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The aerosol formation is associated with the rupture of the liquid plug during the pulmonary

airway reopening. The fluid dynamics of this process is difficult to predict because the

rupture involved complex liquid-gas transition. Equation of state (EOS) plays a key role in the

thermodynamic process of liquid-gas transition. Here, we propose an EOS-based multiphase

lattice Boltzmann model, in which the nonideal force is directly evaluated by EOSs. This

multiphase model is used to model the pulmonary airway reopening and study aerosol

formation during exhalation. The numerical model is first validated with the simulations of

Fujioka et al. (2008) and the result is in reasonable agreement with their study. Furthermore,

two rupture cases with and without aerosol formation are contrasted and analyzed. It is found

that the injury on the epithelium in the case with aerosol formation is essentially the same

that of without aerosol formation even while the pressure drop in airway increases by about

67%. Then extensive simulations are performed to investigate the effects of pressure drop,

thickness of liquid plug and film on aerosol size and the mechanical stresses. The results

show that aerosol size and the mechanical stresses increase as the pressure drop enlarges

and thickness of liquid plug become thicken, while aerosol size and the mechanical stresses

decrease as thickness of liquid film is thicken. The present multiphase model can be extended

to study the generation and transmission of bioaerosols which can carry the bioparticles of

influenza or coronavirus.

Keywords: bioaerosol, pulmonary airway reopening, equation of state, lattice Boltzmann

method

1. Introduction

The COVID-19 pandemic caused by the SARS-CoV-2 virus has raged around the world

(Asadi et al. (2020)). The fundamental reason for the rapid spread of the coronaviruses is via

air-borne aerosols and cause infection through the respiratory tract (Poon et al. (2020)). The

virus-laden fluid particles (i.e. droplets and aerosols) are expelled from the mouth and nose

of an infected person when breathing, talking, coughing, and sneezing (Mittal et al. (2020)).

The aerosol emissions into large and small aerosols. Large aerosol particles evaporate more

slowly than they settle, contaminating the immediate vicinity of the infected individual.

Conversely, small aerosol particles evaporate faster than they settle (Bourouiba (2020)).
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The aerosol that ranges from sub-micron to hundreds of micrometers is the primary factor

in airborne disease transmission. Moreover, the aerosol particle size is closely related to

various breathing motions. They are generated in different locations of the pulmonary and

carry different concentrations of the virus. Knowledge of the generation mechanisms of

aerosol particles and the effect factors that result in the difference of the aerosol particle size

constitutes an important basis for exploring the dissemination of infective diseases.

The reopening of closed airways is one of the important mechanisms for aerosol particles

generation (Edwards et al. (2004)). The reopening process depends on numerous factors such

as the properties of respiratory tract lining fluid, the geometry of pulmonary airways and the

elasticity of the airway wall (Levy et al. (2014)). Much attention has been paid to discuss

the reopening process of closed airways and the injury on the airway wall (Fujioka et al.

(2008); Fujioka & Grotberg (2004); Fujioka & Grotberg (2005); Zamankhan et al. (2012);

Vaughan & Grotberg (2016); Zheng et al. (2009); Mamba et al. (2018)).

Fujioka & Grotberg (2004) and Fujioka et al. (2008) studied the steady and unsteady prop-

agation of the plug in airway and analyze the mechanical stresses on airway walls associated

with the plug motion. They further investigated the effects of surfactant (Fujioka & Grotberg

(2005)). Zamankhan et al. (2012)focused on the effects of non-Newtonian fluid proper-

ties that arise in mucus during airway reopening in pulmonary airways. The splitting

of a two-dimensional liquid plug at an airway bifurcation is investigated numerically

(Vaughan & Grotberg (2016)). Zheng et al. (2009) analyzed the effects of the wall’s flexibility

on the plug propagation in the airway. Mamba et al. (2018) investigated the rupture of a plug

driven by a cyclic forcing by experimental and theoretical method. These previous studies

show that numerical modeling the reopening of airways in the lungs still has a fundamental

problem. These studies are limited to simulation prior to rupture or just to rupture because they

use conventional numerical computation methods which cannot handle complex topological

changes during plug rupture.

Some researchers have attempted to develop or apply new interface tracking methods to

observe the rupture process and the generation of aerosol particles. Haslbeck et al. (2010)

investigated the aerosol formation by rupture of surfactant films using computations in a

fluid dynamics model. They used the high-resolution interface capturing (HRIC) method to

track the gas-liquid interface. Hassan et al. (2011) investigate stresses at the airway walls

during plug rupture. They extended an Eulerian-Lagrangian technique to handle topological

changes during the plug rupture. Malashenko et al. (2009) focused on the conditions required

for menisci consisting of two gas-liquid interfaces to move unsteadily and disintegrate forming

droplets. They employed an algorithm Geometric Reconstruction Scheme (GRS) approach

to find air-mucus interface. Muradoglu et al. (2019) investigated the effect of pulmonary

surfactants on the propagation and rupture of liquid plugs in the capillary tube by a finite-

difference/forward-tracking method. However, these approaches are complicated and time-

consuming.

Based on the mesoscopic scale, Lattice Boltzmann model (LBM) can simulate the

interaction between different phases and handle the complex interfacial deformation without

the interface tracking (Aidun & Clausen (2010)), LBM-based models are easier to implement

than the conventional computational models. A phase-field LBM is been used to simulate the

reopening process of closed airways and analyze the effect of capillary number Wang et al.

(2016). In their model, two-phase density ratio is just 10 and the model is two components

model. However, the environment of the pulmonary airway is a typical water-vapor system,

in which the density ratio is up to 1000.

Despite tremendous research effort, many aspects of the mechanisms of the airway

reopening are still not well understood, especially the key influencers in the size distribution of

the aerosols generated are still unclear. In this paper, we investigate the generation of aerosol
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during the airway reopening by EOS-based multiphase LBM. Our model is a two-phase one-

component model and can simulate the large density ratio problem. Thus, the model is closer

to the actual situation and the interaction force between the gas-liquid interfaces is directly

evaluated by EOSs. The model will be first validated with the simulations of Fujioka et al.

(2008). Furthermore, two rupture cases with and without aerosol formation are contrasted

and analyzed. In addition to analyzing the wall stresses during the rupture process, we will

additionally study the relation between the various factors and the size distribution of the

aerosols generated.

2. Method

2.1. Lattice Boltzmann method

Lattice Boltzmann method (LBM) is a mesoscopic numerical simulation method originated

from lattice gas automata and kinetic theory (Chen & Doolen (1998); Aidun & Clausen

(2010)). It can combine the advantages of many microscopic technologies while still

effectively simulating cross-scale dynamics. This feature enables LBM to become an effective

method for the numerical simulation of complex fluids. Several collision operators distinguish

the variants of the LBE, such as the single-relaxation-time (SRT) model (Qian et al.

(1992)), the multiple-relaxation-time (MRT) model (Lallemand & Luo (2000)), the two

relaxation-time model (Ginzburg et al. (2008)), and the entropic lattice Boltzmann equation

(Karlin et al. (2007)). In particular, the MRT model has great advantages in terms of physical

principles, parameter selection, and numerical stability, which has been widely used in many

fields (Lallemand & Luo (2000)). Meanwhile, it has the advantages of LBM, such as simple

procedures, high parallel efficiency, and easy handling of complex geometric boundaries.

Therefore, it provides an effective solution in dealing with the complex two-phase flow

problem during the pulmonary airway reopening of the simulation.

The MRT version can be expressed as

58 (x + e8XC , C + XC ) − 58 (x, C) = −"−1 · ( · [ 58 (x, C) − 58
(4@) (x, C)]. (2.1)

M is a transformation matrix which linearly transforms the distribution functions

to the velocity moments, S is a diagonal matrix of nonnegative relaxation times:

( ≡ diag(0,−s4,−sY, 0,−s@, 0,−s@,−sE ,−sE). In this paper, the relaxation times are

given by (4 = 1.64, (Y = 1.54, (@ = 1.7 and (E = 1/g (McCracken & Abraham (2005))

for the simulations with the MRT LBE. Where is the particle distribution function at lattice

site x and time t; 48 with 8 = 0, ..., # , N is the discrete speed; and 5
(4@)
8

(x, C) the equilibrium

distribution function, where is the weighting coefficient and u the fluid velocity.

5
(4@)
8

(x, C) = dl8 [1 + 3(e8 · u) +
9

2
(e8 · u)2 −

3

2
u2]. (2.2)

EOS-based multiphase flow model - The phase transition is a more important theme

in the multiphase flow system. The phase transition is the macroscopic manifestations

of interactions between components or phases on the microscopic scale (Guo & Zheng

(2009)). In the past two decades, many multiphase Lattice Boltzmann models have been

proposed. Based on the describing method of interactions between components or phases,

multiphase LB models can be divided into the pseudopotential LB method (Shan & Chen

(1993); Liu et al. (2014)), the free energy based LB method (Swift et al. (1995); Swift et al.

(1996)), the phase-field LB method (He & Chen (1999)), and the color-gradient LB method

(Gunstensen et al. (1991)). Recently, based on free energy theory, Wen et al. (2015) devel-

oped a new multiphase LB model in which used pressure tensor to calculate nonideal forces



4

which can accurately describe the interactions between phases. They subsequently improved

the model by introducing the chemical potential to calculate nonideal forces and avoiding the

calculation of pressure tension divergence (Wen et al. (2017)). Drawing on their methods,

based on thermodynamic theory, we proposed a new model.

In a nonideal fluid systems, the free energy functional within a gradient-squared approxi-

mation is (He et al. (2020))

Ψ =

∫

(k(d) +
^

2
|∇d |2)3G, (2.3)

where
∫

k(d)3G is the bulk free-energy density at a given temperature with the density d. And
∫

( ^
2
|∇d |2)3G gives the free energy contribution from density gradients in an inhomogeneous

system, with the surface tension coefficient ^. The free energy function in turn determines

the diagonal term of the pressure tensor

?(G) = ?0 − ^d∇2 −
^

2
|∇d |2, (2.4)

where ?0 is the EOS, and the expression is

?0 = dk ′(d) − k(d), (2.5)

the full pressure tensor can be written as

%UV = ?(G)XUV + ^(
md

mGU

md

mGV
), (2.6)

where XUV is the Kronecker delta function. The excess pressure, namely, the nonideal force,

with respect to the ideal-gas expression can be directly computed (Wen et al. (2017))

� = −∇ ·
↔

%(G) + ∇ ·
↔

%0(G). (2.7)

Where
↔

%0 =
↔

� 22
Bd is the ideal-gas EOS. From equation (2.4) and (2.6), it can be find

%UV = [?0 − ^d∇2d −
^

2
|∇d |2]XUV + ^(

md

mGU

md

mGV
). (2.8)

From equation (2.8), the divergence of the pressure tensor is written as

m

mGV
%UV = [?0 − ^d∇2d −

^

2
|∇d |2]

m

mGU
+ ^

m

mGU
(
md

mGU

md

mGV
). (2.9)

After some simple manipulations, can be further written as

m

mGV
%UV =

m

mGU
?0 − ^

m

mGU
(d∇2d) + ^

md

mGU
(∇2d). (2.10)

A relation between the divergence of the pressure tensor and the gradient of the EOS can be

obtained by partial integration of equation (2.10),

∇
↔

%(G) =∇?0 − ^d∇(∇2d). (2.11)

Substituting equation (2.8) into equation (2.11), we propose the EOS-based multiphase flow

model by directly evaluate the nonideal force with EOSs.

� = −∇?0 + ^d∇(∇2d) + ∇
↔

%0. (2.12)

Proportionality coefficient k - To improve the stability of the multiphase LBM at the large
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density ratio, a proportional coefficient k was introduced to correlate the dimension unit of

the length between the momentum space and mesh space (Wen et al. (2020)),

XĜ = :XG. (2.13)

Here, the symbols of the quantities with a length dimension are marked with a superscript,

including the lattice length, velocity, and nonideal force. The time, density, and temperature

are considered to be independent of the length, so they keep the same symbols and values

in the two spaces. According to dimensional analyses, this proportional relation uses the

following transformations,

k̂ (d) = :2k(d), k̂ ′(d) = :2k̂(d), ?̂0 = :2?0, (2.14)

∇̂ = :−1∇, ∇̂2
= :−2∇2, (2.15)

�̂ = :�. (2.16)

The LBE of the present model is evolving in the mesh space (the computational mesh).

The EOS and free energy density are calculated in the momentum space, and then they are

transformed into the mesh space by the proportional coefficient. Thus, the nonideal force in

the mesh space is evaluated by

�̂ = −∇̂ ?̂0 + ^d∇̂(∇̂2d) + ∇̂
↔

%0. (2.17)

Subsequently, the nonideal force is incorporated into the lattice Boltzmann equation

(LBE), which is fully discretized in space, time, and velocity. The nonideal force acts on

the collision process by increasing the particle momentum in the equilibrium distribution

function, in which the fluid velocity is replaced by the equilibrium velocity u(4@)
= u+g�/d.

Correspondingly, the macroscopic fluid velocity is redefined by the averaged momentum

before and after the collision v = u + �/2d.

Verification - Numerical simulations involving first-order phase transitions and two-

dimensional circular droplets have been performed to verify the EOS-based multiphase LBM.

The Peng-Robinson (PR) EOS is used to establish a water-vapor system, the computational

domain is a 400 × 400 square with periodical boundary condition by using the MRT model.

The PR EOS is written as (Wen et al. (2018))

?0 =
d')

1 − 1d
−

0U())d2

1 + 21d − 12d2
. (2.18)

Where the temperature function is U()) = [1 + (0.37464 + 1.5422l2) × (1 −
√

)/)2)]
2, and

the acentric factor l for water and methane are 0.344 and 0.011, respectively. The universal

gas constant is R = 1, the attraction parameter is a = 2/49 and volume correction is b =

2/21. The relaxation time is 1.2 and the proportional coefficient is k = 0.1. The parameter

^ = 0.001 in the equation(2.17) for the model, unless otherwise specified. The numerical

implementation of the present model is discussed next.

It is significant to evaluate the thermodynamic consistency of the present model by

comparing the two-phase coexistence curve obtained from the simulations with the theoretical

curve predicted by the Maxwell equal-area construction. The middle part of the computational

domain is initialized as a circular droplet with radius R = 30 lattice units, while the remaining

part is gas. PR (water) EOS and PR (methane) EOS are used in our simulations, each of which

evolved in 150,000 steps. The simulation results are shown in figure 1(a) and (b). When the

temperature Tr = 0.3, the calculation results of the present model are still consistent with the

Maxwell equal-area construction, indicating that the present model still has thermodynamic

consistency at low temperatures.
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Figure 1: (a) Gas-liquid density coexistence curve of PR (water) EOS; (b) Two-phase
density coexistence curve of PR (methane) EOS; (c) Test of Galilean invariance in multi
directions; (d) Test of the Laplace law at multiple temperatures, the solid line has a slope

equal to the surface tension.

We simulate circular droplet at Tr = 0.6 and in different reference frames and verify the

Galilean invariance of the current model by using the degree of surface circle. Taking the

symmetry of LBM into consideration, the verification velocity direction is 0°, 10°, 23°, 30°,

and 45°, while the corresponding droplet radius is 28, 30, 32, 34, and 36 lattice units, at the

same time the reference frame velocity is 0.02 lattice units at each moment. As shown in

figure 1(c), the radius of the droplet remains the same when it evolves from 10,000 steps to

10,000,000 steps. Numerical results show that the current model has Galilean invariance.

Surface tension is the basic physical property of gas-liquid interface. The method of

Li et al. (2021) is employed to adjust the surface tension. The Young-Laplace equation is

generally used to evaluate the influence of surface tension in multiphase flows, and it is also

an important condition to verity the feasibility of the multiphase flow model. The Young-

Laplace equation shows that when the droplet is in a steady state with the surrounding gas,

the pressure difference ΔP between inside and outside the droplet and the radius R satisfies,

Δ% = %8= − %>DC = f/', (2.19)

where f represents the surface tension of the droplet, %8= and %>DC are the internal pressure

and external pressure of the droplet, respectively. The droplet was placed in the middle region

of the flow field. Following the figure 1(d), the droplet radius is changed from 25 to 80 lattice

units at 5 lattice units intervals. The numbers of evolution of each experiment are 100,000,

the temperature change from 0.5 to 0.8 at 0.1 intervals. The simulate results show that the

pressure difference between the internal and external of the droplet increases linearly with the

reciprocal of the droplet radius increases, and each black line has a stable slope. Therefore,

the experimental verification that the present model satisfies the Young-Laplace equation.
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Figure 2: Schematic presentation of the closed airway
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Figure 3: Wall pressure and shear stress distribution

2.2. Pulmonary airway model

Based on PR EOS of the water, MRT-LBM is used for simulate the reopening of pulmonary

airway. A schematic of closed pulmonary airway is shown in figure 2. The pulmonary airway

is simplified to a circular rigid tube of radius R. The liquid film is adsorbed to the airway

walls, the liquid plug is located in the middle of airway. The blue region represents the

liquid, while the white region represents the air. The red line represents the trend of air-liquid

interface under the pressure. The computational domain is a rectangular with a length of 1500

and a width of 200 lattice units. The pulmonary airway radius R is 100 lattice units, which

corresponds to 300 `m at the macroscopic scale and 13Cℎ generation bronchioles (based

on the human pulmonary airway model (Carrington (1965)). The liquid film thickness is

denoted as h. The liquid plug thickness is denoted as b. Extrapolated condition is applied

on the left and right sides, while the no-slip boundary condition is adopted on the top and

bottom boundaries. The relaxation time is g = 1.2, and the temperature is Tr = 0.6, in which

case the density ratio of two-phases nears to 1000. The corresponding density of air phases

is d6 = 1 g/2<3, while the density of liquid phases is d; = 1000 g/2<3. The viscosity is ` =

6.947× 10−4 Pa·s. A constant surface tension is assumed. The pressure drop between the front

and rear air phases induced by inhaled air is important factor during the airway reopening

process. To mimic the pressure drop, the body force which is denoted as F is applied to the

flow field in the airway. The body force, F, drives the liquid plug movement.

To compare with the previous study of Fujioka et al. (2008), which focused on the plug

dynamics prior to the rupture, the same initial condition is employed. The initial liquid plug

thickness is b = 1 R,the front liquid film thickness is 0.1 R while the tail liquid film thickness

is h ≈ 0.09 R. The force is F = 0.3 `dyn. The liquid plug is bent out of shape under the force

and the thickness decreases. When the liquid plug thickness b decreased to 0.3 R, the wall
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Figure 4: Pulmonary airways reopen without aerosol formation (a) positions of front and
rear interface of liquid plug (b) rupture process of a liquid plug along the airway

pressure and the wall shear stress distributions are showed as figure 3. The horizontal axis is

a relative coordinate which is relative to the middle of the liquid plug as Fujioka et al. (2008).

The wall pressure and wall shear stresses have both negative and positive peaks around the

front meniscus region. Result is in reasonable agreement with the study of Fujioka et al.

(2008).

3. Results and Discussion

Under various kinematical conditions that correspond to different expiratory activities with

various pressure drops, a liquid plug in small lung airways may rupture in different form. It

may rupture forming small aerosol droplets, or not. The two cases are discussed respectively.

3.1. Rupture without aerosol formation

The thickness of liquid film is commonly slightly thick in unhealthy lungs due to produce

excessive bronchial secretions. In order to observe the unhealthy lungs, the thickness

considered in the present study is 0.15 of the airway radius, 0.15 R. The initial liquid

plug which remains same is equal to the airway radius, 1 R. The body force is 0.9 `dyn.

The airway reopening includes two stages with different dominant force: prior to rupture and

after rupture. At the initial stages, the pressure drop is the primary force driving the liquid

plug. The liquid plug begins to deform and move forward under the force of pressure. The

positions of front and rear interface of liquid plug are shown in figure 4(a). It is obviously that

the rear interface moves faster than the front interface. The cross-sectional shape of liquid

plug changes from rectangular to hyperboloidal. The thickness of liquid plug is gradually

getting thinner during the interface motion. Figure 4(b) shows the rupture process in detail.

Prior to rupture, it can be observed that the rear air finger is more sharply than the front

air finger and the thickness of the rear liquid film increases (figure 4(b1)). When the liquid

plug moves forward, the plug ceaselessly leaves liquid to the rear liquid film. As this process

proceeds it would result in the thickness of liquid plug decreases to a critical value. Under

the body force and surface tension, it ultimately ruptures in the middle at near 0.177 s. After

the rupture, surface tension is the primary force driving the interface retraction. The tips of
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Figure 6: Snapshots of momentum distributions during liquid plug rupture without aerosol
formation (a) t = 0.177 s (b) t = 0.183 s (c) t = 189 s (d) t = 0.195 s

the up and down broken interfaces become round and shrink. About 0.02 s, the up and down

broken interfaces retract to the liquid layer lining the airway walls (figure 4 (b3 ∼ b5)).

During the reopening of airway, the pressure and wall shear stress on the region of the

liquid plug appear large variations. These variations are shown in figure 5 in where the origin

fixed at the location of minimum liquid film thickness in order to compare with the case with

aerosol formation. It can be observed that the pressures and the wall shear stresses have both

negative and positive peaks around the liquid plug region. The negative peaks always occur

at the location of minimum liquid film thickness. Before the rupture, that is C 6 0.177 s, the
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negative peak values of pressure are close to -0.009 dyn, while that of wall shear stresses are

-0.089 `Pa. After the rupture, the negative peak values decrease in magnitude little by little,

while the positive peaks increase in magnitude. The maximum positive peaks reaching %F0;;

= 0.0147 dyn and gF0;; = 0.269 `Pa occur at t = 0.189 s. The different between the maximum

and minimum of the pressure is 0.021 dyn, while that different of the wall shear stress is

0.36 `Pa. The location in which positive peak occurs lags behind the location of minimum

liquid film thickness. After a period of time, negative and positive peaks disappear with the

disappearing of the ruptured plug. The results are in reasonable agreement with the study

of Hassan et al. (2011); Malashenko et al. (2009); Muradoglu et al. (2019). The results also

explain why the epithelial cell suffered injury during the airway reopening process.

There has been a scientific consensus about that the variation of the wall shear stress leads to

a detrimental effect on the cells lining the airways. But the reason why the maximum positive

peak occurs after the rupture isn’t concerned. In order to find out the reason, the momentums

of liquid plug region at various times are calculated. The snapshots of momentum are

illustrated in figure 6. It is can be found that the broken plug retracts quickly to the wall liquid

film in about 0.02 seconds. Before the rupture, the momentum is accumulated in deformed

liquid plug as shown in figure 6(a). After the rupture, the largest momentum collects in

the tip of broken liquid plug under surface tension as shown in figure 6(b) and (c). The

large momentum reaches the airway wall following the tip of broken liquid plug retracts. It

indicated that the maximum positive peaks of the pressure and wall shear stress mainly is

resulted by the impact of the broken liquid plug.

3.2. Rupture with aerosol formation

A vast volume of literature has discussed the liquid plug rupture without aerosol formation

under various conditions. There is a paucity of literature on the liquid plug rupture with

aerosol. Malashenko et al. (2009) find that the liquid plug can break up to form droplets

during the airway reopening process. But they don’t analyze the variations of force on the

wall during this process. In here, the case with aerosol formation is considered. The initial

liquid plug and liquid film thickness remain same as in the previous section, the body force

increases to 1.5 `dyn. The airway reopening process is shown in figure 7. This process also

contains two stages. Before the rupture, the pressure drop similarly makes the liquid plug

deform and move forward. Similarly, the rear interface moves faster than the front interface

as shown in figure 7(a). And the thickness of liquid plug is getting thinner. But the shape of

liquid plug under greater pressure is different from the case that is rupture without aerosol.

The shape is no longer hyperboloidal, but rather meniscus shape as shown in figure 7(b1).

The increased pressure causes that the plug fast moves and the curvatures of upper and

lower ends in the front interface become larger. Due to lacking liquid supplement, two necks

occur in the liquid plug as shown in figure 7(b2). It is obvious that the rupture occurs more

earlier than the case without aerosol formation. Two necks ultimately break after 0.12 s and a

non-spherical droplet generates. After the rupture, the droplet shrinks into a spherical droplet

and two remainders of liquid plug also shrink into the wall under the surface tension (figure

7(b3 ∼ b5)).

During the process of airway reopen in this case, the airway wall also undergoes great the

pressure and the wall shear stress. In figure 8, similar variations of the pressure and wall shear

stress at the airway walls are observed as liquid plug rupture process in that case without

aerosol formation. It is different that the negative peak in magnitude is slightly larger than that

of the previous case. In this case the curvature of the front interface of liquid plug is larger

than that of the previous case before the rupture, and hence the negative peak becomes large.

However, the body force F enlarges by about 67%, the difference between maximum and

minimum values of wall pressure and wall shear stress increase only about 6.7% and 10%,
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Figure 8: Variations of the pressure and the wall shear stresses at the airway walls during
liquid plug rupture process in the case with aerosol formation.

respectively. This means that the flow-induced injury on the epithelium do not obviously

increase in the case with aerosol formation, even while the pressure drop in airway obviously

enlarges.

The momentum distributions during liquid plug rupture with aerosol formation are shown

as figure 9. It can be observed that the deformed liquid plug has accumulated a large

momentum before the rupture. The momentum is divided into three parts following two

necks occur. After the rupture, the middle part that forms the droplet takes most of the

momentum away. The remaining two parts of the liquid plug retract to the airway wall liquid

film, like the case without aerosol formation. Due to the momentum on the remaining two

parts are obviously diminish, the impact of the broken liquid plug is weaken. That is, the

flow-induced injury on the epithelium reduces. This can be used to explain why the difference

between maximum pressure and minimum values of the wall pressure and wall shear stress

in the case without aerosol formation is a little larger than that of the case with aerosol
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Figure 9: Snapshots of momentum distributions during liquid plug rupture with aerosol
formation (a) t = 0.112 s (b) t = 0.120 s (c) t = 0.123 s (d) t = 0.127 s.

formation (See in figures 6 and 8), even under the more large pressure drop. The result is

agreement with the experimental result in Malashenko et al. (2009).

3.3. Factors affecting aerosol size

The aerosol size depends on respiratory activity and shows a high individual variability

(Almstrand et al. (2010)). The pressure drop in airway influences droplet size, the thickness

of liquid plug and liquid film also influence droplet size. Further simulations are performed

to observe these effects.

The pressure drop in airway may vary with age or due to illness (Magniez et al. (2016)).

Its effect is considered within a wide range F 2 ∼ 5 `dyn, corresponding to the pressure drop

1 ∼ 15 cm�2$ which are known to exist in the lung. The results are shown in figure 10.

Two group simulations in which the thickness of liquid plug is 1 R and 0.6 R respectively are

carry out. The thickness of liquid film all is 0.15 R. Figure 10(a) shows that the aerosol mass

is a distinct increase as increase of the body force. The results also show that the thickness

of liquid plug also has a significant influence on the aerosol mass under the same body force.

Furthermore, the effects of pressure drop on the different between the maximum and the

minimum of %F0;; and gF0;; are analyzed as shown in figure 10(b). The different values of

%F0;; increase more than double and the different values of gF0;; also increase by about 80%

as pressure drop in airway changes from 2.0 `dyn to 5.0 `dyn. It is obvious that the larger

pressure drop is more prone to the cell injury.

The effect of thickness of liquid plug is also considered as shown in figure 11. In figure

11(a), it can be seen that the aerosol mass is a linear increase as increase of the thickness

of plug. Like the effect of the pressure drop, the thicker the liquid plug is, the larger the

different between the maximum and the minimum of %F0;; and gF0;; are (see in figure

11(b)). This is because the rupture time delays when the plug thickens and the %F0;; and
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gF0;; are accumulated. But the increment of the different between the maximum and the

minimum of %F0;; and gF0;; due to the plug thickness increases is smaller than that of due

to the pressure drop increases. It means that the plug thickness has more effect on the aerosol

mass than the pressure drop does, while the pressure drop has more effect on the cell injury

than the plug thickness does.

The effect of thickness of liquid film is taken into account as shown in figure 12. Unlike

the effects of the pressure drop and the plug thickness, the aerosol mass is a linear decrease

as increase of the thickness of liquid film as shown in figure 12(a). In figure 12(b), it can

been find that the different between the maximum and the minimum of %F0;; declines from

near 0.06 dyn to near 0.02 dyn and that of gF0;; similarly reduces from near 1.0 `Pa to near

0.25 `Pa as the thickness of liquid film increases from 0.1 R to 0.2 R and the body force is 3

`dyn. The results is agreement with the results of Muradoglu et al. (2019). As the thickness
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of liquid film becomes thickens, the impact force of the broken liquid plug takes more time

to reach the epithelium and weakens.

4. Conclusion

The EOS-based multiphase flow model is used to numerical simulation the gas-liquid flow

of pulmonary airway reopening. The numerical model is first validated with the simulations

of Fujioka et al. (2008). The result is in reasonable agreement with their result. Furthermore,

two rupture cases with and without aerosol formation are contrasted and analyzed. It is found

that the injury on the epithelium is resulted by the impact of the broken liquid plug by

analyzing of the momentum distributions during liquid plug rupture. And the injury in the

case with aerosol formation is essentially the same in the case without aerosol formation even

while the pressure drop enlarges. It is because that a part of momentum is carried off by the

aerosol after the plug ruptures. Then extensive simulations are performed to investigate the

effects of pressure drop, thickness of liquid plug and film on aerosol size and the mechanical

stresses. The results show that aerosol size and the mechanical stresses increase with the

increase of pulmonary airway pressure as the thickness of the liquid plug and film keep

constant. Similar, the aerosol size and the mechanical stresses increase with increasing the

thickness of the liquid plug as pulmonary airway pressure and the thickness of liquid film keep

constant. In contrast, the aerosol size and the mechanical stresses decrease with increasing

the thickness of the liquid film as pulmonary airway pressure and the thickness of liquid plug

keep constant.

This paper develops a new model capable of predicting the pulmonary airway reopening

whit and without aerosol formation. The model will be further developed and used in

observing the rupture under cyclic forcing and at airway bifurcation (Vaughan & Grotberg

(2016); Mamba et al. (2018)).
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