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ABSTRACT

The spatialization of socioeconomic data can be used and integrated with other sources of information
to reveal valuable insights. Such data can be utilized to infer different variations, such as the dynamics
of city dwellers and their spatial and temporal variability. This work focuses on such applications to
explore the underlying association between socioeconomic characteristics of different geographical
regions in Dublin, Ireland, and the number of confirmed COVID cases in each area. Our aim is to
implement a machine learning approach to identify demographic characteristics and spatial patterns.
Spatial analysis was used to describe the pattern of interest in Electoral Divisions (ED), which are
the legally defined administrative areas in the Republic of Ireland for which population statistics are
published from the census data. We used themost informative variables of the census data tomodel the
number of infected people in different regions at ED level. Seven clusters detected by implementing
an unsupervised neural network method. The distribution of people who have contracted the virus
was studied.

1. Introduction
In March 11th, 2020, the Republic of Ireland’s govern-

ment launched a national action plan in response to COVID-
19, a widespread lock-down in order to minimize the risk
of illness. The impacts of pandemics such as the current
COVID-19 should be explored extensively. To mitigate and
recover from the negative repercussions, it is of paramount
importance to study the effects on the social tissue in cities.
It seems that various research is needed to thoroughly in-
vestigate, understand, mitigate and recover from the effect
of this pandemic. Some studies have been focused on pro-
viding risk assessment frameworks based on artificial intel-
ligence and leveraging data generated from heterogeneous
sources such as disease-related data, demographic, mobil-
ity, and social media data [31, 35, 12, 3, 34]. The exposure
risk of the pandemic in different environments has been as-
sessed. Many researchers are exploring the dynamics of the
pandemic in urban areas to mitigate effects and understand
the impacts of COVID-19 on cities [28, 35, 7]. In this area
of research, four distinctive categories have received signif-
icant attention: environmental quality, socio-economic im-
pacts, management and governance, and transportation and
urban design [32]. As far as the socio-economic impacts
are concerned, pandemics can substantially negatively af-
fect people at the bottom of the socio-economic hierarchy,
those with low education, low income, and low-status jobs.
For instance, it has been discussed that the Black and Latino
people’s mortality rate is twice that of the Whites in the US
[40]. The pandemics can also hit vulnerable groups of peo-
ple in poor sanitary conditions. Moreover, various factors
such as high density, inadequate access to health services and
infrastructure facilities can exacerbate the situation [9, 27].
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Different inequality issues can also make it difficult to main-
tain social distancing [37]. Hence, it is essential to under-
stand the existed relation between socio-economic inequal-
ities and the pandemic. As discussed, such inequalities can
threaten public health by making it difficult to enforce pro-
tective measures such as social distancing.

Artificial Intelligence technologies such as Neural Net-
works and Deep learning can play a significant role during a
pandemic. They can be used to provide different platforms
for social distance tracking [1, 25, 13], monitor and control
the spread of COVID-19 [4, 46]. Such technology has been
used in this study. We assess the association between the
demographic features and the number of confirmed cases
at Electoral Divisions (i.e., ED) in Dublin, Ireland based
on an optimized self-organizing neural network. It should
be mentioned that the number of cases until September 10,
2020, have been considered in this work. Our aim is to un-
derstand the impacts of the pandemic on Dublin city given
associated characteristics and study the related patterns in
different clusters obtaining from demographic information,
i.e., census data. We used a machine learning method based
on an unsupervised learning approach to group spatial data
into meaningful clusters [20]. In doing so, the similarities
among spatial objects were taken into account. Given the
implemented model, the implicit information about differ-
ent EDs were extracted, and all associated relations were ex-
amined. Such data exploration can help us extract demo-
graphic information related to various clusters. First, a fea-
ture selection method was used to extract the most relevant
variables since the census data includes over 700 features,
and redundant features can significantly affect the model ac-
curacy. Feature extraction aims to project high-dimensional
data sets into lower-dimensional ones in which relevant fea-
tures can be preserved. These features, then, were used to
distinguish patterns. Dimensionality reduction and feature
selection/extraction methods [14], e.g., principal component
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analysis (PCA), linear discriminant analysis (LDA), and canon-
ical correlation analysis (CCA), play a critical role in deal-
ing with noise and redundant features. These methods were
used as a pre-processing phase of data analysis and helped
us obtain better insights and robust decisions.

Broadly speaking, dimensionality reduction is consid-
ered as a method to remove redundant variables. This tech-
nique can be regarded as two distinctive approaches, i.e.,
feature extraction and feature selection. Feature extraction
refers to those techniques that project original variables to
a new latent space with lower dimensionality, while feature
selection methods aim to choose a subset of variables such
that a trained model minimizes redundancy and maximizes
relevance to the target feature. In this work, we deal with a
clustering problem and high-dimensionality issue; hence, a
feature extraction technique was used. Since interpreting as-
sociated patterns in feature extraction methods can be a sub-
jective process, different tests were implemented to deal with
related issues such as readability and interpretability. PCA
is a classic approach to dimensionality reduction (feature ex-
traction) and has been implemented in various research stud-
ies. However, it suffers from a global linearity issue. Thus,
to address this concern, a nonlinear technique (i.e., kernel
PCA [21]) was used in this work.

Then, the extracted features from the census data were
fed into a clustering model, and different clusters were iden-
tified. The goal in this phase is to cluster EDs (including
various demographic variables) such that similarities among
them within each group are maximized. The model is based
on an advanced spatial clustering technique and can deal
with non-linear relationships between features of a high di-
mensional data set. To do so, we implemented an unsu-
pervised approach based on an Artificial Neural Network
(ANN) that can properly transform geo-referenced data into
information. The main property of ANNs is their ability to
learn and model nonlinear and complex relationships. The
model employ a competition-based learning mechanism to
generate insights from unlabelled data. It leverages a multi-
layer clustering approach, i.e., a self-organizing neural net-
work [8, 45], to transform a complex high-dimensional in-
put space into low dimensional output space while preserv-
ing the topology of the data. Given a set of EDs, the model
groups together different spatial objects that are similar with
other (i.e., the distance among observations is minimized in
a given cluster). Different validity measures were also ap-
plied and the results are illustrated. For visualization, we
use the shapefile of Dublin. Fig. 1 demonstrates the Dublin
shapefile, including different districts.

The contributions of this work are as follows:

1. The link between the number of confirmedCovid cases
and socio-economic determinants at Electoral Divi-
sion level in Dublin, Ireland is analyzed based on an
AI-based spatial clustering method.

2. A topology-preserving model is implemented to ex-
plore nonlinear relationship amongElectoral Divisions
given the census data to characterize the spatial distri-
bution of city dwellers.

Figure 1: Dublin shapefile including different polygons of the
administrative boundary and attributes of geographic features.

The remainder of this paper is organized as follows: some
related work on application of machine learning and arti-
ficial intelligence to deal with concerns related to the pan-
demic is described in Section 2; data pre-processing oper-
ations including feature extraction is explained in Section
3; the proposed approach with its associated discussions is
presented in Section 4; Section 5 shows the experimental
settings and the clustering results; and the future work and
conclusions are presented in Section 6.

2. Related Work
Due to the global spread of coronavirus, many researchers

across the world are working to understand the underlying
patterns of the pandemic from different perspectives. They
are looking for effective ways to manage the flow of peo-
ple and prevent new viral infections. As expected, numer-
ous research has been undertaken as to medical concerns
(e.g., diagnosis and treatment of the disease like lung dis-
ease, lung nodules, chronic inflammation, chronic obstruc-
tive pulmonary diseases) to ensure all required measures are
in place. Different strategies, such as chest computed to-
mography imaging [44] and polymerase chain reaction [19],
have been discussed for detecting and classifying COVID-19
infections. Artificial Intelligence (AI) approaches have also
been used in the field of medical data analysis [4], and dif-
ferent algorithms have been implemented for such analysis
and patients’ classification. Different neural network tech-
niques have been utilized for diagnosis based on identified
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clinical characteristics such as cough, fever, sputum devel-
opment, and pleuritic chest pain [22, 26]. Various impacts
of the pandemic on urban areas have also attracted the at-
tention of researchers. In [2], the authors have introduced
a novel method to identify regions with high human den-
sity and mobility, which are at risk for spreading COVID-19
by exploiting cellular-network functionalities. In doing so,
they have used the frequency of handover and cell selection
events to identify the density of congestion. Several visu-
alization techniques like Class Activation Mapping (CAM)
[39], Class-specific Saliency Map, and Gradient-weighted
Class Activation Mapping (Grad-CAM) [18] has been used
to generate localization heatmaps in order to highlight cru-
cial areas that are closely associatedwith the pandemic. Rus-
tam et al., have implemented four Machine Learning mod-
els, such as linear regression, least absolute shrinkage, and
selection operator, support vector machine, and exponential
smoothing to understand the threatening factors of COVID-
19 [29]. Different features, such as the number of newly in-
fected cases, the number of deaths, and the number of recov-
eries have been taken into account in their model.

Network analysis, as a set of integrated techniques, can
be used to provide direct visualization of the pandemic risk.
By illustrating the degree of similarity among various ar-
eas given confirmed cases, So et al. have demonstrated that
network analysis can provide a relatively simple yet power-
ful way to estimate the pandemic risk [36]. Such analysis
can also supplement traditional modelling techniques to im-
prove global control and prevention of the disease and pro-
vide more timely evidence to inform decision-making in cri-
sis zones. In [24], the authors have presented a methodology
to identify spreaders using the analysis of the relationship be-
tween socio-cultural and economic characteristics with the
number of infections and deaths caused by the virus in dif-
ferent countries. The authors have explored the effect of so-
cioeconomics, population, gross domestic product, health,
and air connections by solving a vertex separator problem in
multiplex complex networks.

Targeting policy responses to crises such as the current
pandemic and interventions exclusively on people who live
in deprived areas requires insights such as which clusters in
society are most affected. In this work, we explore demo-
graphic and socioeconomic factors and investigate the role
of socioeconomic factors in the spread of COVID-19. Our
aim is to analyze underlying features obtained from census
data and describe such demographic information concerning
the geolocation of patients. We study the link of the pan-
demic with such factors. Fig. 2 illustrates different phases
of the proposed model.

3. Data Processing
Geodemographic is referred to as the study of spatial pat-

terns and socio-economic characteristics of different areas.
Associated demographic databases, such as census data, can
be used to understand population diversity better since they
include characteristics of a country’s inhabitants. Generally

Figure 2: Different phases of the analysis model used in this
work.

speaking, Spatio-temporal datasets can be divided into dif-
ferent categories, such as geo-referenced data points, geo-
referenced time series, moving objects, and trajectories. The
estimation of a region’s population has been a critical appli-
cation of geospatial science in demography. In this sense,
geodemographic clustering can be considered as a tool to
understand spatially dependent datasets. This kind of clus-
tering is unsupervised learning that groups spatial data into
meaningful clusters based on similarities among various ar-
eas. The learning procedure is correlated to the tendency of
people to associate themselves with others who have com-
mon characteristics. Census data can be considered as a
reference for overall population estimation. It includes in-
formation about individuals who have been counted within
households in different regions. Such data sets have some
special characteristics such as geospatial features. They con-
sist of measurements or observations taken at specific loca-
tions, referenced by latitude and longitude coordinates and/or
associated within specific regions (in this work Electoral Di-
visions). Census data for the population living in the Repub-
lic of Ireland are available at a different level, i.e., Small Area
and Electoral Division (ED), from a survey taken in 2016.
However, since the number of confirmed cases are available
at EDs, the census data at such administrative areas were in-
corporated.

3.1. Dataset
Demographic information is available at the local popu-

lation level via censuses carried out by countries. In Ireland,
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a census is conducted at five-year periods by the government,
with the most recent census prior to this work occurring in
2016. The census of Ireland is disseminated by the Cen-
tral Statistics Office (CSO) and provides a vast amount of
information. Spatial data like a census typically involves a
large number of observations, meaning analysis of this na-
ture tends to involve complex multivariate analysis and ma-
chine learning methods [17, 16, 15]. There are 322 EDs
in Dublin, and the census consists of 764 features (relat-
ing to, for example, age, household size, marriage status,
and education levels etc.) for each of 322 EDs. The cen-
sus reports the features as a count of people. We converted
these features to percentages of the population within each
ED. Some sample records are presented in Table 1. The
number of Covid cases are also aggregated in this Table.
There are no missing values or outliers in the census data.
The dataset were normalized; the variables were scaled and
transformed so that they each make an approximately equal
contribution to the results. For example, there are about
100 variables relating to age information in the raw cen-
sus data that they are summarized into percentages of dif-
ferent age bands; and there are about 40 variables relating
to education levels that are converted to percentages of peo-
ple holding a third-level higher education degree and above
for each area. Take some variables demonstrated in Table 1
as an example. The variables T1-1AGE0M, T1-1AGE1M,
T1-1AGE2M, T1-1AGE3M, and T1-1AGE4M, which refer
to the number of people in different age bands (infants to
four years old) have been merged, and a new feature Age0-
4 has been created. In total, we extracted 53 variables that
are synthesized from the census data, and a subset of these
variables is presented in Table 2. For the sake of brevity,
not all summarized census variables are presented and dis-
cussed in detail. All the features created in this phase are
used in a dimensionality reduction phase to be explained
later. It should be mentioned that spatial features cannot be
illustrated or modelled in a simple way due to their complex
characteristics, e.g., size, boundaries, direction and connec-
tivity. Hence, spatial analysis is more sophisticated than re-
lational data processing in terms of algorithmic efficiency
and the complexity of possible patterns because interrelated
information at a spatial scale has to be considered. There-
fore, spatial or geodemographic clustering is used for group-
ing and labelling geographical neighbourhoods in terms of
their social and economic characteristics. Such an approach
can be used to understand our spatially dependent data and
the potential underlying associations between this data and
confirmed number of Covid cases. Such applications allow
similarities between patient structures in different EDs to be
highlighted, geodemographically speaking.

Each observation (EDs consisting of demographic infor-
mation) can be defined as an m-tuple (m is the number of
features).

Let matrix X ∈ Rn×m as:

X =

⎡

⎢

⎢

⎢

⎣

X1
X2
⋮
Xn

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

x11 x12 ⋯ x1m
x21 x22 ⋯ x2m
⋮ ⋮ ⋱ ⋮
xn1 xn2 ⋯ xnm

⎤

⎥

⎥

⎥

⎦

(1)

where R is the real number set, Xi is the ith region and its
corresponding variables (m-tuple), and n is the number of
all areas. As stated earlier, we deal with high dimensional-
ity in this work. Such datasets can pose serious challenges,
such as model overfitting. The more the number of variables
increases, the more the chance of overfitting.

3.2. Dimensionality Reduction
Dimensionality reduction is the process of eliminating

redundant variables. To handle such concerns, different ap-
proaches have been considered in the literature. Generally
speaking, feature extraction and feature selection techniques
are applied to reduce data dimensionality. In the former ap-
proach, original features are mapped to a new feature space
with lower dimensionality. The latter refers to those meth-
ods that identify and select a subset of features such that
the trained model (based on the selected features) minimizes
redundancy and maximizes relevance to the target feature.
PCA is themost common dimensionality reduction approach;
however, the transformation applied is linear. But when data
follow a nonlinear structure, as in our case, approximating
the model by a linear method like PCAwill not perform well
on the original data. Likewise, Multidimensional Scaling
[30] and Independent Component Analysis (ICA) [11, 33]
suffer from the linearity issue. To address this shortcoming,
nonlinear techniques such as Kernel PCA, Laplacian Eigen-
maps [38], and Semidefinite Embedding [42] can be used.
The two first-mentioned methods have been applied in this
work. The result of the Kernel PCA is illustrated to save
space. We can define the variance-covariance matrix as

S = 1
n

n
∑

i=1
(Xi − X̄)T (Xi − X̄) (2)

The aim is to maximize the trace of the covariance ma-
trix (i.e.,A∗ = argmaxA tr(S)) given a weighted covariance
eigendecomposition approach [5], where A is a set of eigen-
vectors (unitary matrices that can represent rotations of the
space). A nonlinear transformation �(X) from the original
m-dimensional space has been considered, and the covari-
ance matrix of the projected features has been measure as

S = 1
n

n
∑

i=1
�(Xi)�(Xi)T (3)

The eigenvalues and eigenvectors are given by

S�k = ��k (4)
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Table 1
Some observations of the census data at electoral divisions level consisting of 764 variables.

GEOGID GEOGDESC T1-1AGE0M T1-1AGE1M T1-1AGE2M T1-1AGE3M T1-1AGE4M ... T15-3-N T15-3-NS Covid cases
E02008 Ayrfield 33 33 34 31 37 ... 341 43 133
E02012 Ballygall B 10 10 5 8 11 ... 266 27 109
E02022 Beaumont B 29 26 35 24 21 ... 270 38 75
E02006 Ashtown A 100 84 70 66 49 ... 626 111 99
E02093 Whitehall D 11 15 12 11 5 ... 258 16 150

Statistics

Features Mean Std deviation Median Absolute Deviation IQR Median

Percentage of population aged 0-4 7.298 2.168 1.425 [5.797, 8.638] 7.238
Percentage of population aged 5-14 14.053 3.379 1.964 [12.272, 16.228] 14.313
Percentage of population aged 65 and over 13.580 4.413 2.620 [10.721, 16.071] 13.243
Percentage of single population 56.157 4.881 2.432 [53.146, 58.103] 55.468
Percentage of house-share household 4.254 4.147 1.389 [3.112, 5.984] 4.347
Percentage with higher education degrees 20.471 9.131 4.292 [14.908, 23.724] 18.501
Percentage of professional social class 4.981 3.816 1.863 [2.511, 6.417] 4.098
Percentage of unemployed population 11.015 3.938 2.436 [8.241, 13.249] 10.526

Table 2
Summary information on a subset of summarized variables from the Irish census data across
all EDs

The eigenvectors have beenmeasured (�k =
∑n
i=1 aki�(Xi)),

where k is the new number of dimensions.

1
n

n
∑

i=1
�(Xi){�(Xi)T �k} = �k�k (5)

By substituting �k in above equation

1
n

n
∑

i=1
�(Xi)�(Xi)T

n
∑

j=1
aki�(Xj) = �k

n
∑

i=1
aki�(Xi) (6)

The kernel function (Ψ(Xi, Xj) = �(Xi)T�(Xj)) is, then,
multiply both sides of Eq. 6 and the kernel principal com-

Figure 3: Result of the dimensinlity reduction phase implemented for feature extraction based on Kernel PCA.
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ponents can be calculated as:

�(X)T �k =
n
∑

i=1
akiΨ(X,Xi) (7)

It should be mentioned that we have constructed the kernel
matrix from the census data. To that end, a Gaussian ker-
nel (Ψ(Xi, Xj) = exp(−||Xi − Xj||

2∕2�2)) has been used,
where c is a constant. Given the measured variance for each
feature, the associated weight can be measured

�2X =
∑n
i=1 !

2
i (Xi −X)2

∑n
i=1 !

2
i

(8)

We have also examined the relevance of all features using
the coefficient of determination. In doing so, the proportion
of the variances have been tested. A supervised learner has
been used, and iteratively one feature of the dataset has been
considered as the dependent variable and others as the in-
dependent variables. The Hopkins statistic, which is a way
of measuring the clustering tendency of a data set, has been
calculated for both scenarios with the value of 0.59 before
dimensionality reduction and 0.67 after that phase. A value
close to 1 indicates that the data is highly clustered. Fig. 3 il-
lustrates the result of the dimensionality reduction given the
Kernel PCA approach. Given the fraction of variances mea-
sured in this phase and also given all the weights associated
to each feature, 21 features, such as percentage of popula-
tion aged 65 and over, percentage of house-share household,
and percentage of the unemployed population, have been se-
lected. All these features have been integrated with two ad-
ditional variables, i.e., the population of each ED and the
number of confirmed covid cases in each of those areas. The
final dataset is then used in the second phase (i.e., clustering)
of the model.

4. Clustering Approach
After performing all the data preprocessing operations

explained above, a clustering method can be implemented to
find underlying patterns. Due to characteristics of this work,
i.e., non-linear dynamics, an unsupervised learning mecha-
nism based on a vector quantization technique [43] has been
considered. It should be mentioned that most neural net-
work approaches operate based on the non-linear optimiza-
tion of a criterion, which may result in the local minimum
issue and/or the convergence may take a long time. It has
been discussed that self-organizing maps are less sensitive to
such concerns. This approach is motivated by retina-cortex
mapping and considered as an optimal technique for vector
quantization problems. The topographic mechanism used in
this method can enable us to study relationships among spa-
tial and non-spatial features and identify associated patterns.
The model is self-organized and operates based on learning
rules and neuron interactions. The learning process is based
on cooperation and competition among neurons. Moreover,

neurons maintain proximity relationships during the learn-
ing process. The idea is to quantize the input space into
a finite number of vectors. All observations in the input
space (census vectors, together with the number of Covid
cases in each spatial area) are projected to post-synaptic neu-
rons in the latent space. The implemented model can trans-
form all the census features in the input space into a low-
dimensional discrete output space while preserving the rela-
tionships among variables. To do so, all vectors are mapped
to neurons based on synaptic connections, each of which is
assigned with weights. These weights are updated such that
adjacent neurons on the lattice have similar values. The clus-
tering procedures consists of different phases, i.e., competi-
tion, collaboration, and weight updating.

In the competition phase of the algorithm, a predefined
number of neurons are initialized by randomly setting their
weights using census features. Neurons compete for each in-
put vector’s ownership, and the most similar neuron (given
the distance measure between an ED object together with all
relevant features and all neurons) to a given observation is
detected. The winning neuron is called the Best Matching
Unit (BMU). There are different distance measures to find
the similarity between neurons and an input vector, such as
the Euclidian distance, Correlation tests, and Cosine similar-
ity. However, the squared Euclidean distance is often used in
a real application. LetXi be the ith input vector (i.e., ith ED’s
features) and Wj the associated weights of the jth neuron.
Then, the distance matrix Dij =

1
n
∑n
i=1

∑k
j=1(Xi − Wj)2

can be defined as:

Dij =

⎡

⎢

⎢

⎢

⎣

d11 d12 d13 … d1k
d21 d22 d23 … d2k
⋮ ⋮ ⋮ ⋱ ⋮
dn1 dn2 dn3 … dnk

⎤

⎥

⎥

⎥

⎦

(9)

The BMU can be measured according to

Ψ = argmin
j

||Xi −Wj||2 (10)

In the collaboration phase, the adjacent neurons of a given
BMU are updated. The aim is to find out which of the non-
winning neurons are within the BMU’s neighbourhood de-
tected in the previous phase. To do so, the spatial loca-
tion of a topological neighbourhood of the excited neuron
is detected. Several neighbourhood functions can be used to
calculate the neighbourhood radius, i.e., Rectangular, Mex-
ican hat, and Gaussian functions. The latter (i.e., Gaussian
function) is the most commonly used one and has been uti-
lized in this work. The cooperative process in this phase
starts with defining an initial neighbourhood radius, which
shrinks throughout different iterations based on the neigh-
bourhood function. For each neuron j (Nj) in the neigh-
borhood of the ith winning neuron (Ni), the algorithm up-
dates all the weights associated with the jth neuron based on
a learning rate. It should be mentioned that the weights of
other neurons outside ofNi neighbourhood are not adjusted
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(in a given iteration). The procedure can be defined by the
function below:

�(�ij) = exp(−
�2ij
2�2

) (11)

where �(�ij) is the topological neighborhood value of the
ith winning neuron (Ni), �ij is a lateral distance (the dis-
tance between Ψi and its adjacent neurons Nj), and � is a
function of the number of iterations and starts with an ini-
tial value (�o). A decay function (− n

T ) is also employed,
�(n) = �o .exp(−

n
G ), where n is the number of iterations, and

G is a constant. By defining the distance function formulated
above, the neighbourhood territory for updating all adjacent
neurons is explored. Two different connections, i.e., short-
range excitatory connections and long-range inhibitory in-
terconnections, are used during the projection process. The
former is utilized at the presynaptic layer and the latter at the
postsynaptic one. The process can be expressed as:

)Yj(n)
)n

+ �Yj(n) =
∑

j
Wij(n)Xi(n) +

∑

k
�kY

∗
k (n) −

∑

k′
k′Y

∗
k′ (n)

where � is a constant, Wij(n) is the synaptic strength be-
tween input vectors at the presynaptic layer and neurons at
the postsynaptic layer, �k and k are connection weights at
the presynaptic and postsynaptic layers, respectively, and Y ∗
is an active neuron at the postsynaptic layer.

In the third phase, twomethods (i.e., Hebb’s rule [41, 23]
and Forgetting rule [6]) for adjusting weights of neurons are
considered. Based on the Hebb’s rule, the change of the
synaptic weight (ΔW ) is a function of relative neuron spike
timing and is proportional to the correlation between an in-
put (X) and an output (Y ) of a network, i.e.,

ΔW =
)Wij(n)
)t

= ΘYj(n)Xi(n) (12)

where Θ is the learning rate (0 < Θ < 1). A sigmoid func-
tion has been applied during the learning process on the out-
puts to make sure that they are not negative.

Yj(n + 1) = Φ
[

W T
j X(n) +

∑

j
�Yj(n)

]

(13)

whereΦmeans a sigmoid function. Since adopting Hebbe’s
rule for weight updating can make weights saturated, the
Forgetting rule (�Yj(n)Wij(n)) is also used in the model.
Given (12) and the Gaussian neighborhood function defined
by (11), let Θ = �, then

�Yj(n) = ΘYj(n) = Θ�(�ij)

we can formulate the synaptic learning rule as:

)Wij(n)
)t

= ΘYj(n)Xi(n) − �Yj(n)Wij(n)

= Θ
[

Xi(n) −Wij(n)
]

Yj(n)
(14)

With the above discussions, the weight updating process
can be defined as

Wj(n + 1) = Wj(n) + ΔWj

= Wj(n) + Θ(n)�(�ij)[X(n) −Wj(n)]
(15)

where Θ(n) is the learning rate for the nth iteration,Wj(t) is
the weight vector of the jth neuron, and � is a neighborhood
function. The learning rate is also a function of time and
decreases monotonically, i.e.,

Θ(n) = Θ0exp(
n
−G2

)

where Θ0 is an initial value, G is a constant, and n is the
number of iterations.

After the weights for all the input vectors are calculated,
both the learning rate and the radius are diminished. The
postsynaptic weights are adjusted to resemble the census fea-
tures and reflect its properties as closely as possible. To sum
up the procedures, the pseudo-code of the implemented Self-
organizing map is presented in Algorithm 1. The summary
of notations used is also given in Table 3. Two quantization
and organization criteria have been utilized to measure the
reliability of the model. Given such validity measures, the
sensitive parameters of the algorithm have been adjusted. A
discussion regarding the settings of the algorithm such as the
learning rate, the size of lattice (the number of neurons), and
level of similarities among neurons are presented next.

4.1. Algorithm Convergence and Parameter
Settings

The learning rate and the number of units needed should
be set in the algorithm, while the level of similarities among
units and the proper number of clusters are designated there-
after. Different techniques can be utilized to explore the
convergence of the algorithm, such as Quantisation Error
(QE) [10], Topographic Error, Weight-value Convergence,
and probabilistic models. It should be noted that there is no
exact cost function that a self-organizingmap (SOM) follows
precisely. As explained before, two criteria (i.e., QE and
topology preservation metric) have been taken into account
to ensure that the output of the model is reliable. The quanti-
zation metric was used to assess the required number of neu-
rons. The squared distance between an observation Xi and
its corresponding neuron was calculated. In other words, an
optimization problem was solved based on the similarity be-
tween vectors at presynaptic and postsynaptic layers. The ul-
timate synaptic weights of neurons were achieved after run-
ning Algorithm 1. The metric calculates the variance associ-
ated with neurons’ synaptic weights by measuring the aver-
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Algorithm 1: Pseudo-code for the SOM model
Input : X ← Census features, p← |X|, k← k0,

� ← �0, Θ← Θ0
{N1, N2,⋯ , Nk}: k neurons;
{lN1 , lN2 ,⋯ , lNk}: position set;
{wN1 , wN2 ,⋯ , wNk}: initial weights;

Output: neurons’ weight vectors
1 Set N = {N1, N2,⋯ , Nk} ;
2 for i← 1,⋯ , p do
3 �(i) = �0 . exp(−

i
T2
)

4 Θ(i) = Θ0 . exp(−
i
T2
)

5 Select the ith observation (ED) xi ∈ X;
6 Ψ = argmin

n∈N
||xi −wN ||2 ;

7 for j ← 1,⋯ , k do
8 � = ||lxj − lΨ||2;
9 if � < � then

10 wNj = wNj +Θ . �(�, �, n) . (xi −w
Nj );

11 end
12 end
13 end
14 Output the result.

Table 3
Summary of the notations

Symbol Meaning

X Census features
p = |X| The number of observations
k Size of the lattice
� The neighborhood parameter
Θ The learning rate
Ψ The lateral distance
� Best Matching Unit
lNi Position of the ith neuron on the lattice

age distance between each observation and its corresponding
BMU, i.e.,

QE =
1
p

p
∑

i=1
||Xi − Ψ(i)|| (16)

where p is the number of observations at the presynaptic
layer, summing all the errors can be expressed as:

Ω =
k
∑

i=1

∑

Xj∈V i
�2(Xj ,Ψi)

= argmin
Xj

�2(Xj ,Ψi)
(17)

where k is the size of the lattice (the number of neurons at the
postsynaptic layer) and V i is the Voronoi areas associated
with the ith BMU (Ψi). Therefore, by using such a metric
for determining the convergence of the algorithm, the proper

Figure 4: Comparing the Quantization Error given different
lattice size

number of neurons was detected. The learning rate of the
algorithm is a value between 0 and 1. Different initial values
for the learning rate of the algorithm were tested, and the
results are illustrated in Fig. 4. The initial learning rate has
been set to 0.57, and 270 neurons have been considered.

5. Results
5.1. Optimal Number of Clusters

Given the implemented model, the algorithm leads to
an organized representation of activation patterns and pro-
totypes that well represent the census features are obtained.
The next step is determining the level of similarity among
neurons. We have performed different validity measures to
divide neurons at the postsynaptic layer into clusters where
inter-cluster similarities are minimized while the intraclus-
ter similarities are maximized. Let C = {C1, C2, ..., Cm} be
a set m clusters’ centroids,N = (N1, N2,… , Nk) be k neu-
rons at the postsynaptic layer and '(xi, xj) be the similarity
measure between two EDs xi and xj . |Ni|

{m} is the number
of neurons in the mth cluster. The first validity measure used
in this work, Davies-Bouldin index (DBI), operates based on
the inter-cluster and intra-cluster variance. The similarities
among all ED’s features projected into neurons are consid-
ered. Let denote the mean distance of all neurons belonging
to cluster Cm to their centroid as:

�m =
1

|N|

{m}

∑

Ni∈Cl{m}
||N{m}

i − Cm|| (18)

Let Δij be the distance between two centroids (Ci and
Cj). The Davies-Bouldin index can be formulated as:

DBI(p) = 1
p

p
∑

i=1
max(

�i + �j
Δij

) (19)

The number of clusters, i.e., p in (19) which minimizes the
index can be considered as an optimal value.
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Table 4
Two validity measures tested for selecting an appropriate num-
ber of clusters.

Number of clusters Silhouette index Davies-Bouldin index
3 0.4212 0.1721
4 0.4961 0.1281
5 0.5007 0.0998

6 0.6741 0.0954
7 0.8311 0.0704
8 0.8019 0.0731
9 0.7702 0.0782

For the second validity metric (i.e., Silhouette index), the
within-cluster distance (Eq. 20), the mean distance among
neurons in each cluster (Cli), and the intra-cluster similarity
(Eq. 21) between the cluster to which Ni belongs and its
nearest cluster are calculated.

�(i) = 1
|N|

{m} − 1

∑

Ni,Nj∈Cl{m}
d(Ni, Nj) (20)

Λ(Ni, Cp) =
1

|N|

{p}

∑

Nj∈Cl{p}
d(Ni, Nj) (21)

The smallest intra-cluster distance is then calculated, �(i) =
argmin
m≠p

Λ(Ni, Cp). The Silhouette index (Š) for each neuron

(Ni) at the postsynaptic layer can be defined as

Š =
�(i) − �(i)

max(�(i), �(i))
(22)

The mean of the index defined above for a given cluster is
then calculated. Silhouette values fall between−1 and 1, and
a value close to 1 indicates that the corresponding number
of clusters is optimal. Considering the DBI measure, the av-
erage distance among clusters should be minimized. Hence,
the minimum values for this validity index are considered.
According to the results achieved from the validity measures
presented in Table 4, we choose seven as the optimal number
of clusters. The results achieved in this work show that the
algorithm converges appropriately, and the generated neu-
ral network units have been decently grouped into super-
clusters. Finally, the results of the clustering method are
illustrated in Fig. 5.

We have aggregated the number of confirmed COVID
cases in each Electoral Division given the identified clusters,
and the results are demonstrated in Table 5. As shown, the
number of confirmedCOVID cases in Clusters 5, 6, and 7 are
higher comparing with others. Given the result of the clus-
tering model and the visualizations in Fig. 5, we can identify
different characteristics of each cluster. The detailed features
are presented in Table 6. We have found that those clusters
with a high number of cases have the lowest proportions of
the population with age over 65, high percentage of employ-
ment, high percentage of private rent, and high percentage

Figure 5: Clustering result of the implemented method for
Electoral Divisions based on the census data, in which 7 clus-
ters are detected; due to the fact that the small areas are dense
in the city centre area.

Clusters Number of cases Population Cases/Pop

Cluster 1 788 97,014 0.0081
Cluster 2 1034 157,018 0.0065
Cluster 3 901 129,784 0.0069
Cluster 4 1077 180,540 0.0059
Cluster 5 2540 271,128 0.0093
Cluster 6 1824 171,103 0.0106
Cluster 7 3635 350,772 0.0103

Table 5
The number of confirmed Covid cases across seven clusters;
the corresponding values of the cases/population metric for
clusters 5, 6, and 7 are higher than those of others.

of the population aged 25-44 (young professionals). At the
same time, they have the highest proportion of house shares.
The boxplots illustrated in Fig. 6 correspond to the cluster
characteristics in the seven detected clusters.

6. Conclusions and Future Work
In this work, we have proposed amultiple-level approach

to study the association between geodemographic clustering
and the number of confirmed Covid cases in Dublin, Ireland.
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Clusters Some characteristics of three clusters with high number of cases

Cluster 5 ∙ High percentage of house share ∙ High number of couples with no child ∙ High proportion of aged 25-44
Cluster 6 ∙ High percentage of house share ∙ High proportion of dink family ∙ High employment rate
Cluster 7 ∙ High percentage of house share ∙ High employment rate ∙ High proportion of aged 0-14

Table 6
Some characteristics of clusters

Figure 6: Boxplots of census data on percentage of different variables given 7 detected clusters.

This work suggests that by incorporating and clustering the
publicly available census data, we can obtain valuable in-
sights regarding the spatial variations of people who have
contracted the virus. The proposed method includes vari-
ous phases. As the census data used in this work consists
of numerous features, and such characteristics can make a
predictivemodelling task challenging, a feature selection ap-

proach has been implemented based on a non-linear method.
Different tests have also been applied to make sure the most
relevant features are selected. Then, an advanced geodemo-
graphic clustering algorithm was implemented based on a
self-organizing feature map to extract clusters given the se-
lected features. The quality of the generated map was ana-
lyzed. It should be noted that there is no universal definition

M. Ghahramani et al.: Preprint submitted to Elsevier Page 10 of 12



Leveraging Artificial Intelligence to Analyze the COVID-19 Distribution Pattern based on Socio-economic Determinants

of what is good clustering, and this notion is relative. As
discussed throughout the paper, an SOM was considered in
this work due to the inherent non-linear characteristics of the
spatial dataset. Different validity measures were employed
to make sure the results of the method used are reliable. We
demonstrated that the algorithm has converged properly.

According to the analysis, we have detected seven clus-
ters based on the census data and the spatial distribution
of the people were explored using the unsupervised neural
network method. The distribution of people who have con-
tracted the virus was studied. The use of the proposed geode-
mographic approach incorporating spatial data of a geode-
mographic nature means that clusters can be interpreted in
terms of real-life infected people attributes.
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