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Travel restrictions have often been used as a
measure to combat the spread of disease—in par-
ticular, they have been extensively applied in
2020 against coronavirus disease 2019 (COVID-
19). How to best restrict travel, however, is un-
clear. Most studies and policies simply constrain
the distance r individuals may travel from their
home or neighbourhood. However, the epidemic
risk is related not only to distance travelled, but
also to frequency of contacts, which is proxied by
the frequency f with which individuals revisit lo-
cations over a given reference period. Inspired
by recent literature that uncovers a clear univer-
sality pattern on how r and f interact in routine
human mobility [1, 2], this paper addresses the
following question: does this universal relation
between r and f carry over to epidemic spread-
ing, so that the risk associated with human move-
ment can be modeled by a single, unifying vari-
able r · f? To answer this question, we use two
large-scale datasets of individual human mobility
to simulate disease spread. Results show that a
universal relation between r and f indeed exists
in the context of epidemic spread: in both of the
datasets, the final size and the spatial distribu-
tion of the infected population depends on the
product r · f more directly than on the individ-
ual values of r and f . The important implication
here is that restricting r (where you can go), but
not f (how frequently), could be unproductive:
high frequency trips to nearby locations can be
as dangerous for disease spread as low frequency
trips to distant locations. This counter-intuitive
discovery could explain the modest effectiveness
of distance-based travel restrictions [3] and could
inform future policies on COVID-19 and other
epidemics.

To test the effects of distance (r) and frequency
(f) based travel restrictions, we start with large-scale
datasets of individual human movements in New York
City and Dakar, Senegal. The datasets each consist of a
set of trips T for N individuals over different time peri-
ods T , where each trip indicates a given individual mov-
ing between two locations. We then use an agent based
SEIR model calibrated with estimates for COVID-19 [4]
to simulate disease spread as agents follow the trajecto-
ries in our datasets. Aside from their unique trajectories,
each individual was assumed identical. In each simula-
tion, we vary two parameters: the maximum travel dis-
tance r, measured relative to each agent’s home location

(where the agent’s home was estimated as the most vis-
ited location of the agent, see Methods for details), and
the travel frequency f , the number of times each location
was visited. In practice, this means discarding any trip
of length greater than r and all but f randomly selected
trips to a given location from our datasets. The details of
the spatial partitionings used as well as other simulation
details are given in the Methods.

Figures 1(a) and (b) plot the final epidemic size ψ ver-
sus travel distance r for different travel frequency f ’s for
each dataset after simulations were run over the entire
length of the datasets (14 days for the Dakar dataset; 28
days for New York City) with 10,000 agents and a 5%
initial infected population. The trends are intuitive and
not surprising. For a given f , ψ increases monotonically
with r: the further people are allowed travel, the big-
ger the epidemic. Similarly, for a given r, ψ increases
monotonically with f : more frequent trips leads to big-
ger epidemics. What is surprising, however, is that the
ψ(r) curves for each f have similar shape. This echoes
a previous finding [1, 2] and hints that ψ, r and f might
have a hidden, simple relationship. Figures 1(c) and (d)
show that they do. Under the rescaling r → r · f all the
data appear to merge, as if collapsing to a single, uni-
versal curve depending on the unifying factor r · f . This
curve can be empirically characterized as

ψ(r · f) =
L

1 + ea(r·f−b)

where L, a, and b vary across cities and model types. Fig-
ure 2 shows the same scaling collapse is achieved when
the SI and SIR models are used, and Figure 7 in the
SM shows it persists for different values of the disease
parameter R0. Taken together, these findings suggest
the r → r · f scaling collapse is indeed universal, hold-
ing true over a wide range of datasets and disease pro-
cesses.

The discovery of a universal ψ(r · f) curve is un-
expected. Recall the complexity of the system we are
modeling: a nonlinear, spatially extended disease pro-
cess coupled to real-world human movements at scales
large in space (city scale) and time (several weeks). Even
when uncoupled, each of these processes is complicated.
Disease transmission across space is known to behave
non-trivially [5–8], while human movements likely de-
pend on a tangle of factors such as the distribution of
agents homes and workplaces, the subjective nature of
human route choices – shortest paths between locations,
for instance, are rarely followed [9] – as well as weather
and other environmental conditions. Moreover, there is
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(a) NYC (b) Dakar

(c) NYC (d) Dakar

FIG. 1: Epidemics sizes for SEIR model. Top row: plots of epidemic sizes versus maximum allowed travel
distance r for different max travel frequency f . Bottom row: top row plotted versus r · f . As can be seen, there is a
universal scaling collapse. Each data point is the average of 5 simulations. For other simulation details see Methods.
R2 values for best-fit lines are .951 (NYC) and .919 (Dakar). Best-fit line parameters are
L = 0.11, a = −0.49, b = 10.13 (NYC) and L = 0.13, a = −0.48, b = 18.01 (Dakar).

no reason to expect each of these influences to move-
ment to be the same in every city. New York and Dakar
are hugely different at a number of levels (population
size, spatial extent, culture, weather, economics). Yet
the ψ(r · f) curve proves that these tremendous com-
plexities that are at play when a disease infects a city
somehow produce simple, universal behavior.

After observing the universal relationship between r·f
and epidemic size, we check whether there is a relation-
ship between r · f and spatial dispersion of the disease.
We analyze the spatial concentration of infected persons
in our New York City simulations using the M function
developed by Marcon and Puech, which is calculated as
a function of some radius k around each agent[10]—see
Methods for a detailed description of this statistic. High
M indicates tighter clusters of cases; low M indicates
a more homogeneous distribution of cases across space.
We find that for a given radius k, as r and f increase,
M(k, r, f) decreases: infections become consistently more
dispersed across the city (see Figure 3a for this relation-

ship when k = 700m). As with epidemic size, under
the rescaling r → r · f , this relationship collapses to a
single curve, as shown in Figure 3b. This relationship
is robust to the choice of k—as k increases, M(k, r, f)
decreases (as would be expected—the larger radius you
look at around an agent, the more representative sam-
ple of the whole population you will capture) but stays
significant and maintains its relationship to r · f . This
relationship is demonstrated visually in Figures 3c and
3d. When r is fixed at 8, increasing f from 1 to 6 has
a clear effect on the extent to which infections spread
across the city (Figure 3c); while significant portions of
the city remain untouched by infection when f = 1, many
more grid cells contain at least one infection when f = 6.
This indicates that restricting r · f is more effective at
containing geographic spread of disease than restricting
r alone, just as it is effective at containing epidemic size.
In Figure 3d, on the other hand, we see that when rḟ
is held fixed at 12, spatial distribution of infection rates
is almost identical for different r and f values, demon-
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(a) NYC (b) Dakar

(c) NYC (d) Dakar

FIG. 2: Universal scaling collapse in SI and SIR model. Top row: scaling collapse for SI model. R2 values for
best-fit lines are, from left to right, .970 and .896. Best-fit line parameters are L = 0.24, a = −0.98, b = 6.67 (NYC)
and L = 0.35, a = −0.88, b = 2.98 (Dakar). Bottom row, scaling collapse for SIR model. R2 values for best-fit lines
are, from left to right, .969 and .937. Best-fit line parameters are L = 0.13, a = −0.70, b = 6.32 (NYC) and
L = 0.24, a = −0.51, b = 2.94 (Dakar).

strating the relationship between spatial distribution and
r · f .

An important implication of the universal ψ(r · f)
curve is that short, high frequency trips spread as much
disease as long, low frequency trips. In plain English,
multiple trips around your neighbourhood are as bad for
public health as a single trip to the city center. This
is interesting academically, but more importantly, it has
implications for policy. It means that restricting travel
distance r, but not travel frequency f , could be unpro-
ductive – it is not enough to restrict r, the product r · f
must be restricted. Consider the drop in epidemic size
with distance restriction r and visitation frequency f ,
∆ψ(r, f) := ψ(r → ∞, f → ∞) − ψ(r, f). When fre-
quency restrictions are ignored in the SI model in NYC,
∆ψ(r = 2, f → ∞) ≈ .44. When frequencies are re-
stricted this drops to ∆ψ(r = 2, f = 2) = .37. Under
frequency-blind policies this considerable reduction in ψ
is missed. An upside to the r · f invariance, however,
is that strict distance restrictions may be unnecessary.

A loose distance restriction (large r) may be offset by a
tight frequency restriction (small f) because the trans-
formation r → kr, f → f/k, leaves the product r · f –
and thus the epidemic size ψ – unchanged.

Why is the product r · f distinguished? We define
d ∝ rf as effective travel distance. The significance of
d was revealed in recent work [1, 2] on human mobility
patterns which shows the number of people who visit a
given location f times from a distance r during a cer-
tain reference period follow a universal, inverse square
law N(r, f) ∝ 1/(rf)2 ∝ 1/E2. We suspect the universal
ψ(rf) curve found in this paper derives from this inverse
square law. Figure 5 tests this intuition by replacing
the real-world mobility patterns Mreal with the prefer-
ential return model [11], a popular and accurate model
of human movements faithful to the above distribution
of effective travel distance, and a Levy flight, which is
not faithful to it [1, 12]. As seen, panel (a) shows a scal-
ing collapse while panel (b) does not. This suggests the
universality in ψ(rf) is rooted in the universal inverse
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(a) Relationship between frequency restriction and
dispersion for radius = 700m.

(b) Scaling collapse for radius = 700m. R2 value of
best-fit line is .97.

(c) Holding r constant but restricting f , we can
see that loosening restrictions on f increases
spatial dispersion of infections—when f is at 1
(left), infections reach 59.0% of grid cells; when f
is relaxed to 6 (right), infections reach 73.8% of
grid cells.

(d) In the simulations above, r and f are individually different
but r · f is the same. The similar spatial distribution of
infections in the two simulations reflects the scaling collapse in
dispersion of infection: dispersion depends on r · f as opposed
to just r or f . Here, color represents proportion of the grid cell
population that is infected at the end of the simulation.

FIG. 3: Universal scaling collapse of spatial dispersion of infections. Like ψ, spatial dispersion M shows a
universal scaling collapse with the product r · f , as demonstrated in panels (a) and (b). Here, M is calculated using
a radius of k = 700 meters. This is visually represented in panel (c), where we see the final spatial distribution of
infections for two simulations with the same r but different f , and in panel (d), where we see the final spatial
distribution of infections for two simulations with the same r · f but different r and f .

square law in human movement.

Since the universal ψ(r ·f) curve – and the policy im-
plications we have drawn from it – depends on the real
world mobility data Mreal collected in the absence of
COVID-19, it may not hold during an epidemic in which
people are known to move differently. Fortunately, our
NYC data extends through some of the COVID-19 out-
break so we are able to examine this. Figure 6 shows that
the scaling collapse is not quite as clean when we run our
simulations on data from the second half of March 2020—
r seems to have a weaker effect in March than it did in
February, perhaps because individuals were already re-
stricting their own travel radius due to pandemic-related
fears. Still, the scaling collapse generally holds under
real movement patterns during the COVID-19 pandemic
(March 2020). This means that even with individuals’

self-imposed restrictions during a pandemic, imposing r
and f restrictions still has a similar effect, proportional
to r · f .

Our study has limitations. First, there is the inher-
ent limitation of epidemiological modeling; it is known
that the SI, SIR, SEIR and other classic disease models
make assumptions which bound their accuracy [13–15].
The estimates for the model parameters likely carry error
[16], and we also assumed each agent was identical. Sec-
ond, the scale of our analysis is restricted to the city-level
(because our datasets are collected at this level) and so
our findings do not necessarily generalize to the perhaps
more important case of country-level and international
travel policies.

Nevertheless, we believe our results reveal novel in-
sights that could prove useful for future policies on
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FIG. 4: Collapse of spatial dispersion of infections for varius k. Spatial dispersion M(k) shows a scaling
relationship with r · f regardless of k. 99% confidence bands are shown in gray, indicating that the spatial clustering
in infections remains significant across values of r · f .

(a) Epidemics sizes for preferential return model.
Agents move according to the preferential return model
with mobility parameters fitted to Dakar data. 10,000
agents agents have been used for 2,420 timesteps.
Best-fit line R2=.87

(b) Epidemics sizes for Levy flight model. Agents follow
a Levy flight model, drawing distances and times
between trips from heavy-tailed distributions fitted to
Dakar data. 10,000 agents agents have been used for
2,420 timesteps. Best-fit line R2=.49

FIG. 5: Epidemics sizes for preferential return model (left) and Levy flight model (right). The
preferential return model of mobility captures the relationship between r · f and epidemic size, while the Levy flight
model does not.

COVID-19 and other epidemic diseases. As cities and
states continue with various levels of lockdown, evidence
based policies at the city scale (not to mention the na-
tional or international scale) are needed to avoid further
waves of infection. Our results directly help this effort.
They indicate that the total effective travel distance of
a city’s inhabitants d = r · f must be bounded – to

bound distance r but not visitation frequency f is a se-
rious blunder. Furthermore, and more optimistically, a
bound on travel energies Ebound means that strict dis-
tance restrictions at the city or town level – as adopted
by, e.g., Ireland and Italy at the beginning of the infec-
tion – are perhaps unnecessary. Given a desired Ebound,
a large r can be offset by a small f ; allowing citizens to
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FIG. 6: Epidemics sizes for NYC during covid outbreak. Scaling collapse for SEIR model run on March 2020
data.

travel infrequently to distant services (doctors, hospitals
etc) may be safe. This inverse relation between travel
distance and frequency (r ∝ Ebound/f) could also vitally
inform remote working policies. It supports the hypothe-
sis that working from home multiple days per week – and
thereby limiting the visitation frequency to workplaces –
helps prevent the spread of disease.

Our results may also be useful beyond the city scale,
potentially offering some solutions for reopening global
travel. If the r · f invariance, or some form of inverse
relation between r and f , holds for international mobil-
ity patterns, then, as before, lax distance limits could be
compensated by strict frequency restrictions. In other
words, infrequent international travel may be relatively
safe. We acknowledge this is a bold hypothesis, which
should be tested in future work. Metapopulation dis-
ease models [5, 17, 18], with their convenient trade off
between realism and parsimony, seem like a good theo-
retical starting point for this effort.
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METHODS

New York City data. Individuals’ movements in New
York City are inferred from GPS traces collected from
mobile phones by the company X-Mode over a span of
two months (February and March 2020). The raw data
contains about 479,163 anonymized users; our analysis
uses 10,000 users randomly selected from those that ap-
pear in the dataset every day in the month of Febru-
ary.
Dakar data. The Dakar dataset is based on anonymized
Call Detailed Records (CDR) provided by the Data for
Development (D4D) Challenge. The detailed informa-
tion of this dataset is provided in [19]. Here, we use the
SET2, which includes individual trajectories for 300,000
sampled users in Senegal, and after the preprocess, we
have 173,000 users and 173 cells in Dakar region during
two weeks of January, 2013. We subselect for users who
appear at least 200 times in the dataset to ensure that we
have adequate information about their trajectories over
the two weeks.
Data preprocessing. The X-Mode data from NYC is
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generated on an very fine spatial and temporal scale, with
exact latitude and longitude coordinate updates as fre-
quently as every second. The CDR data from Dakar, on
the other hand, are generated only for voice calls, text
messages or data exchanges and therefore have limited
resolution in time. The geographic location of the cell
towers and their density determines the accuracy of loca-
tion measurements through triangularization techniques.
Therefore, the trajectories extracted from CDRs consti-
tute a discrete approximation of the moving population
M(x; y; t). There are several steps in preprocessing of
the data before it can be suitable for use in our analy-
sis, which vary between the X-Mode data and the CDR
data.

The main steps for the NYC data are: i) We use
density-based spatial clustering of applications with noise
(DBSCAN) to group tightly-clustered latitude/longitude
pairs in each individual’s trajectory into locations. If
a cluster of at least five latitude/longitude points exists
such that no point is more than .0004 degrees (about
56 meters) from two other points in the cluster, those
points are grouped together as a single location. ii) Each
agent is assigned the DBSCAN cluster it visits most as
its home location. iii) We drop all locations in the trajec-
tory that have been visited for less than a minimum time
τmin = 15min. iv) In order to restrict travel distance r,
we calculate distance between locations by the haversine
formula, which derives the great-circle distance between
two points on a sphere. All locations that are more than
r km from an agents home location are removed from
their trajectory. v) In order to restrict travel frequency f ,
for each DBSCAN cluster that an agent visits more than
f distinct times (where distinct visits are determined by
an agent leaving a location and then coming back to it),
we randomly select f visits to include in their trajectory
and drop the rest.

The main steps for the Dakar data are: i) We view
each cell tower as a different location in the city. ii) For
each person, we determine the home location as the cell
tower location which has been visited for the most cu-
mulative time. By summing over all days in a given time
window, one can find the home cell with high level of
confidence for the majority of subjects. iii) We drop all
locations in the trajectory that have been visited for less
than a minimum time τmin = 10min. iv) In order to
restrict travel distance r, we calculate distance between
cell towers by the haversine formula, which derives the
great-circle distance between two points on a sphere. All
cell towers that are more than r km from an agent’s home
location are removed from their trajectory. v) In order to
restrict travel frequency f , for each location that an agent
visits more than f distinct times (where distinct visits are
determined by an agent leaving a location and then com-
ing back to it), we randomly select f visits to include in
their trajectory and drop the rest (excepting visits to an
agent’s home location, which are not restricted).

The duration of stay, frequency, and distance crite-
ria on defining cell visits yields a list of cells visited by

that subject over the study period for a given frequency
restriction f and distance restriction r.
Simulation details. We run an agent-based SEIR, SIR,
and SI models with N = 10, 000 agents, 5% of which are
initialized to be infected (1% in the SI and SIR Dakar
models). Each agent is assigned the trajectory of a real
person from our dataset, with location updated every 900
seconds (15 minutes) for the NYC simulations or every
600 seconds (10 minutes) for the Dakar simulations. At
each time step, each user’s location is updated according
to their assigned trajectory and infection status is up-
dated according to the following parameters, drawn from
Chen 2020[4]’s estimates of R0 = 3.58, incubation period
= 5.2 days, and infection period = 5.8 days:

β = daily transmission parameter = 3.58
5.8 = .617

σ = daily rate at which an exposed person becomes
infective = 1/5.2

γ = daily recovery parameter = 1/5.8

Let s be the number of time steps in a day. We then
transform the above daily parameters into timestep pa-
rameters as follows:

β∗ = time step transmission probability = β/s

γ∗ = time step recovery probability = 1− s
√

1− γ

σ∗ = time step probability that an exposed person
becomes infective = 1− s

√
1− σ

Finally, let Ilocal and Nlocal be the number of infected
agents and total agents within a 190 meter radius of the
agent’s current location for the NYC data or within the
same cell tower location for the Dakar data.

P[S → E] = β∗ ∗ Ilocal
Nlocal

P[E → I] = σ∗

P[I → R] = γ∗

In the SIR and SI models, if an agent becomes infected
on a given day, they will become contagious at the start
of the next day.
Quantifying dispersion. We use the M function devel-
oped in [10] to quantify spatial dispersion of disease in
our New York City simulations for a given r, f . The M
function is calculated as follows: for each infected agent
I and some radius k, we calculate the ratio between the
proportion of agents within k of I which are infected to
the proportion of agents in the total population which
are infected. Summing this value over all infected agents
I and dividing by N − 1, where N is the number of in-
fected agents, gives M(k), the M function evaluated at
k. While M is generally analyzed as a function over all
reasonable k, we evaluate the M function at a specific k
in order to compare spatial dispersion across r · f values
at that k, and then show that the relationship is robust
to choice of k.
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FIG. 7: Epidemics sizes for NYC covid outbreak
with lower R0 = 1.46, suggesting the scaling
collapse is robust. R2 of best-fit line is .925.

Confidence intervals for M(k) are obtained by Monte
Carlo simulation—for a given epidemic size ψ, we ran-
domly assign ψ infections across the population 1,000
times and calculate Mψ each time. By taking the .025
and .975 quantiles of these simulated M , we form an up-
per and lower bound on Mψ. It is notable that our em-
pirical M never reaches this confidence band, implying

that spatial dispersion is significantly non-homogenous
for every k and ψ.

Universality robustness. Here we demonstrate that
the universal ψ(r ·f) curve is robust to changes in the pa-
rameters R0 by running our simulations with estimated
transmission parameters for the 2009 H1N1 influenza
strain of β = .913, γ = 1.6, σ = 1 [20, 21]. Figure 7 shows
that, with these parameters, the ψ(r ·f) universality still
holds.

Preferential return model. The preferential return
model is based off of that proposed in Song et al. [22].
With some probability Pnew, agents return to a loca-
tion they have already visited; with probability 1−Pnew

they visit a new location with distance drawn from the
empirical distance distribution and direction drawn uni-
formly at random. Waiting times between trips are also
drawn from the empirical distribution. The probability
p is a function of the number of locations already vis-
ited:

Pnew = ρS−γ

where S is the number of locations visited. The param-
eters ρ and γ are fit to the real data using least-squares
regression (using the NYC dataset, we find ρ = .500 and
γ = .267.)
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