
ar
X

iv
:2

10
2.

07
56

6v
3 

 [
q-

bi
o.

PE
] 

 1
9 

Fe
b 

20
21

A stochastic SIR model for the analysis of the COVID-19 Italian

epidemic

A. Bodini, S. Pasquali, A. Pievatolo, F. Ruggeri

CNR IMATI “E. Magenes”, Milano, Italy

Abstract

We propose a stochastic SIR model, specified as a system of stochastic differential equations, to

analyse the data of the Italian COVID-19 epidemic, taking also into account the under-detection

of infected and recovered individuals in the population. We find that a correct assessment of the

amount of under-detection is important to obtain reliable estimates of the critical model parameters.

Moreover, a single SIR model over the whole epidemic period is unable to correctly describe the

behaviour of the pandemic. Then, the adaptation of the model in every time-interval between

relevant government decrees that implement contagion mitigation measures, provides short-term

predictions and a continuously updated assessment of the basic reproduction number.

Keywords: susceptible-infected-removed; basic reproduction number; state-space SDE; under-detection;

identifiability; particle filtering

1 Introduction

In this work we apply a stochastic version of the well-known SIR (with the three Susceptible, Infective

and Removed compartments) epidemic model to the Italian COVID-19 data. The SIR model has been

introduced about ten years after the 1918 influenza pandemic, also known as Spanish flu ([24]), and

is still popular as a simple tool to approximate disease behaviour ([34]). Numerous extensions such as

the simpler SEIR and SIRD models or the more complex SIDARTHE ([19]) have been subsequently

developed to make more reliable assumptions on the epidemic dynamic. To recognize the role of

heterogenous contact networks in the transmission dynamics of infectious diseases, an extended SIR

model with seven compartments has been developed on the nodes of a network where each node

accounts for the mean number of contacts in a typical day, [41]. For the outbreak of COVID-19,

alternative models have been introduced ranging from elementary models ([36]) to very complex ones

including spatial and temporal variations (e.g. [1], [2], [38], [37]). However, as a parsimonious model
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able to allowing the measurement and forecast of the impact of non-pharmacological interventions like

social distancing, the SIR model still preserves a primary role in the analysis of the early phase of

COVID-19 outbreak ([3],[8]). In [12] for instance, the SIR model is combined with Bayesian parameter

inference and the effects of governmental interventions in Germany are modelled as flexible change

points in the spreading rate. A SIR model with time-dependent infectivity and recovery rate which are

estimated by solving an inverse problem is considered in [27]. A hierarchical epidemiological model in

which two observed time series of daily proportions of infected and removed cases are emitted from the

underlying infection dynamics governed by a Markov SIR infectious disease process is proposed in [39].

By introducing a time–varying transmission rate, the Authors cover the effects of different intervention

measures in dissimilar periods in Italy. In [10] it is assumed that the susceptible population is a variable

that can be adjusted to account for new infected individuals spreading throughout a community. With

a similar aim, [7] include among the parameters of a SIRD model the initial number of susceptible

individuals as well as the proportionality factor relating the detected number of positives with the

actual (and unknown) number of infected individuals. An alternative way to account for possible

random errors in reporting is proposed in [20] as well.

As mentioned before, several compartments may be added to the SIR model but, in previous work

([4]) it was shown that while the parameters of the SIR model can be uniquely determined from

the time evolution of the normalized curve of removed individuals, the same does not hold for more

complex models. Thus, the SEIR and other models should not be used in the absence of additional

information that might be obtained from clinical studies. In the present work, since we assume no

clinical information, we will use the SIR model. In particular, we introduce a stochastic SIR model to

describe the dynamics of the infection, coupled with an observation equation that relates the actual

numbers of infected and removed to the observed ones. There are two sources of randomness: the first

in the SIR model, introduced through uncertainty in the infection and recovery rate parameters, such

that they depend on time; the second in the observation equation, where a random under-reporting

error is assumed. This model is amenable to sequential updating of parameters and forecasting, a

useful feature when data come in on a daily basis. The updating method is a particle filter with

parameter learning [14] for the fraction of individuals in each compartment.

The article has two objectives: on the one side, the exploration of the suitability of a SIR model,

while, on the other, it provides some results on the epidemic in Italy. The first finding is that a

single SIR model is unable to capture the dynamics of the entire development of the COVID-19

epidemic, because of the numerous policy adjustments by health authorities and different government

interventions that took place during the emergency. Hence we fitted one SIR model to each phase

between selected government interventions, obtaining a good fit to the data. Notwithstanding, the

predictive capability of this model remains very limited. The second finding is that it is very important
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to use the correct probability distribution for the observation error: failure to do so may produce

parameter estimates that seemingly provide a good fit to the data but do not correctly describe the

true underlying dynamics.

The article is organised as follows. In Section 2 we introduce the stochastic SIR model and

in Section 3 we present a discretised state-space version and the observation equation, where the

state is the fraction of susceptible, infected and removed individuals. A Rao-Blackwellised particle

filter (RBPF) algorithm for state filtering, state prediction and parameter learning is illustrated in

Appendix A, [14]. In Section 4 we study the filtering and prediction problem on data simulated from

our model with the help of graphical displays addressing the following: the accuracy and the precision

of both parameter estimation and filtering and the accuracy of the forecast (Sections 4.1 and 4.2); the

problem of the simultaneous identifiability of the parameters in both the SIR model and the observation

error distribution (Section 4.3). In Section 5 we apply our method to the Italian data of both the first

and the second infection wave, obtaining a good fit, as stated above, but a forecast that may be valid

only in the short term. In the same section we briefly compare the performance of a deterministic SIR

model to our stochastic SIR model, showing that the latter is superior. We also consider the problem

of assigning the correct observation error distribution using available information on the Infection

Fatality Rate and compare the level of the filtered state to the result of a sample serological survey

carried out by Istat (Italian national statistical office) and the Italian Health Ministry between May

and July 2020. This comparison indicates that our model, if correctly calibrated, provides a realistic

assessment of the state of the epidemics. A section with some final remarks concludes the article.

2 SIR model

Consider a population and denote by St the fraction of susceptible individuals at time t, by It the

fraction of infected individuals and by Rt the fraction of recovered individuals (survivors and dead).

We suppose that the population is closed, then for every time t

St + It +Rt = 1.

The deterministic SIR model can be written


























dSt

dt = −βItSt

dIt
dt = βItSt − γIt

dRt

dt = γIt

(1)

where β is the disease transmission rate, that is, the fraction of all contacts, between infected and

susceptible people, that become infectious per unit of time and per individual in the population, and γ
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is the removal rate. The reciprocal of γ is the duration of infection. The parameters β and γ allow to

approximate the basic reproduction number (or ratio, also called basic reproductive number or ratio)

that can be thought of as the expected number of infected people generated by an infected individual

in a population where all individuals are susceptible to infection. Despite its conceptual simplicity, R0

is usually estimated with complex mathematical models developed using various sets of assumptions

([13]). In the above SIR model it holds

R0 =
β

γ
,

where parameters β and γ are unknown and have to be estimated. We suppose that they are subject

to uncertainty and change in time as follows:

βt = β0 + σw
(1)
t γt = γ0 + ηw

(2)
t (2)

with w
(1)
t and w

(2)
t independent Wiener noises, that is, βt is supposed normally distributed with mean

β0 and variance σ2t and γt is normally distributed with mean γ0 and variance η2t. For alternative ways

to introduce stochasticity, see [17]. The parameters σ and η measuring the noise intensity are assumed

known and sufficiently small to obtain positive βt and γt with probability approximately equal to one.

Substituting the expression (2) for β and γ in system (1), we obtain the following stochastic SIR

model:


















dSt = −β0ItStdt− σItStdw
(1)
t

dIt = (β0ItSt − γ0It) dt+ σItStdw
(1)
t − ηItdw

(2)
t

dRt = γ0Itdt+ ηItdw
(2)
t

(3)

Unfortunately, the introduction of the noise in the parameters β and γ no longer grants the

condition St+ It+Rt = 1. We can enforce it by substituting St by 1− It−Rt in the second and third

equations and removing the first equation to obtain the reduced system






dIt = (β0It(1− It −Rt)− γ0It) dt+ σIt(1− It −Rt)dw
(1)
t − ηItdw

(2)
t

dRt = γ0Itdt+ ηItdw
(2)
t

(4)

Denoting by Xt = (It, Rt)
T the state vector, by Wt =

(

w
(1)
t , w

(2)
t

)T
the vector of independent Wiener

processes and by θ0 = (β0, γ0)
T the parameter vector, we can rewrite system (4) in vectorial form:

dXt = h (Xt) θ0dt+ g (Xt) dWt (5)

where

h (Xt) =





It(1− It −Rt) −It

0 It



 ; g (Xt) =





σIt(1− It −Rt) −ηIt

0 ηIt



 . (6)

We called Xt the state of the system, which for COVID-19 is unobservable, and introduce Yt to denote

what can be actually observed, in accordance with the terminology derived from state-space modelling.

The vector Yt is characterised in the following section.
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3 Parameter estimation, filtering, forecasting, and goodness-of-fit

To estimate parameter θ0 we propose a Rao-Blackwellized particle filter (RBPF) algorithm based on

the Euler discretization of the stochastic system (5):

Xt+1 = Xt + h(Xt)θ0∆t+ g(Xt)∆Wt, t = 0, 1, 2, . . . (7)

where we also use t for discrete time to save notation. The method is described in Appendix A. This

algorithm allows to jointly calculate, at each time step, the estimated parameter and the state of the

system using a noisy observation of the state as input. It is widely recognised that in this pandemic

collected data on infected and removed suffer of under–diagnosis and under–detection, ([40]) that is, the

observations are subject to an observation error. We suppose that each component of the observation

vector Yt+1 is given by the product of the corresponding component of Xt+1 and a random variable:





Yt,1

Yt,2



 =





Ut,1Xt,1

Ut,2Xt,2



 (8)

where Ut,1 and Ut,2 are independent beta distributed random variables with shape parameters a and

b. (In the following, by U , Y and X with no subscript we mean scalar random variables distributed as

Ut,i, Yt,i, and Xt,i, respectively, i = 1, 2). The observation error in SIR models has been considered by

other authors using different formulations (see, for example, [33]). Finally, we assume that the initial

distribution of θ0 is Gaussian with mean µ0 and covariance matrix Σ0.

The model can also be used to predict the future behaviour of the epidemic. Let y1:t be the time

series of observations up to time t; for a fixed initial state x0, the RBPF algorithm provides a sample

x
(i)
0:t, i = 1, . . . ,M , to approximate the posterior distribution of the state p(x0:t|y1:t). Furthermore,

the conditional distributions of θ0 given x0:t, p(θ0|x0:t), is Gaussian with mean µt = E(θ0|x0:t) and

covariance matrix Σt = Cov(θ0|x0:t). The RBPF algorithm produces a sample (µ
(i)
t ,Σ

(i)
t ) of conditional

mean vectors and covariance matrices given x
(i)
0:t. To forecast Xt+k given y1:t, we aim at computing

E(Xt+k|y1:t). If we fix θ0 and x0:t, and run model (7) for k time steps, we obtain a value for Xt+k as

a function fk(x0:t, θ0, ξ), in which ξ indicates the sequence of increments ∆Ws, s = t + 1, . . . , t + k.

Using fk(x0:t, θ0, ξ), the conditional expectation is

E(Xt+k|y1:t) =

∫

fk(x0:t, θ0, ξ)p(ξ)p(θ0|x0:t)p(x0:t|y1:t) dξdθ0dx0:t (9)

where conditional independence of θ0 on y1:t given x0:t allows for substitution of p(θ0|x0:t, y1:t) by

p(θ0|x0:t). Then, if for each i we draw θ
(i)
0 from p(θ0|x

(i)
0:t) and ξ(i) from the distribution of the Wiener

process increment, the predictive expectation of Xt+k is approximated by

E(Xt+k|y1:t) ≃
1

M

M
∑

i=1

fk(x
(i)
0:t, θ

(i)
0 , ξ(i)) . (10)
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To visualize how well the SIR model fits the observations, we need a way to compare the simulated

trajectories with the observed data. We have supposed that the observations are smaller than the

true value of the state X, therefore we have to scale them by a factor that makes them comparable

to the filtered state. A scaling factor is suggested by building a prediction interval of the state X at

each observation time. Note that from (8) the random variable Y/X is a pivotal quantity with beta

distribution and we may state that

1− q = P

(

u q

2

≤
Y

X
≤ u1− q

2

)

= P

(

Y

u1− q

2

≤ X ≤
Y

u q

2

)

(11)

where u q

2

and u1− q

2

are the q
2 and the 1 − q

2 percentiles of the beta distribution of U . Then, the

corresponding prediction interval for X, after observing y, is
(

y

u1− q

2

,
y

u q

2

)

(12)

and a natural scaling factor for a point prediction of X is the median of U , producing y/u0.5. The

feature of (12) is that it does not depend on the SIR modelling assumption, but only on the observation

error assumption, therefore it offers a way to see how well the SIR dynamic follows the (transformed)

data.

4 Numerical simulations

4.1 Data generated from the model

To check the convergence of the method we fix a parameter value and simulate the observations (or

data).

We start from an initial condition of 1% infected and 0.1% removed. We simulate data for the

parameters β0 = 0.3 and γ0 = 0.1. The parameters σ and η in (2) are 0.03 and 0.01, respectively.

We run model (4) with an underlying time step of 1/24 day to generate 67 daily step states. The

first 60 states will be used for the estimation procedure and the other 7 to check the goodness of the

forecast. Then, we use equation (8) with a = 10 and b = 40 for the beta distribution of the observation

error. This distribution is reported in the left panel of Figure 1 and the simulated observations are in

the right panel of Figure 1.

We apply the RBPF algorithm described in Appendix A with 200,000 particles and with a time

step of 1/24 day. Since we have a single observation for each day, to run the algorithm we have

to impute new hourly observations by means of a linear interpolation between two consecutive daily

observations. The imputed observations are no longer indipendently distributed conditionally on the

states, however this approximate procedure keeps the effective sample size of the RBPF algorithm at

large values with no appreciable difference on the results.
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Figure 1: Left panel: beta distribution with parameters a = 10 and b = 40 for the observation error

terms Ut,1 and Ut,2 in (8). Right panel: data generated by (8) from state trajectories generated by

(4).

The initial guess for the parameter θ0 = (β0, γ0)
T is µ0 = (0.5, 0.5)T and the prior covariance

matrix Σ0 = diag(0.05, 0.02). The mean trajectories of infected and removed people over all the

particles obtained running the RBPF algorithm are represented with continuous lines in the left panel

of Figure 2 where the circles represent simulated states before the introduction of the observation

error. Susceptibles are obtained as St = 1− It − Rt and then the goodness of fit is a consequence of

the fit for the other two compartments.

We denote the estimates of β0 and γ0 with information up to time t by β̂t and γ̂t, see (A-5). Their

time behaviour is shown in the left panel of Figure 3. The behaviour of R̂0(t), the estimated basic

reproduction number (A-6), is displayed in the right panel of Figure 3.

We denote the filtered or forecasted state as Ît and R̂t, where the value of t determines whether

we are filtering or forecasting, that is, if our observation period ends at time s, then when t > s, Ît

and R̂t are forecasts; otherwise they are filtered states. From the RBPF we get the filtered states

and, using (10), we get a forecast of the dynamics. Ît and R̂t are compared to the true state in the

left panel of Figure 2, where we see that both the fit up to day 60 and the forecast on days 61-67 are

satisfactory. In particular, the forecast well represents the trend of the state.

In reality the true states are unobserved, and we can only compare the filtered states to the

observations, by taking under-detection into account. Therefore, we compute daily prediction intervals

for infected It and removed Rt, as in (12) with q = 0.025. In Figure 4 the prediction intervals

are represented by vertical lines, while the thin continuous lines represent the ratio between the

observations and the median of the distribution of the observation error (which we may call the

adjusted observations). The width of the prediction intervals reflects the dispersion of the observation
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Figure 2: Application of the RBPF algorithm. Left panel: trajectories of infected (red line) and

removed (green line). Circles represent the true state. The dynamics up to day 60 are the filtered

states, while the dynamics from day 61 to day 67 are forecasts. Right panel: posterior distributions

for the parameters β0 and γ0 at time 60.
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Figure 3: Left panel: behaviour of β̂t (blue) and γ̂t (red) obtained from (A-5). Right panel: behaviour

of R̂0(t) obtained from (A-6) (blue line) and value of true R0 = β0/γ0 = 0.3/0.1 (red line).
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Figure 4: True states (circles), filtered state and forecast (thick lines) and adjusted observations (thin

line) with 95% prediction intervals (12). The thick lines up to day 60 are the filtered states, while

those from day 61 to day 67 are forecasts. The thin lines are the observations divided by u0.5, the

median of the observation error distribution.

error distribution in the left panel of Figure 1, for which q0.025 = 0.10 and q0.975 = 0.32. The simulated

dynamics (the true states) are inside the intervals and cross the adjusted observations, then, if the

adjusted observations and the filtered state agree with each other, this is a necessary condition for the

filtered state to follow the true state.

4.2 Assessment of sample variability

In this section we analyze the variability of the filtered states and of the estimated parameters due

to the variability of the data generated from the system (4), in order to get an impression of how far

they can get from the true values, even if the true random under-reporting error distribution is used.

We use the same parameters of Section 4.1, that is, (β0, γ0) = (0.3, 0.1), σ = 0.01, η = 0.03, initial

values µ0 = (0.5, 0.5)T and Σ0 = diag(0.05, 0.02) and initial state X0 = (1%, 0.1%).

We generate 500 dynamics from the system (4), from which we obtain 500 trajectories of observed

infected and removed people. Then, we run the RBPF algorithm on every simulated dataset, with a

time step of 1/24 day and for 200,000 particles. For every simulations we compute the trajectories

Ît/It and R̂t/Rt, where we recall that Ît and R̂t are the estimated infected and removed individuals

filtered by the RBPF algorithm, while It and Rt are the true states for the corresponding simulation.

For the sake of a clear representation, in Figure 5 we show one every five trajectories of Ît/It (left
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Figure 5: Left panel: behaviour of Ît/It for 100 different simulations. Right panel: behaviour of R̂t/Rt

for 100 different simulations.

panel) and R̂t/Rt (right panel).

In both panels of Figure 5, after a transient phase with larger dispersion, Ît/It and R̂t/Rt end up

fluctuating around 1, with a stable dispersion in the left panel and a decreasing dispersion in the right

panel. Now consider the sum of the root mean square error (RMSE) between Ît and It and of the

RMSE between R̂t and Rt for all the trajectories, as a measure of distance between the estimate and

the truth. Among all the trajectories we represented the one with the smallest and the one with the

largest distance in the left and in the right panels of Figure 6, respectively. The latter picture shows

that the fit may be very unsatisfactory.

Finally, we report the scatter plot of all the pairs (β̂t, γ̂t) obtained in the 500 simulations (Figure 7)

at t = 60. We observe that they are dispersed around the true value of the parameter (0.3, 0.1). The

pair corresponding to the trajectory of minimum distance (green dot) is closer to the true parameter

(red dot) than the pair estimated from the trajectory of maximum distance (yellow dot). Then a good

fit to the state trajectory is associated with a better estimate of unknown parameters, provided the

remaining parameters, which have been assumed as known, are correctly assigned, as we will see in

the next section.

An interesting feature of Figure 7 is that the ratio β̂t/γ̂t shows a smaller variability than β̂t and

γ̂t, around a straight line with slope close to three, the true value of R0. Therefore we expect to be

able to estimate the basic reproduction number with better accuracy and precision than the infection

and removal rate parameters.

4.3 Identifiability

A statistical model, belonging to a parametric family, is called identifiable if, for any two different

values of parameters, there exists at least a measurable set in the sample space that is not assigned
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Figure 6: Left panel: dynamics of filtered states Ît and R̂t (continuous lines) in the case of minimum

sum of root mean square error between filtered states and true states (circles). Right panel: dynamics

of filtered states Ît and R̂t (continuous lines) in the case of maximum sum of root mean square error

between filtered states and true states (circles).
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Figure 7: Scatter plot of the parameters (γ̂60, β̂60) obtained for the different simulations. The red

dot represents the true pair (0.1, 0.3). The green dot represents the pair of parameters relative to

the filtered state trajectory with minimum distance from the true states (left panel of Figure 6).

The yellow dot represents the pair of parameters corresponding to the filtered state trajectory with

maximum distance from the true states (right panel of Figure 6). The line is the least squares fit of

β̂60 against γ̂60 (slope 2.78).
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the same probability by the two members of the family, that is, given θ01 6= θ02, there exists at least

one set B such that

Pr(Y1:t ∈ B; θ01) 6= Pr(Y1:t ∈ B; θ02) , (13)

where Y1:t denotes a finite-length trajectory of observations from (8). For a deterministic model, this

property is called structural identifiability, which holds if there exists a map from the parameter to

the output θ0 7→ y1:t(θ0) which is injective, that is, given θ01 6= θ02, the two models y(θ01) and y(θ02)

describe different output trajectories. By a differential algebra approach, [30] show that the following

deterministic SIR model with its output































dIt
dt = β0It(N − It −Rt)− γ0It

dRt

dt = γ0It

y1,t =
1
K It

y2,t =
1
KRt

(14)

defined for a non-normalised population of size N , is structurally identifiable with respect to the

unknown parameters β0, γ0 and K. The parameter K > 1 accounts for under-reporting of infected

and recovered and has the same function of the U random variables in (8). Then, after adding noise

to the output they go on to show that, despite structural identifiability, the parameters may not

be practically identifiable, that is, a good or acceptable agreement between observations and fit is

displayed for different values of the parameters when observations end before reaching the peak.

The way randomness has been included into this problem via model (7)-(8) is different from [30],

but we also observe practical identifiability. The problem of identifiability is also discussed in [17] for

stochastic SIR models. We generate state trajectories composed by 30 daily values using model (4)

with parameters β0 = 0.1 and γ0 = 0.03. Then, to obtain the actual observations we multiply each

value by a number drawn from a beta distribution with parameters a = 10 and b = 40 (blue line

in Figure 8). After running the RBPF algorithm using the same beta distribution we obtain results

analogous to those in the previous sections, that is, a satisfactory fit of the observed dynamics and a

good estimate of the parameters β0 and γ0.

Now we run the RBPF algorithm assuming an observation error with beta distribution with a

mean larger than the truth, with parameters a = 10 and b = 30 (red line in Figure 8). We compare

the filtered states with both the true ones and the observed data. First, we consider 500 simulations

and look at the ratio between the filtered state and the state. For the sake of a clear representation, in

Figure 9 we show one every five trajectories for both the infected and the removed individuals. These

ratios are, generally, less than 1 denoting an underestimation of both infected and removed.

Then, we consider the ratio between the filtered states and the adjusted observations. The results

of one every five trajectories are reported in Figure 10 for both infected and removed individuals.
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Figure 8: Comparison between the two beta densities used to model the observation error.
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Figure 9: Left panel: behaviour of Ît/It for 100 different simulations. Right panel: behaviour of R̂t/Rt

for 100 different simulations.
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Figure 10: Left panel: behaviour of Ît/(yt,1/m) for 100 different simulations, where m is the true

median of the observation error distribution. Right panel: behaviour of Ît/(yt,2/m) for 100 different

simulations.

These ratios fluctuate around 1, denoting a satisfactory fit to the observed data. Figure 11 shows the

dynamics of two simulations: the dynamics with minimum distance of the filtered state from the true

state (intended as the minimum sum of the root mean square errors over the two components), in

the left panel, and the dynamics with maximum distance, in the right panel. Both trajectories fit the

(scaled) observed data reasonably well.

Even if the filtered states follow the adjusted observations, the values of the estimated parameters

are not correct, as shown in Figure 12. In fact, the pair of estimated parameters in the 100 simulations

are not equally dispersed around the true value (red point) but are placed mainly below the true value,

denoting a bad estimation for β0. The estimation of γ0 is better.

It follows that it is very important to suitably choose the beta distribution of the observation error

(as we have done in Section 5) in the collection of infected and removed people to avoid practical

nonidentifiability.

5 Real data

In this section we use data of the epidemic in Italy, collected by Protezione Civile (Civil Protection

Department) from 24th February. As a first step we consider the data for the whole Italy from 1st

March up to 26th November 2020. Available data are the number of infected, dead, and recovered

individuals. Removed people can be obtained by summing dead and recovered people. In Italy, all

deaths of people infected with SARS-CoV-2 were classified as COVID-19 ([31]). The infected and

removed individuals in Italy from 24th February to 26th November are represented in Figure 13. The

total residing population as of 31st December 2019 is 60,244,639 people, as certified by Istat.
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Figure 11: Left panel: case of minimum sum of root mean square error between true and filtered state,

dynamics of Ît and R̂t (continuous lines) and adjusted observations (thin line with asterisks). Right

panel: case of maximum sum of root mean square error between true and filtered state, dynamics of

Ît and R̂t (continuous lines) and adjusted observations (thin line with asterisks).
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Figure 12: Scatter plot of the parameters (γ̂60, β̂60), obtained for the different simulations, with

wrong parameters a and b in the observation error distribution. The red dot represents the true pair

(0.03, 0.1). The green dot is the estimate corresponding to minimum distance case (left panel of Figure

11). The yellow dot is the case corresponding to the maximum distance case (right panel of Figure

11).
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Figure 13: Infected (red asterisks) and removed (green asterisks) in Italy from 24th February (time

0) to 26th November 2020. Data from Protezione Civile.

To deal with underdetection we consider observations as generated by (8), where we recall that Ut,1

and Ut,2 are independently beta distributed with common shape parameters a and b. In particular,

we have Iobs = Y1 = U1X1 and Robs = Y2 = U2X2, where the additional notations Iobs and Robs are

introduced as meaningful names for what follows.

As we can see from Figure 13 the epidemic can be divided in two waves: the first officially began on

24th February and lasted until mid-summer, when the number of infected people began to rise again,

as in the rest of Europe ([5]). The second wave is distinguished from the first also by the increased

test capacity. Hence we consider the two waves as different models, with respect to both the SIR

parameters and the observation error distribution parameters and we conventionally set the start of

the second wave on 1st August.

5.1 Assigning parameters of the observation error distribution

To fix a and b we refer to the Infection Fatality Ratio (IFR), a fundamental quantity to estimate

the seriousness of the epidemic, and to its crude estimate, the Case Fatality Ratio (CFR). The IFR

is the ratio of COVID-19 deaths to total infections of SARS-CoV-2, asymptomatic and undiagnosed

infections included, while the CFR is the ratio of COVID-19 deaths to confirmed cases. By the

definition, the CFR is greater than the IFR. At any time t an estimate CFRt of the CFR and an
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estimate IFRt of the IFR are related by the simple relationship

CFRt =
Dt

Robs,t
=

Dt

Rt
×

Rt

Robs,t
= IFRt ×

Rt

Robs,t
(15)

where Dt denotes all deaths by time t ([18]).

Since by (15)

Robs,t =
IFRt

CFRt
×Rt , (16)

the ratio IFRt/CFRt can be regarded as the under-reporting factor that we modelled as the U beta

random variable introduced earlier.

Given estimates of IFRt as t = 1, . . . , T and the corresponding observed sequence of CFRt we

would obtain a sample u1 = IFR1/CFR1, . . . , uT = IFRT /CFRT and an estimate of a and b by any

established method. Using the method of moments, for example, and considering an estimate of the

IFR to substitute IFRt, we would get

â = ū

(

ū(1− ū)

s2u
− 1

)

= ū1/CFR

{

ū1/CFR(1− IFR ū1/CFR)

s21/CFR

− IFR

}

b̂ = (1− ū)

(

ū(1− ū)

s2u
− 1

)

=
1− IFR ū1/CFR

IFR

{

ū1/CFR(1− IFR ū1/CFR)

s21/CFR

− IFR

} (17)

where ū and s2u are the sample mean and variance of (u1, . . . , uT ) and ū1/CFR and s21/CFR are the

sample mean and variance of 1/CFR1, . . . , 1/CFRT . These equations show that the IFR affects both

parameters.

The fatality ratio approach has the advantage that the IFR is a pure number and information on

its value can be gathered from different populations. Then, in practice, we may estimate the sample

mean and variance of 1/CFR1, . . . , 1/CFRT from the observed fatality and removal data, and for a

selected IFR assign â and b̂. If a range of values is available for the IFR from another source, such as

a confidence or a credibility interval, we may repeat the analysis for IFR varying within the interval

and evaluate the sensitivity of the results.

For Italy, we may use an indirect method to point at a plausible value of the IFR within this

interval, taking advantage of a seroprevalence survey targeting IgG antibody conducted in Italy from

May to July by Istat, the Italian national statistical office, and the Italian Health Ministry. Preliminary

results obtained from 64,660 people were presented in early August ([21]). According to them, almost

1.5 million people in Italy or 2.5% of the population had developed coronavirus antibodies, a figure six

times larger than official numbers reported. In short, the idea is to compare the 2.5% figure of people

who developed antibodies to the healed people (who have antibodies) estimated from the filtered

state R̂t in an appropriate time interval. The infected compartment may also contain seropositive

individuals, still, the fraction of people in this compartment had become small when Istat’s survey

started, so we consider only the recovered compartment. The reasoning behind this comparison is
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that if the assumed IFR is correct, then the observation error distribution derived from (17) is correct

and the filtered states are realistic and they should be in agreement with the Istat survey result.

To be more specific, let Rt = Ht +Dt, where Ht and Dt are the fractions (over the population) of

healed and dead people by time t, respectively. Healed people can be seronegative if IgG antibodies

are no longer in their system, but we can safely assume that a person enters the healed record soon

so they s/he can be considered as seropositive when they do. Now, Ht includes all healed since the

start of the epidemic, hence a fraction of Ht can be seronegative, depending on the duration d of

seropositivity. Hence we should compare 2.5% to Ht −Ht−d, where Ht−d = 0 if t − d < 1. The true

values of Ht are unknown. We may recover them from R̂t and the available data on the fraction of

deaths as Ĥt = R̂t − Dt/u0.5, where u0.5 is the median of the distribution of the observation error.

Since Istat’s survey was carried out between 25 May and 15 July 2020, we compare 2.5% to

H̄ =
1

52

15 July
∑

t=25 May

(Ĥt − Ĥt−d) . (18)

A plausible value of d is three months ([15]). This procedure rests on several assumptions and we only

regard it as a way to check for gross deviations of our model from reality.

5.2 State and parameter estimation

We run the RBPF algorithm with 20,000 particles and time discretisation step of 1/24 day as done

for the synthetic data. The initial values are (β0, γ0)
T = µ0 = (0.3, 0.1)T and Σ0 = diag(0.05, 0.02).

Moreover σ = 0.03 and η = 0.01.

The true IFR in a population of interest can only be known at the end of the epidemic, and having

tested all the population. Because at the early stage of the epidemic reverse-transcription PCR (RT-

PCR) diagnostic testing is primarily limited to people with significant indications of and risk factors

for COVID-19, and because a large number of infections with SARS-CoV-2 result in mild or even

asymptomatic disease, the accurate estimation of IFR is challenging ([26]). The Centre for Evidence-

Based Medicine (CEBM) at the University of Oxford bases its timely updates of IFR point estimate on

a continuously evolving meta-analysis based on CFR data. The IFR point estimate is then obtained by

halving the lower bound of the 95% prediction interval of the CFR and the current estimate fixes the

IFR at 0.54% ([29]: last updated 2 February 2021; cebm.net/covid–19/global–covid–19–case–fatality–

rates/). In [6] low and high income countries are separately discussed and in a typical high income

country, with a greater concentration of elderly individuals, an overall IFR of 1.15% (0.78-1.79 95%

prediction interval) is estimated. An estimate of 1.3% has been obtained using data from the closed

population of passengers in the Diamond Princess cruise ship ([32]). The meta–analysis carried out by

[28] of published research data on COVID-19 infection fatality rates with last search on 16/06/2020
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Figure 14: Left panel: Filtered states for infected (thick red line) and removed (thick green line).

Parameters of the beta observation error distribution (right panel) are a = 11.72 and b = 81.39

obtained considering IFR=5%. The prediction intervals are computed from (12) with q = 0.025. The

thin lines are the observed infected (red) and removed (green) divided by u0.5. The magenta dotted

line represents the 2.5% of the Italian population that have developed coronavirus antibodies in the

Istat analysis from 25th May to 15th July. Time 0 is 1st March.

indicates a point estimate of IFR of 0.68% (0.53%–0.82%) with high heterogeneity, and suggests that

in many populations the IFR would be > 1% if excess mortality was taken into account.

For the first wave, we computed a and b from (17) for a range of IFR values from 0.1%–6%,

where the minimum value is the lowest we found in the relevant literature and has been suggested

as lower bound of IFR in Europe by CEBM. The maximum value is still inspired by CEBM and

by the considerations in [28]. Indeed, in Italy an estimated initial CFR of about 11-19% has been

reported ([11], [35], [31], [9]). This suggested to consider as a possible maximum initial value an

IFR=6%, accounting for the lack of knowledge at the beginning of the first wave. In particular, we

considered 0.1%, 0.35%, 1.3%, and 6%. Moving too far from the highest value gives a large discrepancy

between Istat’s 2.5% estimated seropositivity in the population and (18). Then we present results for

IFR = 5%, for which H̄ = 2.55%. Then a = 11.72 and b = 81.39 and the corresponding beta density

is shown in the right panel of Figure 14. The initial condition for It (Rt), for each trajectory, is given

by the normalized number of infected (removed) people collected by Protezione Civile on 1st March

divided by the median of this beta distribution. The filtered states of infected and removed individuals

are represented with thick lines in the left panel of Figure 14 where also the prediction intervals for

both infected and removed are reported. The prediction intervals are computed from (12).

The plots of β̂t and γ̂t from (A-5) are in the top panel of Figure 15 and the plot of R̂0(t) from

(A-6) is in the bottom panel.
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Figure 15: Single time interval case. Top panel: plots of β̂t and γ̂t from (A-5). Bottom panel: plot of

R̂0(t) from (A-6). Time 0 is 1st March.

The gap between the thick and the thin red lines in Figure 14 shows that a single SIR is not

able to correctly describe the behaviour of the true dynamics. Therefore, we split the first wave into

subintervals. For the partition we consider the DPCMs1 with the greatest impact on social organization

allowing for 10 days for the DPCM to have an effect on the epidemics (that is, change-points are the

DPCM dates plus 10 days). In particular, we consider the following DPCM dates: 11th March, 22nd

March, 26th April and 3rd June, so the change-points are on 21st March, 1st April, 3rd May and 13rd

June.

For each time interval, except for the first, we use the filtered state x̂t (A-4) at the end of the

previous interval as initial state and the values of β̂t and γ̂t at the end of the previous interval as starting

parameters. Then the discontinuity in the update is determined only by the initial covariance matrix.

Since in the case of a single time interval we observed that the entries of Σ0 are updated to very small

values, then for the case of several intervals we do not restart each interval with Σ0 = diag(0.05, 0.02),

but compromise between the updated Σ0 at the end of the previous interval and the initial Σ0, taking

Σ0 = diag(0.002, 0.001), for all the time intervals. This choice also allows us to avoid big jumps in the

trajectories of the parameters at the change-points. The dynamics of the five different SIR models are

represented as a whole dynamics in Figure 16.

The trajectories β̂t, γ̂t and R̂0(t) show jumps at the change-points (Figure 17), not very pronounced

due to the choice of a small Σ0. After a few steps from each jump, the trajectories stabilize following

1DPCM: Italian acronym for government decrees. For a summary of the DPCMs related to the COVID-19 emergency

see http://www.governo.it/it/coronavirus-misure-del-governo
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Figure 16: Filtered states for infected (thick red line) and removed (thick green line) from five different

SIRs in the intervals [0, 20], [20, 31], [31, 66], [66, 104], [104, 160]. Parameters of the beta observation

error distribution are a = 11.72 and b = 81.39. The prediction intervals are computed from (12) with

q = 0.025. The thin lines are the observed infected (red) and removed (green) divided by u0.5. Time

0 is 1st March.
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Figure 17: Multiple time intervals case. Top panel: plots of β̂t and γ̂t from (A-5). Bottom panel: plot

of R̂0(t) from (A-6). Time 0 is 1st March.
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Figure 18: Dynamics of infected and removed individuals with forecasts during an increasing phase

(first row) or a decreasing phase (second row). The forecasts start 10 days after a change point (first

column) or 20 days after (second column). Starting dates are: 11th April (top left), 21st April (top

right), 6th May (bottom left), 16th May (bottom right). Forecasts of infected and removed individuals

are highlighted with different colours.

a regular trend. The dynamics of infected individuals fits very well the observed infected divided by

u0.5. After day 66 (corresponding to 26 April), β̂t is smaller than γ̂t, so R̂0(t) < 1. This value is more

realistic than R̂0(t) in the single time interval case, which is always greater than 1 (Figure 15).

This result is in agreement with the effective reproduction number published for the first time by

Istituto Superiore di Sanità (Italian National Istitute of Health, ISS) on 30 April ([23]): the effective

reproduction numbers were reported for every Italian region (except for two because of bad quality

data) and they were all smaller than one.

Now, we analyze the forecast of the infected and removed dynamics for the first wave, computed

as in (10). We consider different cases: we suppose to have observations up to 10 days or 20 days after

the second or third change-points, and we try to forecast the dynamics for 7 future days (Figure 18).

It can be observed from Figure 18 that the forecast is satisfactory when it starts 10 days after

a change-point (left panels), while when it starts 20 days after a change-point is satisfactory only in

the decreasing phase (bottom right panel). This different performance is mainly due to how fast β̂t

changes after each change-point, rather than to the number of observations taken before the forecast

is started.
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Figure 19: Beta distributions of the observation error for different values of IFR: 1.15% (light blue

dashed line), 1.3% (red dotted line), 1.5% (green continuous line), 1.75% (magenta dashed-dotted

line). For comparison also the beta density used for the first wave is reported (blue continuous line).

Now, we focus on the second wave, starting on 1st August and we select three change-points 10

days after the following measures: on 1st September (partial opening of museums, stadiums, and

the increase in public transport occupancy); on 21st October (curfew in Lombardy, the most affected

region); on 3rd November (DPCM establishing red, orange and yellow scenarios to classify the Regions

from the highest to the lowest risk and introducing tiered restrictions). We run the RBPF algorithm,

with µ0 = (0.05, 0.03)T as initial value for (β0, γ0)
T and Σ0 = diag(0.002, 0.001). Moreover, σ = 0.03

and η = 0.01. The state is formed by the infected individuals and by the new removed individuals

since 1st August, that is, the difference between the collected removed at each time and the removed

on 31st July.

For the second wave the under-detection error of infected and removed people is smaller, because

of an increase in resources for taking swab tests. For this reason it is appropriate to recalculate the

parameters of the beta observation error distribution from (17) only with the data since 1st August.

Unfortunately, we lack a benchmark such as the serological survey during the first wave, and therefore

we present the results obtained by considering four different IFR values: 1.15%, 1.3%, 1.5%, 1.75%

according to the most recent studies. The beta densities obtained for these values are represented in

Figure 19 and compared with the beta density used for the first wave. We exclude smaller values of

IFR because the corresponding observation error beta distributions are located on small values like

for the first wave.

It can be seen from Figure 19 that both the mean and the variance of the beta distribution increase

as the IFR increases. The corresponding dynamics are shown in Figure 20. The normalised numbers

of individuals decrease when the IFR increases, because observations are divided by the median of the
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Figure 20: Filtered states for infected (thick red line) and removed (thick green line) in the second

wave for different IFR: 1.15% (top left), 1.3% (top right), 1.5% (bottom left), 1.75% (bottom right).

The prediction intervals are computed from (12) with q = 0.025. The thin lines are the observed

infected (red) and removed (green) divided by u0.5. Forecast of infected and removed individuals are

highlighted with different colors. Time 160 is 1st August.

beta distribution which is increasing with the IFR. Also the width of the prediction intervals decreases

as IFR increases. The filtered dynamics well reconstruct the behaviour of the adjusted data in all

the cases. The estimated parameters β̂t and γ̂t are very similar for the different cases and only the

parameters obtained using IFR=1.3% are reported in Figure 21 with the corresponding R̂0(t).

We observe a big jump in R̂0(t) on the date of the second change point, 10 days after the curfew in

Lombardy, followed by a slow decrease, denoting that this measure did not produce the desired effect.

Then it was followed by the measure of 3rd November that allows R̂0(t) to accelerate its decrease,

approaching one, in agreement with what the ISS reported in its 25th November bulletin [22].

5.3 A comparison with the SIR deterministic model

In this section we consider for comparison model (1) combined with the observation equations (8),

that is, the state dynamics is completely deterministic. We repeat part of the analysis done with

the stochastic SIR model on the first wave data, using the same observation error distribution, and
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Figure 21: Top panel: plots of β̂t and γ̂t from (A-5). Bottom panel: plot of R̂0(t) from (A-6). The

IFR is 1.3%. Time 0 is 1st August.

estimate (β, γ) via maximum likelihood. In Figure 22 we show the single-phase deterministic SIR

simulation along with the adjusted observations, in two situations: when the number of infected is

descending after the peak and when the descent is almost complete. In both cases the deterministic SIR

is unable to capture the dynamics. The single-phase stochastic SIR model (see Figure 14), although

unsuitable, performs better thanks to the learning mechanism that makes adaptations both to the

parameter and the filtered state. The piecewise deterministic SIR model, see Figure 23, follows the

scaled observations more closely, still it is rather less flexible than its stochastic counterpart (see Figure

16). This is a further demonstration that a single SIR is unsuitable to describe the true behaviour of

the pandemic.

6 Concluding remarks

In this work we have proposed a piecewise stochastic SIR model with change-points to the COVID-19

data in Italy from 24th February to 26th November 2020, using the dates of measures taken by the

government to control the epidemic to define the change-points. The under-detection of the fractions of

infected and removed in the population has also been explicitly modelled, introducing a distribution for

the observation error. This strategy makes it possible to estimate the actual dynamics of the epidemic

by overcoming the limitations of a single deterministic SIR model on the one hand and by correcting

the observed data on the other hand. Then, via a particle filtering and parameter learning algorithm,

the model can produce short-term predictions of the population in each compartment and continously
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Figure 22: First wave: deterministic SIR simulations with ML parameter estimates and adjusted ob-

servations and seven-day forecast, until 15 May (left) and until 30 June (right). Estimated parameters

are (β, γ) = (0.15, 0.08) and (β, γ) = (0.57, 0.55), respectively. Time 0 is 1st March.
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Figure 23: First wave: piecewise deterministic SIR simulations with ML parameter estimates and

adjusted observations and seven-day forecast (left) until 15 May; parameter estimates (β̂, γ̂) in each

phase (right) are (0.21, 0.04), (0.08, 0.03), (0.04, 0.03), (1.6 × 10−8, 0.05). Cut dates correspond to 10

days after the government decrees on 11 March, 22 March, 26 April. Time 0 is 1st March.
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updated estimates of key quantities such as the basic reproduction number, which can be acted upon

by decision makers. We obtained a rather large basic reproduction number in the initial phase of the

first wave, decreasing progressively in the following phases. This value may seem surprising, but other

studies, such as [25], confirm this behaviour which is common in European countries.

The stochastic SIR model might be used to evaluate the effect of mitigation measures by extending

the predictions to a horizon of several weeks beyond the date of the next government decree, as an

answer to the question: “what would the mid-term evolution of the epidemics have been if this specific

measure had not been taken”? But, given the complexity of the phenomenon, which is only partially

captured by the model, a great deal of caution is required in doing so. A possible way out is to enrich

the model by adding compartments, but, as our model identifiability study has shown, solid prior

information or data relevant to the required additional parameters are needed to obtain meaningful

results.

With respect to prior information, our approach to the selection of the observation error distri-

bution depends on an estimate of the IFR. For the first wave we have chosen larger values than for

the second wave (up to 6% against up to 1.75%), which is in agreement with a report of the ISS [16],

published after we finished our analyis, where the monthly standardised CFR has been calculated.

When standardised with respect to the age and sex structure of the Italian population, the CFR is

close to 9% in February-March 2020 and close to 4.5% in April. Then it falls to around 1% in June

and July and increases to above 2% in October.
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A RBPF algorithm

To estimate parameter θ0 = (β0, γ0)
T and state Xt we propose to apply a Rao-Blackwellized particle

filter (RBPF) algorithm. We consider the Euler discretization of the stochastic system (5) reported

in equation (7). Since the system is linear in θ0, we can apply the Kalman filter. Suppose that

θ0 = (β0, γ0)
T has a normal prior distribution with mean µ0 and covariance matrix Σ0, then the

distribution of θ0, given x0:t+1 = (x0, x1, ..., xt+1) after t + 1 time steps, as t = 0, 1, 2, . . ., is normal
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with mean µt+1 and covariance matrix Σt+1 given by



























µt+1 = µt + ST
t+1 [xt+1 − xt − h (xt)µt∆t]

Σt+1 = Σt − ST
t+1h (xt) Σt∆t

ST
t+1 = Σth

T (xt)∆t
[

h (xt) Σth
T (xt) (∆t)2 + g(xt)g

T (xt)∆t
]

−1

(A-1)

The distribution of Xt+1 given x0:t is Gaussian with mean Bt+1 and covariance matrix Gt+1 given by











Bt+1 = xt + h (xt)µt∆t

Gt+1 = h (xt) Σth
T (xt) (∆t)2 + g(xt)g

T (xt)∆t.

(A-2)

Recalling that the observations are obtained multiplying the state Xt for the beta-distributed

observation error term, as defined in equation (8), the RBPF algorithm can be summarized as follows:

STEP 1

• At time t = 0, we draw M initial values of X0 from its prior distribution π (x0) and obtain M

values x
(i)
0 , i = 1, 2, ...,M or, alternatively, we put x0 equal to the initial observation.

• We consider a prior distribution for the parameter θ0, given by a normal distribution N (µ0,Σ0),

where µ0 is a vector of initial parameters, and Σ0 is a diagonal covariance matrix.

• To obtain candidate values of the state at importance sampling steps, we will use the distribution

implied by the state-transition equation (7) after marginalising it with respect to θ0. At step

one, a value for X̃
(i)
1 , conditional on x

(i)
0 , is sampled from a normal distribution with mean B

(i)
1

and covariance matrix G
(i)
1 , for i = 1, . . . ,M , given by (A-2) with k = 0.

• Denoting by y1 the observation at time k = 1, we compute weights for each particle from the

likelihood at x̃
(i)
1

ṽ
(i)
1 = L(x̃

(i)
1 ; y1) = p(y1,1|x̃

(i)
1,1)× p(y1,2|x̃

(i)
1,2)

where

p (y|x) =

( y
x

)a−1 (
1− y

x

)b−1

B (a, b)

1

x
I[0,x](y). (A-3)

In order to resample the particles, we need to normalize the weights:

v
(i)
1 =

ṽ
(i)
1

∑M
i=1 ṽ

(i)
1

.

• We update the posterior distribution of θ0 given
{

x̃
(i)
1 , x

(i)
0

}

by taking one step of the Kalman

filter of equation (A-1), obtaining the new mean vector µ̃
(i)
1 and covariance matrix Σ̃

(i)
1 .
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• We resample M particles from a discrete distribution with support
{(

x̃
(i)
1 , µ̃

(i)
1 , Σ̃

(i)
1

)}

i=1,...,M

and corresponding probabilities
{

v
(i)
1

}

i=1,...,M
. We denote by

{(

x
(i)
1 , µ

(i)
1 ,Σ

(i)
1

)}

i=1,...,M
the

resampled particles.

At time t ≥ 1, assume the sample
{(

x
(i)
t , µ

(i)
t ,Σ

(i)
t

)}

i=1,...,M
is available.

STEP t+ 1

• For i = 1, . . . ,M , sample candidate particles x̃
(i)
t+1 from a normal distribution with mean B

(i)
t+1

and covariance matrix G
(i)
t+1, given by (A-2).

• Compute the weights ṽ
(i)
t+1 for each particle as the product of two distributions with density

(A-3). Normalize the weights:

v
(i)
t+1 =

ṽ
(i)
t+1

∑M
i=1 ṽ

(i)
t+1

.

• Update the posterior distribution of θ0 given x
(i)
0:t+1, which is a normal distribution with mean

µ̃
(i)
t+1 and covariance matrix Σ̃

(i)
t+1 given by equation (A-1).

• Resample M particles using the probabilities
{

v
(i)
t+1

}

i=1,...,M
and denote the resampled particles

by
{(

x
(i)
t+1, µ

(i)
t+1,Σ

(i)
t+1

)}

i=1,...,M
.

Particles
{(

x
(i)
t , µ

(i)
t ,Σ

(i)
t

)}

i=1,...,M
are a sample from the distribution of interest. In detail, the

x
(i)
t ’s are a sample from p(xt|y1:t) and, by keeping track of the resampling history, the entire sample

x
(i)
0:t, i = 1, . . . ,M is potentially available, hence a sample from p(x0:t|y1:t). The mean of x

(i)
t over the

particles approximates E(xt|y1:t) and we call it the filtered state:

x̂t =
1

M

M
∑

i=1

x
(i)
t . (A-4)

The µ
(i)
t ’s and Σ

(i)
t ’s are a sample of conditional means and covariance matrices, that is, E(θ0|x

(i)
0:t)

and Cov(θ0|x
(i)
0:t). Therefore, an estimate of E(θ0|y1:t) is

(β̂t, γ̂t)
T = θ̂t =

1

M

M
∑

i=1

µ
(i)
t (A-5)

and, by sampling M values from M Gaussian distributions N(µ
(i)
t ,Σ

(i)
t ), i = 1, . . . ,M , we produce a

sample (θ
(1)
t , . . . , θ

(M)
t ) from p(θ0|y1:t).

The basic reproduction number is defined as R0 = β0/γ0, therefore an estimate based on y1:t is

E(β0/γ0|y1:t), which is computed as

R̂0(t) =
1

M

M
∑

i=1

β
(i)
t

γ
(i)
t

(A-6)

29



where (β
(i)
t , γ

(i)
t )T = θ

(i)
t . If the variances on the diagonal of Σ

(i)
t are small, the additional sampling from

the N(µ
(i)
t ,Σ

(i)
t ) may be unnecessary and the following approximation might be used, corresponding

to degenerate conditional distributions:

R̂0(t) =
1

M

M
∑

i=1

µ
(i)
1,t

µ
(i)
2,t

. (A-7)

R̂0(t) can be regarded as our best estimate of the basic reproduction number in the light of the observed

data, not to be confused with the net or effective reproduction number. A very useful discussion on

the meaning of R0 is provided by [13].
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