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Abstract

The development and authorization of COVID-19 vaccines has pro-
vided the clearest path forward to eliminate community spread hence end
the ongoing SARS-CoV-2 pandemic. However, the limited pace at which
the vaccine can be administered motivates the question, to what extent
must we continue to adhere to social intervention measures such as mask
wearing and social distancing? To address this question, we develop a
mathematical model of COVID-19 spread incorporating both vaccine dy-
namics and socio- epidemiological parameters. We use this model to study
two important measures of disease control and eradication, the effective
reproductive number Rt and the peak intensive care unit (ICU) caseload,
over three key parameters: social measure adherence, vaccination rate,
and vaccination coverage. Our results suggest that, due to the slow pace
of vaccine administration, social measures must be maintained by a large
proportion of the population until a sufficient proportion of the population
becomes vaccinated for the pandemic to be eradicated. By contrast, with
reduced adherence to social measures, hospital ICU cases will greatly ex-
ceed capacity, resulting in increased avoidable loss of life. These findings
highlight the complex interplays involved between vaccination and social
protective measures, and indicate the practical importance of continuing
with extent social measures while vaccines are scaled up to allow the de-
velopment of the herd immunity needed to end or control SARS-CoV-2
sustainably.

1 Introduction

The advent of COVID-19 vaccines and mass vaccinations of populations
have led to widespread public expectation that we may be able to end the
ongoing SARS-CoV-2 pandemic in some economically advanced countries
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by as early as the of beginning 2022 [1]. While the pace at which these vac-
cines have been developed and authorized by governments for population-
wide usage has been unprecedented [2] reflecting the desire to fast track
the ending or control of the pandemic given the socio-economic costs of
protracted non-pharmaceutical interventions (NPIs), such as cyclical lock-
downs and social distancing measures [3], it is also clear that several fea-
tures of the current vaccines and vaccination strategies for achieving this
goal remain unresolved [4, 5].

First, it is important to consider that vaccines serve two major pur-
poses: to protect the individual from contracting the disease and to stop
the transmission of community infection. While the initial vaccine trial
data for the 3 major vaccines approved for use thus far in developed
world settings, viz. Pfizer-Biontech, Moderna, and AstraZeneca-Oxford,
indicate that these could induce very high levels of protection (70-90%)
against symptomatic disease [6], more recent data with regard to the As-
traZeneca vaccine suggests that vaccination may also reduce community
transmission of the virus significantly [7]. These data suggest that both
disease outcomes and transmission could be significantly reduced in com-
munities as a result of mass deployments of these vaccines. A key factor,
however, is that in both cases current vaccines are not 100% protective.
Second, it is apparent that the number of vaccines initially available and
the logistical challenges connected with their delivery will hamper the
rapid vaccination of a population, which will prolong the time to eradi-
cating the disease through vaccination in populations [8]. An added chal-
lenge is the reduced effectiveness of these vaccines as currently formulated
against newly emerging virus variants [9].

A third important factor is to consider the epidemiological and social
contexts in which vaccinations will take place. This is important because
many populations undergoing vaccinations will have already experienced
one or more waves of COVID-19, as a result of which some level of natural
immunity to SARS-CoV-2 will likely to be in operation in these commu-
nities. Such pre-existing immunity could indicate that the vaccine cov-
erages to end the pandemic (reduce the prevailing effective reproduction
number, Rt to below 1 sustainably) need not be too high even if vac-
cine effectiveness is not perfect [10], increasing the prognosis for using the
current vaccines for ending the pandemic. On the other hand, these pop-
ulations are also currently experiencing various levels of NPIs [3]. Such
social mitigation or containment measures, while protecting the suscep-
tible fraction from infection will act also to depress the development of
natural immunity in the population. These outcomes suggest that there
may be complex interactions between the two interventions, a better un-
derstanding of which will be crucial for determining how best to optimally
deploy these tools for controlling or ending the pandemic. Further, inves-
tigating such interactions will also be important to fully understanding
the implications of relaxing these NPIs as vaccinations roll out [10, 11].

Here, we extend our existing data-driven socio-epidemiological SEIR-
based COVID-19 mathematical model [12] by incorporating imperfect vac-
cination dynamics in order to undertake a theoretical investigation of this
topic. To enhance realism we use the basic model calibrated to infection
data on the course of the pandemic in the Tampa Bay region, and use the
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resulting model to investigate the interplay between vaccination and social
protective measures for effective control or elimination of the pandemic.
In particular, we explore the dynamical implications of imperfect vaccine
effectiveness, vaccine rollout rates, and coverages of vaccination and social
measures on the eradication of the disease in the community, and the ef-
fects these will have for virus transmission and critical care requirements.
We also inspect the effect that the current vaccination roll out will have
on the extent to which a population may relax social measures to return
to normalcy.

2 Methods

2.1 Model formulation

Here we develop an extended SEIR model to assess population-level dis-
ease dynamics of COVID transmission. We consider a population of fixed
size that we divide into eleven interacting subpopulations: susceptible
without access to a vaccine (S), vaccinated susceptible (V ), unvaccinated
susceptible (with access to a vaccine) (X), exposed but not intectious (E),
asymptomatic infected (Ia), pre-symptomatic infected (Ip), mildly symp-
tomatic infected (Im), hospitalized infected (Ih), critical care infected (Ic),
recovered (R), and died (D). Since the population size is fixed, we can
impose the condition that S+X+V +E+Ia+Ip+Im+Ih+Ic+R+D = 1,
and each population can therefore be interpreted as a proportion of the
total population.

Our model is visualized as a diagram in Figure 1. Importantly, we
assume that asymptomatic, pre-symptomatic, and mildly symptomatic
individuals transmit the disease at the same rate β, and that these are
the only sources of transmission. The transmission rate is reduced due to
social measures (face masks, social distancing, self quarantine, etc) by a
factor of 1 − ac among all infectious individuals, where c is the efficacy
of social measures and a is the proportion of the population adhering to
social measures.

Susceptible 
(S)

Exposed 
(E)

Infectious –
Asymptomatic 

(IA)

Infectious –
Symptomatic 
(hospital) (IH)

Recovered 
(R)

Died (D)

σρ

σ(1- ρ)
Infectious –

Symptomatic 
(mild) (IM)

γA

(1- x1)γM

(1-x2)γH

x3m

Infectious –
Symptomatic 
(ICU/Vent) (IC)

x2δ3x1δ2

(1-x3)γC

Infectious –
Presymptomatic  

(IP)

δ1

Vaccinated
(V)

Unvaccinated 
(X)

µ(1-ø)

µø
(1-d)ß

(1-d)(1-ξ)ß

Figure 1: Model diagram

The vaccine becomes available to the population at rate µ, and individ-
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uals can choose whether or not to get the vaccine. Specifically, proportion
φ of the susceptible population S enters the vaccinated population V at
rate µ, while proportion 1 − φ of the susceptible population enters the
unvaccinated class X at the same rate. This parameter φ allows us to
analyze the effects of vaccine coverage, specifically as a consequence of
individuals who are unwilling to receive the vaccine [13]. Vaccinated in-
dividuals are infected at a rate reduced by 1 − ξ, where ξ is the efficacy
of the vaccine, while the unvaccinated class X has the same dynamics as
the susceptible without access to a vaccination class S.

With these assumptions, our model is given by the following system
of eleven ordinary differential equations:

S′ = −(1 − d)βS(Ia + Ip + Im) − µS

X ′ = µ(1 − φ)S − (1 − d)βX(Ia + Ip + Im)

V ′ = µφ− (1 − ξ)(1 − d)βV (Ia + Ip + Im)

E′ = (1 − d)β(Ia + Ip + Im) [S +X + (1 − ξ)V ] − σE

I ′a = σρE − γaIa

I ′p = σ(1 − ρ)E − δ1Ip

I ′m = δ1Ip − x1δ2Im − (1 − x1)γmIm

I ′h = x1δ2Im − x2δ3Ih − (1 − x2)γhIh

I ′c = x2δ3Ih − (1 − x3)γcIc − x3mIc

R′ = γaIa + (1 − x1)γmIm + (1 − x2)γhIh + (1 − x3)γcIc

D′ = x3mIc

(1)

The state variables and parameters are defined in Tables 1 and 2, re-
spectively. The parameters are estimated by the methods described in
Appendix 2.2.

State Variable

S Susceptible population without access to a vaccine
X Susceptible, unvaccinated population with access to a vaccine
V Susceptible, vaccinated population
E Exposed population (pre-infectious)
Ia Asymptomatic, infectious population
Ip Pre-symptomatic, infectious population
Im Symptomatic, infectious population without need of hospitalization
Ih Hospitalized infected population
Ic Infected population in intensive care unit (ICU)
R Recovered population
D Deceased population

Table 1: State variables. Each variable should be interpreted as a proportion
of the total population.
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2.2 Parameter estimation

We used a Monte Carlo-based Bayesian Melding approach to parameterize
the base model using case notification, death, and mobility data reported
for the Tampa Bay region for the period between March 10th and August
24th 2020. (details of methods provided in Newcomb et al. 2020). Briefly,
all social and epidemiological model parameters that could not be fixed
at initiation were sequentially updated using 10-day blocks or segments
of data between the above estimated period from their initial prior values
using this procedure, and the final model thus estimated was used for the
simulations carried out in this paper. Confirmed case data for the four
counties comprising Tampa Bay, viz. Hillsborough, Pasco, Pinelles and
Polk, were obtained from the Johns Hopkins University Coronavirus Re-
source Center (Dong et al. 2020). Mobility data serve as an estimate for
population mixing and the fraction of the population under restricted
movement in the counties concerned were obtained from the location
data firm, Unacast (https://www.unacast.com/covid19/social-distancing-
scoreboard).

Parameter Value

β Transmission rate 0.76
a Proportion of population adhering to social measures varies
c Reduction in transmission due to social measures 0.85
φ Vaccine coverage varies
ξ Vaccine efficacy 0.9
µ Rate of vaccination 0.02
σ Rate of symptom onset among exposed 0.32
ρ Proportion of expose who never develop symptoms 0.37
γa Rate of recovery among Ia 0.23
γm Rate of recovery among Im 0.23
γh Rate of recovery among Ih 0.22
γc Rate of recovery among Ic 0.23
δ1 Rate of progressing from Ip to Im 0.69
δ2 Rate of progressing from Im to Ih 0.15
δ3 Rate of progressing from Ih to Ic 0.55
x1 Proportion of mild cases that progress to hospital 0.18
x2 Proportion of hospital cases that process to ICU 0.25
x3 Proportion of ICU cases that die 0.51
m Mortality rate among ICU patients 0.37

Table 2: Parameters. The value for each parameter is used throughout this
work unless stated otherwise. All rate parameters are measured in units of
(day)−1.
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2.3 Effective reproduction number

The effective reproductive number Rt quantifies the average number of
secondary infections caused by each new infection. We can calculate Rt

using the next generation matrix method developed in [14]. The next-
generation matrices for system (1) are

F =


0 λ λ λ
0 0 0 0
0 0 0 0
0 0 0 0


and

V =


−σ 0 0 0
−ρσ γA 0 0

−(1 − p)σ 0 δ1 0
0 0 −δ1 x1δ1 + (1 − x1)γM

 ,
where

λ = (1 − ac)β (S +X + (1 − ξ)V )

is the force of infection.
Then the effective reproduction number Rt is exactly the spectral ra-

dius of FV −1:

Rt = λ

(
1 − ρ

δ1
+

1 − ρ

(1 − x1)γM + x1δ2
+

ρ

γA

)
. (2)

We use this formula to assess the viability of vaccination programs on
disease eradication in the following sections.

3 Results

3.1 Disease control dynamics

We begin by determining the extent to which a population can relax so-
cial measures once a vaccine becomes available and still control the virus.
Here, we use simulations of the number of individuals requiring intensive
care as a measure of control, and thus consequently, we consider the rela-
tionship between vaccine coverage φ and social measure compliance a on
ICU hospitalization to address this question. Figure 2 shows ICU hospi-
talizations over time under various vaccine coverages and social measures.
The red curve shows ICU cases without any vaccine or social measures,
serving as a baseline for comparison. The black curve shows these cases
with some vaccination and no social measures; the green curve shows ICU
cases with strong social measures and no vaccine; the blue curve shows
ICU cases with both vaccine coverage and social measures. Of course,
greater vaccine coverage and stronger social measures result in fewer cases;
however, social measures reduce the incidence of cases requiring intensive
care much more than vaccine coverage. This is due to the slow vaccination
rate µ, as we show in Section 3.3.
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Figure 2: ICU cases under various vaccination coverages and social measures.
The vaccination rate and efficacy are µ = 0.02 and ξ = 0.94, respectively.
The right panel shows the same blue and green curves from the left panel, but
zoomed in. All simulations performed using XPPAUT [15].

3.2 Conditions for eradication

We use the effective reproduction number Rt to study strategies by which
the virus can be eradicated. Importantly, Rt = Rt(t) is a function of time
due to its dependence on S, X, and V : as the susceptible populations
decrease, so does Rt. We consider the temporal dynamics of Rt in the
following section. Here, we consider the idealized case in which proportion
φ of the population is instantaneously vaccinated, V = φSr and X = (1−
φ)Sr, where Sr is a new parameter representing the remaining susceptible
proportion of the population at the time the vaccine is administered (that
is, 1 − Sr is the proportion of the population who are currently infected,
recovered, or deceased). In this case, λ can be written

λ = (1 − ac)βSr (1 − ξφ) ,

and so

Rt = (1 − ac)βSr (1 − ξφ)

(
1 − ρ

δ1
+

1 − ρ

(1 − x1)γM + x1δ2
+

ρ

γA

)
. (3)

The ideal goal in eradicating the disease is to permanently reduce the
effective reproductive number below the threshold Rt = 1. Figure 3 shows
curves in parameter space satisfying Rt = 1 with ξ = 0.94. On the left,
curves are plotted over vaccine coverage φ and social measure compliance
a and remaining susceptible population Sr = 1 (red curve) and Sr = 0.8
(blue curve). In order to achieve Rt < 1, (φ, a) pairs must lie above the
curve. Note that disease eradication without social measures (a = 0)
would require more than 80% of the population to receive a vaccine that
is 94% effective in a naive population (Sr = 1); a population in which 20%
have already been exposed would require approximately 75% to receive
a vaccine in order to eradicate the disease without social measures. On
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the right, we show curves defined by Rt = 1 over vaccine coverage φ and
remaining susceptible population Sr for varied social measures. For each
fixed value of a, (φ, Sr) pairs must be below the curve to drive Rt < 1.
Without social measures in place (red curve), approximately 75% of the
population would have to be exposed to the virus before the disease is
eradicated without a vaccine. In general, the larger the remaining suscep-
tible population, the higher the vaccination coverage required to eradicate
the disease. Importantly, the vaccine coverage threshold necessary to drive
Rt < 1 decreases with increased social measures.
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Rt<1

Rt>1
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Sr=0.8
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S r
a=0
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Figure 3: Vaccination and social measure thresholds to achieve Rt < 1. Each
curve defines Rt = 1 over varied parameters with ξ = 0.94. (Left) Rt = 1
plotted over vaccine coverage φ and social measure compliance a. The region
above each curve represents parameter pairs for which Rt < 1. (Right) Rt = 1
plotted over vaccine coverage φ and remaining susceptible population Sr with
no, medium, and high proportions of social measure compliance. The region
below each curve represents parameter pairs for which Rt < 1.

3.3 Time to eradication: interactions between vac-
cination coverage and rate and social measures

Vaccine rollout will not be instantaneous; it will likely take months to
vaccinate a majority of the population. We therefore must consider the
simultaneous effects of infection dynamics and slow vaccination rates on
disease eradication, which requires considering the effective reproduction
number as a function of time:

Rt(t) = (1−ac)β (S(t) +X(t) + (1 − ξ)V (t))

(
1 − ρ

δ1
+

1 − ρ

(1 − x1)γM + x1δ2
+

ρ

γA

)
.

(4)
As the three susceptible populations S, X, and V change over time via
infection and vaccination dynamics, Rt(t) strictly decreases. We denote
the time at which Rt(t) decreases below 1 by th; that is, Rt(th) = 1. Time
th marks the beginning of the end of community spread, and we therefore
refer to th as the time to eradication. The left panel of Figure 4 shows th as
a function of vaccination coverage φ for varied social measure compliance
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a with vaccination rate µ = 0.02. The time to eradication remains nearly
constant over all φ for low social measure compliance (a = 0, 0.5; red and
blue curves): this is due to the slow vaccination rate µ, and the compa-
rably fast infection rate due to low social measure compliance. That is,
for sufficiently small a, the virus spreads quickly through the population,
infecting the susceptible population S much more quickly than the suscep-
tibles become vaccinated. Thus, eradication is achieved primarily through
infection, rather than through vaccination. For high social measure com-
pliance (a = 0.8; black curve), th is large for small φ. This is because, for
large a, the infection dynamics are slowed down, but because φ is small,
the vaccination rate is also slow. The two mechanisms by which erad-
ication is achieved (infection and vaccination) are therefore both slow,
and so th is large. As φ increases, however, th decreases dramatically.
The effective reproduction number Rt decreases as a increases, and thus
achieving Rt = 1 requires less vaccination and infection for large a. Thus,
despite the slow vaccination rate µ, there is a critical φ value past which
the susceptible population becomes vaccination quickly enough so that
Rt decreases below 1 due primarily to vaccine administration. In other
words, the vaccination timescale overtakes the infection rate timescale for
sufficiently large φ.

The right panel of Figure 4 shows the maximum ICU case load (that
is, the peaks of the curves in Figure 2) as a function of vaccination cover-
age for varied a. Unsurprisingly, as φ increases, the maximum ICU load
decreases for each a. However, the peak ICU load remains comparatively
high for a = 0 and a = 0.5 (red and blue curves, respectively) compared
with a = 0.8 (black curve). For this latter case, the peak ICU load de-
creases dramatically from φ = 0 until around φ = 0.4, then remains low
for all larger φ. ICU capacity in most states is between 10−4 and 3×10−4:
peak ICU cases only remain below this threshold for high social measure
compliance and vaccination coverage.

Figure 4 suggests that sustained social measures help to eradicate the
disease more efficiently than vaccination programs. This at least in part
due to a relatively slow vaccination rate: µ = 0.02. We now investigate
the influence of vaccination rate µ on the time to eradication and on peak
ICU cases. The left panel of Figure 5 shows the time until the disease is
eradicated, th, as a function of vaccination rate, µ, with φ = 0.6. Without
or with sufficiently low social measure compliance (a = 0 and a = 0.5;
red and blue curves), the time until eradication increases with µ. For
both cases, vaccination coverage φ is too low to to eradicate the disease
in a completely susceptible population (Figure 3), and consequently a
non-negligible percentage of the population must become infected before
Rt < 1. As µ increases, the infection dynamics slow down, causing the
time it takes for Rt to drop below 1 to increase. For high social mea-
sure compliance (a = 0.8; black curve), the time to eradication decreases
with µ. When a is sufficiently large, φ = 0.6 is large enough to eradi-
cate the disease through vaccination alone (Figure 3), and increasing the
vaccination rate therefore reduces the time to eradication. Thus, rapid
eradication of the virus is only achievable with sustained, widely obeyed
social measures.

The right panel of Figure 5 shows the peak ICU load over µ. Naturally,
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Figure 4: Controlling the pandemic with a vaccine depends on broad coverage
and sustained social measure compliance. (Left) Time until Rt < 1 over φ.
(Right) Peak ICU cases over φ (log scale). In both panels, µ = 0.02, and the
red curve corresponds to no social measures (a = 0), the blue curve corresponds
to moderate social measure compliance (a = 0.5), and and the black curve
corresponds to high compliance (a = 0.8). Details on how these figures were
made are in Appendix A.

the faster the vaccine is administered to the population, the lower the peak
ICU case load will be. However, peak ICU load only remains below typical
ICU capacity (1−3×10−4) for small µ when social measure compliance is
high (black curve). This again suggests that social measures must remain
in place throughout the vaccination program in order to avoid hospital
strain and associated loss of life.
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Figure 5: Controlling the pandemic with a vaccine depends on fast dispersal
and sustained social measure compliance. (Left) Time until Rt < 1 over µ.
(Right) Peak ICU cases over µ (log scale). In both panels, φ = 0.6, and the
red curve corresponds to no social measures (a = 0), the blue curve corresponds
to moderate social measure compliance (a = 0.5), and and the black curve
corresponds to high compliance (a = 0.8). Details on how these figures were
made are in Appendix A.
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4 Discussion and Conclusion

We introduce an extended SEIR socio-epidemiological model incorporat-
ing vaccination dynamics to evaluate the interactions between vaccination
and social measures for controlling or ending the spread of COVID-19.
Following standard analytical techniques [14], we derived an explicit form
for the effective reproduction number Rt. This value is of central concern
to controlling the pandemic: through a combination of natural infection,
social measures, and vaccination administration, we must drive Rt < 1
in order to eradicate the disease. Our analysis therefore focused on the
influence of social measures and vaccination rates on the time until the
disease is the eradicated, but also considered hospital demand as a func-
tion of these interventions. Importantly, we show that while eliminating
social measures entirely might help eradicate the disease faster, the hospi-
tal demand, and therefore death toll, are reduced dramatically with even
partial adherence to social intervention strategies.

Our analysis focused on three parameters: the proportion of the pop-
ulation willing to receive a vaccine φ, the proportion of the population
willing to adhere to social measures a, and the rate at which vaccines
are administered to the population µ. Figures 3-5 summarize the major
results arising from these interactions, and suggest that, with low vacci-
nation rate µ, sustained social measures become increasingly important
to keep the hospitalization rates low, even if a large proportion of the
population are willing to receive the vaccine (that is; even if φ is large).
This finding is consistent with previous studies under varied assumptions
[10, 16, 17].

The interplay between social measures and vaccine administration is
perhaps most complicated when considering the time until eradication.
When the proportion of the population who adhere to social measures is
small, the time to eradication is relatively fast (Figures 4 and 5, left pan-
els). This is because, without social measures, the virus spreads quickly,
thereby increasing the number of individuals with infection-conferred im-
munity (or who die due to the disease). On the other hand, when social
measure adherence is high, the time to eradication is large for low vacci-
nation coverage and rate, but decreases with both parameters. For low
vaccination coverage or rate, population-level immunity is primarily be-
ing conferred via infection, and infection rates are low due to high levels
of social measures. As vaccination coverage or rate increases, however,
the rate at which individuals become vaccinated begins to outpace the
rate at which individuals become infected, and the time until eradication
becomes small. Importantly, only in the case of high social measure com-
pliance and high vaccination rate or coverage do the number of ICU cases
remain manageable (Figures 4 and 5, right panels).

We developed our model under a set of assumptions that captured im-
portant features of COVID-19 transmission. However, we omitted one or
more realities of COVID-19 dynamics that could quantitatively influence
our results. First, we did not include any age structure to our model.
It is well known that mortality rates due to COVID-19 are dispropor-
tionately high among elderly populations. By including age structure, on
can study targeted vaccination programs in which the elderly are given
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earlier access to the vaccine. Second, we include only a single vaccine in
our model, while many with varying efficacies are likely to enter the mar-
ket before the pandemic is over [18, 19, 20]. While incorporating these
features into our model would surely result in quantitative differences,
the qualitative predictions of our current model would likely remain un-
changed; that is, social measures must remain in place throughout the
vaccination campaign in order to mitigate hospital and mortality rates.
An important consideration for future work is the degree to which vari-
ants of the SARS-CoV-2 will increase community spread [21], which can
be incorporated into our model as a second set of infected classes.

Notwithstanding these limitations, this work highlights several major
implications for the use of vaccination for either controlling or eradicat-
ing the current pandemic. The first is that slow vaccination roll out rates
mean that continuing with currently applied social measures is imperative
to containing the clinical outcomes (demand for ICU care and deaths) of
the pandemic for a population. Only a ramped up vaccination rate will al-
low easing of these social measures. The second important finding arising
from the present results is that while social measures under the current
slow rate of vaccinations will be crucial to prevent hospitalizations and the
death toll from the virus, this intervention will also delay the development
of herd immunity in the population. However, two critical results here are
that at high levels of social measures, the numbers of individual that are
required to be vaccinated to achieve Rt < 1 can be significantly small,
and that there might be a vaccination coverage level past which this can
be achieved. We term this as “herd immunity due to social measures”,
which will be much lower than the corresponding herd immunity in the
absence of social measures. Note, however, that the imposition of social
measures will keep a large fraction of the population continuing to be
susceptible, and while achieving the lower level of herd immunity through
vaccination under these measures will allow interruption of transmission,
any relaxation of the latter in the presence of infected individuals, or if
infected individuals were to arrive into an area lifting such restrictions,
would seed resurgences of infection. This conclusion suggests that only
by ramping up vaccinations to achieve natural herd immunity (i.e., the
higher level of herd immunity that will be required to prevent transmis-
sion in the absence of any social containment measures) will the pandemic
be fully suppressed over the longer-term.

Data accessibility. All parameter data and code can be found at
https://github.com/EdwinMichaelLab/COVID-Vaccination-Paper.

Appendix

A Time Rt = 1 and Peak ICU cases

To determine the time until Rt < 1, and, separately, to determine the
peak ICU cases as a function of φ (Figure 4) and µ (Figure 5), we consider
system (1) extended to include an auxiliary variable τ :
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S′ = −(1 − d)βS(Ia + Ip + Im) − µS

X ′ = µ(1 − φ)S − (1 − d)βX(Ia + Ip + Im)

V ′ = µφ− (1 − ξ)(1 − d)βV (Ia + Ip + Im)

E′ = (1 − d)β(Ia + Ip + Im) [S +X + (1 − ξ)V ] − σE

I ′a = σρE − γaIa

I ′p = σ(1 − ρ)E − δ1Ip

I ′m = δ1Ip − x1δ2Im − (1 − x1)γmIm

I ′h = x1δ2Im − x2δ3Ih − (1 − x2)γhIh

I ′c = x2δ3Ih − (1 − x3)γcIc − x3mIc

R′ = γaIa + (1 − x1)γmIm + (1 − x2)γhIh + (1 − x3)γcIc

D′ = x3mIc

τ ′ = 0.

(5)

This additional variable provides an additional degree of freedom allow-
ing us to solve the system as a boundary value problem (BVP) with a
terminal, parameter-dependent boundary condition (BC). In particular,
the variable τ in solutions of system (5) with BCs

S(0) = S0

E(0) = 1 − S0

Rt(τ) = 1

X(0) = V (0) = Ia(0) = Ip(0) = Im(0) = Ih(0) = Ic(0) = R(0) = D(0) = 0,
(6)

whereRt(t) is defined in equation (4), represents the time at whichRt(t) =
1. Since Rt(t) is strictly decreasing over time, Rt(t) < 1 for all t > τ , and
τ is therefore the time at which the disease is eradicated.

Next, consider system (5) with BCs

S(0) = S0

E(0) = 1 − S0

0 = x2δ3Ih(τ) − (1 − x3)γcIc(τ) − x3mIc(τ)

X(0) = V (0) = Ia(0) = Ip(0) = Im(0) = Ih(0) = Ic(0) = R(0) = D(0) = 0.
(7)

The third boundary condition is equivalent to I ′c(τ) = 0 and therefore
requires Ic to be at a local maximum at time τ . The variable τ is therefore
the time at which Ic reaches its maximum [22]. Evaluating Ic at t = τ
for any solution of BVP (5)-(7) provides the peak ICU cases for the fixed
parameter set.

Using AUTO [15], we can numerically continue solutions to system (5)
with BCs (6) or (7) over any system parameter; doing so over φ and µ
produced the Figures 4 and 5, respectively. In both figures, S0 = 0.99.
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