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Abstract

Selfie-based biometrics has great potential for a wide range of applications from marketing to higher security environments like
online banking. This is now especially relevant since e.g. periocular verification is contactless, and thereby safe to use in pandemics
such as COVID-19. However, selfie-based biometrics faces some challenges since there is limited control over the data acquisition
conditions. Therefore, super-resolution have to be used to increase the quality of the captured images. Most of the state of the art
super-resolution methods use deep networks with large filters, thereby needing to train and store a correspondingly large number of
parameters, and making their use difficult for mobile devices commonly used for selfie-based.

In order to achieve an efficient super-resolution method, we propose an Efficient Single Image Super-Resolution (ESISR) algo-
rithm, which takes into account a trade-off between the efficiency of the deep neural network and the size of its filters. To that end,
the method implements a novel loss function based on the Sharpness metric. This metric turns out to be more suitable for increasing
the quality of the eye images. Our method drastically reduces the number of parameters when compared with Deep CNNs with
Skip Connection and Network (DCSCN): from 2,170,142 to 28,654 parameters when the image size is increased by a factor of
x3. Furthermore, the proposed method keeps the sharp quality of the images, which is highly relevant for biometric recognition
purposes. The results on remote verification systems with raw images reached an Equal Error Rate (EER) 8.7% for FaceNet and
10.05% for VGGFace. Where embedding vectors were used from periocular images the best results reached an EER of 8.9% (x3)
for FaceNet and 9.90% (x4) for VGGFace.

Keywords: Super-Resolution, Periocular Verification, Selfie Biometric.

1. Introduction

Smartphones, and mobile devices in general, play nowadays
a central role in our society. We use them a daily basis not only
for communication purposes, but also to access social media
and for sensitive tasks such as online banking. In order to in-
crease the security level of those more sensitive applications,
verifying the subject’s identity represents a key. To tackle it,
many companies are currently working towards creating appli-
cations to verify the subject’s identity by comparing a face im-
age stored in the embedded chip of an ID-Card/Passport and
a selfie image using Near Field Communication (NFC) from
smartphones [1]. This represents a user-friendly identity ver-
ification process, which can be easily embedded into numer-
ous processes. However, this verification form also faces some
challenges: that selfie image is captured in an uncontrolled sce-
nario, where occlusions due to wearing a scarf in winter or a hy-
gienic facial mask in a pandemic such as COVID-19 may hinder
the performance of general face recognition algorithms. There-
fore, there is a reinforced need to explore alternatives which can
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deal with such occluded images successfully, such as utilising
the periocular region for recognition purposes.

The aforementioned reasons have increased the interest on
periocular based biometrics in the last decade in different sce-
narios [2, 3]. In particular, it has been shown that periocular im-
ages captured with mobile devices for recognition purposes are
mainly coming from selfie face images. And the number of dig-
ital photos will increase every year: it is anticipated that in 2020
1.4 trillion images will be taken, and 90% of them will come
from smartphones1. In order to recognise individuals from a
selfie, the periocular region needs to be cropped, and the result-
ing periocular sample usually has often a very low-resolution
[4]. Moreover, the subjects capture selfie images in multiple
places and backgrounds, using selfie sticks, alone, or with oth-
ers. This translates into a high variability within the images, in
terms of size, lighting conditions, and face pose.

With the aim of improving the quality of such low-resolution
images, several Single Image Super-Resolution (SISR) meth-
ods have been recently proposed [5, 6], mainly based on convo-
lutional neural networks. Even though some authors have en-
hanced such networks to do more efficient the reconstruction re-
sults of the super-resolution [7], most approaches still use deep

1https://focus.mylio.com/tech-today/

how-many-photos-will-be-taken-in-2020
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Figure 1: Block diagram of the verification framework. Top: Verification system proposed, including a super-resolution approach. Bottom: Traditional periocular
verification systems.

models, which demand larger resources and are thus not suit-
able for mobile or IoT devices. Furthermore, the loss function
used in most techniques is based on structural similarity (SSIM)
and Peak Signal to Noise Ratio (PSNR) metrics. Even though
those metrics are appropriate for increasing the resolution of
general purpose images (e.g., landscapes, cities, or birds) they
are not that suitable for increasing the quality of iris based bio-
metrics applications. In contrast, the ISO/IEC 29794 standard
on biometric sample quality — Part 6: Iris image data describes
the sharpness as one relevant quality.

In this work, we propose a method to verify the identity from
a smartphone selfie periocular image in the visible spectrum
(VIS) and an efficient super-resolution approach (see Fig. 1).
As already mentioned, this is a challenging task since there is
limited control of the quality of the images taken: selfies can
be captured from different distances, light conditions, and res-
olutions. Therefore, to tackle these issues, our work proposes
a single image super-resolution algorithm method with a novel
loss function based on the sharpness LoG metric and a light-
weight CNN. This model takes into account the trade-off be-
tween the number of layers and filter sizes in order to achieve
a light model suitable for mobile devices applications. Addi-
tionally, we explore pixel-shuffle and transposed convolutions
in order to recover the fine details of the periocular eye images.
To validate the proposed approach, we trained our best super-
resolution method on a dataset and then tested it on a totally
different database. Our method drastically reduces the num-
ber of parameters when compared with Deep CNNs with Skip
Connection and Network (DCSCN): from 2,170,142 to 28,654
parameters when the image size is increased by a factor of x2.

This paper is an extension of our previous work [8]. In that
work, we focused on achieving an accurate ESISR algorithm
for periocular eye images taken from selfie images, reporting
results in terms of image similarity for the recovered images
on a smaller Samsung dataset. In this paper, we evaluate in
more detail this new ESISR architecture and also benchmark
it with two new state of the art methods: WDSR-A and SR-
GAN. A full explanation of the reasons that lead us to such
architecture is discussed in this work since the reduction of lay-
ers in the architecture is not trivial. As an additional contribu-
tion, this paper includes the evaluation and performance of our
proposed methods on periocular verification systems using two

pre-trained CNNs: FaceNet and VGGFace. The larger MO-
BIO database was used to evaluated the SR methods and pe-
riocular recognition systems. Detection Error Trade-off (DET)
curves are included to show the performance and the efficiency
of our proposal. All these new experiments are benchmarked
with those previously obtained in [9, 10, 11].

Therefore, the main contributions from this article can be
summarised as follows:

• An efficient architecture using only 7 layers with a fea-
ture extractor and one block based on recursive learning
of reconstruction is proposed to reduce the number of pa-
rameters in comparison with the state-of-the-art WDSR-A,
SRGAN and DCSCN algorithms (Section 2).

• A recursive pixel-shuffle technique is introduced over a
transposed convolution in order to extract and keep high
details of periocular images.

• A novel database for selfie periocular eye images is pre-
pared and will be available for researchers upon request.

• A novel loss function that includes a sharpness metric
along with the SR loss function was proposed. This metric
is a quality metric for iris.

• A periocular verification system based on embedded vec-
tor from two pre-trained models FaceNet and VGGFace
with a SR-based pre-processing of the samples (x2, x3 and
x4) was tested.

The rest of the article is organised as follows. Sect.2 sum-
marises the related works on periocular recognition and su-
per resolution. Recognition and super-resolution method is de-
scribed in Sect. 3. The experimental framework is then pre-
sented in Sect. 4 and the results are discussed in Sect. 5. We
conclude the article in Sect. 6.

2. Related work

2.1. Super-Resolution (SR)

Super-resolution (SR) is the process of recovering a high-
resolution (HR) image from a low-resolution (LR) one [12, 5].
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In contrast, supervised machine learning approaches learn map-
ping functions from LR images to HR images from a large
number of examples. The mapping function learned by these
models is the inverse of a downgrade function that transforms
HR images into LR images. Such downgrade functions can be
known or unknown.

Many state-of-the-art SR models learn most of the mapping
function in LR space followed by one or more upsampling lay-
ers at the end of the network. This is called post-upsampling.
Earlier approaches first upsampled the LR image with a pre-
defined up-sampling operation and then learned the mapping
in the HR space (pre-upsampling SR). A disadvantage of this
approach is that more parameters per layer are required, which
in turn leads to higher computational costs and limits the con-
struction of deeper neural networks [5]. SR requires that most
of the information contained in an LR image must be preserved
in the SR image. SR models therefore mainly learn the residu-
als between LR and HR images. Residual network designs are
therefore of high importance: identity information is conveyed
via skip connections whereas reconstruction of high frequency
content is done on the main path of the network [5].

Dong et al. [12] proposed several SISR algorithms which
can be categorized into four types: prediction models, edge-
based methods, image statistical methods, and patch-based (or
example-based) methods. This method uses 2 to 4 convolu-
tional layers to prove that the learned model performs well on
SISR tasks. The authors concluded that using a larger filter
size is better than using deeper Convolutional Neural Networks
(CNNs).

Kim et al. [13] proposed an image SR method using a
Deeply-Recursive Convolutional Network (DRCN), which con-
tains deep CNNs with up to 20 layers. Consequently, the model
has a huge number of parameters. However, the CNNs share
each other’s weights to reduce the number of parameters to be
trained, thereby being able to succeed in training the deep CNN
network and achieving a significant performance. The authors
conclude in their work that deeper networks are better than
large filters.

Yamanaka et al. [9] proposed a Deep CNN with a Residual
Net, Skip Connection and Network (DCSCN) model achiev-
ing a state of the art reconstruction performance while reducing
by at least 10 times the computational cost. According to the
existing literature, deep CNNs with residual blocks and skip
connections are suitable to capture fine details in the recon-
struction process. In the same context, [14] and [15] propose
the pixel-shuffle and transposed convolution algorithm in or-
der to extract the most relevant features from the images. The
transposed convolutional layer can learn up-sampling kernels.
However, the process is similar to the usual convolutional layer
and the reconstruction ability is limited. To obtain a better re-
construction performance, the transposed convolutional layers
need to be stacked, which means the whole process needs high
computational resources [9]. Conversely, pixel-shuffle extracts
features from the low-resolution images. The authors [9] argue
that batch normalization loses scale information of images and
reduces the range flexibility of activations. Removal of batch
normalization layers not only increases SR performance but

also reduces GPU memory 40%. This way, significantly larger
models can be trained.

Ledig et al. [11] proposed a deep residual network which
is able to recover photo-realistic textures from heavily down-
sampled images on public benchmarks. An extensive Mean-
Opinion-Score (MOS) test shows significant gains in percep-
tual quality using SR based on Generative Adversarial Network
(SRGAN). In addition, the authors present a new perceptual
loss based on content loss and adversarial loss.

Yu et al. [10] proposed the key idea of wide activation
to explore efficient ways to expand features before ReLU,
since simply adding more parameters is inefficient for real-
time image SR scenarios. The authors present two new net-
works named Wide Activation for Efficient and Accurate Im-
age Super-Resolution (WSDR). These networks (WDSR-A and
WDSR-B) yielded better results on the large-scale DIV2K im-
age super resolution benchmark in terms of PSNR with the
same or lower computational complexity. Similar results but
with a larger number of parameters are presented by Lim et
al. [16] in a model called Enhanced Deep Residual Networks
for Single Image Super Resolution (EDSR).

Specifically for biometric applications, some papers have ex-
plored the use of SR in iris recognition in the visible and near-
infrared spectrum. Ribeiro et al. [17] proposed a SISR method
using CNNs for iris recognition. In particular, the authors test
different state of the art CNN architectures and use different
training databases in both the near-infrared and visible spectra.
Their results are validated on a database of 1,872 near-infrared
iris images and on a smartphone image database. The exper-
iments show that using deeper architectures trained with tex-
ture databases that provide a balance between edge preserva-
tion and the smoothness of the method can lead to good results
in the iris recognition process. Furthermore, the authors used
PSNR and SSIM to measure the quality of the reconstruction.
More recently, Alonso-Fernandez et al. [18] presented a com-
prehensive survey of iris SR approaches. They also described
an Eigen-patches reconstruction method based on the princi-
pal component analysis ans Eigen-transformation of local im-
age patches. The inherent structure of the iris is reproduced
by building a patch-position-dependent dictionary. The authors
also used PSNR and SSIM to measure the quality of the recon-
struction in the NIR spectrum and in the VSIRIS database in
the visible spectrum [19].

2.1.1. Metrics
Deep learning-based methods for SISR significantly outper-

form conventional approaches in terms of Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity(SSIM). SRCNN was
the first work utilising an end-to-end CNN as a mapping func-
tion from low-resolution images to their high-resolution coun-
terparts. Since then, various CNN architectures were proposed
in order to improve both the accuracy and the efficiency. In this
section, we review these two metrics.

SSIM is a subjective metric used for measuring the structural
similarity between images from the perspective of the human
visual system. It is based on three relatively independent prop-
erties, namely: luminance, contrast, and structure. Abstractly,
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Figure 2: Proposed Super-Resolution method ESISR.

the SSIM formula can be seen as a weighted product of the
comparison of luminance, contrast, and structure computed in-
dependently. Therefore, SSIM can be defined as:

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(1)

where µ and σ represent the average and variance of x and y,
respectively; and C1 and C2 are two variables to stabilise the
division with a weak denominator.

PSNR is a common objective metric to measure the recon-
struction quality of a lossy transformation. It is inversely pro-
portional to the logarithm of the Mean Squared Error (MSE)
between the ground truth image and the generated image:

PSNR = 10 log10

(
max2

MSE

)
(2)

where max denotes the maximum pixel value, and MSE the
mean of the square of differences between the pixel values of
the erroneous output (due to soft errors and frame drops) and
the correctly reconstructed output (without errors). Therefore,
this metric measures pixel differences and not the quality of the
images.

2.2. Periocular recognition

Periocular recognition has been explored from traditional
feature extraction such as intensity, shape, texture, fusion, and
off-the-shelf CNN features with pre-trained models. However,
only a few papers that previously (according to our state of the
art) explore the use of the SR method to improve the quality of
the RGB images coming from periocular selfies captures. These
remote captures present uncontrolled real scenarios.

Kumari [6] et al.˜ provided a survey of periocular biomet-
rics and deep insight of various aspects such as the periocular
region utility as a stand-alone modality, its fusion with iris, ap-
plication in the smartphone authentication, and the role of the
in soft biometric classification. No SR methods are reported.

Ahuja [20] et al.˜ proposed a hybrid convolution-based
model, for verifying pairs of periocular RGB images. They
compose the hybrid model as a combination of an unsupervised

and a supervised convolution neural network, and augment the
combination SIFT model.

Chandrashekhar [21] et al.˜ propose a new initialization strat-
egy for the definition of the periocular region-of-interest and the
performance degradation factor for periocular biometric and the
influence of HOG, LBP, SIFT, Fusion at the Score Level, Effect
of Reference Points of the eyes, Covariates, Occlusion Perfor-
mance and Pigmentation Level Performance.

Kiran [22] et al.˜ explore multi-modal biometrics as a means
for secure authentication. The proposed system employs face,
periocular, and iris images, all captured with embedded smart-
phone cameras. As the face image is captured from a close
distance, one can always obtain periocular and iris informa-
tion with significant details. It also explores various score level
fusion schemes of complementary information from all three
modalities.

Diaz [23] et al.p̃roposed a method to apply existing pre-
trained architectures, proposed in the context of the ImageNet
Large Scale Visual Recognition Challenge, to the task of pe-
riocular recognition. These networks have proven to be very
successful for many other computer vision tasks apart from the
detection and classification tasks for which they were designed.
They demonstrate that these off-the-shelf CNN features can ef-
fectively recognize individuals based on periocular images, de-
spite being trained to classify generic objects.

3. Proposed method

As mentioned in Sect. 1 and depicted in Fig. 1, we fo-
cus in this work in a two stage system in order to improv-
ing SR approaches for periocular images in order to enhance
the recognition performance of periocular-based biometric sys-
tems. Therefore, we describe in Sect. 3.1 the proposed ESISR
technique proposed and in Sect. 3.2 the feature extraction and
comparison methods utilised for periocular recognition.

3.1. Stage-1: Super-Resolution

Since SR in general is an image-to-image translation task
where the input image is highly correlated with the target im-
age, researchers try to learn only the residuals between them
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(i.e. global residual learning). This process avoids learning a
complicated transformation from a complete image to another.
Instead, it only requires learning a residual map to restore the
missing high-frequency details. Since most regions’ residuals
are close to zero, the model complexity and learning difficulty
are thus greatly reduced.

This local residual learning is similar to ResNet to alle-
viate the degradation problem caused by ever-increasing net-
work depths, reduce training difficulty, and improve the learn-
ing ability. For these reasons, we are using recursive learn-
ing to learn higher-level features without introducing an over-
whelming number of parameters, which means applying the
same modules multiple times.

In addition to choosing an appropriate network architecture,
the definition of the perceptual loss function is critical for the
performance of the proposed method based on the DCSCN net-
work, as mentioned in Sects. 1 and 2. While SR is commonly
based on the MSE, PSNR, and SSMI metrics, we have designed
a loss function that incorporates as well the sharpness with re-
spect to perceptually relevant features. The function thus bal-
ances between reconstructing images by minimising the differ-
ence of the sharpness values and weights the results of SSIM
and PSNR.

In this section, we present an efficient image SR network that
is able to recover periocular images from selfies (ESISR). Our
network includes two building blocks, as it can be observed in
Fig. 2: A feature extraction and a reconstruction stage based
on DCSCN. The description of each stage of the algorithm are
described in the remainder of this section.

3.1.1. Pre-processing
The original RGB images captured with a smartphone rep-

resent an additive color-space where colors are obtained by a
linear combination of Red, Green, and Blue values. The three
channels are thus correlated by the amount of light on the sur-
face. In order to avoid such correlations, all the images were
converted from RGB to YCbCr. The YCrCb color space is de-
rived from RGB, and separates the luminance and chrominance
components into different channels. In particular, it has the fol-
lowing three components: i) Y, Luminance or Luma component
obtained from RGB after gamma correction; ii) Cr = R¬Y , how
far is the red component from Luma; and iii) Cb = B¬Y , how
far is the blue component from Luma. We only use Y compo-
nent in this work. The periocular image areas were automati-
cally cropped from faces to the size of 250 × 200 pixels.

3.1.2. Feature extraction
As mentioned above, the Y component of the converted im-

age is used as input of our model. Several patches of 32×32 and
48× 48 pixels were extracted from the image and used to grasp
the features efficiently. We look for the features that achieve a
better trade-off between the number and size of filters of each
CNN layer. Seven blocks of 5× 5 and 3× 3 have been selected.
The information is extracted using small convolutional blocks
with residual connections and stride convolutions in order to
preserve both the global and the fine the details in the perioc-
ular images. Only the final features from 3 × 3 and 5 × 5 pix-

Figure 3: Pixel-shuffle convolution layer that aggregates the feature maps from
LR space and builds the SR image in a single step. Based on [24].

Figure 4: Transpose-convolution operation representation. (a) The starting
matrix represents the input image. (b) Expanding operation adds zeros to the
images in order to increase the size. c) The convolution operation is performed
again in a new resolution. Based on [5].

els are concatenated, following the recursive pixel-shuffle ap-
proach (see Fig. 3). These local skip connections in residual
blocks make the network easier to optimize, thereby supporting
the construction of deeper networks.

A model with transpose convolution instead of pixel-shuffle
was trained to explore the quality of the reconstruction images
[5]. See Fig. 4. Transpose convolution operates conversely to
normal convolution, predicting the input based on feature maps
sized like convolution output. It increases image resolution by
expanding the image by adding zeros and performing convolu-
tion operations.

3.1.3. Reconstruction
Our reconstruction stage uses only one convolutional block

with 2 layers (Conv + Relu + Conv) in a recursive path. This
block includes 3 × 3 convolutions and pixel-shuffle algorithm
(see Fig. 2) to create a high-resolution image from a low-
resolution input. Batch normalization was removed. An op-
timized sub-pixel convolution layer that learns a matrix of up-
scaling filters to increase the final LR feature maps into the SR
output was used.

3.1.4. Perceptual loss function
The ISO/IEC 29794-62 standard methods used “to quantify

the quality of iris images, normative requirements on software
and hardware measuring the utility of iris images, terms, and
definitions for quantifying iris image quality, and standardized

2https://www.iso.org/standard/54066.html
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encoding of iris image quality:

LoG(x, y) = −
1
πσ4

[
1 −

x2 + y2

2σ2

]
e−

x2+y2

2σ2 (3)

The Laplacian of Gaussian operator(LoG) is thus the sharpness
metric used in this work. Calculation of the sharpness of an
image is determined by the power resulting from filtering the
image with a Laplacian of Gaussian kernel(F). The standard
deviation of the Gaussian is 1,4.

Now, it is important to highlight that the loss function aims to
improve the quality of the reconstruction. To that end, we com-
bine the SSIM and PSNR classical SR metrics with the sharp-
ness metric for iris images recommended, as follows:

L(ILR, IHR) = 0.5 · LoG (ILR, IHR) · [0.25 · SSIM (ILR, IHR)

+ 0.25 · PSNR (ILR, IHR)]
(4)

where ILR represents a low-resolution image, IHR the corre-
sponding high-resolution image recovered, and LoG the sharp-
ness as defined in Eq. 3. The best values of the weights for each
specific metric (i.e., 0.25, 0.25 and 0.50) were estimated in a
grid search with a train dataset.

3.2. Stage-2: Periocular recognition

Most traditional methods in the state of the art are based on
machine learning techniques with different feature extraction
approaches such as HOG, LBP and BSIF or the fusion of some
of them [6]. However, today we have powerful pre-trained deep
learning methods based on faces images. Using transfer learn-
ing techniques, the information extracted from some layers us-
ing fine-tuning techniques or embedding approaches could be
suitable to perform periocular verification. This is the approach
followed in this article.

This task involves information from periocular images esti-
mating an eye embedding vector for a new given eye from a
selfie image. An eye embedding is a vector that represents the
features extracted from the eyes periocular images and compar-
ing it with the embedding vector. This comparison occurs using
euclidean distance to verify if the distance is below a predefined
threshold, often tuned for a specific dataset or application. For
this paper, a VGGFace[25] and FaceNet [26] models have been
used as a feature extractor for periocular recognition.

4. Experimental Setup

4.1. Experimental Protocol

In order to assess the soundness of the proposed method, we
have first evaluated the SR approaches and then the complete
pipeline including the periocular recognition stage.

Experiment 1 we have trained traditional DCSCN, WDSR-A
and SRGAN methods as a baseline for benchmarking purposes.
The main properties and default parameters of those methods
are summarised in the following.

DCSCN: Number of CNN layers = 12, Number of first CNN
filters = 196, Number of last CNN filters = 48, Decay Gamma

= 1.5, Self Ensemble = 8, Batch images for training epoch =

24,000, Dropout rate = 0.8, Optimizer function = Adam, Image
size for each Batch = 48, Epochs = 100, Early stopping = 10.

WDSR-A Number of residual blocks = 8, Number of CNN
layers in the main branch = 6, Number of expansion of resid-
ual blocks = 4, Number of filters main branch = 64, Number of
filters residual blocks = 256, Activation function = Relu, Op-
timization Function = Adam, Learning Rate = 1e-4 and 1-e-5,
Beta = 1e-7, Size of batch images = 96, Number of steps =

60,000.
SRGAN The SRGAN has two stages:
Generator: This stage is used for learning the inverse func-

tion for downsampling the image and to generate the LR images
from their respective HR, This stage is based in a pre-trained
VGG-54. The following parameters are used: Number of resid-
ual blocks = 16, Number of CNN layers with residual blocks =

2, activation function residual block = PRelu, Kernel size resid-
ual block = 3, CNN layers = 3, kernel size = 9, 3 and, 9. Filters
numbers = 64, Optimization function = Adam, Learning rate =

1e-4 and 1e- 5, batch image size = 96, Steps = 100,000, mini
size batches = 16.

Discriminator: In order to evaluate the similarity between
the images generated by the SR generator (VGG-54) and the
HR images, the architecture discriminator is trained with the
following parameters: CNN layers = 8, Filter numbers:64, 64,
128, 128, 256, 256, 512 and 512. Kernel size = 3, activation
function = Relu, Momentum batch normalization = 0.8, Op-
timization function = Adam, Learning Rate = 1e-5 and, 1e-6,
Batch size = 16, Steps = 100,000.

In order to test our ESISR method we carried out two differ-
ent experiments for the SR.

Experiment 2 evaluates our ESISR method using the pixel-
shuffle technique.

Experiment 3 analyses our proposal further improving the ef-
ficiency of the Experiment 2, and also studies the transpose con-
volution instead of pixel-shuffle. All the experiments measure
the quality of the produced SR images using the sharpness func-
tion defined in Eq. 3, and the efficiency in terms of the number
of features and parameters. It should be noted that the True
Sharpness represents the sharpness of the original image, and
Output Sharpness represents the sharpness of the output image
created by ESISR. Therefore, the goal is to achieve an Output
Sharpness as close as possible to the True Sharpness. From
those experiments, we selected the configuration achieving the
best performance. All methods were trained using the Samsung
database and tested with SET-5E dataset.

For periocular verification system, first we extract the embed-
ded information from original periocular images with SR. Af-
terwards feature extraction was applied to best super-resolved
images using x2, x3 and x4 increased sizing. All the SR meth-
ods for periocular verification were tested using the MOBIO
dataset. This dataset is totally different that was used to train
the SR stage.

A PC with Intel I7, 32 GB RAM, and GPU-1080TI was used
for all the experiments.
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4.2. Databases
In order to analyse the performance of the SR algorithm,

three databases were used. A new dataset was acquired in a
collaborative effort with subjects from different countries with
Samsung smartphones using the app, specially designed for this
purpose visualselfie.org3. This app was designed in order
to capture different variations of selfie scenarios in three dis-
tances, as depicted in Fig. 5. In more detail, 800 images were
selected to be used for training and 100 for testing4.

From the training dataset, 228,700 patches of 48 × 48 px.
were created for experiment 2 and 32 × 32 for experiment 3.

Figure 5: Example of Samsung databases. Left: closest position. Middle: half
arm extended. Right: full arm extended.

A second dataset called Set-5E was created to validate the
results. This database has 100 images from different subjects
acquired with different smartphones extracted from the CSIP
database in the visual spectrum [27]. It has 2004 images, de-
picting 50 subjects over 10 different mobile setups.

A third database MOBIO was used to super-resolved the size
of the images with the best pre-trained super-resolution model
(ESISR). And was used to measure the performance of the eyes
verification system. The MOBIO dataset comprises the biomet-
ric data from 152 volunteers. Each subject provided samples of
face, iris, and voice. There are in average 8 images for each
subject from a NOKIA N93i mobile. Some examples are pre-
sented in Fig. 6

Figure 6: MOBIO database examples.

5. Results and Discussion

5.1. Super-resolution models
Experiment 1: This experiment was used as a baseline in or-

der to evaluate the state of the art SR methods and our efficient

3Only available from smartphones
4A similar number of images are used in SOTA for general-purpose method.

For instances, DIV2K database.

proposal. The DCSCN, WSDR-A, and SR-GAN were tested
with default parameters.

Experiment 2: Our proposed and efficient ESISR method
was tested using pixel-shuffle and the new loss function includ-
ing the Sharpness metric (see Eqs. 3 and 4). The best parame-
ters for our proposal were: Number of CNN layers = 7, Number
of first CNN filters = 32, Number of last CNN filters = 8, De-
cay Gamma = 1.2, Self Ensemble = 8, Batch images for train-
ing epoch = 24,000, Dropout rate = 0.5, Optimizer function =

Adam, Image size for each Batch = 32, Epochs= 100, Early
stopping = 10.

Table 1 summarizes the results: Rows 1-3 show the results
for traditional SR methods (DSCN with 12 layers and 96 × 96
patches, WDSR-A with 8 residual blocks and 62 × 62 patches,
SR-GAN with 16 residual blocks and 96 × 96 patches). Rows
4 up to 6 present the results of our proposed method: ESISR-1
using the pixel-shuffle algorithm with only 7 convolutions lay-
ers and 48 × 48 patches, ESISR-2 using the pixel-shuffle algo-
rithm with only 7 convolutions layers and 32 × 32 patches, and
ESISR-3 using the transposed convolution algorithm with only
7 convolutions layers.

First we should note that all the image enlargement x2, x3,
and x4 extract the same number of features for each method
(i.e., 1,301 for DCSNN and 1,000 for ESISR). The bigger dif-
ference lies on the number of parameters of each method. The
DCSCN, WSDR-A and SR-GAN methods need a large num-
ber of parameters: for images increased for x2, the parame-
ters numbers are: 1,754,942; 597,000 and 24,864,000; for im-
ages increased for x3, the parameter numbers are: 2,170,142;
603,000 and 25.131.000 respectively, and for images increased
for x4m the parameter numbers are: 2,087,102; 610,000 and
26,939,000, respectively. These numbers are drastically re-
duced by the our ESISR proposed method, we needs only
27.209 parameters when the image is increased by x2, 28.654
parameters when increased by x3, and 64.201 parameters when
increased by x4.

In addition to that gain in terms of efficiency, we may ob-
serve in Table 1 that the newly proposed loss function based on
sharpness allows us to get a good reconstruction. The Output
sharpness for each scale value is similar to the values obtained
by DSCN (e.g. 16.85 vs. 16.70 for x2), and also close to the
target True Sharpness of 17.04. Therefore, we may conclude
that the proposed method keeps the sharpness quality of the im-
ages, thereby making it suitable for SR applications for mobile
devices.

Experiment 3: in addition to the configuration of ESISR
tested in Experiment 2, we also evaluated two additional ap-
proaches in our experiment. First, the most efficient implemen-
tation of ESISR with a big reduction of features (down to 131)
and a number of parameters with pixel-shuffle and 32 × 32 was
analysed (Table 1, row 5). Then, we also tested the method
using transposed convolution with the same number of 131 fea-
tures (Table 1, row 6). The Transpose convolutions layer is an
inverse convolutions layer that will both up-sample input and
learn how to fill in details during the model training process, at
the cost of increasing the number of parameters (i.e., less effi-
cient than pixel-shuffling). As we may observe in Table 1, the
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pixel-shuffle with 32 × 32 px. uses the same number of param-
eters as with 48x × 48 px. In contrast, the transposed convolu-
tion requires 100,316 parameters when the image is increased
by 2 (x2), 109,564 parameters when increased by 3 (x3), and
100,318 parameters when increased by 4 (x4). In spite of this
increase, the ESISR is still 10 to 20 times more efficient than
the traditional DCSCN.

Regarding the quality of the SR iris images, we can observe
that both configurations tested in this last experiment (row 5-
6) achieve a similar sharpness for the x3 and x4 scale val-
ues (14.43, 14.38, 15.46 and 16.32), but not for x2. In the
latter case, the pixel-shuffle approach clearly outperforms the
transpose-convolution method (15.43 vs. 14.38). The lower re-
sult of reconstruction was reached for the SRGAN method with
a higher number of parameters and a relevant difference of the
value of output sharpness. Reconstruction examples are pre-
sented in appendix section 8 at the end of the paper.

5.2. Periocular SR verification
Our periocular verification systems including a SR stage an-

alyzed in the previous section. In order to measure the quality
of the super-resolved images the MOBIO dataset was used to
evaluated the performance of the reconstruction (x2, x3 and x4)
using the best SR method proposed in the section 5.1 ESISR
with pixel-shuffle.

Two experiments were defined in order to explore the quality
of the verification systems as following.

Experiment 1 A FaceNet pre-trained model was used to ex-
tract the embedding information.

Experiment 2 A VGGFace pre-trained model was used to ex-
tract the embedding information.

For VGGFace the feature vector has a size of 2,622. For
FaceNet the feature vector has a size of 1,722.

Fig. 7 shows the Probability Density Functions of the em-
bedding data-vector for FaceNet and VGGFace. The VGGFace
data-vector is more spread between 0.1 and 1.0 instead of the
FaceNet data-vector which is concentrated between 0.1 and 0.4.
Both distributions shown an overlap when one embedded vector
from a selfie is compared with the same identity of the gallery
and with other other users.

Fig. 8, shows the DET curves results of periocular verifica-
tion system with a normal resolution in dark-blue and for SR
images by x2, x3 and x4 using the ESISR proposed method in
other tones of green and dashed lines.

Table 2, shows the results for different sizes of SR images
increased by a factor of x2, x3, and x4 and its benchmark with
the pre-trained FaceNet model and VGGFace as a feature ex-
tractor. VGGFace reached the best results with a lower Equal
Error Rate (EER) of 0.145. Row 2, shows the results of x3.
The results reported show the EER and False Not Match Rate
(FNMR) based on False Match Rate (FMR) at 1%.

FaceNet reached the best results with an EER of 8.7% for
images without SR. Row 1, shows the results of Low resolution
size. The lower result with an EER 9.5% was for SR x4. Row
4, shows the results of x4.

The best results for VGGFace reached an EER of 9.90% for
SR x4. Row 4, shows the results of x4. The lower result reached

Figure 7: Mated and Non-mated score distributions for FaceNet (left) and VG-
GFace (right)

.

an EER 10.05% for images without SR. Row 1, shows the re-
sults of normal size. Overall, FaceNet reached the best results
in all the models with x2, x3 and x4 in comparison with VG-
GFace. This is interesting for high security applications, since
operating points are usually defined at small FNMR values.

The results are related with the size of the embedded vector
extracted from pre-trained model showed that the feature ex-
tracted from FaceNet are more representative and general pur-
pose than VGGFace.

It is important to highlight that the three scales keep the qual-
ity of the periocular verification based on sharpness perceptual
loss proposed. Thus, a weighted perceptual loss help to keep
the quality of the images based on Sharpness metrics. Clearly,
this is the most suitable metric for been applied in periocular
iris images with SR than the traditional SNR and SSIM.

6. Conclusion

In this paper, we have proposed an efficient and accurate Im-
age Super Resolution method focused on the generation of en-
hanced eyes images for periocular verification purposes using
selfie images. To that end, we developed a two-stage approach
based on a CNN with pixel-shuffle, a new loss function based
on a sharpness metric (see Eq. 3), compliant with the ISO/IEC
29794-6 standard and a selfie periocular verification proposal.
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Table 1: Summary of the results for 3 different scales (x2, x3, and x4) for our system (ESISR) with different configurations and the benchmark with DCSCN,
WDSR-A, and SRGAN. True Sharpness denotes the sharpness for the original image (LR), and Output Sharpness the sharpness for reconstructed SR images.

Method Conv. #Feature Scale #Param PSNR SSIM True Sharp. Output Sharp.

DCSCN [9] 1,301
x2 1,754,942 37.11. 0.95 17.04 16.85
x3 2,170,142 32.82 0.91 18.05 16.45
x4 2,087,102 30.52 0.86 16.90 12.47

WDSR-A [10]
x2 597,000 47.87 0.98 17.04 10.89

Pixel-shuffle x3 603,000 46.59 0.97 18.05 10.82
x4 610,000 43.92 0.94 16.90 10.72

SRGAN [11]
x2 24.864.000 39.66 0.96 17.04 10.82

Pixel-shuffle x3 25.131.000 38.72 0.94 18.05 10.95
x4 26.930.000 34.09 0.88 16.90 10.64

ESISR-1 Pixel-shuffle 48x48 1,000
x2 27,209 36.49 0.95 17.04 16.70
x3 28,654 32.89 0.90 18.05 16.01
x4 64,201 29.08 0.86 16.90 12.00

ESISR-2 Pixel-shuffle 32x32 131
x2 27,209 38.91 0.90 17.04 15.43
x3 28,654 36.78 0.85 18.05 15.46
x4 64,201 35.47 0.81 16.90 16.34

ESISR-3 Transpose Convolution 131
x2 100,316 35.52 0.81 17.04 14.38
x3 109,564 36.84 0.85 18.05 15.06
x4 100,318 35.52 0.81 16.90 16.14

(a) FaceNet (b) VGGFace

Figure 8: DET curves benchmarking the performance of the baseline method (without SR) and SR with x2, x3 and x4.
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Table 2: Verification results for FaceNet and VGGFace. FNMR is given at
FMR=1%.

FaceNet VGGFace

Method EER(%) FNMR EER(%) FNMR

LR image 8.70 18.01 10.05 31.01
ESISR x2 9.21 20.02 9.94 29.12
ESISR x3 8.90 19.12 9.92 27.04
ESISR x4 9.52 24.01 9.90 24.05

In the feature extraction stage of our method, the structure
of the CNN model extracts optimised features, which are sub-
sequently sent to the reconstruction network. In this latter net-
work, we only used a recursive convolutional block with pixel-
shuffle to obtain a better reconstruction performance with re-
duced computational requirements. In addition, the model is
designed to be capable of processing original size images. Us-
ing these techniques, our model can achieve state of the art per-
formance with a fewer number of parameters (from the state of
the art DSCN with 2 million parameters, we achieve a compa-
rable quality with 27,000 parameters).

The perceptual loss function based on image sharpness that
we propose allows us to keep the sharpness of iris images in the
reconstructed images by x2, x3, and x4. This approach to im-
proving the quality of the reconstruction and the SR in perioc-
ular recognition systems to be implemented in mobile devices.

Regarding to the verification system, FaceNet reached the
best results in comparison to VGGFace. An EER of 8.7% with-
out SR and 9.2% for x2, 8.9% for x3, and 9.5% for x4 respec-
tively. Conversely, An small improvement in performance was
reached when VGGFace was used. An EER of 10.05% without
SR and 9.94% for x2, 9.92% for x3, and 9.90% for x4 respec-
tively.

Overall, there are marginal improvements for verification
systems when only the size of the images is considered in com-
bination with SR images. The information extracted with an
embedded vector from the periocular area with a pre-trained
model has a high quality of information for verification because
of the huge number of filters used during the training process.

The uncontrolled conditions such as sunlight, occlusions, ro-
tations, or the number of people in an image when a remote
selfie is capturing could be more challenging than the size of the
image for RGB selfie images. The extension of this improve-
ment to NIR iris images must be studied in a separate work.
Those uncontrolled conditions need to be studying to improve
the selfie periocular verification systems.

In future work, we are continue collected images in order
to train a specific periocular verification system based on CNN
from scratch or using transfer-domain techniques. In relation
to the number of images, we believed if we used state of the
art pre-train models, the machine learning-based methods can
be replaced by the CNN models. This, the selection of the pre-
trained models should be taken into account.
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(a)
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Figure 9: MOBIO examples (a) without SR, (b) with WSDR-A SR x2, (c) with
WDSR-A SR x3, and (d) with WDSR-A SR x4.

(a)

(b)

(c)

(d)

Figure 10: MOBIO examples (a) without SR, (b) with SRGAN SR x2, (c) with
SRGAN SR x3, and (d) with SRGAN SR x4;
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(d)

Figure 11: MOBIO examples (a) without SR, (b) with ESISR SR x2, (c) with ESISR SR x3, and (d) with ESISR SR x4.
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