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Long-term regulation of prolonged epidemic outbreaks in
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perturbation approach
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Abstract

In order to control highly-contagious and prolonged outbreaks, public health authorities intervene to institute

social distancing, lock-down policies, and other Non-Pharmaceutical Interventions (NPIs). Given the high social,

educational, psychological, and economic costs of NPIs, authorities tune them, alternatively tightening up or

relaxing rules, with the result that, in effect, a relatively flat infection rate results. For example, during the summer

in parts of the United States, daily COVID-19 infection numbers dropped to a plateau. This paper approaches

NPI tuning as a control-theoretic problem, starting from a simple dynamic model for social distancing based

on the classical SIR epidemics model. Using a singular-perturbation approach, the plateau becomes a Quasi-

Steady-State (QSS) of a reduced two-dimensional SIR model regulated by adaptive dynamic feedback. It is

shown that the QSS can be assigned and it is globally asymptotically stable. Interestingly, the dynamic model

for social distancing can be interpreted as a nonlinear integral controller. Problems of data fitting and parameter

identifiability are also studied for this model. The paper also discusses how this simple model allows for a

meaningful study of the effect of population size, vaccinations, and the emergence of second waves.

Index Terms

Epidemic models, singular perturbations, nonlinear control.

I. INTRODUCTION

COVID-19, a highly contagious disease, has been spreading globally and has already claimed more

than 2.5 million lives during its first year. Unsurprisingly, this has sparked a renewed interest in the

dynamical modeling and analysis of infectious diseases, particularly in the control theory and dynamical

systems communities [1–9]. The starting point in modern epidemiological modeling is the Kermack-

McKendrick model [10, 11] which is known as the Susceptible-Infectious-Removed (SIR) model. It

assumes a well-mixed homogeneous population, and it can be written as the three-compartment model:

Ṡ(t) = −cβS(t)I(t),

İ(t) = cβS(t)I(t)− γI(t), (1)

Ṙ(t) = γI(t),

where S(t), I(t), R(t) refer to the susceptible, infective, and removed individuals at time t. The product

b = cβ and the parameter γ are called the infection rate and the removal rate, respectively. We factored

the infection rate as b = cβ, where we call c and β the intrinsic infection rate and the contact rate

respectively, to emphasize that b depends on both biological and societal conditions.

The steady-state behavior of the above model is simple. Infectives always converge to zero, and the

susceptibles converge to a residual nonzero value. Nevertheless, the transient dynamics are much more

interesting. Starting from any nonzero number of infectious individuals, since İ(0) = (bS(0)− γ)I(0),
an outbreak occurs iff R0 := bS(0)/γ > 1, otherwise, I(t) decreases to zero. In the case of an outbreak,

the infectives increase to a peak value, and then gradually converge to zero.
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However, in prolonged outbreaks, the transient behavior predicted by the basic SIR model is no longer

representative of the outbreak after the initial surge. This is since the increased number of infections

will necessarily produce a feedback effect via media coverage, public precautionary measures, and

government interventions. Mathematically, this means that the effective contact rate β is no longer

constant over time. Modeling and analysis of such feedback effects have been a topic of a large body of

research. For our purposes, there are two categories of models: compartmental models, and compound

models. The state vector in the first class of models consists of sub-populations that sum to the total

population. In such context, one of the early strategies for modeling feedback is nonlinear contact rates

[1, 3, 12–14]. For example, the following form has been studied in [12]: β(t) = β0

1+kI(t)
, where β0 is

the nominal contact rate. A quasi-mechanistic justification of this term was proposed in the language

of reaction networks as a two-stage process [3], which produces the above expression after a time-scale

separation argument. Other models of feedback include regulation by direct control of the contact rate

[4, 8, 9], by the creation of tested and quarantined compartments [5, 8], or by vaccinations [15].

However, such models do not usually account for the fact that the feedback effects originating from

public interventions and fear of infection are not fast enough to justify eliminating them from the

dynamical modeling. Therefore, there have been a second category of models that we call compound

models. They describe the pandemic as an interaction between two dynamical processes, namely the

compartmental component which corresponds to the dynamics of disease, and the regulatory component

which corresponds to dynamics of the meta-effects of the disease. The latter dynamics have been referred

to by multiple names such as “dynamics of fear” [7, 16], “information transmission” [17], “behavior

dynamics” [18], “reactive social distancing” [19], and the population observation of the infection level

[6]. Despite the different names, the latter paradigm can be summarized as an interaction of two types of

dynamics (Figure 1-a). In control theoretic terms, this can be interpreted as the familiar plant-controller

dichotomy.

In this work, we present a control-theoretic study of a minimal model of a prolonged outbreak that

captures both of the disease dynamics and the social dynamics using tools from singular perturbation

theory and nonlinear control. Unlike other elaborate models in the literature, we opt for an intelligible

model (Fig. 1-b,c) that is simple enough to studied analytically, yet it is also representative of the

dynamics. As a demonstration, we consider the daily COVID-19 infection numbers in the state of New

York. Using our two-dimensional model (Eq. (11)) we can fit the data satisfactorily as in Fig. 1-d.

Furthermore, the model allows us to interpret the plateau in the second hundred days as a QSS of the

fast component of the model and understand the role of the parameters.

Organization is as follows. In §2, we propose our modeling framework. We study stability and the

validity of the time-scale decomposition in §3, and the properties of the model including integral error

tracking and fold-change detection in §4. In §5, we study the specific case of Monod-inhibition and

parameter identifiability, and §6 contains fits and a discussion.

II. REGULATING THE SIR VIA ADAPTIVE CONTROL

A. Regulation of the contact rate

Consider the SIR model (1). In order to model the time-varying nature of β in a prolonged epidemic,

we start from a one-dimensional ODE regulating its dynamics. In the absence of disease, let βe be the

nominal value of the contact rate and we assume that it is asymptotically stable. First, we write a simple

linear model (which can be interpreted as a linearization of a more general nonlinear model which will

be considered later) as: β̇ = −α(β − βe), where α > 0 is the rate at which the contact rate returns to

the nominal rate after the absence of an external perturbation.

After the emergence of an epidemic, we model the feedback effect as follows: the society aims at

reducing the nominal contact rate to a new reduced level that varies in a direction opposite to that of I .

Let the new nominal contact rate be βe = h(I) where h is a C1 positive function. It quantifies the new

desired contact rate when the number of infectives rises, and hence h is naturally strictly decreasing.



(d)
Fig. 1. Modeling a prolonged outbreak. (a) The compound epidemic model can be cast in a standard control theoretic framework.

(b) A minimal regulated SIR model, (c) The reduced regulated SIR model in the case of a large population over short time periods (e.g.,

less than a year). (d) Fitting the first 200 days of the new daily COVID-19 infections (moving average of 7 days) in the state of New

York using the two-dimensional model (11). The fitted parameters are: γ = 0.071, α = 0.0575, K = 0.0104, and u = 0.8×10−4.

Furthermore, we allow a control “knob” u > 0 to tune the society’s perception of the severity of the

disease. Using common parlance, we can say that u is a parameter to modulate the intensity of social

distancing. Thus, we arrive to the model: β̇ = −α(β − h(uI)), where u > 0 is a constant. The theory

can be expanded effortlessly if we consider a slightly more general model:

β̇ = −α(g(β)− h(uI)), (2)

where g is any strictly increasing nonnegative C1 function. It models the natural tendency of people

to socially distance, and hence it is proportional to the current contact rate β. For instance, consider

a city-wide festival. After it ends and the external stimulus disappears, people intrinsically want to

reduce their current contact rate and return to their nominal one. We will see later that this natural

social distancing tendency acts as a damping control that stabilizes the system.

B. Model reduction via time-scale separation

Large cities and metropolitan areas are fertile grounds for the spread of highly-contagious diseases.

Due to the disease suppression measures, the number of susceptibles remains very large compared to



the infectives (e.g., millions vs thousands). Hence, the susceptibles can be considered constant from

the point of view of the infectives in an appropriate time scale of interest (e.g., 6 months). To be more

precise, we use singular perturbation techniques [20] to write (1),(2) as a slow-fast decomposition. Let

0 < ε ≪ 1 be a small parameter. We write the re-scaled susceptibles S̃ = εS. For instance, if the initial

number of susceptibles is 20× 106 (e.g., the metropolitan New York area) and we let ε = 10−6, then S̃
has the unit of Millions. Furthermore, we let c̃ = c/ε. This re-scaling is meaningful because we have

observed in our data fitting that c is in the order of ε. Note that cS = c̃S̃. Therefore, we can write (1),

(2) as:
˙̃S = −εcβSI = −εc̃βS̃I, (3)

İ = c̃βS̃I − γI, (4)

β̇ = −α(g(β)− h(uI)). (5)

The dots indicate derivative with respect to time t in the original time scale, which corresponds to the

fast time-scale in the singular perturbations literature. We refer to (4)-(5) as the fast subsystem, and to

(3) as the slow system.

III. STABILITY AND SINGULAR PERTURBATION ANALYSIS

A. Steady-state analysis of the fast system

For the fast system (4)-(5), the variable corresponding to the rescaled susceptibles is seen as a constant.

Hence, for simplicity of notation denote cs := cS, and we study the following system in the original

time scale:

İ = (csβ − γ)I, (6)

β̇ = −α(g(β)− h(uI)),

where u > 0 is fixed. We recall our assumptions:

(A1) h, g are C1 functions. (A2) h is strictly decreasing and positive on [0,∞). (A3) g is strictly

increasing and nonnegative on [0,∞).
It follows from the assumptions above that (6) is positive, i.e., the orthant is forward invariant. By

A1-3, the system (6) can admit (up to) two steady states (Id, βd), (Ie, βe) (which are QSSs considering

the full model):

1) The disease-free steady state which has Id = 0, and it exists iff h(0) ∈ image(g).
2) The endemic steady state which has Ie > 0. It exists iff g(γ/cs) ∈ image(h)◦, where ◦ denotes

the interior of a set.

For a given contact rate model (2), the endemic steady state can fail to exist only if γ is sufficiently

large, i.e., if the infectives are removed quickly, or if cs is sufficiently small. So, either the intrinsic

infection rate is small (low infectivity), or S̃ is small (small number of susceptibles).

We start by this basic result:

Proposition 1: Consider (6) with Assumptions A1-3. If the endemic steady state exists, then the

disease-free steady state is exponentially unstable.

Proof: If the disease-free steady state does not exist then the statement is vacuously true. Hence,

assume that h(0) ∈ image(g). Note that βd = g−1(h(0)). Writing the Jacobian of (6) at (Id, βd), we get:
[

csg
−1(h(0))− γ 0

αu ∂h
∂I

∣

∣

I=0
−α ∂g

∂β

∣

∣

∣

β=βd

]

.

Since the Jacobian is upper triangular, the eigenvalues coincide with the diagonal entries. Since the

endemic steady state exists, then g(γ/cs) ∈ image(h)◦. For the sake of contradiction, assume that

g−1(h(0)) < γ/cs. Since g is increasing then h(0) < g(γ/cs). Since h is decreasing, then 0 >
h−1(g(γ/cs)) which is a contradiction since the endemic steady state is positive. Therefore, the Jacobian

has a positive eigenvalue and hence the disease-free steady state is exponentially unstable.



Since we are interested in the long-term regulation of the epidemic, we assume that the endemic state

exists; i.e., we have:

(A4) g(γ/cs) ∈ image(h)◦.

B. Stability analysis of the fast system

We examine now the stability of the endemic steady state. We perform the following change of

coordinate p := ln I . Hence, we get the following system:

ṗ = csβ − γ, (7)

β̇ = −α(g(β)− h(uep)).

In order to analyze the system, we can momentarily assume that g ≡ 0. In this case, the system is

a Hamiltonian system. When g is added, which represents the intrinsic tendency of people to socially

distance, then it can be interpreted as a nonlinear damping control that stabilizes the system, and the

Hamiltonian can be used as a Lyapunov function [21, 22].

This is stated in the following theorem:

Theorem 1: Consider (6) with Assumptions A1-A4. Then, the endemic steady state (h−1(g(γ/cs))/u, γ/cs)
is a unique positive steady state which is globally asymptotically stable and locally exponentially stable.

Proof: Let us consider the transformed system (7). Recall βe = γ/cs. By A4, there exists pe such

that g(γ/cs) = h(uepe). Then, consider the Lyapunov function:

V (p, β) =

∫ p

pe

(

h(uepe)− h(uep̃)
)

dp̃+
1

2
(csβ − γ)2.

We first show that V is positive definite. To that end, note that V (p, β) ≥ 0 follows since the

decreasingness of h implies that h(uepe) ≥ h(uep) for all p ≥ pe. Furthermore, V vanishes only at

the steady state (pe, βe).
Noting that h(uep)− g(β) = h(uep)− h(uepe) + g(γ/cs)− g(β), we write:

V̇ (I, β) =
(

h(uepe)− h(uep̃)
)

(csβ − γ) + (csβ − γ)(h(uep)− h(uepe) + g(γ/cs)− g(β))

= (csβ − γ)(g(γ/cs)− g(β)) ≤ 0,

where the last inequality follows since g is increasing. To infer global stability, we use LaSalle’s

invariance principle [23] which requires the set of steady states to be the only invariant set contained

in the kernel of V̇ . The calculation above shows that all trajectories in kernel(V̇ ) have β = γ/cs.
Hence, consider an invariant set formed of a trajectory with β(t) ≡ γ/cs ∈ kernel(V̇ ). This implies

that β̇(t) ≡ 0. Hence, g(β(t)) = g(γ/cs) ≡ h(uep(t)). By A1-A4, we have p(t) ≡ pe. Hence, LaSalle’s

condition is satisfied and global stability follows for (7). Hence, the endemic steady state of the system

(6) is globally asymptotically stable.

To show exponential stability, we write the characteristic equation of the Jacobian of (6) at the

endemic steady state as: λ2 + α ∂g
∂β

∣

∣

∣

β=βe

λ− csIeαu
∂h
∂I

∣

∣

I=Ie
= 0 which has strictly positive coefficients

(by A1-A4). Hence, the Routh-Hurwitz criteria implies that the eigenvalues have strictly negative real

parts. Hence, local exponential stability follows.

C. Validity of the slow-fast decomposition

The system (3)-(5) is written in the fast time-scale which allows analysis of the fast dynamics while

treating the slow dynamics as constant. In order to perform singular-perturbation analysis, we formulate

the system (3)-(5) in the standard form. To that end, we write the system in the slow time scale τ = εt.
Hence, we get:

dS̃/dτ = (c̃S̃)βI,

εdI/dτ = (c̃S̃)βI − γI, (8)

εdβ/dτ = −α(g(β)− h(uI)).



In order to verify that the slow-fast approximation is valid, we use Tikhonov’s Theorem [20, 23].

The stability conditions needed are guaranteed by Theorem 1.

In the slow time scale, the fast subsystem equilibrates to its quasi-steady-state which is a function of

the susceptibles. Hence, the variables I, β can be approximated by Ie = h−1(g(γ/(cS)))/u, βe = γ/(cS).
Then, the slow system can be written as follows:

dS̄/dτ = −
γ

u
h−1(g(γ/(cS̄))), (9)

whenever A4 is satisfied, and dS̄/dτ = 0 otherwise.

We state the following result:

Proposition 2: (Tikhonov’s Theorem) Consider the system (8) defined on [0, T ] for some T > 0,

and let S(τ, ε), I(τ, ε), β(τ, ε) be its solutions for initial conditions S0, I0, β0. Assume A1-A4 hold.

Then, there exists ε∗ > 0 such that for all I0, β0 and all 0 < ε < ε∗, we have: S̃(τ, ε) − S̄(τ) =
O(ε), I(τ, ε)− Ī(τ/ε) = O(ε), β(τ, ε)− β̄(τ/ε) = O(ε) hold uniformly for τ ∈ [0, T ], where S̄(.) is

the solution of (9), and Ī(.), β̄(.) are the solutions of (6) over the original time scale.

Proof: The result follow from [23, Theorem 11.1] and Theorem 1.

IV. THE REGULATED SIR AS AN INTEGRAL CONTROL SYSTEM

A. Properties of the regulated SIR

1) The endemic steady-state contact rate is independent of the societal dynamics: If the endemic

steady state exists, then the steady state level of the contact rate is γ/cs, which is independent of the

actual dynamics of β. In other words, βe is robust to changes in the modeling of the contact rate. For

any choice of g, h, u, α, if the infection is endemic, then the (quasi) steady state level of the contact

rate is determined solely by the parameters of the epidemic.

2) The infection as a Proportional-Integral (PI) controller: The system in (6) is usually viewed as

the contact rate regulating the dynamics of the infection. Conversely, we can view it as the infection

regulating the dynamics of the contact rate. Viewing the system from this angle, we note that the

infective compartment (6) is a PI controller tracking the error between the growth rate of infectives csβ
and the removal rate γ with a state-dependent gain I . (In the transformed coordinates (7), p is a linear

PI controller). In other words, the system is trying to stabilize β to a level ensuring that the infection

stays at a QSS, i.e., İ = 0.

3) Adaptation to step inputs: As can be noted above, the (quasi) steady level of the contact rate is

independent of u and is regulated by a PI controller. Therefore, if there is a step input applied via u
(meaning that the society’s perception to the severity of the epidemic changes to a new level), then

the contact rate rejects this change and returns to its original level over the long term. Such regulatory

modules are ubiquitous in biological networks [22].

B. Fold Change Detection.

In addition to adaptation, an important property featured by many adaptive biological networks is

their ability to ignore changes to the absolute level of any input, and only detect fold changes to the

input [22, 24]. More precisely, assume that the system (6) is at a steady state (Ie, βe) for a constant

input u(t) = ū at time t = 0−. Assume that the input changes to u(t) = qū for all t > 0 and for some

q > 0. Consider the following parameterized output β(t; q, ū) starting from the initial condition (Ie, βe).
Then, the adaptive system (6) is said to have a Fold-Change Detection (FCD) property if the output

β(t; q, ū1) = β(t; q, ū2) for all t > 0 and any ū1, ū2 > 0. In other words, the output trajectory depends

on the fold-change q, and not on the absolute level of the input. We prove next that this applies to our

model (see [22, Lemma 3.1] for a more general result):

Theorem 2: Consider (6) with Assumptions A1-A4, and let the contact rate β be the output. Then,

the input-output system has an FCD property.



Fig. 2. Phase plane analysis of the fast subsystem with Monod inhibition. (a) The disease-free steady is asymptotically stable when
γ

cS
> K. (b) The endemic steady state is born, and the disease-free steady state exchanges stability with the endemic one.

Proof: Given ū1, ū2 > 0, q > 0. Observe that I(0; q, ū1) = ū1

ū2
I(0; q, ū2), and that (6) is

invariant with respect to transformation I 7→
ū1

ū2
I . Hence, I(t; q, ū1) = ū1

ū2
I(t; q, ū2) for all t. Write

β̇ = F (β, uI). Then, β̇(t; q, ū1) = F (β, qū1I(t; q, ū1)) = F (β, qū2I(t; q, ū2)) = β̇(t; q, ū2). Since

β(0; q, ū1) = β(0; q, ū2), FCD follows.

This result implies that the regulated SIR model does not care about the absolute level of the perception

of infection u, instead it only cares about the fold changes in its level. For instance, a change from a

base level of u = 1 to 10, will cause the same transient response as a change from u = 10 to u = 100.

This is consistent with the common understanding of how human perception of fear and danger works.

C. Assigning the quasi-steady-state level of the infectives.

If ending the infection is not feasible in the short term (which corresponds to having an endemic

(quasi) steady state), then the usual aim of an effective contact rate regulation policy (more commonly

known as a social distancing policy) is to keep the number of infectives plateaued at a low small

number. We show in this subsection, that the I-coordinate of the endemic steady state can be assigned

to any desired level via the constant input u.

Proposition 3: Consider the system (6) with A1-A4. Let I∗ > 0 be a desired quasi-steady-state level

of the infectives. Then, the required control input is u = h−1(g(γ/cs))/I
∗.

Proof: The expression above is well-defined by A1-A4. Setting β̇ = 0 in (6) and substituting

βe = γ/cs yields the required expression.

V. MONOD-TYPE INHIBITION AND IDENTIFIABILITY

A. Monod-type Inhibition

In order to examine the proposed model more concretely, we will use h : x 7→ K/(1+ x), g : z 7→ z,

which is a popular functional form in the epidemics literature [12], and it is known as the Monod or

the Michaelis-Menten form. Hence, the contact rate equation becomes:

β̇ = −α

(

β −
K

1 + uI

)

, (10)

where K can be interpreted as the nominal contact rate.

Since the fast system is two-dimensional, we plot the phase plane in Fig. 2. Condition A4 (guaran-

teeing the existence of endemic steady state) translates into S > S∗ = γ/(cK). The minimum number

of susceptibles needed for a sustained endemic is proportional to the removal rate γ, and inversely



proportional to the intrinsic infection rate c and the nominal contact rate K. In Fig. 2-a), the disease-

free steady state is asymptotically stable. However, when the endemic steady state is born, it becomes

the only asymptotically stable steady-state.

The approximated equation for the susceptibles over the slow time-scale is given by (9). It can be

shown easily that if S̃(0) > S∗, then A4 is satisfied for all τ > 0. Hence, the evolution of S̃ can be

describe by linear first order equation: dS̃/dτ = γ
u
−

c̃K
u
S̃. The closed-form solution in the original time

scale can be written as: S̃(t) = S∗ +
(

S̃(0)− S∗

)

e−c̃Kεt/u. By substitution in the quasi-steady-state

expression of I(t) we get: I(t) = 1
u

(

S̃(0)− S∗

)

e−c̃Kεt/u. The steady state behavior of the model is

S(t) → S∗ and I(t) → 0. Hence, the number of susceptibles approaches the minimal number S∗,

and the pandemic asymptotically approaches a disease-free steady state. Furthermore, as predicted by

intuition, a higher input u (i.e., stricter social distancing) means that the pandemic gets more prolonged

while having a lower quasi-steady-state level of the infectives as given in Proposition 3.

B. Data fitting and identifiability

In order to apply the proposed model to a practical setting, we need to deal with two issues to ensure

the well-posedness of the data fitting problem.

1) Measured output: The published data during pandemics consist of the daily new cases and daily

deaths (e.g, COVID-19 data [25]). However, none of these data correspond to the state variables in our

model. The number of infectives I can be construed as the “active infections”, however, there are not

usually reliable estimates of active infections, nor recoveries. Instead, notice that the beginning of every

active infection is reported within the new daily numbers. Hence, we interpret the new daily numbers

as the inflow to the infectives compartment I . Therefore, the measured output y can be written as:

y(t) = c̃S̃(t)β(t)I(t). As before, we assume that S̃ is approximately constant in the original time scale,

and we can write: y(t) = csβ(t)I(t)
2) Identifiability: The contact rate β(t) cannot be measured directly, and is inferred from the data.

In fact, in our problem, it can be seen that a re-scaled contact rate β̂(t) = c̃β(t) will produce the same

measured output, and that the parameters c̃ and K are not individually identifiable. Therefore, we can

normalize the contact rate by fixing c̃ = 1. Hence, we consider the following model:

İ(t) = (S̃β̂(t)− γ)I(t),
˙̂
β(t) = α

(

β̂(t)−
K

1 + uI(t)

)

,

y(t) = S̃β̂(t)I(t), (11)

where S̃ is the scaled total population size which is assumed to be constant, and unknown parameters

γ,K, u, α.

Identifiability has long been studied as a special case of nonlinear observability [26, 27]. The technique

is based on computing the Lie derivatives at time zero and evaluating the rank of the observability matrix

symbolically. Several toolboxes are publicly available. The package STRIKE-GOLDD [28] finds that

the problem is well-posed and both states are observable and all parameters are locally structurally

identifiable. The package SIAN [29] reports that initial states as well as all parameters are globally

identifiable.

VI. SIMULATIONS AND DISCUSSION

A. The impact of population size

We study the sensitivity of our techniques to population size. Figure 3 shows a numerical exploration.

Using our study of the reduced model, we predict that I(t) converges to the QSS level 1
u

(

cSK
γ

− 1
)

=

4,271. We simulate the full model (1) with different population sizes, which correspond to different

values of ε. We keep cS(0) constant for a meaningful comparison. We start with the nominal case of
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Fig. 3. The effect of population size on the predicted quasi-steady-state behavior. The total population denotes S(0). For all the

curves, the product cS(0) is kept constant at 17.5392. The other parameters in the model (6) are: γ = 0.091, α = 0.0679, K = 0.0229,

u = 0.0008. The QSS prediction is a solution of the reduced model (6), while the all the other curves are solutions of the full model

(1),(10).

a country of medium size with a population of 80M. The simulated parameters give an initial peak of

active infection reaching 25,000 cases. The quasi-steady-state level is at 4,265 after 200 days which

is 99.86% close to the theoretical value that was obtained via the QSS approximation. With smaller

population sizes, the theoretical value stays pretty close to the actual value for populations higher than

1M. For smaller populations, the actual behavior still resembles the theoretical behavior, however, the

quasi-steady-value is lower. This not surprising since a susceptible population of 0.5M will dwindle

quickly with daily active infections in tens of thousands.

B. Fitting to published data

In order to show the effectiveness of our model, we fit the COVID-19 data [25] to the course

of disease in multiple countries that experienced an initial surge followed by a plateau during the

summer, which we interpret as a QSS in our model. Fig. 1 shows the case of the State of New

York, while fits for Germany and the state of New Jersey are shown in Fig. 4. Note that new daily

infections data is noisy and sometime biased to weekend and weekdays. Hence, we use the standard

7-day moving average to filter the noise. The numerical analysis and fitting programs are available on

github.com/mahdiarsadeghi/epidemicqss.

C. Extensions: Second waves and Vaccinations

The proposed model has proved to be a useful tool for studying prolonged epidemics in large

populations. This opens the door for studying other effects such as the emergence of second waves

and the effectiveness of vaccinations.

Second waves can emerge because of desensitization to the severity of the pandemic, which can be

modeled by a decrease in the control input u. An increase in c by more infectious strains of the virus can

also lead to second waves. In addition, increased infections because of poor ventilation and increased

indoor gatherings during the winter can be modeled by increasing K or decreasing α. Another regulation

github.com/mahdiarsadeghi/epidemicqss


(a) (b)

Fig. 4. Fitting the first days of the new daily infections (moving average of 7 days). (a) New Jersey with parameters in the model (11):

γ = 0.071, α = 0.0453, K = 0.0154, u = 1.4 × 10−4. (b) Germany with parameters in the model (11): γ = 0.1073, α = 0.0613, K =
0.0061, u = 3.4× 10−4.

measure of the pandemic is the use of vaccines. This can be modeled by adding the an outflow term

−δS to the susceptibles compartment. Due space limitations, we leave these investigations for future

work.
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