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Abstract

As 2021 dawns, the COVID-19 pandemic is still raging strongly as vaccines finally appear and hopes for a
return to normalcy start to materialize. �ere is much to be learned from the pandemic’s first year data
that will likely remain applicable to future epidemics and possible pandemics. With only minor variants
in virus strain, countries across the globe have suffered roughly the same pandemic by first glance, yet
few locations exhibit the same pa�erns of viral spread, growth, and control as the state of Hawai’i. In this
paper, we examine the data and compare the COVID-19 spread statistics between the counties of Hawai‘i
as well as examine several locations with similar properties to Hawai‘i .

Introduction

Significant local variations in the spread of COVID-19 have been established in heterogeneous environ-
ments. For example, �omas, et al., compares nineteen different cities and counties in the US [20]. �ey
found that small differences in network models for interdependence and social interaction as well as the
effects due to uneven population distributions can lead to substantial differences in infection timing and
severity, leading different areas in each city to have vastly different experiences of the pandemic. Similar
pa�erns associated with heterogeneity have been made for entire nations, such as the work comparing the
most affected cities in China [4]. �ese works are based on the premise that substantial heterogeneity in
social relationships at various scales affect the viral spread. It is unclear, however, whether or not such
heterogeneity is a critical factor for an island chain and such study is absent from the literature. �is
is of utmost importance due to islands’ vulnerability to any pandemic, especially for native populations
as demonstrated for example with the introduction of measles to the Pacific Islands in the 1800’s [28].
Islands are smaller contained populations, and thus epidemiological models may require adjustments
to properly apply them to disease containment strategies. Identifying if major local variations can be
expected for an island chain in the spread of COVID-19 is crucial since it directly impacts the effec-
tiveness of mitigation measures, vaccine distribution and health care management. We focus here on a
specific island chain, the Hawaiian archipelago and take somewhat different approach by comparing the
individual island differences and identifying countries exhibiting similar properties. Maui for instance
behave much more similarly to Japan over the last three months than her neighbor Islands which was
surprising to see. Our goal is to demonstrate that Islands in general, whether they belong to the same
archipelago or not, respond differently to the pandemic and cannot be aggregated into one single class.
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Fig 1. �e State of Hawai‘i and its counties [6].

�e Hawaiian Islands are an archipelago of eight ma-
jor islands, with only seven of them being populated.
�e State is divided into five counties: Hawai‘i , Hon-
olulu, Kalawao, Kaua‘i , and Maui. Since Kalawao
is the smallest county in all of the 50 states in
terms of both population and land area, we focus
here on only the four major countiesure 1 shows
the main eight islands as well as the various coun-
ties.

Table 1 shows that Honolulu city and county is the
most populated county of the state, with 69% of the state’s population. Hawai‘i county has the largest
land mass of 63% of the entire state, but comes second in resident population. �ird by population is Maui
county, which spans the islands of Maui, Moloka‘i, Lanai, and Kaho‘olawe. Kaua‘i county, which spans the
islands Kaua‘i and Ni‘ihau, has the smallest population. In determining heterogeneity effects and how the
Hawaiian Islands might differ from each other, it is also important to compare the demographics of the
four counties we study.

Statistics Honolulu Hawai‘i Maui Kaua‘i
Land Area (miles) 600.74 4,028.42 1,161.52 619.96
Resident Population 974,563 201,513 167,503 72,293

Resident Population State Percent 68.8% 14.2% 11.8% 5.1%
Tourists (thousands per year) 5862.4 1706.2 2914.9 1388.6

Tourists (as daily percent of residents) 1.64% 2.32% 4.77% 5.26%
Table 1. �e state’s general statistics by county [11].

Figure 2 left provides the age demographic distribution per county. Honolulu county has a larger
percentage of individuals between 20 and 40 years old while Hawai‘i county is more represented in the
55-80 years old age group. From Fig. 2 (right) it can be observed that the Honolulu county has a larger
relative Asian population compared to the other counties and a smaller relative Native Hawaiian and Pacific
Islander population.

Fig 2. Left: Age demographic per county. Right: Ethnicity distribution per county [8].

While Honolulu city and county has been dominating the COVID-19 daily cases numbers due to its
larger population, the other counties are also facing the pandemic. Intuitively we might expect all counties
to exhibit homogeneity with respect of impact of the virus, however this is not observed. We describe
in detail commonalities and differences between the four counties. Additionally, we compare them to
other non-Hawaiian islands to find similarities and differences. Our work highlights the need for localized
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measures and possibly targeted mitigation measures at the county level and as opposed to the state level
for the most effective pandemic control. �is has been already initiated to some degree with Kaua‘i county
implementing their more restricted travel policy on Dec. 2, 2020; on Jan. 19, 2021, Maui implemented the
mandatory safe travel app for all travelers, see Fig. 3 for more details. It is critical for decision makers to
take into account heterogeneity in their strategies.

Fig 3. Safe travel protocols per counties. Kaua‘i county has the most restricted travel regulations since Dec.
2, 2020 following a significant initial surge in cases with the introduction of the Safe Travel program on
October 15, 2020.

An important conclusion of this research is the identification of pa�erns that change extremely rapidly.
�is is due primarily to the nonlinear behaviour of the underlying equations that simulate the spread of the
pandemic. In other words, it is not sufficient to average the initial conditions of the virus spread and assume
that the different islands will exhibit similar behavior in an average sense. On the contrary, nonlinear
effects and clusters can take off in one of the contained populations at a different time, thus requiring
different pandemic control mandates. We find that it is critical to assure that heterogeneity is included in
modeling and thus decision making for adequate and effective pandemic control.

Materials and methods

�ere are useful collections of Hawai‘i COVID-19 data in the form of dashboards: the Hawai‘i Emergency
Management Agency’s (HiEMA) dashboard, the State of Hawai‘i ’s Department of Health’s Disease Outbreak
Control Division’s (DOCD) COVID-19 dashboard, and COVID Pau dashboard (CPD) [9, 10, 12]. Directly
utilizing these dashboards alone is challenging. Firstly, the dashboards are not synchronized; they often
display different data at various times for the same quantities, such as hospitalization data. Secondly,
the availability of the dashboard data is sometimes restricted because of political concerns. Both HiEMA
and DOCD provide visual data in plots, but do not allow for downloading of the data. �e Hawai‘i Data
Collaborative dashboard [8] resolves a majority of these issues by providing a Google Spreadsheet of the
local Department of Health’s DOCD data. �e Hawai‘i Data Collaborative also works to coalesce data from
the other dashboards, and even obtains data directly from the office of Lt. Governor Josh Green. Collected
data and their sources are summarized in Table 2.

We also use the distribution of cases per zip code for each county whose tabulation areas are illustrated
in S1 Fig. �is data proved even more challenging to gather, since those numbers are not compiled in any
open source spreadsheet; they need to be fetched from the Disease Outbreak Control Division Dashboard
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Statistic Source
Daily Cases Hawai‘i Data Collaborative [8]
Deaths Hawai‘i Data Collaborative [8]

Testing Data Hawai‘i State Department of Health [12]
Hospitalization Hawai‘i Data Collaborative [8]

Infections by County Hawai‘i State Department of Health [12]
Mobility Index Hawai‘i State Department of Health [12]
Traveler Data Hawai‘i Data Collaborative [8]

Table 2. �e sources of COVID-19 statistics for this paper. �e Hawai‘i State Department of Health data is
original, while the Hawai‘i Data Collaborative takes a large portion of it’s data from the Department of
Health.

under their Hawai‘i COVID-19 Maps daily. To obtain mobility data we used the open source SafeGraph
COVID-19 Data Consortium [27] that provides social distancing metrics illustrating the daily view of
movement between census block groups.

�e transmission rate in our model is optimized to reflect non pharmaceutical mitigation interven-
tionsure 4 displays the timeline from March 6 to September 24. Primary events impacting the curve after
September 24 are due to the safe travel program and can be seen in Fig. 3. In addition, the State moved to
Tier 2 on October 22, 2020 and has stated in that phase since. Note also that the State of Hawai‘i started
vaccines administration on Dec 15, 2020. As of January 17, 2021 the State recorded 76’498 administered
vaccines doses. �e deadliest day since September 24, and global maximum happened on October 14, 2020
with a count of 14 individual.

Fig 4. Timeline of events related to the pandemic in the State of Hawai‘i from March 6, 2020 to September
24, 2020.

In this paper, we also compare the Hawaiian counties to other countries, Table 3 summarizes the sources
for the data we used.
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Statistic Source
Daily Cases Iceland COVID-19 in Iceland - Statistics [7]
Daily Cases Japan Japan COVID-19 Coronavirus Tracker [14]

Daily Cases Puerto-Rico �e COVID Tracking Project [29]
Table 3. �e sources of COVID-19 data used in this paper for the comparison countries.

Compartmental Model

�ere are two main classes of epidemiological models for this type of disease spread: compartmental
models [1–3] and agent-based models [13,16–18]. In this paper, we use a compartmentalized model inspired
by [19], which is based on a standard discrete SEIR model. An extension, key to this paper, that we added
to the model is a new group for travelers. Indeed, the tourist population plays a prominent role in Hawai‘i
and due to our isolated geographic location we are able to to collect precise information about daily arrivals
and departure.

In our model, a given population is divided into four compartments: Susceptible (not currently infected),
Exposed (infected with no symptoms), Infected (infected with symptoms), and Removed (recovered or
deceased). Moreover, we subdivide the entire population into three additional groups: the general com-
munity (C), healthcare workers (H) and visitors (V). Visitors, who are only considered after October 15,
when the safe travels Hawai‘i program began, are further broken down into two categories: returning
residents and tourists. While the returning residents are absorbed into the community bucket, the tourists
are treated as a separate group. �ese groups interact with each other, and each of them consists of the
aforementioned compartments. In addition, compartments Exposed and Infected (in each population group)
are split into multiple stages by day to be�er reflect the progression of the disease. �ere are two key
dynamics of each population group: the dynamics of Susceptible individuals and the dynamics of the rest of
the compartments. �e time dependent hazard rate, λ(t), governs the susceptible dynamics as it determines
the probability, 1 − e−λ(t), of an individual becoming exposed at time t. �e hazard rate is different for
different population groups and takes into account interactions between the groups, thus coupling their
dynamics.

Key to governing the spread of the disease is parameter β, capturing the basal transmission rate due to
various interactions among individuals. Our model optimizes β to fit daily cases for a specific geographic
location. Specifically, we use several different values of β that capture changes in COVID-19 mitigation
policy. Table 4 displays the variables and parameters common to all simulations in this paper (optimized β’s
are given in the Results section). We introduce parameters pi as probabilities to develop symptoms on day
i, and chose them such that if symptoms do develop, it takes between 2 to 14 days, with a mean between 4
and 6 days [26], while assuming that about 40% of all infections remain asymptomatic. �e values of qs,i
reflect the sentiment that symptomatic individuals are likely to quarantine, especially after a couple of days
of symptoms. In addition, parameter r is the probability of transitioning from one stage of the illness to
the next (with the final stage being recovery or death). Based on prior work [5], we chose r to yield an
expected length of illness of 17 days.

In addition, we have parameters related to mitigation measures such as mask compliance as well as
contact tracing that depend on the geographical location. Table 5 lists the values we use for the State of
Hawai‘i (those are assumed to be constant over the various counties) as well as the ones for others countries
relevant to the discussion section. �e parameters have been identified from dashboards/articles as well as
for contact tracing. �e choice of qa,i reflects the various testing and contact tracing efforts, and provide
the probability for an asymptomatic individual to go into isolation as a result of testing and contact tracing.

For more information regarding dynamics equations of the model, see S1 Appendix.
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Table 4. Variable and parameters common for all geographic locations
Parameter, meaning Value

β, basal transmission rates optimized to fit data
Factors modifying transmission rate

ε, asymptomatic transmission 0.75
ρ, reduced healthcare worker interactions 0.8
ρv , reduced visitor-community
interaction

0.5

γ, quarantine 0.2
γv , quarantine for visitor 0.3
κ, hospital precautions 0.5
η, healthcare worker precautions 0.2375

Population fractions
pi, i =0,. . . ,13, onset of symptoms after
day i

0.000792, 0.00198, 0.1056, 0.198, 0.2376,
0.0858, 0.0528, 0.0462, 0.0396, 0.0264,
0.0198, 0.0198, 0.0198, 0

qs,i, i =0,. . . ,4, symptomatic quarantine
after day/stage i

C: 0.1, 0.4, 0.8, 0.9, 0.99;
H: 0.2, 0.5, 0.9, 0.98, 0.99

r, transition to next symptomatic
day/stage

0.2

ν, symptomatic hospitalization 0.075
ι, icu admission rate of hospitalized
patients

0.2

Table 5. Geographically dependent factors modifying transmission rate
Parameter, meaning HI Counties Japan Puerto Rico Iceland

Factors modifying transmission rate
pmp, mask
compliance

0.2 before
Aug 27, 0.7
thereafter

0.2 before
May 04, 0.8
thereafter

0.2 before
Aug 21, 0.7
thereafter

0.2 before
Oct 20, 0.5
thereafter

pme, mask efficiency 0.25 0.25 0.25 0.25
Population fractions

qa,i, i =0,. . . ,13,
asymptomatic
quarantine after day
i

0 before Jun
08, then
q5 = q6 =
q7 = 0.05

0 before Feb
25, then
q5 = q6 =
q7 = 0.05

0 before
May 05, then
q5 = q6 =
q7 = 0.05

0 before Apr
01, then
q5 = q6 =
q7 = 0.05

Results

In this section we provide the results of simulations of our model for the four counties of the State of
Hawai‘i under analysis. In our plots we use the raw daily cases and not the 7 day average because our
model fit plots the sum over all groups of the newly isolated and quarantined daily exposed and infected
individuals, see S1 Appendix, Model Dynamics.

Initial Conditions. �e initial values of most variables are zero. �e only non-zero values are the number
of susceptible individuals in the general community and the healthcare worker community, the values of
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which are listed in Table 6, as well as a single not quarantined symptomatic individual, Ic,0(0) = 1.

Region Sc(0) Sh(0) Date for Ic,0(0) = 1

Honolulu 937711 15000 Mar 06
Maui 167417 1500 Mar 15

Hawai‘i 201513 1500 Mar 16
Table 6. Susceptible population for each region and first detected symptomatic individual. All other

variables have an initial value of 0.

Honolulu County

Figure 5 displays the model fit for the Honolulu county. �e dots represents the daily cases and the curve is
the model fit. �e vertical lines corresponds to mitigation measures that had an impact on the curve and for
which we optimized the β. Table 7 explicit the different β’s. �e maximal daily case for Honolulu county
was 342 and happened on August 12, 2020. We see two major exponential growths, one early in March that
was crushed through a stay-at-home order and one in August followed by a second stay-at-home order.
However the second lockdown was lifted before daily cases reached single digits in the hope to save the
local economy. It can be seen on Table 7 that the first lockdown was more efficient. �e largest peak is
a�ributed to the July 4 festivities, the transmission rate β was however quite smaller than for the first peak,
but the State was much slower to call for a second stay-at-home order which resulted in the significantly
higher counts. On October 15, 2020 the state of Hawai‘i introduced the safe travel program which prompted
an influx of tourists and traveling residents, this influx varies with time which explains the waving shape
of the fit. For more details on incorporation of travelers in our model see S1 Appendix. Since the Safe travel
program the daily cases have been fluctuating quite a lot which makes a fit difficult (some high daily cases
came from a correctional facility cluster for instance). �e overall trend as of January 15, 2021 is shown to
be slightly increasing (the 7-day average can be found in Fig.6).
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Fig 5. City and county of Honolulu: COVID-19 daily count and key events reflecting a change in behavior.
�e star shows the beginning of safe travel program.

Transmission rates
March 6 - April 1 April 2 - May 19 May 20 - May 29 May 30 - Jul 3
β = 0.45 β = 0.05 β = 0.2 β = 0.22

Jul 4 - Aug 10 Aug 11 - Sep 23 Sep 24 - Oct 14 Oct 15 - Oct 21
β = 0.185 β = 0.15 β = 0.2 β = 0.16

Oct 22 - Nov 23 Nov 24 - Dec 9 Dec 10 - Jan 15
β = 0.20 β = 0.13 β = 0.22

Table 7. Optimized transmission rates to fit Honolulu county data. �ey reflect the State and Honolulu
non-pharmaceutical mitigation measures.

�e top of Fig.6 shows the total number of tests, the test positivity rate (i.e. the percent of tests for
COVID-19 that came back positive) as well as the daily cases for the Honolulu County. To create this
overlayed plot, the shown metrics have been normalized by calculating each data point as a percent of
the maximum of the corresponding metric over the whole observation period and using the 7-day rolling
average. It can be seen that, as anticipated, test positivity correlates strongly with daily cases. �e noticeably
large initial values of the test positivity rate (also present for other counties) are likely caused by the a
small number of test that have been administered to a very narrow slice of the population with much
higher chances of having the virus. When interpreting these plots, it should also be noted that even later in
the pandemic the sample of people receiving tests was not unbiased, since the State of Hawai‘i has been
administering tests to people who satisfy criteria which make them more likely to have the virus. �e
bo�om plot of Fig.6 displays the mobility for Honolulu County, it shows the major dip in mobility triggered
by the first stay-at-home order back in March 2020, coming back up in May to peak again in August before
the second stay-at-home order. �e mobility data clearly suggests why the second lockdown was not as
efficient as the first one.
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Fig 6. Top: A sharp increase in the test positivity rate (along with the daily cases) in July indicates an
outbreak of the disease. �e later decrease in the positivity rate with the increased number of tests
indicates a substantial slowdown of the spread of the disease. Bo�om: Overall mobility for Honolulu
County from March 2020 to January 2021 suggest a modest correlation with the number of daily cases.

In addition to the daily cases, we represents in Fig.7 the cumulative daily counts for Honolulu county
distributed per zip code from the onset of daily cases to January 18, 2021. It can be observed that Honolulu
downtown as well as the West Coast (Waianae) have been the most affected in terms of daily cases. For
the West Coast it is mostly due to its high pacific islanders population and the fact that they have been
disproportionately impacted. While they form about 4% of the total Hawai‘i population they account for
more than 27% of total cases [15].
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Fig 7. Honolulu county cumulative daily counts distributed per zip code from March 2020 to January 18,
2021.

Table 8 highlights the numbers for the seven highest zip codes. Zip code 96819 dominates the count
per 100 inhabitants, containing Moanalua, Kalihi, Kapalama, and Daniel K. Inouye International Airport
on the south side of Oahu. �e second one is 96792 of the Waianae area on the west side of Oahu. From
Fig.8, we see that zip code 96701 displays a cluster behavior and that almost all its cases happened between
December 16, 2020 to January 6, 2021. �is was due to a cluster at Halawa Correctional Facility. �ere is no
real immediate visible pa�ern from the other zip codes.

Honolulu County
Zip code

Population
Estimate

Cumulative Daily
cases

Cum. Daily
cases per 100
inhabitants

96701 40857 1156 28
96706 74592 1562 21
96707 46928 850 18
96792 49971 1534 31
96797 73579 2038 28
96817 56144 1493 26.5
96819 52981 2342 44

Table 8. �e seven zip codes with the largest cumulative distribution of daily cases.
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Fig 8. Honolulu county cumulative daily counts distributed per zip code from October 2020 to January 18,
2021.

Hawai‘i County

Daily cases for Hawai‘i county were very small until the aftermath of the July 4 celebrations which generated
a large spike. �e second stay-at-home order on Maui was extremely efficient but immediately followed by
an exponential increase in the form of a few clusters. �e maximum value is 51 and happened on October
25, 2020 during the third peak with a very close value during the second peak of 39 on August 29, 2020. One
can observe a somewhat puzzling decrease in the number of daily cases after the start of the safe travel
program. A potential explanation is that the spike in the number of cases that happened at that time was
an isolated event unrelated to other activities on the island.

Fig 9. Hawai‘i county: COVID-19 daily count and key events reflecting a change in behavior. �e star
shows the beginning of the safe travel program.

On Fig.10 top we represent for the Hawai‘i county the normalized total number of tests, the normalized
tests positivity rate and normalized daily cases. Again test positivity correlates strongly with daily cases.
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Transmission rates
Mar 16 - Mar 24 Mar 25 - Apr 29 Apr 30 - Jul 3
β = 0.80 β = 0.05 β = 0.14

Jul 4 - Aug 10 Aug 11 - Aug 26 Aug 27 - Sep 23
β = 0.17 β = 0.31 β = 0.15

Sep 24 - Oct 14 Oct 15 - Dec 09 Dec 10 - Jan 15
β = 0.35 β = 0.08 β = 0.10

Table 9. Optimized transmission rates to fit Hawai‘i county data. �ey reflect the State and Hawai‘i
non-pharmaceutical mitigation measures.

�e mobility for Hawai‘i county did not show a decline as steep as for Honolulu county, and it shows good
correlation with the daily cases and testing data.

Fig 10. Top: A sharp increase in the test positivity rate around August indicates an outbreak the disease.
�e later decrease in the positivity rate with the number of tests hovering around the same value indicates
a welcome slowdown of the spread of the disease. Bo�om: Overall mobility for Hawai‘i county from
March 2020 to January 2021 indicates a mild correlation with the number of daily cases.

Figure 11 shows the cumulative daily counts for Hawai‘i county distributed per zip code from the onset
of daily cases to January 18, 2021. Clearly the vast majority of cases are located in one of the two main
town: Kona (West) and Hilo (East).
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Fig 11. Hawai‘i county cumulative daily counts distributed per zip code.

Table 10 summarizes the numbers for the four highest zip codes. Zip codes 96720 and 9674, respectively
Hilo and Kona, clearly dominate the counts. We can see on Fig.12 that Kona had consistently larger number
than Hilo for the exception of the few days before Christmas. �is can be explained that overall the
period October 15 to January 18, air traffic was quite more significant in Kona than in Hilo. Total (Tourist,
Returning resident): Kona (76189,23824), Hilo (15808, 8800).

Hawai‘i County
Zip code

Population
Estimate

Cumulative Daily
cases

Cum. Daily
cases per 100
inhabitants

96720 48339 594 12
96740 42069 615 15
96749 17308 122 7
96778 14885 100 7

Table 10. �e four zip codes with the largest cumulative distribution of daily cases.
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Fig 12. Hawai‘i county cumulative daily counts distributed per zip code from October 2020 to January 18,
2021.

Maui County

Maui county started the pandemic with a relatively low number of daily cases, but then entered an alarming
state of a high number of cases per hundred thousand of population even reaching a a maximum of 56
cases on January 6, 2021. It can be seen clearly the trigger with the introduction of the safe travel program
on October 15, 2020. �e influx of travelers is not constant through time and because the ratio tourists
versus residents is high on Maui we see as a result the wavy increasing curve. In addition to the effect of
additional tourists there was a large outbreak in relatively high population density condominium complex.
�e initial increase after October 15 was solely due to travelers which is why we see a rise in daily cases
even though the basal transmission rate β stays small.

14



Fig 13. Maui county: COVID-19 daily count and key events reflecting a change in behavior.

Transmission rates
Mar 15 - Mar 24 Mar 25 - Apr 29 Apr 30 - Jun 7
β = 0.90 β = 0.05 β = 0.14

Jun 8 - Aug 26 Aug 27 - Sep 23 Sep 24 - Oct 14
β = 0.165 β = 0.07 β = 0.20

Oct 15 - Nov 23 Nov 24 - Dec 19 Dec 20 - Jan 15
β = 0.05 β = 0.10 β = 0.2

Table 11. Optimized transmission rates to fit Maui county data. �ey reflect the State and Maui
non-pharmaceutical mitigation measures.

Tests, positivity and daily cases are represented on Fig.14 and show a strong correlation between the
three. �e mobility for Maui County seems correlating well until the introduction of the safe travel program.
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Fig 14. Top: A series of ups and downs in the test positivity rate and the number of daily cases indicate the
occurrences of outbreaks of the disease. �e significant increase in these numbers at the beginning of this
year suggests a serious spread of the virus. A noticeable jump in the daily case number that does not
correlate with the positivity rate can be explained by a jump in the number of tests, since the la�er are
performed for people with higher chances of having the virus. Bo�om: Overall mobility for Maui County
from March 2020 to January 2021 does not correlate well with the number of daily cases.

Figure 15 shows the cumulative daily counts for Maui county distributed per zip code from the onset
of daily cases to January 18, 2021. �e low counts on the eastern half of Maui are associated with low
population density of local residents and relatively few tourists.
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Fig 15. Maui county cumulative daily counts distributed per zip code.

�e four zip codes with the largest counts can be found in 12 and their daily behavior is displayed in
Fig.16. �ere was a large outbreak in a multistory in early 2021 located in zip code 96732. �e residents
in this complex used elevators more than residents in other complexes in other areas with fewer stories.
�ere are relatively larger number of tourists compared to local residents in zip codes 96761 and 96753 as
compared to most other zip code areas. �is is possible reason these two zip code area had larger increases
in December than other areas.

Maui County Zip
code

Population
Estimate

Cumulative Daily
cases

Cum. Daily
cases per 100
inhabitants

96732 29075 278 9.5
96753 28737 259 9
96761 22301 240 11
96768 18529 90 5
96793 34036 211 6

Table 12. �e four zip codes with the largest cumulative distribution of daily cases.
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Fig 16. Maui county cumulative daily counts distributed per zip code from October 2020 to January 18,
2021. �ere were a few clusters on Maui which is the explanation for some of the higher spikes, in
particular in early January in Kahului which is zip code 96732.

Kaua‘i County

Due to the low numbers on Kaua‘i a model fit using our compartmental model could not be achieved. It
can be observed on Fig.17 that the daily cases started following an exponential growth, it was a�ributed
to travelers which prompted the mayor of Kaua‘i to request authorization to opt-out from the safe travel
program. It was followed by a decrease in numbers and stabilization. A new peak can be observed right
after the safe travel program was authorized reinstated by Kaua‘i for intercounty travelers. �e numbers
are so small that is it extremely difficult to draw any additional conclusion.

Fig 17. Kaua‘i county: COVID-19 daily count (orange) and 7-day average (red). �e Opt-in Safe Travel on
Jan 5 is only for intercounty travelers.

We still represent tests, positivity and daily cases on Fig.18 and see as for Maui a strong correlation
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between the three. �e mobility for Kaua‘i County is very flat after the initial decrease in March and even
went a bit down after the safe travel program started.

Fig 18. Top: �e number of daily cases and test positivity rate are still well correlated, even though the raw
numbers are small. Similar to Hawai‘i county, we can see a jump in the daily case numbers that correlates
with the increased number of tests rather than the test positivity rate, which is likely due to the biased
nature of the population sample on which the tests are performed. Bo�om: Overall mobility for Kaua‘i
County from March 2020 to January 2021 does not correlate well with the daily cases.

Discussion

�ere is clearly major differences among the four counties. Fig.19 shows on the same plot normalized
model fits for Honolulu, Hawai‘i and Maui counties as well as the daily raw numbers for Kaua‘i . It can
observed that beside Kaua‘i for which numbers have been very low to draw comparison, the other three
counties correlates well until when the Safe Travel program began on October 15, 2020. Hawai‘i county
displays an increase in daily numbers right before which were a�ributed to a couple of clusters (one in
Hilo and one in Ocean View). Maui also had a few clusters, including a major one around October 20 on
Lanai and another major one in early January in Kahului. After October 15, 2020 both Honolulu county
and Hawai‘i county show a slight increase in contrast with Maui county that displays a very sharp increase.
Looking at Tables 7, 9 and 11 we observe that the exponential growths and decays for Hawai‘i and Maui
counties require typically larger value for the basal transmission rate than for Honolulu county. �e reason
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is that changes occurred more rapidly in the outer-islands, for instance the peak for Honolulu county is
based on a build-up starting in June while for Hawai‘i county the peaks are much more narrower. For Maui
county the decay due to the second stay-at-home order was extremely efficient at the beginning and then
slowed down which requested an increase in β.

Fig 19. Honolulu, Maui and Kaua‘i counties with normalized model fit, Kaua‘i with normalized daily cases.
It is clearly observed that counties started to differ in respond to the spread of COVID-19 after the safe
travel program opened.

We analyze similarity by using the L2-norm for the difference between two normalized given model
fits. One comparison was done over the entire length from March 6, 2020 to January 15, 2021. Results are
displayed in Table 13.

Mar 06 - October 15 Mar 06 - Jan 15
Honolulu - Maui 2.05353346 4.49831756

Honolulu - Hawai‘i 3.30655235 3.81229319
Hawai‘i - Maui 3.53488371 4.23234035

Table 13. Normalized L2 norm between hawaiian counties measuring similarity. Show the impact of the
different county’s regulations for travel since the dissimilarity between the counties grows when we add
the period October 15, 2020 to January 15, 2021. In particular, before travel was instated Honolulu and

Maui counties were the most similar, situation that reversed afterwards.

In regards to mobility and movement of the counties from the bo�om halves of Fig. 6, 10, 14, and 18,
we acknowledge that the counties behavior follow a pa�ern that following the onset of the pandemic,
movement dramatically slowed down. Afterwards, it began to plateau towards a movement index between
the shutdown and normal. Curiously, the correlation between the mobility index and the daily case is far
from strong, and in the case of Kaua‘i county the picture is more similar to anti-correlation (see Fig.17).
It suggests that the spread of the virus among households, especially large and multi-generational, could
significantly contribute to the overall daily cases. As we can observe from the 3D zip code maps, the cases
are very localized. Not surprisingly, they are higher in urban locations and towns where the population
density, as well as the probability of indoor gatherings, is higher.
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We use three other Islands: Japan, Iceland, Puerto-Rico for comparison with our counties. We ran a fit
with our compartmental model for the three countries and analyze similarity by looking at the qualitative
structure of the results as captured by merge trees (see e.g. [30]). �e la�er construct is a topological
descriptor of functions, and is constructed by tracking how connected components of the sublevel sets
appear and merge as the threshold for the sublevel sets increases. �is comparison is favored to a standard
L2 metric due to time shifts in the course of the pandemic for the various countries. An easy way to
visualize this process is to move a horizontal line from the bo�om to the top of the graph of a function and
keep track of the function values at which a new connected component of the graph appears under the line
or two existing components get merged. �e actual horizontal locations of the branches, which represent
the connected components, is not important, just their relative (left-right) positions. �e merge trees for
our three counties and the aforementioned countries are shown in Fig.20. �ey were computed using the
normalized time series for the daily cases numbers starting from June 15. We also slightly simplified the
structure (for illustration purposes) by removing very small branches. We can see that the Honolulu county
merge tree is most similar to the Iceland merge tree and the Maui county merge tress is most similar to the
Japan merge tree. �e complexity of the Hawai‘i county merge tree makes it more similar to the Puerto
Rico merge tree, although these two are not as good of a match as the other pairs.
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Fig 20. Merge trees elucidate the qualitative structure of the daily case numbers over time.

Figures 21, 22 and 23 display the model fit as well as the β values for Honolulu, Hawai‘i and Maui
counties with their most similar Islands using the merge trees similarity of Fig.20. Table 14 provides the
initial values for Iceland, Japan and Puerto-Rico used by our model. travel restrictions vary widely between
countries, see Table 15 for the estimate made for Iceland, Japan and Puerto-Rico.

Iceland, most similar to Honolulu County, detected their first case in February and had a significant
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first wave, but then controlled the spread beside a super spreader event trigger by two travelers. Traveling
has then be very restricted which is why the daily cases are mostly in the single digits at the end of the fit.

Fig 21. Top: Comparison between the daily cases between Honolulu County and Iceland. �e blue fit for
Honolulu correspond to not taking into account the travelers. Bo�om: Superposition of the transmission
rate values optimized for the fits above.

Hawai‘i county is most similar to Puerto-Rico. �e accuracy of the data for Puerto-Rico is unclear and
it was very difficult to find the travel restrictions. �e primary difference is the peak in December that
Puerto-Rico suffered.
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Fig 22. Top: Comparison between the daily cases between Hawai‘i County and Puerto Rico. �e blue fit
for Hawai‘i county is a smoothing occurring by neglecting the travelers. Bo�om: Superposition of the
transmission rate values optimized for the fits above.

Maui and Japan display a very similar qualitative curve, especially when travelers are ignored for
Maui. �e reason for Japan explosive growth at the end of the year is a�ributed to a few factors, including
a controversial encouraging domestic travel policy that is as of January more restrictive and a possible
COVID-19 fatigue by the population.
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Fig 23. Top: Comparison between the daily cases between Maui County and Japan. Blue fit for Maui is
without travelers. Bo�om: Superposition of the transmission rate values optimized for the fits above.

Region Sc(0) Sh(0) Date for Ic,0(0) = 1

Japan 126500000 1673518 Feb 01
Iceland 356991 1404 Feb 21

Puerto Rico 3194000 89000 Mar 04
Table 14. Susceptible population for the three countries.

Conclusion

In this paper, using the Hawaiian archipelago, we explore the importance of taking into account local
variations in island chains. Ratios between residents and tourists as well as age demographic and other
specificity call for targeted mitigation measures and Safe Travel program when in a pandemic. (Implemen-
tation of the Safe Travel program varies between the different Hawaiian counties.) �e State of Hawai‘i
has launched an aggressive mass vaccination campaign starting in December but the effects of which are
only now starting to impact the daily case rate. During the period of our study the very small impact of
vaccination was neglected. As of February 2, 2021 we have 202,200 doses administered. �e State policy is
to keep the vaccination plan as originally planned to 2 doses per individuals even though two cases of the
more transmissible B1.1.7 have been detected in Hawai‘i . As of February 8, 2021 cases have been decreasing
in all four counties.

Not studied in this paper is hospital beds capacity, for the State of Hawai‘i . �e county of Honolulu
is home to most of the hospital facilities and healthcare workers. �e primary reason we did not discuss
this here is the lack of consistent and clear data regarding hospitalisations. Similarly, quantification of
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COVID-19 related fatalities in the State of Hawai‘i is delicate, indeed for instance in January about 60 deaths
have been reclassified and added to the cumulative count.

It is critical to conduct studies such as those presented here and capture critical data to be used in future
pandemics. We are now working with the Hawai‘i government on scenarios to understand impact of lifting
some of the mitigation measures.
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Supporting information

S1 Fig. Counties Zip Codes. Zip Code Tabulation areas for the four counties. From the State of Hawai‘i
Office of Planning 2010 Census Reference Maps.

Fig 24. ZipCodes per County. Zip Code Tabulation areas for the four counties. From the State of
Hawai‘i Office of Planning 2010 Census Reference Maps.

S1 Appendix. Model Dynamics. �e equations for the dynamics of the three population groups are
essentially the same and are given below. Only the hazard rate and the parameters determining transition
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rates into quarantine may be different between the three groups.

S(t+ 1) = e−λ(t)S(t) (1)
E0(t+ 1) = (1− e−λ(t))S(t) (2)
Ei(t+ 1) = (1− pi−1)(1− qa,i−1)Ei−1(t),

i = 1, . . . , 13 (3)
Eq,i(t+ 1) = (1− pi−1)(qa,i−1Ei−1(t)+

+ Eq,i−1(t)), i = 1, . . . , 13 (4)

I0(t+ 1) =
13∑
i=0

pi(1− qa,i)Ei(t) (5)

I1(t+ 1) = (1− qs,0)I0(t) (6)
I2(t+ 1) = (1− qs,1)I1(t) + (1− r)(1− qs,2)I2(t) (7)
Ij(t+ 1) = r(1− qs,j−1)Ij−1(t)+

+ (1− r)(1− qs,j)Ij(t), j = 3, 4 (8)

Iq,0(t+ 1) =
13∑
i=0

pi(qa,iEi(t) + Eq,i(t)) (9)

Iq,1(t+ 1) = Iq,0(t) + qs,0I0(t) (10)
Iq,2(t+ 1) = Iq,1(t) + qs,1I1(t)+

+ (1− r)(qs,2I2(t) + Iq,2(t)) (11)
Iq,j(t+ 1) = r(qs,j−1Ij−1(t) + Iq,j−1(t))+

+ (1− r)(qs,jIj(t) + Iq,j(t)), j = 3, 4 (12)
R(t+ 1) = R(t) + rI4(t) + rIq,4(t)+

+ (1− p13)E13(t) + (1− p13)Eq,13(t) (13)

Below is a detailed description of the variables, all of which depend on time, t, measured in days.

• Variable S(t). �e number of susceptible individuals.

• Variables Ei(t). �e number of asymptomatic infected individuals i days after exposure who are
not quarantined.

• Variables Eq,i(t). �e number of quarantined asymptomatic infected individuals i days after expo-
sure.

• Variables Ij(t), i = 0, 1. �e number of symptomatic infected individuals i days after the onset of
symptoms who are not quarantined.

• Variables Ij(t), j = 3, 4, 5. �e number of symptomatic infected individuals at the nominal stage i
of the illness. Note that a person can stay at a given stage for several days.
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• Variables Iq,j(t), j = 0, 1. �e number of quarantined symptomatic infected individuals, with j
representing either the number of days after the onset of the symptoms (j = 0, 1), or the stage of the
illness (j = 2, 3, 4).

• Variable R(t). �e number of removed (recovered or deceased) individuals.

Spli�ing exposed individuals into multiple stages, Ei, allows us to capture possible differences in the
progression of the asymptomatic phase of the disease. Importantly, it allows us to take into account that,
according to the Centers for Disease Control and Prevention (CDC) as well as other sources, about 40%
of people who contract SARS-CoV-2 remain asymptomatic, and the incubation period for those who do
develop symptoms is somewhere between 2 to 14 days after exposure, with the mean incubation period
between 4 and 6 days [22, 25, 26]. Individuals who do not develop symptoms after 14 days are assumed
recovered. �e use of the quarantine sub-compartments, Eq,i, allows us to capture the effect of contact
tracing and the reduced transmission rate for quarantined individuals.

Similarly, having multiple stages for infected individuals be�er reflects progression of the symptomatic
phase of the disease. �e first two stages represent the first two days of symptoms, but the next three
should be understood as phases of the immune system fighting the disease. �ere is a substantial variability
(due to age as well as other factors) in the number of days any given person can spend at each stage. Our
model implicitly assumes that the symptomatic phase of the illness lasts at least 5 days (in the unlikely case
that each stage lasts just one day).

As we mentioned, a crucial part of the dynamics relates to the hazard rate. For the general community,
group C, we have

λc(t) = β(1− pmp(1− pme))
[
(Ic + εEc) + γ((1− ν)Ic,q + εEc,q)+

ρ[(Ih + εEh) + γ((1− ν)Ih,q + εEh,q)]+

ρv[(Iv + εEv) + γ((1− ν)Iv,q + εEv,q)]
]
/(Nc + ρvNv), (14)

and for the tourists we have

λv(t) =
ρvβλc + βv(1− pmp(1− pme))

[
(Iv + εEv) + γ((1− ν)Iv,q + εEv,q)

]
(ρvNc +Nv)

, (15)

where we suppressed the dependency on t on the right for convenience. We use sub-indices c (community),
h (healthcare workers), and v (tourists) to indicate the appropriate group. Subscript q indicates quarantined
individuals. Here pme and pmp represent mask efficiency and mask compliance. Mask efficiency is chosen
to reflect a reduction in transmission of 75% for all regions. Mask compliance is set at 20% for all regions
at the start of the pandemic, but this value is modified on the dates the regions introduce mask regulations.
Nv denotes the mixing pool for the visitors and Nc denotes the mixing pool for the general community,
computed as

Nc(t) = Sc + Ec + Ic +Rc + ρ(Sh + Eh + Ih +Rh) + ρv1(Sv + Ev + Iv +Rv). (16)

where variables E and I here represent the sum over all the stages within these compartments. For the
healthcare worker group, we have

λh(t) = ρλc + βη
[
(Ih + εEh) + κν(Ih,q + Ic,q + Iv,q)

]
/Nh, (17)
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where Nh(t) = Sh + Eh + Ih +Rh.
�e model fit plot the following value

∑
x=c,h,v

( 3∑
i=1

qxs,iI(i) + (1− r)qxs,4I(4) +
1∑
i=1

2qxa,iE(i)
)

(18)

�e safe travel program started on October 15, 2020 which is when travelers are implemented in the
model (they were negligible before that). Based on Safe Travels Digital Platform from the State of Hawai’i, we
are assuming a pre-travel testing rate of 86%, a false negative rate of 0.5%. We also assume 1% of untested
visitors go into exposed quarantine (we had to remove exempt travellers) and a 5% prevalence for the virus.
�e pre-testing rates for travelers to Maui county is higher, and assumed to be 95%. Traveler average
influx is modeled as a piece-wise linear function over two week intervals between the aforementioned time
interval. �e average influx for the comparing countries is assumed for simplification to be linear over the
same time period. See Table 15.

Region Tourists Returning Residents
Honolulu [1353,2124,3051,2028,4724,2195] [692,716,967,951,1014,1018]
Maui [800,1000,2000,1700,3000,2500] [128,127,135,158,160,156]

Hawai‘i [297,593,981,751,1712,1000] [116,113,108,136,124,128]
Japan 700 700
Iceland 0 0

Puerto Rico 3500 500
Table 15. Average visitors per day, starting on October 15, 2020 to January 15, 2021.
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