
ar
X

iv
:2

10
3.

07
66

9v
1 

 [
cs

.C
R

] 
 1

3 
M

ar
 2

02
1

Privacy-Preserving Infection Exposure Notification

without Trust in Third Parties

Kenji Saito, Mitsuru Iwamura ∗

Abstract

In response to the COVID-19 pandemic, Bluetooth-based contact
tracing has been deployed in many countries with the help of the devel-
opers of smartphone operating systems that provide APIs for privacy-
preserving exposure notification. However, it has been assumed by the
design that the OS developers, smartphone vendors, or governments
will not violate people’s privacy.

We propose a privacy-preserving exposure notification under situ-
ations where none of the middle entities can be trusted. We believe
that it can be achieved with small changes to the existing mechanism:
random numbers are generated on the application side instead of the
OS, and the positive test results are reported to a public ledger (e.g.
blockchain) rather than to a government server, with endorsements
from the medical institutes with blind signatures. We also discuss how
to incentivize the peer-to-peer maintenance of the public ledger if it
should be newly built.

We show that the level of verifiability is much higher with our pro-
posed design if a consumer group were to verify the privacy protections
of the deployed systems.

We believe that this will allow for safer contact tracing, and con-
tribute to healthier lifestyles for citizens who may want to or have to
go out under pandemic situations.

Keywords: Contact tracing, Exposure notification, Privacy,
Blind signature, Blockchain

1 Introduction

1.1 Motivation

Contact tracing is a technique traditionally used by public health authorities
to combat infectious diseases, which until now has relied primarily on manual
methods. It is based on the concept of ascertaining others with whom the

∗The authors are with Graduate School of Business and Finance, Waseda University,
email: ks91@aoni.waseda.jp

1

http://arxiv.org/abs/2103.07669v1


infected person has come into contact while there is a possibility of spreading
the infection to others. The possibility of close contact with an infected
person is notified to the person with whom the contact has been made,
so that appropriate safety measures can be taken, such as self-quarantine
and/or testing.

During the ongoing pandemic of COVID-19, consideration was given to
applying digital communication technology to support and massively scale
these efforts. By embedding proximity-detection functionality into mobile
devices, it is considered possible to identify past close contacts of people who
later test positive, and send them notifications with instructions on next
steps. Health authorities can use this information to control the spread of
the disease.

With this in mind, Bluetooth-based exposure notification (contact trac-
ing) has been proposed. Applications have been developed in many coun-
tries for use on smartphones with the help of the developers of smartphone
operating systems, namely Google and Apple, who provide APIs for privacy-
presereving exposure notification. However, in the designs of these appli-
cations, it has been assumed that the OS developers, smartphone vendors,
or governments will not violate people’s privatey. We believe that better
privacy protection without relying on the integrity of these trusted third
parties is needed.

1.2 Contributions

Contributions of this work are as follows:

1. We identified threats that intermediaries could pose, alone or in col-
lusion, with respect to privacy protection of the users in the existing
design of the OS-assisted exposure notification.

2. We proposed a design to mitigate the threats by minimal changes to
the existing design, along with an incentive design for the operation
of the system in case a verifiable public ledger should be newly built
independently of the government authority.

3. We showed that the level of verifiability is much higher with our pro-
posed design if a consumer group were to verify the privacy protections
of the deployed systems.

1.3 Organization of This Article

The rest of this articile is organized as follows: section 2 gives brief back-
ground information to better understand our proposal: exposure notifica-
tion design by Google and Apple, Merkle accumulator, blind signature, and
blockchain. Those readers who are familiar with the mentioned technology

2



can move directly to section 3, which gives the problem statement and enu-
merates threats. Section 4 describes our proposal to change the existing
design. Section 5 compares our proposed design with the original one with
respect to verifiability of privacy protection. Section 6 explains some related
work. Finally, section 7 gives conclusive remarks.

2 Background

2.1 Exposure Notification Design by Google and Apple

Google and Apple provide exposure notification as part of their OS services[3],
as roughly illustrated in Figure 1. This design is often referred to as GAEN
(Google Apple Exposure Notification) in literatures. We follow the conven-
tion hereafter. The cryptographic specification[2], Bluetooth specification[1]
and the programming framework[10]1 of GAEN have been published.

notification server

smart phone

smart phone

government authority

A’s

B’s

temporary exposure

key (TEK)

rolling proximity ID key

base time i

time

random number

generated once a day

timed by

10-minute

interval

Bluetooth

MAC address

changes often

Uploading requires a

unique code issued by the

government authority

can upload <TEK, base time> pairs

from past 14 days

if tested positive

download reported <TEK, base time> pairs

once a day or so

If matched, was

probably in close

contact with a

reporter

one-way function

shared-key

encryption

can decrypt

can calculate

144 of them

send via Bluetooth

collected pairs from

past 14 days are stored

key

key
shared-key

encryption

rolling proximity IDencrypted meta-data

rolling proximity IDencrypted meta-data

rolling proximity ID

temporary exposure

key (TEK) base time imeta-data

timed by

10-minute

interval

controlled by the user

and app

controlled by app

notify

app

app

part of OS services

- protocol version

- transmit power level

128 bit

128 bit

128 bit

128 bit

128 bit

32 bit

32 bit

32 bit

32 bit

32 bit

128 bit

user

A

user

B

metadata

tested

positive

* The application is developed by the government.

Figure 1: Overview of OS-assisted exposure notification.

1This reference is for Google Android API.

3



In GAEN, the time is numbered in 10-minute intervals, starting at
00:00:00 UTC on January 1, 1970 (Unix epoch).

The device generates one random temporary exposure key (TEK) (128
bits) every 24 hours. It is valid for 144 time units (24 hours) starting from
time i. The device stores up to 14 TEKs (for two weeks) with their respective
starting time i.

The device generates the rolling proximity ID key (128 bits) from the
TEK of the day using a one-way function. Along with the timing when the
MAC address of Bluetooth LE is changed, a rolling proximity ID (128bit)
is generated by encryption from the rolling proximity ID key and the time,
which is sent by Bluetooth communication as a beacon. Other smartphones
listen to these beacons, storing them upon receiving them, and broadcast
their own beacons as well.

The system can also attach encrypted metadata to the beacon, such as
protocol version and transmit power level, which can be decrypted with (the
key generated from) the TEK of the day.

The device owned by a person who tests positive and reports voluntarily
sends, for example, the TEKs for the past 14 days and their starting time i

to the notification server.
All users will periodically download those reported data (e.g. once a

day). The user’s device can recalculate the rolling proximity ID from the
TEK and i. One TEK can create 144 rolling proximity IDs. If the same
rolling proximity ID obtained by the calculation is stored on your device,
then you have a high probability that you were in close contact.

If the device has received the encrypted metadata along with the rolling
proximity ID, it can decrypt the data using the TEK, although there is no
guarantee that the information is correct. This means that we must also
consider the existence of other applications and/or malware that perform
the same Bluetooth communication.

In the designs of these applications, it has been assumed that the OS
developers, smartphone vendors, or governments will not violate people’s
privatey.

2.2 Merkle Accumulator

A Merkle tree[17] is a hash tree structure based on a cryptographic hash
function that produces cryptographic digests. Such a tree allows represen-
tation of multiple elements with a single value, and is used for proof of
existence of elements while obscuring others, as illustrated in Figure 2.

A Merkle accumulator is a Merkle tree to which elements can be added
incrementally, to accumulate evidences of records.

In our work, we use a Merkle accumulator to record with verifiable evi-
dences the reports from people tested positive.

4



M
e

rk
le

 tre
e

Merkle root

safely store

++ ... concatenation

copy

record 1 record 2 record 3 record 4 record 5

digest

digest

digest digest digest digest digest

digest

digest digestdigest digest

digest

copy

++

++

++

++

++ ++

* In order to confirm the existence of record 3, see if the same Merkle root as
safely stored can be calculated from the provided partial tree (Merkle proof)
shown in gray.

Figure 2: Merkle tree and Merkle proof.

2.3 Blind Signature

Blind signature[6] is a technique for digitally signing hidden data as if it
were signed blindfolded, as illustrated in Figure 3. It was developed to
enable anonymous electronic payments.

In our work, we apply blind signatures to reports from people tested
positive, signed by the medical institute that performed the test.

2.4 Blockchain

Blockchain is a structure introduced for realization of Bitcoin[18], a digital
cash system. It allows for tamper-evident storage verifiable by the pub-
lic so that it can provide verifiability of digital signatures in the past[21]
that is otherwise difficult because of possible compromise of private keys or
signature algorithms, or expiration of public key certificates.

As Figure 4 shows, each block contains the cryptographic digest of the
previous block. Such a digest must meet a certain criterion; it needs to be
less than or equal to the pre-adjusted and agreed target stored in or calcu-
lated from the block. Since the digest is calculated by a one-way function
whose outputs are evenly distributed, no one can intentionally configure a
block to satisfy the criterion. Instead, they need to partake repetitive trials
to change the values of some nonce in the block they are creating until they
get a right digest.

The necessity of repetitive trials functions as a proof-of-work mechanism

5



SignerReporter

c = f(m)

sig(c) = sig(f(m))

c

sig(c)sig(m) = sig(f(m))

blinding factor

* The reporter wants to have message m signed by the signer without revealing
m. They first wrap m with blinding factor f , and send it to the signer for
signing. After receiving the signature, they remove f from it to obtain the
signature for m verifiable with the signer’s public key.

Figure 3: Blind signature.

Transactions not found in the agreed chain

are extracted, and eventually get included.

Creator of a block in the correct chain

is rewarded with newly minted coins.

block n

transactions

block n+1 block n+2 block n+3

block n+1 block n+2

digest digest digest digest

digest digest

……

digest ≦ target

Everyone agrees

on the chain with

the highest cost

of proof of work.

Figure 4: Blockchain based on proof of work.

intended to be a protection against falsification. A transaction itself cannot
be falsified unless digital signatures are compromised. But it is conceivable
to remove some transactions from a past block or to add fabricated trans-
actions that did not exist at the time to it. If one tries so, the digest of the
block is changed and is typically greater than the target. Then they would
have to retry the proof of work for the block. This changes the digest stored
in the next block, which in turn means that the digest of the next block is
also changed and is typically greater than the target, and so on. In short,
ones with a malicious intention would have to redo the proof of work from
where they want to change, and outdo the ongoing process of adding blocks
eventually to make the change valid, which has generally been considered
highly difficult.

Such proof of work limits the number of proposed blocks at one time.
But there still is a possibility of multiple participants each proposing a new
block at roughly the same time, which may be accepted by different sets

6



of participants. Then the chain may have multiple ends that are extended
independently from one another, resulting in a fork of the blockchain with
multiple (and possibly contradicting) histories of blocks. If this happens,
the branch that is the most difficult to produce (or rewrite) is chosen by all
participants, which is the branch with the most accumulated proof of work.
This mechanism, called Nakamoto consensus, tries to enforce that the most
difficult chain branch to falsify is chosen as the single correct history2.

Ethereum[5] is a blockchain-based application platform to assure au-
thenticity of program codes (smart contracts), their execution logs and the
resulted states.

Both Bitcoin and Ethereum are based on proof of work, which is pro-
tected by the high power costs associated with it, but these costs are known
to balance in the long run with the market value of the respective native cur-
rencies earned through block creation[13]. In other words, these blockchains
are protected by the high market value of their respective cryptocurrencies.

In order to avoid the environmentally burdensome power costs of proof
of work, recent blockchains such as Ethereum 2.0[9] and Polkadot[27] have
adopted the idea of proof of stake, in which legitimate history is determined
by weighted voting with a deposit of native currency. However, then again,
the high market values of the respective native currencies are still the major
factors that keep these blockchains safe.

Both Ethereum 2.0 and Polkadot allow multiple private ledger applica-
tions to be anchored to their central blockchains in the form of shards and
parachains, respectively.

In our work, we store Merkle roots of reports in blockchain.

3 Problem

This work proposes a privacy-preserving exposure notification mechanism
that tolerates situations where none of the middle entities can be trusted
not to violate people’s privacy. The solution must mitigate the following
threats to privacy of the users that are present in GAEN, where private
data denotes that of the phone user, such as the phone number, e-mail
address, physical location, real name, etc.

1. OS developer and/or smartphone vendor alone can :

(a) encode private data or a marker in a TEK.

(b) send an arbitrary beacon containing private data or a marker.

(c) encrypt private data or a marker as the associated metadata.

2For imperfection of the design of Nakamoto consensus, readers are referred to a past
work[23] by the first author of this paper.

7



(d) collect identities of the close contacts with the user associated
with such private data or a marker.

(e) notify exposures falsely to any specific users to stop or slow down
their social activities.

2. The government alone can :

(a) collect identities of the reporters.

(b) stop or slow down social activities of political enemies, for exam-
ple, by bringing agents close to them, and having the agents later
report falsely.

3. OS developer and/or smartphone vendor and the government can col-
lude to :

(a) make fake reports from specific users, and have them downloaded
by general public, to stop or slow down social activities of the
close contacts with the users.

Threats 1a, 1b and 1c are possible because generation of TEKs, deriving
rolling proximity IDs from them, and metadata are processed within the
OS services, and the OS can send arbitrary beacons anyway, which is not
detectable as applications do not know the values of TEKs until the users
decide to report. Threats 1d and 1e are possible because what is performed
as a result of receiving a beacon is hidden within the OS services.

Threat 2a is possible because it is the government authority that issues
the unique code to the person tested positive, and it can be designed to
map the code to the person. Threat 2b is possible because it is the gov-
ernment authority that processes the reports, and they can allow agents to
bypass the normal reporting procedures to send their TEKs to the server, as
the application is developed by the government, possibly with some hidden
features.

Moreover, threat 3a is possible because the government authority can
obtain the TEKs of a specific person from OS developers or phone vendors3,
and store them on the server.

4 Design

4.1 Basic Design

We believe that the above threats can be mitigated with the following three
small changes to the existing mechanism, as illustrated in Figure 5:

3According to Google API, applications cannot obtain TEKs without displaying a
dialog that requests consent from the user. Therefore the government needs cooperations
from the OS developer or phone vendor if they want to obtain the TEKs without letting
the user know it.

8



e.g. Ethereum blockchain

… …

smart phone

smart phone

A’s

B’s

temporary exposure

key (TEK)

rolling proximity ID key

base time i

time

timed by

10-minute

interval

Bluetooth

MAC address

changes often

can write <TEK, base time> pairs

from past 14 days

if tested positive

read reported <TEK, base time> pairs

once a day or so

If matched, was

probably in close

contact with a

reporter

one-way function

shared-key

encryption

can decrypt

can calculate

144 of them

send via Bluetooth

collected pairs from

past 14 days are stored

key

key
shared-key

encryption

rolling proximity IDencrypted meta-data

rolling proximity IDencrypted meta-data

rolling proximity ID

temporary exposure

key (TEK) base time imeta-data

timed by

10-minute

interval

controlled by the user

and app

controlled by app

notify

app

Merkle accumulator-

based server

part of OS services

- protocol version

- transmit power level

128 bit

128 bit

128 bit

128 bit

128 bit

32 bit

32 bit

32 bit

32 bit

32 bit

128 bit

user

A

user

B

metadata

tested

positive

app

provide as a

random number

verifiable on public ledger

instead of relying on the

government

valid report must

have a blind signature

from medical institute

that did the test

app is not necessarily

government-oriented,

but should be

open source

A

B

C

D E

F

Figure 5: Overview of exposure notification without trust in third parties.

Furthermore, the applications should be open source so that they can be
built and installed on smartphones by the phone users if they want.

4.1.1 Generation of TEKs at the Application Side

We change the distribution of the functionality so that TEKs are generated
as random numbers on the application side instead of within the OS services.

4.1.2 Endorsement by Medical Institutes with Blind Signatures

The positive test results must be reported with endorsements (blind sig-
natures) from the medical institutes who did the test. In order to avoid
correlation, each 〈TEK, base time〉 pair is blind-signed independently. The
uploaded report takes the form of 〈TEK, base time, signature, MIID〉 for
each TEK, where MIID is the medical institute ID. The public key certificate
used for verifying the signature can be retrieved with MIID as the search
key from a public database.

Typically, when a person is informed of a positive test result at a testing
facility, they are also informed of a short-term URL via a QR code, for

9



example. When the person accesses the URL on their smartphone, the
exposure notification application sends 14 blindfolded 〈TEK, basetime〉 pairs
to the medical institute’s server, which returns blind-signed results to the
application. The person can then choose to report them.

4.1.3 Storage of Reports in a Verifiable Public Ledger

The positive test results are reported to a verifiable public ledger (e.g.
blockchain) rather than to a government server.

Assuming blockchain is used as the core of a verifiable public ledger,
Merkle accumulator is applied by the server to lower the cost (transaction
fees and processing time) of using blockchain. To prevent correlation, reports
arriving at close timing are mixed with other reports and shuffled before
being added to the accumulator. A Merkle tree is finalized every 24 hours,
for example, to form a set of reports to be downloaded by the application.
Our method is roughly the same as that presented in [25], using a similar or
the same smart contract for Ethereum as shown in Figure 6, which returns
the number of the block when the Merkle root was written, so that we can
know approximately what time the root was stored.

con t rac t Anchor {
mapping ( u int256 => uint ) pub l i c d i g e s t s ;
con s t ructor ( ) pub l i c {
}
funct i on getStored ( u int256 d i g e s t ) pub l i c view retu rn s ( u int b lock no ) {

r e tu rn ( d i g e s t s [ d i g e s t ] ) ;
}
funct i on i s S to r ed ( u int256 d i g e s t ) pub l i c view retu rn s ( bool i s S to r ed ) {

r e tu rn ( d i g e s t s [ d i g e s t ] > 0 ) ;
}
funct i on s to r e ( u int256 d i g e s t ) pub l i c r e tu rn s ( bool i sA l r eadyStored ) {

bool i sRes = d i g e s t s [ d i g e s t ] > 0 ;
i f ( ! i sRes ) {

d i g e s t s [ d i g e s t ] = block . number ;
}
r e tu rn ( i sRes ) ;

}
}

* store() saves the current block number for a stored digest.

* For a given digest, getStored() returns the block number if it is stored. It returns
0 otherwise.

Figure 6: Sample Anchoring smart contract code.

Normally, an application can download the set of reports that have been
added since the last time, and use all of them to create a single Merkle tree
to verify that the Merkle root is stored in Ethereum (at a plausible time). If
the application wants to check the existence of individual reports separately,
the server needs to provide a Merkle proof (partial tree), but perhaps that
would not be the case.

10



Table 1: Evaluation if a consumer group were to test the applications.

Point of weakness Corresponding Our proposal GAEN
threats

©A Generation of TEKs 1a, 1d Prevented Undetectable
©B Content of beacons 1b/1d Detectable/Suspectable Undetectable
©C Metadata 1c/1d Detectable/Suspectable Undetectable
©D Reporting 2a, 2b, 3a Made more difficult Undetectable
©E Stored reports 3a Detectable Undetectable
©F Matching proximity IDs 1e Detectable Detectable

4.2 Incentive Design

We also discuss how to incentivize the peer-to-peer maintenance of the public
ledger, in case it is newly built and specifically used for the purpose of
exposure notification. However, a private ledger would not provide sufficient
proof due to a relatively large margin for malicious involvement. Therefore,
it would be more appropriate to provide the new ledger in the form of
an Ethereum 2.0 shard or Polkadot parachain, for example, which can be
anchored firmly to existing blockchain.

Blockchain is originally designed to collect transactions, form a Merkle
tree out of them, and store them in a verifiable block. By replacing trans-
actions with reports, we obtain a straightforward design for the new ledger.

We would probably like to keep the structure of a traditional blockchain,
where there is a reward for the creation of a block to incentivize its main-
tenance, but preferably without a fee for writing a report transaction. We
also want to keep the market price of the rewards stable, given that we are
protected by the high market price of the currency, although we do not need
to maintain it for a long time given the expected duration of the pandemic.
The authors of this work have proposed a way to stabilize the price of such
a cryptocurrency and at the same time to abandon transaction fees [22],
which may be applicable to the design.

5 Evaluation

5.1 Verifiability and Privacy

We evaluate our proposal by a thought experiment: if a consumer group
were to verify the privacy protections of the two different systems, original
GAEN and our proposed versions, the results would be as shown in Table 1.

For testing our proposed version, first, the consumer group modifies the
open-source application to do the necessary logging, install it on their smart-
phones, and then perform testing. Below, we explain how our proposal works

11



for each point of weakness.

©A Generation of TEKs: In our proposal, the application generates the
TEKs, which prevents the OS from encoding any information into
them. Naturally, the beacons cannot carry any information resulting
from encoding in TEKs either.

©B Content of beacons: The rolling proxmity ID can be reproduced if
the TEK and base time are known, to verify that the contents sent
by Bluetooth are correct. If a value that is not based on the TEK is
sent, it can be detected, and if it is detected, it can be suspected that
a secret process is embedded in the receiver’s OS.

©C Metadata: Encrypted metadata in beacons sent over Bluetooth can be
decrypted if the TEK is known, and detected if the correct metadata is
not sent. If such is detected, it can be suspected that a secret process
is embedded in the receiver’s OS.

©D Reporting: Reporting must be digitally signed by a medical institute,
and false reports cannot be uploaded without collusion. Because of
blind signature, it is not possible to identify the person who has tested
positive (although identities can be inferred by the institute if only
a small number of people have tested positive there during a given
period).

©E Stored reports: All reports will be proven for their existence, and it is
not possible to insert reports retrospectively. If the application knows
the TEKs, the user will be able to detect if they are compromised by
the OS and a false report without the consent of the user is generated
by a complicit medical institute.

©F Matching proximity IDs: Suppose that a second device that is car-
ried with the phone constantly collects beacons that would have been
received by the phone. If the rolling proximity ID generated from the
reported 〈TEK, base time〉 pair is compared to the IDs in the bea-
cons, and the user is notified of the exposure even though the IDs do
not match, then we can detect that a fraud is occurring in the OS.
However, this can also be detected without modifying GAEN.

5.1.1 Newly introduced threats?

Our proposal introduced two new parties: medical institutes and applica-
tion developers4. We have to assume that these new third parties are also
unreliable.

4Plus the public database that tells certified public keys of medical institutes, but it
should be easily monitored by consumer groups and others.

12



If the medical institute changes the key pair for each blind signature, it
can strip the reporter’s anonymity, but the institute cannot do it alone be-
cause the public keys have to be proven on a public database. By colluding
with the government, threats 2a and 2b are made possible, and by collud-
ing with OS developers or phone vendors, threat 3a is also made possible.
However, the increased number of parties that must collude makes it more
difficult to cheat than the original GAEN.

We propose to make the source code open to improve verifiability by
consumer groups and others, and to help protect privacy by allowing careful
users to build applications from the source code. On the other hand, this
makes it easier for malicious application developers to introduce malware.
Nevertheless, the increased risk is related to phishing and whether users
install the wrong applications. The risk of malicious developers themselves
running rogue applications is the same with the original GAEN.

5.2 Potential Performance Impact

We also roughly evaluate the extent to which the two designs can respond
to an increase in the number of tested-positive reporters.

Processes such as getting blind signatures from a medical institute before
reporting a positive test result, or calculating the Merkle tree from a set of
downloaded reports and querying the Merkle root stored in a public ledger,
are our additions to the original GAEN, but do not affect the overall perfor-
mance of the system as they are processed in a distributed manner, although
they do increase the power consumption of individual phones slightly. We
hope that the users will consider that this is the cost of better privacy.

On the server side, processing of uploaded n reports involves the follow-
ing additional calculations in our proposal: 1) verification of the signature
attached to the report (cost O(n)), 2) creation of the Merkle tree (cost
O(n); this takes about 2n digest calculations), and 3) storage of the Merkle
root in the blockchain (cost O(1)). The calculations can be parallelised and
these costs can be load balanced by adding processors (Merkle tree creation
requires O(log n) sequential processing).

6 Related Work

6.1 Concerns on Exposure Notification

The general ethical concerns and guidance on exposure notification and con-
tact tracing are well summarised in [19].

For security, [4] covers the types of attacks that are possible. [12] and
[15] warn potential political use of the tool.

The effectiveness of GAEN has been measured through experiments by
[26] and [14]. Meanwhile, it was announced in February 2021 that the

13



GAEN-based NHS COVID-19 application in UK has alerted 1.7 million
contacts, and the UK government estimates approximately 600,000 cases
have been prevented since September 2020 [11]. If this estimate is correct,
GAEN is working effectively.

6.2 Enhancements to GAEN Protocol

A proposal to add GPS information to GAEN has been made by [20]. While
this may improve the accuracy of contact tracing, it raises concerns about
privacy.

6.3 Blockchain-based Contact Tracing

Some ideas on using blockchain for contact tracing have been proposed.
Many have proposed defining and running their own blockchain, but a ledger
system that starts small has a relatively large margin for malicious involve-
ment in replicating the state machine, making it difficult to provide prov-
ability. Many are also trying to deal with geographic information instead
of or in addition to Bluetooth proximity, which has potential difficulties in
terms of privacy protection, while proximity alone is proving to be effective
enough in reality.

Among such proposals, [28] and [16] incorporate geolocation information.
[7] proposes a potential intervention to privacy with regard to promotion of
public health. [24] proposes to track users’ travel trajectories.

6.4 Safe Blues

Safe Blues[8] simulates and predicts actual infectious disease outbreaks by
monitoring the spread of virtual viruses using technology similar to device-
based contact tracing. As with actual exposure notifications, this seems
feasible with privacy protection using only proximity, provided that locality
is taken loosely. If this is the case, public health authorities may be able
to proactively combat infectious diseases by incorporating Safe Blues func-
tionality into exposure notification systems. Even then, it is important to
ensure that the system is verifiable by the public, as we have shown in our
proposal, so that it cannot be used by the authorities to unfairly control the
activities of the population.

7 Conclusions

In this work, we have shown that minimal changes to GAEN, a working
exposure notification mechanism, can protect users’ privacy without trusting
third parties.

14



Under our proposal, many of the privacy violations by OS developers,
smartphone vendors, medical institutes and government authorities could
be detected through verification by consumer groups and others. This is
not the case if they collude, but our proposal makes this more difficult by
increasing the number of actors that need to collude.

We believe that this will allow for safer contact tracing, and contribute
to healthier lifestyles for citizens who may want to or have to go out under
pandemic situations.

References

[1] Apple and Google. Exposure Notification – Bluetooth Specification.
https://blog.google/documents/70/Exposure Notification -
Bluetooth Specification v1.2.2.pdf.

[2] Apple and Google. Exposure Notification – Cryptography Specifica-
tion.
https://blog.google/documents/69/Exposure Notification -
Cryptography Specification v1.2.1.pdf.

[3] Apple and Google. Exposure Notification – Frequently Asked Ques-
tions.
https://www.google.com/covid19/exposurenotifications/pdfs/Exposure-
Notification-FAQ-v1.2.pdf.

[4] Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Vis-
conti. Towards Defeating Mass Surveillance and SARS-CoV-2: The
Pronto-C2 Fully Decentralized Automatic Contact Tracing System.
Cryptology ePrint Archive, Report 2020/493, 2020.

[5] Vitalik Buterin. A Next-Generation Smart Contract and Decentralized
Application Platform, 2013.
https://github.com/ethereum/wiki/wiki/White-Paper.

[6] David Chaum. Blind signatures for untraceable payments. In Advances
in Cryptology, pages 199–203. Springer US, 1983.

[7] Hiten Choudhury, Bidisha Goswami, and Sameer Kumar Gurung.
CovidChain: An Anonymity Preserving Blockchain Based Framework
for Protection Against Covid-19, 2020. arXiv:2005.10607v1 [cs.CR].

[8] Raj Abhijit Dandekar, Shane G. Henderson, Marijn Jansen, Sarat
Moka, Yoni Nazarathy, Christopher Rackauckas, Peter G. Taylor, and
Aapeli Vuorinen. Safe Blues: A Method for Estimation and Control in
the Fight Against COVID-19, 2020. medRxiv 2020.05.04.20090258.

15



[9] ethereum.org. Ethereum 2.0 Specifications.
https://github.com/ethereum/eth2.0-specs.

[10] Google. Exposure Notifications API.
https://developers.google.com/android/exposure-
notifications/exposure-notifications-api.

[11] GOV.UK. NHS COVID-19 app alerts 1.7 million contacts to stop spread
of COVID-19, Feb 2021. Press release from Department of Health and
Social Care.

[12] Jaap-Henk Hoepman. A Critique of the Google Apple Exposure Noti-
fication (GAEN) Framework, 2021. arXiv:2012.05097v2 [cs.CY].

[13] Mitsuru Iwamura, Yukinobu Kitamura, Tsutomu Matsumoto, and
Kenji Saito. Can we stabilize the price of a cryptocurrency?: Under-
standing the design of bitcoin and its potential to compete with central
bank money. Hitotsubashi Journal of Economics, Vol.60(1), June 2019.

[14] Douglas J. Leith and Stephen Farrell. Measurement-based evaluation
of Google/Apple Exposure Notification API for proximity detection in
a light-rail tram. PLOS ONE, 15(9):e0239943, Sep 2020.

[15] Douglas J. Leith and Stephen Farrell. Google/Apple Exposure Notifica-
tion Due Diligence. In CoronaDef Workshop: Call for Innovative Secure
IT Technologies against COVID-19 (NDSS 2021 Workshop), 2021.

[16] Wenzhe Lv, Sheng Wu, Chunxiao Jiang, Yuanhao Cui, Xuesong Qiu,
and Yan Zhang. Decentralized Blockchain for Privacy-Preserving Large-
Scale Contact Tracing, 2020. arXiv:2007.00894v1 [cs.CR].

[17] Ralph C. Merkle. A Digital Signature Based on a Conventional En-
cryption Function. In Advances in Cryptology — CRYPTO ’87, pages
369–378, Berlin, Heidelberg, 1988. Springer.

[18] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System,
2008. http://bitcoin.org/bitcoin.pdf.

[19] Robert Ranisch, Niels Nijsingh, Angela Ballantyne, Anne van Bergen,
Alena Buyx, Orsolya Friedrich, Tereza Hendl, Georg Marckmann,
Christian Munthe, and Verina Wild. Digital contact tracing and ex-
posure notification: ethical guidance for trustworthy pandemic man-
agement. Ethics and Information Technology, 2020.

[20] Ramesh Raskar, Abhishek Singh, Sam Zimmerman, and Shrikant Kana-
parti. Adding Location and Global Context to the Google/Apple Ex-
posure Notification Bluetooth API, 2020. arXiv:2007.02317v3 [cs.CR].

16



[21] Kenji Saito. Asia Internet History Projects - Fourth Decade (2010s)
Section 2.3 Blockchain, September 2020.

[22] Kenji Saito and Mitsuru Iwamura. How to make a digital currency on
a blockchain stable. Future Generation Computer Systems, Vol.100:58–
69, November 2019.

[23] Kenji Saito and Hiroyuki Yamada. What’s so different about
blockchain? - blockchain is a probabilistic state machine. In IEEE 36th
International Conference on Distributed Computing Systems Work-
shops (ICDCSW), pages 168–175, June 2016.

[24] Jinyue Song, Tianbo Gu, Xiaotao Feng, Yunjie Ge, and Prasant Mohap-
atra. Blockchain Meets COVID-19: A Framework for Contact Informa-
tion Sharing and Risk Notification System, 2020. arXiv:2007.10529v1
[cs.CR].

[25] Hiroshi Watanabe, Kenji Saito, Satoshi Miyazaki, Toshiharu Okada,
Hiroyuki Fukuyama, Tsuneo Kato, and Katsuo Taniguchi. Proof of
Authenticity of Logistics Information with Passive RFID Tags and
Blockchain, 2020. arXiv:2011.05442 [cs.CR].

[26] Amanda M. Wilson, Nathan Aviles, James I. Petrie, Paloma I. Beamer,
Zsombor Szabo, Michelle Xie, Janet McIllece, Yijie Chen, Young-Jun
Son, Sameer Halai, Tina White, Kacey C. Ernst, and Joanna Masel.
Quantifying SARS-CoV-2 infection risk within the Google/Apple ex-
posure notification framework to inform quarantine recommendations,
2020. medRxiv 2020.07.17.20156539.

[27] Gavin Wood. POLKADOT: VISION FOR A HETEROGENEOUS
MULTI-CHAIN FRAMEWORK, 2016.

[28] Hao Xu, Lei Zhang, Oluwakayode Onireti, Yang Fang, William Bill
Buchanan, and Muhammad Ali Imran. BeepTrace: Blockchain-enabled
Privacy-preserving Contact Tracing for COVID-19 Pandemic and Be-
yond, 2020. arXiv:2005.10103v2 [cs.DC].

17


	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Organization of This Article

	2 Background
	2.1 Exposure Notification Design by Google and Apple
	2.2 Merkle Accumulator
	2.3 Blind Signature
	2.4 Blockchain

	3 Problem
	4 Design
	4.1 Basic Design
	4.1.1 Generation of TEKs at the Application Side
	4.1.2 Endorsement by Medical Institutes with Blind Signatures
	4.1.3 Storage of Reports in a Verifiable Public Ledger

	4.2 Incentive Design

	5 Evaluation
	5.1 Verifiability and Privacy
	5.1.1 Newly introduced threats?

	5.2 Potential Performance Impact

	6 Related Work
	6.1 Concerns on Exposure Notification
	6.2 Enhancements to GAEN Protocol
	6.3 Blockchain-based Contact Tracing
	6.4 Safe Blues

	7 Conclusions

