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9. Department of Mathematics, Bar-Ilan University, Ramat-Gan, 5290002, Israel

10. Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel

* Correspondence: xiyunzhang@jnu.edu.cn

† These Authors equally contributed to the manuscript

Battling a widespread pandemic is an arms race between our mitigation efforts,

e.g., social distancing or vaccination, and the pathogen’s evolving persistence. This

is being observed firsthand during the current COVID-19 crisis, as novel mutations

are constantly challenging our global vaccination race. To address this, we introduce

here a general framework for epidemic spreading under pathogen evolution, which

shows that mutations can fundamentally alter the projection of the spread. Specif-

ically, we detect a new pandemic phase - the mutated phase - in which, despite the

fact that the pathogen is initially non-pandemic (R0 < 1), it may still spread due to

the emergence of a critical mutation. The boundaries of this phase portray a balance

between the epidemic and the evolutionary time-scales. If the mutation rate is too

low, the pathogen prevalence decays prior to the appearance of a critical mutation.

On the other hand, if mutations are too rapid, the pathogen evolution becomes

volatile and, once again, it fails to spread. Between these two extremes, however,

a broad range of conditions exists in which an initially sub-pandemic pathogen will

eventually gain prevalence. This is especially relevant during vaccination, which

creates, as it progresses, increasing selection pressure towards vaccine-resistance.

To overcome this, we show that vaccination campaigns must be accompanied by

fierce mitigation efforts, to suppress the potential rise of a resistant mutant strain.

Evolutionary time-scales are often considered to be vast, occurring gradually over the course

of millions of years. However, if prevalent enough, a species may undergo even rare mutations

at relatively short time-scales. This is especially relevant during the course of a widespread

and prolonged pandemic. The global spread ensures a sufficiently large pool of pathogens for

mutations to occur, and on top of that, the long duration of the pandemic affords the pathogens

sufficient time to evolve.

Such troubling scenario is currently unfolding in the case of COVID-19, where novel mutations of

the SARS-CoV-2 virus continue to challenge our mitigation efforts.1–5 They are, however, equally

relevant in other infections, such as influenza A, forcing us to distribute a dedicated vaccine in
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each yearly cycle.6–11 Another notable example is norovirus, whose enhanced transmission, likely

due to mutation, led to an observable spike in gastric flu patients in England and Wales from

1991 to 2006,12 and finally, beyond viruses, artemisinin-resistance, a parasite mutation, rendered

void the common treatment of malaria in Africa.13,14

The common approach for tracking the spread of evolving pathogens is to introduce several

competing strains and extract their interacting contagion process.15–19 This captures the pat-

terns of spread of already evolved pathogens, overlooking the dynamics, and most importantly,

the time-scales, of the evolution itself. Indeed, in an ongoing pandemic, mutations represent a

gradual random process, in which an originally unfit pathogen mutates step-by-step via a series

of small changes, until reaching a critical mutation that allows it to efficiently spread. Such

process may take a significant amount of time, and, in some cases, the disease may taper off

before such critical mutation has the opportunity to take over.

Another crucial aspect, absent when considering pre-mutated strains, is the fact that pathogen

evolution is responsive. As we tighten our mitigation, either through prophylactic measures20–22

or via pharmaceutical interventions, we induce a selective pressure for mitigation resistance. For

example, if one enforces social distancing to push the reproduction rate R0 below the pandemic

threshold, the pathogen becomes naturally pressured towards higher transmissibility. Simi-

larly, if one employs therapeutic treatment to expedite recovery, natural selection will push the

pathogen to higher drug-persistence.

To address this, we introduce here an evolving pathogen model, which encompasses the delicate

interplay between the pathogen’s spread and its developing fitness. The evolution, a random

walk in fitness space, is driven by the pathogen’s mutation rate. At the same time the natural

selection, in which the fitter strains proliferate, is pushed by the epidemiological parameters,

characterizing how fast a mutated strain propagates. Together, we identify a rather broad set

of conditions - the mutated phase - in which a non-pandemic pathogen will eventually reach an

evolved pandemic state.

We find that besides the classic epidemiological parameters, i.e. infection/recovery rates, two

additional components factor in - the mutation rate governing the evolutionary time-scales, and

the number of infected individuals, which determines the likelihood of a critical mutation to

occur within the relevant time-frame. Therefore, as opposed to classic pandemic transitions,

which depend solely on the epidemiological parameters,23–27 here the current prevalence ρ(t)

of the pathogen has direct impact on its anticipated spread. This has significant implications

pertaining to our two main mitigation strategies • Social distancing suppresses the reproduction

number R0 to below the pandemic threshold.28–34 However, if many have already been infected,

i.e. ρ(t) is large, then a stricter suppression may be required to avoid the emergence of a crit-

ical mutation. This indicates that the projection of the spread, and hence also its mitigation,

depends on its present state ρ(t) - a hysteresis phenomenon, unobserved in the classic modeling

frameworks35–40 • Vaccination campaigns create strong evolutionary pressure towards a vaccine

resistant mutation, whose risk, once again, is directly related to the current pathogen prevalence.

Hence, to succeed, we show that vaccine roll-out must be coupled with fierce suppression via

social distancing.

2



Evolving pathogen model

Consider a social random network of N individuals linked through the adjacency matrix A ≡
{Aij} and with average degree k. At t = 0 the network experiences an outbreak, which then

spreads via the susceptible-infected-susceptible41 (SIS) dynamics. In the classic SIS formulation,

the projected spread is driven by two time-independent parameters: the recovery rate µ and the

infection rate β, whose ratio R0 = kβ/µ, the reproduction number, determines the state of the

system - pandemic (R0 ≥ 1) or healthy (R0 < 1). Here, however, the pathogen is allowed to

evolve, therefore these parameter may change over the course of the spread. This is captured

by the individual recovery rate

µi(t) =
1

Fi(t)
µ, (1)

where the fitness Fi(t) stands for the level of mutation of the pathogen carried by individual i at

time t, hence the unmutated pathogen has Fi(0) = 1. The above equation models the fact that

(i) each individual i may carry a distinct version of the virus; (ii) this version may gradually

change in time t due to mutations. The smaller is µi(t), the higher is the transmissibility of the

pathogen, as described by the evolving reproduction number

Ri(t) =
kβ

µi(t)
= R0Fi(t). (2)

Indeed, a low rate of recovery µi(t) extends the duration of the infectious state, providing

individual i with more opportunities to infect their peers. Hence, as the r.h.s. of (2) indicates,

pathogens with increased Fi(t) exhibit higher reproduction, and therefore spread more efficiently

than their lower fitness competitors.

Mutation may also impact the transmissibility of the pathogen directly by altering the value of

the infection rate β, e.g., by evolving a more infectious strain. However, in the SIS framework,

the relevant parameter is not µ nor β, but their ratio, as provided by Ri(t).
29,32,33,42,43 Therefore,

for simplicity, in (1) we only track the pathogen evolution through µi(t), and its subsequent Ri(t),

setting β stationary. To complement this analysis, in Supplementary Section 1 we examine the

case of β-mutations.

The spread is driven by the infection, recovery and mutation processes. The process of infection

between a pair of individuals i and j is modeled by

Si + Ij
Aijβ−−−→ Ii + Ij (3)

Fi(t) = Fj(t), (4)

in which a susceptible (S) individual i interacts with their infected (I) neighbor j (Aij = 1)

at rate β. This leads to both individuals becoming infected. The newly infected individual i

inherits j’s pathogen, and hence in (4) we set i’s fitness at the time of infection equal to that of

j. Both fitness parameters, Fi(t) and Fj(t) may later change via mutation. Next, we consider

the process of recovery

Ii
µi(t)−−−→ Si, (5)
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in which an infected individual Ii transitions to Si at the evolved recovery rate µi(t) of (1).

Finally, the process of mutation follows


Fi(0) = 1

Fi(t+ 1) = max
(
Fi(t) + δi(t) , 0

) , (6)

capturing a random walk with variable step size δi(t), i.e. a sequence of random shifts in fitness,

caused by small discrepancies in the pathogen’s reproduction. Note that Fi(t) is prohibited from

becoming negative, as, indeed, a below zero fitness in (2) is meaningless. The case where Fi(t)

does approach zero corresponds to µi(t)→∞ in (1), a limit in which recovery is instantaneous,

and hence the pathogen is unfit for reproduction. Such strains will be rapidly eliminated from

the pathogen pool.

The magnitude of each mutation step is extracted from a zero-mean normal distribution, namely

δi(t) ∼ N (0, σ2). Consequently, in the limit where σ = 0, we have δi(t) = 0 at all times,

mutations are suppressed, and Eqs. (3) - (6) converge to the classic SIS model, with Ri(t) = R0,

a constant reproduction number. In contrast, as σ is increased, significant mutations become

more frequent and the pathogens rapidly evolve. We therefore vary σ to control the mutation

rate of the pathogens.

Taken together, our modeling framework accounts for the dynamics of infection and recovery

(SIS) under the effect of pathogen mutation. As the spread progresses, pathogens evolve via Eq.

(6), blindly altering their epidemiological parameters at random. Natural selection, however,

will favor the positive mutations, in which δi(t) > 0. Indeed, such mutations lead to higher

fitness, reducing the recovery rate µi(t), and consequently increasing Ri(t). Such pathogens,

with increased Ri(t), will proliferate more rapidly, and will eventually dominate the population.

Critical mutation. Consider an outbreak of a pathogen with R0 < 1, i.e. below the epidemic

threshold. This can be either due to the pathogen’s initial sub-pandemic parameters, or a

result of mitigation, e.g., social distancing to reduce β. In the classic SIS formulation, such

pathogen with fail to penetrate the network. However, in the presence of mutations (σ > 0) the

pathogen may potentially undergo selection, reach Ri(t) > 1, and from that time onward begin

to proliferate. This represents a critical mutation, which, using (2), translates to

Fc =
1

R0
, (7)

the critical fitness that, once crossed, may lead an initially non-pandemic pathogen to become

pandemic. The smaller is R0 the higher is Fc, as, indeed, weakly transmissible pathogens require

a longer evolutionary path to reach pandemic spread.

Next, we analyze the spreading patterns of our evolving pathogens, seeking the conditions for

the appearance of the critical mutation.

Phase-diagram of evolving pathogens

To examine the behavior of (1) - (6) we constructed an Erdős-Rényi (ER) network with N =

5, 000 nodes and k = 15, providing a testing ground upon which we incorporate a series of epi-

demic scenarios (Fig. 1). Each scenario is characterized by a different selection of our model’s

three epidemiological parameters: µ and β, which determine the pathogen’s unmutated repro-
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duction R0, and σ, which controls the rate of mutation. We then follow the spread by measuring

the prevalence ρ(t), which monitors the fraction of infected individuals vs. time. We also track

the pathogen’s evolution via the population averaged fitness F (t) = (1/N)
∑N

i=1 Fi(t).

Pandemic (Fig. 1a, red). In our first scenario we set µ = 0.1, β = 8× 10−3 and σ = 10−2. This

captures a pandemic pathogen, which, using k = 15, has R0 = 1.2 > 1, namely it can spread

even without mutation. Indeed ρ(t) rapidly climbs to gain macroscopic coverage, congruent with

the prediction of the classic SIS model, but this time constantly growing, due to the gradual,

but continuous, increase in fitness F (t).

Mutated (Fig. 1c, green). Next we reduce the infection rate to β = 1.67 × 10−3, an initial

reproduction of R0 = 0.25 < 1. This describes a pathogen whose transmissibility is significantly

below the epidemic threshold, and therefore, following the initial outbreak we observe a decline

in ρ(t), which by t ∼ 50 almost approaches zero, as the disease seems to be tapering off. In this

scenario, however, we set a faster mutation rate σ = 1. As a result, despite the initial remission,

at around t ∼ 15, the pathogen undergoes a critical mutation as F (t) crosses the critical Fc =

1/R0 = 4 (grey dashed line) and transitions into the pandemic regime. Consequently, ρ(t)

changes course, the disease reemerges and the mutated pathogens successfully spreads.

Lethargic (Fig. 1b, blue). We now remain in the sub-pandemic regime, with R0 = 0.25, but

with a much slower mutation rate, set again to σ = 10−2. As above, ρ(t) declines, however the

pathogen evolution is now too slow - it is lethargic, and cannot reach critical fitness on time.

Therefore, the disease fails to penetrate the network, lacking the opportunity for the critical

mutation to occur.

Taken together, the dynamics of the spread are driven by three parameters: the initial epidemi-

ological characteristics of the pathogen, µ and β, which determine R0, and the mutation rate σ,

which governs the time-scale for the appearance of the critical mutation. Therefore, to deter-

mine the conditions for a mutation-driven contagion, as observed in Fig. 1c, we investigate the

balance between the decay in ρ(t) vs. the gradual increase in F (t).

The mutated phase

To understand the dynamics of the evolving pathogen model, we show in Supplementary Section

2 that at the initial stages of the spread, the prevalence ρ(t) follows

ρ(t) = ρ(0)eξ(t). (8)

The time-dependent exponential rate ξ(t) is determined by the epidemiological/mutation rates

via

ξ(t) = −µ(1−R0)t+
1

2
σ2µ2R2

0t
3, (9)

whose two terms characterize the pre-mutated vs. post-mutated spread of the pathogen. The

first term, linear in t, represents the initial patterns of spread, which are determined by the

original pathogen parameters, µ,R0. For R0 < 1 this describes an exponential decay, a là

SIS dynamics in the sub-pandemic regime. At later times, however, as t3 becomes large, the

second term begins to dominate, and the exponential decay is replaced by a rapid proliferation,

now driven by the mutation rate σ. The transition between these two behaviors - decay vs.

proliferation - occurs at τc =
√

2(1−R0)/3µσ2R2
0, which provides the anticipated time-scale for

the appearance of the critical mutation Fc in (7).
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This analysis portrays the mutated phase as a balance between two competing time-scales: on

the one hand the exponential decay of the sub-pandemic pathogen, and on the other hand the

evolutionary time-scale τc for the appearance of the critical mutation. For the evolution to win

this race the pathogen must not vanish before t = τc. This imposes the condition (Fig. 2a-c)

ρ(τc) ≥
1

N
, (10)

ensuring that at τc there are still one or more individuals hosting the pathogen. Indeed, ρ(τc) <

1/N indicates that on average, at t = τc less than a single individual is left in the infected pool.

Under this condition, the critical mutation is too late, the spread has already tapered off, and

the exponential growth driven by the positive term in (9) is averted.

Taking ρ(τc) from (8), we can now use (10) to express the boundary of the mutated phase,

predicting the critical mutation rate as (Supplementary Section 2)

σc ∼

(√
µ(1−R0)3

2R0

)
1

ln(I0)
, (11)

where I0 = Nρ(t = 0) is the number of individuals infected at t = 0. Equation (11) describes

the minimal mutation rate required for the pathogen to evolve a pandemic strain. For R0 = 1

it predicts σc = 0, as such pathogen can indeed spread even without mutation. However, as R0

is decreased, for example under mitigation, the pathogen prevalence rapidly declines, and hence

it must evolve at an accelerated rate to reach critical fitness. This is expressed in (11) by an

increased σc, which approaches infinity as R0 → 0.

To test our predicted phase transition we simulate in Fig. 1d an array of 1, 050 realizations of

Eqs. (1) - (6), representing different epidemiological scenarios. We varied R0 from 0 to 1.5, i.e.

from non-transmissible to highly contagious, and scanned a spectrum of mutation rates from

σ = 10−3 to σ = 10, spanning four orders of magnitude. Simulating each scenario 50 times we

observe the probability P for the disease to spread. This is done by tracking the pathogen’s

long-term prevalence ρ = ρ(t → ∞) and counting the realizations in which ρ → 0 vs. those

where ρ > 0. As predicted, we find that the pandemic state, classically observed only at R0 ≥ 1,

now extends to lower R0 in the presence of sufficiently rapid mutations. This gives rise to the

mutated phase (green), in which an initially decaying contagion suddenly turns pandemic. The

transition between the lethargic and the mutated states (grey zone) is well-approximated by our

theoretical prediction of Eq. (11), as depicted by the black solid line.

Equation (11) shows that σc depends not only on the epidemiological characteristics of the

pathogen (µ,R0), but also on the initial condition, here captured by the number of infected

individuals I0 = ρ(t = 0)N . If I0 is large the critical rate σc becomes lower, in effect expanding

the bounds of the mutated phase. To understand this consider the evolutionary paths followed

by the pathogens as they reproduce. These paths represent random trajectories in fitness space,

each starting from Fi(0) = 1, and with a small probability crossing the critical fitness Fc. The

more such attempts are made, the higher the chances that at least one of these paths will be

successful. Therefore, a higher initial prevalence I0 of the pathogen increases the probability

for the appearance of a critical mutation, enabling a mutated phase even with low σ. In simple

words, even rare mutations may occur if the initial pathogen pool (I0) is large enough. Indeed,

in Fig. 2d we find that the phase boundary shifts towards lower σc as the initial prevalence is

increased (grey shaded lines). Hence, a greater I0, indeed, expands the mutated phase.
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Hysteresis. This dependence on I0 indicates that the transition of Eq. (11) behaves differently

if we approach it from the pandemic state or from the healthy state. To observe this let us fix

the mutation rate at σ = 0.1 and gradually increase R0, seeking the critical point where the

system shifts to the mutated phase. This is mapped to a vertical trajectory in the σ,R0 plane

(Fig. 2d, yellow dashed line). At each value of R0 we instigate an outbreak with ρ(0) = 0.2, and

observe its long-term prevalence ρ. For small R0 this outbreak decays and the system reverts

to the healthy state ρ = 0. However, as we transition into the mutated phase, here predicted

at R0 = RHigh ≈ 0.6, the pathogen turns pandemic and its prevalence abruptly changes to

ρ ≈ 0.85.

To reverse this transition the näıve approach is to push R0 slightly below this critical point,

for instance, by practicing social distancing to reduce transmission. The challenge is that now,

moving in the opposite direction - from large to small R0 - our initial condition is pandemic,

with prevalence of order unity (∼ 85%), and hence I0 ∼ N . Under these conditions, Eq. (11)

predicts that, for our fixed σ, the critical R0 is now lower, at RLow = 0.35. This results in a

hysteresis phenomenon, in which criticality occurs at different points depending on the state

from which we approach the transition (Fig. 2e).

We find, therefore, that pathogen evolution fundamentally changes the phase space of epidemic

spreading. First it predicts a broad range of conditions - the mutated phase - in which a

sub-pandemic pathogen can gain prevalence. On top of that, it also predicts that this phase

exhibits a discontinuous transition, characterized by hysteresis, a phenomenon unobserved in

the classic SIS dynamics, yet congruent with other models37,40,44–48 that incorporate feedback

between a pathogen’s prevalence (ρ(t)) and its potency (Ri(t)). These two observations have

direct implications on mitigation:

• Soft mitigation is risky. Most mitigation strategies seek a minimal approach, aiming

to drive R0 just below unity. This is understandable as (i) major restrictions on social

interactions are costly and difficult to sustain49 for extended periods; (ii) having R0 < 1,

even by a small margin, is assumed to naturally suppress the spread, as it leads ρ(t) to

decay exponentially towards zero. Our analysis, however, shows that this is insufficient.

For R0 . 1 we have σc → 0, indicating that even a relatively stable pathogen, with a low

mutation rate, may eventually break through. Using Eq. (11) we can predict for a given

σ, the level of tolerable R0 that is sufficient to mitigate the mutated phase risk, providing

guidelines for effective mitigation.

• The sooner the better. Another common assumption, driven by the classic epidemic

phase-diagram, is that the projected state ρ(t→∞) depends only on R0, i.e. the epidemi-

ological parameters. The current state of the spread ρ(0) at the time we implement our

mitigation, plays no role. The observed hysteresis, however, shows that successful miti-

gation strongly depends on the prevalence at the time of instigation. If the pathogen has

already gained sufficient ground, we will need to suppress the reproduction number below

RLow, namely the lower phase-boundary in Fig. 2e. It is, therefore, crucial to respond

early, and initiate our mitigation when ρ(t) is still small, eradicating the pandemic before

mutations may determine a risk for its reemergence.

Bounded fitness. Our mutation process in Eq. (6) allows the pathogen an unbounded random

walk in fitness space. In reality, however, there are practical restrictions on fitness, as Ri(t)

cannot grow ad infinitum. Therefore, we now consider our evolving pathogen model, substituting

the mutation in (6) with

7



Fi(t+ 1) = min
(
Fmax,max

(
Fi(t) + δi(t) , 0

))
, (12)

in which the pathogen fitness is bounded from above by Fmax and from below by zero. Setting

Fmax = 20 we now revisit our phase-diagram (Fig. 3a). For small σ, mutations are slow, and the

evolution path is unaffected by the upper bound on Fi(t). Therefore, we continue to observe the

same transition as in the unbounded model of Fig. 1d. As we increase σ, however, we witness

a second transition, this time back to the healthy state, indicating that now, mutations are too

rapid. This captures the final phase of our evolving pathogen model - the volatile phase:

Volatile (Fig. 3, blue). When the mutation rate is too high the pathogen fitness becomes

unstable. On the one hand it can rapidly reach critical fitness, yet, on the other hand, due

to the random nature of its frequent mutations, it fails to sustain this fitness - resulting in an

irregular F (t), that fluctuates above and below the critical Fc (Fig. 3c).

To gain deeper insight into the volatile phase, consider the natural selection process, here driven

by the reproduction benefit of the fitter strains. This process is not instantaneous, and requires

several reproduction instances, i.e. generations, to gain a sufficient spreading advantage. With

σ too high, natural selection is confounded, the pathogen shown no consistent gain in fitness

and, as Fig. 3c indicates, ρ(t) decays exponentially to zero. In Supplementary Section 3 we use a

time-scale analysis, similar to the one leading to Eq. (11), to show that the volatile phase occurs

when σ exceeds

σc ∼
√
µ

3

(FmaxR0 − 1)
3
2

R0
. (13)

This prediction is, indeed, confirmed by our simulated phase diagram in Fig. 3a (black solid

line).

Our phase-diagram illustrates the different forces governing the spread of pathogens in the

presence of mutations. While spread is prohibited classically for R0 < 1, here we observe a

new, previously undocumented pandemic phase, in which the disease can successfully permeate

despite having an initially low reproduction rate. The conditions for this phase require a

balance between three separate time-scales: (i) The time for the initial outbreak ρ(0) to reach

near zero prevalence τr; (ii) The time for the pathogen to evolve beyond critical fitness τc; (iii)

The time for the natural selection to lock-in the fitter mutations τs. Pathogens with small R0,

we find, can still spread provided that

τr > τc > τs. (14)

The l.h.s. of (14) ensures that the pathogen can reach critical fitness before reaching zero

prevalence. This gives rise to the first transition of Eq. (11), between the lethargic and the

mutated phases. The r.h.s. of (14) is responsible for the second transition, from mutated to

volatile. It ensures that fitter pathogens do not undergo additional mutation before they have

time to proliferate via natural selection. Therefore, we observe a Goldilocks zone, in which the

mutation rate σ is just right: on the one hand, enabling unfit pathogens to cross the Rubicon

towards pandemicity, but on the other hand, avoiding aimless capricious mutations.
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Mutation risk in vaccine distribution - the case of COVID-19

Vaccination during an ongoing pandemic is, by nature, a competition between the rate of the

vaccine roll-out and the spread of the pathogen.50–52 Therefore, näıvely, to win this race all one

has to do is disseminate the vaccine as efficiently as possible, aiming to reach the majority of the

population before the pathogen does. This, however, ignores the role of mutations, which may

gravely impact even the most efficient vaccination campaign. Such mutations may, generally, be

less fit epidemiologically, i.e. have a lower F and consequently a lower Ri(t). Therefore, absent a

vaccine, they will be rapidly overcome by the faster spreading pathogen strains. However, once

the vaccine becomes widespread, resistance, even if less contagious, becomes a highly desirable

trait, and a resistant mutation, if occurs, will take over the population.

To examine this in a realistic setting we consider the spread of SARS-CoV-2, currently battled by

a global vaccination effort. To model the disease dynamics we collected data on the COVID-19

infection cycle (Fig. 4a), which includes a well-documented and elaborate set of transitions.53–63

Upon infection, individuals enter a pre-symptomatic state, which lasts, on average 5 days. Dur-

ing this period, typically within 2− 4 days they begin to shed the virus and infect their network

contacts (PS, purple). This continues until the onset of mild (IM ), severe (IS) or critical (IC)

symptoms, at which point they enter isolation and cease to spread the virus. A fraction (∼ 30%)

of infected individuals never go on to develop noticeable symptoms (AS, top arrow), and hence

they continue to spread the virus until their full recovery (R), typically within ∼ 7 days.

To evaluate the infection rate β we used empirical data on the observed spread in 12 different

countries.67 Focusing on the early stages of the contagion, prior to the instigation of mitigation

strategies, we find that β = 5×10−2 best fits the observed spreading dynamics. This corresponds

to a reproduction rate of R0 ≈ 2.6, congruent with existing valuations of R0 under COVID-

19.54,68 For details on the data analysis see Supplementary Section 4.

Here we complement this disease cycle by two additional processes

• Vaccination. The population is vaccinated at a rate ν, quantifying the percentage of the

(susceptible) population that receives the vaccine per unit time (day).

• Resistance. At each time-step, the pathogen may undergo a vaccine-resistant mutation

with probability p. This mutation has no bearing on its epidemiological parameters µ, β,

thus providing no additional spreading advantage, other than being resistant to the vaccine.

The larger is the infected population (ρ(t)N) the greater is the risk for such mutation,

hence we quantify the mutation risk via P = pN , and examine two scenarios: high risk

with P = 2.5 and low risk, setting P = 0.25. For a population of N ∼ 109 both cases

capture a very rare mutation with p ∼ 10−9 and 10−10, respectively.

Two factors drive the level of risk in this process. The prevalence ρ(t) determines the size of the

pathogen pool, which must be large for the rare mutation to be realized. The vaccine coverage

V (t) determines the selective advantage of the resistant strain, which becomes marginal if only

a small fraction of the population is inoculated. Therefore the highest risk occurs under the

coexistence of both infected and vaccinated individuals. This enables the interaction between

these two populations paving the way for both mutation (large ρ(t)) and selection (large V (t)),

and hence potentially driving the system towards vaccine resistance (Fig. 4b).

To observe this we simulated three vaccination strategies, under the high risk P = 2.5 scenario

• Slow (Fig. 4c,d). First we assume a slow vaccination rate of η = 10−3, a 0.1% daily coverage.

Such slow vaccination is insufficient to suppress ρ(t), allowing us, after some time to enter the
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risk zone in which ρ(t) coexists with V (t) (shaded). Mutations occurring within this window

(orange) are likely to proliferate. Indeed, we find that in the long term, vaccination fails, and

the resistant strain gains coverage. • Rapid (Fig. 4e,f). To overcome this we simulate a rapid

vaccine roll-out with η = 10−2, capturing an optimistic scenario, in which 1% of the population

is inoculated per day. Despite these favorable conditions we continue to enter the risk zone,

as the pathogen is allowed to spread freely in parallel to our vaccination efforts. The result

is, as before, an increased likelihood of a resistant mutation, which, once again, regardless of

our efficient dissemination, renders our vaccination void. • Combined effort (Fig. 4g,h). The

only way to avoid the risk zone is to minimize the potential interaction between infected and

vaccinated individuals. Since V (t) will inevitably grow - indeed, this is the goal of vaccine

distribution - we must contain ρ(t), namely aim for the right-most branch of the risk curve

in Fig. 4b. This requires a combined effort of both rapid vaccination (η = 10−2) and fierce

mitigation to suppress R0. The result is a successful elimination of the pathogen with V (t)→ 1

and ρ(t)→ 0.

In Fig. 4i,j we systematically plot the spreading probability P in function of η,R0 under our

high/low risk scenarios. We find that for COVID-19, having R0 ≈ 2.6 (black solid line) the risk

of vaccine resistance is significant, even under large η. Reducing R0 via social distancing helps

alleviate this risk. For example, for P = 2.5, even is we assume a rapid roll-out (large η), we

must reach R0 . 2 to remain within a low mutation risk (blue). Under P = 0.25, it is sufficient

to aim for R0 . 3, roughly the natural state of SARS-CoV-2.

Discussion and outlook

The phase diagram of epidemic spreading is a crucial tool for forecasting and mitigating pan-

demic risks. First, it identifies the relevant control parameters, such as µ, β and k in our SIS

framework, or additional parameters in more complex contagion processes, whose value deter-

mines R0 and hence the expected patterns of spread. The phase boundaries, then, help us assess

the state of the system - healthy or pandemic - and provide guidelines for our response. For

example, social distancing to reduce k, therapeutic treatment to increase µ or mask wearing

to suppress β, all aimed to navigate the system’s location along the pandemic phase-diagram

towards the desired healthy state.

The common thread binding all of these strategies is the assumption that the epidemiological

control parameters themselves are constant in time, and hence our intervention must just push

them beyond the static phase-boundary, from which point on the epidemic will decay towards

ρ→ 0 spontaneously. This is, indeed, relevant if the temporal evolution of µ, β is slow compared

to the epidemic spreading dynamics - as observed in the case of our lethargic phase. However,

once the epidemiological parameters can change at a sufficiently high rate, it fundamentally

changes the rules of the game. This is because now, not only are the parameters dynamic, but,

thanks to natural selection, they also become responsive. If, for instance, we develop drug-based

treatment to increase the recovery rate µ, we inevitably also generate selection pressure towards

drug persistence. Similarly, if we vaccinate or practice distancing to reduce k, β, we initiate an

evolutionary race towards higher transmissibility or vaccine resistance. This was clearly observed

in our analysis of the COVID-19 vaccine dissemination.

The result is a complex interplay between the spreading dynamics (R0), the instantaneous

prevalence of the pathogen (ρ(t)), and the dynamic evolution of its parameters (σ), which

reshapes the pandemic phase diagram. It not only expands the pandemic risk to a range of

R0 < 1, but also predicts an explosive transition pattern, i.e. the hysteresis of Fig. 2e, that is

10



not observed in standard epidemiological transitions. This altered phase diagram, and its abrupt

first-order like transition, we have shown, has crucial implications pertaining to our mitigation

strategies. Yet, more broadly, as a physical phenomenon, it offers an interesting mechanism for

explosive transitions. Most often, such abrupt phase-shifts are caused by internal suppression

rules, that hold back the transition until it breaks through in an explosive fashion.36,69–71 In

contrast, here what holds back the transition is the waiting time for the critical mutation. Until

its appearance the system behaves in one way (R0 < 1), but once it occurs, the system suddenly

enters the pandemic regime (R0 > 1). The explosiveness is therefore traced to a local event,

whose probability depends on the system’s initial parameters (R0, I0, σ). This local event then

changes fundamentally the state of the system - capturing a feedback between the system’s phase

and its intrinsic control parameters. We believe this describes a unique mechanism, inherent to

the basic ingredients of our biological system, reproduction, mutation and selection.
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[7] Nougairède, A., Charrel, R. N. and Raoult, D., Models cannot predict future outbreaks:

A/H1N1 virus,the paradigm, Eur J Epidemiol 26:183, 186 (2011).

[8] Bedford, T., et al. Integrating influenza antigenic dynamics with molecular evolution, eLife

3:e01914 (2014).

[9] Nelson, M. I. and Holmes, E. C., The evolution of epidemic influenza, Nature Reviews

Genetics 8, pages196,205 (2007).

[10] Ghedin, E. et al. Large-scale sequencing of human influenza reveals the dynamic nature of

viral genome evolution, Nature 437, pages 1162, 1166 (2005).

[11] Earn, D. J.D., Dushoff, J. and Levin, S. A., Ecology and evolution of the flu, TRENDS in

Ecology & Evolution 17, Pages 334-340 (2002).

[12] Lopman, B., Zambon, M. and Brown, D. W., The Evolution of Norovirus, the Gastric Flu,

PLoS Medicine 5(2): e42. (2008).

[13] Uwimana, A. et al., Emergence and clonal expansion of in vitro artemisinin-resistant Plas-

modium falciparum kelch13 R561H mutant parasites in Rwanda, Nature Medicine (2020).

[14] Birnbaum, J. et al., A Kelch13-defined endocytosis pathway mediates artemisinin resistance

in malaria parasites, Science 367, 51-59 (2020).

[15] Alexander, H. and Day, T., Risk factors for the evolutionary emergence of pathogens. J. R.

Soc. Interface 7, 1455-1474 (2010).

[16] Uekermann, F. and Sneppen, K., Spreading of multiple epidemics with cross immunization.

Phys. Rev. E, 86, 036108 (2012).

12
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Figure 1: The phases of a pandemic under pathogen mutation. (a) Pandemic phase. For R0 > 1 we
observe the classic pandemic phase. The prevalence ρ(t) vs. t (top) grows continuously as the fitness F (t) (bottom)
increases due to mutation and natural selection. (b) Lethargic phase. For R0 < 1 we have ρ(t) exponentially
decaying to zero. The mutation rate σ = 0.01 is too slow, F (t) remains almost constant (bottom), and the
pathogen fails to reach critical fitness Fc (grey dashed line) on time. (c) Mutated phase. We now remain in the
sub-pandemic regime R0 < 1, but increased the mutation rate to σ = 1. For small t we observe ρ(t) rapidly
decaying (top). However, thanks to the rapid mutations F (t) reaches critical fitness (grey dashed line) within
a short time. Following this point the disease reemerges and ρ(t) changes course, turning pandemic. This is
observed in the snapshots at bottom through the appearance of sporadic instances of high fitness pathogens
(middle, dark red nodes), which then spread to infect the majority of the population. (d) σ,R0 phase diagram.
To systematically observe the different phases we varied R0 ∈ (0, 1.5) and σ ∈ (10−3, 10), capturing a total of
1, 050 epidemiological scenarios, with different µ, β and σ. For each scenario we ran 50 stochastic realizations
and measured the probability P to have ρ(t → ∞) > 0, i.e. pandemic. We observe three phases with sharp
boundaries between them. First, the pandemic phase (red) for R0 > 1, independent of σ, as predicted by the
classic SIS model. In addition to that the sub-pandemic regime R0 < 1 is split into two phases: Under small
σ, P tends to zero (blue) and the pathogen fails to spread, giving rise to the lethargic phase. For large σ, the
spreading probability becomes almost certain, as p ∼ 1 (green), and we observe a mutation driven contagion. The
gap between these phases (grey) indicates an abrupt transition from P → 0 to P → 1, a dramatic shift occurring
within a narrow range of R0, σ values. This grey range is well-approximated by our theoretical prediction (solid
black line) as appears in Eq. (11). All simulations, here and throughout, were done on a random network of
N = 5, 000 nodes and k = 15. The disease parameters were set to µ = 0.1 and the infection rate was set variably
to β = µR0/k, to obtain the different values of R0. The mutation rate σ is specified in each figure. In each
scenario we set the initial condition to ρ(t) = 0.2.
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which there is a single infected individual among the N node population. (a) ρ(t) vs. t (grey solid line) as obtained
from Eq. (8) in the lethargic phase (R0 = 0.25, σ = 0.01). The critical mutation occurs at the minimum point
(tc), which is below the unit line. Therefore the epidemic decays prior to the appearance of the critical mutation.
Indeed, the stochastic simulation (blue solid line) approaches zero prevalence, never reaching the positive branch
of ρ(t). (b) Setting σ = 0.16 the system is at criticality. ρ(tc) is adjacent to the unit line, and hence we observe
critical behavior: some realizations decay (blue), whereas others successfully mutate (green). (c) Under σ = 0.5,
the system is in the mutated phase, ρ(tc) is sufficiently above the unit line and the critical mutation is reached
with probability P → 1. (d) The lethargic-mutated phase boundary in Eq. (11) depends on the initial size of the
infected population I0. Here we show this boundary for I0 = 102, . . . , 108 (grey solid lines). (e) The long term
prevalence ρ = ρ(t → ∞) vs. R0 under σ = 0.1 (yellow dashed path in panel (d)). Approaching from small R0

(left to right) we begin with an initial infection of I0 = 102 and observe a transition to the mutated phase at
R0 = RHigh. In the opposite direction, however, as we begin with large R0 we approach the transition from an
already pandemic state with I0 ∼ 104. Now the phase boundary traverses through R0 = RLow. Both transitions
are also marked by circles in panel (d). We, therefore arrive at a hysteresis phenomenon, in which the critical
transition point depends on the current state of the spread. Consequently, preemptive mitigation, done when the
spread is still at its embryonic stage (I0 small), is more effective than reactive mitigation, applied when I0 is
already large.
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(V ) individuals (center). When ρ is small, the probability of mutation is marginal (right); when (V ) is small
the selection pressure for resistence is weak (left). (c) Under slow vaccination ρ(t) increases (red). As a result,
when vaccines gain coverage we enter the risky zone (shaded), and become potentially vulnerable to resistance
mutation. Indeed, when such mutation occurs (orange line), the trend is reversed, ρ(t) increases and the vaccine
coverage V (t) plummets (blue). (d) We present several snapshots to track the state of the spread. In snapshot 2
we observe a premature mutation (orange node) that fails to spread, since V (t) at that point is still small (blue
nodes). Later (snapshot 4), with the system in the risky zone of high ρ(t) and V (t), such mutations rapidly take
over, as seen by the coverage of the orange nodes in snapshot 5. (e) - (f) Rapid vaccination in and of itself may
be insufficient. The system quickly enters the risky zone (shaded) and with R0 > 1, a single resistance mutation
eventually outruns our vaccination efforts. (g) - (h) Successful eradication of the disease is achieved under a
combination of rapid vaccination (blue) and suppression of R0, e.g., through social distancing. Pushing R0 down
suppresses ρ(t), and hence avoids the risky zone by locating the system in the right hand side of panel (b). (i)
The probability P to observe a pandemic state as a function of the vaccination rate η for different values of R0.
To alleviate the risk of vaccine resistant spread we must remain in the blue zone, in which we not only invest in
the vaccine roll-out (η), but also in suppressing the spread (reducing R0). (j) Similar, albeit less dramatic results
are also onserved under our low risk scenario P = 0.25.
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