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Abstract

Since early 2020 the COVID-19 pandemic has had a considerable impact on many aspects of daily life. A range of different
measures have been implemented worldwide to reduce the rate of new infections and to manage the pressure on national health
services. A primary strategy has been to reduce gatherings and the potential for transmission through the prioritisation of remote
working and education. Enhanced hand hygiene and the use of facial masks have decreased the spread of pathogens when gather-
ings are unavoidable. These particular measures present challenges for reliable biometric recognition, e.g. for facial-, voice- and
hand-based biometrics. At the same time, new challenges create new opportunities and research directions, e.g. renewed interest
in non-constrained iris or periocular recognition, touch-less fingerprint- and vein-based authentication and the use of biometric
characteristics for disease detection. This article presents an overview of the research carried out to address those challenges and
emerging opportunities.

Keywords: COVID-19, Biometrics, Mask, Hygiene, Touchless biometrics, Remote authentication, Mobile biometrics

1. Introduction

Since early 2020, the world has been grappling with the
COVID-19 pandemic caused by the new SARS-CoV-2 coro-
navirus. At the time of writing, there have been more than 80
million confirmed infections while almost 2 million have suc-
cumbed to the virus or related complications [1]. The main vec-
tor of disease transmission is exposure to respiratory particles
resulting from direct or close physical contact with infected in-
dividuals. Transmission can also occur from the transfer of vi-
ral particles from contaminated surfaces or objects to the eyes,
nose or mouth [1].

Various preventive measures have been adopted worldwide
to help curb the spread of the virus by reducing the risk of new
infections. These include local, national and international travel
restrictions, the banning of large gatherings and the encourage-
ment of physical distancing, remote working and education, and
strict quarantine policies, see e.g. [2]. Two of the most broadly
adopted measures are the (sometimes mandatory) use of protec-
tive facial coverings or masks [3] and enhanced hand hygiene
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(handwashing or disinfection using hydroalcoholic gel). Facial
masks, such as those illustrated in Fig. 1, can reduce viral trans-
mission through respiratory particles [4], while enhanced hand
hygiene can reduce the rate of new infections through contact
with contaminated surfaces or objects. Preventive measures, as
well as the virus itself, have necessitated consequential shifts
and disruption to daily life, with potentially long-lasting reper-
cussions impacting individuals, social and professional prac-
tices and processes, businesses both small and large, as well as
the global economy.

Such measures have had a considerable impact in our daily
lives. For instance, the use of facial masks covering the mouth
and nose in public spaces can decrease the usefulness of surveil-
lance systems or prevent us from unlocking our smartphone
using face recognition technologies. In this context, this arti-
cle focuses on the impact of the COVID-19 pandemic on bio-
metric recognition. Biometric technologies can be used for
automated identity verification and to distinguish individuals
based on their personal biological and behavioural character-
istics (e.g. face and voice respectively). Biometric solutions
frequently supplement or replace traditional knowledge- and
token-based security systems since, as opposed to passwords
and access cards, biometric characteristics cannot be forgotten
or lost. Furthermore, biometrics inherently and seamlessly en-
able diverse application scenarios which are either difficult or
infeasible using more traditional methods, e.g. continuous au-
thentication [6, 7], forensics [8], and surveillance [9].

Biometrics technologies have come to play an integral role
in society, e.g., for identity management, surveillance, access
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(a) Surgical mask [5] (b) Cloth mask [5] (c) Filter mask1 (d) Printed mask2

Figure 1: Examples of typical protective face masks

Table 1: Overview of popular biometric characteristics in the context of COVID-19.

Biometric Data acquisition Application area Operational Impact of

characteristic hardware mobile devices access control forensics surveillance prevalence COVID-19

Face commodity hardware 3 3 3 3 wide high

NIR Iris special sensor (3) 3 wide low
VIS Iris commodity hardware 3 (3) low low

Touch-based Fingerprint special sensor 3 3 3 wide high
Touchless Fingerprint commodity hardware 3 3 low low

Touch-based Hand Vein special sensor 3 low low
Touchless Hand Vein special sensor (3) 3 low low

Voice commodity hardware 3 3 3 3 wide medium

control, social and welfare management, and automatic bor-
der control, with these applications alone being used either di-
rectly or indirectly by billions of individuals [10, 11, 12, 13].
While reliance upon biometric technologies has reached a pro-
found scale, health-related measures introduced in response to
the COVID-19 pandemic have been shown to impact either di-
rectly or indirectly upon their reliability.

Table 1 provides a brief overview of the operational preva-
lence and COVID-19-related impacts and technological chal-
lenges in the context of the most widely (in operational sys-
tems) used biometric characteristics. They are reviewed and
discussed in further detail in the remainder of this article, in-
cluding a short introduction and description for each character-
istic for the non-expert readers. The rest of the article is or-
ganised as follows. The impact of facial masks on biometrics
technologies is discussed in Section 2. Section 3 addresses im-
pacts upon mobile and remote biometric authentication. Sec-
tion 4 describes new opportunities and applications that have
emerged as a result of the COVID-19 pandemic. Concluding
remarks are presented in Section 5.

2. Influence of facial coverings on biometric recognition

The use of facial coverings, such as masks, occlude a sub-
stantial part of the lower face. Such occlusions or obstructions
change dramatically the operational conditions for numerous
biometric recognition technologies. Such changes can make

1Source: www.ikatehouse.com
2Source: www.thenationalnews.com

biometric recognition especially challenging. A review of the
impacts of facial coverings is presented in this section, with a
focus upon facial, periocular, iris, and voice biometrics.

2.1. Face recognition
The natural variation among individuals yields a good inter-

class separation and thus makes the use of facial characteris-
tics for biometric recognition especially appealing. Traditional
solutions rely upon handcrafted features based on texture, key-
points, and other descriptors for face recognition [14]. More
recently, the use of deep learning and massive training datasets
has led to breakthrough advances. The best systems perform
reliably even with highly unconstrained and low-quality data
samples [15, 16]. Relevant to the study presented here is a large
body of research on occluded face detection [17] and recogni-
tion [18], though occlusion-invariant face recognition remains
challenging [19]. Most work prior to the COVID-19 pandemic
addresses occlusions from, e.g., sunglasses, partial captures, or
shadows which typify unconstrained, ‘in-the-wild’ scenarios.
The use of facial masks therefore presents a new and significant
challenge to face recognition systems, especially considering
the stringent operating requirements for application scenarios
in which face recognition technology is often used, e.g. auto-
mated border control. The requirement for extremely low error
rates typically depend on the acquisition of unoccluded images
of reasonable quality.

The most significant evaluation of the impact of masks upon
face recognition solutions was conducted by the National Insti-
tute of Standards and Technology (NIST) [20, 21]. The evalu-
ation was performed using a large dataset of facial images with
superimposed, digitally generated masks of varying size, shape,
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and colour. The evaluation tested the face recognition perfor-
mance of algorithms submitted to the ongoing Face Recog-
nition Vendor Test (FRVT) benchmark in terms of biometric
verification performance (i.e., one-to-one comparisons). The
false-negative error rates (i.e., false non-match rate) for algo-
rithms submitted prior to the pandemic [20], where observed
to increase by an order of magnitude, even for the most reli-
able algorithms. Even some of the best-performing algorithms
(as judged from evaluation with unmasked faces) failed almost
completely, with false-negative error rates of up to 50%.

Of course, these results may not be entirely surprising given
that systems designed prior to the pandemic are unlikely to have
been optimised for masked face data. The study itself also had
some limitations, e.g. instead of using genuine images collected
from mask-wearing individuals, it used synthetically generated
images where masks were superimposed using automatically
derived facial landmarks. Despite the shortcomings, the study
nonetheless highlights the general challenges to biometric face
recognition from face coverings and masks. The general ob-
servations are that: 1) the degradation in verification reliability
increases when the mask covers a larger proportion of the face
including the nose; 2) reliability degrades more for mated bio-
metric comparisons than for non-mated comparisons, i.e. masks
increase the rate of false non-match rate more than the false
match rate; 3) different mask shapes and colors lead to differ-
ences in the impact upon verification reliability, a finding which
emphasises the need for evaluation using genuine masked face
data; 4) in many cases, masked faces are not even detected.

A follow-up study [21], also conducted by NIST, evaluated
systems that were updated with enhancements designed to im-
prove reliability for masked faces. In addition to greater vari-
ability in mask designs, the study also considered both masked
probe as well as masked reference face images. While relia-
bility was observed to improve for masked faces, it remained
substantially degraded compared to unmasked faces (approx-
imately an order of magnitude lower). The degraded perfor-
mance of masked faces was equivalent to that for unmasked
faces and state-of-the-art systems from 2017. Increases in false-
match rates were also observed when both reference, as well as
probe faces are masked. Full details and results are available
from the NIST FRVT Face Mask Effects website [22].

Results from the related DHS Biometric Rally show similar
trends [23]. The DHS study was conducted in a setup simu-
lating real operational conditions using systems submitted by
commercial vendors. Significant difficulties in image acquisi-
tion as well as general degradation in biometric performance
were observed for masked faces. Like the NIST study, the DHS
study too found that, even with masked faces, today’s systems
perform as well as state-of-the-art systems from only a few
years ago [23] tested with unmasked face images.

These US-based studies are complemented by a number of
academic studies. Two datasets [5, 24] of masked face images
have been collected in Europe and China to support research
efforts. While [24] provides data, however, it does not provide
a formal evaluation of the effect of masks on face recognition
performance. Moreover, this study did not address a specific
usecase scenario, e.g. collaborative face verification. Damer

et al. [5] released a database of real masked face images that
were collected in three collaborative sessions. They include
realistic variation in the capture environment, masks, and il-
lumination. Evaluation results show similar trends exposed by
the NIST study [20]: difficulties in face detection and greater
impacts upon mated comparisons than non-mated comparisons.
While significantly smaller than the NIST dataset in the number
of data subjects and images, the use of real instead of synthet-
ically generated masked faces images increases confidence in
results.

From a technical perspective, face masks can be considered
as a subset of general face occlusions, and thus previous works
on this issue are relevant. A number of works have proposed
to automatically detect, and synthetically in-paint, the occluded
face areas. This aimed at generating realistic and occlusion-free
face images, as well as enabling a more accurate face recogni-
tion. Most of the better performing face completion solutions
are based on deep generative models [25, 26]. A recent study by
Mathai et al. [27] has shown that face completion can be ben-
eficial for occluded face recognition accuracy, given that the
occlusions are detected accurately. They have also pointed out
that the completion of occlusions on the face boundaries did
not have significant effect, which is not the case of face mask
occlusions. Thus, these results indicate that face image comple-
tion solutions are possible candidates to enhance masked face
recognition performance.

The use of transparent masks or shields may combat to some
extent the impact of opaque masks upon face recognition sys-
tems. Transparent masks, such as those shown in Fig. 2, allow
some portion of the masked face to remain visible but even their
impact is likely non-trivial. Transparent masks can cause light
reflections, visual distortions and/or blurring. Both opaque and
transparent masks, as well as strategies to counter their impact,
may increase the threat of presentation attacks. For example, it
is conceivable that masks with specific patterns could be used
to launch concealment or impersonation attacks, e.g. using con-
cepts similar to those in [28].

Regardless of the exact type of face mask, wearing one can
have an effect on the face image quality. Most biometric sys-
tems estimate the quality of a detected face image prior to fea-
ture extraction [29]. This quality estimation indicates the suit-
ability of the image for recognition purposes [30]. For existing
systems, the quality threshold configurations might lead to dis-
regarding samples with face masks and thus increase the failure
to extract rate. This link between face occlusions and face im-
age quality has been probed in previous works, however, not
exclusively for mask occlusions. One of these works, presented
by Lin and Tang [31], built on the assumption that occlusions
negatively effect the face image quality, in order to detect such
occlusion. A recent study by Zhang et al. [32] has demon-
strated the effect of occlusion on the estimated face mage qual-
ity, along with presenting an efficient multi-branch face qual-
ity assessment algorithm. The authors pointed out that images
with alignment distortion, occlusion, pose or blur tend to obtain
lower quality scores.

The studies conducted thus far highlight the challenges to
face recognition systems in the COVID-19 era and raise nu-
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(a) Transparent mask3 (b) Face shield4

Figure 2: Examples of alternative protective masks

merous open questions. These include, but are not limited to
large-scale tests using images with real and not digitally gen-
erated masks, identification (i.e. one-to-many search), demo-
graphic differentials, presence of additional occlusions such as
glasses, the effect on face image quality, unconstrained data ac-
quisition in general, as well as effects on the accuracy of human
examiners [21].

2.2. Iris recognition

The human iris, an externally visible structure in the human
eye, exhibits highly complex patterns which vary among indi-
viduals. The phenotypic distinctiveness of these patterns allow
their use for biometric recognition [33]. The acquisition of iris
images typically requires a camera with near-infrared (NIR) il-
lumination so that sufficient detail can be extracted for even
darkly pigmented irides. Recent advances support acquisition
in semi-controlled environments from at a distance even from
only reasonably cooperative data subjects on the move (e.g.
while walking) [34, 35].

Solutions to iris recognition which use mobile devices and
which operate using only visible wavelength illumination have
been reported in recent years [36, 37, 38]. Attempts to use im-
age super-resolution, a technique of generating high-resolution
images from low resolution counterparts, have also shown some
success by increasing image quality [39]. However, iris recog-
nition solutions seem more dependent than face recognition so-
lutions upon the use of constrained scenarios that lead to the
acquisition of high quality images [15, 16]. Nevertheless, iris
recognition systems have now been in operation worldwide for
around two decades. Near-infrared iris recognition has been
adopted in huge deployments of biometrics technology, e.g. in
the context of the Indian Aadhaar programme through which
more than 1 billion citizens have been enrolled using iris im-
ages [40] in addition to other biometric data. Due to their high
computational efficiency and reliability [41], iris recognition
systems are used successful within the Aadhaar programme for
intensive identification (1-N search) and de-duplication (N-N
search) [11].

3Source: https://www.theclearmask.com/product
4Source: https://3dk.berlin/en/covid-19/474-kit-for-face-

shield-mask-with-two-transparent-sheets.html

Figure 3: IrisGuard Inc. UAE enrolment station5

The success of automated border control systems used in the
United Arab Emirates [10], where it is common for individuals
to conceal a substantial part of their face on account of religious
beliefs, serve to demonstrate the robustness of iris recognition
systems to face coverings. In these scenarios, such as that il-
lustrated in Fig. 3, whereas face recognition systems generally
fail completely, iris recognition systems may still perform reli-
ably so long as the iris remains visible. They are also among
the least intrusive of all approaches to biometric recognition.
This would suggest that, at least compared to face recognition
counterparts, the reliability of iris recognition systems should
be relatively unaffected as a consequence of mask wearing in
the COVID-19 era.

It is worth mentioning that the usefulness of the anatomy of
the human eye with regard to biometrics is not limited to the
irides. For example, the retinal blood vessels are suitable for
the purposes of biometric recognition. However, retinal imag-
ing requires close proximity of a highly cooperative data sub-
ject to the specialised acquisition device which sends a beam
of light inside the eye to fully illuminate the retina (see e.g.
[42]). Although retinal structures exhibit a high degree of dis-
tinctiveness and hence good biometric performance, the need
for a specialised sensor and the perceived intrusiveness of the
acquisition process have been considered as obstacles to adop-
tion of this biometric characteristic. The blood vessels present
in the ocular surface have also been shown to exhibit some dis-
criminative power and hence suitability of biometric recogni-

5Source: https://en.wikipedia.org/wiki/File:IrisGuard-UAE.

JPG

4
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tion [43]. The acquisition process for those, albeit less arduous
than for the retinal images, still requires a high-resolution cam-
era and subject cooperation in gazing in the required directions.
Thus far, however, biometric recognition with ocular vascula-
ture received relatively little attention beyond academic studies.

2.3. Periocular recognition and soft-biometrics

Periocular recognition, namely recognition observing bio-
metric characteristics from the area surrounding the eye [44],
offers potential for a compromise between the respective
strengths and weaknesses of face and iris recognition systems.
Unlike face recognition, periocular recognition can be reliable
even when substantial portions of the face are occluded (opaque
masks) or distorted (transparent masks). Unlike iris recogni-
tion, periocular recognition can be reliable in relatively uncon-
strained acquisition scenarios. Compared to alternative ocu-
lar biometrics, periocular recognition systems are also less de-
manding in terms of subject cooperation.

Due to those and other properties, periocular recognition was
explored extensively during the last decade. Similarly to work
in iris recognition, much of it has direct relevance to biomet-
rics in the COVID-19 era, in particular with regards the wear-
ing of face masks. In fact, one of the most popular use cases
thus far for periocular recognition involves consumer mobile
devices [45, 46] which can readily capture high quality images
of the periocular region with onboard cameras. This approach
to biometric recognition, e.g. to unlock a personal device, is of
obvious appeal in the COVID-19 era when masks must be worn
in public spaces and where tactile interactions, e.g. to enter a
password or code, must preferably be avoided.

In most works, reliable verification rates can be achieved
by extracting handcrafted features from the periocular region.
However, the error rates are not yet as good as those yielded
by face verification schemes under controlled scenarios. Nev-
ertheless, the periocular features can be used to improve the
performance of unconstrained facial images as shown in [46].
Similarly, Park et al. showed in [47] how the rank-1 accuracy
was multiplied by a factor of two in a similar scenario using a
synthetic dataset of face images treated artificially to occlude
all but the face region above the nose. In other words, the suc-
cess chances of correctly identifying a person within a group
are doubled when the periocular information is analysed in par-
allel to the global face image.

In addition to the aforementioned works, some multimodal
approaches combining face, iris, and the periocular region have
been proposed for mobile devices [48], also incorporating tem-
plate protection in order to comply with the newest data privacy
regulations such as the European GDPR [49].

As pointed out in Sect. 2.2, in such uncontrolled conditions
where the iris cannot always be used due to a low quality or res-
olution of the samples, that lack of quality of acquired biomet-
ric information can be addressed using super-resolution. Even
though some approaches have already been proposed for the pe-
riocular region, based mostly on deep learning models [50, 39],
there is still a long way ahead before they are deployed in prac-
tical applications.

In addition to providing identity information, facial images
can also be used to extract other soft biometric information,
such as age range, gender, or ethnicity. Alonso-Fernandez et
al. benchmarked the performance of six different CNNs for
soft-biometrics. Also for this prupose, the results obtained indi-
cate the possibility of performing soft-biometrics classification
using images containing only the ocular or mouth regions, with-
out a significant drop in performance in comparison to using the
entire face. Furthermore, it can be observed in their study how
different CNN models perform better for different population
groups in terms of age or ethnicity. Therefore, the authors in-
dicated that the fusion of information stemming form different
architectures may improve the performance of the periocular
region, making it eventually similar to that of unoccluded facial
images. Similarly, the periocular region can be also utilised to
estimate emotions using handcrafted textural features [51] or
deep learning [52].

2.4. Voice recognition

Progress in voice recognition has been rapid in recent
years [53, 54, 55, 56, 57]. Being among the most convenient
of all biometrics technologies, voice recognition is now also
among the most ubiquitous, being used for verification across
a broad range of different services and devices, e.g. telephone
banking services and devices such as smart phones, speakers
and watches that either contain or provide access to personal or
sensitive data.

The consequences of COVID-19 upon voice recognition sys-
tems depend largely on the effect of face masks on the pro-
duction of speech. Face masks obstruct the lower parts of the
face and present an obstacle to the usual transmission of speech
sounds; they interfere with the air pressure variations emanat-
ing from the mouth and nose. The effect is similar to acoustic
filters such as sound absorbing fabrics used for soundproofing
or automobile exhaust mufflers [58]. Since masks are designed
to hinder the propagation of viral particles of sub-micron size,
typically they consist of particularly dense fabric layers. The ef-
fect on speech is an often-substantial attenuation and damping.
A study on the impact of fabrics on sound is reported in [59, 60],
which shows how acoustic effects are influenced by the particu-
lar textile and its thickness, density and porosity. Denser struc-
tures tend to absorb sound at frequencies above 2 kHz, while
thicker structures absorb sound of frequencies below 500 Hz.
With these bands overlapping that of human speech, masks at-
tenuate and distort speech signals and hence degrade the reli-
ability of voice biometric systems that are trained with normal
(unmasked) speech.

Masks can also have a negative impact on presentation at-
tack detection (PAD) systems, which present countermeasures
to discriminate bonafide vs spoofed speech. These systems are
based on spectral features obtained from the two classes. It
becomes clear that any modification/deviation of the bonafide
spectrum results in greater difficulty in detecting it. Moreover,
other countermeasure systems are based on the detection of the
POP noise [61]: a bonafide user emits pop noise which nat-
urally incurred while speaking close to the microphone. This
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(a) mask-free (b) surgical mask

(c) cloth mask (d) dense cloth mask

Figure 4: Examples of four spectrograms of the utterance: allow each child to have an ice pop, pronounced by the same speaker wearing different types of masks:
(a) mask-free, (b) surgical, (c) cloth and (d) dense cloth mask.

noise is attenuated by the mask and, consequently, PAD perfor-
mance decreases.

Fig. 4 shows speech waveforms and corresponding spectro-
grams derived using the short-time Fourier transform (STFT)
for four different recordings of read speech. The text content
is identical for all four recordings: allow each child to have an
ice pop. The first is for a regular, mask-free recording while the
other three are for the same speaker wearing a surgical mask, a
thin or light cloth mask and a dense cloth mask. Note that the
word pop pronounced at the end of the sentence becomes less
and less noticeable as you wear heavier masks. Another notable
effect concerns the attenuation of high frequencies for heavier
masks, which affects not only recognition performance but also
speech intelligibility [62].

Related to these aforementioned issues, a study of the im-
pact of face coverings upon the voice biometrics is reported
in [63]. It assessed and analysed the acoustic properties of four
coverings (motorcycle helmet, rubber mask, surgical mask and
scarf). The impact of all four coverings was found to be negli-
gible for frequencies less than 1 kHz, while substantial levels of
attenuation were observed for frequencies above 4 kHz; 4 kHz
is not a general mark, since peaks at 1.8 kHz are reported for
some masks. Face coverings were shown to degrade the accu-
racy of an i-vector/PLDA speaker recognition system. How-
ever, the treatment of speech data with inverted mask transfer
functions was shown to improve accuracy to a level closer to
the original. Similarly, face masks distort speech data above 4
kHz. The degradation to performance, however, is modest since
the substantial effects are at higher frequencies where speech
energy (and discriminative biometric information) is typically
lower than it is at lower frequencies where the effects are much
milder.

To reflect the current issues in the voice biometrics commu-
nity, the 2020 findings of the 12th Computational Paralinguis-
tics Challenge (COMPARE) considered a mask detection sub-
challenge. System fusion results for the challenge baselines
show that the task is far from being solved. Speech signals,
in this context, are not only relevant to voice biometrics but are
usable to detect signal distortions.

The existing work stands to show that facial masks do af-
fect voice-based technologies, and there is potential to com-
pensate these effects. Thus the relevance of speaker recognition
increases in this time, since it is unintrusive and touchless , that
is, it can be done at distance, without any physical interaction
(over the phone).

3. Remote and mobile biometric recognition

The COVID-19 pandemic has caused disruptions to many as-
pects of life. As a result of physical interactions being necessar-
ily limited or even forbidden, many have had no alternative but
to work remotely or to receive education online. With authen-
tication being needed to access many services and resources,
and without the possibility of physical means to identification,
the deployment of biometric solutions for remote authentica-
tion has soared in recent times [64]. Remote biometric authen-
tication has already attracted significant attention [9, 65] and
is already being exploited for, e.g., eBanking, eLearning, and
eBoarders. With an increasing percentage of personal mobile
devices now incorporating fingerprint, microphone and imag-
ing sensors, remote biometric authentication is deployable even
without the need for costly, specialist or shared equipment. The
latter is of obvious appeal in a pandemic, where the use of
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touchless, personal biometric sensors and devices can help re-
duce spread of the virus.

Some specific biometric characteristics lend themselves
more naturally to remote authentication than others. They are
dictated by the level of required user cooperation and the need
for specialist sensors. Face, voice, and keystroke/mouse dy-
namics are among the most popular characteristics for remote
biometric authentication [66, 67]. These characteristics can
be captured with sensors which are likely to be embedded in
the subjects’ devices, e.g. camera, microphone, keyboard and
mouse. As discussed in the following, remote biometric au-
thentication entails a number of specific challenges related to
mobile biometrics, remote education, as well as security and
privacy.

3.1. Mobile biometrics

The ever-increasing number of smartphones in use today has
fueled research in mobile biometric recognition solutions, e.g.
mobile face recognition [68] and mobile voice recognition [69,
70, 71]. Numerous biometric algorithms specifically designed
or adapted to the mobile environment have been proposed in the
literature [72]. Additionally, commercial solutions for mobile
biometric recognition based on inbuilt smartphone sensors or
hardware/software co-design are already available.

Proposed solutions can be categorized depending on where
the comparison of biometric data takes place:

• Biometric comparison is performed on the client side,
as proposed by the Fast IDentity Online (FIDO) Al-
liance [73]. An advantage of this scheme is that biometric
data is kept on the user device, leading to improved privacy
protection. On the other hand, users may require specific
sensors and installed software to enable authentication.

• Biometric comparison is performed on the server side.
Server side comparisons depend upon the secure transmis-
sion of biometric data (see Section 3.3), with relatively lit-
tle specific software being required on the user device.

One limiting factor of mobile biometrics stems from process-
ing complexity and memory footprints. Whereas server side
computation capacity and memory resources are typically abun-
dant, mobile devices resources running on battery power are
relatively limited. Many state-of-the-art biometric recognition
algorithms are based on large (deep) neural networks which
require a large amount of data storage and are computation-
ally expensive, thereby prohibiting their deployment on mobile
devices. This has spurned research in efficient, and low foot-
print approaches to biometric computation, e.g. using smaller,
more shallow neural networks [74]. A number of different ap-
proaches to compress neural networks have been proposed, e.g.
based on student-teacher networks [75] or pruning [76]. These
approaches trade model size and inference time against system
performance. However, this trade-off still has to be optimized
for mobile systems, while the implications of limited resources
extend to other biometric sub-processes too, e.g. PAD and seg-
mentation.

Figure 5: BioID® Identity Proofing for e-learning platforms [82]

In summary, mobile biometric authentication clearly has a
role to play in the COVID-19 era. Touchless, personal mobile
biometrics solutions can help to deliver reliable authentication
while also meeting strict hygiene requirements, even if the effi-
cient integration of biometric recognition technologies into mo-
bile device platforms remains challenging.

3.2. Biometrics in remote education
The use of learning management systems has increased dra-

matically in recent years, not least due to the promotion of
home-schooling and eLearning during the COVID-19 pan-
demic. Learning management systems deliver remote educa-
tion via electronic media. eLearning systems often require
some form of identity management for the authentication of
remote students. Biometrics solutions have proved extremely
popular, with a number of strategies to integrate biometric
recognition in eLearning environments having been proposed
in recent years [77, 78].

In the eLearning arena, biometric technologies are used for
user login, user monitoring, attention and emotion estimation
and authorship verification. Fig. 5 shows an example for user
login to an eLearning platform. Both one-time authentication
(biometric verification at a single point in time) and continu-
ous authentication (periodic over time) have utility in eLearning
scenarios. Whereas one-time authentication might be suitable
to authenticate students submitting homework, continuous au-
thentication may be preferred to prevent students cheating while
sitting remote examinations [79]. In order to minimise inconve-
nience, continuous biometric authentication calls for the use of
biometric characteristics which require little to no user cooper-
ation [77], e.g. text-independent keystroke dynamics [80, 81].

Presentation attacks can present a substantial threat to bio-
metric technologies deployed in such scenarios (see Sec-
tion 3.3). This might be why, despite significant research inter-
est, only few biometric recognition systems have been deployed
in operational eLearning scenarios [77]. Even so, eLearning
systems will likely become more popular while the pandemic
continues and, once operational, their use will likely be main-
tained in the future.

3.3. Security and privacy in remote biometrics
The remote collection of biometric information gives rise to

obvious security and privacy concerns; the trustworthiness of
the collection environment cannot be guaranteed. One of the
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potentially gravest threats in this case, especially given the ab-
sence of any human supervision (e.g. in contrast to the auto-
matic boarder control use case), is that of presentation attacks
or ‘spoofing’ [83, 84, 85]. Presentation attacks involve the pre-
sentation of false, manipulated or synthesized samples to a bio-
metric system made by an attacker to masquerade as another in-
dividual. Diverse presentation attack instruments, ranging from
face masks to gummy fingers, have all been proved a threat.
The detection of presentation attacks in a remote setting can be
more challenging that in a local setting, depending on whether
detection countermeasures are implemented on the client side
or the server side. In case PAD is performed on the client side,
hardware-based detection approaches can be employed, though
these require specific, additional equipment beyond those used
purely for recognition. Even these approach might still be vul-
nerable to presentation attacks, as demonstrated for Apple’s
Face ID system [86]. If PAD is implemented on the server
side, then software-based attack detection mechanisms repre-
sent the only solution. Software-based PAD for face and voice
were explored in the EU-H2020 TeSLA project [87] and is be-
ing currently researched in the DFG-ANR RESPECT project6.
It is expected that more research will be devoted to this topic in
the future.

In addition to the threat of direct attacks performed at the
sensor level, there is also the possibility of indirect attacks per-
formed at the system level. The storage of personal biometric
information on mobile devices as well as the transmission of
this information from the client to a cloud based server calls
for strong data protection mechanisms. While traditional en-
cryption and cryptographic protocols can obviously be applied
to the protection of biometric data, any processing applied to
the data required prior decryption, which still leaves biomet-
ric information vulnerable to interception. Encryption mech-
anisms designed specifically for biometrics recognition in the
form of template protection [88] over come this vulnerabil-
ity by enabling computation upon biometric data in the en-
crypted domain. Specific communication architectures that en-
sure privacy protection in remote biometric authentication sce-
narios where biometric data is transmitted between a client and
a server have already been introduced, e.g. the Biometric Open
Protocol Standard (BOPS) [89] which supports the homomor-
phic encryption [90] of biometric data.

As it has been described in this section, the use of remote bio-
metric authentication in the times of COVID-19 provides many
advantages. However, in order to achieve trustworthy identity
management, it also requires appropriate mechanisms to pro-
tect privacy. Countermeasures to prevent or detect presentation
attacks are also essential. The latter is usually more challenging
in a remote authentication scenario, where means of detecting
attacks may be more limited compared to conventional (acces-
sible) biometric systems.

6http://www.respect-project.eu/

(a) dry (b) normally moist

Figure 6: Example of a dry fingerprint and the same fingerprint with normal
moist (taken from [92]).

4. Emerging technologies

As discussed in the previous sections, the COVID-19 pan-
demic poses specific challenges to biometric technologies.
However, it is also expected to foster research and development
in emerging biometrics characteristics which stand to meet new
requirements relating to the pandemic, as well as the use of bio-
metric information directly for virus detection and monitoring
e.g. of infected individuals. Such emerging biometric technolo-
gies are described in the following.

4.1. Touchless, hand-based biometrics

Hydro-alcoholic gel, strongly advocated as a convenient
means to disinfection during the COVID era, can be used to
protect the users of touch-based sensors such as those used for
fingerprint recognition [91]. While they serve to reduce sen-
sor contamination and pathogen transmission, hydro-alcoholic
gels tend to dry the skin. The sensitivity of fingerprint sensors
to variability in skin hydration is well known. It can degrade
the quality of acquired fingerprints and hence also recognition
reliability [92]. Severe dryness can even prevent successful ac-
quisition as illustrated in Fig. 6, thereby resulting in failures to
acquire.

Hygiene concerns have increased societal resistance to the
use of touch-based sensors. These concerns have in turn fueled
research efforts in 2D or 3D touchless fingerprint recognition
systems [93, 94] such as those illustrated in Fig. 7. Touch-
less fingerprint sensors are generally either prototype hardware
designs [95, 96] or are adapted from general purpose devices
adapted to touchless fingerprint recognition [97, 98].

Both the capture and processing of fingerprints must usually
be adapted to touchless acquisition [93]. The majority of touch-
less finger image acquisition sensors deliver colour images for
which general image processing techniques are employed to
improve contrast and sharpness. Traditional minutiae extrac-
tors and comparators may then be employed.

The interoperability of both touch-based and touchless de-
vices is naturally desirable, e.g. to avoid the need for enrolment
in two different systems. Interoperability has proven to be non-
trivial [99, 100]. While some differences between the two sys-
tems, e.g. mirroring, colour-to-grayscale conversion or inverted
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(a) Stationary touchless7 (b) Mobile touchless

Figure 7: Touchless capturing of fingerprints

back- and foreground, can be readily compensated for without
degrading accuracy, others, e.g. the aspect ratio or deformation
estimation, prove more challenging [101, 102] and can degrade
reliability. Note that fingerprint images acquired using touch-
less sensors do not exhibit the deformations caused by pressing
the finger onto a surface that characterise images acquired from
touch-based sensors. Moreover, DPI alignment and ridge fre-
quency estimation is required to enable a meaningful compar-
ison of fingerprints acquired from touch-based and touchless
sensors.

As an alternative to fingerprint recognition, some ATMs al-
ready incorporate fingervein-based recognition sensors which
are robust to variability in skin hydration as well as presenta-
tion attacks. Images of the finger or hand are captured with
NIR illumination, since light at NIR frequencies is absorbed
differently by hemoglobin and the skin, thereby allowing for the
detection of vein patterns. Touchless fingervein and palmvein
sensors have been developed [103, 104, 105], though the lack
of any control in the collection process typically causes signif-
icant rotation and translation variation. The quality of the cap-
turing device as well as strategies to compensate for nuisance
variation are hence key to the collection of high quality images
and reliable performance. Touchless capturing device designs
have been presented by various researchers, e.g. in [103]. This
work showed that the degradation in recognition performance
resulting from touchless acquisition can be addressed using fin-
ger misplacement corrections. On the other hand, the approach
presented in [104] extracts a region of interest from captured
samples and uses an oriented element feature extraction scheme
to improve robustness.

The use of finger vein recognition for mobile devices is also
emerging. Debiasi et al. developed an auxiliary NIR illumina-
tion device for smartphones which supports the capture of hand
vascular patterns [106]. The device is connected and controlled
via Bluetooth and can be adapted to different smartphones. The
authors also presented a challenge response protocol in order to
prevent replay and presentation attacks and showed that accept-
able verification performance can be achieved using standard

7Source: https://pbs.twimg.com/media/DyCFi_AWsAMN8MK.jpg

finger vein recognition algorithms. The VeinSeek Pro app8 is
able to capture vein images from the hand without the need for
extra hardware. This approach is based on the fact that dif-
ferent colors of light penetrate different depths within the skin.
By removing the signal from superficial layers of the skin, the
authors argue that they can more easily see deeper structures.
However, to the best of our knowledge there is no analysis so
far of the feasibility of using these images for vein-based bio-
metric recognition.

In summary, in the era of the COVID-19 pandemic, touch-
less hand-based biometric recognition seems to be a viable al-
ternative to conventional touch-based systems. These technolo-
gies achieve similar levels of performance as touch-based tech-
nologies [93, 94, 103]. Some commercial products based on
prototypical hardware design and general purpose devices, e.g.
smartphones, are already available on the market. Nonetheless,
touchless recognition remains an active field of research where
several challenges need to be tackled, in particular recogni-
tion in challenging environmental conditions, e.g. uncontrolled
background or varying illumination [107, 93].

4.2. COVID detection with biometric-related technologies
COVID-19 attacks the human body at many levels, but the

damage to the respiratory system is what often proves fatal. The
production of human speech starts with air in the lungs being
forced through the vocal tract. Diminished lung capacity or dis-
ease hence impacts upon speech production and there have been
attempts to characterise the effects of COVID-19 upon speech
as means to detect and diagnose infection [108, 109, 110].

Initial efforts involved the collection and annotation of
databases of speech as well as non-speech sounds recorded
from healthy speakers and those infected with the COVID-
19 virus [111]. The data typically includes recordings of
coughs [112, 113, 114], breathing sounds [115, 116] as well
as speech excerpts [117].

The database described in [117] contains recordings of five
spoken sentences and in-the-wild speech, all recorded using

8https://www.veinseek.com/
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the Wechat App from 52 COVID-confirmed and hospitalised
patients in Wuhan, China, who also rated their sleep quality,
fatigue, and anxiety (low, mid, and high). After data pre-
processing, 260 audio samples were obtained. While these
early works highlight the potential of biometrics and related
technology to help in the fight against the COVID-19 pandemic,
they also highlight the need for homogenised and balanced
databases which can then be used to identify more reliable and
consistent biomarkers indicative of COVID-19 infection.

Thermal face imaging has also come to play a major role
during the pandemic, especially for the rapid surveillance of
potential infections among groups of travellers on the move,
e.g. in airports [118] and shopping centres [119]. Thermal face
images can be used to detect individuals with fever [120], a
possible symptom of COVID-19 infection. Similar face cap-
tures can also be used as an alternative capture spectrum for
face recognition [121, 122, 123], however, with verification per-
formances inferior to the visible [124, 125]. Despite the ease
with which thermal monitoring can be deployed, it is argued
in [126] that body temperature monitoring will be insufficient
on its own to prevent the spread of COVID-19 into previously
uninfected countries or regions and the seeding of local trans-
mission. The European Union Aviation Safety Agency (EASA)
concludes that thermal screening equipment, including thermal
scanners will miss between 1% and 20% of passengers carrying
a fever [127].

5. Conclusions

This article has summarised the main challenges posed by the
pandemic to biometric recognition, as well as the new opportu-
nities for existing biometrics to be harnessed or adapted to the
COVID-19 era, or where biometrics technology itself has po-
tential to help in the fight against the virus. The use of hygienic
masks covering the nose and mouth, as well as the secondary
impacts of strict hygiene measures implemented to control the
spread of pathogens all have potential to impact upon biomet-
rics technology, thereby calling for new research to maintain
reliable recognition performance.

Facial biometrics are among the most impacted characteris-
tic; masks occlude a considerable part of the face, leading to
degraded recognition performance. This is the case not only
for opaque masks but also for transparent face shields, since
reflections caused variation that is non-trivial to model. Op-
portunities to overcome these difficulties are found by focusing
parts of the face that remain uncovered, namely the iris and the
wider periocular region.

Whereas solutions to iris recognition that use the NIR spec-
trum are well studied, numerous efforts in recent years have
focused on less constrained approaches to iris recognition that
use mobile devices and the visible spectrum. Given the lower
quality of such images, image super-resolution techniques have
been proposed to improve image quality. Such techniques can
also be applied to the full periocular region. To date, the adop-
tion of such systems is low, but likely to increase in the future.

Hand-based biometric systems are also affected by the new
hygiene practices which typically result in drier skin, lower

quality fingerprint images and degraded recognition perfor-
mance. Both touch-based and touch-less systems are affected.
Vein-based recognition systems are more robust to variations
in skin condition. In contrast to traditional touched-based vein
sensors, touch-less capture devices introduced in the last two
years can reduce the risk of infection from contact with a con-
taminated surface. Further research is nonetheless needed to
bridge the gap between the performance of less constrained,
touchless systems and their better constrained touch-based
counterparts.

Like facial biometrics, voice biometric systems are also im-
pacted by the wearing of facial masks which can interfere with
speech production. Like many other forms of illness, COVID-
19 infections can also interfere with the human speech produc-
tion system and also degrade recognition performance. These
same effects upon the speech production mechanism, however,
offer potential for the detection of pulmonary complications
such as those associated with serious COVID-19 infections.

The challenges in ensuring reliable biometric recognition
performance have grown considerably during the COVID-19
era and call for renewed research efforts. With many now
working or receiving education at home, some of the great-
est challenges relate to the use of biometric technology in re-
mote, unsupervised verification scenarios. This in turn gives
greater importance to continuous authentication, presentation
attack detection, or biometric template protection to ensure se-
curity and privacy in such settings which have come to so define
the COVID-19 era.
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T. Cipr, R. Saeidi, M. Günther, J. Žganec-Gros, R. Z. Candil, F. Simões,
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