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The ongoing COVID-19 pandemic has lead to massive public
health issues. Face masks have become one of the most efficient
ways to reduce coronavirus transmission. This makes face recog-
nition (FR) a challenging task as several discriminative features
are hidden. Moreover, face presentation attack detection (PAD)
is crucial to ensure the security of FR systems. In contrast to
growing numbers of masked FR studies, the impact of masked
attacks on PAD has not been explored. Therefore, we present
novel attacks with real masks placed on presentations and
attacks with subjects wearing masks to reflect the current real-
world situation. Furthermore, this study investigates the effect of
masked attacks on PAD performance by using seven state-of-the-
art PAD algorithms under intra- and cross-database scenarios.
We also evaluate the vulnerability of FR systems on masked
attacks. The experiments show that real masked attacks pose a
serious threat to the operation and security of FR systems.

Index Terms—Face presentation attack detection, COVID-19,
Masked face, Face recognition, Biometric security

I. INTRODUCTION

Since the SARS-CoV-2 coronavirus outbreak and its rapid
spread worldwide, wearing a mask has become one of the
most efficient ways to protect and prevent the widespread of
virus infections. However, in crowded scenarios like airports
or identity checks, taking off the mask for face recognition
(FR) increases infection chance. As a result, researchers have
shown an increased interest in the effect of face masks on the
performance of FR systems [1], [2]. Their experimental results
showed that pre-COVID-19 FR algorithms suffer degradation
in accuracy due to masked faces. Therefore, several attempts
have been made to improve the FR performance on masked
faces to fit the current situation [3], [4]. Additionally, even
before the COVID-19 pandemic, face occlusion [5], [6] has
been studied for a long time. However, no previous face Pre-
sentation Attack Detection (PAD) studies have been conducted
exclusively on the occlusion or facial masks. With the popu-
larity of FR systems, attackers use presentation attacks (PAs)
to the FR systems and attempt to impersonate someone or
obfuscate their identity. Even though FR algorithms achieved a
remarkable improvement, most FR systems are still vulnerable
to PAs, such as printed images, replay videos, or 3D masks.
So far, very little attention has been paid to the vulnerability
analysis of FR systems.

Almost all the countries across the globe have supported
the use of masks to minimize the spread of the virus. Hence,
we believe that wearing masks in public will be an essential

health measure and a new norm even after the COVID-
19 pandemic. To avoid frequently pulling off the masks in
crowded scenarios, a very recent approach [4] is proposed
by Li et al.to utilize a cropping and attention-based network
to improve the performance of masked face recognition. As
shown in their class activation visualization (CAM) maps,
three of seven methods paid too much attention to the mask,
while the rest methods focused well on the area around the
eyes yet still included small mask areas. Because more FR
systems will further target the masked face problem, the PAD
research field calls for the need to collect masked attack data
and the vulnerability analysis of FR systems for masked attack
faces. Since face PAD has emerged as a crucial technique to
protect face recognition security, most of the recent face PAD
databases [7], [8], [9], [10] have been focused on enlarging
the diversity in subjects, sessions, or sensors to enhance the
generalizability and reliability of PAD techniques from the root
data limitation. However, these PAD databases have an obvious
shortcoming as no masked PAs are provided. Much uncertainty
still exists about the relationship between the performance
of PAD techniques and masked attacks. To fill such gaps,
researchers require well-studied masked attack data for further
developments. The main contributions in this work are:

• The novel Collaborative Real Mask Attack Database
(CRMA) is presented. The bona fide samples are col-
lected in realistically variant collaborative face capture
scenarios [2]. Based on bona fide subjects, we generate
three types of mask attacks for each subject and each
attack category (print and replay): subject without a mask
on, with a mask on, and with a real mask placed on
print images or replay videos (samples in Fig. 1). For the
creation of such attacks, three electronic tablets with high-
resolution and three capture scales are used. Additionally,
we design three experimental protocols for exploring the
effect of masked attacks on PAD performance.

• Extensive experiments are conducted to explore the effect
of real masks (on attack faces) and masked faces attacks
and bona fide samples on the face PAD behavior. To sup-
port the comprehensive evaluation, seven PAD algorithms
comprising of texture-based, deep-learning based, and
hybrid methods are selected to evaluate the performance
and generalizability in intra- and cross-database scenarios
under three mask-related protocols. The quantitative and
qualitative analysis both reveal that masked bona fides
and PAs dramatically decrease the performance of PAD
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algorithms. Moreover, deep-learning based methods per-
form worse on real mask attacks than mask faces attacks
in most cases.

• An in-depth vulnerability analysis of FR systems is
presented. We evaluate three deep-learning based FR
techniques to three types of mask attacks. The exper-
imental results indicate that these three FR networks
exhibit significantly higher vulnerabilities to the real
mask attacks than masked face attacks.

We provide a brief review of relevant works in Sec. II. Then,
our novel CRMA database are described in detail in Sec. III.
The used face PAD algorithms, the used FR systems, and
evaluation metrics are introduced in Sec. IV. Sec. V discusses
the PAD results and analyzes the vulnerability of FR systems.
Finally, the conclusion is presented in Sec. VI.

II. RELATED WORK

This section reviews the most relevant prior works to
ours from three perspectives: face PAD databases, face PAD
algorithms, FR techniques and vulnerability analysis.

Face PAD Databases: Data resources have become es-
pecially important since heading into the deep learning era,
because machine learning based algorithms have the risk of
underfitting or overfitting on limited data. Given the signifi-
cance of good-quality databases, several face PAD databases
were previously released, e.g., NUAA [11], CASIA-FAS [12],
Replay-Attack [13], MSU-MFSD [16], OULU-NPU [7], and
SiW [8], all consisting of 2D print/replay attacks. In addition,
SiW-M [9] and Celeb-Spoof [10] databases provided multiple
types of attacks like makeup, 3D mask or paper cut. Moreover,
some multi-modal databases are publicly available: 3DMAD
[14], Mssproof [15], CASIA-SURF [17], CSMAD [18]. These
databases contribute to the significant progress of PAD re-
search without a doubt, e.g., CeleA-Spoof database collected
images from various environments and illuminations with rich
annotations to reflect real scenes. However, these databases
also have weaknesses: 1) the multi-modal databases have high
hardware requirements and cannot be widely used in daily life,
2) some databases like CASIA-MFS [12] and MSU-MFS [16]
cannot satisfy the current needs because of the lower quality
of the outdated acquisition sensors, 3) Oulu-NPU [7], SiW
[8], SiW-M [9], and Celeb-Spoof [10] are relatively up-to-
date, but lack any consideration of the real face mask attack
to fit the current COVID-19 pandemic. Hence, we collect the
CRMA database to fill the gap between these databases and the
ongoing COVID-19 pandemic, and at the same time, ensure
the generalizability and compatibility with real scenarios. The
CRMA database can be used to better analyze the effect of
real mask on PAD performance and the vulnerability of FR
systems for novel attacks, such as placing a real mask on an
attack presentation. Detailed information related to the above
mentioned databases is listed in Tab. I.

Face PAD Methods: In recent years, there has been an
increasing amount of studies in the face PAD field. These
studies can be broadly grouped into three categories based
on features: textured based methods, deep-learning based
methods, and hybrid methods. Texture features, such as Local

Binary Pattern (LBP) [19] and Binarized Statistical Image
Feature (BSIF) [20], project the faces to a low-dimension
embeddings. Määättä et al.[21] proposed an approach using
multi-scale LBP to encode the micro-texture patterns into
an enhanced feature histogram for face PAD. The resulting
histograms were then fed to a Support Vector Machine (SVM)
classifier to determine whether a sample is bona fide or attack.
The LBP features extracted from different color spaces [22]
were further proposed to utilize the chrominance information.
They achieved competitive results on Replay-Attack [13]
(Equal Error Rate (EER) value of 0.4%) and CASIA-FAS
[12] (EER value of 6.2%) databases. Furthermore, Boulkenafet
et al.[23] organized a face PAD competition based on the
OULU-NPU database and compared 13 algorithms provided
by participating teams and one color-LBP based baseline.
In this competition, the GRADIANT algorithm, fusing color,
texture, and motion information, achieved competitive results
in four evaluation protocols. In addition to the hand-crafted
feature based GRADIANT approach, deep-learning based
method (MixFASNet) or hybrid method (CPqD) also achieved
lower error rates in all experimental protocols. CPqD fused the
results from fine-tuned Inception-v3 network and the baseline
method. Consequently, we chose re-implement the baseline
and CPqD method in this paper (details in Sec. IV-A), while
the GRADIANT and MixedFASNet are discarded in our work
as they do not provide enough details for re-implementation.
Deep-learning based methods have been pushing the frontier of
face PAD research and have shown remarkable improvement
in PAD performance. Lucena et al.[24] presented an approach,
named FASNet, that a pre-trained VGG16 is fine-tuned by
replacing the last fully-connected layer. The FASNet network
achieved great performance on 3DMAD [14] and Replay-
Attack database [13]. Recently, George et al.[25] proposed
an approach that utilized a pixel-wise supervision on out-
put maps forced the CNN to learn shared representation
using information from different patches. DeepPixBis [25]
outperformed not only state-of-the-art algorithms in Protocol-
1 of OULU-NPU database (e.g.,1.6% ACER by auxiliary and
0.42% by DeepPixBis) but also achieved much better results
than traditional texture based approaches in the cross-database
scenario. Considering the popularity of PAD techniques and
the ease of implementation, we also choose the FASNet and
DeepPixBis (details in Sec. IV-A) to study the effect of the
real mask and masked face attacks on PAD performance.

Face Recognition and Vulnerability Analysis: As one of
the most popular modalities, the face has received increasing
attention in authentication/security processes, such as smart-
phone face unlocking and automatic border control. Moreover,
FR techniques [26], [27], [28] have achieved significant perfor-
mance improvements, and many personal electronic products
have deployed FR technology. However, the ongoing COVID-
19 pandemic brings a new challenge related to the behavior
of collaborative recognition techniques when dealing with
masked faces. National Institute of Standards and Technology
(NIST) [1] provided a preliminary study that evaluated the per-
formance of 89 commercial FR algorithms developed before
the COVID-19 pandemic. Their results indicated that digitally
applied face masks with photos decreased the recognition
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Database Year # Subjects # Data (BF/attack) Capture devices (BF/attack) Display devices Modality Attack type

NUAA [11] 2010 15 5105/7509 (I) Webcame - RGB 1 Print

CASIA-FAS [12] 2012 50 150/450 (V) Two USB cameras, Sony NEX-5 iPad RGB 1 Print, 1 Replay

Replay-Attack [13] 2012 50 200/100 (V) MacBook 13 / iPhone 3GS, Cannon SX150 iPhone 3GS, iPad RGB 1 Print, 2 Replay

3DMAD [14] 2013 17 170/85 (V) Microsoft Kinect - RGB/Depth 1 3D Mask

Msspoof [15] 2015 21 1,680/3,024 (I) uEye camera - RGB/IR 1 Print

MSU-MFSD [16] 2015 35 110/330 (V)
MacBook Air, Google Nexus 5 /

Cannon 550D, iPhone 5s
iPad Air, iPhone 5s RGB 1 Print, 2 Replay

Oulu-NPU [7] 2017 55 1,980/3,960 (V) 6 smartphones Dell 1905FP, Macbook Retina RGB 2 Print, 2 Replay

SiW [8] 2018 165 1,320/3,300 (V) Cannon EOS T6, Logitech C920 webcam
iPad Pro, iPhone 7,

Galaxy S8, Asus MB 168B
RGB 2 Print, 4 Replay

CASIA-SURF [17] 2018 1000 18000/3000 (I) RealSense camera - RGB/IR/Depth 5 Papercut

CSMAD [18] 2018 14 88/160 (V) RealSense, Compact Pro, Nikon P520 - RGB/IR/Depth/LWIR 1 silicone mask

SiW-M [9] 2019 493 660/1630 (V) Logitech C920, Cannon EOS T6 - RGB
1 Print, 1 Replay,

5 3D mask, 3 Makeup, 3 Partial

Celeb-Spoof [10] 2020 10,177 202,559/475,408 (I)
Various cameras/ 20 smartphones,

2 webcams, 2 tablets
PC, Phones, Tablets, RGB

3 Print, 3 Replay,

1 3D mask, 3 Paper Cut

CRMA 2021 47 423/12,690 (V)
Various webcams/ iPad Pro,

Galaxy Tab S6, Surface Pro 6

iPad Pro, Galaxy Tab S6,

Surface Pro 6
RGB

1 Print, 3 Replay,

1 Real mask

TABLE I: The summary of face PAD databases, including our CRMA database information for brief comparison. It should be
noted that our CRMA database is the only one database containing subjects wearing face masks and real face mask attacks.
The details of our CRMA database is introduced in Sec. III.

accuracy, e.g., even the best of the 89 algorithms had error
rates between 5% to 50%. It is worth noting that the masks
they used in experiments were synthetically created, not real
masks. Damer et al.[2] presented a real mask database to
simulate a realistically variant collaborative face capture sce-
nario. They also explored the effect of wearing a mask on FR
performance and concluded that the face masks significantly
reduce the accuracy of algorithms. Mohammadi et al.[29]
contributed empirical evidence to support the claim that the
CNN-based FR method is extremely vulnerable to 2D PAs.
Subsequently, Bhattacharjee et al.[18] presented the first FR-
vulnerability study on 3D PAs. The experiments also clearly
showed that CNN based FR methods are vulnerable to the
custom-mask based PAs. However, the vulnerability of FR
systems on masked face attacks has not been investigated.
Therefore, in this work, we selected three CNN based FR
algorithms for further FR-vulnerability analysis on masked
face attacks: the state-of-the-art ArcFace [26], SphereFace
[27], and VGGFace [28]. These algorithms are discussed in
more detail in Sec. IV-B.

III. THE COLLABORATIVE REAL MASK ATTACK
DATABASE (CRMA)

The CRMA database 1 can serve as a supplement to the
previous databases in Tab. I, and due to the COVID-19
pandemic, it can better reflect the current real-world PAD
performance. The data also presents novel attack scenarios
that were not previously studied. Fig. 3 introduces the general
statistical information of the CRMA database. This database
contains 62% males and 38% females. The attack M0, M1, and
M2 ratios are 30%, 60%, and 10%, respectively. Additionally,
we count the frequency of the proportion of the face size in

1The CRMA database is not publicly available due to privacy regulations.
However, the database will be: (1) available for assisted in-house research
use by collaborators and partners in the research community, (2) Bending the
legal authorization by the data collection institute, the data will be submitted
to be included on the Open Science BEAT platform (www.beat-eu.org).

the video. The histogram shows that the proportion of the face
areas in the videos is mostly between 0.05% and 0.30%. This
section begins with the collection of bona fide samples, which
an early version of it is presented in [2], then we introduce
the process of attack creation. Additionally, three evaluation
protocols are introduced to explore the effect of real masks in
FR and PAD systems.

A. Collection of bona fide samples

Damer et al.[2] recently presented a database with the
subjects wearing face masks to explore the FR performance
on masked faces, motivated by the current COVID-19 pan-
demic. This database simulated a collaborative yet varying
scenario, e.g., unlocking devices or identity verification at
automatic border control gates. The initial version of this
database contains 24 participants, while the current number
of participants in this paper extends to 47 by further data
collection efforts. The data were captured indoors, each at their
residence during home-office. Furthermore, each participant
was asked to collect data for three days (not necessarily
consecutive) and for three different scenarios each day: 1)
face with no mask and no additional electric illumination, 2)
face with a mask on and no additional illumination, 3) face
with a mask on and electric light on. As a result, nine videos
are recorded by each participant. In our study, we focus on
the impact of masks on PAD performance, while the effect
of illumination variation is neglected for now. The bona fide
data is divide into two categories: face without a mask on is
noted as M0 (3 videos per subject), and face with a mask is
marked as M1 (6 videos per subject). It is worth noting that
this database simulated a collaborative and varying scenario.
The mask types, capture environments, illuminations, and
capture devices of each participant are various, only eyeglass
is removed.



4

Bona fide (BF) Print (PR) Replay (RE)

M0

M1

M2

Fig. 1: Example bona fide and attack samples in CRMA
database. The print (PR) and replay (RE) M2 attacks, including
a real part (the mask), are novel and were not addressed in
previous works.

B. Creation of the presentation attacks

Several FR databases tried to collect data under various
harsh conditions, such as poor lighting, strong occlusion,
or low resolution. Such databases tried to reproduce what
might happen in the real-world scenario when a legitimate
user obtains authorization [30]. On the contrary, the attackers
will use highly sophisticated artifacts, such as high-resolution
images or videos, to maximize the success rate when trying to
impersonate someone. For that reason, our presentation attacks
were captured in a windowless room where all lights were
on. In addition, three high-resolution electronic tablets were
used in the acquisition process: 1) iPad Pro (10.5-inch) with
the display resolution of 2224 × 1668 pixels, 2) Samsung
Galaxy Tab S6 with the display resolution of 2560 × 1600
pixels, 3) Microsoft Surface Pro 6 with the display resolution
of 2736 × 1824 pixels. Besides, the capture devices and
display images/tablets were stationary when collecting data.
The videos were captured with 1920× 1080 resolution. Also,
each video has a minimum length of 5 seconds, and the frame
rate is 30 fps. The presentation attack instruments (PAIs) in
this database can be roughly grouped into two categories: print
attack and replay attack. The attack data in each PAIs (See
samples in Fig. 1) are divided into three types: 1) the displayed
bona fide samples with no face mask (M0), 2) the displayed
bona fide samples with a face mask on (M1), 3) the displayed
bona fides with no face mask, but a real mask was placed on
it to simulate a participant wearing a mask (M2). However,
the face area sizes are slightly inconsistent because the videos
were recorded by participants themselves. To reproduce the
look of wearing a mask in the real-world, and include mask
variations, We cropped five masks to fit most of the faces (See
Fig. 3). The details of each PAI present as the following:

• Print image attack: In print attack, an attacker tries to
fool the FR system using a printed photo. The 35th frame
of each video from each participant was printed out for
attack because the face in the video tends to stabilize
after the first second. Therefore, we obtain nine photos
per subject. Then, the above mentioned three tablets were
used to capture these photos. Furthermore, to increase
the diversity and variety of the data, each tablet captured

three videos for a photo with three scales (see examples
in Fig. 2). The captured videos using the first scale
contain all areas ( 100%) of the photos, the second scale
consists of most areas ( 80%) of the original photos,
and the third scale focuses on the face area ( 60%) as
much as possible. In addition to solely collecting attack
data from printed images, we also collected data from
real face masks overlaid on photos (i.e., the previously
defined M2). Theoretically, the real masks will reduce the
region of artificial features and increase the complexity
and mixture of the features in the collected attack data.
Eventually, 90 print attack videos are generated for each
subject, i.e., a total of 4,230 videos for 47 subjects in
print PAI.

• Replay video attack: In replay attack, an attacker tries to
obtain the authentication by replaying a video. The three
common points of the collection process between print
and replay PAI are the use of three tablets, the use of three
scales, and the inclusion of M2 type data, respectively.
The difference is that these tablets were also be used as
display devices (see examples in Fig.2). While one tablet
was replaying the video, the other two tablets were used
to capture the data. As a result, each subject corresponded
to 180 replay attack videos (162 videos of M0 and M1
groups, 18 videos of M2.), i.e., a total of 8,460 videos in
this attack subset.

C. Evaluation protocols

To study the possible effect of face masks and attacks with
real masks on the performance of PAD and FR systems, we
designed three protocols for further experimental analysis.
These three protocols are based solely on the face masks,
and in this paper, we disregard other factors, such as types
of device, illuminations, and capture scales. However, it is
worth mentioning that the CRMA database is also suitable
for the further targeted verification of face PAD algorithms
under different scenarios. We split 47 subjects in the CRMA
database into three subject-disjoint sets: the training set (19
subjects), the development set (10 subjects), and the testing
set (18 subjects). The gender was balanced as much as
possible between the these three sets. Tab. II provides more
information about three protocols. The detailed description of
three protocols are:

• Protocol 1 (P1): The first protocol tries to simulate most
of the existing databases, where subject samples wear
no face mask. Then, the generalizability of face PAD
algorithms is evaluated. The training and development
set only contains the videos of M0 (of bona fides and
attacks), i.e., videos of M1 (of bona fides and attacks)
and M2 (of attacks) are not used for training. In the
test set, videos of M0, M1, and M2 will be separately
evaluated. In this case, M1 and M2 can be seen as
unknown data/attack types.

• Protocol 2 (P2): On the contrary, the second protocol
is designed to validate the performance of face PAD
algorithms when artifacts of M1 and M2 are learned.
Therefore, the training and development set contains
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Galaxy - iPad Galaxy - Surface Surface - iPad Surface - Galaxy iPad - Galaxy iPad - Surface

Samsung Galaxy Surface Pro Apple iPad Large Middle Small

Capture device varia�on Capture scale varia�onCapture scale varia�on

Replay varia�on (replay device to capture device)

Fig. 2: Different capture variations in the CRMA database. The top left is videos captured by different devices. The top right
is the different capture scales. The bottom is the six cross-device types of replay attack setting.

Fig. 3: The statistics of the subjects and the mask shapes of
M2 samples in the CRMA database. From left to right: gender,
mask types of attacks (M0, M1, M2), the histogram shows the
probability distribution of the face size ratio, the applied mask
shapes.

all scenarios of videos. The videos in the test set are
evaluated separately similarly to P1.

• Protocol 3 (P3): However, until now, the effect of M2
on PAD performance is still unclear. Neural Networks
are often considered a black box because we do not
know precisely what kind of abstract features it consid-
ers. Hence, it is interesting to investigate how a deep
learning-based algorithm deals with an unknown attack
video containing only partial artifacts. The training and
development set in P3 include bona fide and attack videos
of M0 and M1, while the test set contains known videos
of M0 and M1 and unknown attack videos of M2.

Since the data in this database is video sequences and the
numbers of videos between bona fide and attack classes are
imbalanced, we sampled 60 frames from a bona fide video
and 5 frames from an attack video to reduce the data bias.
In addition to the different frames sampling, we also adapt
the class weights inversely proportional to class frequencies to
reduce the overfitting in the training phase (details can be seen
in Sec. IV). In the test phase, the final classification decision is
determined by averaging the prediction scores of all sampled
frames.

IV. EXPERIMENTS

This section first describes the adopted face PAD algorithms
for the investigation of masks. Later on, several FR algorithms
are introduced for further vulnerability analysis, followed by
the evaluation metrics. In both PAD and FR experiments,

Protocol Set Subjects Types of mask # BF (V) # Attack (V)

P1
Train 1-19 BF: M0, attacks: M0 57 1569
Dev 20-29 BF: M0, attacks: M0 30 810
Test 30-47 BF: M0, M1, attacks: M0, M1, M2 162 4860

P2
Train 1-19 BF: M0, M1, attacks: M0, M1, M2 171 5130
Dev 20-29 BF: M0, M1, attacks: M0, M1, M2 90 270
Test 30-47 BF: M0, M1, attacks: M0, M1, M2 162 4860

P3
Train 1-19 BF: M0, M1, attacks: M0, M1 171 4617
Dev 20-29 BF: M0, M1, attacks: M0, M1 90 2430
Test 30-47 BF: M0, M1, attacks: M0, M1, M2 162 4860

TABLE II: The detailed information of three protocols for
exploration the possible effect of face masks. Bona Fide is
denoted as BF and V refers to video.

the widely-used Multi-task Cascaded Convolutional Networks
(MTCNN) [31] technique is adopted first to detect and crop
the face.

A. Face PAD algorithms

A competition [23] was carried out in 2017 to evaluate
and compare the generalization performances of face PAD
techniques under some real-world variations. In this compe-
tition [23], there were 14 participating teams, including the
organizers that contributed several state-of-the-art approaches.
We chose two methods from them ((as previously discussed
in Sec. II)), LBP-based baseline and CPqD, and we included
additional solutions. Together, we re-implement a total of
seven face PAD algorithms in this study, which can be cate-
gorized into three groups: hand-crafted features, deep-learning
features, hybrid features. For further cross-database evaluation
scenarios, we use three publicly available databases mainly
involving 2D PAs (details in Sec. II): CASIA-FAS [12], MSU-
MFS [16], and OULU-NPU [7] in the competition. A brief
description of the adopted methods are provided below:

• LBP (baseline): The LBP is the baseline method [23],
which provided by the competition organizers, that utilizes the
color texture technique. The face in a frame is first detected,
cropped, and normalized into a size of 64×64 pixels. Second,
an RGB face is converted into HSV and YCbCr color spaces.
Third, the LBP features are extracted from each channel.
The obtained six LBP features are then concatenated into
one feature vector to feed into a Softmax classifier. The final
prediction score for each video is computed by averaging the
output scores of all frames.
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• CPqD: The CPqD is based on the Inception-v3 network
[32] and the above LBP baseline. The last layer of the pre-
trained Inception-v3 model is replaced by a fully connected
layer and a sigmoid activation function. The faces in RGB
frames are detected, cropped, and normalized into 299× 299
pixels. These face images are utilized as inputs to fine-tune
the Inception-v3 model. The model with the lowest EER on
the development set among all ten training epochs is selected.
A single score for a video is obtained by averaging the output
scores of all frames. To further improve the performance, the
final score for each video is computed by fusing the score
achieved by the Inception-v3 model and the score obtained by
the LBP baseline.

• InceptionFT and InceptionTFS: Since the CPqD
uses the Inception-v3 [32] network architecture as the cor-
nerstone, we also report the results of fine-tuned Inception-
v3 model, named InceptionFT. In addition to the fine-tunned
model, we train the Inception-v3 model from scratch for
performance comparison, named InceptionTFS. In the training
phase, the binary cross-entropy loss function and Adam opti-
mizer with a learning rate of 10−5 are used. The output scores
of frames are averaged to obtain a final prediction decision for
each video.

• FASNetFT and FASNetTFS: FASNet [24] used trans-
fer learning from pre-trained VGG16 model [33] for face PAD.
They used on ImageNet [34] dataset pre-trained VGG16 model
as a feature extractor and modified the last fully connected
layer. The newly added fully connected layers with sigmoid
function were then fine-tuned for the PAD task. This fine-tuned
FASNet is referred to FASNetFT, similar to the Inception-
v3 network methods, we also train the FASNet from scratch
with name FASNetTFS. The input images are the detected,
cropped, and normalized RGB face frames with the size of
224 pixels. The Adam optimizer with the learning rate of
10−4 is used for training as defined in [24]. To deal with the
imbalanced data problem, data augmentation techniques and
class weights are utilized. To further reduce overfitting, early
stop technique with the patience of 5 and maximum epochs
of 30 is used. The resulting scores are averaged to obtain a
final score for each video.

• DeepPixBis: George et al.[25] proposed a densely con-
nected network framework for face PAD with binary and
deep pixel-wise supervision. This framework is based on
the DenseNet [35] architecture. Two dense blocks and two
transition blocks with a fully connected layer with sigmoid
activation will produce the binary output. We use the same
data augmentation technique (horizontal flip, random jetter
in brightness, contrast, and saturation) and the same hyper-
parameters (Adam optimizer with a learning rate of 10−4 and
weight decay of 10−5) as defined in the [25] for the training.
In addition to data augmentation, we apply class weight and
early stopping technique to avoid overfitting. The final score
for each video is computed by averaging the scores of frames.

B. Face Recognition algorithms

For the FR systems, the trained CNNs are typically used
as feature extractors. The feature vector extracted from a

specific layer of an off-the-shelf CNN is used as the template
to represent the corresponding input face image. Then, the
resulting templates are compared to each other using similarity
measures. To provide the vulnerability analysis of the FR
systems to our novel masked attacks, we adapt the following
three FR algorithms:

• ArcFace: ArcFace [26] introduced an additive angular
margin loss function to obtain highly discriminative features
for FR. We choose this algorithm because ArcFace consis-
tently outperformed the state-of-the-arts. For example, Arc-
Face achieved the 99.83% on Labeled Face in the Wild (LFW)
[30] and 98.02% on Youtube Faces (YTF) [36] dataset. The
pre-trained ArcFace model 2 in our study is based on ResNet-
100 [37] architecture and refined on MS-Celeb-1M [38]
dataset (MS1M-v2). The output template is a 512-dimension
feature vector extracted from ’fc1’ layer of ArcFace.

• SphereFace: Liu et al.[27] proposed a deep hypersphere
embedding approach (SphereFace) for FR task. SphereFace
[27] utilized the angular softmax loss for CNNs to learn angu-
larly discriminative features. This method also achieved com-
petitive performance on LFW [30] (accuracy of 99.42%) and
YTF [36] dataset (95.00%). Since only 20-layer SphereFace 3

trained on CASIA-WebFace [39] dataset is officially provided,
we use the 512-dimension representation extracted from this
pre-trained model as a template.

• VGGFace2: The first version of VGGFace [40] is based
on 16-layer VGG network, while the second version of
VGGFace (VGGFace2) [28] adopt ResNet-50 [37] as the
backbone architecture. Moreover, VGGFace2 dataset contains
3.31 million images, while initial VGGFace consists of 2.6
million images. Therefore, we use the second version in this
study that a ResNet-50 network trained on VGGFace2 dataset
[28] 4 for extracting the 512-dimension templates.
The vulnerability of each FR system on M1/M2 attacks
is analyzed based on three scenarios. Regardless of which
scenario, the references are scenarios-specific bona fide videos
captured in the first day, while bona fide videos from the
second and third days or attack videos are selected as probes.
The three cases including the division of scenario-specific
references and probes are described with results in details in
Sec. V-C. Once the templates for the face images are obtained,
we use the Cosine-similarity as recommended in [26], [27],
[28] to compute the similarity scores between references and
probes.

C. Evaluation metrics

The metrics following ISO/IEC 30107-3 [41] standardiza-
tion are used to measure the performance of PAD algorithms:
Attach Presentation Classification Error Rate (APCER) and
Bona fide Presentation Classification Error Rate (BPCER).
APCER is the proportion of attack images incorrectly classi-
fied as bona fide samples in a specific scenario, while BPCER
is the proportion of bona fide images incorrectly classified
as the attack in a specific scenario. APCER and BPCER

2The official ArcFace model: https://github.com/deepinsight/insightface
3The official SphereFace model: https://github.com/wy1iu/sphereface
4The VGGFace2: https://github.com/WeidiXie/Keras-VGGFace2-ResNet50

https://github.com/deepinsight/insightface
https://github.com/wy1iu/sphereface
https://github.com/WeidiXie/Keras-VGGFace2-ResNet50
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reported in the test set are based on a pre-computed threshold
in the development set. In our study, we use a BPCER at
10% (on development set) for obtaining the threshold (denoted
as τBPCER10). Additionally, Half-Total Error Rater (HTER)
corresponding to the half of the summation of BPCER and
APCER is used for the cross-database evaluation. Noticeably,
we compute a threshold in the development set of the training
database. Then, this threshold is used for determining HTER
value in the test database. The Detection EER (D-EER) values
where APCER and BPCER are equal are also reported in
the cross-database scenarios. For further analysis on PAD
performance, Receiver Operating Characteristic (ROC) curves
are also demonstrated.

To measure the performance of FR techniques, the Genuine
Match Rate (GMR), referring to the proportion of correctly
matched genuine samples, is used at fixed False Match Rate
(FMR). GMR is equal to 1 minus the False Non-Match Rate
(FNMR). Moreover, to analyze the vulnerability of FR algo-
rithms for our masked attacks, Imposter Attack Presentation
Match Rate (IAPMR) corresponding to the proportion of PAs
accepted by the FR system as genuine presentations is adopted.
IAPMR also follows the standard definition presented in the
ISO/IEC 30107-3 [41]. The threshold for GMR and IAMPR
is defined by fixing the FMR at 1% (denoted as τFMR@0.01).
The probe images with the similarity scores lower than the
τFMR@0.01 are not matched. Moreover, the recognition score-
distribution histograms are shown for more details. Apart from
these metrics, the EER value, where FMR equals to FNMR,
is computed to compare FR algorithms.

V. RESULTS AND DISCUSSION

A. The Intra-database evaluation

This subsection reports the τBPCER10 determined APCER
and BPCER results in the CRMA database by following the
above defined three protocols. Tab. III shows the comparison
of seven PAD methods, while Fig.4 presents the ROC curves
for each method and each protocol. The observation of each
protocol are described below:

• Experiments in P1: This protocol emulates the pre-
COVID-19 PAD scenarios, in which subjects normally do
not wear a mask. Therefore, P1 can be considered the most
challenging task due to the unknown testing on M1 and M2
data. As shown in Tab. III, the BPCER values of masked
bona fide samples are much higher than unmasked ones, but
relatively, most PAD systems achieve higher APCER values
on the masked attack samples (either M1 or M2). Moreover,
it is interesting to note that networks trained from scratch
and the DeepPixBis approach work worse on attack M2
than M1. These observations are consistent with the ROC
(Fig. 4). Red curves generated by print-M2 and BF-M1 and
grey curves obtained by replay-M2 and BF- M1 possess
significantly smaller areas under curves in five of all seven
methods. Furthermore, training a network from the first layer
boosts the overall performance. Consequently, we rationalise
that learning from scratch is more efficient for obtaining
discriminative features between bona fide and artifacts. On the

contrary, such approaches might be confusing when applying
realistic masks on attack samples.

• Experiments in P2: This protocol emulates the known
attack scenario where masked bona fide, as well as masked
M1 and M2 attacks, are learned in the training phase. We
can observe the following points in Tab. III: first, despite
that the masked bona fide samples are still more difficult
to classify correctly than unmasked ones in most cases, the
difference in BPCER between M0 and M1 becomes smaller
compared to P1. This indicates that more data is able to
improve the performance of the models. This is also con-
solidated with the observation in ROC curves. In particular,
InceptionTFS, FASNetTFS and DeepPixBis achieve signifi-
cant progress (larger areas under curves). Second, six of the
seven methods perform worse on the masked printed face
(M1 or M2), while five of the seven algorithms show more
inferior results on unmasked replay attacks. Moreover, M2
in print PAI achieves higher APCER values than M1 by
the training from scratch approaches. One possible reason
for the different results between print and replay attacks is
the specular reflection. Because attack data were collected
in windowless labor with all electric lights on, tablets easily
reflect the light than the printed paper and this reflection is
difficult to avoid. The face masks also might leak light when
placed on an electric tablet, but this does not appear when
applied on a printed paper.

• Experiments in P3: The third protocol aims to evaluate
the generalizability of algorithms on unknown M2 attack. For
bona fide samples, we can draw a similar conclusion to P2,
but the algorithms perform inconsistently with P1 and P2 on
attack samples. In this protocol, the highest APCER values of
most PAD algorithms appear on either M1 or M2 attacks in
both print and replay PAI. Additionally, the traditional LBP
method, InceptionFT, FASNetFT, and hybrid CPqD method
that achieve relatively poor results on M0 or M1 attack sam-
ples may have proved to be unable to learn or extract sufficient
discriminative features. Moreover, even though the methods
learning from the first layer (InceptionTFS, FASNetTFS and
DeepPixBias) achieve impressive results on M0 and M1 at-
tacks, they generalize not well on unknown M2 attacks. The
BPCER values in M0 and M1 are also much higher due to
the variations in mask types, illumination, background, and
capture sensors.

To qualitatively analyze and interpret the deep-learning
based methods, Score-Weighted CAM [42] technique is
adopted to localize the discriminative areas in face images.
The rows from top to bottom correspond to the InceptionFT,
InceptionTFS, FASNetFT, FASNetTFS, DeepPixBis. Fig. 5a
shows the results of P1 (the example subject is in the test set).
InceptionFT mainly focuses on the nose, including nearby
partial masks, while InceptionTFS pays more attention to the
upper region of the face. Similarly, FASNetTFS reduces the
attention on masks and increases the concentration around the
forehead. The DeepPixBis concentrates great around the eyes
for both M0 and M1 bona fides. However, for attack samples,
the attention seems focused on the left eye and partial masks.
In general, masks are noticed by all networks. The results of P2
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(c) ROC in P3

Fig. 4: ROC curves for all PAD methods in three protocols test sets. For each protocol and each method, eight curves focusing
on masks with Area Under the Curve (AUC) values are plotted to represent the different settings that include PR(M0)-BF(M0),
PR(M1)-BF(M1), PR(M2)-BF(M0), PR(M2)-BF(M1) in print attack and RE(M0)-BF(M0), RE(M1)-BF(M1), RE(M2)-BF(M0),
RE(M2)-BF(M1) in replay PAI. Red curves (PR(M2)-BF(M1)) and gray curves (RE(M2)-BF(M1)) pose significantly smaller
AUC values by most PAD methods on P1. Moreover, InceptionTFS, FASNetTFS and DeepPixBis achieve higher AUC values
on P2 and P3 than on P1 due to more masked BF/attack data.
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Protocol Method
Threshold @ BPCER 10% in dev set

BPCER (%) APCER (Print) (%) APCER (Replay) (%)
M0 M1 M0 M1 M2 M0 M1 M2

P1

LBP 1.75 4.39 80.12 72.61 71.93 74.95 67.76 73.98
InceptionFT 19.30 84.21 10.33 3.80 2.92 27.19 5.81 0.88

CPqD 7.02 47.37 18.52 7.80 15.79 31.77 11.19 10.23
FASNetFT 12.28 56.14 7.02 1.36 2.92 20.37 12.21 9.65

InceptionTFS 7.04 48.25 1.36 0.00 1.75 7.50 0.34 7.02
FASNetTFS 7.02 29.82 1.95 0.49 15.20 8.09 4.64 7.89
DeepPixBis 19.30 28.95 1.56 1.56 5.85 3.61 4.05 6.43

P2

LBP 26.32 11.40 31.38 44.44 36.84 36.74 34.39 28.95
InceptionFT 1.75 7.02 35.28 30.80 11.70 54.09 52.17 10.23

CPqD 3.51 7.89 27.49 30.41 16.37 46.20 44.50 10.23
FASNetFT 1.75 17.54 10.72 12.77 5.85 30.60 28.09 3.80

InceptionTFS 8.77 18.42 0.78 1.56 2.34 3.90 5.23 2.63
FASNetTFS 14.04 29.82 4.09 3.41 9.36 4.69 2.88 3.80
DeepPixBis 29.82 24.56 0.78 0.19 1.75 0.10 1.86 0.88

P3

LBP 22.81 9.65 35.28 48.15 47.95 38.50 36.79 42.40
InceptionFT 1.75 8.77 24.17 24.37 11.70 46.69 47.14 14.04

CPqD 7.02 7.02 20.66 28.95 21.64 41.23 41.52 17.84
FASNetFT 5.26 21.93 14.04 9.94 26.71 22.62 19.88 20.47

InceptionTFS 21.05 21.93 0.19 0.00 1.17 1.56 2.34 4.97
FASNetTFS 22.81 34.21 0.39 0.29 2.34 3.41 2.20 6.43
DeepPixBis 17.54 24.56 0.78 0.68 2.92 0.88 1.91 6.43

TABLE III: Intra-dataset evaluation. P1: Training on BF-M0, Attack-M0. P2: Training on BF-M0, BF-M1, Attack-M0, Attack-
M1, Attack-M2, P3: Training on BF-M0, BF-M1, Attack-M0, Attack-M1.

and P3 for the same subjects can be seen in Fig. 5b and Fig. 5c.
We noticed that 1) the attention areas of fine-tuned networks
hardly change in three protocols due to the fixed weights of
layers before the last classification layer. 2) InceptionTFS in
P2 seems focused on the upper face, including much more eye
region than in P1. 3) FASNetTFS in P2 concentrates much
more on applied real masks than in P3 where training without
M2 data. 4) DeepPixBis still works well on bona fide, but for
attack samples, its attention seems to be distracted to the edge
of images. Despite the fact that DeepPixBis produces correct
decisions, this observation raises a serious concern about its
reliability and generalizability. This concern is confirmed in
the following cross-database evaluation. DeepPixBis obtains
generally worse cross-database results than other two training
from scratch networks (details see Tab. IV and Tab. V in
Sec. V-B). Finally, looking at attention maps in all protocols
for this identity, we can find that except for the misclassified
samples (with red boxes) that appear on print/replay M0, print
M2 attacks are easier to be incorrectly detected as bona fide
than M1 attacks.

To further understanding of the above quantitative and qual-
itative results, we provide additional t-SNE plots for visualize
the learned features in the supplementary material. These plots
consolidate our findings here that 1) masked bona fide samples
are more probable to detected as bona fide by the pre-COVID-
19 PAD algorithms. 2) attacks with real masks on presentations

are more accessible detected by PAD systems as bona fide than
attacks with masked faces.

B. The Cross-database evaluation
In this subsection, we perform cross-database experiments

to explore the generalizability of these PAD algorithms on
the masked data in the CRMA database. Because the PAIs
in the CRMA database are print and replay attacks, we select
three popular publicly available databases containing the same
PAIs: CASIA-MFS [12], MSU-MFS [16], and OULU-NPU [7]
to demonstrate the evaluation. Moreover, two experiments are
conducted for cross-database testing. First, the models, trained
on the training set of three publicly databases, are evaluated
on the test set in the CRMA database. In addition, the results
tested on their own test set are also reported (as shown in
Tab. IV). Conversely, in the second experiment, the models
trained on P1 of the CRMA database are evaluated separately
on the test set of these three databases (results in Tab. V). In
both cross-database scenarios, We use the τBPCER10 decision-
threshold that computed in the development set of training
database as priori to determine the APCER, BPCER and
HTER value of the test database.

As shown in Tab. IV, the performance in the cross-database
setting is poor for all models in general. Even though deep-
learning based methods achieved great results on their own
test sets, they generalize significantly worse on masked bona
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(a) P1 (b) P2 (c) P3

Fig. 5: Examples for attention maps generated by ScoreCAM of different PAD algorithms and different protocols. The rows
from top to bottom on each protocol correspond to the InceptionFT, InceptionTFS, FASNetFT, FASNetTFS, DeepPixBis. The
columns from left to right on each protocl refers to the BF-M0, BF-M1, PR-M0, PR-M1, PR-M2, RE-M0, RE-M1, RE-M2.
The faces with red boxes are misclassified.

Trained on
Method

Threshold @ BPCER 10% in dev set of trained database
Tested on same dataset (%) Tested on our dataset (%)

CAISA-FASD

D-EER BPCER APCER BPCER APCER (Print) APCER (Replay)
M0 M1 M0 M1 M2 M0 M1 M2

LBP 7.50 6.25 8.75 38.60 56.14 42.11 24.76 18.13 60.72 34.59 22.51
InceptionFT 10.00 8.75 15.00 21.05 38.60 35.48 5.95 16.96 69.49 47.44 15.50

CPqD 6.25 11.25 3.12 38.60 65.79 31.97 12.38 8.77 53.22 23.06 14.62
FASNetFT 8.75 12.50 4.38 15.79 90.35 44.83 2.14 23.98 64.13 5.76 22.81

InceptionTFS 0.00 1.25 0.00 12.28 20.08 61.60 40.35 49.71 90.35 83.19 59.65
FASNetTFS 1.25 3.75 0.62 21.05 75.44 60.23 19.49 38.60 70.86 16.32 45.61
DeepPixBis 1.25 6.25 0.00 35.09 66.67 70.57 36.65 56.73 57.99 29.26 42.98

MSU-MFSD

LBP 4.17 4.17 4.17 98.25 100.00 0.58 0.68 0.00 3.22 2.25 0.00
InceptionFT 20.14 20.81 16.67 50.88 25.44 47.95 56.04 52.05 31.19 48.85 44.15

CPqD 4.17 4.17 4.17 98.25 100.00 0.19 0.39 0.00 1.46 1.56 0.00
FASNetFT 13.19 26.39 4.17 43.86 85.96 32.55 2.63 0.58 42.50 13.39 2.34

InceptionTFS 4.17 8.33 1.39 80.70 94.74 0.19 0.00 0.00 8.58 0.78 2.05
FASNetTFS 0.00 8.44 0.00 91.23 100.00 0.00 0.00 0.00 7.70 0.00 0.29
DeepPixBis 0.00 4.17 0.00 82.46 80.70 0.00 0.10 0.00 10.33 10.36 5.26

Oulu-NPU

LBP 8.33 7.50 10.21 40.35 67.54 35.28 25.54 13.45 26.12 10.89 13.74
InceptionFT 15.00 16.67 11.04 61.40 87.72 11.50 5.85 8.77 12.38 2.39 1.46

CPqD 8.33 9.17 3.54 57.89 89.47 9.55 3.70 1.17 10.14 1.03 0.58
FASNetFT 3.23 1.67 4.38 49.12 73.68 33.92 27.10 8.77 22.81 8.99 3.80

InceptionTFS 4.17 3.33 6.46 80.07 100.00 22.81 0.78 2.34 3.22 0.00 0.00
FASNetTFS 5.10 11.67 3.33 70.18 99.12 46.98 18.03 19.88 8.09 0.39 0.29
DeepPixBis 2.29 2.92 0.00 66.67 98.25 44.64 11.21 4.68 10.23 0.10 0.58

TABLE IV: Cross-database evaluation 1: trained on three publicly available databases and tested on the CRMA database.

fide samples, e.g., most BPCER values for M1 are close to the
100%. On the contrary, most algorithms achieve lower APCER
values of masked M1 and M2 than unmasked M0 attacks. Such
results indicate that the model trained on the databases without
masked data cannot handle the case of wearing a mask, i.e.,
cannot fit the ongoing COVID-19 pandemic. A subject with a
mask on has a high probability of being detected as an attack
by PAD systems, even if this subject is a bona fide. Besides, it
is interesting to note that most trained on MSU-MFS models
achieve better testing results on the CRMA database than mod-
els trained on OULU-NPU database. This may be due to the
partially similar statistic information between the MSU-MFS
and presented CRMA databases. First, the gender distribution

between them is almost the same (38% female and 62% male
in CRMA, 37% female and 63% male in MSU). Second, the
MSU-MFS database is also collected by a mixture of sensors,
including webcam, tablets, and mobile phones, while OULU-
NPU used only multiple smartphones. The results of the
second cross-database experiment are reported in the Tab. V.
It can be seen that trained from scratch networks outperform
traditional LBP or fine-tuned networks in most cases. The
models trained on P1 of the CRMA database achieved better
results than models trained on P2 and P3 in the OULU-NPU
database (13.12% HTER on P1, 14.48%, and 17.92% on P2
and P3). We can conclude that even without masked data,
the CRMA database still possesses great diversity in sensors
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Train Method
Threshold @ BPCER 10% in dev set of CRMA database

CASIA-FASD (%) MSU-MFSD (%) Oulu-NPU (%)
D-EER HTER D-EER HTER D-EER HTER

P1

LBP 41.25 47.19 41.67 40.28 32.50 38.96
InceptionFT 37.19 42.19 36.81 34.03 24.90 24.06

CPqD 36.25 46.56 34.03 31.94 22.50 23.23
FASNetFT 47.50 56.56 40.97 44.44 18.33 18.33

InceptionTFS 40.00 51.88 36.81 29.17 9.17 17.40
FASNetTFS 48.44 41.88 20.83 36.81 9.17 13.12
DeepPixBis 47.50 49.06 41.67 39.58 21.56 24.23

P2

LBP 46.25 45.63 45.83 44.44 30.83 30.83
InceptionFT 34.69 34.69 45.83 42.36 20.83 37.19

CPqD 40.00 45.63 45.14 47.92 21.67 29.27
FASNetFT 50.00 55.94 40.97 39.58 19.27 26.77

InceptionTFS 37.50 47.50 25.00 30.56 13.96 14.48
FASNetTFS 47.19 44.38 37.50 31.25 16.67 22.81
DeepPixBis 46.25 46.88 45.83 38.89 15.94 28.96

P3

LBP 47.50 46.56 45.83 44.44 31.67 32.08
InceptionFT 37.50 33.44 41.67 40.28 20.10 33.96

CPqD 43.75 47.50 45.83 43.75 21.46 28.12
FASNetFT 53.75 55.31 41.67 40.97 15.94 17.92

InceptionTFS 42.50 55.62 25.00 30.56 15.00 40.73
FASNetTFS 46.69 49.38 28.47 27.78 13.96 23.75
DeepPixBis 43.75 42.81 42.36 36.81 16.46 28.65

TABLE V: Cross-database evaluation 2: trained on different protocols of the CRMA database and tested on three public
databases.

and environments to boost the performance of vanilla models.
For example, FASNetTFS, which train VGG16 from scratch,
achieves competitive results (13.12% HTER) on OULU-NPU
database [23], [7]. Besides, as mentioned earlier, even though
DeepPixBis achieves much better results than other methods
in intra-database evaluations, it performs mostly worse than
other deep-learning methods, especially cross-testing on MSU-
MFSD database.

C. The Vulnerability of Face Recognition

The vulnerability of each FR system on M1/M2 attacks
is analyzed based on three cases. In the first case (M0-M0),
we use the bona fide unmasked samples captured on the first
day to enroll subjects in the FR system. Then, the enrolled
samples are compared against bona fide M0 samples captured
on the second and third day of the same subjects (to compute
genuine scores), as well as of other subjects (for zero-effort
imposter (ZEI) scores). Once genuine and ZEI comparison
scores are obtained, the operating threshold is computed by
τFMR@0.01 threshold. To focus on the effect of masks, we
group the print and replay attacks into three categories: AM0
(subjects without mask), AM1 (subjects with the mask on),
and AM2(real mask placed on attack presentations). Finally,
the probe masked samples of these categories are compared
against the enrolled data of the same subjects separately. In
the second case (M0-M1), the difference is that bona fide M0

data captured on the second and third day are used to compare
against enrolled bona fide M0 samples and then obtain the
corresponding genuine and ZEI scores. In the third case (M1-
M1), subjects are enrolled in the FR systems using bona
fide masked faces captured on the first day. Such enrolled
references are also compared against the masked bona fide
samples captured on the second and third day to obtain their
genuine and ZEI scores.

The performance and vulnerability of each FR system is
summarized in Tab. VI. SphereFace [27] obtains relatively low
IAPMR values, however, its GMR values are also much lower
than ArcFace [26] and VGGFace [28]. In general, the IAPMR
values of all three FR systems are roughly close to their
GMR values. Specifically, FR systems are vulnerable to the
AMO when bona fide M0 samples are used to enroll systems
and vulnerable to the AM1/AM2 when M1 data are used
as enrollment reference. Comparing the vulnerability analysis
results on AM1 and AM2 in all three cases and all FR systems,
we note that the IAMPR values of the AM2 are always
significantly higher than the IAPMR values of AM1. This
indicates that applying real masks on the attack presentations
can further reduce the performance of FR systems. This might
be due to the fact that the AM2 attacks possess more realistic
features than AM1. To further verify this assumption, we
provide the histograms of the similarity score distribution in
the three scenarios and three FR systems (see Fig 6). In the
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References Attack Probes
ArcFace[26] SphereFace [27] VGGFace [28]

EER GMR IAPMR EER GMR IAPMR EER GMR IAPMR

M0 - M0
AM0

0.00 100
98.40 [98.22, 98.56]

8.57 75.85
66.31 [65.69, 66.93]

0.12 100
99.47 [99.37, 99.56]

AM1 81.61 [81.24, 81.97] 2.80 [2.65, 2.96] 71.54 [71.12, 71.96]
AM2 97.10 [96.77, 97.41] 10.45 [9.89, 11.03] 97.23 [96.91, 97.53]

M0 - M1
AM0

2.25 96.56
98.73 [98.58, 98.88]

22.83 19.99
84.17 [83.68, 84.64]

2.29 94.2
99.86 [99.80, 99.90]

AM1 88.57 [88.27, 88.86] 15.26 [14.92, 15.60] 90.24 [89.96, 90.51]
AM2 98.56 [98.33, 98.78] 40.00 [39.09, 40.91] 99.55 [99.41, 99.67]

M1 - M1
AM0

1.00 99.00
70.62 [70.19, 71.04]

13.13 59.33
2.43 [2.29, 2.58]

0.85 99.46
45.84 [45.38, 46.31]

AM1 94.20 [94.04, 94.35] 47.69 [47.36, 48.02] 97.41 [97.30, 97.51]
AM2 97.70 [97.49, 97.89] 50.82 [50.16, 51.48] 98.26 [98.08, 98.43]

TABLE VI: The performance and vulnerability of FR systems. The GMR and IAPMR values have been computed based on
the τFMR@0.01 threshold. 95% confidence intervals for the IAPMR values are shown in brackets.

-0.20 0.00 0.20 0.40 0.60 0.80 1.00
Verification scores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
li
ze

d
 c

o
u
n
t

0

20

40

60

80

100

IA
P
M

R
 (

%
)

97.70%

ArcFace

Zero-effort Impostors Genuines Presentation Attacks threshold

1) AM0 2) AM1 3) AM2

IA
PM

R
 (

%
)

N
or

m
al

iz
ed

 c
ou

n
t

Verification scores

N
or

m
al

iz
ed

 c
ou

n
t

N
or

m
al

iz
ed

 c
ou

n
t

Verification scores Verification scores

IA
PM

R
 (

%
)

IA
PM

R
 (

%
)

-0.20 0.00 0.20 0.40 0.60 0.80 1.00
Verification scores

0.0

1.0

2.0

3.0

4.0

N
o
rm

a
liz

e
d
 c

o
u
n
t

0

20

40

60

80

100

IA
PM

R
 (

%
)

81.61%

ArcFace

Zero-effort Impostors Genuines Presentation Attacks threshold

-0.20 0.00 0.20 0.40 0.60 0.80 1.00
Verification scores

0.0

1.0

2.0

3.0

4.0

N
o
rm

a
liz

e
d
 c

o
u
n
t

0

20

40

60

80

100

IA
PM

R
 (

%
)

97.10%

ArcFace

Zero-effort Impostors Genuines Presentation Attacks thresho

-0.20 0.00 0.20 0.40 0.60 0.80 1.00
Verification scores

0.0

1.0

2.0

3.0

4.0

5.0

N
o
rm

a
liz

e
d
 c

o
u
n
t

0

20

40

60

80

100

IA
PM

R
 (

%
)

98.73%

ArcFace

Zero-effort Impostors Genuines Presentation Attacks threshold

-0.20 0.00 0.20 0.40 0.60 0.80 1.00
Verification scores

0.0

1.0

2.0

3.0

4.0

5.0

N
o
rm

a
liz

e
d
 c

o
u
n
t

0

20

40

60

80

100

IA
PM

R
 (

%
)

88.57%

ArcFace

Zero-effort Impostors Genuines Presentation Attacks threshold

-0.20 0.00 0.20 0.40 0.60 0.80 1.00
Verification scores

0.0

1.0

2.0

3.0

4.0

5.0

N
o
rm

a
liz

e
d
 c

o
u
n
t

0

20

40

60

80

100

IA
PM

R
 (

%
)

98.56%

ArcFace

Zero-effort Impostors Genuines Presentation Attacks thresho

-0.20 0.00 0.20 0.40 0.60 0.80 1.00
Verification scores

0.0

1.0

2.0

3.0

4.0

N
o
rm

a
liz

e
d
 c

o
u
n
t

0

20

40

60

80

100

IA
PM

R
 (

%
)

98.40%

ArcFace

Zero-effort Impostors Genuines Presentation Attacks threshold

-0.20 0.00 0.20 0.40 0.60 0.80 1.00
Verification scores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz

e
d
 c

o
u
n
t

0

20

40

60

80

100

IA
PM

R
 (

%
)

70.62%

ArcFace

Zero-effort Impostors Genuines Presentation Attacks threshold

-0.20 0.00 0.20 0.40 0.60 0.80 1.00
Verification scores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz

e
d
 c

o
u
n
t

0

20

40

60

80

100

IA
PM

R
 (

%
)

94.20%

ArcFace

Zero-effort Impostors Genuines Presentation Attacks threshold

-0.20 0.00 0.20 0.40 0.60 0.80 1.00
Verification scores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz

e
d
 c

o
u
n
t

0

20

40

60

80

100

IA
PM

R
 (

%
)

97.70%

ArcFace

Zero-effort Impostors Genuines Presentation Attacks thresho

(a) ArcFace
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(c) VGGFace

Fig. 6: The similarity score distributions by off-the-shelf FR networks: ArcFace [26], SphereFace [27], VGGFace [28]. The
rows from top to bottom represent three scenarios: M0-M0, M0-M1, M1-M1 as shown in Table VI. The columns from left to
right in each subplot refers to AM0, AM1, AM2. The green, blue, and grey correspond to the similarity scores of bona fide,
zero-effort imposter, attacks. The red curve describe the IAPMR values. In each plots, it can be seen that grey histograms have
more overlaps with green in AM2 than in AM1. This indicates that attacks with real masks placed on presentations are more
difficult to detect correctly by FR systems than attacks with masked faces.

histograms, green refers to genuine scores, blue presents ZEI
scores, and grey presents attack verification scores. The ideal
situation is that no overlap between the green and the other two
histograms. Fig. 6a shows the score distributions of ArcFace
[26], where the rows from top to bottom present M0-M0, M0-
M1, M1-M1 cases and columns from left to right refer to AM0,
AM1, and AM2. It can be seen that 1) the verification scores of
attacks are higher than scores of ZEI in all cases. 2) the scores
of AM0 attacks and genuine scores almost overlap in the M0-
M0 and M0-M1 scenarios, while the scores of AM1/AM2
attacks have a lot of overlapping areas with genuine scores
in the M1-M1 scenario. 3) for all cases, the scores of AM2
has more overlaps with genuine scores than AM1. Similar
observations can be found in the Fig. 6b for SphereFace and
Fig. 6c for VGGFace. These observations are consistent with
the findings in the previous Tab. VI.

Overall, these results indicate that 1) a user wearing the
face mask has a high probability of being detected as the
attacker by the current face PAD systems. 2) attacks with
applied masks are slightly difficult to detect correctly than
attacks with masked faces when using the deep-learning based
PAD methods. 3) FR systems pose a higher vulnerability for
attacks with real masks than a masked face.

VI. CONCLUSION

In this work, we presented a new large-scale face PAD
database, CRMA, including the novel real mask attacks and
masked face attacks. It consists of 13,113 high-resolution
videos and has a great diversity in capture sensors, displays,
and capture scales. To study the effect of the masked attack
on PAD algorithms, we designed three experimental proto-
cols. The first protocol measures the generalizability of the
current PAD algorithms on unknown masked bona fide and
M1/M2 attack data, while in the second protocol, masked
data are included in the training phase to compare PAD
performances. Additionally, the third protocol aims to evaluate
the generalizability of algorithms only on unknown PA that
real mask attacks (M2 attacks). The extensive experiments
were conducted on these protocols and under intra- and cross-
database scenarios. The results showed that pre-COVID-19
PAD algorithms have a high possibility of detecting masked
bona fide samples as attackers. Furthermore, the vulnerability
of FR systems on masked attacks was analyzed. The ex-
periments demonstrated that all state-of-the-art FR systems
are more vulnerable to attacks with real masks placed on
presentations (M2) than attacks with masked faces (M1).
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[21] J. Määttä, A. Hadid, and M. Pietikäinen, “Face spoofing detection from
single images using micro-texture analysis,” in 2011 International Joint
Conference on Biometrics (IJCB), 2011, pp. 1–7.

[22] Z. Boulkenafet, J. Komulainen, and A. Hadid, “Face anti-spoofing based
on color texture analysis,” in 2015 IEEE International Conference on
Image Processing, ICIP 2015, Quebec City, QC, Canada, September
27-30, 2015. IEEE, 2015, pp. 2636–2640.

[23] Z. Boulkenafet, J. Komulainen, Z. Akhtar, A. Benlamoudi, D. Samai,
S. E. Bekhouche, A. Ouafi, F. Dornaika, A. Taleb-Ahmed, L. Qin,
F. Peng, L. B. Zhang, M. Long, S. Bhilare, V. Kanhangad, A. Costa-
Pazo, E. Vázquez-Fernández, D. Pérez-Cabo, J. J. Moreira-Perez,
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Supplementary material
Paper title: Real Masks and Fake Faces: On the Masked

Face Presentation Attack Detection
To further observe and deeper understand the discriminative

features between bona fide and PAs in the CRMA database, we
present here, as supplementary material, the visualized features
of face samples from seven classes: BF-M0, BF-M1, PR-M0,
PR-M1, PR-M2, RE-M0, RE-M1, RE-M2. Here, BF refers
to bona fide, while PR and RE correspond to print and reply.
Fig. 8 shows the differential results of fine-tuned InceptionFT
and FASNetFT, and trained from scratch InceptionTFS and
FASNetTFS on the first protocol. Furthermore, the results of
DeepPixBis on three experimental protocols are selected to
present in Fig. 7 as the DeepPixBis method outperforms other
PAD algorithms in the CRMA database.

First, by observing the t-SNE plots from InceptionFT and
FASNetFT methods in Fig. 8, we can find that the unmasked
bona fide, unmasked print attacks and unmasked replay attacks
are tightly grouped, while the masked bona fide and masked
M1 samples in both PAIs are clustered. Simultaneously, the
print M2 and replay M2 attack samples tend to form a compact
distribution. Moreover, it is interesting to note that M2 attacks
are enclosed by the previous M0 BFs/PAs and M1 BF/PAS
clusters. This indicated that 1) fine-tuned networks are unable
to learn the discriminative features between bona fide and
attacks. 2) M2 attacks, which have artifacts and live features
together, are more difficult for networks to make a correct PAD
decision. Second, it can be seen in the t-SNE subplots from
InceptionTFS and FASNetTFS that compared to fine-tuned
networks, trained from scratch networks perform better. Be-
cause the features of bona fide M0 and M1 are in a group, print
attacks in a group, and replay attacks in a group. However,
2D features of M2 attacks in print and replay PAIs are still
closer than other attack types when employing FASNetTFS.
Overall, M2 attacks are slightly difficult to detected correctly
than M1 attacks by trained from scratch networks, even though
the bona fide and attacks are more separate than using fine-
tuned networks. Third, by taking a look at results on P1 by
DeepPixBis method in Fig. 7a, almost half of the bona fide
M1 data is mixed with attack data. Besides, on the P1 plot,
print M0 data is close to the replay M0, print M1 is close
to the replay M1, and grouped M2 attacks in both PAIs. It
should be noticed again that M2 attacks are surrounded by
the bona fide and other attack data. In Fig. 7b and Fig. 7c,
bona fide and attack data are more separate. However, some
replay M2 attacks are still mixed inside bona fide groups on
the P2. Additionally, more M2 attacks are close to the bona
fide samples on the P3 than P2. A possible reason is that M2
attacks are not learned in the training phase of P3. All the
above findings are consistent with observations in our main
work.

Together these results provide important insights that 1)
fine-tuned networks have poorer generalizability on the un-
known masked bona fide and attack data than trained from
scratch networks. 2) masked bona fide samples are more
probable to detected as bona fide by the pre-COVID-19 PAD
algorithms. 3) attacks with real masks on presentations (M2)
are more accessible detected by PAD systems as bona fide

than attacks with masked faces (M1).

(a) Feature visualization of DeepPixBis method in P1

(b) Feature visualization of DeepPixBis method in P2

(c) Feature visualization of DeepPixBis method in P3

Fig. 7: t-SNE plots for DeepPixBis method on three protocols
in our CRMA database. It can be seen that the unknown M2
attacks are enclosed by bona fide samples and other types of
attacks.
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c) FasNet_FT d) FasNet_TFS

a) Inception_FT b) Inception_TFS

Class
BF M0
BF M1
PR M0
PR M1
PR M2
RE M0
RE M1
RE M2

Fig. 8: The t-SNE plots of fine-tuned InceptionFT and FASNetFT (in left column), and trained from scratch InceptionTFS

and FASNetTFS (in right column) on the first protocol which targets the unknown masked bona fide and two types of masked
attacks. These plots show that fine-tuned InceptionFT and FASNetFT cannot discriminate the features between bona fide and
attacks. The 2D features representing the face images seem to be grouped based on the existence of face masks. Moreover,
M2 attacks are surrounded by bona fide samples and other types of attacks.
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