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Abstract

We present the design and analysis of a multi-level game-theoretic model of hierarchical policy-
making, inspired by policy responses to the COVID-19 pandemic. Our model captures the potentially
mismatched priorities among a hierarchy of policy-makers (e.g., federal, state, and local governments)
with respect to two main cost components that have opposite dependence on the policy strength, such
as post-intervention infection rates and the cost of policy implementation. Our model includes a crucial
third factor in decisions: a cost of non-compliance with the policy-maker immediately above in the
hierarchy, such as non-compliance of state with federal policies. Our first contribution is a closed-form
approximation of a recently published agent-based model to compute the number of infections for any
implemented policy. Second, we present a novel equilibrium selection criterion that addresses common
issues with equilibrium multiplicity in our setting. Third, we propose a hierarchical algorithm based
on best response dynamics for computing an approximate equilibrium of the hierarchical policy-making
game consistent with our solution concept. Finally, we present an empirical investigation of equilibrium
policy strategies in this game in terms of the extent of free-riding as well as fairness in the distribution
of costs, depending on parameters such as the degree of centralization and disagreements about policy
priorities among the agents.

1 Introduction

Democratic governments and institutions typically have a hierarchical structure. For example, policies in
the U.S. emerge from complex interactions among the federal and state governments, as well as county
boards and city councils and mayors. Similar structure exists in Canada and in European democracies.
Such policy interactions are hierarchical, with higher levels in the hierarchy able to impose some constraints
on the policies immediately below (e.g., the U.S. federal government can constrain what state policies can
be). Violations of these constraints, in turn, entail a non-compliance cost to the violator, such as legal costs,
penalties, or reputation loss. Many examples of such hierarchical policy structure commonly arise, such as in
educational and vaccination decisions, as well as in devising policies for controlling a pandemic. Take COVID-
19 social distancing policies as a concrete example. These policies commonly include recommendations at
the national level, guidelines and restrictions at the state/province/district level, and policies for specific
counties or cities. Moreover, a common feature of such hierarchical policy-making is that what ultimately
matters are the policies actually deployed at the lowest level, since these are often most practical to enforce.

In general, policies are contentious. Agents at all levels of the policy-making hierarchy may disagree about
the best policies, or more fundamentally, about the particular tradeoffs made in devising policies. For exam-
ple, COVID-19 social distancing measures have considerable costs, both economic and socio-psychological,
but lack thereof results in more people who become infected; different institutions disagree on how to trade
off these concerns.

We propose a general model of hierarchical policy-making as a game among the policy-makers at all levels
of the hierarchy. In this game, policies at the higher levels have an impact by imposing non-compliance costs
on lower levels, but ultimate implementation of policies happens at the lowest level. Each agent in this
game trades off two types of costs: policy implementation cost (e.g., socio-psychological or economical
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impacts of lockdowns) and policy impact cost (e.g., number of COVID-19 infections). Besides the impact
on the structure of agent utilities, the hierarchy also impacts the sequence of moves: agents at higher levels
precede lower levels (e.g. by announcing guidelines), with the latter observing and reacting to the policy
recommendations by levels above them.

In our game-theoretic model, each agent’s action/pure strategy is a single, bounded scalar that represents
the degree of social distancing in the pandemic-response context. Our first contribution is a novel solution
concept which refines the subgame perfect Nash equilibrium, accounting for commonly occurring indiffer-
ences. Our second contribution is an analytic version of a recently proposed agent-based model (ABM) for
COVID-19 pandemic spread estimation that accounts for social distancing [28]; we show that our analytic
model closely mirrors short-term behavior of the ABM with a much shorter computational cost compared
to the ABM.

We use our modeling framework to experimentally investigate possible phenomena arising from decen-
tralized policy-making.

One of our questions relates to policy free-riding : Is it possible that (in equilibrium) a player lower in
the hierarchy adopts a weak policy with a low implementation cost while imposing a negative externality
on another player (perhaps on the same level) and hence also enjoying lower infection numbers owing to the
latter player’s stronger policy? Can a higher-level policy-maker mitigate such free-riding via non-compliance
penalties? We show that the answer depends in a complex manner on different parameters such as initial
infection rates, degree of contact among different parts of the population, weights on different types of
cost, and the non-compliance cost structure. Our second set of experiments measures the fairness in the
distribution of costs as a function of model parameters as well as degrees of centralization.

1.1 Related work

Our work is related to the line of research applying the social and behavioral sciences to the cost-benefit
analysis of both centralized and decentralized decision-making under pandemic/epidemic conditions [24].
Some papers approach these trade-offs from an optimal control perspective [5, 17–19]. Others study the
equilibria of various game-theoretic models of individuals deciding whether to follow guidelines for preventive
measures (distancing, vaccination, etc.) and treatment, possibly against the (perceived) aggregate behavior
of the population, under various models of disease propagation; e.g. the differential game model [15], the
“wait and see” model of vaccinating behavior [1], evolutionary game-theoretic models [2, 10], and various
others [3, 4, 8, 22] (see, e.g. [23] for a summary). We distinguish from these works by modeling the strategic
interactions among ideologically diverse, hierarchical policymakers with explicit non-compliance penalties,
and experimentally assess the impact of such interactions upon the actually implemented policies under
various parameter settings.

Also related is the literature on ABM for pandemic spread and response policies that account for pref-
erences/incentives of individuals [6, 9, 28]. [28] is of particular importance since our policy impact cost is
computed by a closed-form approximation to their model. Other recent work includes the assessment of the
impact of prevention and containment policies on the spread COVID-19 via causal analysis [12], Gaussian
processes [14], and state-of-the-art data-driven non-pharmaceutical intervention models [20].

Instead of an analytic treatment, we empirically compute the (approximate) equilibrium of our complex,
multi-level, continuous-action game using algorithmic approaches that exploit the structure of the problem.
Thus, our methods belong to the category of empirical game-theoretic analysis (see, e.g. [7, 25–27]).

2 A Model of Hierarchical Policy-Making

2.1 The Game Model

Consider as a running example COVID-19 hierarchical policy-making with three levels of decision-makers:
Government (a single agent), States, and Counties. Each agent is a player in a game and chooses a social
distancing policy (recommended or enforced). Next, we present a formal game theoretic model of this kind
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Figure 1: Hierarchy of policy-makers with 3 levels: Government, States and Counties.

of hierarchical policy-making, focusing on strategic interactions among players both within and across the
levels in this hierarchy.

Let [m] denote the set {1, 2, . . . ,m} for any m ∈ Z+. We represent the players in the hierarchical
policy-making game (HPMG) by nodes in a directed rooted tree (we will use the terms players and nodes
interchangeably), as illustrated in Figure 1 for our running example. A general HPMG has L > 1 levels
or layers. Each level l ∈ [L] is associated with a set of nodes/players, denoted by Ll, with nl = |Ll| the
number of players in level l. Without loss of generality, let n1 = 1 (we can always add a dummy layer with
a single player who has a single strategy); we call the player in level 1, denoted by a1 the root-node. The ith

node/player in an arbitrary level l is denoted by al,i. For each player in each level l < L, a ∈ Ll, let χ(a) be
the set of its children in the tree; clearly, |χ(a)| ≥ 0 for every a, and

∑
a∈Ll

|χ(a)| = nl+1 for each l. Likewise,
for every player a ∈ Ll and for each l > 1, let π(a) be its unique parent in the tree, where a directed edge
goes from a parent to its child. In our running example in Figure 1, a1 is the Government in level 1, level 2
consists of two States, both children of a1, χ(a1) = {a2,1, a2,2}, and level 3 consists of Counties.

Each player a can take a scalar action αa ∈ [0, 1]. α denotes the profile of actions of all players, and αl
the restriction of this profile to a particular level l. In our pandemic-response policy-making example, αa
is an abstraction of the policy adopted by a, capturing the the extent of overall activity (conversely, 1− αa
represents the extent of social distancing implemented/recommended by a). Thus, small αa corresponds to
the greatest reduction in infection spread (due to stricter social distancing). On the other hand, a large
αa will entail a higher policy implementation cost, such as socio-economic and psychological costs of social
distancing. At the extremes of our illustration, αa = 1 signifies no intervention, while αa = 0 corresponds
to a complete lockdown.

HPMG is a sequential game in which players make strategic decisions following the sequence of layers.
Specifically, the player in level 1 moves (i.e., chooses a strategy) first, followed by all players in level 2, who
first observe the strategy of a1 and simultaneously choose a joint strategy profile in response. This is then
followed by all players in level 3, and so on. Thus, all players in the same level l make strategic choices
simultaneously.

Because all the utilities in our main application of this model (COVID-19 social distancing policies) are
negative (i.e., costs), we next define the general model in terms of costs (negative utilities). The cost function
of each player a has three components: policy impact cost, Cinca (α), policy implementation cost, Cdeca (α), and,
for each player in levels l > 1, non-compliance cost, CNC

a (αa, απ(a)). In the COVID-19 example, policy impact
cost is a measure of infection spread (number of people infected in the player’s geographic area, say), while
implementation cost can be a psychological and economic costs of a lockdown. The non-compliance cost,
in turn, is a penalty imposed by a policy-maker upon an agent within its jurisdiction for deviating from its
recommendation (e.g., a fine, litigation costs, or reputational harm). An important piece of structure to the
policy implementation and impact costs is that they directly depend for a player a not on the full profile
of strategies by all players, but only on the layer l of the player a if l = L, and only the layer immediately
below otherwise. To formalize, we introduce for each player a the notion of its share µa ∈ [0, 1]. In our
running example, a node’s share can be interpreted as the proportion of the total population of the country
that is under the jurisdiction of the corresponding player (e.g., the share of a state is the proportion of the
total population that resides in this state). Thus, µ(a1) = 1, while the shares of the nodes in the lowest level
L are arbitrary, except for the constraint Σa∈LL

µa = 1. For a level 1 < l < L, we have µa = Σa′∈χ(a)µa′ for
every a ∈ Ll. We now use the notion of shares to formally define the impact and implementation costs of
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policies.

• For each lowest-level player a ∈ LL, Cinca (α) depends only on αL, lies in [0, 1], and is non-decreasing
in each αa ∈ αL; we provide further specifics of this function for our pandemic-response example in
Section 2.3. For a higher-level player a ∈ Ll, l < L, this cost is the share-weighted aggregate of those
of its child-nodes:

Cinca (α) = 1
µa

Σa′∈χ(a)µa′C
inc
a′ (α).

• For each a ∈ LL, Cdeca (α) ∈ [0, 1] depends only on, and is non-increasing, in αa; in particular, in our
pandemic-response example, we simply focus on the function Cdeca (α) = 1− αa. Also, for each a ∈ Ll,
l < L,

Cdeca (α) = 1
µa

Σa′∈χ(a)µa′C
dec
a′ (α).

Finally, we consider two variants of the non-compliance cost: one-sided under which there is no penalty
for an α lower than that of the parent (capturing scenarios such as a policy-maker only punishing policy
responses weaker than its recommendation), and two-sided under which any deviation is penalized regardless
of direction [16], with the discrepancy being measured by the Euclidean distance for either variant:

CNC
a (α, α′) =

{
(max{0, α− α′})2, if one-sided;

(α− α′)2, if two-sided.

Finally, each player a ∈ Ll for l > 1 has an idiosyncratic set of weights κa ≥ 0 and ηa ≥ 0 that trade its three
cost components off against each other via a convex combination, and account for differences in ideology.
Thus, the overall cost of such a player a is given by

Ca(α) := κaC
inc
a (α) + ηaC

dec
a (α) + γaC

NC(αa, απ(a)),

where γa = 1− κa− ηa. The player a1 obviously has no non-compliance issues, hence it has only one weight
κa1 > 0, its overall cost being

Ca1(α) := κa1C
inc
a1 (α) + (1− κa1)Cdeca1 (α).

2.2 Solution Concept

The solution concept we are primarily interested in is a pure-strategy subgame perfect Nash equilibrium
(PSPNE) [21] of our continuous-action game which is sequential-move between levels and simultaneous-move
within a level. However, the game may have multiple such equilibria, leading to an equilibrium selection
problem.

An extreme but simple motivating scenario which gives rise to a multiplicity of equilibria, many of which
are unreasonable, is when a lowest-level player a has non-compliance weight γa = 1 under a one-sided cost
structure: player a would be indifferent among all values αa ∈ [0, απ(a)] since any such value induces an
overall cost of 0. Such indifference could also characterize the best response of a higher-level player. Consider
a two-level variant of the game in Figure 1 (e.g., when counties are constrained to be compliant with the
respective states); for each state a ∈ {a2,1, a2,2}, let κa = 0 and ηa = 0.6, hence γa = 0.4. Straightforward
calculations show that the local minimum α∗a of the overall cost of any such any state a over [0, αa1 ] is
α∗a = αa1 with a cost of 0.6(1− αa1) and that over (αa1 , 1] is

α∗a′ =

{
1, cost = 0.4(1− αa1)2, αa ≥ 0.25;

αa1 + 0.75, cost = 0.375− 0.6αa1 , otherwise.

Thus, the unique best response of either state (whose costs are independent of each other) to any government
policy αa1 ≥ 0.25 is 1, i.e., there are infinitely many equilibria with the government recommending any
αa1 ≥ 0.25 but each state choosing 1 regardless. The fact that the government would recommend a policy
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intervention (which could be as strong as αa1 = 0.25) knowing fully well that both states would choose no
intervention even under the threat of a non-compliance penalty seems absurd, but this absurdity cannot be
eliminated by the above solution concept.

With this in mind, we propose and use the following equilibrium selection criterion. For any player
a ∈ Ll, l < L, define its social cost SCa(αχ(a)) for any action profile αχ(a) of its children as the share-weighted

aggregate of the overall costs of its children, that is: SCa(αχ(a)) := 1
µa

∑
a′∈χ(a) µa′Ca(α). Evidently, this

quantity is, in general, distinct from Ca(α).
If multiple values of αa induce equilibria for a particular αχ(a), then we will pick the αa which minimizes

SCa(αχ(a)), breaking further ties in favor of a higher αa (i.e., smaller policy impact). We refer to this solution
concept, which is a refinement of PSPNE, as minimal-impact pure-strategy subgame perfect Nash equilibrium
(MI-PSPNE).

In general, a MI-PSPNE will not exist. Consequently, we will seek to compute an ε-MI-PSPNE, where ε
is the highest benefit from deviation by any player a. Below (Section 3) we present a general approach for
finding such approximate equilibria in our setting.

2.3 Infection Dynamics and Cost

We now come to the particular instantiation of Cinca (·) for each of the lowest-level players a ∈ LL (Counties in
Figure 1). Recently, Wilder et al. [28] developed and analyzed an agent-based model (ABM) for COVID-19
spread that accounts for the degree of contact (both within and between households) among individuals
from different parts of a population.1 However, this ABM is computationally expensive, making its use for
equilibrium computation impractical at scale. In this section, we will derive a closed-form model of infection
spread that (as we show below) relatively closely mirrors the expected number of infections of the ABM over
a short horizon.

Let Na and I0a denote the fixed population of County a and the number of infections in a before policy
intervention respectively. An individual who is not currently infected but can develop an infection on
contact with someone infected is susceptible. We call an individual from County a′ active in County a if
that individual is capable of making contact (through travel etc.) with a susceptible individual in County
a; if a′ = a, we say that the individual is active within County a. A major parameter of the ABM is the
transport matrix R = {raa′}a,a′∈LL

, where raa′ ≥ 0 is the proportion of the population of County a′ that is
active in County a in the absence of an intervention. Thus, in the absence of policy intervention, the total
number of individuals from County a′ active in County a 6= a′ is Na′raa′ and the total number of infected
individuals from County a′ active in County a 6= a′ is I0a′raa′ .

The policy αa affects the population in two ways: it scales down both the susceptible and active sub-
populations. In other words, under the policy intervention, County a has (Na−I0a)αa susceptible individuals,
and there are Na′αa′raa′ active individuals in County a from County a′, out of whom I0a′αa′raa′ are (initially)
infected. Hence, the proportion of infected active individuals in County a is given by

ρa(αL) :=

∑
a′∈LL

I0a′αa′raa′∑
a′∈LL

Na′αa′raa′
.

We will now focus on an arbitrary susceptible individual in County a and lay down our assumptions on
the process why which she may contract an infection: This individual makes actual contact with a random
sample of X active individuals drawn from a Poisson distribution with mean C, which is a parameter in our
model [28]; this distribution is fixed across all individuals in all Counties, and all these contacts are mutually
independent. The next assumption is that, in this sample of X contacts for a susceptible individual in
County a, the proportion of infected individuals is ρa(αL).

Let p ∈ (0, 1) denote the probability that a susceptible individual becomes infected upon contact with an
infected individual, i.e. the probability that contact with an infected individual does not infect a susceptible
individual is (1− p). Since all Xρa(α) infected contacts of an arbitrary susceptible individual are mutually

1The model in Wilder et al. [28] is an individual-level variant of the well-known susceptible-exposed-infectious-recovered or
SEIR model but this paper assumes that every exposed person eventually becomes infected after an incubation period.
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independent, the probability that the susceptible individual develops an infection is 1 − (1 − p)Xρa(α). We
also interpret this as the proportion of the (Na − I0a)αa susceptible individuals in County a who end up
getting infected. Let Infecta(α) denote the expected number of additional, post-intervention infections in
County a. Thus,

Infecta(α) = EX [(Na − I0a)αa(1− (1− p)Xρa(α))] = (Na − I0a)αa(1− EX [((1− p)ρa(α))X ]).

Define ya(αL) := (1− p)ρa(α). Since X ∼ Poisson(C), Proposition 1 in Appendix A tells us that

Infecta(α) = (Na − I0a)αa(1− e−C(1−ya(αL))). (1)

Finally, we define the infection cost to be Cinca (α) = Infecta(α)/Na.

(a) New infections vs. policy (shared by Counties). (b) New infections vs. initial infection rate (shared by
Counties).

Figure 2: Comparison of ABM output (solid lines) with closed-form approximation (dashed lines).

We ran some preliminary experiments comparing Equation (1) with the actual output of the ABM [28];
partial results are shown in Figure 2. Note that Equation (1) is a one-shot formula, whereas the ABM
computes contacts and infections recursively over several time-periods with an initial incubation period
so that the effect of the first-period contacts are manifested only after a delay. Hence, we contrast the
ABM output after 8 periods (to account for the average incubation period of 7 days [11]) with the above
closed-form estimation. In the experiments we report, we have 2 States under the Government, each State
having 2 Counties (4 Counties in total); each County a has a population of Na = 250; the transport matrix is
symmetric, given by raa′ = 0.25 for every pair of Counties a, a′. We set p = 0.047 [28] and C = 15 (calculated
based on Prem et al. [13]). For each set of experiments (represented by a separate color in Figure 2), each
County has the same initial infection rate I0a/Na and applies the same policy α. In Figure 2a, we vary α on
the x-axis, for different (fixed) values of I0a/Na which is the same for all Counties; similarly, in Figure 2b,
for different policies, we vary the initial infection rates. The plots indicate qualitative similarity between
the ABM and our approximation; a salient point of similarity is that the additional number of infections
decreases as the initial infection rate gets higher or lower than a middling point, everything else remaining
the same. This is because a higher infection rate implies less “room for growth” due to a fixed population,
whereas a lower value of the same rate causes fewer further infections over the same horizon.

3 Solution Approach

Our HPMG model is essentially an extensive-form game model endowed with one-dimensional action space for
each agent resulting in a non-convex strategic landscape. To seek for PSPNE in the hierarchical game(HG),
we propose a backward induction algorithm incorporated with a payoff point query interface and a best
response computation component solving for a joint-policy profile in equilibrium. The algorithm exploits
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ALGORITHM 1: HG-PSPNE
Input: α1:l−1.
Parameter:paraml = {Tl:L,kl:L, el:L}.
1: Let t← 1, εl ←∞. Initialize αl randomly.
2: while t ≤ Tl or εl ≤ el do
3: for al,i in Ll do
4: if l is the lowest level L then
5: α′al,i ← arg minαl,i Cal,i(α)
6: else
7: α′al,i ← arg minαl,i Cal,i(HG-PSPNE(α1:l))
8: end if
9: end for

10: Calculate εl for profile αl and update εl if lower than the current value.
11: Pick kl agents to best respond to α′l,i.
12: t← t+ 1.
13: end while
14: return α∗ where α∗l has the lowest εl.

the hierarchical structure by propagating strategic information between consecutive levels, detailed as fol-
lows. Given a joint action profile at levels 1, . . . , l − 1, the players at level l compose a simultaneous-move
game whose payoffs emerge from the strategic interactions from levels below them. To obtain payoffs for
a certain action profile at level l, we recursively call to the next level l + 1 till we reach the bottom level
L. Then at level l, we use these payoffs to solve for an approximate Nash equilibrium. Since every such
simultaneous-move game lacks the tractable analytic payoff structure for gradient-based optimization, in our
current implementation we discretize the infinite strategy space and adopt best response dynamics (BRD)
for equilibrium computation.

Algorithm 1 computes the ε− equilibrium among players at a single level l given tunable parameters. An
ε− equilibrium at level l is an action profile αl where no agent αal,i can decrease their cost by more than ε
by a unilateral deviation (Lines 3–6). Let αl1:l2 denote the sequence of actions αl1 , ..., αl2 ; Tl:L = Tl, ..., TL
the maximum numbers of steps of BRD at each level l > 1; el:L = el, ..., eL the limits of ε for each level. At
each round t < T , we randomly select a subset of kl out of nl agents to best respond simultaneously to the
existing profile; we call the variant with kl = nl synchronous BRD. We report some experimental results on
the dependence of the number of BRD steps to reach equilibrium on the sample size kl in Appendix B. To
increase efficiency, we should pick a subset of agents that can improve their payoffs after best-responding
(Line 7). The synchronous BRD might get trapped in a cycle of moves. The way we solve this issue is to
keep a memory of the moves, then check whether the new profile already exists in the memory and, if yes
(i.e. a cycle is detected), we jump to a new profile and resume the BRD. Finally, the algorithm returns the
profile with the lowest εl when the termination condition is met.

To search for the best strategy, we discretize the continuous strategy space and use grid search with
tie-breaking (smaller policy impact) to recover the optimum value. However, in the experiments shown
Figure 2a, we observe that our approximation of the infection cost is nearly linear. Although we have no
guarantees, it is reasonable to ask whether the overall cost of a lowest-level player is almost convex in its
policy (given the particular closed forms we use for the implementation and non-compliance costs) and hence
whether we could use binary search (i.e. the bisection methods) to speed up our BRD. Figure 3 shows the
run-time of a two-level game for n2 = 10 to 100 players in the second level when we replace the grid search
in the lowest level with the binary search under a symmetric setting (i.e. equal populations and symmetric
transport matrix in level 2). In those experiments, we all find the PSPNEs with ε2 = 0. Binary search yields
same results as grid search, but is more efficient.
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Figure 3: Run-time in secs (y-axis) of binary search and grid search as a function of n2 (x-axis) in a symmetric
setting.

4 Experiments

In this section, we describe two sets of experiments on our HPMG framework using the methodology discussed
in Section 3. Given the large and complex set of game parameters, we report the most insightful experimental
results we obtained, deferring additional results to the full version. In Section 4.1, we quantify the notion of
free-riding and explore conditions under which free-riding appears in equilibrium and can be circumvented
by non-compliance penalties. In Section 4.2, we study how different degrees of centralization and mismatched
priorities of players in HPMG can impact fairness in the distribution of costs. In all our experiments, we use
the 3-level HPMG of Figure 1 with 2 States, denoted simply by 1 and 2 (also in subscripts), and a number of
Counties (to be specified) with equal population. Moreover, we say that a setting has transport symmetry if
the transport matrix R is proportional to an identity matrix i.e. raa′ = 1/nL for any two lowest-level players
a, a′. There are infinite ways in which R could be asymmetric; we focus on a particular type of asymmetry
where one subset of Counties (or more generally lowest-level players) F are globally favorite destinations
(and equally popular) and all others are equally (un)popular, i.e. for each County j, rij = rH > rL = rkj
for each i ∈ F and each k ∈ L3 \ F for some 0 < rL < rH < 1, and

∑
i∈L3

rij = 1.

4.1 Free-riding

(a) Counties constrained to comply. (b) Counties free to not comply. (c) Counties free to not comply.

Figure 4: Free-riding (y-axis) as a function of non-compliance cost weight (x-axis). Each curve corresponds
to a different initial infection rate of State 2 (Init Inf) as indicated in the legend.

We begin with the rationale for our measurement and visualization of free-riding. Suppose State 2 has
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a higher initial infection (than State 1); then, intuitively, it may prefer a weak distancing policy (α2 � 0)
to reduce its implementation cost as most of its population is already infected; at the same time, since
infection can spread from State 2, State 1 could still suffer a large infection cost unless it employs a strong
distancing policy (α2 � 1). This creates the possibility for State 2 to free-ride off State 1; but, whether
this actually happens depends on the combination of parameters (including non-compliance issues with the
Government above and Counties below) and the same possibility may be created by other conditions. We use
this difference between policy strengths of the States as an indicator of the degree of free-riding. Intuitively
as α1 − α2 approaches −1 (1), the degree of free-riding of State 2 (1) off State 1 (2) increases.

In our reported experiments, we assume Government indifference between infection and implementation
(i.e. κa1 = 0.5) and an even split of the population between States (i.e. N1 = N2 = 500, hence µ1 = µ2 =
0.5); both States use the same weight vector which we vary. The crucial difference between States is in the
initial infection rate I0a/Na (as we discuss shortly).2 In all experiments, each State consists of 5 Counties.

Figure 4 depicts our results under transport symmetry and other conditions which we will now detail.
First, we assume that all Counties are constrained to comply with their respective States so that the policies
set by States 1 and 2 actually get implemented in their respective jurisdictions (i.e. we essentially have
a 2-level HPMG, hence the number and weights of Counties are immaterial). In Figure 4a, we plot the
variation in this policy-difference against the States’ shared non-compliance weight γa under the following
conditions: State 1’s initial infection rate is fixed at 0.1 (low) while that of State 2 varies over {0.7, 0.8, 0.9};
for either State a ∈ {1, 2}, we have κa = 0.9(1−γa) and ηa = 0.1(1−γa) for each value of the non-compliance
weight. We observe that free-riding is exacerbated as State 2’s initial infection rate becomes larger, although
a high enough non-compliance weight will mitigate the problem. However, interestingly, lower values of the
non-compliance weight also exhibit a lower degree of free-riding. Increasing the non-compliance weight forces
both States to monotonically weaken their policies (towards 1) but State 1 is more conservative, maintaining
a strict policy (at 0) up to a non-compliance weight of (at least) 0.15 and only then weakening its policy
to the level of State 2, as shown in Figures 8 and 9 in Appendix C. This accounts for the non-monotonic
dependence of free-riding on non-compliance cost weight as observed in Figure 4a.

What happens when we allow Counties to not comply with the respective States? We report results for
a setting where each County’s initial infection rate and weight vector is identical to that of its corresponding
State. Recall that, with Counties no longer constrained to comply, State policies are recommendations
policies whereas those that are implemented are County actions. With this mind, we report in Figures 4b
and 4c the difference in State policies α1−α2 as well as the difference 〈α1〉− 〈α2〉, where 〈αa〉 is the average
of the equilibrium policies set by all Counties ins State a ∈ {1, 2}, over the same combinations of weights
and initial infection rates as Figure 4a. We find virtually no evidence of free-riding from either measure (in
the extreme case represented by the lowest curve Figure 4c is perhaps better interpreted as State 2 giving
up on policy intervention rather than free-riding off State 1). This indicates that distributing autonomous
policy-making among several smaller-scale actors may also have a mitigating effect on free-riding, making
the impact on free-riding of non-compliance penalties from the highest level weaker.

We now repeat these experiments but in a specific setting violating transport symmetry with Counties
constrained to comply: we make State 1 the favorite destination with rH = 0.8 (equivalently, all Counties in
State 1 are equally favored as destinations). Figure 5 shows results when the States’ infection weights are
κ1 = 0.8(1− γ1) and κ2 = 0.9(1− γ2) respectively (still with γ1 = γ2), State 1’s initial infection rate is fixed
at 0.5 (moderate) while that of State 2 varies in {0.1, 0.5, 0.6, 0.7, 0.8, 0.9}, and Counties are constrained to
comply. While it is true that the States’ aversion to non-compliance is able to lessen free-riding monotonically
and more readily as State 2’s initial infection rate grows, the most salient feature is the sudden reversal in
the status of the apparent free-rider as State 2’s initial infection rate crosses a (high) threshold. Further
inspection reveals that, although State 1 has a higher proportion of active individuals even from State 2 and
cares about infections only slightly less than State 2 (but still with κ as high as 0.8), the initial infection
rate of 0.5 is high enough for it to respond weakly (α1 ≈ 1) while State 2 weakens its policy more gradually
with increase in the non-compliance weight γa, enabling State 1 to free-ride. However, once State 2’s initial

2We only report results for two-sided compliance costs at all levels; we did not observe any evidence of free-riding mitigation
using the one-sided variant in our experiments.
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Figure 5: Free-riding (y-axis) as a function of non-compliance cost weight (x-axis). Each curve corresponds
to a different initial infection rate of State 2 (Init Inf) as indicated in the legend.

infection rate becomes sufficiently high, it gives up on distancing policy even for low γa, forcing State 1 to
strengthen its policy — this is reflected in the sign reversal and increased magnitude of the policy difference
(Figures 10, 11, and 12 in Appendix C).

4.2 Fairness

(a) Transport symmetry
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(b) Transport asymmetry (1 favorite County per State)

Figure 6: Gini coefficient of costs averaged over (a) 50 trials for each scenario; (b) 30 trials for Aligned States,
50 for each other scenario. Error bars show one standard error.

Another property of the equilibria of an HPMG worth studying is how fair the distribution of costs is
among the Counties for different degrees of centralization and different priorities of the States. Of the many
fairness concepts that exist in the literature, we apply the popular measure, the Gini coefficient, to Counties’
overall costs at profile α returned by Algorithm 1:

Gini(α) =

∑
a∈L3

∑
a′∈L3

|Ca(α)− Ca′(α)|
2nL

∑
a∈L3

Ca(α)
.

We report experiments with 5 Counties under each of 2 States. For the Government, κa1 = ηa1 = 0.5;
for each State b ∈ {1, 2}, γb = 0.5, and there are two different scenarios of the full game based on the ratios

10



κb/ηb: (1) Misaligned States if this ratio is 20/80 for State 1 and 80/20 for State 2, (2) Aligned States if it
is 50/50 for either state. A third scenario we study is full decentralization where we set each County’s non-
compliance weight to 0 so that HPMG degenerates into a simultaneous-move game among Counties. For each
scenario, we apply two treatments with respect to the transport matrix: transport symmetry and a specific
asymmetry where each State has 1 County that is (universally) favorite with rH = 0.35. In each situation,
we vary the shared non-compliance weight γa of every County a as an independent variable (unless it is fixed
at 0), draw a uniform random sample κ′a ∼ U[0, 1], and set the infection weight at κa = κ′a(1−γa). Each set
of draws for all Counties constitutes one trial. Figure 6 provide Gini coefficient scatter plots for transport
symmetry and our specific asymmetry respectively. The distribution of overall costs seems reasonably and
comparably fair (lower is better) across scenarios. See Appendix D for further details.

5 Discussion and Future Work

We have initiated the study of a new game-theoretic model motivated by decentralized, strategic policy-
making under pandemic conditions, and experimentally uncovered interesting aspects of its equilibria. There
are several immediate directions for future work: more extensive experimentation for other parameter con-
figurations, including the formulation and testing of (causal) hypotheses; using the actual ABM [28] instead
of our closed-form infection estimation and handling the resulting computational efficiency issues; consid-
ering more complex policies (e.g. temporally evolving strategies) and invoking more sophisticated EGTA
approaches. It would also be interesting to apply HPMG or its natural variants to other problems of hierar-
chical decision-making within, say, a corporate or ideological (e.g. political) organization, where “superiors”
can impose a non-compliance penalty or offer a compliance bonus.
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A Omitted Details from Section 2.3

We will state and prove a useful property of Poisson distributions.

Proposition 1. Consider a random variable Y ∼ Poisson(λ). Then, for any non-zero real number b
independent of Z,

EZ [bZ ] = e−λ(1−b).

Proof. From definitions,

EZ [bZ ] =

∞∑
z=0

az Pr[Z = z] =
∑
z=0

az · e
−λλz

z!

= e−λ
∞∑
z=0

(bλ)z

z!
= e−λebλ

which equals the desired expression.

B Omitted Details from Section 3
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Figure 7: The number of best response steps (y-axis) as a function of the fraction of players that are best
responding (x-axis). Each curve corresponds to a game with n2 players (ranging from 5 to 45) in the second
level which is also the lowest level of game.

We conduct this experiment on a two-level game with one Government and a variable number n2 of
States. We focus on symmetric settings, i.e. all states have equal population, equal initial infections, and
equal weight vectors. The transport matrix is also symmetric. Figure 7 shows that setting k2 = n2 in
Algorithm 1 (synchronous BRD) results in fastest convergence to equilibrium for several choices of n2.
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C Omitted Details from Section 4.1

We will first look at the variation in State 1 and 2’s policies separately (Figures 8 and 9 respectively),
rather than their difference, as we vary their shared non-compliance weight for the experimental set-up in
Section 4.1. Recall that the initial infection rate of State 1 is fixed at 0.1 and we wish to uncover conditions
under which State 2 ends up free-riding, i.e. setting a weak policy (α2 close to 1) while State 1 adopts a
strong policy (α1 close to 0).

The most striking observation is that State 1 maintains a maximally strict policy in equilibrium for a
wide range of parameters (up to a compliance weight of around 0.15 for all initial infection rates of State 2
studied here) while jumps to a fairly weak policy quickly over the same range.

Figure 8: The Policy of State 1 (y-axis) as a function of non-compliance weight (x-axis) under transport
symmetry. Each curve corresponds to a different initial infection rate for State 2 as specified in the legend.

Figure 9: The Policy of State 2 (y-axis) as a function of non-compliance weight (x-axis) under transport
symmetry. Each curve corresponds to a different initial infection rate for State 2 as specified in the legend.

Now turning to the setting with transport asymmetry where State 1 is the favorited destination, Figures 10
and 11 provide similar insights into the behaviors of States 1 and 2 individually. Even when State 2’s initial
infection rate exceeds that of State 1 (which now has the moderate value 0.5), State 1 now prefers to enforce
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no policy intervention for (almost) all values of its non-compliance weight while there is more variability in
the equilibrium response of State 2. Further, holding that non-compliance weight fixed at 0, Figure 12

Figure 10: The Policy of State 1 (y-axis) as a function of non-compliance weight (x-axis) under our specific
transport asymmetry. Each curve corresponds to a different initial infection rate for State 2 as specified in
the legend.

Figure 11: The Policy of State 2 (y-axis) as a function of non-compliance weight (x-axis) under our specific
transport asymmetry. Each curve corresponds to a different initial infection rate for State 2 as specified in
the legend.

depicts that on exceeding a threshold on its initial infection rate, State 2 chooses the weakest policy, now
forcing State 1 to strengthen its own response. and causing the reversal in Figure 5.

D Omitted Details from Section 4.2

We will first take a closer look at the policies of the Counties and the resulting Gini coefficients for the
experiments in Section 4.2.

Under transport symmetry, Figures 13 give us scatter plots of the realized Gini coefficient and the
equilibrium policies of all Counties for each trial respectively; Figures 15 and 16 give us the corresponding
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Figure 12: The Policy of State 2 (y-axis) as a function of its own initial infection rate when its weight on
the non-compliance cost is 0 under our specific transport asymmetry.

scatter plots for the specific asymmetry where State 1 is the favorite destination. Important observations

Figure 13: 50 trials for each of 3 scenarios.

on these scatter plots are that the values of the policies tend to be extreme and realized Gini coefficients
seem to take on values from a small discrete set. The somewhat unique scenario is Aligned States which has
a higher variability or granularity in values for the symmetric setting — a property that is lost under our
specific asymmetry.
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Figure 14: 50 trials for each of 3 scenarios.
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Figure 15: 30 trials for Aligned States, 50 trials for each other scenario.
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Figure 16: 30 trials for Aligned States, 50 trials for each other scenario.
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