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Abstract

At the end of April 20, 2020, there were only a few new COVID-19 cases remain-
ing in China, whereas the rest of the world had shown increases in the number of new
cases. It is of extreme importance to develop an efficient statistical model of COVID-
19 spread, which could help in the global fight against the virus. We propose a
clustering-segmented autoregressive sigmoid (CSAS) model to explore the space-time
pattern of the log-transformed infectious count. Four key characteristics are included
in this CSAS model, including unknown clusters, change points, stretched S-curves,
and autoregressive terms, in order to understand how this outbreak is spreading in
time and in space, to understand how the spread is affected by epidemic control
strategies, and to apply the model to updated data from an extended period of time.
We propose a nonparametric graph-based clustering method for discovering dissim-
ilarity of the curve time series in space, which is justified with theoretical support
to demonstrate how the model works under mild and easily verified conditions. We
propose a very strict purity score that penalizes overestimation of clusters. Simula-
tions show that our nonparametric graph-based clustering method is faster and more
accurate than the parametric clustering method regardless of the size of data sets.
We provide a Bayesian information criterion (BIC) to identify multiple change points
and calculate a confidence interval for a mean response. By applying the CSAS model
to the collected data, we can explain the differences between prevention and control
policies in China and selected countries.
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1 Introduction

During the COVID-19 outbreak, multiple complex factors resulted in the space-time

pattern of spread. Fig. 1 shows the log-transformed infectious counts in each region in

China, and in 33 selected countries at the end of April 20, 2020.

From Fig. 1, we can see two main characteristics of the spread: (i) the spread of COVID-

19 has a space-time characteristic determined by different intervention policies, incomplete

information, geographical locations, transport, climate, and so on; (ii) along the time, the

log-transformed infectious counts presented different sigmoid (stretched S-shaped) curves.

This phenomenon often happens in the life cycles of plants, animals, and viruses, which

can rise and fall periodically. In each cycle, the sigmoid curve experiences three phases:

slow rising, sharp rising, and slow falling.

Modeling the spread of COVID-19 in many regions over a long period of time is proven

to be challenging. That is because many regions may not share the same spread pattern

and different regions may exhibit various intervention policies that may cause instability

in the models. The model for each region may have a large degree of noise, but a common

cluster of all regions could have less noise by the law of large numbers. Thus, clustering is

of importance to increase model fit. We may have to cluster all regions, even if the number

of clusters is unknown. In addition, we should allow the model to incorporate unknown

change points to further enhance the fitting performance. Ignoring the existence of change

points may lead to poor model fitting and misleading model interpretation (Shi, Wang,

Wei & Wu, 2016). Furthermore, it is often necessary to apply the model to updated data

from an extended period of time. In the extended period, old clusters need to be updated

and new change points may occur. Models with incorporated clusters and change points

should be flexible and adaptive to the new data. In the next step, we shall consider the

2



nonlinear characteristics of the models.

Logarithmic transformation is often used for transforming count data, which includes

zero values (Jin et al. , 2020) and grows exponentially over time. The simplest for-

mula for exponential growth of a function y at the growth rate r, as time t goes on, is

y(t) = y(0)(1 + r)t, which satisfies the linear differential equation dy(t)
dt

= log(1 + r)y(t). A

nonlinear variation of this differential equation may lead y(t) to a sigmoid function. For

example, the solution of a nonlinear differential equation dy(t)
dt

= log(1 + r)y(t) − y2(t) is

the logistic function (Murray, p.308 , 1989; Liu & Stechlinski, p.84 , 2017). The expo-

nential growth model has shown numerous applications in the modeling and controlling of

complex systems. For example, the number of cells in a culture will increase exponentially

until an essential nutrient is exhausted. A virus, for example SARS or COVID-19, has been

found to spread exponentially (Katul et al. , 2020). The speed of spread slows down when

an artificial immunization becomes available or intervention policies take effect. Other

applications of the exponential growth model can be found in Physics (e.g., radioactive

decay), Economics (e.g., a country’s gross domestic product), Finance (e.g., investments),

Computer science (e.g., computing growth and internet phenomena), and so on.

When systems have short-term memories and become more complex, it is extremely

difficult to find a differential equation to describe the growth curve. In contrast, we may

add some autoregressive terms in a regression function to adapt to the complex system.

Kowsar et al. (2017) shows that an autoregressive logistic model was more accurate than

a logistic model when it comes to predicting the behaviors of complex biological systems.

The reason is that the added autoregressive terms, which behave like short-term memory,

can make an appropriate adjustment to better fit the complex system. In the same spirit,

we propose the clustering-segmented autoregressive sigmoid (CSAS) model with four key

characteristics including unknown clusters, change points, stretched S-shaped curves, and
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autoregressive terms. With the help of the CSAS model, we expect to understand how

an outbreak is spreading in time and in space, to understand how the spread is affected

by epidemic control strategies, and to apply the model to updated data from an extended

period of time.

To identify this CSAS model, we first identify unknown clusters. There are many popu-

lar methods, such as K-means (Wang & Hartiganm , 1979) (implemented in the R function

kmeans), Expectation-Maximization clustering for Gaussian Mixture Models (GMM-EM)

(Akaho , 1995) (implemented in the R package mclust), Density-Based Spatial Clustering

of Applications with Noise (DBSCAN) (Ester et al., 1996) (implemented in the R function

fpc::dbscan), and Hierarchical clustering (Murtagh & Legendre , 2014) (implemented in the

R function hclust). Except for GMM-EM, which can be considered to be parametric, all

other methods need to predetermine the number of clusters or distance related parameters.

To compare the dissimilarity of the curve time series, we need a nonparametric method that

does not require predetermined parameters. Then, we can separate different regions from

China and the selected 33 countries into clusters that share common patterns, segment the

curve time series, and provide accurate fittings.

Our contributions include the following: (1) we propose the CSAS model to help un-

derstand how an outbreak is spreading in time and in space, to understand how the spread

is affected by epidemic control strategies, and to apply the model to updated data from an

extended period of time; (2) we provide a nonparametric graph-based clustering method

with theoretical support, which furthermore proposes a very strict purity score that penal-

izes the overestimation of clusters. Simulations show that our method is fast and efficient

for different sizes of data sets; (3) we give practical methods for segmentation and provide

a confidence interval estimation for mean response; (4) we analyze the COVID-19 data in

regions in China and selected countries, and explain the differences among the epidemic
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prevention and control policies.

2 Main results

We assume the clustering-segmented autoregressive sigmoid (CSAS) model:

Zi,t =

Mi∑
m=1

{
β

(m)
1,i + β

(m)
2,i Φ(β

(m)
3,i + β

(m)
4,i t)

+

p∑
q=1

β
(m)
q+4,iZi,t−q + ε

(m)
i,t

}
I(τ

(m−1)
i < t ≤ τ

(m)
i ), (1)

where Zi,t = log(1 + Yi,t); Yi,t is the number of confirmed cases for the ith (1 ≤ i ≤ N)

cluster and time t ∈ [1, T ]; i = δ(j) for jth region with 1 ≤ j ≤ K; Zi,1−q = 0 for

q = 1, . . . , p; I(A) is an indicator function taking 1 if A is true, 0 otherwise; τ
(0)
i =

0, τ
(Mi)
i = T , τ

(m)
i for Mi > 1 and 1 ≤ m ≤ Mi − 1 are common change points for

the ith cluster; Φ(x) = 1√
2π

∫ x
−∞ e

−u2/2du is a cumulative distribution function (CDF) of

the standard normal distribution representing the sigmoid curve; β
(m)
1,i ’s and β

(m)
2,i ’s are

stretch location and scalar parameters, respectively; β
(m)
3,i ’s and β

(m)
4,i ’s are linear regression

coefficients within the sigmoid curves; β
(m)
q+4,i’s are autoregressive regression coefficients;

ε
(m)
i,t ’s are independent random errors with a mean of zero and constant variance of (σ

(m)
i )2.

The CSAS model has four key characteristics: (1) it is implemented with unknown N

different clusters among K regions. Due to the epidemic mechanism, human mobility and

control strategy, the spread of epidemics displays a spatial propagation. We will propose

a nonparametric method to cluster the regional data by applying the characteristic of

sigmoid curve. This method does not introduce any factors and hence can be considered

nonparametric; (2) the multiple S-shaped curves are described by change points. The
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change points τ
(m)
i for 1 ≤ m ≤ Mi − 1 are unknown and are related to the cluster (i).

This is because different intervention policy releases such as lockdown, maintaining social

distance, cancelling large events, closing schools, and so on, result in different segmented

sigmoid curves among unknown clusters; (3) the regression function is mainly determined

by the stretched S-curve β
(m)
1,i + β

(m)
2,i Φ(β

(m)
3,i + β

(m)
4,i t) and it allows a slight adjustment

through the autoregressive terms,
∑p

q=1 β
(m)
q+4,iZi,t−q which can be considered as a short-

term memory for the response variable; and (4) after specifying both clusters and change

points, we use the corresponding data sets to answer three questions. How do we estimate

the regression coefficients? Are those coefficients significantly different from zero? How do

we give a confidence interval for the mean response?

We give the following five remarks for the logarithmic transformation, the CDF function

Φ(x), and the random error in the CSAS model.

Remark 1. log(1 + x) transformation is often used for transforming count data that

include zero values (Jin et al. , 2020). When Yi,t is much smaller or larger than 1 in

magnitude, log(1 + Yi,t) ≈ Yi,t or log(1 + Yi,t) ≈ log Yi,t can be used. This transformation

log(1 + Yi,t) of Yi,t, which may grow exponentially over time, has two patterns, slow rises

and slow falls, and hence can often be modeled by a stretched S-curve.

Remark 2. The nonlinear function Φ(x) is used to describe the stretched S-shaped

curve. Other similar functions may be considered. For example, if we apply the approxi-

mation of Φ(x) by (Tocher , 1963), Φ(x) ≈ 1

1+e−2
√

2/πx
for all x, then we have

β
(m)
1,i + β

(m)
2,i Φ(β

(m)
3,i + β

(m)
4,i t) ≈ β

(m)
1,i +

β
(m)
2,i

1 + e−2
√

2/π(β
(m)
3,i +β

(m)
4,i t)

,

which is an extended logistic function of time t and is commonly used in logistic regression.

Remark 3. Mathematical modelling may provide an understanding of spread mecha-
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nisms. The original mathematical model was proposed and solved by Daniel Bernoulli in

1760; see (Dietza & Heesterbeek , 2002). Recent developments and applications are mainly

focused on the susceptible-infectious-recovered (SIR) model and its variants. The logistic

function derived from a nonlinear differential equation may explain why we should apply

the sigmoid curve to model the spread of disease (Murray, p.308 , 1989; Liu & Stechlinski,

p.84 , 2017; Katul et al. , 2020).

Remark 4. The model for each region may have a large degree of noise, but a common

cluster of all regions could have less noise because of the law of large numbers. So, we

should consider an individual cluster in the CSAS model. From Fig. 7 C (Cluster 3),

it can be seen that the noise is significantly smaller than that of Fig. 7 A (Province

NM) or B (Province TJ). In addition, we should allow the model to incorporate unknown

change points to further enhance the fitting performance. Fig. 8 F suggests that the

residuals from the CSAS model without change points exhibit a clear trend. In contrast,

the variance of noises in each segment should be constant; see Fig. 8 A-C. Models with

incorporated clusters and change points should be flexible and adaptive to the new data;

see the continued good performance of the CSAS model in the extended two-month data

in the “Discussion and Conclusions” section.

Remark 5. With both autoregressive terms and CDF function in the CSAS model,

the variance of random errors can be considered to be constant across segments. In Fig. 8

A, B and C, the model residuals are well-behaved across segments. The residuals in Fig.

8 D (the autoregressive terms are removed) and Fig. 8 E (the CDF function is removed

as shown in the Long-Short-Term-Memory model in (Yang et al. , 2020)) suggest a time

trend. This finding agrees with the fact that an autoregressive logistic model was more

accurate than a logistic model as shown in (Kowsar et al. , 2017).
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2.1 Clustering

To find clusters of all K regions, we consider the T dimensional series {Zj, 1 ≤ j ≤ K},

where its tth component is Zj,t for 1 ≤ t ≤ T , and define the Euclidean distance between

Zj1 and Zj2 as follows:

d(Zj1 ,Zj2) =

√√√√ 1

T

T∑
t=1

(Zj1,t − Zj2,t)2. (2)

We construct an approximate shortest Hamiltonian path (SHP) based on a heuristic

Kruska algorithm (HKA), which was proposed by (Biswas et al. , 2014) for a two-sample

test. This was successfully applied into change point detection in (Shi, Wu and Rao, 2017,

2018). The HKA first sorts all edges in order of increasing distance defined in (2). First

and foremost, the edge with a minimum distance must be selected. Then subsequent edges

are chosen one-by-one from the remaining list of sorted edges according to the requirement

of a path. If this current edge does not form a cycle with the previously selected edges, and

every vertex connected by this current edge, or previously selected edges, has a degree not

greater than 2, then this current edge must be selected. The HKA terminates when K − 1

edges have been chosen. The approximate SHP is formed by chosen K − 1 edges denoted

as P = (j1, . . . , jK). The next step is to find clusters based on P . We define the edge set of

P as E(P), and consider a subset of E(P):

E∗(P , θ) = {(js, js+1) for s = 1, . . . , K − 1 (3)

such that (js, js+1) ∈ E(P) and d(Zjs ,Zjs+1) ≤ θ
}
.

We create a graph from the edge set E∗(P , θ) and define the connected components

of this graph as a set of clusters A = {A`, 1 ≤ ` ≤ L}. We note that the R function
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components in the R package igraph (Csardi & Nepusz , 2006) can calculate the connected

components given the edge set.

Suppose that there is a set of classes C = {Ci, 1 ≤ i ≤ N}, where Ci = {j|δ(j) = i}. We

need to measure how close the set of clusters A is to the predetermined set of classes C.

Purity (Manning, Raghavan and Schütze , 2008) is a measure of this extent defined as:

S(A, C) =
1

K

L∑
`=1

max
1≤i≤N

|A` ∩ Ci|. (4)

In most cases, a bad clustering has a purity value close to 0 and a perfect clustering has

a purity of 1. However, this measure may not give a realistic evaluation for overestimated

clusters. For example, a purity score of 1 could happen by putting A` = `, L = K and

N = 1. In this case, one whole class is mis-clustered to K separate clusters with a purity

score of 1.

We propose a very strict purity score to penalize overestimated clusters:

S∗(A, C) =
1

K

L∑
`=1

max
1≤i≤N

|A` ∩ Ci| −
|L−N |

max(L,N)
. (5)

Users may add additional weight on the second penalty term according to different require-

ments. Based on this very strict purity evaluation, a very bad clustering would have a

purity value close to -1, and a perfect clustering will still have a purity of 1. If A` = `,

L = K and N = 1, then S∗(A, C) = 1/L, decreasing as L increases. Overestimated clusters

may have a very strict purity score close to 0. A natural question comes: does our cluster-

ing have a very strict purity score of 1? To answer this question, we make the following

assumptions.

Assumption 1. Let εi,t be Zi,t−E(Zi,t). Assume that εi,t is independent and identically
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distributed (i.i.d.) satisfying E(ε4
i,t) <∞ for all 1 ≤ j ≤ K and 1 ≤ t ≤ T .

Assumption 2. There exists a η(T ), satisfying that η2(T ) > 2E(ε2
1,1), K << {η2(T )−

2E(ε2
1,1)}2T and minj1 6=j2,δ(j1)6=δ(j2) d(E(Zj1), E(Zj2)) > 2η(T ).

In Assumption 1, if εi,t is dependent, then we require the upper bound of

E

∣∣∣∣∣
T∑
t=1

(εj1,t − εj2,t)2 − E(ε2
j1,t

)− E(ε2
j2,t

)

∣∣∣∣∣
2

<< Tη2(T )/K.

In Assumption 2, we requireK to be quite small compared to T . Note that d(E(Zj1), E(Zj2))

is easy to evaluate because d(E(Zj1), E(Zj2)) =
√

1
T

∑T
t=1{E(Zj1,t)− E(Zj2,t)}2. We have

the following Theorem 1.

Theorem 1. Suppose Assumptions 1-2 hold. Choose θ = η(T ) as in (3). As T →∞,

we have P{S∗(A, C) = 1} → 1.

Proof of Theorem 1. We first prove that P{maxj1 6=j2,δ(j1)=δ(j2)

√
1
T

∑T
t=1(Zj1,t − Zj2,t)2 >

η(T )} → 0. Because δ(j1) = δ(j2), Zj1,t − Zj2,t = εj1,t − εj2,t. Then we have

P

 max
j1 6=j2,δ(j1)=δ(j2)

√√√√ 1

T

T∑
t=1

(Zj1,t − Zj2,t)2 > η(T )


≤
∑
j1 6=j2

P

{
T∑
t=1

(εj1,t − εj2,t)2 > η2(T )T

}

=
∑
j1 6=j2

P

[
T∑
t=1

(εj1,t − εj2,t)2 − E{(εj1,t − εj2,t)2}

> {η2(T )− 2E(ε2
1,1)}T

]

≤
∑
j1 6=j2

P

[ ∣∣∣∣∣
T∑
t=1

(εj1,t − εj2,t)2 − E{(εj1,t − εj2,t)2}

∣∣∣∣∣
2
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> {η2(T )− 2E(ε2
1,1)}2T 2

]
≤ cK

{η2(T )− 2E(ε2
1,1)}2T

, (6)

where c is a constant not related to either K or T . By Assumption 2, this upper bound

converges to zero. Next, we prove that P{minj1 6=j2,δ(j1) 6=δ(j2)

√
1
T

∑T
t=1(Zj1,t − Zj2,t)2 ≤

η(T )} → 0. By the Minkowski inequality and Assumption 2,

P

 min
j1 6=j2,δ(j1)6=δ(j2)

√√√√ 1

T

T∑
t=1

(Zj1,t − Zj2,t)2 ≤ η(T )


≤ P

[
min

j1 6=j2,δ(j1)6=δ(j2)

√√√√ 1

T

T∑
t=1

{E(Zj1,t)− E(Zj2,t)}2

−

√√√√ 1

T

T∑
t=1

{εj1,t)− εj2,t)}2 ≤ η(T )

]

≤ P

[
min

j1 6=j2,δ(j1)6=δ(j2)
2η(T )−

√√√√ 1

T

T∑
t=1

{εj1,t)− εj2,t)}2 ≤ η(T )

]

= P

[
max

j1 6=j2,δ(j1) 6=δ(j2)

√√√√ 1

T

T∑
t=1

{εj1,t)− εj2,t)}2 ≥ η(T )

]
,

which converges to zero by (6).

By the HKA, for any A`, there exists Ci such that Ci = A` in probability, which implies

that max1≤i≤N |A` ∩ Ci| = |A`| and L = N hold in probability. So, P (S∗(A, C) = 1)

converges to 1 as T →∞. The proof of Theorem 1 is finished.

To apply Theorem 1, we need to set the right value for θ. In real problems, θ could
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be unknown. We shall propose a data driven method to select the threshold value of θ. A

naive choice of θ based on outlier detection is

θ̂ = medians=1,...,K−1(xs)

+ 2.5 (1.483×medians=1,...,K−1|xs −medians=1,...,K−1(xs)|) , (7)

where xs = d(Zjs ,Zjs+1) for s = 1, . . . , K−1, medians=1,...,K−1(xs) and 1.483×medians=1,...,K−1|xs−

medians=1,...,K−1(xs)| are robust estimates of mean and standard deviation of {xs, s =

1, . . . , K − 1}, respectively, and 2.5 is the cutoff value. It works well for relatively small N

to K. The large values in the series of {xs, s = 1, . . . , K−1} would not affect the threshold

value θ̂ and hence they could be successfully removed. However, if the distribution of xs’s,

with the exception of outliers, is a mixture of two or more probability distributions which

commonly occurs in multiple clusters, then θ̂ may not be consistent to θ. Therefore, we

propose Algorithm 1 based on Bayesian information criterion (BIC) to choose θ.

2.2 Segmentation

Denote a set of change points as Ci = {τ (1)
i , · · · , τ (Mi−1)

i }, where i = 1, . . . , N and

Mi− 1 is the number of change points. Since Mi is unknown in practice, we would need to

estimate the change points. Consider the segment [t−, t
+] and define two residual sums of

squares

Si,0(t−, t
+) = min

β

t+∑
t=t−

{Zi,t − f(t;β)}2 , (8)

Si,1(t−, t0, t
+) = min

β

t0∑
t=t−

{Zi,t − f(t;β)}2
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+ min
β

t+∑
t=t0+1

{Zi,t − f(t;β)}2 , (9)

where 1 ≤ t− < t0 < t+ ≤ T and f(t;β) = β1 + β2Φ(β3 + β4t) + β5Zi,t−1 + β6Zi,t−2.

Here, we consider two autoregressive terms. Then, the estimated change point is denoted

as t̂i(t−, t
+):

t̂i,t−,t+ = arg min
t−+∆/2<t0<t+−∆/2

Si,1(t−, t0, t
+). (10)

where ∆ is the minimum distance between two adjacent change points and t+ − t− > ∆.

In light of Bai & Perron (2003), we apply the BIC method for model comparison.

Define

BICi,ν(t−, t
+) = (t+ − t− + 1) log{σ̂2

i,ν}+ 6(ν + 1) log(t+ − t−) (11)

where ν = 0 or 1, 6(ν+1) is the number of parameters and σ̂2
i,0 = (t+− t−+1)−1Si,0(t−, t

+)

and σ̂2
i,1 = (t+− t−+1)−1Si,1(t−, t̂i,t−,t+ , t

+). Combined with the Iterated Cumulative Sums

of Squares Algorithm (ICSS) (Inclán & Tiao , 1994), we propose Algorithm 2 to estimate

multiple change points.

In Algorithm 2, there are two main steps that include finding candidate change points

and refining them. We set the minimum distance between two adjacent change points, ∆,

to be 10 for real data analysis.

2.3 Fitting

First, we use the well-known nls function in the R package stats (R Core Team , 2020)

to find the minimum value as shown in (8) and give t tests on regression coefficients, where

initial values of parameters are given by grid search. Second, we give a confidence interval

of regression function, denoted as gi,t(β) = E(Zi,t|Zi,t−1, Zi,t−2) for t ∈ [t−, t
+], by the delta
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method as follows. By first-order Taylor expansion at the solution β̂, we have

gi,t(β) ≈ gi,t(β̂) +∇gi,t(β̂)(β − β̂).

The approximate (1− α)100% confidence interval for gi,t(β) is

gi,t(β̂)± t∗α/2(t+ − t− − 6)

√
∇gi,t(β̂)>Var(β̂)∇gi,t(β̂),

where t∗α/2(t+− t−−6) is the α/2 lower quantile of a t distribution with degrees of freedom

t+ − t− − 6 and Var(β̂) can be estimated by the nls function in R. Here, we consider

α = 0.05.

3 Simulations

We consider three classes N = 3. Let C1, C2, and C3 be randomly seperated classes with

∪3
i=1Ci = {1, . . . , K}. Denote the number of elements in ith class as ni with

∑3
i=1 ni = K.

We produce Zi,t from the following model

Zi,t =

Mi∑
m=1

{
β

(m)
1,i + β

(m)
2,i Φ(β

(m)
3,i + β

(m)
4,i t)

}
I(τ

(m−1)
i < t ≤ τ

(m)
i )

+ εt, (12)

where i = 1, 2, 3, t = 1, . . . , T and εt’s are independent Normal errors with mean zero and

variance σ2.

For the first class, let M1 = 1, β
(1)
1,1 = 0, β

(1)
2,1 = 10, β

(1)
3,1 = −4, and β

(1)
4,1 = −0.05. For

the second class, let M2 = 2, β
(1)
`,2 = 0 for ` = 1, . . . , 4, τ

(1)
2 = T/3, β

(2)
1,2 = 0, β

(2)
2,2 = 20,
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β
(2)
3,2 = −3, and β

(2)
4,2 = 0.03. For the third class, let M3 = 2, β

(1)
`,3 = 0 for ` = 1, . . . , 64,

τ
(1)
3 = 2T/3, β

(2)
1,3 = 0, β

(2)
2,3 = 5, β

(2)
3,3 = −2, and β

(2)
4,3 = 0.07.

Fig. 2 plots different S-curves of Zi,t for i = 1, 2, 3 and T = 150. Next, we compare our

graph-based clustering method as shown in Algorithm 1 with the model-based clustering

method (Fratey & Raftery , 2002) implemented in the R function Mclust (Fraley et al. ,

2020). Fig. 3 shows the averaged strict purity score as in (5) for estimated clusters based

on these two methods for σ = 0.1, 0.2, . . . , 1, different ni’s and 100 replications.

It can be seen from Fig. 3 that our method is very accurate for different σ and sizes of

classes because its very strict purity scores are close to 1. This agrees with the conclusion in

Theorem 1. In contrast, the performance of the model-based clustering method is affected

by large σ and large sizes of classes. Specially, when n1 = 20, n2 = 100 and n3 = 200,

the computation is significantly slower compared with our method. The comparison of

computing time is not presented here.

4 Real data analysis

We continue to use the data set of log-transformed infection counts from December 1,

2019 to April 20, 2020 from Chinese provinces/regions and the 33 countries, and present the

clustering and S-shaped fitting with change points. Here, two autoregressive components

(p = 2) in (1) are suggested.

4.1 Clustering

Based on the graph-based clustering Algorithm, the clusters of COVID-19 in China and

the rest of the world are presented in Fig. 4, where the optimal path is presented as a cycle

with vertexes representing clusters in different colors and overextended curves. This way of
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presentation is to transmit three aspects of information: (i) this analysis is for virus data,

therefore, we should use the cycle and the sharp nodes to describe the structure of the virus;

(ii) the optimal graph is a path connecting all nodes where nodes can be provinces/regions

in China or countries in the world; and (iii) readers can quickly find the different clusters

and where to separate them from the path.

From Fig. 4, we observe the following.

(1) As shown in COVID-19 cases in China, the 34 provinces/regions are clustered into

7 categories. Specifically, Hubei (HB), Xizang (XZ), Qinghai (QH), Macao (MO), Hong

Kong (HK), and Taiwan (TW) are individually clustered into separate categories, and the

remaining provinces/regions are all clustered into one category. This clustering result can

be explained by the differences in epidemic control strategies among the provinces/regions:

HB is the center of the COVID-19 breakout, with a large number of infection cases; un-

derpopulated XZ and QH are both located on the Qinghai Tibet Plateau, with only a few

infection cases; MO, HK, and TW are of self-governance: meaning their epidemic control

strategies are different from all other regions in China. The model-based clustering method

(Fratey & Raftery , 2002) suggests both HK and TW are to be in one cluster, which may

not be correct.

(2) As shown in COVID-19 cases in the world, the 33 selected countries are clustered

into 8 categories. Specifically, China (CN), Korea (KR), Japan (JP), Spain (ES), and

Turkey (TR) are individually clustered into separate categories; Italy (IT) and Iran (IR)

are clustered into one category; the United States of America (US), Germany (DE), France

(FR), the United Kingdom of Great Britain (UK), Northern Ireland (GB), and Canada

(CA) are clustered into one category; and the remaining countries are all clustered into

one category. This clustering result is partly based on the timing of COVID-19 outbreaks

in those countries. For example, the first large-scale outbreak was in CN, followed by KR
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and JP. After that, infections in IR and IT experienced rapid growth, followed by the

outbreaks in European countries and the US. Finally, the epidemic spread worldwide. In

addition, the clustering is also based on the epidemic control strategies in each country.

For example, in KR and JP, even while the epidemic broke out around the same time, the

two countries had taken different strategies: JP adopted a “defensive strategy”’ to ensure

the health care system operated normally as usual, while KR used an “aggressive attack

strategy” to comprehensively detect infections.

4.2 Segmentation and fitting

Based on the BIC-based ICSS Algorithm, we segment the curve time series and present

the segmented fittings and confidence interval estimation for the log-transformed infection

counts Zi,t(1 ≤ i ≤ N) of each cluster in China and the rest of the world; see Fig. 5 and 6,

respectively.

We can obtain that all sigmoid curves share the form of multiple stages and multiple

change points, with the exception of Cluster 7 (XZ) in China, with only one infection; the

calculated change points of each cluster can still be explained by the differences in epidemic

control strategies. See the details below.

(1) As shown in Fig. 5 A and Fig. 6 A, the sigmoid curves and change points are

almost the same because HB province was the center of the COVID-19 outbreak in CN.

In Fig. 6 A in CN, the first segment (19/12/01 to 19/12/13) was the germination period

of the outbreak. In the second segment (19/12/13 to 20/01/16), COVID-19 seemed to

have been controlled in CN. However, because many COVID-19 cases had not been found

due to varied epidemic control strategies in the previous two stages, COVID-19 broke out

in the third segment (20/01/16 to 20/01/26) and fourth segment (20/01/26 to 20/02/11)

in CN. This coincided with Chunyun (the annual massive movement of people during
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Chinese Lunar New Year), which particularly accelerated the outbreak. Finally, in the last

two segments (20/02/11 to 20/02/27 and 20/02/27 to 20/04/20), COVID-19 was controlled

and stabilized once the CN government implemented very strict epidemic control strategies,

such as traffic control and home quarantine.

(2) As shown in Fig. 5 C, the sigmoid curves in HK and TW seem similar because

they were both strongly affected by COVID-19 cases from mainland China. However, we

find that the change points of COVID-19 in TW are about a week delayed compared to

those in HK after COVID-19 started to break out in both regions. This is because TW

responded in a timely manner to the COVID-19 outbreak and controlled it more quickly

and effectively than HK, while the implementation of epidemic control strategies in HK

lagged behind.

(3) As shown in Fig. 6, the number of new cases in China had tentatively stabilized

since the last change point, 20/02/27, which was delayed by about one week in other

clusters. In Fig. 6 A and B, the infections in CN and KR are mostly stable, but the

epidemic situations in other countries have not been controlled effectively. Take the fifth

cluster (Fig. 6 C) as an illustration, considering that this cluster had the fastest growth.

The four segments can be explained as follows: (i) the infections in the first segment

were mainly from oversea imports; (ii) in the second segment, COVID-19 seemed to have

been controlled; (iii) COVID-19 broke out because of many unfound COVID-19 cases in

previous segments; and (iv) in the last segment, COVID-19 began to come under control

as governments declared states of emergency and started implementing strict measures to

control the spread of the virus.

(4) As shown in Fig. 6 B, confidence intervals for KR tended to be quite narrow in

width when the number of new cases had tentatively stabilized, resulting in more precise

estimates of mean response, whereas confidence intervals for JP tended to be wide since JP
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had adopted a “defensive strategy”. In most of cases, confidence intervals produced precise

results.

5 Discussion and Conclusions

A clustering-segmented autoregressive sigmoid model is developed to explore the space-

time pattern of the log-transformed infectious count by the end of April 20, 2020. It

performed well when it was applied to COVID-19 cases in both China and the 33 countries,

and thus provides an efficient statistical model of COVID-19 spread to help fight against the

virus. Currently, the infections in China are mostly stable, and the graph-based clustering

algorithm is robust to the clusters from the 34 provinces/regions in China. When COVID-19

began to come under control, the clustering of the disease globally will become increasingly

stable.

In fact, the CSAS model can adapt to an extended period of time when clusters have

been updated and new change points have been identified. To do so, we use the last change

points in time, 20/03/07 obtained from Fig. 5 or 2020/03/08 obtained from Fig. 6, as the

start of the extended period at two-month intervals, from 20/03/07 to 20/05/07 or 20/03/08

to 20/05/08. In Fig 9, we show segmentations and fittings for log-transformed infection

counts of each cluster in both China and the 33 countries during this extended period. We

can see that the fittings continue to work well. We provide an R package, GraphCpClust,

which can be accessed from https://github.com/Meiqian-Chen/GraphCpClust. From this

R package, users can obtain the same results presented in this paper and can model data

for another extended period of time. In addition, the data and code for another two papers

(Shi, Wu and Rao, 2017, 2018) are included in this R package.

Regarding the dataset used in this article, Wuhan-2019-nCoV, we make the follow-
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ing additional remarks: 1. Back in early March 2020, there were very few datasets on

COVID-19, and especially few datasets containing timely epidemic data from each Chinese

province. This dataset, Wuhan-2019-nCoV, collects national outbreak reports from WHO,

as well as daily outbreak reports from provincial health and family planning commissions

in China; 2. The Wuhan-2019-nCoV dataset is very timely updated and has been included

in the “Open Source Wuhan” data resource. Therefore, we believe that the data quality of

the Wuhan-2019-nCoV dataset is trustworthy. There are now more and more COVID-19

data resources available, such as WHO data (https://covid19.who.int/) and Our World in

Data (https://ourworldindata.org/covid-data-switch-jhu). For these two datasets, we find

that our model still works very well. Please see this webpage, http://graph-clustering-

system.com/, for the three data analyses described above.
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Figure 1: Plots of log-transformed infectious counts from December 1, 2019 to
April 20, 2020 in China and in 33 selected countries. The data origin is from
https://github.com/canghailan/Wuhan-2019-nCoV. The Alpha-2 codes applied here for
China’s provinces/regions and countries come from https://www.iso.org/obp.
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Figure 2: Plots of S-curves for three classes.
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Algorithm 1: Graph-based clustering Algorithm

Result: Output the optimal clusters A.
1 Notations: x(θ) = {xs|xs ≤ θ, s = 1, . . . , K − 1} where xs is defined in (7);
2 θ(s) is the s’th largest element in set {xs, s = 1, . . . , K − 1};
3 σ̂2(θ) is the sample variance of x(θ);
4 BIC(θ,A) = (K − 1) log(σ̂2(θ)) + 2L(A) log(K − 1), where L(A) is the number of

clusters in A ;
5 Initialize: Let i = 1, L = 1, and A = {A1} where A1 = {1, . . . K};
6 for s = 2; s < K − 1; s = s+ 1 do
7 Let θ be θ(s) and calculate the clusters based on E∗(P , θ) in (3) denoted as

Atemp;
8 if BIC(θ,Atemp) < BIC(θ(s−1),A) then
9 A = Atemp;

10 else
11 break;
12 end

13 end
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Figure 3: Comparisons of graph-based clustering method and model-based clustering
method.
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Algorithm 2: BIC-based ICSS Algorithm

Result: Output the estimated change points Ĉi.
1 Notations: Ĉi,(s) and |Ĉi| are the sth smallest element and number of elements of

set Ĉi, respectively;

2 Initialization: Let t− = 1, t+ = T , and Ĉi = {0, T};
3 while t+ − t− > ∆ do
4 tfirst ← t+; tlast ← t−;
5 while BICi,0(t−, tfirst) ≥ BICi,1(t−, tfirst) do
6 tfirst ← t̂i,t−,tfirst

;
7 end
8 while BICi,0(tlast, t

+) ≥ BICi,1(tlast, t
+) do

9 tlast ← t̂i,tlast,t+ ;
10 end
11 if tfirst = tlast then

12 Ĉi ← Ĉi ∪ {tfirst}; break;
13 else

14 Ĉi ← Ĉi ∪ {tfirst, tlast}; t− ← tfirst; t
+ ← tlast;

15 end

16 end

17 for s = 2; j < |Ĉi|; s = s+ 1 do

18 if BICi,0(Ĉi,(s−1) + 1, Ĉi,(s+1)) ≤ BICi,1(Ĉi,(s−1) + 1, Ĉi,(s+1)) then

19 Ĉi ← Ĉi \ {Ĉi,(s)};
20 end

21 end

22 Ĉi ← Ĉi \ {0, T};
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the log-transformed infection counts.
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Figure 9: Plots of segmentations and fittings of each cluster in China (A-B) and in 33
selected countries (C-D) based on the log-transformed infection counts during the two-
month extended period.
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