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Abstract 

In recent years, epidemic modeling in complex networks has found many applications, 

including modeling of information or gossip spread in online social networks, modeling of 

malware spread in communication networks, and the most recent model of the COVID-19 

pandemic. If the information disseminated is accurate, for example, maximizing its distribution 

is desirable, whereas if it is a rumor or a virus, its spread should be minimized. In this context, 

it is very important to identify super-spreaders that maximize or minimize propagation. Lately, 

studies for detecting super-spreaders have gained momentum. Most of the studies carried out 

aim to distinguish the influences of nodes under a specific propagation model (such as SIR) 

using network centrality measures and subsequently, to rank the nodes accordingly. However, 

in this study, we developed an algorithm that approximates the expected influence of nodes 

under the popular SIR model. By considering the behavior of the SIR model and only the 

shortest paths between nodes, the algorithm ranks the nodes according to this approximated 

value. Our developed algorithm is named the Expected Value Estimation (EVE). We compared 

the performance of EVE, using different SIR settings on real datasets, with that of many current 

well-known centrality measures. The experimental studies demonstrated that the solution 

quality (ranking capability) of EVE is superior to that of its competitors. 

Keywords: Complex networks; Susceptible-Infectious-Recovered model; Epidemic 

modeling; Expected influence. 

 

1. INTRODUCTION 

Complex networks are highly suitable tools for modeling the real world. They have applications 

in many different fields such as natural sciences [1], health [2], cyber security [3], economics 

[4], and social networks [5]–[7]. Moreover, epidemic modeling in complex networks has 

attracted attention in recent years for its many practical benefits. The spread of a virus outbreak 

(such as Covid-19) can be estimated and precautions can be taken based on this [8]. By 

modeling the spread of gossip on the social network, the spread can be prevented [9], [10]. Or, 

the desired information may reach the maximum number of people [11]. Whether you want to 

minimize the spread of gossip or maximize the spread of information, in any case, in order to 

do so, the set having the smallest number of the most influential individuals should be identified 
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[12], [13]. The influences of these individuals under certain epidemic models (such as SIR) 

should be calculated in order to identify the smallest number of the most influential individuals 

(i.e., key players). For this, it is necessary to model the propagation by selecting each node 

individually as the seed. Since propagation models are stochastic models, they must be repeated 

many times (e.g., about 10.000 iterations) and the average value taken. This operation requires 

very high processing power. On the other hand, researchers have noticed a correlation between 

the influence capacity of the nodes and network centrality measures, which have been used for 

a long time to determine the importance of nodes in complex networks. The basic expectation 

here is that as a centrality measure increases, the influence capacity increases, and as the 

centrality measure decreases, the influence capacity decreases. Since the calculation of 

centrality measures requires much less processing power than modeling the propagation 

thousands of times, studies have turned to this area. For this purpose, basic centrality measures 

such as Degree, Closeness, Betweenness [14], Katz [15], PageRank [16] were used and new 

centrality measures were developed. However, many of the measures developed only 

considered the local and global impacts of the nodes [17]–[21] or network communities [18], 

[19], [22]–[24]. Recently, another approach has been adopted that combines multiple centrality 

measures to develop new hybrid centrality measures [25]–[32]. However, many of these studies 

ignore the dynamics of the propagation model.  

In this study, we developed an algorithm that ranks nodes according to their influence capacity, 

taking into account the propagation behavior in the Susceptible-Infectious-Recovered (SIR) 

model. We named our developed algorithm the Expected Value Estimation (EVE) because it is 

based on approximating the expected influence of each node. It is worth mentioning here that 

the EVE algorithm does not calculate the importance of nodes contrary to the centrality 

measures. Instead, it calculates the approximate expected influence of the nodes under the SIR 

model and ranks the nodes accordingly.  

Motivation 

Under certain epidemic models (such as SIR), it is necessary to perform heavy Monte-Carlo 

simulations to distinguish the influence of nodes However, if the dynamics of the SIR 

propagation model are taken into account, the process can be simplified by ignoring some of 

the behaviors of this model. Thus, the approximate expected influence of nodes can be 

calculated and used to rank nodes (similar to a centrality measures). Generally speaking, in the 

SIR model, a node affects its neighbor nodes with a probability β. If not its direct neighbor, it 

is likely to affect its neighbors' neighbors with probability (β × β). If the network is a tree, the 

probability of a node influencing another l-hop away node can be calculated as 𝛽𝑙 since there 

can be only one path between each pair of nodes. Thus, the expected influence of a node can be 

calculated using its distance to all other reachable nodes by this node as the sum of 𝛽𝑙 values. 

However, real networks rarely exhibit tree structures. Hence, there can be many different paths 

of different lengths between any two nodes. It is also costly to use all paths to all other nodes 

to calculate the expected influence of a node. However, the probability of one node influencing 

another node decreases exponentially with the distance between them, although in practice, the 

value of 𝛽 is much less than 1. The natural consequence of this is 𝛽𝑛 ≫ 𝛽𝑛+1, where 𝑛 ∈ ℕ+. 

Based on this information, the expected probability of a node influencing another node can only 



 
 

be approximated using the shortest path between these two nodes. This is because the 

probability of influence calculated for routes other than the shortest path will be much lower. 

These calculated values can be used to distinguish the influence capacities of the nodes (similar 

to a centrality measure). 

2. PRELIMINARIES 

Before discussing the details of EVE, it would be useful to give some preliminary information. 

Let 𝐺 = (𝑉, 𝐸) be an undirected unweighted graph (network). Here, 𝑉 is the set of nodes 

(vertices), and 𝐸 is the set of edges (links). 

Definition 1 (Susceptible-Infectious-Recovered Model): The Susceptible-Infectious-Recovered 

(SIR) model is a well-known model used for population-based epidemic modeling. In recent 

years, due to their popularity, SIR and SIR variations have been applied to network topologies 

[33]. In the SIR model, nodes are found in one of three states: Susceptible, Infected, and 

Recovered. The transition of nodes between states occurs according to certain probabilities. 

Susceptible nodes are more likely to be infected by neighbors who are already infected with 

probability 𝛽. Infected nodes are also likely to go into a recovered state with probability 𝛾. 

Initially, all other nodes are in a susceptible state, except for nodes that carry the disease (i.e., 

those that are infected). Starting from the nodes that are initially infected (called ‘seed nodes’), 

the disease spreads over the network. After a certain period of time, there are no remaining 

infected nodes on the network and thus, the model is terminated. 

Definition 2 (Kendall’s tau Ranking Correlation Coefficient) [34]: Let (𝑎𝑖, 𝑏𝑖) and (𝑎𝑗 , 𝑏𝑗) be 

tuples of joint A and B ranking lists. If 𝑎𝑖 > 𝑎𝑗 and 𝑏𝑖 > 𝑏𝑗 or 𝑎𝑖 < 𝑎𝑗 and 𝑏𝑖 < 𝑏𝑗 , then the 

tuples are concordant. If 𝑎𝑖 > 𝑎𝑗 and 𝑏𝑖 < 𝑏𝑗 or 𝑎𝑖 < 𝑎𝑗 and 𝑏𝑖 > 𝑏𝑗 , then the tuples are 

discordant. If 𝑎𝑖 = 𝑎𝑗 or 𝑏𝑖 = 𝑏𝑗 , then the tuples are neither concordant nor discordant. Finally, 

tau is defined as in Equation (1). 

𝑡𝑎𝑢 =
𝑁𝑐 − 𝑁𝑑

0.5𝑁(𝑁 − 1)
 

    

(1) 

 

Here, 𝑁𝑐 is the number of concordant pairs, 𝑁𝑑 is the number of discordant pairs, and 𝑁 is the 

number of all combinations. Positive 𝑡𝑎𝑢 values indicate a positive correlation, and negative 

𝑡𝑎𝑢 values indicate a negative correlation. 

Definition 3 (Ranking Monotonicity) [35]: Monotony is a metric of how well the centrality 

measure assigns each node to different rank levels. The ranking monotonicity (RM) will be ‘1’ 

if all nodes are assigned to a different ranking level. If all nodes are assigned to the same ranking 

level, the RM will be ‘0’. Of course, for a centrality measure, the closer it is to RM 1, the better. 

The RM is calculated as follows: 

𝑅𝑀(𝐿) = (1 −
∑ 𝑛𝑟(𝑛𝑟−1)𝑟∈𝐿

𝑛(𝑛−1)
)

2

  (2) 



 
 

Here, n is the length of the L-ranking list and 𝑛𝑟 is the number of elements assigned to the same 

r rank. 

3. EVE 

The working principle of EVE is based on expected value calculation. Therefore, it is useful to 

first look into the details of how a node infects its neighbor nodes in SIR and how this node 

recovers. This situation is shown for one iteration in Algorithm 1 [36]. The node u in the 

algorithm was initially selected as the infected node or one infected at any point in time. 

Algorithm 1. Infection and Recover States of SIR 

1 sn = susceptible neighbors of node u 

2 for each v in sn 

3  rnd = random number in [0.0,1.0) 

4  if rnd <  𝛽 then 
5  mark v as infected 

6 end for 

7 rnd = random number in [0.0,1.0) 

8 if rnd <  𝛾 then 
9 mark u as recovered 

 

According to Algorithm 1, the node u infects its neighbors with probability β. After the node u 

infects its neighbors, this node is recovered with probability γ. If 𝛾 = 1, the node u has absolutely 

only one attempt to infect its neighbors since it will not be in the Infected state in the next 

iteration. If 𝛾 = 0.5, roughly speaking, the node u has two attempts to infect its neighbors since 

it will be in the Infected state in the next iteration with probability 0.5. If we generalize, the 

node u has at least 1
γ⁄  attempts to infect its neighbors. Since the probability of the node u 

infecting its neighbors is β, the expected value of infecting a neighbor by node u would be 1⁄γ 

times β; that is, β⁄γ. 

Let us explain the situation in Figure 1, where different topologies are shown. Notice that Figure 

1 a, b, and c are trees. Therefore, there is only one path between all nodes. 

In Figure 1-a, let the node u initially be selected as a seed (infected). The expected influence 

value (ev) of the node u becomes ev(u) = 1 + β⁄γ. Here, 1 has been added as node u is already 

infected. 

Figure 1-b shows the expected influence value (ev) of the node as ev(u) = 1 +
𝛽

𝛾⁄ +

(probability of 𝑢 infecting 𝑦). In order to infect the node y, the node u must infect the node x. 

Next, the node x must infect the node y. The probability of these two events happening together 

can be obtained by multiplying the probabilities of their respective occurrence. Thus, the 

expected value of u infecting the node y is (𝛽
𝛾⁄ ×

𝛽
𝛾⁄ ), i.e., (𝛽

𝛾⁄ )
2

. Thus, the expected influence 

value (ev) of the node u becomes ev(u) = 1 +
𝛽

𝛾⁄ + (
𝛽

𝛾⁄ )
2

. 



 
 

For Figure 1-c, the expected influence value (ev) of the node u is ev(u) = 1 + 2 × (
𝛽

𝛾⁄ ) + 2 ×

(
𝛽

𝛾⁄ )
2

. 

The expected value of a node infecting another node decreases exponentially with the distance 

between them. If we generalize the ev calculation, we get Equation (3). 

𝑒𝑣(𝑢) = 1 + 𝑛𝑛1 × (
𝛽

𝛾⁄ ) + 𝑛𝑛2 × (
𝛽

𝛾⁄ )
2

+ ⋯ + 𝑛𝑛ℎ × (
𝛽

𝛾⁄ )
ℎ

 
(3) 

 

Here, nn is the size of the set of node u’s neighbors at h-hop distance. The situation is a little 

different in Figure 1-d. The node y is both a 1-hop and a 2-hop neighbor of the node u. 

Therefore, the node u can infect the node y directly, as well as through the node x. Thus, the 

expected value of node u infecting the node y is the sum of these two possibilities, or 1 at most. 

Ultimately, the expected influence of the node u becomes ev(u) = 1 + (
𝛽

𝛾⁄ ) + 𝑚𝑎𝑥 {1, ((
𝛽

𝛾⁄ ) +

(
𝛽

𝛾⁄ )
2

)}. Let us explain why we use the max function here. For example, if  𝛽 𝛾⁄ = 1, the expected 

value of node u infecting the node y would be 2. However, this value can be at most 1, since 

once a node is infected, it cannot be infected again.  

In large and complex networks, there can be many different paths having different lengths from 

one node to another. It is quite costly to consider all paths. Instead, only the shortest paths can 

be considered. Thus, as in Figure 1-e, the (x, y) edge is ignored and the approximate ev can be 

calculated using Equation (3). However, instead of changing the structure of the graph, only 

neighbors with h-shortest path hop distance can be included when creating 𝑛𝑛ℎsets. Thus, it is 

guaranteed that 𝑛𝑛𝑎 ∩ 𝑛𝑛𝑏 = ∅ ; here 𝑎 ≠ 𝑏 ve 𝑎, 𝑏 ∈ {1 … ℎ}. If we named as 𝑠𝑝𝑛ℎ to the sets 

created by selecting only neighbors with h-shortest path hop distance, we can calculate the 

measure we call EVE as in Equation (4). 

𝐸𝑉𝐸(𝑢) = 1 + 𝑠𝑝𝑛1 × (
𝛽

𝛾⁄ ) + 𝑠𝑝𝑛2 × (
𝛽

𝛾⁄ )
2

+ ⋯ + 𝑠𝑝𝑛ℎ × (
𝛽

𝛾⁄ )
ℎ

 
(4) 

 

Equation (4) does not take into account paths other than the shortest paths. In the literature, β is 

usually taken as very small (e.g., ≤0.1) and γ as large (e.g., = 1). The corollary of this is 

(
𝛽
γ⁄ )

𝑙

≫ (
𝛽
γ⁄ )

𝑙+1

, where 𝑙 ∈ ℕ+. Thus, it can be considered reasonable to ignore paths other 

than the shortest paths. 

 



 
 

 

 

 

 

 

 
 

(a) (b) (c) 

  

(d) (e) 

Figure 1. Sample graphs for EVE calculation: (a), (b), (c) every node belongs to only one h-hop neighborhood, 

(d), (e) node-y belongs to different h-hop neighborhoods. 

In practice, EVE can be calculated as in Algorithm 2. 

Algorithm 2. EVE 

FunctionEVE(G: Graph, 𝛽, 𝛾) 
Begin 

L = {} // L is a (key,value) dictionary as L[node]=EVE 

SP = dictionary of all pairs shortest path of G. 

//dictionary[source,destination]=length.  

// If there is at least one path between two nodes then SP[node,node] is a number. 

// Otherwise, it is ∞. 

V = G’s set of nodes 

for each u in V 

 EVE = 0 

 for each v in V 

if SP[u,v]≠ ∞ then 

 EVE = EVE + Power(
𝛽

𝛾⁄ , SP[u,v]) 

 L[node]=EVE 

Sort L descending order by value  

return key list of L  

End 

 

The Sort function in Algorithm 2 sorts the dictionary entries according to their values in 

descending order. The Power function takes two parameters such as x and y and returns the 

value 𝑥𝑦. As a result, Function EVE returns the list of nodes sorted in descending order 

according to their EVE values. 

Let us calculate the time complexity of EVE. 

The EVE needs the shortest path information for all pairs. If the Floyd–Warshall algorithm is 

used, its time complexity is 𝑂(|𝑉|3). The algorithm has two nested “for” loops and each works 

x u x u y 

x u y 

z t 

x u y x u y × 



 
 

exactly with step |𝑉|. So, the time complexity is 𝑂(|𝑉|2). Finally, the resulting list is sorted. If 

an algorithm with a time complexity of 𝑛 log 𝑛  is used for this, the time complexity will be 

𝑂(|𝑉| log|𝑉|). As each these processes must follow one another, the time complexity 

is 𝑂(|𝑉|3 + |𝑉|2 + |𝑉| log|𝑉|), that is, 𝑂(|𝑉|3). As a result, the time complexity of EVE is 

dominated by the shortest path calculation.  

 

4. EXPERIMENTS 

To evaluate the performance of EVE, we determined five competitor centrality measures and 

experimented with different SIR settings over four real-world datasets. First, let us look at the 

competing centrality measures and datasets. 

4.1. Centrality measures 

DC (Degree Centrality) is calculated by dividing the degree of the node by the total number of 

nodes in the graph minus one [37].  

EC (Eigenvector Centrality) is used to determine the importance of a node in the network. The 

basic logic of EC is that the more adjacent a node is to the important nodes, the more important 

it is [38]. 

CC (Closeness Centrality) is a measure of how close a node is to other nodes [39]. The closer 

the node is to other nodes, the larger the CC. 

BC (Betweenness Centrality) is the proportional information on how many of the shortest paths 

between all pairs are through a node [14]. 

GC (Gravitational Centrality) is a recent centrality measure inspired by Newton's gravitational 

formula [29]. Instead of the mass in the original formula, it uses the k-shell values of the nodes 

and instead of the distance, it uses the length of the shortest path between nodes. Its formula is 

as follows: 

𝐺𝐶𝑖 =
𝑘𝑠𝑖 × 𝑘𝑠𝑗

∑ 𝑑(𝑗, 𝑖)𝑗∈Ν
 

(5) 

Here, 𝑑(∙) is the length of the shortest path between nodes 𝑖 and 𝑗; Ν is the set of 3-hop 

neighbors of node 𝑖. 

The GC was chosen as a competitor because it is a recent centrality measure that gives 

successful results. It is also similar to EVE because it is calculated using the shortest path length 

between nodes. 

 

 

 



 
 

4.2. Datasets 

We used four real-world networks for the experiments. We experimented with each network 

for three different 𝛽 and γ values: β = 0.1 and γ = 1, β = 0.05 and γ = 1, and β = 0.05 and γ = 

0.25. Thus, we experimented with a total of 12 different situations. The properties of the 

networks are given in Table 1. 

Karate: This network consists of 34 nodes and 78 edges. The nodes denote members of the 

karate club, and the edges denote the friendship between them [40]. This dataset is taken from 

http://konect.cc/networks/ucidata-zachary. 

Email-Enron: This network consists of 143 nodes and 623 edges [41]. This dataset is taken 

from http://networkrepository.com. 

Email-Univ: This network consists of 1133 nodes and 5451 edges [42]. This dataset is taken 

from http://konect.cc/networks/arenas-email. 

CS-PhD: This network consists of 1882 nodes and 1740 edges [43]. This dataset is taken from 

http://networkrepository.com. 

Table 1. Network dataset features 

Dataset |𝑽| |𝑬| 〈𝑲〉 𝑲𝒎𝒂𝒙 Density 

Karate 34 78 4.588 17 0.1390374 

Email-Enron 143 623 8 42 0.0613612 

Email-Univ 1133 5451 9.62 71 0.0085002 

CS-PhD 1882 1740 1.849 46 0.0009830 

 

4.3. Comparison of Performances of the Measures 

We evaluated the performance of EVE and the competitor centrality measures from different 

angles. First, we looked at the Kendall ranking performances. Next, we evaluated the "rank 

index vs. SIR score" graphics created by the measures. We then compared their Monotonicity 

performances. Finally, we looked at how many of the nodes in the top 5% of the ranking lists 

created by the measures corresponded to the ranking lists created according to the SIR 

simulations. 

In the SIR simulations, we set each node as the only infected node in the network. We ended 

the simulations when there were no infected nodes left in the network. At the end of each 

simulation, we took the number of recovered nodes in the network as the influence of the node 

selected as the single infected node at the beginning of that simulation. We repeated the 

simulation for each node 1000 times and took the average of their influences as the final SIR 

score. For the simulations we used Python and NetworkX [44]. 

Kendall ranking  

The ranking performances of EVE and the competitor centrality measures are shown in Figures 

2-4. Ranking performances were calculated using Definition 2, as the Kendall’s tau ranking 

correlation coefficient. The ranking list created by the measure and the list created by SIR 



 
 

simulations were used in the calculation. We were inspired by [17], [31] to use this type of 

graphic to compare the methods. 

The best results were given by EVE in six experiments, by GC in four experiments, and by EC 

in two experiments. In addition, the EVE tau values in all experiments are very close to 0.8 or 

higher. 

 

Fig. 1. Kendall’s 𝒕𝒂𝒖 correlation coefficient values of different centrality measures and EVE. Infection rate: 

𝜷 =  𝟎.1 and Recovery rate: 𝜸 = 𝟏 for all experiments. 



 
 

 

Fig. 3. Kendall’s 𝑡𝑎𝑢 correlation coefficient values of different centrality measures and EVE. Infection rate: 

𝜷 =  𝟎. 𝟎𝟓 and Recovery rate: 𝜸 = 𝟏 for all experiments. 

 

Fig. 4. Kendall’s 𝑡𝑎𝑢 correlation coefficient values of different centrality measures and EVE. Infection rate: 

𝜷 =  𝟎. 𝟎𝟓 and Recovery rate: 𝜸 = 𝟎. 𝟐𝟓 for all experiments. 



 
 

Rank index vs. SIR score 

The graphics of the ranking indices created by the measures vs. the SIR scores are shown in 

Figures 5-7. As the index increases (i.e., as the centrality decreases), the SIR score is expected 

to decrease. This is an indication that nodes have been assigned the correct rank level. We were 

inspired by [17], [31] to use this type of graphic to compare the methods. In most experiments, 

it can be said that EVE created a more uniformly decreasing graphic than the other methods. 

 

Fig. 5. SIR score trends of nodes ranked from large to small according to different centrality measures and EVE. 

Infection rate: 𝜷 =  𝟎. 𝟏 and Recovery rate: 𝜸 = 𝟏 for all experiments. 



 
 

 

Fig. 6. SIR score trends of nodes ranked from large to small according to different centrality measures and EVE. 

Infection rate: 𝜷 =  𝟎. 𝟎𝟓 and Recovery rate: 𝜸 = 1 for all experiments. 

 

Fig. 7. SIR score trends of nodes ranked from large to small according to different centrality measures and EVE. 

Infection rate: 𝜷 =  𝟎. 𝟎𝟓 and Recovery rate: 𝜸 = 𝟎. 𝟐𝟓 for all experiments. 



 
 

Ranking Monotonicity 

The monotonicity values of the ranking lists created by EVE and the competitor centrality 

measures are shown in Tables 2. The values were calculated using Definition 3. Since the 

ranking lists produced by the centrality measures depends only on the network structure, their 

monotonicity values were calculated only once for each data set. Since the ranking list produced 

by EVE is dependent on SIR, its monotony values were calculated separately for different SIR 

settings. The monotonicity values calculated for EVE were 1 in seven experiments and very 

close to 1 in the other experiment. This means that EVE assigns a different rank to all nodes in 

seven experiments. Meanwhile, the EC, CC, and GC also yielded successful results. 

Table 2. Monotonicity values of the measures. 

 DC EC CC BC GC  EVE  

      β =  0.1 

 γ = 1 

𝛽 =  0.05 

 𝛾 = 1 

𝛽 =  0.05 

 𝛾 = 0.25 

CS-PhD 0.5223 0.9938 0.9934 0.5718 0.9935 0.9939 0.9983 0.9953 

Email-Enron 0.8910 1 1 0.9944 1 1 1 1 

Email-Univ 0.9073 1 0.9999 0.9778 1 1 1 1 

Karate 0.8025 0.9439 0.9220 0.8682 1 1 0.9439 0.9886 

 

Finally, we examined how many of the nodes in the top 5% of the ranking lists created by the 

measure coincided with the nodes in the top 5% of the ranking list created according to the SIR 

simulations. The results are shown in Tables 3-5. Nodes in the top rank levels formed by the 

measure are expected to be more influential nodes. Therefore, it is important that the nodes at 

the top of the list and those at the top of the ranking list created according to the SIR simulations 

are the same. We were inspired by [31] to use this type of graphic to compare the methods. 

According to the calculated values, EVE gave the best results in eight experiments. 

Table 3. Number of overlapping nodes in the top 5% of the ranking list created according to SIR simulations with 

the ranking lists created by the measures. 

𝜷 =  𝟎. 𝟏 

 𝜸 = 𝟏 

DC EC CC BC GC EVE 

CS-PhD 76 16 28 46 54 88 

Email-Enron 5 3 4 4 4 5 

Email-Univ 41 32 38 37 40 43 

Karate 1 1 1 1 1 1 

 
Table 4. Number of overlapping nodes in the top 5% of the ranking list created according to SIR simulations with 

the ranking lists created by the measures. 

𝜷 =  𝟎. 𝟎𝟓 

 𝜸 = 𝟏 

DC EC CC BC GC EVE 

CS-PhD 86 8 25 42 50 89 

Email-Enron 7 3 4 4 4 6 

Email-Univ 38 45 37 32 44 39 

Karate 1 1 1 1 1 1 

 

 

 



 
 

 

 

 

 
Table 5. Number of overlapping nodes in the top 5% of the ranking list created according to SIR simulations with 

the ranking lists created by the measures. 

𝜷 =  𝟎. 𝟎𝟓 

 𝜸 = 𝟎. 𝟐𝟓 

DC EC CC BC GC EVE 

CS-PhD 59 26 26 41 51 71 

Email-Enron 6 3 4 4 4 5 

Email-Univ 38 40 37 30 43 40 

Karate 1 1 1 1 1 1 

 

6. Discussion and Conclusions 

In this study, we proposed an approach that approximates the influences of nodes in complex 

networks under the SIR propagation model using the shortest paths between nodes and then 

applies this to rank the nodes. The EVE is similar to a centrality measure in that it is used for 

ranking nodes. However, EVE is not a centrality measure, but a metric specific to the SIR 

model. As a result of 12 simulations we made with four different real-world datasets and three 

different SIR settings, EVE performed better than state-of-the-art and well-known centrality 

measures. 

We compared EVE with well-known centrality measures as well as with a state-of-the-art 

measure such as Gravitational Centrality, which is successful and innovative method. The EVE 

demonstrated that he expected influences of nodes could be better distinguished by using the 

parameters of the propagation model and the shortest paths (without using the centrality 

measures of the nodes).  

The EVE is calculated using the shortest paths between nodes. This means that all other paths 

are ignored. In dense networks, there can be many different paths other than the shortest path 

between two nodes. Therefore, ignoring these paths increase the difference (error) between 

EVE and the actual expected influence. In future studies, we plan to develop approaches that 

produce more precise results without increasing the time complexity. 
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