper and polymer) at room
temperature for up to 28 days (Kampf et al., 2020; Riddell et al., 2020).
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Simulating the spread of COVID-19 has the potential to mitigate
the effects of the three key issues, help to better manage the healthcare
system, and provide guidance to policy-makers on the effectiveness of
various (current, planned or discussed) social distancing and mitigation
measures. To this end, many COVID-19 simulation models are proposed
(e.g., (Tradigo et al., 2020; Russell et al., 2020; Ashcroft et al., 2020)),
some of which are announced to assist in decision-making for policy-
makers in countries such as the United Kingdom (ICL (Flaxman et al.,
2020)), United States (IHME (Reiner et al., 2020)), and Switzerland
(IBZ (Huisman et al., 2020)). These models tend to follow one of two key
approaches. (1) Evaluating the current actual epidemiological situation by
accounting for reporting delays and under-reporting due to inefficiencies
such as low number of COVID-19 tests. (2) Evaluating the current and
future epidemiological situation by simulating the COVID-19 outbreak
without relying on the observed (laboratory-confirmed) number of cases
in simulation.

The first approach, taken by the IBZ (Huisman et al., 2020),
LSHTM (Russell et al., 2020), and (Ashcroft et al., 2020) models, is
not mainly used for prediction purposes as it reflects the epidemiological
situation with about two weeks of time delay (due to its dependence on
observed COVID-19 reports). The IBZ model (Huisman et al., 2020)
estimates the daily reproduction number, R, of SARS-CoV-2 from
observed COVID-19 incidence time series data after accounting for
reporting delays and under-reporting using the numbers of confirmed
hospitalizations and deaths. The R number describes how a pathogen
spreads in a particular population by quantifying the average number of
new infections caused by each infected person at a given point in time. The
LSHTM model (Russell et al., 2020) adjusts the daily number of observed
COVID-19 cases by accounting for under-reporting (uncertainty) using
both deaths-to-cases ratio estimates and correcting for delays between
case confirmation (i.e., laboratory-confirmed infection) to death.

The second approach, taken by ICL (Flaxman et al., 2020) and
IHME (Reiner et al., 2020) models, usually requires a large number of
various input parameters and assumptions. IHME (Reiner et al., 2020)
model requires input parameters such as testing rates, mobility, social
distancing policies, population density, altitude, smoking rates, self-
reported contacts, and mask use. This model makes two key assumptions:
1) the infection fatality rate (IFR), which indicates the rate of people that
die from the infection is taken using data from the Diamond Princess Cruise
ship and New Zealand and 2) the decreasing fatality rate is reflective of
increased testing rates (identifying higher rates of asymptomatic cases).
ICL (Flaxman et al., 2020) model requires input parameters such as the
daily number of confirmed deaths, IFR, mobility rates from Google, age-
and country-specific data on demographics, patterns of social contact, and
hospital availability. This model makes three key assumptions: 1) age-
specific IFRs observed in China and Europe are the same across every
country, 2) the number of confirmed deaths is equal to the true number of
COVID-19 deaths, and 3) the change in transmission rates is a function of
average mobility trends.

To our knowledge, there is currently no model capable of accurately
monitoring the current epidemiological situation and predicting future
scenarios while considering a reasonably low number of parameters and
accounting for the effects of environmental conditions, as we summarize
in Table 1. The low number of parameters provides four key advantages:
1) allowing flexible (easy-to-adjust) configuration of the model input
parameters for different scenarios and different geographical regions,
2) enabling short simulation execution time and simpler modeling, 3)
enabling easy validation/correction of the model prediction outcomes by
adjusting fewer variables, and 4) being extremely useful and powerful
especially during the early stages of a pandemic as many of the
parameters are unknown. Simulation models need to consider the fact
that the environmental conditions (e.g., air temperature) affect pathogen
infectivity (Fares, 2013; Kampf et al., 2020; Riddell et al., 2020; Xu et al.,
2020) and simulating this effect helps to provide accurate estimation of
the epidemiological situation.

Our goal in this work is to develop such a COVID-19 outbreak
simulation model. To this end, we introduce COVIDHunter, a simulation
model that evaluates the current mitigation measures (i.e., non-
pharmaceutical intervention or NPI) that are applied to a region and
provides insight into what strength the upcoming mitigation measure

should be and for how long it should be applied, while considering
the potential effect of environmental conditions. Our model accurately
forecasts the numbers of infected and hospitalized patients, and deaths for
a given day, as validated on historical COVID-19 data (after accounting
for under-reporting). The key idea of COVIDHunter is to quantify the
spread of COVID-19 in a geographical region by calculating the daily
reproduction number, R, of COVID-19 and scaling the reproduction
number based on changes in both mitigation measures and environmental
conditions. The R number changes during the course of the pandemic
due to the change in the ability of a pathogen to establish an infection
during a season and mitigation measures that lead to lower number of
of susceptible individuals. COVIDHunter simulates the entire population
of a region and assigns each individual in the population to a stage of the
COVID-19 infection (e.g., from being healthy to being short-term immune
to COVID-19) based on the scaled R number. Our model is flexible to
configure and simple to modify for modeling different scenarios as it uses
only three input parameters, two of which are time-varying parameters, to
calculate the R number. Whenever applicable, we compare the simulation
output of our model to that of four state-of-the-art models currently used
to inform policy-makers, IBZ (Huisman et al., 2020), LSHTM (Russell
et al., 2020), ICL (Flaxman et al., 2020), and IHME (Reiner et al., 2020).

The contributions of this paper are as follows:

• We introduce COVIDHunter, a flexible and validated simulation
model that evaluates the current and future epidemiological situation
by simulating the COVID-19 outbreak. COVIDHunter accurately
forecasts for a given day 1) the reproduction number, 2) the number of
infected people, 3) the number of hospitalized people, 4) the number
of deaths, and 5) number of individuals at each stage of the COVID-19
infection. COVIDHunter evaluates the effect of different current and
future mitigation measures on the COVIDHunter’s five numbers.

• As a case study, we statistically analyze the relationship between
temperature and number of COVID-19 cases in Switzerland. We
find that for each 1◦C rise in daytime temperature, there is a 3.67%
decrease in the daily number of confirmed cases. We demonstrate
how considering the effect of climate (e.g., daytime temperature) on
COVID-19 spread significantly improves the prediction accuracy.

• Compared to IBZ, LSHTM, ICL, and IHME models, COVIDHunter
achieves more accurate estimation, provides no prediction delay, and
provides ease of use and high flexibility due to the simple modeling
approach that uses a small number of parameters.

• Using COVIDHunter, we demonstrate that the spread of COVID-19 in
Switzerland is still active (i.e.,R> 1.0) and curbing this spread requires
maintaining the same strength of the currently applied mitigation
measures for at least another 30 days.

• We release the well-documented source code of COVIDHunter and
show how easy it is to flexibly configure for any scenario and extend
for different measures and conditions than we account for.

2 Methods
2.1 Overview

The primary purpose of our COVIDHunter model is to monitor and
predict the spread of COVID-19 in a flexibly-configurable and easy-
to-use way, while accounting for changes in mitigation measures and
environmental conditions over time. We employ a three-stage approach to
develop and deploy this model. (1) The COVIDHunter model predicts the
daily R value based on only three input parameters to maintain both quick
simulation and high flexibility in configuring these parameters. Each input
parameter is configured based on either existing research findings or user-
defined values. Our model allows for directly leveraging existing models
that study the effect of only mitigation measures (or only environmental
conditions) on the spread of COVID-19, as we show in Section 2.2. (2)
The COVIDHunter model predicts the number of COVID-19 cases based
on the predicted R number. COVIDHunter simulates the entire population
of a region and labels each individual according to different stages of
the COVID-19 infection timeline. Each stage has a different degree of
infectiousness and contagiousness. The model simulates these stages for
each individual to maintain accurate predictions. (3) The COVIDHunter
model predicts the number of hospitalizations and deaths based on both
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Table 1. Comparison to other models used to inform government policymakers, as of January 2021.

Open Well- Accounting for Low Number Reported
Model Source Documented# Weather Changes of Parameters COVID-19 Statistics

COVIDHunter (this work) 3 3 3 3 3 (R, cases, hospitalizations, and deaths)
IBZ (Huisman et al., 2020) 3 7 7 3 7 (only R)

LSHTM (Russell et al., 2020) 3 7 7 3 7 (only cases)
ICL (Flaxman et al., 2020) 3 3 7 7 3 (R, cases, hospitalizations, and deaths)
IHME (Reiner et al., 2020) 3∗ 7 7 7 7 (cases, hospitalizations, and deaths)

# Based on each model’s GitHub page (all models are available on GitHub). ∗ The available packages are configured only for the IHME infrastructure.

the predicted number of cases and the R number. Next, we explain the
COVIDHunter model in detail.

2.2 How does the COVIDHunter Model Work?

The COVIDHunter model predicts the dynamic value ofR for a population
at a given day while considering three key factors: 1) the transmissibility
of an infection into a susceptible host population, 2) mitigation measures
(e.g., lockdown, social distancing, and isolating infected people), and 3)
environmental conditions (e.g., air temperature). Our model calculates the
time-varying R number using Equation 1 as follows:

R(t) = R0 ∗ (1−M(t)) ∗ Ce(t) (1)

The R number for a given day, t, is calculated by multiplying three terms:
1) the base reproduction number (R0) for the subject virus, 2) one minus
the mitigation coefficient (M ), for the given day t and 3) the environmental
coefficient (Ce) for the given day t.

The R0 number quantifies the transmissibility of an infection into a
susceptible host population by calculating the expected average number of
new infections caused by an infected person in a population with no prior
immunity to a specific virus (as a pandemic virus is by definition novel to all
populations). Hence, the R0 number represents the transmissibility of an
infection at only the beginning of the outbreak assuming the population is
not protected via vaccination. Unlike the R number, R0 number is a fixed
value and it does not depend on time. The R number is a time-dependent
variable that accounts for the population’s reduced susceptibility. The R0

number for the COVID-19 virus can be obtained from several existing
studies (such as in (Hilton and Keeling, 2020; Chang et al., 2020; Shi
et al., 2020; de Souza et al., 2020; Rahman et al., 2020)) that estimate it
by modeling contact patterns during the first wave of the pandemic.

The mitigation coefficient (M ) applied to the population is a time-
dependent variable and it has a value between 0 and 1, where 1 represents
the strongest mitigation measure and 0 represents no mitigation measure
applied. In different countries, mitigation measures take different forms,
such as social distancing, self-isolation, school closure, banning public
events, and complete lockdown. These measures exhibit significant
heterogeneity and differ in timing and intensity across countries (Hale
et al., 2020; Davies et al., 2020). Quantifying the mitigation measures
on a scale from 0 to 1 across different countries is challenging. The
Oxford Stringency Index (Hale et al., 2020) maintains a twice-weekly-
updated index that takes values from 0 to 100, representing the severity
of nine mitigation measures that are applied by more than 160 countries.
Another study (Brauner et al., 2020) estimates the effect of only seven
mitigation measures on the R number in 41 countries. We can directly
leverage such studies for calculating the mitigation coefficient on a given
day after changing the scale from 0:100 to 0:1 by dividing each value of,
for example, the Oxford Stringency Index by 100.

The environmental coefficient (Ce) is a time-dependent variable
representing the effect of external environmental factors on the spread
of COVID-19 and it has a value between 0 and 2. Several related viral
infections, such as the Influenza virus, human coronavirus, and human
respiratory, already show notable seasonality (showing peak incidences
during only the winter (or summer) months) (Moriyama et al., 2020;
Fisman, 2012). The seasonal changes in temperature, humidity, and
ultraviolet light affect the pathogen infectiousness outside the host (Fares,
2013; Kampf et al., 2020; Riddell et al., 2020; Xu et al., 2020).
However, the indoor environmental conditions are usually well-controlled
throughout the year, where human behavior and number of households
can be the major contributor to the spread of the COVID-19 (Moriyama

et al., 2020). There are currently several studies that demonstrate the
strong dependence of the transmission of SARS-CoV-2 virus on one
or more environmental conditions, even after controlling (isolating) the
impact of mitigation measures and behavioral changes that reduce contacts.
Several studies have demonstrated increased infectiousness by a country-
dependent fixed-rate with each 1◦C fall in daytime temperature (Xie
and Zhu, 2020; Prata et al., 2020). Another study supports the same
temperature-infectiousness relationship, but it also finds that before
applying any mitigation measures, a one degree drop in relative humidity
shows increased infectiousness by a rate lower (2.94× less) than that of
temperature (Wang et al., 2020).

One of the most comprehensive studies that spans more than 3700
locations around the world is HARVARD CRW (Xu et al., 2020). It finds
the statistical correlation between the relative changes in the R number
and both weather (temperature, ultraviolet index, humidity, air pressure,
and precipitation) and air pollution (SO2 and Ozone) after controlling
the impact of mitigation measures. The study provides a CRW Index that
has a value from 0.5 to 1.5. The percentage difference between any two
consecutive values provided by the CRW Index represents the effect that
both weather and air pollutants have on theR number. For example, a drop
in the CRW Index by 10% in a given location points to a 10% reduction in
theR number due to weather changes and air pollutants. Our model enables
applying any of these studies by adjusting our environmental coefficient on
a given day, as we experimentally demonstrate in Section 3. For example,
if the COVIDHunter user chooses to consider the HARVARD CRW study,
and the CRW Index shows, for example, a 10% drop compared to its
immediately preceding data point, then the environmental coefficient of
COVIDHunter should be 0.9 so that the R value decreases by also 10%.
Next, we explain how our model forecasts the number of COVID-19 cases
based on Equation 1.

2.3 Predicting the Number of COVID-19 Cases

COVIDHunter tracks the number of infected and uninfected persons over
time by clustering the population into four main categories: HEALTHY,
INFECTED, CONTAGIOUS, and IMMUNE. The model initially considers
the entire population as uninfected (i.e., HEALTHY). For each simulated
day, the model calculates the R value using Equation 1 and decides
how many persons can be infected during that day. The day when
the first case of infection in a population introduced is defined by
the user. For each newly infected person (INFECTED), the model
maintains a counter that counts the number of days from being infected to
being contagious (CONTAGIOUS). Several COVID-19 case studies show
that presymptomatic transmission can occur 1–3 days before symptom
onset (Wei et al., 2020; Slifka and Gao, 2020). COVID-19 patients can
develop symptoms mostly after an incubation period of 1 to 14 days (the
median incubation period is estimated to be 4.5 to 5.8 days) (Lauer et al.,
2020; Li et al., 2020). We calculate the number of days of being contagious
after being infected as a random number with a Gaussian distribution
that has user-defined lowest and highest values. Each contagious person
may infect N other persons depending on mobility, population density,
number of households, and several other factors (Ferguson et al., 2020).
We calculate the value of N to be a random number with a Gaussian
distribution that has the lowest value of 0 and the highest value determined
by the user. If N is greater than the R number (i.e., the target number of
infections for that day has been reached), further infections are curtailed
preventing overestimation of N by infecting only R persons. Once the
contagious person infects the desired number of susceptible persons, the
status of the contagious person becomes immune (IMMUNE). The immune
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status indicates that the person has immunity to reinfection due to either
vaccination or being recently infected (Lumley et al., 2020).

Our model also simulates the effect of infected travelers (e.g., daily
cross-border commuters within the European Union) on the value of
R. These travelers can initiate the infection(s) at the beginning of the
pandemic. If such infected travelers are absent (due to, for example,
emergency lockdown) from the target population, the virus would die
out once the value of R decreases below 1 for a sufficient period of time.
Both the number and percentage of infected travelers entering a region are
configurable in our model. The percentage of incoming infected travelers
is not affected by the changes in the local mitigation measures, as these
travelers were infected abroad.

Our model predicts the daily number of COVID-19 cases for a given
day t, as follows:

Daily_Cases(t) =

TINF (t)∑
n=0

N(n) +

UCON (t)∑
m=0

N(m) (2)

where TINF is the daily number of infected travelers that is a user-
defined variable, N() is a function that calculates the number of persons
to be infected by a given person as a random number with a Gaussian
distribution, and UCON is the daily number of contagious persons
calculated by our model.

2.4 Predicting the Number of COVID-19 Hospitalizations
and Deaths

There are currently two key approaches for calculating the estimated
number of both hospitalizations and deaths due to COVID-19: 1) using
historical statistical probabilities, each of which is unique to each age
group in a population (Bhatia and Klausner, 2020; Bi et al., 2020) and 2)
using historical COVID-19 hospitalizations-to-cases and deaths-to-cases
ratios (Kobayashi et al., 2020). We choose to follow a modified version
of the second approach as it does not require 1) clustering the population
into age-groups and 2) calculating the risk of each individual using the
given probability, which both affect the complexity of the model and the
simulation time.

The number of COVID-19 hospitalizations for a given day, t, can be
calculated as follows:

Daily_Hospitalizations(t) = Daily_Cases(t) ∗X ∗ CX (3)

where Daily_Cases(t) is calculated using Equation 2 and X is the
hospitalizations-to-cases ratio that is calculated as the average of daily
ratios of the number of COVID-19 hospitalizations to the laboratory-
confirmed number of COVID-19 cases. As the true number of cases is
unknown due to lack of population-scale testing, it is extremely difficult to
make accurate estimates of the true number of COVID-19 hospitalizations.
As such, we assume a fixed multiplicative relationship between the number
of laboratory-confirmed cases and the true number of cases. We use the
user-defined correction coefficient, CX , of the hospitalizations-to-cases
ratio to account for such a multiplicative relationship.

The number of COVID-19 deaths for a given day t can be calculated
as follows:

Daily_Deaths(t) = Daily_Cases(t) ∗ Y ∗ CY (4)

where Daily_Cases(t) is calculated using Equation 2 and Y is the
deaths-to-cases ratio, which is calculated as the average of daily ratios of
the number of COVID-19 deaths to the number of COVID-19 laboratory-
confirmed cases. The observed number of COVID-19 deaths can still be
less than the true number of COVID-19 deaths due to, for example, under-
reporting. We use the user-defined correction coefficient, CY , to account
for the under-reporting. One way to find the true number of COVID-19
deaths is to calculate the number of excess deaths. The number of excess
deaths is the difference between the observed number of deaths during time
period and expected (based on historical data) number of deaths during the
same time period. For this reason, CY may not necessarily be equal to
CX .

2.5 Model Validation

We can validate our model using two key approaches. 1) Comparing the
daily R number predicted by our model (using Equation 1) with the daily
reported official R number for the same region. 2) Comparing the daily
number of COVID-19 cases predicted by our model (using Equation 2)
with the daily number of laboratory-confirmed COVID-19 cases. As of
January 2021, we have already witnessed one year of the pandemic, which
provides us several observations and lessons. The most obvious source
of uncertainty, affecting all models, is that the true number of persons
that are previously infected or currently infected is unknown (Wilke and
Bergstrom, 2020). This affects the accuracy of the reported R number
since it is calculated as, for example, the ratio of the number of cases for a
week (7-day rolling average) to the number of cases for the preceding
week. Adjusting the parameters of our model to fit the curve of the
number of confirmed cases is likely to be highly uncertain. The publicly-
available number of COVID-19 hospitalizations and deaths can provide
more reliable data.

For these reasons, we decide to use a combination of reported numbers
of cases, hospitalizations, and deaths for validating our model using three
key steps. 1) We leverage the more reliable data of reported number of
hospitalizations (or deaths) to estimate the true number of COVID-19
cases using the ratio of number of laboratory-confirmed hospitalizations
(or deaths) to the number of laboratory-confirmed cases during the second
wave of the COVID-19 pandemic. We assume that the COVID-19 statistics
during the second wave is more accurate than that during the first wave
because generally more testing is performed in the second wave. 2) We
consider a multiplicative relationship between the true number of COVID-
19 cases and that estimated in step 1. In our experimental evaluation
(Section 3), we use the true number of COVID-19 cases calculated using
different multiplicative factor values (we refer to them as certainty rate
levels) as a ground-truth for validating our model. A certainty rate of, for
example, 50% means that the true number of COVID-19 cases is actually
double that calculated in step 1. 3) We use our model to calculate both the
daily R number (using Equation 1) and the number of COVID-19 cases
(using Equation 2). We fix the two terms of Equation 1, R0 and Ce, using
publicly-available data for a given region and change the third term, M ,
until we fit the curve of the number of cases predicted by our model to the
ground-truth plot calculated in step 2. We use the same methodology to
validate our predicted numbers of hospitalizations and deaths with different
certainty rate levels as we show in Section 3 and the Supplementary Excel
File1.

2.6 Flexibility and Extensibility of the COVIDHunter Model

We especially build COVIDHunter model to be flexible to configure and
easy to extend for representing any existing or future scenario using
different values of the three terms of Equation 1, 1) R0, 2) M(t), 3)
Ce(t), in addition to several other parameters such as the population,
number of travelers, percentage of expected infected travelers to the total
number of travelers, and hospitalizations- or deaths-to-cases ratios. Our
modeling approach acts across the overall population without assuming
any specific age structure for transmission dynamics. It is still possible to
consider each age group separately using individual runs of COVIDHunter
model simulation, each of which has its own parameter values adjusted
for the target age group. The COVIDHunter model considers each
location independently of other locations, but it also accounts for potential
movement between locations by adjusting the corresponding parameters
for travelers. By allowing most of the parameters to vary in time, t,
the COVIDHunter model is capable of accounting for any change in
transmission intensity due to changes in environmental conditions and
mitigation measures over time. As we explain in Section 2.2, the flexibility
of configuring the environmental coefficient and mitigation coefficient
allows our proposed model to control for location-specific differences in
population density, cultural practices, age distribution, and time-variant
mitigation responses in each location. Our modeling approach considers
a single strain of the COVID-19 virus by using a single base reproduction

1 https://github.com/CMU-SAFARI/COVIDHunter/blob
/main/Evaluation_Results/SimulationResultsForSwi
tzerland.xlsx
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number, R0. It is possible to consider multiple virus strains by running
the model simulation multiple times, each of which considers one of the
strains individually. The model can be extended to consider multiple virus
strains by replacing theR0 number by multipleR0 numbers that represent
the different strains (Reichmuth et al., 2021).

3 Results
We evaluate the daily 1) R number, 2) mitigation measures, and 3)
numbers of COVID-19 cases, hospitalizations, deaths. We also evaluate the
daily numbers of HEALTHY, INFECTED, CONTAGIOUS, and IMMUNE
in the Supplementary Excel File2. We compare the predicted values to
their corresponding observed values whenever possible. We provide a
comprehensive treatment of all datasets, models, and evaluation results
with different model configurations in the Supplementary Materials and
the Supplementary Excel Files3.

3.1 Determining the Value of Each Variable in the
Equations

We use Switzerland as a use-case for all the experiments. However, our
model is not limited to any specific region as the parameters it uses are
completely configurable. To predict the R number, we use Equation 1 that
requires three key variables. We set the base reproduction number, R0, for
the SARS-CoV-2 in Switzerland as 2.7, as shown in (Hilton and Keeling,
2020). We choose two main approaches for setting the value of the time-
varying environmental coefficient variable (Ce). 1) Performing statistical
analysis for the relationship between the daily number of COVID-19
cases and average daytime temperature in Switzerland. As we provide
in the Supplementary Materials, Section 1, our statistical analysis shows
that each 1◦C rise in daytime temperature is associated with a 3.67%
(t-value = -3.244 and p-value = 0.0013) decrease in the daily number
of confirmed COVID-19 cases. We refer to this approach as Cases-
Temperature Coefficient (CTC). 2) Applying the HARVARD CRW (Xu
et al., 2020) (CRW in short), which provides the statistical relationship
between the relative changes in the R number and both weather factors
and air pollutants after controlling for the impact of mitigation measures.
We change the daily mitigation coefficient, M(t), value based on the
ratio of number of confirmed hospitalizations to the number of confirmed
cases with two certainty rate levels of 100% and 50%, as we explain in
detail in Section 2.5. This helps us to take into account uncertainty in the
observed number of COVID-19 cases, hospitalizations, and deaths. We set
the minimum and maximum incubation time for SARS-CoV-2 as 1 and 5
days, respectively, as 5-day period represents the median incubation period
worldwide (Lauer et al., 2020; Li et al., 2020). We set the population to
8654622. We empirically choose the values of N , the number of travelers,
and the ratio of the number of infected travelers to the total number of
travelers to be 25, 100, and 15%, respectively.

3.2 Evaluating the Expected Number of COVID-19 Cases
for Model Validation

As the exact true number of COVID-19 cases remains unknown (due
to, for example, lack of population-scale COVID-19 testing), we expect
the true number of COVID-19 cases in Switzerland to be higher than
the observed (laboratory-confirmed) number of cases. We calculate the
expected true number of cases based on both numbers of deaths and
hospitalizations, as we explain in Section 2.5. To account for possible
missing number of COVID-19 deaths, we consider the excess deaths
instead of observed deaths. We calculate the excess deaths as the difference
between the observed weekly number of deaths in 2020 and 5-year average
of weekly deaths. We find that X (hospitalizations-to-cases ratio) and Y

(deaths-to-cases ratio, using excess death data) to be 3.526% and 2.441%,
respectively, during the second wave of the pandemic in Switzerland.
We choose the second wave to calculate the values of X and Y as

2 https://github.com/CMU-SAFARI/COVIDHunter/blob
/main/Evaluation_Results/SimulationResultsForSwi
tzerland.xlsx
3 https://github.com/CMU-SAFARI/COVIDHunter/blob
/main/Evaluation_Results/

Switzerland has increased the daily number of COVID-19 testing by5.31×
(21641/4074) on average compared to the first wave. We calculate the
expected number of cases on a given day t with certainty rate levels
of 100% and 50% based on hospitalizations by dividing the number of
hospitalizations at t by X and X/2, respectively, as we show in Figure 1.
We apply the same approach to calculate the expected number of cases on
a given day t with certainty rate levels of 100% and 50% based on deaths
using Y and Y/2, respectively.

Based on Figure 1, we make two key observations. 1) The plot
for the expected number of cases calculated based on the number of
deaths is shifted forward by 10-20 days (15 days on average) from that
for the expected number of cases calculated based on the number of
hospitalizations. This is due to the fact that each hospitalized patient
usually spends some number of days in hospital before dying of COVID-
19. We do not observe a significant time shift between the plot of the
expected number of cases calculated based on the number hospitalizations
and the plot of observed (laboratory-confirmed) cases. 2) The expected
number of cases calculated based on the number of hospitalizations is on
average 1.99× higher than the expected number of cases calculated based
on the number of deaths (after accounting for the 15-day shift) for the same
certainty rate. This is expected as not all hospitalized patients die.

We conclude that both numbers of hospitalizations and deaths can be
used for estimating the true number of COVID-19 cases after accounting
for the time-shift effect.
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Fig. 1. Observed (officially reported) and expected number of COVID-19 cases in
Switzerland during the year of 2020. We calculate the expected number of cases based
on both the hospitalizations-to-cases and deaths-to-cases ratios for the second wave. We
assume two certainty rate levels of 50% and 100%.

3.3 Observed and Predicted R number of SARS-CoV-2

We calculate the predicted R number using our model (Equation 1) and
compare it to the observed official R number and the R number of two
state-of-the-art models, ICL and IBZ, for the two years of 2020 and
2021. We configure COVIDHunter using the following configurations: 1)
CTC as environmental condition approach, 2) certainty rate levels of 50%
and 100%, and 3) mitigation coefficient value of 0.7. All our scripts are
provided in our GitHub page. We consider the meanR number provided by
the ICL model. We consider the median R number calculated by the IBZ
model based on observed number of hospitalized patients. IBZ provides
the predicted (after mid of December 2020) R number as the mean of the
estimates from the last 7 days.

Based on Figure 2, we make three key observations. 1) COVIDHunter
predicts the changes in R number much (4-13 days) earlier than that
predicted by ICL model, which leads to a more accurate prediction. The
R number predicted by COVIDHunter (with a certainty rate level of 50%)
is on average 1.56× less than that predicted by ICL model, IBZ model,
and the observed official R number. Using a certainty rate level of 100%,
COVIDHunter predicts the R number to be close in value to the observed
R number. 2) Our model predicts that the current R number is still higher
than 1 (1.137 and 1.023 using certainty rate levels of 50% and 100%,
respectively) during January 2021. This indicates that the spread of the
SARS-CoV-2 virus is still active and it causes exponential increase in
number of new cases. 3) Our model predicts that if we keep the same
mitigation measure strength as that of January 2021 for at least 30 days
(M(t)= 0.7), then theR number would drop by 18.2% (R= 0.929 and 0.836
for certainty rate levels of 50% and 100%, respectively). However, if the
mitigation measures that are applied nationwide in Switzerland are relaxed
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by 50% (M(t)= 0.35) for only 30 days (22 January to 22 February 2021),
then the R number increases by at least 2.17×.

We conclude that COVIDHunter’s estimation of the R number is more
accurate than that calculated by the ICL and IBZ models, as validated by
the currently observed R number.
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Fig. 2. Observed and predicted reproduction number, R(t), for the two years of 2020 and
2021. We use CTC environmental condition approach, certainty rate levels of 50% and
100%, and mitigation coefficient values of 0.35 and 0.7 for COVIDHunter. We compare
COVIDHunter’s predicted R number to the observed R number and two state-of-the-art
models, ICL and IBZ. The horizontal dashed line represents R(t) =1.0.

3.4 Evaluating the Mitigation Measures

We evaluate the mitigation coefficient, M(t), which represents the
mitigation measures applied (or to be applied) in Switzerland from
January 2020 to May 2021. We use two different environmental condition
approaches, CRW and CTC. We assume two certainty rate levels of 50%
and 100% to account for uncertainty in the observed number of cases.
We use five mitigation coefficients, M(t), values of 0.35, 0.4, 0.5, 0.6,
and 0.7 for each configuration of COVIDHunter during 22 January to
22 February 2021. We compare the evaluated mitigation measures to that
evaluated by the Oxford Stringency Index (Hale et al., 2020), as we provide
in Figure 3. We also evaluate the mitigation coefficient when we ignore
the effect of environmental changes (i.e., by setting Ce=1 in Equation 1),
while maintaining the same number of COVID-19 cases of that provided
with a certainty rate level of 50%.

Based on Figure 3, we make four key observations. 1) Excluding the
effect of environmental changes from the COVIDHunter model, by setting
Ce=1 in Equation 1, leads to an inaccurate evaluation of the mitigation
measures. For example, during the summer of 2020 (between the two
major waves of 2020), COVIDHunter (WithoutCTC_50%) evaluates the
mitigation coefficient to be as high as 0.6. This means that the mitigation
measures (only mandatory of wearing mask on public transport) applied
during the summer of 2020 are only 14% more relaxed compared to the
mitigation measures (e.g., closure of schools, restaurants, and borders,
ban on small and large events) applied during the first wave, which is
implausible. This highlights the importance of considering the effect of
external environmental changes on simulating the spread of COVID-19.
Unfortunately, environmental change effects are not considered by any of
the IBZ, LSHTM, ICL, and IHME models, which we believe is a serious
shortcoming of these prior models. 2) A drop by 3% (as we observe during
the mid of November 2020) to 30% (as we observe during the end of August
2020) in the strength of the mitigation measures for a certain period of time
(10 to 20 days) is enough to double the predicted number of COVID-19
cases. 3) We evaluate the strength of the mitigation measures applied in
Switzerland to be usually (65% of the time) up to 80% to 131% higher
than that provided by the Oxford Stringency Index. 4) The strength of the
mitigation measures has changed 11 times during the year of 2020, each
of which is maintained for at least 9 days and at most 66 days (32 days on
average).

We conclude that considering the effect of environmental changes (e.g.,
daytime temperature) on the spread of COVID-19 improves simulation
outcomes and provides accurate evaluation of the strength of the past and
current mitigation measures.
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Fig. 3. Predicted strength of the mitigation measures (mitigation coefficient, M(t)) applied
in Switzerland from January 2020 to May 2021 provided by Oxford Stringency Index and
COVIDHunter. We use two different environmental condition approaches, CRW and CTC.
We assume two certainty rate levels of 50% and 100%. We use five mitigation M(t) values
of 0.35, 0.4, 0.5, 0.6, and 0.7 for each configuration of our model during 22 January to
22 February 2021. The plot called WithoutCTC_50% represents the evaluation of the
current mitigation measures while ignoring the effect of environmental changes.

3.5 Evaluating the Predicted Number of COVID-19 Cases

We evaluate COVIDHunter’s predicted daily number of COVID-19 cases
in Switzerland. We compare the predicted numbers by our model to the
observed numbers and those provided by three state-of-the-art models
(ICL, IHME, and LSHTM), as shown in Figure 4. We calculate the
observed number of cases as the expected number of cases with a certainty
rate level of 100% (as we discuss in Section 3.2). We use three default
configurations for the prediction of the ICL model: 1) strengthening
mitigation measures by 50%, 2) maintaining the same mitigation measures,
and 3) relaxing mitigation measures by 50% which we refer to as
ICL+50%, ICL, and ICL-50%, respectively, in Figures 4, 5, and 6.
We use the mean numbers reported by the IHME model that represents
the most relaxed mitigation measures, called as "no vaccine" by the IHME
model. We use the median numbers reported by the LSHTM model.

Based on Figure 4, we make four key observations. 1) Our model
predicts that the number of COVID-19 cases reduces significantly (less
than 600 daily cases) within March 2021 if the same strength of the
currently applied mitigation measure is maintained for at least 30 days. If
the authority decides to relax the mitigation measures to the lowest strength
that has been applied during the year of 2020 (i.e., M(t) = 0.35), then
the daily expected number of cases increases by an average of 29.6× and
23.8× (up to 288,827 daily cases) using the CRW and CTC environmental
approaches, respectively. We provide a comprehensive evaluation for the
effect of different mitigation coefficient values on the number of cases in the
Supplementary Materials, Section 2. 2) COVIDHunter predicts the number
of COVID-19 cases to be equivalent to that predicted by the IHME model
during the second wave with a certainty rate level of 50%. However, during
the first wave, the predictions of the IHME model matches the expected
number of cases using a certainty rate level of 100%. This means that,
unlike our model, the IHME model considers the laboratory-confirmed
cases to be as if the tests are done at a population-scale during the first wave,
which is very likely incorrect. This is in line with a recent study (Ioannidis
et al., 2020) that demonstrates the high inaccuracy of the IHME model. 3)
Overall, our model predicts on average 1.7× and 1.9× smaller number of
COVID-19 cases than that predicted by ICL model using CTC and CRW
approaches, respectively, and a certainty rate of 50%. This suggests that
the multiplicative relationship between the confirmed number of cases
and the true number of cases can be represented by a certainty rate of
22% to 33%, which our model can easily account for. The ICL model
also shows that there is a sharp drop in the daily number of cases after 13
November 2020, which corresponds to a 1.6×, 1.4×, and 1.3× increase
in the Oxford Stringency Index, CRW coefficient, and CTC coefficient,
respectively, applied on 30 October 2020 as we show in Figure 3. 4) The
number of COVID-19 cases estimated by the LSHTM model during the
first wave is 1) on average 24% less than that estimated by COVIDHunter
and 2) 10 days late from that predicted by COVIDHunter, IHME, and
ICL. The prediction of the LSHTM model during the second wave is not
available by the model’s pre-computed projections.

We conclude that COVIDHunter provides more accurate estimation
of the number of COVID-19 cases, compared to IHME (which provides
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inaccurate estimation during the first wave) and ICL (which provides over-
estimation), with a complete control over the certainty rate level, mitigation
measures, and environmental conditions. Unlike LSHTM, COVIDHunter
also ensures no prediction delay.
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Fig. 4. Observed and predicted number of COVID-19 cases by our model and other three
state-of-the-art models. We use two different environmental condition approaches, CRW
and CTC with two certainty rate levels of 50% and 100%. We use two mitigation coefficient,
M(t), values of 0.35 and 0.7 for each configuration of our model during 22 January to 22
February 2021.

3.6 Evaluating the Predicted Number of COVID-19
Hospitalizations

We evaluate COVIDHunter’s predicted daily number of COVID-19
hospitalizations in Figure 5. We use the observed official number
of hospitalizations as is. Using the number of cases calculated with
Equation 2, we find X (hospitalizations-to-cases ratio) to be 4.288% and
2.780%, using CRW and CTC, respectively, during the second wave.

We make five key observations based on Figure 5. 1) The number of
hospitalizations calculated by COVIDHunter with a certainty rate level
of 50% matches that calculated by the IHME model. However, IHME
model provides a 10-12-day late prediction compared to that provided
by COVIDHunter and the ICL model. 2) The ICL model predicts the
number of hospitalizations to be 5× and 7× higher than that predicted by
COVIDHunter during the first wave (9.3× and 8.1× during the second
wave), using the CTC and CRW approaches, respectively, for evaluating
the environmental conditions and a certainty rate of 50%. This suggests that
the ICL model provides 10× and 18.6× higher number of hospitalizations
compared to the observed number of hospitalizations, during first and
second waves, respectively, which is highly unlikely and overestimated.
3) COVIDHunter with a certainty rate level of 100% predicts the number of
cases to perfectly fit the curve of the observed number of hospitalizations,
reaching up to 257 hospitalized patients a day. 4) Our model predicts that
the number of COVID-19 hospitalizations reduces with stricter mitigation
measures maintained for at least 30 days. Relaxing the mitigation measures
by 50% (M is changed from 0.7 to 0.35) exponentially increases the
number of hospitalizations by an average of 29.6× and 23.8×, reaching
up to 12385 new daily hospitalized patients, as predicted by COVIDHunter
using CRW and CTC environmental condition approaches, respectively.
This is in line with what the ICL model (ICL-50%) predicts, when ICL
model is configured to 50% relaxation in the mitigation measures. 5) The
use of the CTC approach for determining the environmental coefficient
value yields a slightly different number of hospitalizations compared
to that provided by the use of the CRW approach. This is expected
as the CTC approach considers only the monthly average change in
temperature, whereas the CRW approach considers the daily change in
several environmental conditions.

We conclude that 1) unlike the IBZ and LSHTM models,
COVIDHunter is able to predict the number of hospitalizations and
2) COVIDHunter provides more accurate estimation of the number
of hospitalizations compared to that calculated by ICL (which
provides overestimation) and IHME (which provides late estimation).
COVIDHunter predicts the number of COVID-19 hospitalizations in a
simple, convenient and flexible way that requires calculating only the daily
number of cases and the hospitalization-to-cases ratio, CX .
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Fig. 5. Observed and predicted number of COVID-19 hospitalizations. We use two different
environmental condition approaches, CRW and CTC with two certainty rate levels of 50%
and 100%. We use two mitigation coefficient values, M(t), of 0.35 and 0.7 for each
configuration of our model during 22 January to 22 February 2021.

3.7 Evaluating the Predicted Number of COVID-19 Deaths

We evaluate COVIDHunter’s predicted daily number of COVID-19 deaths
in Figure 6 after accounting for the 15-day shift (as we discuss in
Section 3.2). We calculate the observed number of deaths as the number of
excess deaths (Section 2.4) to account for uncertainty in reporting COVID-
19 deaths. Using the number of cases calculated using Equation 2, we
find Y (deaths-to-cases ratio, using excess death data) to be 2.730% and
1.739%, using CRW and CTC, respectively, during the second wave.

We make three key observations based on Figure 6. 1) COVIDHunter
with a certainty rate of 100% predicts the number of deaths to perfectly
fit the three curves of the observed number of excess deaths, ICL deaths,
and IHME deaths, reaching up to 160 hospitalized patients a day. During
the second wave, the ICL curve is shifted (late prediction) by 5-10 days
from that of other models. 2) Similar to what we observe for the number of
hospitalizations, our model predicts that the number of COVID-19 deaths
significantly reduces with stricter mitigation measures maintained for at
least the upcoming 30 days. Relaxing the mitigation measures by 50%
(M(t) is changed from 0.7 to 0.35) exponentially increases the death toll by
an average of 29.6× and 23.8×, reaching up to 7885 new daily deaths, as
predicted by COVIDHunter using CRW and CTC environmental condition
approaches, respectively. 3) During the first wave, the use of a certainty rate
of 50% provides 2.55× and 2.1× (2.36× and 1.52× during the second
wave) higher number of deaths compared to that provided by ICL and
IHME models, when COVIDHunter uses CRW and CTC environmental
condition approaches, respectively.

We conclude that 1) unlike the IBZ and LSHTM models,
COVIDHunter is able to predict the number of deaths, 2) COVIDHunter
predicts the number of deaths to be similar to that predicted by the ICL
and IHME models. Yet, COVIDHunter provides more accurate estimation
of other COVID-19 statistics (R, number of cases and hospitalizations)
compared to ICL and IHME, as we comprehensively evaluate in the
previous sections, and 3) COVIDHunter requires calculating only the daily
number of cases and the deaths-to-cases ratio, CY , to predict the daily
number of deaths.
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Fig. 6. Observed and predicted number of COVID-19 deaths. We use two different
environmental condition approaches, CRW and CTC with two certainty rate levels of 50%
and 100%. We use two mitigation coefficient values, M(t), of 0.35 and 0.7 for each
configuration of our model during 22 January to 22 February 2021.
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4 Summary and Future Work
We demonstrate that we can monitor and predict the spread of COVID-19
in an easy-to-use, flexible, and validated way using our new simulation
model, COVIDHunter. We show how to flexibly configure our model for
any scenario and easily extend it for different mitigation measures and
environmental conditions. The use of a small number of variables in our
model enables a simple and flexible yet powerful way of adapting our
model to different conditions for a given region. We demonstrate the
importance of considering the effect of environmental changes on the
spread of COVID-19 and how doing so can greatly improve simulation
accuracy. COVIDHunter flexibly offers the ability to directly make the best
use of existing models that study the effect of one or both of environmental
conditions and mitigation measures on the spread of COVID-19.

We benchmark our model against major alternative models of the
COVID-19 pandemic that are used to assist governments. Compared to
these models, COVIDHunter achieves more accurate estimation, provides
no prediction delay, and provides ease of use and high flexibility due to
the simple modeling approach that uses a small number of parameters.
Using COVIDHunter, we demonstrate that the spread of COVID-19 in
Switzerland (as a case study) is still active (i.e., R > 1.0) and curbing
this spread requires maintaining the same strength of the currently applied
mitigation measures for at least another 30 days. Using COVIDHunter
(CTC_100%_M(t)=0.7) on 7 January 2021, we predicted that on 27
January 2021 the number of cases, hospitalizations, and deaths will
drop by 19%, 20%, and 30%, respectively. The predicted drop is in
line with the observed official number of cases, hospitalizations, and
deaths (as shown by the Federal Office of Public Health in Switzerland
www.covid19.admin.ch) but with different ratios (41%, 59%, and
49%, respectively). We believe the difference between the observed and the
COVIDHunter’s predicted numbers of cases, hospitalizations, and deaths
is due to one or more of the following reasons: 1) The lack of population-
scale COVID-19 testing, 2) the use of a more stricter mitigation measure
than M(t) = 0.7, and 3) the lack of information about ground truth
on number of COVID-19 cases, hospitalizations, and deaths. We provide
insights on the effect of each change in the strength of the applied mitigation
measure on the number of daily cases, hospitalizations, and deaths. We
make all the data, statistical analyses, and a well-documented model
implementation publicly and freely available to enable full reproducibility
and help society and decision-makers to accurately and openly review the
current situation and estimate future impact of decisions.

We suggest and plan at least five main directions/additions to further
improve the predictive power and benefits of our COVIDHunter model. 1)
Clustering the population based on age-groups. This has potential different
effects on, for example, population, environmental conditions, mitigation
measures (Bhatia and Klausner, 2020; Bi et al., 2020). 2) Considering
vaccinated persons as another new category of persons in a population.
3) Considering reinfection after immunity (Lumley et al., 2020). 4)
Considering the average number of households (or population density),
as well as other potential population-level effects, while calculating
the number of new infected persons caused by an infected person. 5)
Considering different strains of the COVID-19 virus by allowing for
multiple base reproduction numbers. Our goal is to update COVIDHunter
with such improvements and capabilities while keeping its simplicity, ease
of use, and flexibility of its modeling strategy.
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1 Statistical Relationship Between Temperature and Number
of COVID-19 Cases

The purpose of this study is to explore the relationship between the daily new confirmed COVID-19
case counts or death counts and temperature in Switzerland. We obtain the daily number of confirmed
COVID-19 cases and deaths in Switzerland from official reports of the Federal Office of Public Health
(FOPH) in Switzerland [1] starting from March 2020 until January 2020. We obtain the air temperature
data from the Federal Office of Meteorology and Climatology (MeteoSwiss) in Switzerland [2]. We
calculate the daily average air temperature during the same time period (March 2020 to December 2020)
for all the 26 cantons in Switzerland.

To evaluate the correlation between the temperature data and the number of daily confirmed COVID-
19 cases or the daily counts of death, we use a generalized additive model (GAM). GAM is usually used to
calculate the linear and non-linear regression models between meteorological factors (e.g., temperature,
humidity) with COVID-19 infection and transmission [3, 4, 5]. Our analyses are performed with R
software version 4.0.3., where p−value < 0.05 is considered statistically significant. Our model attempts
to represent the linear behavior of the growth curve of the counts of the new confirmed cases or deaths in
Switzerland. Therefore, we can test the hypothesis of whether there is a significant negative correlation
between the COVID-19 confirmed daily case or death counts and temperature.

The results demonstrate a significant negative correlation between temperature and COVID-19 daily
case and death counts. Specifically, the relationship is linear for the average temperature in the range
from 1-26◦C. Based on Figure S1, we make two key observations. 1) For each 1◦C rise in temperature,
there is a 3.67% (t-value = 3.244 and p-value = 0.0013) decrease in the daily number of COVID-19
confirmed cases (Figure S1(a)). 2) For each 1◦C rise in temperature, there is a 23.8% decrease in the
daily number of COVID-19 deaths (t-value = 9.312 and p-value = 0.0), as shown in Figure S1(b).
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(a)

(b)

Figure S1: Correlation between temperature and COVID-19 confirmed (a) case count and (b) death
count in 26 cantons of Switzerland.
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2 Evaluating the Effect of Different Mitigation Coefficient Val-
ues on COVIDHunter’s Predicted Number of Cases, Hospi-
talizations, and Deaths

Using COVIDHunter, we predict the number of COVID-19 cases, hospitalizations, and deaths during 22
January to 31 March 2021. We show the maximum and the average of daily number of COVID-19 cases,
hospitalizations, and deaths over 22 January to 31 March 2021 in Figures S2 and S3, respectively. We
use two environmental condition approaches, CRW and CTC, with a certainty rate level of 50%. We
assume five mitigation coefficient, M(t), values of 0.35, 0.4, 0.5, 0.6, and 0.7 for each configuration of
COVIDHunter during 22 January to 22 February 2021.

This range of mitigation coefficient values covers the lowest (i.e., M(t)=0.35) and the highest (i.e.,
M(t)=0.7) strengths of mitigation measures that have been applied during the year of 2020.

Based on Figures S2 and S3, we make three key observations. 1) COVIDHunter predicts that the
maximum of daily number of COVID-19 cases, hospitalizations, and deaths over 22 January to 31 March
2021 would be 4972, 213, and 136, respectively, using CRW and M(t)=0.7, as we show in Figure S2(a-c).
Using our environmental condition approach, CTC, and M(t)=0.7, the maximum of daily number of
COVID-19 cases over 22 January to 31 March 2021 would be 7580 and the maximum of daily number
of COVID-19 hospitalizations and deaths would be almost same as that calculated by COVIDHunter
with CRW, as we show in Figure S2(d-f). 2) Relaxing the mitigation measures by 50% (M is changed
from 0.7 to 0.35) exponentially increases the maximum of daily number of cases, hospitalizations, and
deaths by 58×, reaching up to 288827, 12385, and 7885, respectively, as predicted by COVIDHunter with
the CRW approach (Figure S2(a-c)). Using the CTC appraoch and M(t)=0.35, COVIDHunter predicts
an exponential increase in the maximum of daily number of cases, hospitalizations, and deaths by only
34.5×, as we show in Figure S2(a-c). This is expected as the CTC approach considers only the drop in
temperature rather than the average effect of many environmental conditions as the CRW approach does.
3) Relaxing the mitigation measures by 50% (M is changed from 0.7 to 0.35) causes the daily number of
cases, hospitalizations, and deaths to exponentially increase by an average of 29.6× and 23.8× over 22
January to 31 March 2021 using CRW and CTC environmental approaches, respectively, as we show in
Figure S3.

We conclude that COVIDHunter provides flexible evaluation of the effect of different strength of the
past and current mitigation measures on the number of COVID-19 cases, hospitalizations, and deaths.
COVIDHunter evaluates the applied mitigation measures with high flexibility of configuring the envi-
ronmental coefficient and mitigation coefficient, which helps society and decision-makers to accurately
review the current situation and estimate future impact of decisions.
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Figure S2: The maximum of daily number of COVID-19 cases, hospitalizations, and deaths as predicted
by COVIDHunter over 22 January to 31 March 2021. We use five mitigation coefficient, M(t), values of
0.35, 0.4, 0.5, 0.6, and 0.7 for each configuration of our model during 22 January to 22 February 2021. We
use two different environmental condition approaches, CRW (a)-(c) and CTC (d)-(f) with a certainty
rate level of 50%. Dashed line represents exponential model fit to data.
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Figure S3: The average of daily number of COVID-19 cases, hospitalizations, and deaths as predicted
by COVIDHunter over 22 January to 31 March 2021. We use five mitigation coefficient, M(t), values of
0.35, 0.4, 0.5, 0.6, and 0.7 for each configuration of our model during 22 January to 22 February 2021. We
use two different environmental condition approaches, CRW (a)-(c) and CTC (d)-(f) with a certainty
rate level of 50%. Dashed line represents exponential model fit to data.
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3 Evaluated Datasets

Our experimental evaluation uses a large number of different real datasets, including 1) daily R number
values, 2) observed daily number of COVID-19 cases, 3) observed daily number of COVID-19 hospital-
izations, 4) observed daily number of COVID-19 deaths, 5) number of excess deaths, 6) the estimated
strength of mitigation measures as calculated by the Oxford Stringency Index, 7) estimation of COVID-
19 statistics as calculated by existing state-of-the-art simulation models, ICL, IHME, LSHTM, and IBZ,
from seven different sources as we list below. The raw datasets are provided in the Supplementary Excel
File1 and it can be also obtained from the original sources as we list below:

• Observed COVID-19 statistics (R number values and number of cases, hospitalizations, and deaths)

– Official reports (January 7, 2021): https://www.covid19.admin.ch/en/overview

– Smoothed data (January 7, 2021): https://ourworldindata.org/coronavirus/country/s

witzerland?country=~CHE

• Excess deaths:

– Information: https://www.bfs.admin.ch/bfs/en/home/statistics/health/state-healt

h/mortality-causes-death.html

– Direct link (January 7, 2021): https://www.bfs.admin.ch/bfs/en/home/statistics/heal

th/state-health/mortality-causes-death.assetdetail.12607335.html

• Oxford Stringency Index

– https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-r

esponse-tracker#data

• Imperial College London (ICL) Model:

– Information: https://mrc-ide.github.io/global-lmic-reports/

– Direct link (January 15, 2021): https://github.com/mrc-ide/global-lmic-reports/raw

/master/data/2021-01-30 v7.csv.zip

• Institute for Health Metrics and Evaluation (IHME) Model:

– Information: https://mrc-ide.github.io/global-lmic-reports/

– Direct link (January 15, 2021): http://www.healthdata.org/covid/data-downloads

• The London School of Hygiene Tropical Medicine (LSHTM) Model:

– Information: https://cmmid.github.io/topics/covid19/global cfr estimates.html

– Direct link (January 15, 2021): https://raw.githubusercontent.com/cmmid/cmmid.gith

ub.io/master/topics/covid19/reports/under reporting estimates/under ascertain

ment estimates.csv

• The Theoretical Biology Group at ETH Zurich (IBZ) Model:

– Information: https://ibz-shiny.ethz.ch/covid-19-re-international/

– Direct link (January 15, 2021): https://github.com/covid-19-Re/dailyRe-Data
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