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Abstract—Early prediction of patients at risk of clinical dete-
rioration can help physicians intervene and alter their clinical
course towards better outcomes. In addition to the accuracy
requirement, early warning systems must make the predictions
early enough to give physicians enough time to intervene.
Interpretability is also one of the challenges when building
such systems since being able to justify the reasoning behind
model decisions is desirable in clinical practice. In this work, we
built an interpretable model for the early prediction of various
adverse clinical events indicative of clinical deterioration. The
model is evaluated on two datasets and four clinical events.
The first dataset is collected in a predominantly COVID-19
positive population at Stony Brook Hospital. The second dataset
is the MIMIC III dataset. The model was trained to provide
early warning scores for ventilation, ICU transfer, and mortality
prediction tasks on the Stony Brook Hospital dataset and to
predict mortality and the need for vasopressors on the MIMIC
III dataset. Our model first separates each feature into multiple
ranges and then uses logistic regression with lasso penalization
to select the subset of ranges for each feature. The model
training is completely automated and doesn’t require expert
knowledge like other early warning scores. We compare our
model to the Modified Early Warning Score (MEWS) and quick
SOFA (qSOFA), commonly used in hospitals. We show that
our model outperforms these models in the area under the
receiver operating characteristic curve (AUROC) while having
a similar or better median detection time on all clinical events,
even when using fewer features. Unlike MEWS and qSOFA, our
model can be entirely automated without requiring any manually
recorded features. We also show that discretization improves
model performance by comparing our model to a baseline logistic
regression model.

I. INTRODUCTION

Rule-based early warning score systems are developed to
predict patients at risk of deterioration. Although developing
such systems is not entirely automated and often requires
healthcare professionals’ input, one of their most significant
advantages is that they are interpretable and verifiable. For
instance, let’s take an example of a system that raises an alarm
if two or more of the patient’s vital signs (such as heart rate
and body temperature) are outside the normal range. Such a
system is interpretable because we can understand the cause
of an alarm every time the alarm is raised. Verifiability in such
a system stems from the fact that for any combination of vital
sign values, we can understand how the system will behave.

Even when complex data-driven models can outperform rule-
based early warning systems, physicians do not feel confident
using them. This is because most data-driven models have
parameters that are hard or too complex to interpret for the end
user (deep-learning models, SVMs, random forests, gradient
boosting trees). While on the other end, simpler linear models
fail to capture non-linear patterns in a given feature.

Severity score systems can be separated into two categories.
The first category includes intensive care unit (ICU) scoring
systems. In this category, a final risk score is assigned to each
patient after 24 hours of admission to the ICU. The worst
value of each feature (according to the given severity score)
during that time is then selected to assign a risk score. The
second category includes early warning scores that are used
in the Emergency Department (ED) as well in the ICU. Such
systems continuously assign scores and are designed to raise
alarms for medical care professionals for early intervention.
Among the most commonly used scores in the first category
are APACHE (I, II, III and IV) [1]–[4], SAPS (I, II, III)
[5]–[7], LODS [8], OASIS [9] and AutoScore [10]. APACHE
was developed to predict hospital mortality. SAPS was then
derived to simplify the APACHE score. While APACHE I,
APACHE II, and SAPS were designed using a panel of experts,
APACHE III and SAPS II were later developed using multiple
logistic regression after separating each feature into multiple
ranges based on expert advice. A dataset of 17,440 adult
intensive care unit (ICU) admissions at 40 US hospitals was
used in APACHE III. SAPS II uses locally weighted least
squares (LOWESS) to create a univariate smoothed function
of hospital mortality against a given variable. The ranges were
then assigned via inspection. LODS uses the same dataset and
method as SAPS II, however, for predicting organ dysfunction
instead of mortality. SAPS III was later developed using the
same modeling techniques as SAPS II, however, calibrated
to new datasets that include ICUs from more countries and
to adjust for the change in prevalence of major diseases
and the changes in therapeutics. APACHE was later updated
to version IV, and it expanded to more features and used
restricted cubic regression splines combined with multiple
logistic regression. Each variable is separated into multiple
variables after choosing the cut points between the splines. The
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OASIS score uses data from 86 ICUs at 49 hospitals to predict
mortality. A genetic algorithm is first used to select the subset
of predictor variables to use. A particle swarm algorithm is
then used to assign scores after separating each variable into
deciles. AutoScore is an automated algorithm that uses logistic
regression to generate a warning score given a dataset. The
system first ranks features using a random forest. Features
are also separated into ranges based on predefined percentiles.
After that, each feature’s mean in the last 24 hours is computed
for each patient. The vector representing the mean value for
every feature for a given patient is then used to predict the
risk score. AutoScore was tested for mortality prediction using
the MIMIC [11] dataset. One advantage of the OASIS and
AutoScore over the other scores is that they do not need expert
knowledge to separate the features or decide on the cut points.

Although proven accurate in predicting clinical events,
the above rule-based systems are designed as single point
prediction systems. They are not designed as real-time early
warning systems.

Moving to the second category of severity scores, the
Modified Early Warning Score (MEWS) was developed to
detect deteriorating patients in a hospital ward [12]. It uses
five physiological features that are repeatedly measured in the
hospital. Using MEWS is associated with earlier admissions
to the ICU. On the other hand, the Sepsis-related Organ
Failure Assessment (SOFA) [13] score is commonly used
for the assessment of organ dysfunction. A higher SOFA
score is associated with increased mortality. However, it re-
quires lab values, which makes the system not suitable for
repeated computation since lab measurements are not taken
as frequently as vital signs. For this, the third International
consensus definitions for sepsis and septic shock recommends
using quick SOFA (qSOFA) [14], a modified simpler version
of the SOFA score, to assess patients repeatedly. Such a
score serves as an early warning that prompts physicians to
investigate patients further.

In this work, we focus on the second category of severity
scores. We build a tool for generating an early warning score
given a dataset and a clinical event without the need for expert
knowledge. This is helpful since most of the systems we
discussed that depend on expert knowledge take years to be
updated and are carefully designed for specific clinical events.
The rise of the COVID-19 pandemic increased the need for
early warning scores that are tailored for new populations
such as the COVID-19 patients. This, for instance, would help
medical care professionals attend to the patients at risk early
on while at the same time helping them estimate the amount
of ICU beds and ventilators needed.

Although other automated early warning scores exist, many
of them use algorithms that make it harder for medical care
professionals to interpret the model decisions. Moreover, many
of those systems that use complex algorithms require more
data, which is not desirable in a rising pandemic like COVID-
19. State-of-the-art models are mainly tailored for specific
clinical events, and it is unclear how well they generalize to
other clinical events. On the other hand, our system produces

an early warning score in a format that is familiar to medical
care professionals and works well on different clinical events,
even when the dataset is limited.

II. METHODS

A. Cohort

The model was trained and tested on two datasets and
different clinical events: Stony Brook Hospital dataset (venti-
lation, ICU transfer, and mortality) and MIMIC III dataset
(mortality, vasopressor administration). For a given dataset
and a clinical event, we define positive and negative patients
to represent patients who eventually had/did not have the
given clinical event, respectively. The number of positive
and negative patients for each clinical event and dataset are
displayed in Table I.

The Stony Brook hospital data was collected retrospectively
from February 7th, 2020, to May 4th, 2020. It includes patients
throughout their hospital stay. Moreover, due to the COVID-
19 pandemic, the Stony Brook hospital patient population
was predominantly COVID-19 positive. For instance, the
ventilation dataset contains 1,685 hospital admissions, out of
which 203 resulted in the need for ventilation. Among the
ventilated patients, 184 were COVID-19 positive. For the
remaining 1,481 admissions that didn’t have a ventilation
event, 898 patients tested positive for COVID-19, 524 tested
negative, and 59 had no tests performed. Since the Stony
Brook hospital dataset contains patients whose discharge date
is censored, we removed all negative patients who were not
yet discharged at the end of the time frame used to collect
the data. The ventilation event includes patients who were
intubated after admission to the hospital and excludes patients
who were intubated by the Emergency Department (ED) or
by the Emergency Medical Services (EMS). The mortality
event includes all patients who died at the hospital, excluding
patients who died in the ED. The ICU transfer event contains
patients who were transferred to the ICU at some point during
their hospital stay. This excludes patients who were directly
admitted to the ICU.

Medical Information Mart for Intensive Care (MIMIC) III
is a publicly available database of deidentified health-related
data associated with over 40,000 patients and over 60,000
ICU stays. The data were collected during those patients’ stay
in critical care units of the Beth Israel Deaconess Medical
Center between 2001 and 2012. In this study, we only use the
most recent data collected between 2008 and 2012, which has
a different data management system than the previous data
collected between 2001 and 2008. We didn’t remove right-
censored patients from the MIMIC III dataset since all patients
were eventually discharged. For patients who had multiple ICU
stays, we treated each ICU stay as a separate data point.

For all datasets, we only included adult patients (age 18 or
older). The Stony Brook hospital dataset contains 15 different
physiological and lab features. On the other hand, for the
MIMIC III dataset, we extracted eight physiological features.
Table II shows the different features used in each dataset in



addition to the average number of records of each feature per
patients who have at least one recording of those features.

Positive admissions All admissions

Dataset Clinical event Total COVID+ Total COVID+

Stony Brook
Hospital

Ventilation 203 184 1,685 1, 081

Transfer to ICU 223 194 1,724 1,103

Mortality 168 137 1,649 1,034

MIMIC III
Mortality 2,267 - 23,362 -

Vasopressor
administration 6360 - 23,362 -

TABLE I: Number of hospital admissions for each dataset and
clinical event. COVID+ indicates the number of hospital ad-
missions associated with COVID-19 positive patients. MIMIC
III dataset was extracted between 2008 and 2012 and thus it
contains no COVID-19 patients.
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Fig. 1: The distribution of the patient clinical event times in
days.

Figure 1 shows the density for each clinical event in
different datasets. While the distributions are long tailed in
general, we can notice that most vasopressor administrations
were within the first 6 hours after the start of the ICU stay.

B. Model

The data of each hospital stay i is represented as a series
of vectors xij , ...xini , where each vector xij represents
the patient’s state at timestamp j. We bin the records of
each hospital admission i into half-hour windows, and we
denote by ni the number of resulting timestamps. Each vector
represents the most recent patient records within that half-hour
window. Each feature’s missing values are imputed with the
last available value. Moreover, for each patient, we initially
impute each feature’s value with the median value, where
the median value is computed after taking the median value
from each patient for that feature. Taking the median at the
patient level ensures that each patient can only contribute one
value to this median, thus preventing long hospital admissions
from dominating the final value used for imputation. Using the
median instead of the mean helps against cases where some

features can have large deviations in some rare cases, which
can impact the mean but not the median.

For each hospital stay i, we denote by yi the binary label
indicating whether the patient eventually developed the posi-
tive clinical event within that stay. Since signs of deterioration
increase as we approach the time of the event among positive
patients, we rescale the weights of each data-point in their
hospital stay to increase linearly between 0 and 1 over the last
72 hour period before the positive event onset. Data-points
for those hospital admissions that happen before 72 hours
of the positive event time were excluded from the training
set but included in the test set. Hospital admissions (positive
and negative) have different lengths. To avoid long hospital
admissions from dominating the loss function, and to give
equal contribution for each hospital stay, we re-weight each
patient’s vectors in that hospital stay such that they sum up to
one.

We use logistic regression with lasso regularization for the
given prediction task:

min
(β0,β)∈Rp+1

λ||β||1− 1

N

N∑
i=1

ni∑
j=1

wij

(
yi · h(xij)− log(1 + eh(xij))

)
Where h(x) = β0 + x

Tβ and
∑ni

j=1 wij = 1

Lasso regularization allows the model to zero out coefficients
that do not contribute to the prediction task. This helps in
improving interpretability by making the model solution
simpler. We use 5-fold cross-validation on the training set to
select the hyper-parameter λ controlling the regularization
strength. After that, we report our model performance on the
final testing set.

For baseline logistic regression, each vector xij contains
the original numeric features contained in the dataset. For
EventScore, on the other hand, each feature was discretized
into multiple ranges. Thus xij is a multi-hot encoding rep-
resenting the feature ranges of the measurements the patient
had at time step j. This is done for each feature separately by
selecting splits that maximize the information gain using the
Classification And Regression Tree (CART) [15] algorithm on
the training set. The information gain is weighted using the
same weighting scheme for positive and negative patients as
before; however, at a univariate level. Patients who never had
records for the given feature were excluded when identifying
the ranges.

III. RESULTS

We divide all datasets into 60% training and 40% testing.
For each clinical event and dataset, we extract ranges using
the training set. After that, we select the best L1 regularization
strength λ using five-fold cross-validation on the training set.

Also, to ensure a fair comparison against MEWS and
qSOFA, we run some experiments to train our model on only
the given features of those early warning scores. We also run



Stony Brook Hospital Dataset MIMIC III Dataset

Feature Shorthand notation
Fraction available

per patient
Average number of
values per patient

Fraction available
per patient

Average number of
values per patient

Alanine aminotransferase ALT 0.98 5.7 - -
Alert, Voice, Pain, Unresponsive scale AVPU 1.00 61.4 - -

C creative protein CRP 0.91 6.7 - -
Diastolic Blood Pressure DBP - - 1.00 82.95

Glascow Coma Score GCS - - 1.00 24.13
Glucose GLUCOSE - - 0.99 18.49
Ferritin FERR 0.82 6.0 - -

Fibrin D-dimer DDU DDIM 0.84 6.6 - -
Heart Rate HR 1.00 104.7 1.00 86.54

Lactate dehydrogenase LDH 0.89 5.5 - -
Leukocytes LEUKO 0.73 9.5 - -

Lymphocytes LYMPH 1.00 6.1 - -
Natriuretic peptide.B prohormone N-Terminal BNP 0.58 1.2 - -

Mean Blood Pressure MBP - - 1.00 84.68
Oxygen Saturation in arterial blood O2SAT 1.00 107.9 - -

Oxygen Saturation SPO2 - - 1.00 85.01
Procalcitonin PROCAL 0.91 5.4 - -

Respiratory rate RR 1.00 96.6 1.00 86.48
Systolic Blood Pressure SBP 1.00 78.4 1.00 82.97

Temperature TEMP 1.00 37.7 0.99 24.60
Troponin T.cardiac TNT 0.85 2.5 - -

TABLE II: Features used in each dataset. Average number of records per patient was only calculated for patients who had at
least one recording of the feature.

other experiments where we add more features to the model to
illustrate the model performance improvement as we increase
the number of features used. We define the median detection
time as the median number of hours prior to the event when the
first alarm is raised for each positive patient correctly predicted
at a given threshold for a particular model. MEWS and qSOFA
have integer scores (qSOFA between 0 and 3, MEWS between
0 and 14), making it difficult to fix the false-positive rate to
compare both systems across different datasets. This is because
a prediction threshold in one system will be mapped to a
false-positive rate, which in turn might not correspond to an
actual threshold in the other system. This is also true when
trying to find a fixed false-positive rate within the same system
across different datasets. The unique set of false-positive rates
is a property of the dataset and the clinical event used. Thus,
to compare the data-driven models to qSOFA and MEWS,
we first extract the false-positive rates from each system at
thresholds used in the literature to predict patients at risk of
deterioration. Namely, we use a threshold of 5 for MEWS and
2 for qSOFA. We then compute the median detection times
tMEWS and tqSOFA for EventScore and logistic regression at
the false-positive rates of MEWS and qSOFA at the given
thresholds within the given dataset and clinical event.

Table III summarizes the results across different datasets
and clinical events. All AUC values are computed at the
hospital stay level. p-values were computed using DeLong’s
algorithm [16], [17] by comparing the AUC of every model
to the AUC of EventScore[qSOFA], EventScore[MEWS] or
EventScore[All features] depending on the subset of features
the models is using.

The results in the table show that in all clinical events,
EventScore outperforms MEWS and qSOFA when using the
same subset of features. All improvements in AUC over

MEWS and qSOFA are statistically significant. Moreover,
the results show that EventScore also outperforms these
systems when using fewer features by excluding GCS (or
AVPU) score, which requires medical staff to observe the
patient and record values manually. This helps make the
system completely automated. Simultaneously, we can see that
EventScore’s early prediction quality is equal to those metrics.
This is evident when comparing the median detection time
tMEWS of EventScore[MEWS] and MEWS and the median
detection time tqSOFA of EventScore[qSOFA] and qSOFA. Like
qSOFA, the average of the median times across all events (ex-
cept vasopressor administration since most models performed
worse than random) of EventScore is 93 hours when using
the qSOFA features. On average, EventScore[MEWS] detects
clinical events a median of 79 hours in advance compared to
MEWS’s 78 hours. This demonstrates that the improvements
in AUC compared to qSOFA and MEWS were not at the
expense of a reduction in early prediction.

Comparing the results to baseline logistic regression, we
observe that EventScore outperforms logistic regression in
all experiments except in one case in the ICU transfer
dataset when using only the qSOFA features. For instance,
using all the features we extracted from the MIMIC dataset,
EventScore achieves an AUC of 0.881 on the mortality
event compared to the baseline Logistic Regression’s 0.866
(p = 0.002). Similarly, on the ventilation event, EventScore
achieves improved performance over Logistic Regression in
all clinical events in all subsets of features. However, be-
cause Stony Brook hospital’s dataset is much smaller than
the MIMIC dataset, statistical significance could not be es-
tablished in all cases. In some cases, EventScore did not
select the features that require human input (AVPU/GCS)
during training. For this reason, we can see that in some



Dataset

Mortality (SBH) Ventilation (SBH) ICU transfer (SBH) Vasopressors (MIMIC) Mortality (MIMIC)

AUC tqSOFA tMEWS p-value AUC tqSOFA tMEWS p-value AUC tqSOFA tMEWS p-value AUC tqSOFA tMEWS p-value AUC tqSOFA tMEWS p-value

qSOFA 0.744 202.3 - 0.0 0.574 58.4 - 0.0 0.595 46.5 - 0.0 0.299 9.5 - 0.0 0.706 66.4 - 0.0

Logistic Regression [qSOFA*] 0.852 195.2 189.8 0.015 0.725 61.3 30.7 0.35 0.715 44.0 29.3 0.029 0.36 4.7 2.8 0.0 0.791 62.9 72.3 0.0

Logistic Regression [qSOFA] 0.872 202.3 197.3 0.114 0.724 62.6 30.7 0.3 0.718 44.0 29.3 0.014 0.36 4.7 2.8 0.0 0.812 65.2 72.1 0.01

EventScore [qSOFA*] 0.874 202.3 117.0 0.019 0.729 62.6 30.2 - 0.696 44.0 26.2 - 0.5 - 2.8 0.0 0.793 62.6 72.1 0.0

EventScore [qSOFA] 0.89 202.3 164.0 - 0.729 62.6 30.2 - 0.696 44.0 26.2 - 0.516 - 2.8 - 0.822 64.2 72.0 -

MEWS 0.855 - 166.9 0.011 0.675 - 37.0 0.001 0.663 - 36.4 0.0 0.302 - 5.7 0.0 0.79 - 72.1 0.0

Logistic Regression [MEWS*] 0.849 199.0 166.9 0.005 0.73 61.3 31.4 0.08 0.724 47.5 29.4 0.026 0.36 4.7 2.8 0.0 0.777 66.5 72.6 0.0

Logistic Regression [MEWS] 0.874 200.8 180.5 0.057 0.727 63.2 31.1 0.052 0.728 47.5 30.6 0.052 0.36 4.7 2.8 0.0 0.822 68.4 72.1 0.0

EventScore [MEWS*] 0.878 203.5 150.2 0.063 0.753 63.8 45.0 - 0.75 52.0 32.8 - 0.568 2.7 2.9 0.001 0.821 67.7 72.1 0.0

EventScore [MEWS] 0.893 202.3 168.2 - 0.753 63.8 45.0 - 0.75 52.0 32.8 - 0.575 2.7 2.9 - 0.84 66.2 72.1 -

Logistic Regression [all features] 0.93 203.7 165.6 0.116 0.749 61.3 31.4 0.127 0.753 52.0 36.0 0.211 0.389 4.5 2.8 0.0 0.866 64.6 70.6 0.002

EventScore [all features] 0.944 211.9 179.5 - 0.769 65.6 41.2 - 0.768 52.0 37.7 - 0.635 2.6 2.9 - 0.881 62.9 72.1 -

TABLE III: Performance of the different models across different datasets and clinical events. [Severity score] indicates that a
model was trained using only the features of the given severity score. [Severity score*] is similar, with an added restriction
of further excluding features that need human input. tqSOFA and tMEWS represent the median detection time when measured at
the specificity corresponding to a qSOFA threshold of 2 and a MEWS threshold of 5, respectively. p-values were calculated
based on the AUC of the model in a given row against the AUC of the corresponding EventScore model in its row group (one
of EventScore[qSOFA], EventScore[MEWS] and EventScore[All features]).

cases (such as the Stony Brook hospital ventilation dataset),
the results of EventScore[qSOFA]/EventScore[MEWS] and
EventScore[qSOFA*]/EventScore[MEWS*] are the same.

Figure 2 shows how the model coefficients change as we de-
crease the L1 regularization strength (from left to right) for the
mortality event on the Stony Brook Hospital dataset. At a very
high regularization strength (Model number 0 on the x-axis),
the model coefficients are all zero. The rightmost of the figure
on the other hand is equivalent to non-regularized logistic
regression. As we decrease the L1 regularization penalty, the
model is allowed to have larger coefficients (in absolute value).
To avoid overfitting, we select the regualrization strength
λ using five-fold cross-validation. Figure 3 shows the most
important features on the same Stony Brook Hospital dataset
and mortality event. Feature importance was calculated by
measuring the magnitude of the average drop in training set
AUC after removing each feature separately from the dataset
using 5-fold cross validation. Following this, the values were
rescaled between 0 and 1 by normalizing by the magnitude of
the maximum AUC drop. From the figure, we can see that O2
saturation was the by far the most important feature. This is
expected, as drops in O2 saturation level is a common sign of
deterioration among COVID-19 patients.

IV. DISCUSSION

A few systems attempted to produce interpretable machine
learning models using various machine learning algorithms.
For instance, RETAIN [18] uses an attention mechanism to
visualize the contribution of each feature to the final score.
However, one major problem with such a deep learning
architecture is that the whole system cannot be verified.
Each patient will produce different attention weights. The

GCS
Ranges: 10.5 < 10.50− 13.50 13.50− 14.50 >= 14.5

Coefficients: 1.58 0.27 −0.30 0.00

HR
Ranges: 59.5 < 59.50− 89.50 89.50− 93.50 93.50− 103.50 103.50− 110.50 110.50− 120.50 >= 120.5

Coefficients: 0.00 −0.22 −0.02 0.01 0.23 0.54 1.11

SBP
Ranges: 78.5 < 78.50− 89.50 89.50− 97.50 97.50− 108.50 108.50− 119.50 119.50− 154.50 >= 154.5

Coefficients: 2.50 1.02 0.44 0.07 0.00 −0.35 −0.03

RR
Ranges: 12.5 < 12.50− 19.50 19.50− 21.50 21.50− 23.50 23.50− 25.50 25.50− 29.50 >= 29.5

Coefficients: −0.12 −0.28 0.00 0.01 0.22 0.48 1.01

TEMP
Ranges: 35.51 < 35.52− 35.93 35.93− 36.42 36.42− 37.21 37.21− 37.44 37.44− 37.92 >= 37.92

Coefficients: 1.46 0.37 0.00 −0.11 −0.02 0.00 0.52

TABLE IV: Coefficient values for the MIMIC III mortality
EventScore[All features] model.

complexity of the architecture doesn’t allow health care pro-
fessionals to understand how the model would behave in
rare cases. Moreover, such complexity prevents medical care
professionals from gaining insights about the model decisions
making the model a black box system. On the other hand, other
systems used decision trees. In this category, for example, is
a recent work that was done for the prediction of mortality
among COVID-19 patients [19]. Decision tree models quickly
become complex to interpret, especially as the number of
features increases, which increases the depth of the tree.
For these reasons, linear models are still preferred in many
applications since they are more interpretable. One of such
systems is TREWScore [20], which is an early warning score
for the prediction of sepsis. Even though TREWScore and
other systems use a linear model, the lack of discretization
makes interpreting model coefficients more challenging. To
illustrate this, let’s consider a patient’s decrease in temperature
from 37 degrees Celsius to 36 degrees Celsius. One needs to
normalize the feature and then multiply by the linear model



Fig. 2: The graph shows how the model coefficients change as we increase the model complexity (from left to right) on the
mortality event using all the 15 features from the Stony Brook Hospital dataset. Simpler models generalize better and have
fewer coefficients, however, at the cost of reduced performance. More complex models use more features and perform better
on the training set, however, at the cost of reduced performance. The red vertical line shows the model that was selected using
five-fold cross-validation. Features with the highest coefficients (in absolute value) for the selected model are highlighted in
red (increases the risk score) and green (decreases the risk score).

LEUKO

PROCAL

HR

CRP
FERR

TEMP

BNP

ALT

AVPU

DDIM

SBP

TNT
LDH

LYMPH

O2SAT

RR

0 0.2 0.4 0.6 0.8 1

Fig. 3: Feature importance computed relative to the magnitude
of the AUROC drop on the training set using 5-fold cross
validation when excluding each feature.

coefficients before understanding the effect of such an increase
on the total risk score. On the other hand, using EventScore,
and looking at Table IV it can be easily identified by replacing
the value of the old range with the value in the new range.
Moreover, a linear model assumes that a decrease from 37
to 36 increases/decreases the risk score by the same amount
as when the temperature decreases from 36 to 35, which is
not reasonable, whereas, in EventScore, that’s not the case.
Another disadvantage of not discretizing the features is that
the model will assume a unidirectional linear relationship
between the feature and the clinical event. However, this is
not always true, as apparent from the MEWS score. For some
features, a very high or a very low value can both be signs of
deterioration.

Moreover, and as shown in Figure 4, discretization allows
us to understand which features are raising the risk scores
for the positive patients before the clinical event of interest.
As we can see from the figure, one can notice a correlation
between having very high LDH values and very low O2
saturation levels 32 hours before the event. Understanding such
behavior between the different ranges of different features is
not possible when using a baseline linear model.

Using lasso regularization gives us more insight into the
development of the model. As shown in Figure 2, the lasso
path shows the evolution of the coefficients of the model as
we decrease model complexity. This can give further insights



Fig. 4: The average contribution of model coefficients to the
final risk score of Stony Brook Hospital’s positive patients
as we approach their mortality event. Plots were smoothed
using a moving average window of 12 hours. Patients who
didn’t have values at a given timestamp where excluded while
computing the corresponding average at that timestamp.

about the model and help understand what the model will look
like had we enforced stronger regularization and a simpler
solution.

Another distinction between EventScore and other ICU
scoring systems such as APACHE (I, II, III and IV), SAPS (I,
II, III), LODS, OASIS and AutoScore is that EventScore, like
MEWS and qSOFA, runs in real-time. ICU scoring systems
make a single prediction after 24 hours of evaluation. While
such systems are useful, they are not designed to monitor pa-
tients during their hospital stay continuously. This distinction
is also reflected at training time. ICU scoring systems are
trained by taking a single vector representing the patient state
after 24 hours. On the other hand, EventScore is trained by
taking all patient state vectors at all times. During training,
those vectors are then weighted in increasing importance as
we approach the clinical event of interest.

Another advantage of EventScore is that it is a generalized
algorithm that can produce an interpretable early warning
system on the fly for various clinical events. While most
rule-based ICU and early warning systems use a fixed list of
features, EventScore can be reevaluated on a new dataset with
different features and clinical events. This is especially helpful
in keeping the model updated with the changing practice,
populations, and clinical events. It might be more optimal
to produce a specialized system for a specific hospital or a
special clinical event (such as in the case of COVID-19).
This is evident, for instance, from Table III where EventScore
outperforms MEWS and qSOFA in mortality prediction on the
MIMIC III dataset and the Stony Brook hospital dataset when
using the same subset of features.

V. CONCLUSION

In this work, we presented EventScore, an automated early
warning system for the prediction of various clinical events.
We demonstrated the advantages of using EventScore over

traditional early warning systems currently used in hospitals.
We also demonstrated the importance of discretization by
comparing EventScore to baseline logistic regression without
feature discretization.

Although EventScore is a promising scoring system, some
limitations still need to be addressed. In this work, we selected
some parameters, such as the decay rate of the weights of
the labels of the positive patients, without further tuning.
The reasoning for this is to simplify the experimental setup.
However, such parameters can be further tuned using cross-
validation. On the other hand, as we can see from Table IV, the
resulting model coefficients, although interpretable, sometimes
show behavior that cannot be explained. For example, GCS
scores of 14 decrease the risk score while GCS values of
15 don’t. This could be due to some underlying bias in the
data. Although it could be considered an added advantage
to EventScore, it remains an open question whether a better
performing model that adjusts to the biases in the data is better
than a less performing but more interpretable model.

Another limitation of the presented methods are cases where
most of the clinical events happen very early on. Without
enough records, this may lead the model to learn incorrect
patterns. As we saw in Table III, most models performed worse
than random in such a scenario on the vasopressors dataset.
EventScore was the only model that performed better than
random when more features were added. However, such an
improvement is not enough for the system to be useful for
predicting the need for vasopressors. Although this impacted
all the models, it indicates that early warning systems are
susceptible to learning incorrect signals if the data was not
filtered.
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