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Maŕıa Victoria Ibañez,
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Abstract
Spatio-temporal models for count data are required in a wide range of

scientific fields and they have become particularly crucial nowadays be-
cause of their ability to analyse COVID-19-related data. Models for count
data are needed when the variable of interest take only non-negative in-
teger values and these integers arise from counting occurrences. Several
R-packages are currently available to deal with spatiotemporal areal count
data. Each package focuses on different models and/or statistical method-
ologies. Unfortunately, the results generated by these models are rarely
comparable due to differences in notation and methods. The main objec-
tive of this paper is to present a review describing the most important
approaches that can be used to model and analyse count data when ques-
tions of scientific interest concern both their spatial and their temporal
behaviour and we monitor their performance under the same data set.
For this review, we focus on the three R-packages that can be used for
this purpose and the different models assessed are representative of the
two most widespread methodologies used to analyse spatiotemporal count
data: the classical approach (based on Penalised Likelihood or Estimating
Equations) and the Bayesian point of view.
A case study is analysed as an illustration of these different methodolo-
gies. In this case study, these packages are used to model and predict daily
hospitalisations from COVID-19 in 24 health regions within the Valencian
Community (Spain), with data corresponding to the period from 28 June
to 13 December 2020. Because of the current urgent need for monitor-
ing and predicting data in the COVID-19 pandemic, this case study is, in
itself, of particular importance and can be considered the secondary objec-
tive of this work. Satisfactory and promising results have been obtained
in this second goal. keyword COVID-19; count data; spatiotemporal
models; R packages
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1 Introduction

Spatial and temporal models for count data are needed in a variety of settings:
agricultural production [Besag and Higdon(1999)], fishing catches [Paradinas et al.(2017)Paradinas, Conesa, López-Qúılez, and Bellido],
volcano eruptions [Gusev(2008)], crime counts [Law et al.(2014)Law, Quick, and Chan],
cases of pulmonary disease [Choi et al.(2011)Choi, Lawson, Cai, and Hossain],
etc.

In all these examples, the variable of interest take non-negative integer values
and these integers arise from counting occurrences of an event in a geographic
areal unit in a certain time unit. The observations refer to a set of contiguous
non-overlapping areal units for consecutive time periods. Additionally, a series
of covariates are measured for each unit of area and time, these covariates could
be common in time or area and they can be discrete, continuous or even factors.

The reasons for modelling these data are diverse and can range from estimat-
ing the effect of a risk factor to a response, identifying clusters of contiguous areal
units or forecasting future observations. Different modelling strategies have been
proposed to deal with this array of scenarios comprising spatiotemporal data.
The strategies become more complex when the aim is to build multivariate spa-
tiotemporal models for the joint analysis of different variables that include spe-
cific and shared spatial and temporal effects [Gómez-Rubio et al.(2019)Gómez-Rubio, Palmı́-Perales, López-Abente, Ramis-Prieto, and Fernández-Navarro].

This kind of data presents two major challenges with respect to classical
linear regression models. Firstly, it is well known that the normal assump-
tion is not appropriate for count data modelling and generalised linear mod-
els with Poisson, binomial or negative binomial distributions must be used
[Nelder and Wedderburn(1972)]. Secondly, spatiotemporal autocorrelation, i.e.
that observations from geographically close areal units and temporally close
time periods tend to have more similar values than units and time periods that
are further apart, result in complicated correlation structures, and as a result,
parameter estimation is not straightforward and different approaches have been
developed for this purpose [Anselin(1995), Hardisty and Klippel(2010)].

Due to the diversity of applications, data types and conceptual approaches,
there is a broad range of literature on spatiotemporal modelling. Two excellent
books that provide a gradual entry to the methodological aspects of spatiotem-
poral statistics and outline some of the standard techniques used in this area are
[Cressie and Wikle(2015)] and [Wikle et al.(2019)Wikle, Zammit-Mangion, and Cressie].
An overview of different spatiotemporal modelling approaches can also be found
in [Anderson and Ryan(2017)].

Since December 2019, when the first cases of the illness caused by the coron-
avirus SARS-CoV-2 were reported in Wuhan, China, the SARS-CoV-2 virus has
spread world-wide. According to the website of the World Head Organization
(WHO) [WHO()], the virus has caused more than 127 million infections and
2.78 million deaths around the world as of 30 March 2021 and it is currently
impossible to predict how many people will be affected by it. The illness caused
by the SARS-CoV-2 was given the official name ”COVID-19” by the WHO on
11 February 2020 [(WHO)(2020)].

An effective way to control the spread of the infection is to understand and
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predict key epidemiological data. Epidemic models have provided powerful in-
sight to study data about the coronavirus pandemic, including the number of
new cases and deaths in a given area over time. Epidemic models to study the
spread of infectious diseases date back to the beginning of the twentieth cen-
tury. The susceptible-infected-recovered (SIR) models developed by Kermack
and McKendrick [Kermack and McKendrick(1927)] were the first mathematical
models developed to study the transmission dynamics of infectious diseases. The
SIR and SEIR (Susceptible, Exposed, Infectious and Removed) models have
been improved and used for analysing and characterising the COVID-19 epi-
demic [Fang et al.(2020)Fang, Nie, and Penny, Kucharski et al.(2020)Kucharski, Russell, Diamond, Liu, Edmunds, Funk, Eggo, Sun, Jit, Munday, et al.,
Tang et al.(2020)Tang, Wang, Li, Bragazzi, Tang, Xiao, and Wu], also in Spain
[Guirao(2020), López and Rodo(2020)]. Predicting the future course of epi-
demics has been another great challenge over time and has become particularly
challenging with the rise of new infectious diseases [Held and Meyer(2019)].

In addition to the crucial role played by the above described epidemic models,
other models are also being adapted to examine different aspects of the COVID-
19 pandemic [Fronterre et al.(2020)Fronterre, Read, Rowlingson, Bridgen, Alderton, Diggle, and Jewell,
Dunbar and Held(2020)]. In particular, mathematical modelling of patient hos-
pitalisation is essential, as it may help raise awareness of a possible collapse of
the health-care systems due to an increase in the number of patients needing
hospitalisation. Robust prediction models are therefore vital to support deci-
sions on population and community-level interventions to control the spread of
the virus and to prevent the collapse of health services.

Models for this type of data are rather different from epidemic models (SIR
and SEIR) because the prediction of hospitalisations requires previously ob-
tained COVID-19 data such as the number of people tested and/or infected or
the population at risk. Additionally, models relating to the number of hospi-
talisations have to manage observations over time in several geographical areas,
such as health departments. Each temporal observation relates to an areal unit
and, in this case, refers to count measures for the unit: number of COVID-19
hospitalisations in an areal unit per day. Moreover, given the contribution of
people’s mobility to the spread of the virus, these models should be able to
adjust for people’s mobility between neighbouring health areas.

The purpose of the current study was two-fold. Firstly, to present a review
describing three different approaches that can be used to model and analyse
count data when the questions of scientific interest concern both their spatial
and their temporal behaviour.

In particular, we revisit three different type of models that are representative
of the two most widespread methodologies used to analyse this type of data.
The first two models are formulated following the classical statistical paradigm
and the last one follows the Bayesian point of view (see [Berger(2013)] for a
survey of the hierarchical Bayesian approach and [Lawson(2018)] for Bayesian
disease mapping). Of the two classical approaches one is based on Penalised
Likelihood and the other on Estimating Equations [Liang and Zeger(1986)].

After an exhaustive search among R packages that implement models and
procedures to work with spatiotemporal data, we found just three packages that
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allow us to work with count areal data and we are going to review them. These
three packages are: the surveillance package [Meyer et al.(2016)Meyer, Held, and Höhle],
the model implemented in this package is based on a likelihood model, working
on the classical methodology; the Mcglm package [Bonat(2018)], whose model
is based on estimating equations, working on the classical methodology; and fi-
nally, the CARBayesST package [Lee et al.(2018)Lee, Rushworth, and Napier],
based on the Bayesian methodology.

The main properties and characteristics of each of them will be discussed.
This can be useful as a guide for scientists in different experimental fields.

We do not claim to provide a comprehensive coverage of all existing meth-
ods to deal with count data but to describe and compare the three relevant
approaches that are implemented in R packages [R Core Team(2020)] to be eas-
ily used by researchers. Other approaches include Dynamic Spatial Panel Data
models [Elhorst(2012), Liesenfeld et al.(2017)Liesenfeld, Richard, and Vogler] that
are more usual in the econometric literature; Machine-Learning techniques such
as Classification and Regression Trees, Support Vector Machine and Multilayer
perceptron Neural Network [Mart́ın et al.(2020)Mart́ın, Onrubia, González-Arias, and Vicente-Vı́rseda].
Generalized Additive Models have also been used in applied real problems with
spatiotemporal data [Augustin et al.(1998)Augustin, Borchers, Clarke, Buckland, and Walsh,
Beare and Reid(2002), Smith et al.(2019)Smith, Hofner, Lamb, Osenkowski, Allison, Sadoti, McWilliams, and Paton].
With respect to Bayesian models also different types of spatial, temporal and
spatiotemporal random effects, not included in the CARBayesST package, can
be used such as non-parametric estimation of trends [Knorr-Held(2000)] or
splines [Ugarte et al.(2010)Ugarte, Goicoa, and Militino, Bauer et al.(2016)Bauer, Wakefield, Rue, Self, Feng, and Wang].

The second goal of this paper is to apply the reviewed models and compare
their performance in the prediction of the number of COVID-19 hospitalisations
given the number of infected people in the 24 health departments of the Valen-
cian Community, Spain. The Valencian community is the fourth most populous
autonomous community of Spain. It is a rich region with very high residential
density along the coast and a lot of tourism and significant exports. Concern
about the evolution of the pandemic in this community, led the regional pres-
idency to ask the scientific community for advice about some decision-making
regarding the pandemic. Our results will be very useful for this aim.

The article is organised as follows: in Section 2 a descriptive analysis of the
data is performed, followed by the mathematical details of the three models.
Then, the three models are appplied to COVID-19 data in Section 3. Our results
are discussed in Section 4 and finally the conclusions are stated in Section 5.

2 Methodology

2.1 Dataset

The data set comprises the number of daily new positive cases of COVID-19
(tested via PCR (polymerase chain reaction) or the antigen test), and the daily
number of hospital admissions due to COVID-19 (daily hospitalisations) in the
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Valencian Community, a large area of Eastern Spain, over 533 days (from 28
June 2020 to 13 December 2020). This area is organised into K = 24 dif-
ferent health departments, and the data set comprises both temporal series
(hospitalised/new positive cases) for all departments. Figure 1 shows the spa-
tial location of the Valencian Community within Spain and its division into 24
health departments and the distribution of the population (× 100,000 people) in
these 24 health departments. As can be observed, the population in the health
departments is very heterogeneous.

Figure 1: Location of the Valencian Community within Spain and number of
habitants (per 100,000 people) of its 24 health departments.

The number of new daily positive cases by health department is published
regularly on an open data platform of the Generalitat Valenciana (Valencian re-
gional goverment) [GVA()] and the number of daily hospitalisations (by health
department) has been provided by the ”Data Science for COVID-19 TaskForce”
group of the Valencian Community [DSA()], with the commitment not to show
detailed maps or identifiable information about this variable, which is public
only at the aggregated level of the entire Valencian Community. As an illus-
tration, eight of the 24 health departments have been anonymised and will be
used to illustrate all the steps in the different analyses. However, the models
are fitted using the data of the 24 health departments and the estimations of
the parameters and the goodness of fit measures shown in the paper are related
to all of them.

Although these data may be subject to temporal biases due to changing
testing regimes, among other problems, the mean spatial incidence (number of
new cases divided by population size) for three different weeks (2020/07/05-
2020/07/11, 2020/09/20-2020/09/26 and 2020/12/04-2020/12/11) plotted in
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Figure 2, shows strong variation across the different health departments over
time.

(a) (b)

(c)

Figure 2: Distribution of mean daily incidence (per 100,000 people) in the 24
health departments of the Valencian Community. The mean daily incidence
is computed for one week periods: a)2020/07/05-2020/07/11, b)2020/09/20-
2020/09/26 and c)2020/12/06-2021/12/11.

Figure 3 a) and b) show time series plots for both variables of interest: the
number of daily new positive cases and the number of daily hospitalisations per
health department. From now on, daily hospitalisations we will mean the total
number of people admitted to hospital due to COVID-19 each day. Figure 3 a)
shows a peak of new cases in late August, and another in mid-November, two
and a half months apart, and the same temporal pattern appears in the series
of hospitalisations.
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As different health department have different population sizes, Figures 3 c)
and d) show the relative data, it is said, the number of new positive cases and
daily hospitalisations corrected by the population size of each health depart-
ment (incidence values). As can be seen, temporal patters remain unchanged.
Figure 3 e) shows the total number of new positive cases and hospitalisations
per day (adding the values of the 24 health departments). From Figure 3 e) it
can be seen that there is a time lag between both time series.

(a) (b)

(c) (d)

(e)

Figure 3: Temporal trend of COVID-19 for (a) new daily positive cases; (b) daily
hospitalisations, per health department, where each point represents the data
of one of the 24 health departments;(c) incidence of new daily positive cases,
positives divided by region population and multiplied by 100,000; (d) incidence
of daily hospitalisations; e) temporal trend of COVID-19 for the daily sum of
the 24 health departments of both time series: daily positive cases (red) and
daily hospitalisations (blue) with a mean confidence interval of 95% (grey).
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To estimate the delay between both time series a cross-correlogram (see
Figure 4) has been used. It plots a measure of correlation of both time series
(in this case Pearson correlation), as a function of the displacement (days) of
daily positives relative to the daily hospitalisations. Figure 4 shows that there
are two maximums in the correlation at the time lag of 9 and 5 days.

Figure 4: Cross-correlogram, between daily new positives and daily hospitalisa-
tions. It shows the Pearson correlation between both series as a function of the
displacement (days) of daily positives relative to the daily hospitalisations.

These data may be subject to temporal biases due to under-reporting at
weekends and/or on non-working days. Figure 5 a) shows a great variability in
the number of positives depending on the day of the week. As can be seen in
Figure 5 b), this effect does not hold for the number of daily hospitalisations.
Therefore, this effect is an artefact, due to when the official data is reported
rather than a real effect of the virus. To minimise this effect, henceforth, we
will take the mean of the last 4 days as the daily hospitalisations. By doing this
smoothing, we reduce this effect, as can be seen from Figure 5 c).

Finally, both effects are corrected. Figure 6 shows the smoothed number
of positive daily cases (in red) together with the number of people hospitalised
due to COVID-19 (in blue) for the eight illustrative health departments, with a
time delay of 9 days between both series.

The spatial adjacency matrix between these departments is shown in table
1. In this table, values equal to 1 signal neighbouring regions, i.e. those that
share a geographical border.
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a) b)

(c)

Figure 5: Data dependency with respect to the day of the week: a)Daily posi-
tives vs day of the week; b) Daily hospitalisations vs day of the week; c) Mean
of daily positives in the last 4 days vs day of the week.

Table 1: Spatial adjacency matrix of the 8 health departments used for illustra-
tion purposes. If two health departments,i, j, are neighbours, the matrix value
is one, otherwise 0.

A B C D E F G H
A 0 1 0 0 0 0 0 0
B 1 0 1 1 0 0 0 0
C 0 1 0 1 1 1 1 0
D 0 1 1 0 1 1 1 1
E 0 0 1 1 0 1 1 1
F 0 0 1 1 1 0 1 1
G 0 0 1 1 1 1 0 0
H 0 0 0 1 1 1 0 0

To conclude, when looking for the best model, we explored the relationship
between the mean and the variance of the hospitalisation data collected at each
instant of time. Figure 7 shows that there is a potential relationship between
mean and variance. This relationship is crucial for the modelling, as will be
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Figure 6: Temporal trend of COVID-19 for daily positives (red line) and daily
hospitalisations (blue line) in the eight health departments used as an illustra-
tion, with a time lag of 9 days in the daily positive cases, and a smoothing of 4
days.

seen in the following sections.

2.2 Models

Throughout this section Ykt will denote the observation taken in the k−th areal
unit Sk at time t, for k = 1, . . . ,K and t = 1, · · · , N . Then, Yt = (Y1t, . . . , YKt),
(t = 1, . . . , N), will be a spatiotemporal count series, i.e. count data recorded
in the areal units for consecutive discrete time periods. We assume that we also
have space-time varying covariates Xt = (X1t, . . . , XKt) recorded at the same
times and locations. Our main objective will be to predict future observations
of the spatiotemporal time series Yt, by taking into account the spatiotemporal
covariates Xt and the spatial and temporal relationships between the observa-
tions.
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Figure 7: Mean vs variance of the number of hospitalisations per day of the 24
health departments for each of the 533 days studied. The data are represented
on a log-log scale (black dots). The red line, indicates a smoothing of the data
tendency.

2.2.1 Endemic-epidemic models. R package surveillance [Meyer et al.(2016)Meyer, Held, and Höhle]

Endemic-epidemic (EE) models are a class of statistical time series models for
multivariate surveillance counts proposed by [Held et al.(2005)Held, Höhle, and Hofmann]
and extended in [Paul and Held(2011)] and [Meyer et al.(2014)Meyer, Held, et al.,
Meyer et al.(2016)Meyer, Held, and Höhle]).

In its current formulation and implementation in the R package surveillance
[Meyer et al.(2016)Meyer, Held, and Höhle], the EE framework uses incidence
from the preceding week, t − 1, to explain the incidence in week t. So, the
counts, Ykt|Yt−1, are assumed to be Poisson or Negative Binomial distributed
with the conditional mean:

µkt = ektνkt + λkYk,t−1 + φk
∑
q 6=k

wqkYq,t−1, νkt, λk, φk > 0, (1)

and overdispersion parameter, in the Negative Binomial case, ψk > 0.
The first component of the summation is called the endemic component and

captures information not directly linked to observed cases from the previous
day. This component can cover exogenous factors such as temporal trends,
seasonality, sociodemographics, and/or population. As an example, in spatial
applications, ekt can refer to the fraction of the population living in region k at
time t. The remaining terms in Eq. 1 constitute the epidemic component and
describe how the incidence in region k is linked to previous cases in the same
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and adjacent regions. The two terms of this epidemic component are usually
denoted as ’autoregressive’ and ’spatiotemporal’ component, respectively.

The parameters νkt, λk and φk are constrained to be non-negative and can be
modelled by allowing for log-linear predictors in all three components, as sine-
cosine terms to account for seasonality [Held and Paul(2012)], long-term tempo-
ral trends or/and covariates [Bauer and Wakefield(2018), Cheng et al.(2016)Cheng, Lu, Wu, Liu, and Huang].

log(νkt) = α(ν) + b
(ν)
k + β(ν)z

(ν)
kt (2)

log(λk) = α(λ) + b
(λ)
k + β(λ)z

(λ)
kt

log(φk) = α(φ) + b
(φ)
k + β(φ)z

(φ)
kt .

This form allows for fixed intercepts α(.), region-specific intercepts b
(.)
k and

exogenous covariates z
(.)
kt in each model compartment. Population fraction, pop-

ulation density, border effects, etc. can be used as covariates. The region-specific

intercepts b
(.)
k , can be treated as fixed effects or as random effects accounting for

heterogeneity between the regions. When they are treated as random effects,
they are assumed to be independent and identically distributed across k, but can
be correlated across the model components, following a Gaussian distribution:

bk := (b
(ν)
k , b

(λ)
k , b

(φ)
k ) ∼ N((0, 0, 0),Σb).

We will see this part in more detail in Section 3.1.
Maximum likelihood (ML) estimates are obtained using penalised likelihood

approaches.
This basic model has been extended to cover other different aspects of dis-

ease modelling (see [Dunbar and Held(2020)] for references). Recent extensions
include methodology to adjust for under-reporting [Dunbar and Held(2020),
Bracher(2019a)] or to allow different lags in the auto-regressive part of the
model (package hhh4addon [Bracher(2019b), Bracher and Held(2017)]), mod-
elling the conditional mean Ykt|Yt−1, · · ·Yt−D as:

µkt = ektνkt + λk
∑
q

D∑
d=1

wqkYq,t−d, νkt, λk > 0, (3)

where D is the maximum lag considered.
In [Meyer and Held(2017)], the authors extend the basic endemic-epidemic

spatiotemporal model to fit multivariate time series of counts ygkt stratified by
(age) groups in addition to spatial regions. They therefore define a contact
matrix C = (cg′g), where cg′g ≥ 0 quantifies the average number of contacts of
an individual of group g′ with individuals of group g, and the spatiotemporal
model is now modelled as:

µgkt = egktνgkt + λgkt
∑
g′q

cg′gwqkYg′,q,t−1, νkt, λk > 0, (4)
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where both the endemic and epidemic predictors may gain group-specific effects.
This model is implemented in the R-package hhh4contacts [Bracher(2019)].

Forecast
The surveillance package uses the function hhh4 to fit the models and

implements the oneStepAhead() function, which computes successive one-
step-ahead predictions for the fitted model, also providing confident intervals
for the predictions and plot methods. The associated scores-method computes
a number of (strictly) proper scoring rules based on such one-step-ahead pre-
dictions; see [Paul and Held(2011)] for details.

A discussion of suitable measures to evaluate the quality of a point forecast
can be found in [Gneiting(2011)] and several scoring rules based on the one-
step-ahead predictions [Paul and Held(2011)] are implemented in the function
scores, although we will consider the root mean squared error of the predic-
tions (RMSEp). Another function implemented in the package related to the
oneStepAhead() function is the calibrationTest function, which implements
calibration tests for Poisson or Negative Binomial predictions of count data
based on proper scoring rules; it is described in detail in [Wei and Held(2014)].

Long-term predictions do not have much sense in our context because we do
not know the long-term evolution of the covariates.

2.2.2 Multivariate covariance generalised linear models. R package
Mcglm

Under the same previous assumption of predicting Yt = (Y1t, . . . , YKt) in terms
of spatiotemporal correlations and Xt = (X1t, . . . , XKt) covariates, we can use
the multivariate covariance generalised linear model (McGLM) introduced in
[Bonat and Jørgensen(2016)]. This model is a general and flexible statistical
model to deal with multivariate count data that explicitly models the marginal
covariance matrix combining a covariance link function and a matrix linear
predictor composed of known matrices.

Let YK×N = {Y1, · · · ,YN} be the outcome matrix and let MK×N =
{µ1, · · · , µN} denote the corresponding matrix of expected values.

Given Σt the K×K covariance matrix within the response variable Yt for t =
1, · · · , N and Σb the N×N correlation matrix whose components denote the cor-
relation between outcomes, the McGLM as proposed by [Bonat and Jørgensen(2016)]
is given by

E(Y) = (µ1, · · · , µN ) = (g−11 (X1β1), ..., g−1N (XNβN )) (5)

V ar(Y) = C = Σt
⊗
G

Σb,

where gt are monotonic differentiable link functions, Xt denotes an K×kt design
matrix, βt is a regression parameter vector to be estimated, and

ΣN
⊗
G

Σb = Bdiag(Σ̃1, · · · , Σ̃N )(Σb
⊗

I)Bdiag(Σ̃−T1 , · · · , Σ̃−TN )
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is the generalised Kronecker product [Martinez-Beneito(2013)]. The matrix Σ̃t
denotes the lower triangular matrix of the Cholesky decomposition of Σt. The
operator Bdiag denotes a block diagonal matrix, and I denotes a K×K identity
matrix.

A key point for specifying McGLMs for mixed types of outcomes is the speci-
fication of the covariance matrix within outcomes Σk. Following [Bonat and Jørgensen(2016)],
we define the covariance within outcomes by

Σt = V (µt; pt)
1
2 (Ω(τt))V (µt; pt)

1
2 , (6)

For modelling count outcomes, they propose to adopt the Poisson-Tweedie dis-
persion function [Jørgensen and Kokonendji(2016)] so that

V (µt; pt) = diag(µptt ) (7)

is a diagonal matrix whose main entries are given by the power variance function.
The Poisson-Tweedie family of distributions provides a rich class of models to
deal with count outcomes, since many important distributions appear as special
cases; examples include the Hermite (p = 0), Neyman Type A (p = 1), Negative
Binomial (p = 2) and Poisson-inverse Gaussian (p = 3).

The dispersion matrix Ω(τt) describes the part of the covariance within out-
comes that does not depend on the mean structure. Jorgensen et al. [Jørgensen and Kokonendji(2016)],
among others, propose to model the dispersion matrix using a matrix linear pre-
dictor combined with a covariance link function, i.e.

h(Ω(τt)) = τt0Zt0 + · · ·+ τtDZtD, (8)

where h is the covariance link function, Ztd with d = 0, · · · , D are known ma-
trices reflecting the covariance structure within the response variable Yt, and
τr = (τr0, · · · , τrD) is a (D + 1)× 1 vector of dispersion parameters.

McGLMs are fitted based on the estimating function approach described
in detail by [Bonat and Jørgensen(2016)]and [Jørgensen and Knudsen(2004)].
A general overview of the algorithm and the asymptotic distribution of the
estimating function estimators can be found in [Bonat(2018)]. As a method
for selecting the components of the matrix linear predictor (variable selection),
the score information criterion (SIC) is proposed. This is an important tool to
assist with the selection of the linear and matrix linear predictor components,
but unfortunately it is less useful for comparing models fitted using different
link, variance or covariance functions.

Forecasting
Unfortunately, the mcglm package does not have any function implemented

to predict future observations. If we do not know to implement a more sophisti-
cated routine, once the model has been estimated, the mc link function can be
used. This function returns the inverse of the link function applied to the linear
predictor i.e. µ = g−1(Xβ), as an approximation of the predictions sought.
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2.2.3 Bayesian hierarchical generalised linear models. CARst pack-
age

A great variety of spatiotemporal models for count data using generalised linear
models (GLM) can be found in the Bayesian literature. To model these data a hi-
erarchical model with spatiotemporal structured prior distributions is used. The
spatiotemporal structure is modelled via sets of autocorrelated random effects
with conditional autoregressive and its spatiotemporal extensions priors. An
excellent review can be found in [Lee et al.(2018)Lee, Rushworth, and Napier].

These methods have had a remarkable development, especially in disease
mapping, thanks to the availability of estimation methods based on Monte Carlo
Markov Chain. With respect to the software packages for implementing these
models, although a great quantity of software packages can be found for imple-
menting purely spatial models, such as BUGS [Lunn et al.(2009)Lunn, Spiegelhalter, Thomas, and Best]
and R-INLA [Rue et al.(2009)Rue, Martino, and Chopin], software for spatiotem-
poral modelling is much less well developed and mainly focuses on geostatisti-
cal data. This was the motivation for developing the CARBayesST R pack-
age [Lee et al.(2018)Lee, Rushworth, and Napier]. This package can fit several
models for count data with different spatiotemporal structures. A useful tuto-
rial is provided by [Lee(2020)]. CARBayesST package has been recently used to
study the case-fatality risk by COVID-19 in Colombia [Polo et al.(2020)Polo, Acosta, Soler-Tovar, Villamil, Palencia, Penagos, Martinez, Bobadilla, Martin, Durán, et al.].

The general Bayesian hierarchical model for spatiotemporal count data is as
following:

Ykt ∼ f(ykt|µkt, ν) (9)

g(µkt) = Xktβ + ψkt (10)

β ∼ N(µα,Σβ). (11)

The probability function f is in the exponential family (not necessarily a
Gaussian distribution), β is the vector of covariate regression parameters, and a
multivariate Gaussian prior is assumed. g can be any monotonic differentiable
link function, and ψkt is a latent component for areal unit k and time period
t encompassing one or more sets of spatiotemporally autocorrelated random
effects, we denote ψt = (ψ1t, . . . , ψKt).

In this paper, we are just focusing on the models implemented in the CAR-
BayesST package. In this package, binomial, Gaussian and Poisson data models
can be used for the first level of the model, f in Eq. 10, and different spatiotem-
poral structures for ψkt in Eq.11 are given.

All models implemented in this package use random effects to introduce
spatial autocorrelation into the response variable. For this purpose, CAR-type
prior distributions and their space-time extensions are used. Spatial autocorre-
lation is induced via a non-negative symmetric matrix of adjacency W = (wkj),
where wkj represents the spatial closeness between units (Sk, Sj). Larger val-
ued elements represent spatial closeness between the two areas in question and
spatially autocorrelated random effects, whereas zero values correspond to areas
that are not spatially close and conditionally independent random effects given
the remaining.
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The models are outlined in Table 2 [Lee et al.(2018)Lee, Rushworth, and Napier].
In all cases, inference is based on Markov chain Monte Carlo (MCMC) simula-
tion.

Table 2: Summary of the models available in the CARBayesST package.

ST.CARlinear [Bernardinelli et al.(1995)Bernardinelli, Clayton, Pascutto, Montomoli, Ghislandi, and Songini] Spatially varying linear time trends
model

ST.CARanova [Knorr-Held(2000)] Spatial and temporal autoregressive main
effects and independent interaction model

ST.CARsepspatial [Napier et al.(2016)Napier, Lee, Robertson, Lawson, and Pollock] Common temporal trend but varying spatial
surfaces model

ST.CARar [Rushworth et al.(2014)Rushworth, Lee, and Mitchell] Spatially autocorrelated autoregressive of
order 1 time series model

ST.CARadaptive [Rushworth et al.(2017)Rushworth, Lee, and Sarran] Spatially adaptive smoothing model for
localised spatial smoothing

ST.CARlocalised [Lee and Lawson(2016)] spatiotemporal clustering model

Forecasting
In order to predict future observations of the response variable, simulations

from the posterior predictive distribution (the distribution of possible unob-
served values conditional on the observed values) have to be obtained.

This predictive density can be approximated by Monte Carlo integration. If
we denote the vector with all the parameters of the model by θ :

f(YN+h|(Y1, . . . ,YN )) ≈ 1

n

n∑
j

f(ŶN+h|θ(j), (Y1, . . . ,YN )).

If a representative value is wanted, the mean of the predictive density can
be obtained by taking into account the property that EθE(YN+h | θ)) and
approximating the mean again with respect to θ:

E(YN+h|(Y1, . . . ,YN )) =
1

n

n∑
j

E(YN+h|θ(j), (Y1, . . . ,YN ))

Unfortunately, the CARBayesST package does not have any function imple-
mented to predict future observations. for h=1 it can be easily implemented
using the samples of the posterior distributions of the parameters. For h > 1
the simulation of the posterior distribution of the random effects should be im-
plemented. In this case, for users who are not experts in R programming, just
an approximation can be obtained, approximating the value of the random ef-
fect by the that of the previous prediction. This approximation will be used in
Section 3.3.
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3 Application

In this section, all the models reviewed are applied to the COVID-19 data
described in Section 2.1. Continuing with the notation introduced, Yt =
(Y1t, . . . , YKt) refers to the observed hospitalisation data at time t in the K = 24
health departments of the Valencian Community, Xt = (X1t, . . . , XKt) refers to
the positive cases at time t − lag, where lag is the previously determined and
pk is the population at risk in the k-th health department.

Since our primary goal is forecasting, the mean squared errors of the pre-
dictions (RMSEp) up to a five-day horizon are calculated. This is a classical
approach to measure their performance. Therefore, data from 28 of June 2020
to 8 of December 2020 are used to fit the different models. The root mean
square error comparing observed and fitted values (RMSEf) are computed in all
cases to describe the goodness the fits. Data from 9 to 13 of December 2020,
jointly with the five-days horizon forecasts of each model, are used to compute
the root mean square error of the predictions (RMSEp). If we want to use real
data of positive cases, the horizon of prediction is limited, but taking a horizon
of five is considered enough, within our possibilities, to prevent the collapse of
hospitals.

Each model is adjusted using the corresponding statistical methodology in-
cluded in its corresponding R package. Additional specific measures of goodness
of fit are given; these other measures will be useful to compare different models
within the same R package.

3.1 Endemic-epidemic models

As stated in Section 2.2.1, let us consider that the counts of daily hospitalisa-
tions in the k−th health department, on the t−th day, Ykt, follows a Poisson
distribution with mean as in Eq.1.

If pk denotes the population of the k−th health department, we assume in
Eq. 1 known population fractions

ekt = ek =
pk∑24
k=1 pk

, ∀t,

and that wqk = I(q ∼ k), i.e, wqk = 1 if both health areas have a common
geographic border (assuming the epidemic only arrives from adjacent health
areas) and 0 otherwise. Weights wqk=

wqk∑
q wqk

are normalised and restricted to

be positive.
Covariates such as number of positive cases can be added to the model in dif-

ferent ways [Herzog et al.(2011)Herzog, Paul, and Held, Meyer et al.(2016)Meyer, Held, and Höhle].
The simplest way is to include the covariates xkt in the formulation in the en-
demic part of the model, for example considering:

17



• Model 1:

µkt = ekνkt + λktYk,t−1 + φkt
∑
q 6=k

wqkYq,t−1, νkt, λk, φk > 0,

log(νkt) = αν + βν1xkt, ∀k
log(λkt) = αλ, ∀t, k
log(φkt) = αφ,∀k, t

wqk = I(q ∼ k). (12)

We are going to consider two possibilities regarding the covariates. Case 1:
consider the smoothed number of new positive cases at a lag 9 as a covariate.
Case 2: consider the smoothed number of positive new cases at a lag 9 and the
smoothed number of new positive cases at a lag 5 as covariates. Many works
include a seasonal effect in the model of the parameters log(νkt), log(λk) and/or
log(φk), but we would expect this seasonal effect to be included in the covariates
(time series of positive cases), so we include it only in the model of log(λk) and
log(φk).

All unknown parameters are estimated directly by maximising the corre-
sponding log-likelihoods using numerical optimisation routines (see [Paul et al.(2008)Paul, Held, and Toschke]).
The estimates obtained and several goodness of fit measures for this model are
shown in Table 3.

Having estimated the parameters of the model, the fitted mean can be com-
pared with the observed counts in order to check the goodness of fit, but ad-
ditionally, we can see the contribution to this fitted mean of the endemic and
autoregressive components. The average of the proportions of the mean ex-
plained by the different components are also shown in Table 3. Note that the
proportion explained by the epidemic component is around 97% in both cases,
being by far the component with the greatest influence on the value of the total
fit. So, there is a high influence of the within-health area autoregressive compo-
nent, with very little contribution of adjacent areas and a rather small endemic
incidence.
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Table 3: Estimations, goodness of fit measures and contribution of the endemic
and autoregressive components to the global fit. RMSEf is the RMSE of fitted
values and RMSEp the RMSE of predictions.

Model 1.1 Model 1.2
Estimate Std. Error Estimate Std. Error

αλ 0.985 0.006 0.985 0.006
αφ 0.002 0.0008 0.002 0.0008
αν 4.061 0.709 4.085 0.7117
β1 1.019 0.003 1.005 0.019
β2 - - 1.014 0.0153

Log-likelihood: -8559.39 -8558.74
AIC: 17126.78 17127.48
BIC: 17151.64 17158.56

RMSEf 0.54 0.53
RMSEp 6.13 6.18
endemic 1.39 % 1.47 %
epi.own 97.28 % 97.21%

epi.neigbours 1.33 % 1.32 %

We have assumed a Poisson distribution to model the observations but, as
seen in Figure 7, there is a clear overdispersion in the data set. To account for
this overdispersion, the Poisson distribution may be replaced by two alternatives
included in the hhh4 function: ’NegBin1’, that is a Negative Binomial model
with a common overdispersion parameter ψ for all areas and ’NegBinM’ that
has different overdispersion parameters (ψi) for the different health areas, but
these distributions do not improve the fit (see Table 4).

Table 4: Goodness of fit comparison between Poisson and two Negative Binomial
distributions.

Poisson NegBin1 NegBinM
Log-likelihood: -8539

AIC: 17177.99 31554.37 31309.46
BIC: 17488.74 31566.80 31464.84

This basic model can be refined. Paul et al. [Paul and Held(2011)] intro-
duced random effects for endemic-epidemic models, which are useful if the areas
exhibit heterogeneous incidence levels not explained by observed covariates al-
lowing for area-specific intercepts in the endemic or epidemic components. Due
to the heterogeneity shown in the different health departments, Model 2 con-
siders an area-specific baseline incidence, ανk; the population fraction ek has

been included as a multiplicative offset and αφk reflects the mean spatial force
of influence of the neighbouring health areas.

Both ανk and αφk have been modelled as fixed effects.
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• Model 2:

µkt = ekνkt + λktYk,t−1 + φkt
∑
q 6=k

wqkYq,t−1, νkt, λk, φk > 0,

log(νkt) = ανk + βν1xkt, ∀k
log(λkt) = αλ, ∀t, k
log(φkt) = αφk ,∀t

wqk = I(q ∼ k). (13)

So, considering a Poisson distribution for the observations, the goodness of
fit measures of Model 2 and the contribution of the three components of the
mean to the global fit are shown in Table 5. Once again, results are shown
considering the smoothed number of positive new cases at a lag of 9 (Model
2.1) and the smoothed number of new positive cases at lags of 9 and 5 (Model
2.2) as covariates. Individual estimates for the parameters are not shown here,
because of the quantity of parameters to estimate.

Table 5: Goodness of fit measures and contribution of the endemic and autore-
gressive components to the global fit. RMSEf is the RMSE of fitted values and
RMSEp the RMSE of predictions.

Model 2.1 Model 2.2
Log-likelihood: -8539 -8538.49

AIC: 17177.99 17178.98
BIC: 17488.74 17495.94

RMSEf 0.71 0.69
RMSEp 5.76 5.78
endemic 1.89 % 2.04 %
epi.own 94.73 % 94.60 %

epi.neigbours 3.38 % 3.36 %

As can be seen in Tables 3 and 5, there is not much difference between the
four models. In all of them, the largest portion of the fitted mean results from
the within-area autoregressive component (between 94 and 97%), with very little
contribution of cases from adjacent areas and a rather small endemic incidence.
There are also no great differences in the goodness of fit parameters provided
by the Likelihood inference (Log-likelihood, Akaike Information Criteria (AIC),
Bayesian Information Criteria (BIC)) or in the values of the RMSE.

Figure 8 shows up to 5-day predictions obtained with Model 2.2, together
with the fitted and the true observed values.

3.2 Multivariate Covariance Generalised Linear Models

In this section, we apply the MCGLM approach to analyse the multivariate
count data set that was presented in Section 2.1, Eq. 5.
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Figure 8: Observed values (in blue) jointly with fitted values (in brown) and
predictions (in green).
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As seen in Eq. 5, MCGLM takes non-normality into account, defining a
variance function and modelling the mean structure by means of a link function
and a linear predictor. In this application, we have daily observations from 24
health departments (K = 24) on N = 533 consecutive days.

Despite the previous model, we are no longer dealing with an autoregressive
model, but this autoregressive effect can be included in the linear predictor
expression together with other covariates

g(µkt) = β0 + β1xkt + β2Yk,t−1 + β3
∑
q 6=k

wqkYq,t−1 + ekt. (14)

with g() being, in this case, the log-link function and ekt the offset.
A key point for specifying McGLMs for mixed types of outcomes is the speci-

fication of the covariance matrix within outcomes Σk. Following [Bonat and Jørgensen(2016)],
we define the covariance within outcomes by

Σt = V (µt; pt)
1
2 (Ω(τt))V (µt; pt)

1
2 . (15)

The matrix linear predictor is defined as: h(Ω(τt)) = τ0In×n + τ1Z1 +
τ2Z2, where n denotes the total number of observations in the data set and
In×n is the n × n identity matrix. τ0 is the intercept of the covariance lin-
ear model. If nt denotes the number of observations in time in each spatial
region, Z1 = I24×24

⊗
G Γt, where

⊗
G denotes the Kronecker product and

Γt = (γ(i, j))i,j∈{1,··· ,nt} with γ(i, j) = 1 if j ∈ {i − 1, i + 1} and 0 otherwise.
τ1 measures the effect of the ’time’. Finally, Z2 = W

⊗
G Int×nt

with W being
the spatial adjacency matrix between the 24 health departments.

In this case, we have obtained the best fits when using the exponential
covariance link function as h().

To define V (µt; pt), we will adopt the Poisson-Tweedie dispersion function
[Jørgensen and Kokonendji(2016)] so that

V (µt; pt) = diag(µptt ) (16)

in accordance with the plot in Figure 7.
We employed a step-wise procedure for selecting the components of the linear

predictor. As in the previous modelling, we are going to consider the number of
new positive cases at a lag of 9, the number of new positive cases at a lag of 5
and the number of hospitalisations at lag of 1 as potential covariates in Eq. 14,
and an additional categorical covariate ’Health Department’ to allow different
intercepts (β0k instead of β0) in Eq. 14. The population of each health area will
also be used as an offset. The SIC using penalty δ = 2 and the Wald test were
used in the forward and backward steps, respectively. We defined a stopping
criterion for the selection procedure as SIC > 0, since the penalty is larger than
the score statistics in that case.

The SIC is an important tool to assist with the selection of the linear and
matrix linear predictor components, but it is less useful for comparing models
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fitted using different link, variance or covariance functions. The mcglm package
implements the SIC to select the linear and matrix linear predictor components,
with the mc sic and mc sic covariance functions. In this case, the SIC values
indicate that all components, except the value of the daily hospitalisations with
a lag of 1 in neighbouring regions, should be included in the model (SIC < 0).

To compare the goodness of non-nested models, the gof function provides
the pseudo Akaike information criterion (pAIC), the pseudo Bayesian infor-
mation criterion (pBIC) and the pseudo Kullback-Leibler information criterion
(pKLIC). We are going to use it to select the best structure for the matrix linear
predictor. The results can be seen in Table 6. We will fit the model considering
h(Ω(τt)) = τ0IK×K + τ1Z1 + τ2Z2.

Table 6: Goodness of non-nested models, defined from different matrix linear
predictors h(Ω(τt)).

h(Ω(τt)) =
τ0IK×K τ0IK×K + τ1Z1 τ0IK×K + τ1Z1 + τ2Z2

plogLik -13540.43 -10448.25 -10444.49
df 28 29 30

pAIC 27136.86 20954.5 20948.98
pKLIC 27138.46 20958.28 20954.1
pBIC 27311.06 21134.92 21135.62

RMSEf 13.72 13.62 11.39
RMSEp 16.46 11.77 11.6

Figure 9 shows the up to 5-day predictions obtained with the resulting model,
together with the fitted and the true observed values. In this case, we have
obtained an RMSEp equal to 11.6, quite higher than the obtained with the other
models/packages. Fig. 9 shows that in this case there are health departments
where the model provides neither a good fit of the observations nor precise
predictions, while the fits and predictions of other health departments are very
accurate. With the information available, we have not found a model with
better fits and predictions for all the health departments.

3.3 Bayesian spatiotemporal models

In this section, we apply different models included in the CARBayesST package
to the COVID-19 data given in Section 2.1. For the reasons explained in this
section, we use the Poisson log-linear model for Ykt, Eq. 10. Overdispersion
cannot be controlled with this package. Although that could be regarded as
a handicap, as we will see in the results sections, the adjusted and forecasted
values are quite good.

In order to induce spatial smoothness between the random effects, we use
the binary adjacency matrix W used in previous sections. Element wik =1 if
areas i and k share a common border and wik=0 otherwise, whereas wii=0 for
all i.

23



Figure 9: Observed values (in blue) together with fitted values (in brown) and
predictions (in green).

24



Taking into account again the characteristics of our data, the plots shown
in Section 2.1 and the fact that our main objective is the prediction of future
observations, just two of the spatiotemporal correlation structures included in
this package (see Table 2) have been fitted for ψkt in Eq. 11: the CARar and
CAR adaptative structures. Neither spatially varying linear time trend models
nor spatiotemporal clustering models are appropriate for our data and CARa-
nova and CARsepspatial structures assume a symmetric temporal correlation
that does not allow us to obtain future predictions.

In both cases, the spatiotemporal structure is modelled with a multivariate
first-order autoregressive process with a spatially correlated precision matrix:

ψkt = φkt (17)

φt|φt−1 ∼ N(ρTφt−1, τ
2Q(W,ρS)−1) (18)

φ1 ∼ N(0, τ2Q(W,ρS)−1),

τ2 ∼ Inverse−Gamma(a, b),

ρS , ρT ∼ Uniform(0, 1),

φt = (φ1t, . . . , φKt) is the vector of random effects for time period t, the precision
Q(W,ρS) corresponds to the CAR models proposed in [Leroux et al.(2000)Leroux, Lei, and Breslow]
and has the expression:

Q(W,ρS) = ρS(diag(W1)−W ) + (1− ρS)I,

1 is the K × 1 vector of ones and I the K × K identity matrix. (ρS , ρT )
respectively control the levels of spatial and temporal autocorrelation, with
values of 0 corresponding to independence while a value of 1 corresponds to
strong autocorrelation.

The random effects from CARar have a single level of spatial dependence
that is controlled by the parameter ρS . That means that all pairs of adjacent
areal units will have the same degree of autocorrelation: strongly if ρS is close
to one, while no spatial dependence will exist if ρS is close to zero.

The CARadaptative model allows for localised spatial autocorrelation, that
is, it allows it to be stronger in some parts of the study region. This could be
adequate for our data because it would be possible for spatial autocorrelation
between adjacent health departments to be correlated or conditionally indepen-
dent, depending, for example, on whether these departments are in the same
big city or according to the socioeconomic characteristics of their inhabitants.

The CARadaptative model allows this spatial autocorrelation heterogeneity
by allowing spatially neighbouring random effects, which is achieved by mod-
elling the non-zero elements of the neighbourhood matrix W as unknown pa-
rameters rather than assuming they are fixed constants.

With respect to the covariates to be included in the mean, for the same
reasons explained in the previous sections, we again tried two possibilities. Case
1: the smoothed number of new positive cases at a lag of 9. Case 2: the smoothed
number of new positive cases at a lag of 9 plus the smoothed number of new
positive cases at a lag of 5.
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Additionally, as a basic area-specific measure of disease incidence, the pop-
ulation fraction ek has been also included as an offset.

Inference for all models is based on thinning (by 10) 60,000 posterior samples,
including a burn-in period of a further 1000 samples. Convergence plots assured
that it was reached in all cases.

The Table 7 displays the overall fit of each model by presenting the deviance
information criterion (DIC) and the effective number of parameters (pd). It
shows that the adaptive model fits the data better than the pure AR model,
with reductions in the DIC in both cases. As a complementary measure of
goodness of fit and in order to compare across models, the mean square error
of adjusted data (RMSEf) has been also calculated and it is showed in Table 7.
In this case better results are obtained with the CARar model but as it can be
seen the differences are very slight.

Table 7: Deviance information criterion (DIC), effective number of parameters
(pd), RMSE of fitted values (RMSEf) and RMSE of predictions (RMSEp) for
each model and scenario.

CARar CARadaptative
case 1 case 2 case 1 case 2

DIC 18730.92 18741.31 18671.93 18678.58
pd 793.5918 787.9688 780.8599 770.0481

RMSEf 1.939859 2.027429 1.970366 2.059419
RMSEp 5.610704 5.854628 5.861029 5.402237

The medians of the posterior distribution of each parameter and its 95%
credible intervals are displayed in Table 8.

As can be seen, the estimated parameters of spatial and temporal correla-
tions show a strong spatial and temporal correlation in all cases. Regarding the
covariates, both are significative.

Finally, with respect to the number of step-changes between two spatially
adjacent areas detected in the CARadaptative models, only one step change is
detected in case 1, while no changes are detected in case 2.

Since our main objective is prediction, we calculate the mean square error of
the prediction for up to 5 days for the four cases. These values can be found in
the last row of Table 7, and again no great differences are observed. In this case,
the best result is obtained with the CARadaptative model with both covariates:
positive cases at lags of 9 and 5. Adjusted, observed and predicted values of
these models can be seen in Figure 10.
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Figure 10: Fitted and predicted values in brown and green together with the
observed counts in blue.

Table 8: Medians of the posterior distribution of each parameter and 95 %
credible intervals for each model and scenario

CARar case 1 CARar case 2 CARadaptative case 1 CARadaptative case 2
Median 2.5 % 97.5% Median 2.5 % 97.5% Median 2.5 % 97.5% Median 2.5 % 97.5%

Intercept 5.7011 5.5108 5.7307 5.6233 5.2602 5.6621 5.6955 5.6223 5.7247 5.6107 5.3673 5.6532
Posit9 0.0022 0.0011 0.0108 0.0027 0.0018 0.0100 0.0022 0.0012 0.0054 0.0028 0.0018 0.0081
Posit5 - - - 0.0025 0.0014 0.0097 - - - 0.0026 0.0017 0.0075
tau2 0.0225 0.0197 0.0313 0.0222 0.0193 0.0313 0.0136 0.0099 0.0206 0.0128 0.0094 0.0198
rho.S 0.9432 0.8767 0.9591 0.9666 0.9349 0.9784 0.9652 0.9225 0.9774 0.9671 0.9206 0.9792
rho.T 0.9895 0.9811 0.9949 0.9376 0.8420 0.9548 0.9898 0.9836 0.9952 0.9890 0.9824 0.9946
tau2.w - - - - - - 171.0751 98.3797 289.3351 177.6793 104.1783 293.4227

4 Discussion

Having reviewed and applied the different models, it has been seen that the
second model (mcglm package) is the most flexible for modelling the variable
of interest, Ykt, allowing any type of function of time t in the expression of the
mean and a huge variety of spatiotemporal neighbourhoods to model both the
mean and the variance-covariance matrix (when necessary). The first model
(surveillance package) can also use any function of time in the expression of
the mean, but the temporal relationship with the neighbours only allows an au-
toregressive (AR) structure of order 1. This model allows us to choose between
a Poisson distribution for modelling the observations or a Negative Binomial
model when the data show overdispersion. Regarding modelling the mean as
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a function of t, the third model (CARBayesST package) only offers the possi-
bility of linear relationships. In this third model, spatiotemporal relationships
between the observations can be introduced into the model of the mean using
random effects with different correlation structures.

Having fitted the models, the surveillance package provides the oneStepA-
head function to compute successive one-step-ahead predictions for the fitted
model, in addition to confident intervals for the predictions and plot methods.
However, the other two packages do not have any function implemented to
predict future observations from the fitted models, making this process more
difficult for non-experts in R programming.

Regarding the estimates of the parameters of the models, significant positive
parameters for the covariates are obtained in all cases and the parameters that
indicate temporal correlation show high values too for all models. Regarding
spatial autocorrelation, there is a difference between the models depending on
how the spatial neighbourhood has been included in the model. In general, it
can be considered that in order to predict the number of hospitalisations per
day, both the number of hospitalisations from the previous day and the number
of new cases in the region of interest and in adjacent areas are needed.

Because each type of model has a different methodology that provides dif-
ferent measures of goodness of fit, to compare the performance across different
approaches two common and habitual measures are calculated; the RMSE of the
predictions up to 5 days, in order to compare prediction performance between
different models and the RMSE of adjusted data as a measure of goodness of
fit.

With respect to the results, the RMSE of the predictions up to five days of
the best model in each package ranges from 5.4 (using the CARBayesST pack-
age) to 13.72 (using the mcglm package). There are no large differences between
the fitted models using CARBayesST and Surveillance packages, ranging in this
case from 5.4 to 5.78, both values are acceptable in clinical practice. RMSE
of fitted data are too excellent using CARBayesST and Surveillance (from 0.53
to 1.93), obtaining in this case the smallest error with the Endemic-Epidemic
model 12 (case 2).

As was previously explained using Multivariate Covariance generalised Lin-
ear Models there are health departments where the model provides neither a
good fit of the observations nor precise predictions, while the fits and predictions
of other health departments are very accurate. With the information available,
we have not found a model with better results for all the health departments.
But, as has also been said before, this is the most flexible model for modelling
spatiotemporal count data response variables and, probably, good results could
have been obtained if there had been more information or in other types of
applications.

These models can truly be used in the current situation. As far as we
know, the surveillance package has been used to address several problems re-
lated to the COVD-19 pandemic. In fact, the endemic-epidemic models in-
cluded in the surveillance package, have been applied to a multitude of in-
fectious diseases (see [Dunbar and Held(2020)] for references) such as Influenza
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[Paul et al.(2008)Paul, Held, and Toschke], Norovirus [Held et al.(2017)Held, Meyer, and Bracher]
and COVID-19 [Fronterre et al.(2020)Fronterre, Read, Rowlingson, Bridgen, Alderton, Diggle, and Jewell,
Giuliani et al.(2020)Giuliani, Dickson, Espa, and Santi]. In fact, a regularly
updated table of use cases is maintained by S. Meyer at https://github.com/
rforge/surveillance/blob/master/www/applications_EE.csv. The CAR-
BayesST package has also been used recently for the study of case-fatality risk
due to COVID-19 in Colombia [Polo et al.(2020)Polo, Acosta, Soler-Tovar, Villamil, Palencia, Penagos, Martinez, Bobadilla, Martin, Durán, et al.].

From the beginning of the 2020, other works have been also focused on mod-
eling the number of COVID-19 related hospitalizations, but as far as we know, all
them have objectives, covariates and methodologies different from those seen in
our work. Ferstad et al. [Ferstad et al.(2020)Ferstad, Gu, Lee, Thapa, Shin, Salomon, Glynn, Shah, Milstein, Schulman, et al.]
model the number of people in each county in the United States who are likely
to require hospitalization as a result of COVID-19 given the age distribution
of the county per the US Census. G. Perone [Perone(2020)] compares several
time series forecasting methods to predict the number of patients hospitalized
with mild symptoms, and in intensive care units (ICU) in Italy, over the pe-
riod after October 13, 2020, getting RMSE values greater than ours. Reno et al.
[Reno et al.(2020)Reno, Lenzi, Navarra, Barelli, Gori, Lanza, Valentini, Tang, and Fantini]
model the spread of COVID-19 and its burden on hospital care under differ-
ent conditions of social distancing in Lombardy and Emilia-Romagna, the two
regions of Italy most affected by the epidemic, using a Susceptible-Exposed-
Infectious-Recovered (SEIR) deterministic model, which encompasses compart-
ments relevant to public health interventions such as quarantine. Goic et al.
[Goic et al.(2021)Goic, Bozanic-Leal, Badal, and Basso] combine autoregressive,
machine learning and epidemiological models to provide a short-term forecast
of ICU utilization at the regional level in Chile.

Most of them do not provide a goodness of fit measurement that can be used
to compare with our results. Just [Ferstad et al.(2020)Ferstad, Gu, Lee, Thapa, Shin, Salomon, Glynn, Shah, Milstein, Schulman, et al.]
and [Goic et al.(2021)Goic, Bozanic-Leal, Badal, and Basso] give values of RMSE.
These values are in general greater than the obtained in our work, but they are
not directly comparable, because their objective is to predict the number of
patients hospitalized with mild symptoms, and/or in intensive care units (ICU)
separately.

Within the framework of the government support group of the Generalitat
Valenciana our models are intended to be used and updated weekly, helping the
government make public health decisions such as, the possible need to open new
COVID-19 wards in hospitals in the most affected regions.

5 Conclusions

The aim of this work is to review three different spatiotemporal models for count
data, implemented in R packages, and to test their performance on an actual
case study using three completely different approaches.

Due to these different statistical methodologies, the different packages pro-
vide different goodness of fit measures, there being no measure in common
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between them. Therefore, as the final aim of our case study has been the short-
term prediction of the evolution of hospitalisations in the different spatial areas,
the root mean squared prediction error (RMSE) has been obtained in all cases.
We can achieve very satsifactory results using each of the packages reviewed and
there is not much difference between them. These results are very promising in
the particular case of the Valencian Community, but they are also very valuable
because they can be applied to any region and the use of these models can be
promoted to help in short-term government decision making regarding preven-
tive measures against the collapse of hospitals. Additionally, they can provide
tools to know in advance whether it is necessary to expand hospital capacity in
terms of beds and/or workers.

Our objective in this work has not been to say that one package or one type
of model is better than others, but to show possibilities that can be used in
practice to analyse this type of data. The choice of the type of model to use
will depend on the application at hand.
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