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Abstract

This paper introduces a functional extension of the QR decomposition of lin-
ear algebra and shows its application to identify independent patterns (curves) of
COVID-19 mortality in Brazil’s states. The problem is treated as a subset selec-
tion one, and regions of influence of each pattern are then determined by fitting the
mortality curves of the remaining states to the main independent ones. Three main
patterns are detected: (1) a two-peak curve in central and southern states, (2) a
curve with an early single peak concentrated in the Amazonian state of Roraima,
and (3) a curve with and early peak and a large recent increase in the Amazonian,
northeastern and southeastern states.

1 Introduction

On March 11, 2020, the World Health Organization declared a worldwide pandemic of
the COVID-19 disease caused by the new coronavirus SARS-CoV-2. The disease was
identified for the first time in Wuhan, People’s Republic of China, in December 2019.
Until the present date, around 118 million cases have been reported, with 2.6 million
deaths [29]. In Brazil, the number of cases reaches 11 millions, with 268 thousands
deaths [18].

In order to contain the pandemic, countries throughout the world have implemented
measures to enforce adequate hygiene and social distancing, such as the use of facial
masks in public places, traveling restrictions, closing of schools, commerce and non-
essential services [28, 16, 12]. Naturally, the response to those measures depends on
demographic characteristics, timing of the contention measures, compliance of the pop-
ulation, and other factors [10]. Thus, data-driven models of the pandemic propagation
are desirable to characterize and analyze underlying patterns, assess the effectiveness of
containment policies, forecast its evolution, and a number of them have been proposed
[14, 23].

Here, we consider a modeling approach based on the QR decomposition technique
of linear algebra [11], in order to identify regions with independent patterns of COVID-
19 evolution within Brazil. The QR decomposition is a matrix factorization technique
that provides a simple and numerically robust solution to the so-called “subset selection
problem”. In that problem, a set of observations n vectors is given and a subset of the k
most independent ones is sought. The subset may be used next as a basis to represent
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the n − k remaining vectors filtering out any data redundancy. This process has some
similarities to the well-known technique of principal component analysis (PCA), in the
sense that it achieves a reduction of the dimensionality of the data. However, instead of
expressing the data in terms of transformations of the data, it does so in terms of a set
of the most nonredundant observation vectors and therefore the results tend to have an
easier interpretation [6].

In a previous study [17], the QR decomposition was applied to identify kinematic
regions of the face that follow independent motion patterns during speech. The study
argued that, whereas PCA could be used to extract facial gestures (i.e., temporal patterns
of motion), the QR decomposition approach was more adequate to express the motion of
the face in terms of eigenregions which acted as independent biomechanical units. The
present study has a similar purpose in the sense that it intends to build a spatial model
in terms of regions of independent behavior. Therefore, the same modeling strategy of
the previous facial study will be followed, except that a functional extension of the QR
decomposition will be considered.

The proposed extension fits within a functional data analysis (FDA) context [20],
in which data is expressed as sets of curves instead of discrete numerical values as in
traditional statistics. Techniques of FDA have been successfully applied to a variety of
problems in biomedicine and public health [26]. In a recent paper, functional principal
components analysis (fPCA) combined with functional clustering was used to identify
patterns of COVID-19 incidence and mortality across countries [4, 15]. Applications of
fPCA to model canonical correlations between confirmed and death cases in the United
States [24], mortality patterns in Italian provinces [3], and build spatiotemporal models
of infection risk in municipalities of Portugal [2] have also been reported. Further,
variations of subset selection problems in functional contexts also have been addressed
recently, such as regression analysis with a scalar response and a functional predictor
[13], dimension reduction of a functional predictor for a categorical variable [25], subset
selection of discreet values from a functional predictor [1], and others [9, 6]. Thus, the
present study has the secondary goal of introducing the functional extension of the QR
decomposition as an addition to the set of available FDA tools.

2 Data

2.1 Description and pre-processing

The evolution of the pandemic is assessed in terms of mortality rates (i.e., death counts
per day), which provide a more reliable measure than infection rates [27]. Official data
of COVID-19 were obtained from a repository at the Ministry of Health of Brazil [18],
accessed on March 5, 2021. The data consists of records of deaths counts per day since
February 25, 2020, in Brazil’s 27 federative units (26 states and a Federal District). For
simplicity, the federative units will be be called “states” throughout the analysis.

For each state, the period from the first confirmed death was extracted, and all
extracted records were cut to the length of the shortest one (325 days). Then, the
records were normalized to population size of each state and expressed in deaths per
million individuals,

xij =
Number of deaths at day j

Population size
× 106 (1)

for i = 1, 2, . . . , 27 and j = 1, 2, . . . , 325.
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A few isolated mortality values were detected in the records, and those were removed
by averaging them with nearby data points, as follows: if xij < 0, then

xik =
1

3

1
∑

ℓ=−1

xi,j+ℓ (2)

for k = j − 1, j, j + 1.
In addition, and in order to avoid negative mortality values arising from the analysis,

a mapping [0,∞) into (log δ,∞) was defined by yij = log10(xij + δ), were δ is a small
number. All the following processing was applied in the log domain, and mortality
values were afterward recovered by a power of 10 transformation. A value of δ = 0.01
was selected by visual inspection of the data and results, so as to produce non-negative
mortality curves while at the same time preventing excessive distortion due to very large
negative values in the log domain for mortality values close or equal to 0.

2.2 Functional form

The first step of the analysis is to put the discrete data into functional form [20].
For each state i, the existence of a smooth non-negative real function fi(t) is assumed,

such that
yij = fi(tj) + εij , (3)

where tj is the time at the end of day j (with t1 = 0), and εij is an observational error
or noise term. Each mortality function fi is defined over the domain t ∈ [0, T ], with
T = 324 days, and is expressed in a basis expansion form

fi(t) =
K

∑

k=1

cikgk(t) (4)

where gk(t), k = 1, 2, . . . ,K is a set of basis functions and cik are the expansion coeffi-
cients. The expansion coefficients are computed by minimizing the cost function

Fλ,fi
=

∑

i







∑

j

[yij − fi(tj)]
2 + λ

∫

T

[

D2fi(t)
]2
dt







, (5)

where λ is a roughness penalty coefficient and D2 denotes the second order derivative.
For the basis in Eq. 4, a truncated Fourier cosine series [7] was adopted, i.e.,

g1(t) = 1/
√
T , (6)

gk(t) =
√

2/T cos kπt/T, k = 2, 3, . . . ,K. (7)

This basis was chosen because of its stability, ease of computation, and orthonormality
on the interval [0, T ], which facilitates the QR decomposition in Section 3.2. A B-spline
basis system was also tested, but it tended to produce a poorer fit at the extremes of
the mortality curves. Optimal values of the basis size K and the roughness penalty
coefficient λ were determined by minimizing the sum of the generalized cross validation
measure (GCV) for each fk function [8, 20], which produced K = 20 and λ = 103.5

(Fig. 1).
Fig. 2 shows all data in functional form and one example comparing the functional

form to the original discrete data. The resultant functions are visually smooth and
approximate well the original data, without weekly or short-term fluctuations.
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Figure 1: Sum of the generalized cross validation measure (GCV) for all records vs. roughness
penalty coefficient λ (top) and basis size K (bottom). Top plot: K = 20. Bottom plot: λ = 103.5;
the GCV is minimum at K = 20 and then increases slightly as K increases.
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Figure 2: Daily deaths per million inhabitants. Top: functional data. Bottom: original data
for the state of Minas Gerais (gray bars) and functional form (black curve).
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3 Solution of the subset selection problem by the QR de-

composition

3.1 Discrete version

In the so-called subset selection problem of linear algebra, a data matrix A ∈ R
m×n

and an observation vector b ∈ R
m×1 are given, with m ≥ n, and a predictor vector x is

sought in the least squares sense; i.e., a minimizer of ‖Ax− b‖2
2 [11]. However, instead of

using the whole data matrix A to predict b, only a subset of its columns is used so as to
filter out any data redundancy. This problem may be solved by the QR decomposition
with column pivoting [11]. The decomposition expresses A in the form AP = QR, where
P ∈ R

n×n is a column permutation matrix, Q ∈ R
m×m is an orthogonal matrix, and

R ∈ R
m×n is an upper triangular matrix with positive diagonal elements. A simplified

variant is the “thin” version, in which Q ∈ R
m×n and R ∈ R

n×n.
The first column of AP is the column of A that has the largest 2-norm. The second

column of AP is the column of A that has the largest component in a direction orthogonal
to the direction of first column. In general, the kth column of AP is the column of A
with the largest component in a direction orthogonal to the directions of the first k − 1
columns. Thus, the algorithm reorders the columns of A so as to make its first columns
as well conditioned as possible. The first k columns of AP may be then adopted as
the sought subset of k least dependent columns. The diagonal elements of R (rkk), also
called the “R values”, measure the size of the orthogonal components, and they appear
in decreasing order for k = 1, . . . , n.

Once the subset of k columns of A has been selected, the dimensionality of the data
may be reduced by fitting the remaining n − k columns of A, as follows. Consider the
thin decomposition and define the following block partitions:

R =

[

R11 R12

0 R22

]

, P =
[

P1 P2

]

, (8)

whereR11 ∈ R
k×k, P1 ∈ R

n×k, and the dimensions of the other blocks match accordingly.
Then, the remaining n−k columns of AP may be approximated as AP2 ≈ AP1X, where
X ∈ R

k×(n−k) is the solution of the upper triangular system R11X = R12 [17]. The
residual of the approximation is ‖R22‖F , where subindex F indicates the Frobenius
norm.

3.2 Functional extension

In the present case, we have a data set of n functional observations fi(t). In vector form,
the data may be expressed as A = [f1, f2, . . . , fn]. The functional QR decomposition is
defined analogously to the discrete version, as follows.

For functions ξ(t), ψ(t), the inner product over the interval T is defined as

〈ξ, ψ〉 =

∫

T
ξ(s)ψ(s)ds. (9)

Then, ‖ξ‖2 = 〈ξ, ξ〉, and the projection of ξ on the direction of ψ is projψ ξ = 〈ξ, ψ〉ψ/‖ψ‖2 .
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Define next the orthogonal functions

u1 = f1, (10)

u2 = f2 − proju1
f2, (11)

. . . (12)

un = fn −
n−1
∑

j=1

projuj
fn. (13)

Thus, matrix Q has the form Q = [q1(t), q2(t), . . . , qn(t)], where qi = ui/‖ui‖, and matrix
R is

R =













〈q1, f1〉 〈q1, f2〉 · · · 〈q1, fn〉
0 〈q2, f2〉 · · · 〈q2, fn〉
...

...
...

0 0 · · · 〈qn, fn〉













(14)

Matrix P is obtained by reordering the components of F so that the main diagonal
of R has its elements in decreasing order from top to bottom.

Matrices Q, R and P may be computed directly from the above equations; however,
such a strategy may suffer from the same problems of numerical instability as in the
discrete case [11]. A second possibility is to discretize functions fi(t) in a number of data
points over interval [0, T ], and so transforming the functional problem into a discrete one
[6]. However, a simpler and more convenient strategy is to use the expansion in Eq. (4).

In matrix form, the expansion is

A = GC, (15)

where G = [g1, g2, . . . , gK ] and C is a K×n matrix of coefficients cik. Letting AP = QR
and expressing functions gi(t) in the same basis system as functions fi(t), we have
Q = GB, where B is a K × n matrix of coefficients bik. Replacing into Eq. (15) and
simplifying, we obtain

CP = BR (16)

We know that matrix B is orthogonal (since both Q and G are orthogonal), and that the
QR decomposition with column pivoting is unique [11]. Therefore, Eq. (16) represents
the standard (discrete) QR decomposition of matrix C, which may be computed using
available algorithms of matrix algebra.

4 Results of the COVID-19 data analysis

The states with the most independent log mortality functions are listed in Table I, and
Fig. 3 shows the whole set of R values for the data. The R values decrease as the number
of selected functions increases, with a clear gap between between the third and fourth
values. The gap suggests that the main independent functions may be reduced to the
first three [22].

The relative error in reconstructing the data set from the first k selected functions,
computed as ‖R22‖F /‖R‖F (i.e., in the log domain), is shown in Fig. 4. We can see
a large decrease of the error at k = 3 from 68.8% to 38.1 %, matching the pattern of
R values. However, when computing the error on the mortality functions themselves
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# Code Name Region R value

1 MS Mato Grosso do Sul Central-West 0.90
2 RR Roraima North 0.75
3 AM Amazonas North 0.72
4 DF Federal District Central-West 0.38
5 GO Goiás Central-West 0.24
6 CE Ceará Northeast 0.20
7 RO Rondônia North 0.16
8 AC Acre North 0.15
9 SC Santa Catarina South 0.13
10 TO Tocantins North 0.10

Table 1: First 10 states with the most independent log mortality functions.
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Figure 3: R values.

(fi), the large decrease appears at k = 4. The figure also shows an example of the
reconstruction of the total mortality function for Brazil using 3 and 4 selected functions,
in comparison to the initial functional data. For k = 4, the general pattern is well
approximated. Note that the model is based on a log transformation of the mortality
data, and a drawback of such transformation is that it puts more weight in low values
of mortality values, particularly those close to zero, and less in high values. Thus, the
reconstruction of the mortality curves tend to be poorer in regions with large mortality
values, as shown by the bottom plots in Fig. 4.

The first three selected functions correspond to the states of Mato Grosso do Sul
(MS), Roraima (RR) and Amazonas (AM), in that order, and the mortality curves are
plotted in Fig. 5. Further, Fig. 6 shows the result of fitting the remaining states to the
first three ones, as explained in Section 3.1. Since the fit is performed in the log domain,
then a negative value of a coefficient (blue states in Fig. 6) corresponds to a low value
in the mortality domain.

The first mortality curve, corresponding to Mato Grosso do Sul, shows two local
maxima or peaks around days 130-160 and day 275, respectively, indicating two “waves”
of the pandemic. The state is located in the Central-West region of Brazil, and its
pattern is mostly representative of the central and southern areas of the country.
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Figure 4: Top: relative error of fitting the data set to the first k selected functions vs. k, com-
puted on the log mortality functions (blue circles) and mortality functions (red stars). Bottom:
reconstruction of the total mortality curve for the whole country, with k = 3 (solid blue curve),
k = 4 (solid red curve) and original functional data (dashed black curve).
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Figure 5: Main independent mortality curves: Mato Grosso do Sul (solid black curve), Roraima
(dashed blue curve ), Amazonas (dash-point red curve).
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The second mortality curve, corresponding to the state of Roraima, shows a local
maxima much earlier than the first pattern, around day 75 and relative small daily
deaths afterward. Roraima is Brazil’s northernmost state, in the Amazonian region,
and borders with both Venezuela and Guyana. It has an intense flow of people across
its international borders, which may have contributed to the earlier peak [5]. Other
contributing factors may have been its high percentage of indigenous population, more
susceptible against contagious diseases, as well as its poorer developed public health care
system [19]. According to Fig. 6, its mortality pattern is concentrated in the state itself,
but it has some effect in states at the north, northeast and center of the country.

The third mortality curve, corresponding to the state of Amazonas, shows a local
maxima even earlier than Roraima, in day 51, but also a very large increase at the
right end. The early first peak may have the same causes as in the case of Roraima,
namely, international borders, large indigenous population and poorly developed health
care system. The large increase at the right end is most likely a consequence of the new
lineage P.1 of the SARS-CoV-2 virus detected in Manaus (capital city of Amazonas)
at the beginning of 2021, which has higher transmissibility than previous lineages [21].
Fig. 6 shows that this third mortality pattern is prevalent in northern and northeastern
states, as well as in southeastern states as São Paulo and Rio de Janeiro.

5 Conclusion

This paper has introduced a simple functional extension of the QR decomposition tech-
nique of linear algebra, and shown its application to identify independent patterns of
COVID-19 evolution in Brazil. Each pattern defines an epidemiological region of influ-
ence, and the overall evolution of the pandemic in the country may be then modeled
(in the log domain) as a linear combination of the behavior of those regions. Naturally,
the accuracy of the model depends on the number of independent patterns considered.
Only the first three mortality patterns were discussed here for a general qualitative view
of the pandemic evolution in the country; however, a larger number should be included
if a more precise representation is desired.

The functional expansion of the data adopted an orthogonal basis to facilitate the
computation of the QR decomposition. Nevertheless, further development of the de-
composition algorithm to allow for the use of non-orthogonal basis systems, such as the
widely used B-splines, would be desired as a next step.
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