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Abstract We propose a highly data-efficient classification and active learning
framework for classifying chest X-rays. It is based on (1) unsupervised represen-
tation learning of a Convolutional Neural Network and (2) the Gaussian Process
method. The unsupervised representation learning employs self-supervision that
does not require class labels, and the learned features are proven to achieve label-
efficient classification. GP is a kernel-based Bayesian approach that also leads
to data-efficient predictions with the added benefit of estimating each decision’s
uncertainty. Our novel framework combines these two elements in sequence to
achieve highly data and label efficient classifications. Moreover, both elements are
less sensitive to the prevalent and challenging class imbalance issue, thanks to the
(1) feature learned without labels and (2) the Bayesian nature of GP. The GP-
provided uncertainty estimates enable active learning by ranking samples based
on the uncertainty and selectively labeling samples showing higher uncertainty.
We apply this novel combination to the data-deficient and severely imbalanced
case of COVID-19 chest X-ray classification. We demonstrate that only ∼ 10% of
the labeled data is needed to reach the accuracy from training all available labels.
Its application to the COVID-19 data in a fully supervised classification scenario
shows that our model, with a generic ResNet backbone, outperforms (COVID-19
case by 4%) the state-of-the-art model with a highly tuned architecture. Our model
architecture and proposed framework are general and straightforward to apply to
a broader class of datasets, with expected success.
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1 Introduction

Medical imaging is one of the major applications of computer vision technologies.
The applications range from the most straightforward task of image classification
(such as X-Ray, ultrasound, fundus) to image segmentation (anatomy or legions),
3D imaging, and functional imaging (fMRI). Our focus in this paper is image clas-
sification of chest X-ray images from suspected COVID-19 patients. The dataset
is described in detail in Section 4.1.

We demonstrate a classical application of computer vision-based image classi-
fication. There has been significant progress in the past decade both in terms of
theoretical insights and classification accuracy due to the development and adop-
tion of Deep Neural Network (DNN) models. The most well-established approach
is the supervised training of Convolutional Neural Networks (CNN), which first
identifies informative image features from multiple layers of convolutional filters
fed to a small number of classification layers that produce category decisions. How-
ever, this popular approach typically requires large numbers of labeled images from
each category to achieve an accuracy level useful for medical diagnosis. Data col-
lection and labeling are often very costly. In some cases, it is not feasible to collect
enough data for a quick automated diagnosis, as experienced in the time-critical
cases of the COVID-19 pandemic. This leads to a highly imbalanced class distribu-
tion (“Normal” cases � “COVID-19” cases) that negatively impacts the decision
accuracy. Given these practical challenges, we depart from the standard approach
and propose a highly data-efficient methodology that can achieve the same level of
accuracy using significantly fewer images and labels. It is based on CNN unsuper-
vised representation learning hybrid with a Gaussian Process (GP) classifier. The
GP-provided uncertainty estimates enable active learning by ranking unlabelled
samples and selectively labeling samples showing higher uncertainty.

The CNN-GP hybrid model is trained in decoupled two steps. The first step is
the representation learning, which refers to an unsupervised training step with
the goal of extracting image features that are used in diverse downstream tasks.
Among many different approaches for this challenging task, the discriminative
approach focuses on designing an optimization problem to build a similarity or
heuristic-based representation space. [20, 22, 30, 39]. The contrastive loss based
learning as a discriminative approach has been applied very successfully and shows
state-of-the-art performance in classification [3, 10, 12, 13, 24, 26, 34, 41, 54].
Saunshi et al. [45] also provides general theoretical insights of contrastive learning-
based representation. Especially Chen et al. [13] confirms very high label-efficiency
of the learned representation; it is able to achieve SoTA accuracy using as little
as 1% training labels. These results have clear implications to data imbalance
problem: the learned features (1) do not overfit dominant classes because the
training does not use the class information (2) capture less dominant classes more
efficiently. We empirically confirm this hypothesis in our experimental study 4.2.

The second step is the Gaussian Process (GP) classifier, a non-paramtric
Bayesian method, that can produce the prediction and its uncertainty in one shot.
Many techniques have been developed to extract Bayesian uncertainty estimates
from DNN [21, 23], and it was observed that the lower layers of a DNN for images
may not benefit as much from a Bayesian treatment [33]. Similarly, GP has been
used at the top of DNNs and has been applied to both classification and regression
problems while producing uncertainty estimates [4, 8]. However, it was observed
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that a DNN such as ResNet efficiently learns CIFAR10 with a test accuracy of
more than 96%, while kernel methods such as GP can barely reach 80% [53].
It is well accepted [2] that better representation input to the kernel is crucial.
The contrastive learning representation described above, which aims to aggregate
points with similarity measured by distance, will be the ideal input to a GP with
a distance-based RBF (radial basis function) kernel 1. This decoupled two-step
training CNN-GP hybrid model framework, not only alleviates the inline training
issue of GP but also extracts a predetermined lower dimension feature space for the
GP, so that the GP classifier shows accuracy advantage over the Bayesian linear
classifier, or the finite width non-linear neural network [7, 38]. The GP classifier
also offers two special properties that make it well-suited for medical data analysis:
(1) As a Bayesian method, it provides the prediction and its uncertainty in one-
shot, which will greatly help medical decision making; (2) Compared to other
non-Bayesian methods, it handles the issue of class imbalance more effectively
[43], which is quite common in medical field. We verify in Section 4.3.

Fig. 1: Average classes test accuracy from
active learning compared to random se-
lection. The solid line and shaded area
show the mean and standard deviation
of five runs.

Active learning [18] is one of
the most powerful techniques to im-
prove data efficiency by saving la-
beling efforts. Its primary goal is to
use the minimum amount of labels
to reach maximum performance. We
start with a small amount of labeled
data (initial train set) to train the
model. Then, we use an acquisition
function (often based on the predic-
tion uncertainty or entropy) to eval-
uate the unlabeled pool set, choose
the most helpful pooling samples
and ask the external oracle (gener-
ally a human) for the label. These
newly labeled data are then added
to the train set to train an updated

model. This process is repeated multiple times, with the train set gradually increas-
ing in size until the model performance reaches a particular stopping criterion. Ac-
tive learning will considerably facilitate real-world adoption of AI [1, 9, 28, 47, 50],
especially in the medical field where data collection and labeling are quite expen-
sive.

The main contributions of this paper are summarized as below:

– We provide a novel data-efficient framework leveraging the unsupervised con-
trastive representations and GP classifier. It leads to improvement over the
state-of-the-art DNN model (COVID-Net) in COVID-19 chest X-ray classifi-
cation.

– This combination of representation learning and GP provides an effective so-
lution to the challenging issue of class imbalance, especially when data volume
is small.

1 The RBF kernel is k(r) = σ2 exp(−r2/2l2), where r is the Euclidean distance between
input vectors, l length-scaler and σ2 variance-scaler are two hyper-parameters.
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– Our approach also leads to an efficient CNN-GP active learning framework. Its
application to the highly imbalanced COVID-19 chest X-ray imaging results
in saving ∼ 90% of the labels without any accuracy drop (see Figure 1).

2 Related Work on COVID-19 X-Ray Analysis

Since the pandemic, several studies have emerged focusing on gathering data
and developing machine learning methods for COVID-19 detection from chest
X-ray images. Wang et al. [52] introduced one of the first open-access benchmark
datasets and tailored deep CNN networks to detect COVID-19 from chest X-ray
images. The database and the tailored neural network model were referred to
as COVIDx and COVID-Net, respectively. COVID-Net was designed by imple-
menting a human-machine collaborative strategy based on specified performance
metrics to detect COVID-19 cases. The final model architecture uses lightweight
residual projection-expansion-projection-extension (PEPX) patterns, with a first-
stage projection and expansion, a depth-wise representation, and a second-stage
projection followed by an extension. Employing COVID-Net on COVIDx dataset,
they reached a accuracy of 91%, 94%, and 95% for the detection of COVID-19
pneumonia, non-COVID pneumonia, and normal cases, respectively.

Multiple network architectures have been also proposed for the detection of
COVID-19 by modifying existing deep architectures, such as CovXNet [36], trun-
cated Inception Net [19], deep CNN combined with long short-term memory
(LSTM) model [29], and a five layer CNN feature extractor model with a SVM
classifier [40].

Besides efforts to develop specially tailored deep model architectures for COVID
detection, several studies focused on increasing the accuracy of COVID-19 detec-
tion through the implementation of various transfer learning, fine-tuning, and data
augmentation techniques for known architectures. Chowdhury et al. [14], Ucar
and Korkmax [51], Ozturk et al. [42], and Brunese et al. [6], implemented trans-
fer learning and image augmentation to detect COVID-19 cases using pre-trained
deep CNN architectures such as SqueezeNet, DenseNet201, VGG19 and DarkNet.
Nour et al. [40] used Bayesian optimization for hyper-parameter tuning. Bressem
et al. [5] compared sixteen different known architectures of CNN on openly avail-
able COVID-19 Image Data Collection and showed that using deeper models does
not always lead to higher accuracy in detecting COVID positive cases.

Our work does not focus on finding specialized architectures for the given task
of X-ray imaging but instead on data representation and GP model that make a
better use of given data and (often highly imbalanced) labels.

3 Methodology

We illustrate our training framework in Figure 2. The CNN-GP hybrid model
is trained in two decoupled steps. (1) We first train a ResNet-50 representation
generator with contrastive loss (SimCLR [13]) by feeding the train and pool set
without any labels. As this is an unsupervised setting, we could feed the test set
in training. However, to simulate the active learning scenario and perform a fair
evaluation of the model performance, we exclude the test images from this step.
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Fig. 2: Our active learning framework is illustrated. The representation generator is
trained unsupervised with contrastive loss. The representations are used as inputs
to the GP classifier. The GP classifier is trained in the active learning loop until
the target performance is reached.

After the representation generator is trained, the train, pool, and test images are
fed to the trained generator to produce representation vectors for the next step. (2)
A multi-class GP classifier is trained using the training image representations with
labels. The active learning cycle repeats step (2) while increasing the training sam-
ple size by labeling the samples selected via the acquisition function. Components
of the framework are described in detail as following.

3.1 CNN-GP Hybrid Approach

We train the model by decoupling the representation and the classifier, following
the practical guidance regarding the benefits of decoupling [32, 48]. Specifically,
we adopt the contrastive loss to find a good representation space as proposed by
Chen et al. [12, 13], followed by a separate GP classifier training.

3.1.1 SimCLR based Representation Learning

We start with a mini-batch with N = 16 image samples, image augmentation
is applied twice to generate 2N samples. The image augmentation involves five
operations - random crop, random flip, color distortion, Gaussian blur, and random
gray-scale. To define a contrastive loss, we distinguish two types of augmented
samples: positive pair and negative pair. Positive pairs are the ones augmented
from the same image. For any other pairs, we consider them to be negative pairs
regardless of the labels, which is unknown in the feature learning. The training
maximizes the similarity of the positive pair, leveraging a contrastive loss. The
contrastive loss between a pair of samples of i and j is given by

li,j = −sim(zi, zj)/τ + log
2N∑
k=1

1[k 6=i] exp(sim(zi, zj)/τ), (1)

where sim(·, ·) is the cosine similarity between two vectors, and τ is a temperature
hyperparameter. In SimCLR method [12, 13], the contrastive loss is evaluated at
the projection head layer after the ResNet-50 backbone.
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3.1.2 Gaussian Process

Once we calculate the representations (2,048 dimensions for each sample) of all the
train set, we use them as the input to the GP classifier. To train the multi-class
GP, we use the Sparse Variational GP (SVGP) [27] from GPflow package [37].
We choose the RBF kernel with 128 inducing points. We trained the model for 24
epochs using Adam optimizer with a learning rate of 0.001.

3.2 Active Learning Framework

We use the COVID-19 train set (13,942 samples, see Section 4.1) as the train (with
labels) and pool sets (pretend we do not know the labels yet). We first randomly
select 140 samples (∼ 1%) as the initial train set for active learning. We train the
GP classifier using the representations of the active learning train set with labels.
We then use the trained GP to evaluate the test set and calculate the accuracy
and confusion metrics to measure the GP classifier performance. Next, we use the
same GP model to evaluate the pool data (the rest of the samples in the COVID-
19 train set that is not in the current active learning train set) and calculate the
prediction probabilities and uncertainties.

To select the most informative samples from the pool, various acquisition
functions have been developed [21]. Here we considered the entropy, the un-
certainty based on average class variance and the combination of both. Firstly,
we compare the entropy of the pool samples. Entropy is calculated by H(p) =
−
∑

c p(c) log p(c), where c is a class index [46]. Secondly, we compare the pre-
diction uncertainties of the pool samples. For each sample, the GP classifier will
provide the posterior variance of the prediction of each class. We calculate an av-
erage class variance, and consider the estimate to be the uncertainty of the pool
sample. Lastly, considering both the entropy and the average class variance uncer-
tainty, we get the sample’s entropy rank and the average class variance rank. We
add the two rank numbers together as a combined rank. The ∼ 1% pool samples
with the largest entropy, average class variance or combined ranking are selected
to be labeled and added to the active learning train set for the next round.

4 Experimental Results

4.1 COVID-19 Dataset

Fig. 3: From left to right, Normal, Pneumonia &
COVID-19 chest X-rays.

COVIDx dataset is
the largest open ac-
cess benchmark dataset
in terms of the num-
ber of COVID-19 pos-
itive patient cases to
the best of our knowl-
edge. At the time of
this study, it con-
sisted of 15,521 chest
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X-ray images, of which 8,851 are “Normal”, 6,063 “Pneumonia” and 601 “COVID-
19” pneumonia cases. A sample of these three types of X-ray images is shown in
Figure 3. The dataset is the combination and modification of five different pub-
licly available data repositories. These datasets are: (1) COVID-19 Image Data
Collection [17], (2) COVID-19 Chest X-ray Dataset Initiative [16] (3) ActualMed
COVID-19 Chest X-ray Dataset Initiative [15] (4) RSNA Pneumonia Detection
Challenge Dataset, which is a collection of publicly available X-rays [44] , and
(5) COVID-19 Radiography Database [31]. The dataset is highly imbalanced with
significantly fewer COVID positive cases than other conditions. About 4% are
COVID-19 positive cases. The train and test splits of the COVIDx dataset are
depicted in Table 1. The class ratio of the three classes (“Normal”, “Pneumonia”,
and “COVID-19”) for the train set is ∼ 16 : 11 : 1 and for the test set is ∼ 9 : 6 : 1.

Normal Pneumonia COVID-19

Train 7,966 5,469 507

Test 885 594 100

Table 1: COVID-19 Dataset

Before feeding data to
the representation genera-
tor, we pre-process the im-
ages by performing a 15%
top crop, re-centering, and
resizing to the original im-
age size to delete the embed-

ded textual information and enhance the region of interest [35, 49].

4.2 Classification Results and Class Imbalance Handling

To compare with the state-of-art COVID-Net result [52], we train the CNN-GP
hybrid model using all the COVID-19 training images (13,942 images). Note that
the representation generator is still trained without any labels. The COVID-Net
was trained using oversampling to balance the training classes. To do a fair com-
parison, we balance the training representations based on the corresponding labels
before feeding to the GP classifier [11, 25]. In detail, we balance the representa-
tions by down-sampling “Normal” and “Pneumonia” classes and over-sampling
“COVID-19” class so that the training size is kept constant while the difference
in the sample sizes between classes is 1 or 2.

We report the total accuracy as 93.2%, the average class accuracy as 93.6%,
and COVID-19 accuracy as 95%, outperforming COVID-Net (see Table 4) by 4%.
The confusion matrix is shown in Table 2. The resulting sensitivity is shown in
Table 4. The normalized positive predictive value (PPV) is also laid out in Table 5
following the calculation of Wang et al. [52].

To validate the effectiveness of the unsupervised representation to data imbal-
ance, we also train an NN based classifier (CNN-NN). We feed the same image
representations to a single fully connected layer with softmax activation function,
replacing the GP classifier. This NN classifier is trained 700 epochs with Adam
optimizer. The confusion matrix is shown in Table 3. We report the total accuracy
is 94.6%, the average class accuracy is 93.9%, and COVID-19 accuracy is 93%.
The classification results outperforms Covid-Net even with the simple ResNet-50
structure. This result implies our representation is rich enough to perform a linear
classification task, and it significantly reduces the complexity of the network.



8 Heng Hao et al.

Actual
Prediction

Normal Pneumonia COVID-19

Normal 831 (93.9%) 51 (5.8%) 3 (0.3%)
Pneumonia 42 (7.1%) 546 (91.9%) 6 (1.0%)
COVID-19 3 (3.0%) 2 (2.0%) 95 (95.0%)

Table 2: Confusion matrix from CNN-GP classifier

Actual
Prediction

Normal Pneumonia COVID-19

Normal 849 (95.9%) 33 (3.7%) 3 (0.3%)
Pneumonia 37 (6.2%) 551 (92.8%) 6 (1.0%)
COVID-19 3 (3.0%) 4 (4.0%) 93 (93.0%)

Table 3: Confusion matrix from the NN (softmax) classifier

Architecture Normal Pneumonia COVID-19 Average

VGG-19 98.0% 90.0% 58.7% 82.2%
ResNet-50 97.0% 92.0% 83.0% 90.7%

COVID-Net 95.0% 94.0% 91.0% 93.3%
CNN-NN (ours) 95.9% 92.8% 93.0% 93.9%
CNN-GP (ours) 93.9% 91.9% 95.0% 93.6%

Table 4: Sensitivity for each class. Best result is in bold. Other architecture results
came from Table 2 of Wang et al. [52].

Architecture Normal Pneumonia COVID-19

VGG-19 83.1% 75% 98.4%
ResNet-50 88.2% 86.8% 98.8%

COVID-Net 90.5% 91.3% 98.9%
CNN-NN (ours) 91.4% 92.1% 98.9%
CNN-GP (ours) 90.4% 92.0% 99.0%

Table 5: Normalized positive predictive value (PPV) for each class. Best result is
in bold. Other architecture results are from Wang et al. [52] Table 3.

Both the two stage trained hybrid classifiers CNN-GP and CNN-NN outper-
form and show more balanced accuracy over the three classes compared to the
other three fully-supervised models: VGG-19, ResNet-50, and COVID-Net.

4.3 Benefit of GP over NN for Imbalanced Data

To show the benefit of GP classifier over NN for imbalanced data, we compare
the CNN-GP classifier with the CNN-NN classifier with the same fewer samples
randomly selected from the training dataset. The CNN-NN classifier is trained
in the same manner as laid out in the previous section. The CNN-GP reveals
better data-efficiency compared to the CNN-NN classifier (see Figure 1 and Ta-
ble 6). Because GP classifiers fit each class separately, as long as each class have
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Train CNN-NN CNN-GP

10% 65.0%±10.7% 64.8%±9.1%
20% 72.8%±5.3% 77.2%±5.0%
30% 75.4%±1.5% 81.2%±1.8%
40% 78.4%±5.4% 82.6%±2.3%
50% 77.4%±1.5% 83.8%±2.4%

Table 6: The mean and standard deviation of the test Covid-19 accuracy for
random selected train samples for five runs. Note, no active learning is performed
in this experiment.

enough sample to show its own distribution, it is less affected by the imbalance
rate between classes. We confirm when we have enough training samples (> 10%)
for the classifiers, CNN-GP classifier shows higher test COVID-19 accuracy (by
∼ 4% − 6%) compared to the CNN-NN cases. Based on GP’s more robust behav-
ior and less fluctuations of accuracy, we select the CNN-GP model as part of our
active learning framework.

4.4 Active Learning Iteration

The active learning accuracy from the three acquisition functions (entropy, uncer-
tainty, and combined ranking) are compared to the random selection in Figure 4.
To check the consistency of our results, we repeat multiple (five) active learning
runs. The results shown in the figure are the means of the five independent active
learning runs. With the unsupervised representation learning followed by a GP
classifier, only ∼ 10% of the training data needs to be labeled to achieve the same
accuracy as if all the labeled training data is used.

In Figure 4, the different line colors and styles illustrate active learning results
from different acquisition functions but from the same CNN-GP hybrid model. The
three different acquisition functions have similar performance (red dash, green solid
and purple dash-dot lines) and outperforms the random selection (blue dotted
line). We observe that, especially when the sample size is small (< 20%), the
training data selected by these three acquisition functions accelerates the model
to reach significantly higher test accuracy. The remaining 90% of the data offer
no new information to the classification model and can be auto-labeled by the
CNN-GP hybrid model, saving considerable labeling cost.

We observe that if we balance the class representations before training the
GP classifier, it will slightly help increasing the test accuracy. Thus, at each ac-
tive learning round, we down-sampling “Normal”, “Pneumonia” classes and over-
sampling “COVID-19” class similar to Section 4.2. We also run five independent
iterations for this setup. The results are shown in bottom row of Figure 4.

5 Conclusion

We introduced a data-efficient CNN-GP hybrid model and showed that our ap-
proach achieves the state-of-the-art accuracy for COVID-19 chest X-ray classi-
fication. Moreover, our novel combination of representation learning and GP is
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Fig. 4: The accuracy(left), average class accuracy (middle) and COVID-19 accu-
racy(right) for five active learning runs with different acquisition functions com-
pared to the random pick. The lines show the mean and shaded areas show the
standard deviation. The results without over-sampling the representations before
feed in to the classifiers are shown in the top row, while the results from over-
sampling of representations before feed in to the classifiers are shown in the bottom
row.

confirmed to be an effective solution for the issue of class imbalance, especially
when facing data scarcity as in COVID-19 case. Our approach also enables an
efficient CNN-GP active learning with its application to the highly imbalanced
COVID-19 chest X-ray imaging, leading to saving ∼ 90% of the labeling time and
cost.

Further improvement of the proposed framework is attainable through im-
proved unsupervised representation learning and implementation of better acqui-
sition functions with stronger exploration and exploitation characteristics. The
aforementioned directions will be the focus of our future studies.
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Villagrá P, Ghahramani Z, Hensman J (2017) GPflow: A Gaussian process
library using TensorFlow. Journal of Machine Learning Research 18(40):1–6,
URL http://jmlr.org/papers/v18/16-537.html

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://dx.doi.org/10.5244/C.31.57
https://dx.doi.org/10.5244/C.31.57
http://jmlr.org/papers/v18/16-537.html


Highly Efficient Representation and Active Learning Framework 13

38. Neal RM (1996) Bayesian Learning for Neural Networks. Springer-Verlag,
Berlin, Heidelberg

39. Noroozi M, Favaro P (2016) Unsupervised learning of visual representations by
solving jigsaw puzzles. In: European conference on computer vision, Springer,
pp 69–84

40. Nour M, Cömert Z, Polat K (2020) A novel medical diagnosis model for
covid-19 infection detection based on deep features and bayesian optimiza-
tion. Applied Soft Computing 97:106580, DOI https://doi.org/10.1016/j.asoc.
2020.106580, URL http://www.sciencedirect.com/science/article/pii/

S1568494620305184

41. Oord Avd, Li Y, Vinyals O (2018) Representation learning with contrastive
predictive coding. arXiv preprint arXiv:180703748

42. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra Acharya
U (2020) Automated detection of covid-19 cases using deep neural net-
works with x-ray images. Computers in Biology and Medicine 121:103792,
DOI https://doi.org/10.1016/j.compbiomed.2020.103792, URL http://www.

sciencedirect.com/science/article/pii/S0010482520301621

43. Rosevear D, de Waal A (2017) Gaussian processes applied to class-imbalanced
datasets

44. RSNA (2019) Radiological society of north america. rsna
pneumonia detection challenge. https://www.kaggle.com/c/

rsna-pneumonia-detection-challenge/data

45. Saunshi N, Plevrakis O, Arora S, Khodak M, Khandeparkar H (2019) A theo-
retical analysis of contrastive unsupervised representation learning. In: Inter-
national Conference on Machine Learning, pp 5628–5637

46. Shannon CE (1948) A mathematical theory of communication. The Bell Sys-
tem Technical Journal 27:379–423, 623–656, URL http://cm.bell-labs.com/

cm/ms/what/shannonday/shannon1948.pdf

47. Siddhant A, Lipton ZC (2018) Deep bayesian active learning for natu-
ral language processing: Results of a large-scale empirical study. ArXiv
abs/1808.05697

48. Tang K, Huang J, Zhang H (2020) Long-tailed classification by keeping the
good and removing the bad momentum causal effect. Advances in Neural
Information Processing Systems 33

49. Tartaglione E, Barbano CA, Berzovini C, Calandri M, Grangetto M (2020)
Unveiling covid-19 from chest x-ray with deep learning: a hurdles race with
small data. arXiv preprint arXiv:200405405

50. Tong S (2001) Active learning: theory and applications. PhD thesis, Stanford
University

51. Ucar F, Korkmaz D (2020) Covidiagnosis-net: Deep bayes-squeezenet
based diagnosis of the coronavirus disease 2019 (covid-19) from x-ray im-
ages. Medical Hypotheses 140:109761, DOI https://doi.org/10.1016/j.mehy.
2020.109761, URL http://www.sciencedirect.com/science/article/pii/

S0306987720307702

52. Wang L, Lin ZQ, Wong A (2020) Covid-net: A tailored deep convolutional
neural network design for detection of covid-19 cases from chest x-ray images.
Scientific Reports 10(1):1–12

53. Wilson AG, Hu Z, Salakhutdinov RR, Xing EP (2016) Stochastic variational
deep kernel learning. In: Advances in Neural Information Processing Systems,

http://www.sciencedirect.com/science/article/pii/S1568494620305184
http://www.sciencedirect.com/science/article/pii/S1568494620305184
http://www.sciencedirect.com/science/article/pii/S0010482520301621
http://www.sciencedirect.com/science/article/pii/S0010482520301621
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://www.sciencedirect.com/science/article/pii/S0306987720307702
http://www.sciencedirect.com/science/article/pii/S0306987720307702


14 Heng Hao et al.

pp 2586—-2594
54. Zhuang C, Zhai AL, Yamins D (2019) Local aggregation for unsupervised

learning of visual embeddings. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp 6002–6012


	1 Introduction
	2 Related Work on COVID-19 X-Ray Analysis
	3 Methodology
	4 Experimental Results
	5 Conclusion

