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ABSTRACT
The development of fast and accurate screening tools, which could
facilitate testing and prevent more costly clinical tests, is key to
the current pandemic of COVID-19. In this context, some initial
work shows promise in detecting diagnostic signals of COVID-19
from audio sounds. In this paper, we propose a voice-based frame-
work to automatically detect individuals who have tested positive
for COVID-19. We evaluate the performance of the proposed frame-
work on a subset of data crowdsourced from our app, containing
828 samples from 343 participants. By combining voice signals and
reported symptoms, an AUC of 0.79 has been attained, with a sensi-
tivity of 0.68 and a specificity of 0.82. We hope that this study opens
the door to rapid, low-cost, and convenient pre-screening tools to au-
tomatically detect the disease.

Index Terms— COVID-19, Crowdsourced data, Speech analy-
sis, Symptoms analysis

1. INTRODUCTION

On 11 March 2020, the World Health Organisation announced the
COVID-19 outbreak as a global pandemic. At the time of writing
this paper, more than 37 million confirmed COVID-19 cases and
one million deaths globally have been reported. Nowadays, in ad-
dition to developing drugs and vaccines for treatment and protec-
tion [1, 2], scientists and researchers are also investigating primary
screening tools that ideally should be accurate, cost-effective, rapid,
and meanwhile easily accessible to the mass at large.

Amongst the efforts towards rapid screening [3, 4], audio-
based diagnosis appears promising, mainly due to its non-invasive
and ubiquitous character, which would allow for individual pre-
screening ‘anywhere’, ‘anytime’, in real-time, and available to
‘anyone’ [5]. Many applications have been developed for monitor-
ing health and wellbeing in recent times via intelligent speech and
sound analysis [6, 7, 8].

COVID-19 is an infectious disease, and most people infected
with the COVID-19 experience mild to moderate respiratory ill-
ness [9]. More specifically, on the one hand, COVID-19 symptoms
vary widely, such as cough, dyspnea, fever, headache, loss of taste
or smell, and sore throat [10]. On the other hand, however, many
symptoms are associated with and hence can be recognised via
speech and sound analysis. Such symptoms include shortness of
breath, dry or wet cough, dysphonia, fatigue, to name but a few.
As a consequence, most recently several research works have been
published, aiming at providing sound-based automatic diagnostic
solutions [4, 11, 12].

∗ Ordered alphabetically, equal contribution. This work was supported
by ERC Project 833296 (EAR).

In this paper, we propose machine learning models for voice-
based COVID-19 diagnosis. More specifically, we analyse a subset
of data from 343 participants crowdsourced via our app, and show
the discriminatory power of voice for the diagnosis. We demon-
strate how voice can be used as signal to distinguish symptomatic
positive tested individuals, from non-COVID-19 (tested) individu-
als, who also have developed symptoms akin to COVID-19. We
further show performance improvement by combining sounds and
symptoms for the diagnosis, yielding a specificity of 0.82 and an
AUC of 0.79.

2. RELATED WORK

With the advent of COVID-19, researchers have started to explore
if respiratory sounds could be diagnostic [5]. For instance, in [4],
breathing and cough sounds have been targeted and researchers
demonstrate that COVID-19 individuals are distinguishable from
healthy controls as well as asthmatic patients. In [13], an in-
terpretable COVID-19 diagnosis framework has been devised to
distinguish COVID-19 cough from other types of cough. Likewise,
in [12], a detectable COVID-19 signature has been found from
cough sounds and can help increase the testing capacity.

However, none of the aforementioned efforts have analysed the
potential of voice. Recently, the feasibility for COVID19 screening
using voice has been introduced in [14]. Similarly, in [15], signifi-
cant differences in several voice characteristics are observed between
COVID-19 patients and healthy controls. Moreover, in [16], speech
recordings from hospitalised COVID-19 patients are analysed to cat-
egorise their health state of patients. Our work differs from these
works, as we utilise an entirely crowdsourced dataset, for which we
have to deal with the complexity of the data such as recordings in
different languages and varied environmental noises. Furthermore,
we jointly analyse the voice samples and symptoms metadata, and
show that better performance can be obtained by combining them.
Our study confirms that even in the most challenging scenario of
in-the-wild crowdsourced data, voice is a promising signal for the
pre-screening of COVID-19.

3. METHODOLOGY

This section presents a comprehensive description spanning the data
acquisition, preprocessing, and tasks of interest. We note that the
data collection and study have been approved by the Ethics Commit-
tee of the Department of Computer Science and Technology at the
University of Cambridge.
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(a) Symptoms (b) Voice Recording

Fig. 1: Screenshots of the COVID-19 Sounds App when (a) report-
ing symptoms, and (b) recording voice samples.

3.1. Data Acquisition

The crowdsourced data is collected via our “COVID-19 Sounds
App 1”. It has three versions: web-based, Android, and iOS, with
an aim to reach a high number of users while maintaining their
anonymity. When using the app, users are asked to record and sub-
mit their breathing, coughing, and voice samples, report symptoms
if any, and provide some basic demographic and medical informa-
tion. Moreover, it also asks users if they have been tested positive
(or negative) for the virus, and if they are in hospital. For more
details of our data collection framework, the reader is referred to [4].
Fig. 1 illustrates some symptom- and voice-collection screens from
the iOS app.

As of 14th October 2020, data from 13722 unique users (4690
from the web app, 6334 from Android, and another 2698 from iOS)
were collected. In this study, we explore data from two groups
of participants, i. e., users who declared having tested positive for
COVID-19, and those who tested negative. As a consequence, data
from 343 participants were selected for our analysis. In particular,
140 participants were tested positive, 199 tested negative, one tran-
sitioned from being initially positive to negative later, and another
three transitioned the other way round: negative to positive.

Note that in our selected subset of data, similar to the positive
participants, negative participants declared their symptoms to vary-
ing extents as well. Likewise, there are asymptomatic positive par-
ticipants who selected “None” when asked about their symptoms. A
comparison of the percentage occurrence of 11 symptoms (“None”
excluded) between positive and negative participants is depicted in
Fig. 2. It appears that loss of smell or taste is more frequently re-
ported among positive participants than negative ones, while the dif-
ferences of the percentage occurrence is rather small between posi-
tive and negative participants across other reported symptoms.

1www.covid-19-sounds.org

3.2. Data Preprocessing

Recently, the potential of respiratory sounds for COVID-19 diag-
nosis has been explored in our previous work as well as by other
researchers. However, few research works have yet investigated the
possibility of detecting Covid-19 infection from voice. In this study,
we focus on voice-based analysis for disease diagnostics, and the
performed data preprocessing workflow is detailed as follows.

First, all voice recordings from the selected users were converted
to mono signals with a sampling rate of 16 kHz. Moreover, record-
ings that do not contain any speech signal were discarded. Then,
we considered applying segmentation. As mentioned previously,
each recording consists of multiple repetitions of the given sentence
by the same user, varying from one to three times. However, in
our preliminary analysis, we noticed that the effect of segmentation
was negligible, and that segmentation might eliminate the possible
breathing differences and temporal dynamics between repetitions.
For this reason, we retained only unsegmented samples for further
analysis, while trimming the leading and trailing silence from each
recording as in [4]. Lastly, audio normalisation was applied to each
recording, aiming at eliminating the volume inconsistency across
participants caused by varied devices or different distances between
the mouth and the microphone.

After preprocessing, we obtained a total of 828 voice samples
(326 positive and 502 negative) from 343 participants. They mostly
come from the UK, Portugal, Spain, and Italy.

3.3. Tasks

In this study, a series of binary classification tasks are developed.
In particular, based on the dataset collected, we train models for the
following clinically meaningful tasks:

• Task 1: Distinguish individuals who have declared that they
were tested positive for COVID-19, from individuals who
have declared that they were tested negative for COVID-19.
This is a general scenario, and we refer to this task as ‘Pos.
v.s. Neg.’

• Task 2: Distinguish individuals tested positive for COVID-19
recently in the last 14 days, from individuals tested negative
for COVID-19, specifically for those with a negative test and
no reported symptoms. We refer to this task as ‘newPos. v.s.
Neg. w/o sym.’ This case is set following our previous work
in [4], so as to compare the capability of voice samples with
breathing and cough ones for COVID-19 diagnosis.

• Task 3: Distinguish asymptomatic individuals tested positive
for COVID-19, from individuals tested negative, specifically
for those healthy controls that do not have any symptom. This
task is devised to investigate whether asymptomatic carriers
of the disease can be identified from their voice. This is of
concern given the high rate of asymptomatic infection re-
ported in the population [17]. Therefore, identifying asymp-
tomatic individuals may play a significant role in controlling
the ongoing pandemic [17]. We refer to this task as ‘Pos. w/o
sym. v.s. Neg. w/o sym.’

• Task 4: Distinguish symptomatic individuals who have de-
clared that they were tested positive for COVID-19 and have
developed at least one symptom, from individuals who have
declared that they were tested negative though suffering from
one or more symptoms. This task is considered with an aim
to understand the feasibility of voice analysis to differentiate
COVID-19 from other disease such as the common-flu. We
refer to this task as ‘Pos. w/ sym. v.s. Neg. w/ sym.’

www.covid-19-sounds.org
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Fig. 2: Comparison of the percentage of occurrence across 11 symp-
toms between COVID-19 positive and negative participants.

In addition to voice-based analysis, we explore the symptoms to
provide complementary information. In particular, for symptomatic
individuals, their voice and the symptoms are integrated as inputs to
the models. More specifically, another three tasks are investigated:

• Sonly: Distinguish symptomatic positive individuals from
symptomatic negative users by using their symptoms only.

• (V+S)FF : Distinguish symptomatic positive individuals from
symptomatic negative users via feature-level fusion by con-
catenating voice features and symptom-based features as in-
puts of a model.

• (V+S)DF : Distinguish symptomatic positive individuals
from symptomatic negative users via decision-level fusion
by combining the predictions from a voice-based model and
another symptom-based model. In our case, the final decision
will be the same as the prediction from the model with the
highest probability estimate for a given instance.

4. EXPERIMENTS

In this section, a comprehensive evaluation is performed to investi-
gate the performance of the tasks provided in 3.3. We describe the
features, experiment setup, and result analysis, respectively.

4.1. Features

In this study, we applied an established acoustic feature set, namely
the INTERSPEECH 09 Computational Paralinguistics Challenge
(COMPARE) set [18], extracted by an open-source openSMILE
toolkit [19]. For each audio file, 12 functionals were applied on 16
frame-level descriptors and their corresponding delta coefficients,
resulting in a total of 384 features. Particularly, the 16 frame-
level descriptors chosen are Zero-Crossing-Rate (ZCR), Root Mean
Square (RMS) frame energy, pitch frequency (F0), Harmonics-
to-Noise Ratio (HNR), and Mel-Frequency Cepstral Coefficients
(MFCCs) 1-12, covering prosodic, spectral, and voice quality fea-
tures [18]. For more details about these features, please refer to [18].

Moreover, we combined the voice-based analysis with symp-
toms for COVID-19 diagnosis. In specific, 11 symptoms are chosen
as the most common symptoms of COVID-19, as shown in Fig. 2.

In order to convert these symptoms into feature vectors, one-hot en-
coding was utilised, resulting in a 11-dimensional symptom-based
feature vector for each sample. Each dimension of the vector indi-
cates the presence (1) or absence (0) of a particular symptom.

4.2. Experimental Setup

Following feature extraction, we used Support Vector Machines
(SVMs) with linear kernel as the classifiers for all tasks, due to its
widespread usage and robust performance achieved in intelligent
audio analysis [18, 20]. The complexity parameter C was set to 0.01
based on our preliminary research. Code was implemented using
the scikit-learn library in Python.

Moreover, for each task, 5-fold cross-validation was performed
while the subject-independent constraint was kept, ensuring that data
points from the same participant do not appear in both splits. Further,
to deal with the imbalanced data during training, data augmentation
via Synthetic Minority Oversampling Technique (SMOTE) [21] was
carried out to create synthetic observations of the minority class.

To validate the recognition performance of the voice-based mod-
els for disease diagnosis under various scenarios, we selected the
following standard evaluation metrics: sensitivity (also know as re-
call or true positive rate (TPR) and calculated as TP/(TP +FN)),
specificity (also referred to as true negative rate (TNR) and calcu-
lated as TN/(TN + FP )), the area under the ROC curve (ROC-
AUC) which measures the performance by consider both sensitivity
and specificity at various probability thresholds, and the area un-
der precision-recall curve (PR-AUC) which computes the area under
the precision-recall curve. Moreover, for each model, the mean and
standard deviation across all five folds were computed separately.

4.3. Results and Discussion

Experiment results are presented in Table 1. For Task 1, when dis-
tinguishing positive tested individuals from negative ones without
taking their symptoms into account, the model achieves a sensitiv-
ity and specificity of 62%, 74% respectively. Further, when distin-
guishing recently tested positive individuals from healthy controls
without any symptoms, the ROC-AUC and PR-AUC both increase
from around 75% to 79%, while the sensitivity and specificity are
improved from 62% to 70%, and from 74% to 75%. This indicates
that voice signals have a detectable COVID19 signature. Besides,
in [4], the analysis based on cough and breathing sounds, achieved
the sensitivity of 69% and ROC-AUC of 80%, on a different sub-
set of users though. It can be seen that the obtained performance
from human voice is quite comparable to cough and breathing for
COVID-19 diagnosis. Hence it would be interesting to analyse all
three sounds jointly to understand a comprehensive overview.

Next, when distinguishing asymptomatic patients from healthy
controls (Task 3), we observe a noticeable performance decrease
of the sensitivity from 70% to 40%, indicating that a high rate of
asymptomatic patients are misclassified as healthy participants. The
ROC-AUC also drops from 79% to 65%. This is in alignment with
findings in a recent study [12], where researchers achieved 67% in
ROC-AUC when identifying COVID-19 coughs from asymptomatic
individuals. It implies that with the current features and model, it is
difficult to identify asymptomatic patients just from their voice.

However, when distinguishing symptomatic COVID-19 patients
from non-COVID-19 controls who also developed similar symptoms
(Task 4), our model achieves better performance than Task 3, at-
taining an AUC of 77%. It demonstrates the potential of exploiting
voice to serve as a primary screening tool. Such a tool could rapidly



Table 1: Performance in terms of sensitivity(SE), specificity(SP ), receiver operating characteristic - area under curve (ROC-AUC), and
area under precision-recall curve(PR-AUC) for the voice-based diagnosis. For each measurement, its mean and standard deviation across
5-fold cross-validation are reported.

Task #Pos. #Neg. mean ± std

SE SP ROC-AUC PR-AUC

1. Pos. v.s. Neg. 326 502 0.62±0.15 0.74±0.15 0.74±0.08 0.75±0.09
2. newPos. v.s. Neg. w/o sym. 155 264 0.70±0.10 0.75±0.10 0.79±0.10 0.79±0.08

3. Pos. w/o sym. v.s. Neg. w/o sym. 72 264 0.40±0.08 0.74±0.08 0.65±0.11 0.72±0.09
4. Pos. w/ sym. v.s. Neg. w/ sym. 254 238 0.64±0.10 0.75±0.10 0.77±0.06 0.77±0.05
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(b) decision-level fusion

Fig. 3: ROC curves of COVID-19 diagnosis from the combination of voice and reported symptoms, via (a) feature-level fusion and (b)
decision-level fusion. In each figure, the curve of each fold under the 5-fold cross-validation is shown separately. The mean ROC curves and
their variances are also given.

Table 2: Results of COVID-19 diagnosis based on voice (V)
and symptoms (S), where the selected positive and negative par-
ticipants report at least one symptom. Performance in terms of
sensitivity(SE), specificity(SP ), receiver operating characteristic
- area under curve (ROC-AUC), and area under precision-recall
curve (PR-AUC) are reported. For each measurement, its mean
and standard deviation across 5-fold cross-validation are reported.
Best performances are highlighted.

Method mean ± std

SE SP ROC-AUC PR-AUC

Vonly 0.64±0.10 0.75±0.10 0.77±0.06 0.77±0.05
Sonly 0.62±0.02 0.80±0.02 0.73±0.04 0.75±0.06

(V + S)FF 0.66±0.12 0.74±0.12 0.77±0.07 0.78±0.07
(V + S)DF 0.68±0.16 0.82±0.16 0.79±0.07 0.79±0.06

FF: feature-level fusion, DF: decision-level fusion

identify (from symptomatic cases) the ones who might have higher
priority for further clinical diagnosis.

In addition, when taking the symptoms into account, we further
trained another three models. In particular, both feature-level and
decision-level fusion were explored. The former concatenates audio
features and the encoded symptoms as the input as a single feature
matrix, while the latter chooses the prediction with a higher prob-

ability from the two independently-trained models. Corresponding
results are shown in Table 2. When comparing the results, the best
performance is achieved by decision-level fusion. It is better than
each unimodal model, attaining 79% in ROC-AUC and PR-AUC,
68% in sensitivity and 82% in specificity. It shows the promise of
combining voice and symptoms in our analysis. However, note that
performance varies across folds, leading to a wide standard deviation
of our models. This can also be seen from the ROC curves displayed
in Fig. 3. It is believed that with more training data, it can be allevi-
ated, as shown in our previous work [4].

5. CONCLUSIONS AND FUTURE WORK

In this paper, voice-based models are proposed to discriminate
COVID-19 positive cases from healthy controls. The effectiveness
of our models are evaluated on a crowdsourced dataset, and high-
lights the great potential of developing an early-stage screening tool
based on voice signals for disease diagnosis. In addition to voice
analysis, this work further explores fusion strategies to combine
voice and reported symptoms which yield encouraging results.

For future work, we plan to incorporate other sounds such as
breathing and coughing alongside voice. In addition, we will inves-
tigate the impact of the disease on voice by analysing the correlation
of voice characteristics before and after the infection. Furthermore,
our data collection is ongoing, and we will improve the robustness
of our models by training on a larger pool of users.
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