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The spread of COVID-19 caused by the recently discovered SARS-CoV-2 virus has become a
worldwide problem with devastating consequences. To slow down the spread of the pandemic, mass
quarantines have been implemented globally, provoking further social and economic disruptions.
Here, we implement a comprehensive contact tracing network analysis to find an optimized quar-
antine protocol to dismantle the chain of transmission of coronavirus with minimal disruptions to
society. We track billions of anonymized GPS human mobility datapoints from a compilation of
hundreds of mobile apps deployed in Latin America to monitor the evolution of the contact net-
work of disease transmission before and after the confinements. As a consequence of the lockdowns,
people’s mobility across the region decreases by ∼53%, which results in a drastic disintegration of
the transmission network by ∼90%. However, this disintegration did not halt the spreading of the
disease. Our analysis indicates that superspreading k-core structures persist in the transmission
network to prolong the pandemic. Once the k-cores are identified, an optimized strategy to break
the chain of transmission is to quarantine a minimal number of ’weak links’ with high between-
ness centrality connecting the large k-cores. As countries built contact tracing apps to fight the
pandemic, our results could turn into a valuable resource to help deploy quarantine protocols with
minimized disruptions.

I. INTRODUCTION

In the absence of vaccine or treatment for COVID-
19, state-sponsored lockdowns have been implemented
worldwide to halt the spread of the ongoing pandemic
creating large social and economic disruptions [1–3]. In
addition, some countries have also implemented digital
contact tracing protocols to track the contacts of infected
people and reinforce quarantines by targeting those at
high risk of becoming infected [4–13]. Here we develop,
calibrate, and deploy a contact tracing algorithm to track
the chain of disease transmission across society. We
then search for quarantine protocols to halt the epidemic
spreading with minimal social disruptions [14–19].

Our study uses two complementary datasets. The first
includes data from ’Grandata-United Nations Develop-
ment Programme partnership to combat COVID-19 with
data’ [20]. It is composed of anonymized global position-
ing system (GPS) data from a compilation of hundreds
of mobile applications (apps) across Latin America that
allow to track the trajectories of people (users). The
data identify each mobile phone device with a unique
encrypted mobile ID and specifies its latitude and longi-
tude location through time, encoded by geohash with 12
digits precision. Typically, this dataset generates ∼ 450
million data points of GPS location per day across Latin
America in particular in the state of Ceará, Brazil (see
SM sections I-V).

The second dataset is an anonymized list of confirmed
COVID-19 patients obtained from the Health Depart-
ment authorities from both states. It includes the geo-
hash of the address, the SARS-COV-2 test detection date
and first day of symptoms of COVID-19. We cross-match
the geolocation of the patients with the GPS dataset ob-
taining the encrypted mobile ID of the patients (see SM
sections I-V). We then trace the geolocalized trajecto-
ries of COVID-19 patients during a period -14/+7 days
from the onset of symptoms to look for contacts of the
infected person to define the transmission network using
the model described below.

II. COVID-19 MODEL

The COVID-19 spreading model is represented by
a Susceptible-Exposed-Infectious-Recovered (SEIR) pro-
cess [15] (Fig. 1a). The infectiousness period of an in-
fected person starts 2 days before and lasts up to 5 days
after the onset of symptoms [21]. In this paper, we add
two days to each of these limits to conservatively cap-
ture most transmissions. Thus, in principle, to trace
those people potentially infected by COVID-19 patients,
we track contacts 4 days before and 7 days after the re-
ported date of first symptoms (see Fig. 1a). In addition,
we extend the tracing period further back in time to also
consider exposures that could come from asymptomatic
cases. Exposures start the incubation period of the in-
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fected person which can occur up to 12.5 days before
onset of symptoms (5.2 days on average, 95% percentile
12.5 days [22, 23], Fig. 1a). To conservatively trace these
exposure events, we add ∼2 days to this incubation pe-
riod and obtain the widely used 14 days period. Hence,
to trace transmission and exposure cases, we perform
contact tracing over -14/+7 days from onset of symp-
toms (Fig. 1a). We note that the peak of infectiousness
as well as 44% (95% confidence interval, 25-69%) of in-
fected cases occur during the pre-symptomatic stage [21].
Thus, performing contact tracing is essential to stop the
spreading of the disease.

III. CONTACT MODEL

The GPS geolocation of the trajectories of both in-
fected and susceptible people is used to trace several lay-
ers of contacts in the transmission network using the fol-
lowing model. A contact at time stamp n is initiated with
an infected user (source) at time t0 (see Fig. 1b). At t0
we draw a contact area as a circle centered in the source
position with a radius r. We then gather all the GPS
datapoints from susceptible users (targets) that enter the
contact area from t0 to t0 +T , where T is the total expo-
sure time. We follow the trajectories of source and target
within the time-space area and compute the probability
of infection at time stamp n as pi[n] = pd[n] ·pt[n], where
pd[n] is the spatial component, and pt[n] is the temporal
component. When the average overlap between source
and target is zero, then pd[n] = 1, and when the overlap
is 2r, then pd[n] = 0. On the other hand, when the expo-
sure time ≥ T , then pt[n] = 1, and decreases to pt[n] = 0
as the exposure time decreases (see SM sections I-V for
definitions). The probability pd[n] quantifies the contact
probability for two users in the same area defined by r. A
contact requires non only a space overlapping but also a
time overlap, pt[n], which quantifies the probability that
two users met based on the time commonly spent in the
same area. We then combine these two probabilities for
each timestamp n into their product.

Contacts with low probability of infection pi[n], but
repeated throughout time, can also infect the target. To
incorporate this effect in the model, we define the prob-
ability of infection for a series of repeated contacts Pi[n]
as a recursive formula from time 1 to n with Pi[0] = 0:

Pi[n] = pi[n](1− Pi[n− 1]) + Pi[n− 1]. (1)

The iteration of contacts between source and target,
Pi[n], generates higher probability of infection than a sin-
gle contact pi[n]. This means that there is a difference
between a short single contact between two people and
short repeated contacts between the same people. The
latter scenario should have a larger probability than the
former to become infected. While the distribution of pi[n]
is homogenous without a clear threshold for an infec-
tious contact, Pi[n] presents a very polarized distribution
where the values are accumulated in the extremes: Pi =
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FIG. 1. COVID-19 contact model. (a) Infectiousness
profile of COVID-19. The COVID-19 pandemic is represented
with a SEIR model. From exposure (E) the virus is incubated
in average for 5.2 days (12.5 days 95th percentile), starting
the symptoms 2 days after infectiousness (I) and lasting the
disease up to 17 days to recover (R). We use a window -
14/+7 days from the first symptoms to detect infectious and
exposure. (b) Contact area used in the contact tracing model.
The grey person is at the first datapoint of the source at t0.
We collect all datapoints for every user in a T=30 min forward
window (t1, t2, t3, ..., t0 + T ) within an 8 m circle from the
initial position. For each target (green and red) we compute
the average position and the time spent inside the contact
area (red part of the trajectory line). (c) Partial transmission
tree of outbreak of confirmed SARS-CoV-2 infection identified
by contact tracing during calibration in the month of March
2020. Links goes from the source of infection to the target.
The colors represent the day of first symptoms for each node
and size is the out-degree.

0 or Pi = 1 (see SI Fig. SIA). Thus, Pi[n] is better indica-
tor than pi[n] to separate infectious from non-infectious
contacts. A contact is then considered infectious when
this probability exceeds a certain threshold, Pi[n] > pc.
The hyperparameters of the contact model (T, r, pc) are
obtained by calibrating the model using only the contacts
between infected people to reproduce the basic reproduc-
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tion number R0 = 2.78 in Ceará in the month of March,
2020 (see SM sections I-V). We obtain T = 30 min, r =
8 m and pc = 0.9. Thus, a contact is defined with prob-
ability one when exposure is at least 30 minutes within
a distance � 8m. This calibration procedure provides
the partial transmission tree of the outbreak from pa-
tient zero to the end of the calibration period shown in
Fig. 1c.

IV. TRANSMISSION NETWORK MODEL

Next, we create the contact network of coronavirus
transmission by first tracing the trajectories of confirmed
COVID-19 patients to search for contacts -14/+7 days
from the onset of symptoms using the above model. From
the first contact layer, we add four layers of contacts to
constitute the contact network of transmission that is
used to monitor the progression of the pandemic. The
time-varying network is aggregated to a snapshot defined
over a time window of a week [15] (SM Section S6.1). We
find that other aggregation windows give similar results
as presented.

Next, we analyze the spatio-temporal properties of the
contact network. The government of the State of Ceará
imposed a mass quarantine on March 19, 2020 which led
to a decrease in people’s mobility by 56.5% as shown in
Fig. 2a. During the lockdown, only the displacements
of essential workers were allowed. A large decrease in
mobility is also observed across all Latin America, see
[20].

V. GIANT CONNECTED COMPONENT (GCC)

To understand the effect of the lockdown on the con-
tact network, we think by analogy with a ’bond percola-
tion’ process [15, 16, 24]. In bond percolation, the net-
work connectivity is reduced by removing a small fraction
of links (bonds) between nodes, and the global disruption
in network connectivity is monitored by studying the nor-
malized size of the giant connected component (see Meth-
ods). Following this analogy, the lockdown acts as a per-
colation process, and therefore we monitor the GCC of
the transmission network before and after the lockdown.
We find a large decrease in the size of the GCC [15, 24]
within 6 days of the implementation of the lockdown on
March 19, when the GCC is almost fully dismantled de-
creasing by 89.6% of its pre-lockdown size (Fig. 2a).

Despite the disintegration of the GCC, the cumulative
number of cases kept growing albeit at a lower rate (Fig.
2a). We find that the mass quarantine was able to reduce
the basic reproduction number from R0 = 2.78 before
lockdown to an effective reproduction number of Re = 1.2
after the lockdown (Fig. 2a). Despite this disruption in
the network connectivity, Re has not decreased below
one, as it would have been needed to curb the spread of
the disease.
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FIG. 2. Structural components of transmission net-
works across the lockdown. (a) Evolution for differ-
ent metrics in Ceará, Brazil, previous to the mass quaran-
tine (grey area), right after the imposed quarantine (yellow
area) and later. The plot shows the root mean square dis-
placement (MSD) normalized by the maximum value over the
total period (blue), the cumulative number of cases (green)
and the size of the GCC normalized by the maximum value
over the total period (black). The uncertainty corresponds to
the standard error (SE). The mobility data is showcased in
the Grandata-United Nations Development Programme map
shown in https://covid.grandata.com. The initial rise in GCC
is due to the lack of data before March 1. (b) The plot
shows the 0.5-kcore size (red), the 0.5-kshell size (cyan) all
normalized by their respective maximum value pre-lockdown.
While the size of the 0.5-kshell is reduced drastically during
the lockdown, the 0.5-kcore was not reduced as much and
keeps increasing, contributing to sustain the pandemic. The
0.5-kcore seems to follow the trend in the MSD, which we plot
again to show this trend.

The drastic reduction in the GCC is visually apparent
in the contact networks in Fig. 3. Before lockdown on
March 19 (Fig. 3a), the network is a strongly-connected
unstructured ’hairball’. Eight days into the lockdown
on March 27 (Fig. 3b), the network has been untangled
into a set of strongly-connected modules integrated by
tenuous paths of contacts. This structure is even more
pronounced a few weeks later on April 28 (Fig. 3c).
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FIG. 3. Evolution of GCC and k-cores over the quar-
antine. Disease transmission networks in the state of Ceará
over time before and after the lockdown on March 19, 2020.
(a) Transmission network on March 19 (pre-lockdown). A
hairball highly-connected network is observed. The discon-
nected components of the 7-core (kmax

core = 12 in this network)
are colored. These components are well connected into the
hairball network as expected since mobility and connectiv-
ity is high. (b) The pre-quarantine hairball in (a) has been
untangled and the k-cores have emerged 8 days into the lock-
down on March 27. Here, we color the nodes according to
layers of the transmission network starting at COVID-19 pa-
tient (black nodes). Size of nodes is according degree. (c)
Network on April 28 including the components of the 5-core
in different colors (kmax

core = 7 for this network). Visible is the
high betweenness centrality node representing the weak-link
of this k-core. (d) We plot the location of the contacts in
the map of Fortaleza constituting the components of the 5-
core of the April 28 in (c). The size of the circles in the
map corresponds to the number of contacts inside each loca-
tion. The colors correspond to the clusters of the 5-core in
(c). The 5-core sustaining transmission is composed of clus-
ters of contacts localized in hospitals, large warehouses and
business buildings. Hospital 3, one of the largest in Fortaleza,
constitutes the maximal kmax

core = 7 of the pandemic.

VI. SUPERSPREADING K-CORE
STRUCTURES

The highly connected modules found in Fig. 3b and
3c are k-core structures [25–28] of higher complexity than
the GCC (which is a 1-core), that are known to sustain
an outbreak even when the GCC has been disintegrated
[15, 28]. The k-core of a graph is the maximal subgraph
in which all nodes have a degree (number of connections)
larger or equal than k [25–28]. The k-shell is the periph-
ery of the k-core and is composed by all the nodes that

belong to the k-core but not to the (k+1)-core (see SM
sections I-V for definitions and SM Figs. S2, S3, and
S4). The k-core is obtained by iteratively pruning the
nodes with degree smaller than k. For instance, the 3-
core is obtained by removing the 1-shell and 2-shell in
a k-shell decomposition process (see SM Figs. S2, S3).
Thus, all nodes in a k-core have at least degree k, and
are connected to other nodes with degree at least k too.
K-cores are nested and can be made of disconnected com-
ponents (see SM Fig. S4). High k-cores are those with
large k up to a maximal kmax

core , and constitute the inner
most important part of the network. In theory, the high
k-cores are known from network science studies to be the
reservoir of disease transmission persistence [15, 28]. On
the contrary, low peripheral k-shells (see SM Fig. S2) do
not contribute as much to the spread as the high inner
k-cores.

Figure 2b shows that despite the disappearance of the
GCC, there is a significant maximal k-core that was not
dismantled by the mass quarantine. The figure shows
that the outer k-shells of the transmission network (i.e.,
the 0.5-kshell defined as the union of the k-shells with
k = 1, 2, ..., d1/2 kmax

core e − 1, see SM sections I-V) are dis-
integrated in the lockdown, decreasing by 91% with re-
spect to their pre-quarantine size, in tandem with the
GCC. However, the inner k-core (i.e., the 0.5-kcore de-
fined as the k-core with k = d1/2 kmax

core e, see SM sec-
tions I-V) persists in the lockdown. The figure shows
that the decrease of the 0.5-kcore is only 50% compared
to the 91% decrease of the 0.5-kshell; the former even
increases slightly at the end of April, following the same
trend in mobility (see Fig. 2b). This process is visually
corroborated in the evolution of the networks seen from
Fig. 3a to 3c where we observe the disappearance of the
peripheral k-shells and the persistence of the maximal k-
core. Indeed, the unessential contacts in the peripheral
k-shells may have been first pruned during social distanc-
ing.

Using numerical simulations, we corroborate previous
results indicating that the infection can persist in these
high k-cores of the network while virus persistence in
outer k-shells is less important [15, 28]. We use a SIR
model on the transmission network (Fig. 4a and SM
Fig. S14A) showing that the maximal k-cores of the net-
work sustain the spreading of the disease more efficiently
than the outer k-shells. Thus, the maximal k-core com-
ponents of the contact network are plausible drivers of
disease transmission. Apart from this structural explana-
tion (i.e., k-core), epidemiological factors may also play a
role in the persistence of the disease, such as a transition
of the disease to vulnerable communities with high demo-
graphic density, or with large inhabitants per household
where isolation is poorly fulfilled.

When we plot the geolocation of the contacts form-
ing the maximal k-core in the map of Ceará, we find
that these contacts take place in highly transited areas
of the capital Fortaleza, such as hospitals, business build-
ings, warehouses as well as large condominiums, see Fig.
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FIG. 4. Weak links and k-cores. (a) Average size of infected population, M [28], in an outbreak average over all starting
nodes in a k-shell as a function of the probability of infection β for a SIR model on the network in Fig. 3c during the lockdown.
The black is the average value over all the network. The average divides the k-shell contribution to the spreading of the virus in
two groups: above and below the average. The 0.5-kcores have maximal spreading and the 0.5-kshell have minimal spreading.
Error bars correspond to a confidence interval of 95%. (b) Optimal percolation analysis performed over the network in Fig. 3c
during the lockdown in following different attack strategies and their effect on the size of the largest connected component G(q)
versus the removal node fraction, q. Nodes are removed (in order of increasing efficiency): randomly (blue); by the highest
k-shell followed by high degree inside the k-shell [28]; by highest degree (orange); by collective influence (red) [19]; and by
the highest value of betweenness centrality (green) [32, 33]. After each removal we re-compute all metrics. The most optimal
strategy among those studied is removing the nodes by the highest value of betweenness centrality. (c)-(d) Effect of removing
three high betweenness centrality nodes shown in Fig. 4b in the network of Fig. 3c. (c) We show the 2-core component of
the network after the removal of 12 high betweenness centrality nodes. The red node is the one with the highest betweenness
centrality value (next node to remove, 13th) and the blue node is the 14th removal. Different k-cores and k-shell are in different
colors. (d) Network k-cores are disintegrated after the removal of the high BD nodes.

3d. These contacts generate superspreading k-core events
that generalize the conventional notion of superspread-
ers, which refer mainly to individuals with large number
of transmission contacts [29–31]. However, connections
are not everything [17, 18]. K-core superspreaders not
only generate a large number of transmission contacts,
but their contacts are also highly connected people, and
so forth.

VII. OPTIMIZED QUARANTINE

The existence of k-cores in the transmission network
suggests that a more structured quarantine could be de-
ployed to either isolate or destroy those cores that help
maintain the spread of the virus. We perform an optimal

percolation analysis [17–19] to find the minimal number
of people necessary to quarantine that will dismantle the
transmission network. We compare different strategies to
find the best among them to break the network by rank-
ing the nodes based on (1) the number of contacts (hub-
removal) [15, 17, 18], (2) the largest k-shells and then by
the degree inside the k-shells [15, 28], (3) the collective
influence algorithm for optimal percolation [19], and (4)
betweenness centrality [32–35] (we also try other central-
ities, see SM sections I-V).

Figure 4b shows the normalized size of the GCC versus
the fraction of removal nodes following different strate-
gies, as well as a random null model of removal in a typ-
ical network under lockdown in April 28 (March 19 pre-
lockdown results are plotted in SI Fig. S14B). While the
disease can persist in the k-cores (Fig. 4a), quarantining
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people directly inside the maximal k-core is not an opti-
mal strategy. The reason is that k-cores are populated
by hyper-connected hubs that requiere many removals
to break the GCC [34] (around 7%, see Fig. 4b). For
the same reason, removing directly the hubs is not the
optimal strategy either, since the hubs are within the
maximal k-core and not outside. A collective influence
strategy [19] improves over hub-removal since it takes
into account how hubs are spatially distributed, yet, it
is far from optimal. Clearly, Fig. 4b shows that the
best strategy is to quarantine people by their between-
ness centrality. By removing just the top 1.6-2% of the
high betweenness centrality people, the GCC is disin-
tegrated. This result is consistent with the particular
structure of the transmission networks seen in Fig. 3b, c
and Fig. 4.

The betweenness centrality of a node is proportional
to the number of shortest paths in the network going
through that node. Thus, given the particular struc-
ture of the networks in Figs. 3b, c, and Fig. 4c, the
high betweenness centrality nodes are the bottlenecks of
the network, i.e., loosely-connected bridges between the
largely-connected k-cores components. These connectors
are the ’weak links’, fundamental concept in sociology
proposed by Granovetter [36], according to which, strong
ties (i.e., contacts in the k-cores) clump together forming
clusters. A strategically located weak tie between these
densely ’knit clumps’, then becomes the crucial bridge
that transmits the disease (or information [36]) between
k-cores. These weak links are people traveling among the
different k-cores components allowing the disease to es-
cape the cores into the rest of society. These bridges are
displayed in the network of Fig. 4c as the yellow, blue
and red nodes. The removal of these high betweenness
centrality people disconnects the k-core components of
the network entirely, as shown in Fig. 4d, halting the
disease transmission from one core to the other [34, 37].

An important finding is that quarantining the large
superspreading k-cores is neither optimal (as shown
in Fig. 4b, green curve) nor practical, since they are
mainly comprised by chiefly essential workers who
need to remain operational (Fig. 3d). Thus, the best

strategy, in conjunction with a mass quarantine, is then
to disconnect these k-cores from the rest of the social
network (Figs. 4c and 4d), rather than quarantining
the people inside the k-cores. This can be performed by
quarantining the high betweenness centrality weak-links
that simultaneously preserve the operational k-cores.
However, individuals belonging to the maximal k-cores
should be tested at a higher frequency to promptly
detect their infectiousness before the symptoms start, to
help control the spreading inside the k-cores.

VIII. SUMMARY

Isolating the k-core structures by quarantining the high
betweenness centrality weak links in the transmission
network proves to be an effective way to dismantle the
GCC of the disease while keeping essential k-cores work-
ing. While destroying the strong links and cores is a
less manageable task to execute and control, isolating
the weak links between cores is a more feasible task that
will assure the dismantling of the GCC. In other words, if
one core is infected, the disease will be controlled within
that core and not extended to the rest of society.

As governments around the world are racing to roll
out digital contact tracing apps to curb the spread of
coronavirus [4–11], our modeling suggests possible quar-
antine protocols that could become key in the second
phase of reopening economies across the world and, in
particular, in developing countries where resources are
scarce. Overall, our network-based optimized protocol is
reproducible in any setting and could become an efficient
solution to halt the critical progress of the COVID-19
pandemic worldwide drawing upon effective quarantines
with minimal disruptions.
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Dubé, Global efficiency of local immunization on complex
networks, Scientific Reports 3, 2171 (2013).
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