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Continuous-time stochastic processes for the spread of

COVID-19 disease simulated via a Monte Carlo approach

and comparison with deterministic models

Fabiana Calleri∗ Giovanni Nastasi† Vittorio Romano‡

Abstract

Two stochastic models are proposed to describe the evolution of the COVID-19 pan-
demic. In the first model the population is partitioned into four compartments: suscep-
tible S, infected I, removed R and dead people D. In order to have a cross validation,
a deterministic version of such a model is also devised which is represented by a system
of ordinary differential equations with delays. In the second stochastic model two further
compartments are added: the class A of asymptomatic individuals and the class L of
isolated infected people. Effects such as social distancing measures are easily included
and the consequences are analyzed.

Numerical solutions are obtained with Monte Carlo simulations. Quantitative predic-
tions are provided which can be useful for the evaluation of political measures, e.g. the
obtained results suggest that strategies based on herd immunity are too risky.

AMS classification: 92D30, 65C35
Keywords: COVID-19; stochastic process; epidemic model; Monte Carlo simulation.

1 Introduction

The pandemic of COVID-19 has scourged the world since the beginning of 20201. The respon-
sible virus is the SARS-CoV-2, identified in China at the end of 2019 [1]. Governments are
constantly looking for for ways to predict and contain the spread of such an illness in order to
monitor the public health and to prevent economic and social issues.

Epidemic models constitute a branch of interest in applied mathematics since several years.
They are adopted not only to study epidemics properly but also to predict social phenomenon
or the behavior of biological systems. The simplest epidemic model is called SIR model. It looks
at a population split out into three compartments: susceptible, infected and removed. The SIR
model was introduced the first time in 1927 [2] and many variations have been proposed to
study diseases with complex behaviors and other phenomena [3]. Epidemic models can also be
formulated by means of the theory of stochastic processes. The first application of stochastic
processes to epidemics was presented in 1955 [4] and more recently several applications have
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been proposed [5]. In some cases there is an equivalence between the two approaches [6]. A
novel model based on an operatorial approach as in quantum mechanics can be found in [7].

Concerning the new pandemic, many mathematical models have been proposed. In [8, 9, 10]
some deterministic epidemic models for COVID-19 based on ordinary differential equations have
been proposed. In [11] a stochastic dynamic model has been introduced. Finally, in [12, 13]
authors propose mathematical models based on stochastic differential equations.

In this paper we would like to introduce some epidemic models based on stochastic processes,
taking into account peculiarities of the COVID-19 disease. We proposed two models. In the
first one we consider that COVID-19 has an incubation period in which people are apparently
healthy and after that they become infected and are also able to infect other people. Since
COVID-19 has a quite high fatality rate, the removed people have been split in two sub-classes:
healed and dead. We suppose that an individual recovers or dies after a fixed time from
infection. In the second model we would like to include asymptomatic people, i.e. infectious
individuals without severe or identifiable symptoms. They seem to play an important role in
the diffusion of the virus because usually they don’t know to be infectious. Since it is not clear
whether during the incubation an individual is infectious or not, in this model we make the
assumption that it is possible. Moreover, it is not ascertained so far whether and for how long
people preserve the immunity to the virus. Therefore, we consider the possibility for a healed
individual to lose immunity and becomes susceptible again.

The plan of the paper is as follows. In Sec. 2 and 3 the two stochastic models are introduced;
in Sec. 4 we present the Monte Carlo algorithm adopted for simulations; in Sec. 5 we propose
a deterministic model to assess the validity of the one introduced in 2; in Sec. 6 we show and
comment the numerical results.

2 A SIRD model for COVID-19 disease

Let us consider a fixed (no births and no deaths) population of N individuals split out into
four compartments: susceptible S, infected I, removed R and dead people D. In principle, it is
also possible to include the so-called vital dynamics by introducing birth and death rates but
in the typical time scale of the pandemic spread the effects can be considered negligible. We
suppose that the number of individuals in each class evolves in time t ∈ [0,+∞[ because of two
mechanisms: susceptible individuals become infected and infected individuals recover or die.
We call the introduced model SIRD.

To describe the infection mechanism, we suppose that the rate of new infectious cases is
proportional to the number of susceptible individuals S(t) times the fraction of infected people
I(t)/N . The proportionality factor of is denoted β > 0 which represents the average number
of contacts of a person per unit time (the day in our case).

In relation to the recovery mechanism, we suppose that an infected individual has a proba-
bility α ∈ [0, 1] to die and 1− α to heal. The situation is schematized in Figure 1.

Moreover, let τ1 be the incubation time which, in this model, is the time after that an
individual who contracted the virus is infected and becomes infectious. Finally, let τ2 and τ3 be
the heal and dead time respectively, counted after the incubation period. First, we will assume
that τ1, τ2, τ3 are constant; in a second step this assumption will be relaxed to simulated effects
as those related to the lockdown.

Let us consider (S, I, R,D) as four random variables which take values in N
4
0 and depend

on time t. The epidemic is triggered by a small number of infected individuals I0, that is at
time t = 0 we have

(S, I, R,D) = (N − I0, I0, 0, 0).

We split the set (S, I, R,D) into three subsets in each of which there will be defined a
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∆t ∼ β−1

τ1

1− α

τ2

α

τ3

Figure 1: Flow chart of the SIRD model. Above the arrows between the compartment I and
the compartments R, D we indicate the times for the transition while below the arrows the
probabilities of changing compartment. τ1 is the delay time for getting infected and ∆t ∼ β−1

is the frequency of the contacts between the individuals of S and I.

stochastic process. The first set is (S, I), corresponding to the infection mechanism. We think
of the two random variables not synchronized in time. In particular, we set

Ĩ(t) = I(t+ τ1)

and we consider the new set
(

S, Ĩ
)

and suppose that at time t the random variables take values

(s, i), that is
(

S(t), Ĩ(t)
)

= (s, i) . (1)

After a small period of time ∆t > 0, ∆t ≪ min
i=1,··· ,3

τi the state of system changes in

(

S(t+∆t), Ĩ(t+∆t)
)

= (s+m, i+ n) , (2)

being m,n ∈ {−1, 0,+1}.
The transition probability is defined as follows

p(s,i)→(s+m,i+n)(∆t) = P
((

S(t+∆t), Ĩ(t+∆t)
)

= (s+m, i+ n)
∣

∣

∣

(

S(t), Ĩ(t)
)

= (s, i)
)

.

In this way we define a continuous time Markov chain and the transition probability can be
written as

p(s,i)→(s+m,i+n)(∆t) =























βs
i

N
∆t + o(∆t), (m,n) = (−1,+1)

1−

(

βs
i

N

)

∆t+ o(∆t), (m,n) = (0, 0)

o(∆t), otherwise.

The second set of random variables is (I, R), coupled to the first one. We set

˜̃I(t) = I(t+ τ1 + τ2),

˜̃R(t) = R(t+ τ1 + τ2)
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and consider the couple
(

˜̃I, ˜̃R
)

. Let us suppose that at time t the random variables
(

˜̃I, ˜̃R
)

take values (i, r), that is
(

˜̃I(t), ˜̃R(t)
)

= (i, r). (3)

After a small period of time ∆t > 0 the state of the system changes in

(

˜̃I(t+∆t), ˜̃R(t+∆t)
)

= (i+ n, r + u), (4)

being n, u ∈ {−1, 0,+1}. Moreover, since a healing at time t+ τ1 + τ2 is related to an infection
in the past interval [t + τ1, t + τ1 + ∆t], we need to know the values assumed by the random
variable Ĩ at t and t +∆t. In this case the transition probability is defined as follows

p(i,r)→(i+n,r+u)(∆t) = P
((

˜̃I(t+∆t), ˜̃R(t +∆t)
)

= (i+ n, r + u)
∣

∣

∣

(

˜̃I(t), ˜̃R(t)
)

= (i, r) ,

Ĩ(t) = j, Ĩ(t+∆t) = j + 1
)

.

Therefore, a non-Markovian continuous time stochastic process is defined with the transition
probability

p(i,r)→(i+n,r+u)(∆t) =











(1− α)∆t + o(∆t), (n, u) = (−1,+1)

1− (1− α)∆t+ o(∆t), (n, u) = (0, 0)

o(∆t), otherwise.

Finally, the third set of random variables is (I,D), which is also coupled to the first one.
Now we set

Î(t) = I(t+ τ1 + τ3),

D̂(t) = D(t+ τ1 + τ3)

and consider the couple
(

Î , D̂
)

. Let us suppose that at time t the random variables take values

(i, d), that is
(

Î(t), D̂(t)
)

= (i, d). (5)

After a small period of time ∆t > 0 the state of the system changes in

(

Î(t+∆t), D̂(t+∆t)
)

= (i+ n, d+ v), (6)

being n, v ∈ {−1, 0,+1}. Moreover, since a death at time t + τ1 + τ3 is related to an infection
in the past interval [t + τ1, t + τ1 + ∆t], we need to know the values assumed by the random
variable Ĩ at t and t +∆t. In this case the transition probability is defined as follows

p(i,d)→(i+n,d+v)(∆t) = P
((

Î(t+∆t), D̂(t+∆t)
)

= (i+ n, d+ v)
∣

∣

∣

(

Î(t), D̂(t)
)

= (i, d) ,

Ĩ(t) = j, Ĩ(t +∆t) = j + 1
)

.

Therefore, a non-Markovian continuous time stochastic process is defined with the transition
probability

p(i,d)→(i+n,d+v)(∆t) =











α∆t+ o(∆t), (n, v) = (−1,+1)

1− α∆t + o(∆t), (n, v) = (0, 0)

o(∆t), otherwise.
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3 A SAI(L)RD model for COVID-19

At variance with the SIRD, the second model we are going to introduce also contemplates
another two compartments: the class A of asymptomatic individuals and the class L of isolated
infected people. We call it SAI(L)RD model. Its detailed features are summarized below

A1. We suppose that if an effective contact occurs between an infected (symptomatic or not)
and a susceptible individual then the latter becomes infected and infectious at the same
time.

A2. We suppose there exists a probability η ∈ [0, 1] to be asymptomatic and, consequently,
1 − η is the probability to show symptoms. Moreover, we assume that, after a certain
time τ1, a symptomatic individual is recognized and isolated into a subclass, called L, of
lonely individuals of I.

A3. Lonely individuals are not infectious anymore. Asymptomatic people heal after a time
τ2. Lonely symptomatic individuals can die with probability α in a time τ4 or heal with
probability 1− α in a time τ3.

A4. Finally, removed individuals become immune to COVID-19 for a short period of time or
forever. Let λ ∈ [0, 1] be the probability that COVID-19 confers a short immunity of time
length τ5, after which recovered individuals come back to the class of susceptible people
and, in principle, can suffer a reinfection.

The situation is represented in Figure 2.

S

A

I L

R

D

η

∆t ∼ β−1 τ2

∆t ∼ β−1

1− η

τ1

1− α

τ3

α

τ4

λ

τ5

Figure 2: Flow chart of the SAI(L)RD model. Above the arrows we indicate the times for the
transition while below the arrows the probabilities of changing compartment.
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We consider (S,A, I, L, R,D) as a six dimensional random variable which can assume values
in N

6
0 and depends on time t ≥ 0. Now we split the set of random variables into several coupled

sub-systems.

• The first set is (S,A, I) corresponding to the infection mechanism. We suppose that at
time t the random variables take values (s, a, i), that is

(

S(t), A(t), I(t)
)

= (s, a, i). (7)

After a small period of time ∆t > 0, ∆t ≪ min
i=1,··· ,5

τi, the state of the system changes in

(

S(t+∆t), A(t +∆t), I(t+∆t)
)

= (s+m, a + k, i+ n), (8)

with m, k, n ∈ {−1, 0, 1}.

The transition probability is given by

p(s,a,i)→(s+m,a+k,i+n)(∆t) = P
(

(S(t+∆t), A(t +∆t), I(t+∆t)) = (s +m, a+ k, i+ n)
∣

∣

∣
(S(t), A(t), I(t)) = (s, a, i)

)

.

In this way we define a time continuous Markov chain with transition probabilities which
can be written as

p(s,a,i)→(s+m,a+k,i+n)(∆t) =







































ηβs
i

N
∆t + o(∆t), if (m, k, n) = (−1,+1, 0)

(1− η)βs
i

N
∆t + o(∆t), if (m, k, n) = (−1, 0,+1)

1−

(

βs
i

N

)

∆t + o(∆t), if (m, k, n) = (0, 0, 0)

o(∆t), otherwise.

• In our model, we suppose that all the infected individuals will be isolated after a time τ1.
Let us consider (I, L). We set

Ĩ(t) = I(t+ τ1),

L̃(t) = L(t + τ1).

In this case a lone infected individual at time t + ∆t + τ1 is related to a symptomatic
infection in the past interval [t, t+∆t]. Regarding the transition probability

p(i,l)→(i+n,l+j)(∆t) = P
((

Ĩ(t+∆t), L̃(t+∆t)
)

= (i+ n, l + j)
∣

∣

∣

(

Ĩ(t), L̃(t)
)

= (i, l) , I(t) = f, I(t+∆t) = f + 1
)

for some nonnegative integer f , we have

p(i,l)→(i+n,l+j)(∆t) =

{

1, if (n, j) = (−1,+1)

0, otherwise.

• Now we consider the pair of random variables (L,R). To define the healing process we
set

˜̃L(t) = L(t + τ1 + τ3),

˜̃R(t) = R(t+ τ1 + τ3)

6



and suppose that
(

˜̃L(t), ˜̃R(t)
)

= (l, r).

After a small period of time ∆t > 0 the state of the system changes in
(

˜̃L(t +∆t), ˜̃R(t +∆t)
)

= (l + j, r + u)

with j, u ∈ {−1, 0, 1}. Moreover, since in this case a healing at time t + ∆t + τ1 + τ3 is
related to an infection with symptoms in the past interval [t, t + ∆t], we need to know
the values assumed by the random variable I at t and t +∆t. This is also equivalent to
knowing the values assumed by the random variable L at t + τ1 and t +∆t + τ1. In this
case the transition probability is defined as

p(l,r)→(l+j,r+u)(∆t) = P
((

˜̃L(t +∆t), ˜̃R(t+∆t)
)

= (l + j, r + u)
∣

∣

∣

(

˜̃L(t), ˜̃R(t)
)

= (l, r) , L(t + τ1) = f, L(t+∆t + τ1) = f + 1
)

,

for some nonnegative integer f . In this way a time continuous non-Markovian stochastic
process is defined whose transition probability can be written as

p(l,r)→(l+j,r+u)(∆t) =











(1− α)∆t + o(∆t), if (j, u) = (−1,+1)

1− (1− α)∆t+ o(∆t), if (j, u) = (0, 0)

o(∆t), otherwise.

• With the same arguments, a dead process is described by (L̂, D̂) where

L̂(t) = L(t+ τ1 + τ4),

D̂(t) = D(t+ τ1 + τ4).

In this case a death at time t+∆t+τ1+τ4 is related to an infection with symptoms in the
past interval [t, t+∆t] and thus the gain of one unit to the variable L in [t+τ1, t+∆t+τ1].
The transition probability

p(l,d)→(l+j,d+v)(∆t) = P
((

L̂(t +∆t), D̂(t+∆t)
)

= (l + j, d+ v)
∣

∣

∣

(

L̂(t), D̂(t)
)

= (l, d) , L(t + τ1) = f, L(t+∆t + τ1) = f + 1
)

,

for some nonnegative integer f , is given by

p(l,d)→(l+j,d+v)(∆t) =











α∆t+ o(∆t), if (j, v) = (−1,+1)

1− α∆t + o(∆t), if (j, v) = (0, 0)

o(∆t), otherwise.

• A further process we introduce is the healing of an asymptomatic individual. Let us
consider (A,R). We set

Â(t) = A(t + τ2),

R̂(t) = R(t + τ2).

In this case a healing at time t + τ2 +∆t is related to an asymptomatic infection in the
past interval [t, t +∆t]. The transition probability

p(a,r)→(a+k,r+u)(∆t) = P
((

Â(t +∆t), R̂(t+∆t)
)

= (a + k, r + u)
∣

∣

∣

(

Â(t), R̂(t)
)

= (a, r) , A(t) = f, A(t+∆t) = f + 1
)

,
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for some nonnegative integer f , reads

p(a,r)→(a+k,r+u)(∆t) =

{

1, if (k, u) = (−1,+1)

0, otherwise.

• The last process we are going to introduce is the one involving a removed individual who
comes back to the class of susceptible people after a certain time. To define the process,
we set

ˆ̂
S(t) = S(t+ τ5),

ˆ̂
R(t) = R(t+ τ5)

Let us suppose that at time t the two-dimensional random variable (
ˆ̂
S,

ˆ̂
T ) takes the value

(s, r). After a small period of time ∆t > 0 the state of the system changes in

(
ˆ̂
S(t+∆t),

ˆ̂
R(t +∆t)) = (s+m, r + u),

with m, u ∈ {−1, 0, 1}. Moreover, since in this case a healed individual can come back
to the class of susceptible people after a certain time τ5, it is needed to know the values
assumed by the random variable R at time t and t + ∆t. In this case the transition
probability

p(s,r)→(s+m,r+u)(∆t) = P
((

ˆ̂
S(t+∆t),

ˆ̂
R(t+∆t)

)

= (s+m, r + u)
∣

∣

∣

(

ˆ̂
S(t),

ˆ̂
R(t)

)

= (s, r) , R(t) = f, R(t+∆t) = f + 1
)

,

for some nonnegative integer f , is given by

p(s,r)→(s+m,r+u)(∆t) =











λ+ o(∆t), if (m, u) = (+1,−1)

1− λ+ o(∆t), if (m, u) = (0, 0)

o(∆t), otherwise.

The major advantage to adopt a stochastic model is the possibility to easily add further
more sophisticated features. Indeed, the delays are assumed constants but it is possible to
consider in turn the times τi as random variables obeying suitable probability distributions.
However, in average we get the same results.

4 The Monte Carlo method for stochastic process sim-

ulation

An efficient simulation of both the SIRD and SAI(L)RD models can be performed by a Monte
Carlo approach. The details are outlined in the next subsections.

4.1 SIRD model

Firstly we describe the method adopted for SIRD model. The state of the system is represented
by a time-dependent random vector variable

X(t) = (X1(t), X2(t), · · · , XN(t)) ∈ DN , (9)
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for t ≥ 0, where D = {−1, 0, 1, 2} and N is the population size. We indicate by Xi(t) ∈ D
for i = 1, . . . , N the trajectory of an individual in time, i.e. the time-evolution of the states
assumed by the i-th person. D is a set of labels where 0 represents a susceptible individual, 1
an infected one, 2 a healed person and −1 a dead individual.

At time t = 0 a number of I0 infected individuals are labeled by 1 randomly, all the others
are susceptible thus labeled by 0. We note that the pure process of the encounters is Markovian,
no matter it leads to an infection or not. Therefore, for each infected individual a contact time
t is determined according to the exponential distribution of scale parameter β, that is

t = −
1

β
log ξ, (10)

ξ being a random number uniformly distributed in [0, 1].
Let us suppose that the minimum contact time is that of the j-th individual, tj,1 (the second

index indicates the first temporal step of the individual j). At this point another individual i
is chosen randomly. If it belongs to the susceptible class then the contact is effective and after
the incubation, i.e. a period of time τ1, the individual i changes its state in infectious,

Xi(tj,1 + τ1) = 1. (11)

At time tj,1+ τ1, the destiny d ∈ {−1, 2} of the new infectious is established too accordingly to
a Bernoulli distribution with probability α, that is d ∼ B(1, α). If the destiny is to heal then
after a time τ2 the individual state changes from infectious to recovered; if the destiny is to die
then after a time τ3 the state of the i-th individual changes from infectious to dead:

Xi(tj,1 + τ1 + τ2) = 2 if d = 2,

Xi(tj,1 + τ1 + τ2) = −1 if d = −1.
(12)

After the choice of the individual i, the individual j still continues to infect unless in the
meantime he has recovered or passed away. Another random infection time tj,2 is generated
according to (10) and we set

tj = tj,1 + tj,2.

Once again we determine the infected individual having associated the minimum time and
iterate the procedure. The algorithm ends whether there are no more susceptible individuals.

In order to record the time evolution of the system, a time grid is fixed and at each time of
such a grid we count the number of individuals in the several classes. Moreover, to reduce the
statistical noise an averaging procedure is applied as follows. We perform the entire simulation
k times. Let Tr, r = 1, 2, · · · , k, be the time at which the algorithm ends at the rth simulation.
We set

mk =
T1 + T2 + . . .+ Tk

k
, (13)

the average of the final process times. After introducing the error as

εk = |mk+1 −mk|, (14)

as stopping criterion we adopt

εk < tol, k > Nmin. (15)

Here tol is a numerical tolerance and Nmin is a minimum number of iterations which are required
to prevent early stops of the numerical procedure.

9



4.2 SAI(L)RD model

In a similar way the SAI(L)RD model can be simulated. Now we have

X(t) ∈ EN ,

where E = {−1, 0, 1, 2, 3, 4}. The label −1 represents a dead person, 0 a susceptible individual,
1 an infected one, 2 a healed person, 3 an asymptomatic individual, 4 a lone infected one.

Even in this case, at time t = 0 we randomly select I0 individuals we label as infected,
i.e. by 1. A contact time t is determined according to (10) for each infected individual. Let
us suppose that the minimum contact time is that of the j-th individual, tj,1. At this point
another individual i is chosen randomly. Now at variance with the SIRD model, if the latter
is susceptible her/his state changes as follows: we determine the symptomaticity s ∈ {1, 3} by
a Bernoulli distribution having probability η ∈ [0, 1]. If s = 3 the individual is asymptomatic
and, after the time τ2, she/he will heal, and therefore

Xi(tj,1 + τ2) = 2. (16)

If s = 1 the person is symptomatic infected and, after the time τ1, she/he will be isolated, that
is

Xi(tj,1 + τ1) = 4. (17)

Moreover, the destiny d ∈ {−1, 2} of such an individual is established according to a Bernoulli
distribution with probability α. If the destiny is to heal then after a time τ3 the individual state
changes from infectious to recovered; if the destiny is to die then after a time τ4 the individual
state changes from infectious to dead. That evolution can be described as follows

Xi(tj,1 + τ1 + τ3) = 2 if d = 2,

Xi(tj,1 + τ1 + τ4) = −1 if d = −1.
(18)

Finally there is also the possibility that a healed individual loses the immunity, coming back
to the susceptible class. We take that into account by generating a random number according
to a Bernoulli distribution of parameter λ ∈ (0, 1). Furthermore, if the immunity is lost, one
has two possibilities:
if the individual suffered from an asymptomatic infection we set

Xi(tj,1 + τ2 + τ5) = 0 (19)

if she/he suffered from a symptomatic infection we set

Xi(tj,1 + τ1 + τ3 + τ5) = 0 (20)

After the choice of the individual i, the individual j still continues to infect unless in the
meantime she/he has recovered without losing the immunity or passed away. Another random
infection time tj,2 is generated according to (10) and we set

tj = tj,1 + tj,2.

Again we determine the infected individual having associated the minimum time and iterate
the procedure. The algorithm ends when all individuals can change their state no longer.

To reduce the statistical noise we adopted the same technique as the SIRD model presented
above.
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5 A deterministic SIRD model with delays

In order to check the validity of the SIRD stochastic model proposed above, a deterministic
delayed SIRD model is devised as well. Since the disease has an incubation time τ1, the
number of susceptible people decreases by a quantity depending on the amount of infected at a
previous time t−τ1; the amount of recovered and dead people after a time τ2 and τ3 respectively
is proportional to the amount of people who have been infected at the previous time t− τ2 and
t− τ3 respectively. From those considerations, we propose the following model



































Ṡ(t) =− βS(t)
I(t− τ1)

N
H(t− τ1)

İ(t) =βS(t)
I(t− τ1)

N
H(t− τ1) + (1− α)Ṡ(t− τ2) + αṠ(t− τ3)

Ṙ(t) =− (1− α)Ṡ(t− τ2)

Ḋ(t) =− αṠ(t− τ3)

(21a)

(21b)

(21c)

(21d)

where H(·) represents the Heaviside step function. In that way we include the effects of an
incubation time and healing or death times.

For further analysis it is convenient to work with proportions. After the substitution

S 7→
S

N
, I 7→

I

N
,R 7→

R

N
,D 7→

D

N

and some simple algebraic manipulations, the system can be written more explicitly as


































Ṡ(t) =− βS(t)I(t− τ1)H(t− τ1)

İ(t) =βS(t)I(t− τ1)H(t− τ1)− (1− α)βS(t− τ2)I(t− τ1 − τ2)H(t− τ1 − τ2)

− αβS(t− τ3)I(t− τ1 − τ3)H(t− τ1 − τ3)

Ṙ(t) =(1− α)βS(t− τ2)I(t− τ1 − τ2)H(t− τ1 − τ2)

Ḋ(t) =αβS(t− τ3)I(t− τ1 − τ3)H(t− τ1 − τ3)

(22a)

(22b)

(22c)

(22d)

The system must be augmented assigning the functions

S(t) = Φ1(t) t ∈ [−max(τ2, τ3), 0],

I(t) = Φ2(t) t ∈ [−max(τ1 + τ2, τ1 + τ3), 0].

As customary we assume that Φ1 and Φ2 are continuous in the considered intervals. Regarding
the other variables it is realistic to take R(0) = D(0) = 0. Specifically we assume Φ1(t) = S0 ∈
]0, 1[ and Φ2(t) = I0 = 1− S0 ∈]0, 1[ with I0 ≪ 1. Therefore at t = 0 we have

S(0) + I(0) +R(0) +D(0) = 1.

The presence of the delays makes the qualitative analysis of the system rather cumbersome,
so a complete phase portrait is a daunting task. However, some insights can be deduced anyway.

Along the solution of the system (22)

S(t) + I(t) +R(t) +D(t) = 1.

In fact, summing up the equations (22a)-(22d) one has

Ẏ (t) = 0,

where Y = S + I +R +D. Since Y (0) = 1, it follows that Y (t) = 1 ∀t > 0.
The equilibrium points of the system (22) are:
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• Endemic solutions:
S = 0, I = I∗, R = R∗, D = D∗. (23)

with I∗, R∗, D∗ ∈ [0, 1] satisfying I∗ +R∗ +D∗ = 1.

• Disease-free solutions:
S = S∗, I = 0, R = R∗, D = D∗. (24)

with S∗, R∗, D∗ ∈ [0, 1] satisfying S∗ +R∗ +D∗ = 1.

If we linearize around the generic endemic critical point, one gets the following characteristic
equation for the eigenvalues

λ (λ+ βI∗) = 0

which shows that the endemic stationary states are linearly stable for any I∗ > 0.
The linearization around the disease-free stationary points leads to a much more complex

characteristic equation

λ
[

λ− βS∗
(

e−τ1λ + (1− α)e−(τ1+τ2)λ + αe−(τ1+τ3)λ
)]

= 0;

which in general admits infinite solutions in the complex plane due to the functional nature of
the equations. The only viable way to get the eigenvalues is to resort to a numerical procedure
[21]. Therefore, since the primary goal is to have a comparison with the stochastic model, we
look directly at the numerical solutions of the system (22). To this aim, we adopt a first order
finite differences scheme.

Let us fix a temporal grid 0 = t0 < t1 < . . . < tM = Tmax of constant time step ∆t. We
introduce the numerical approximations

Sk ≈ S(tk), Ik ≈ I(tk), Rk ≈ R(tk), Dk ≈ D(tk),

for k = 0, 1, . . . ,M , and discretize the system (22) as follows

Sk+1 =Sk −∆tβSk

Ik1
N

H(tk − τ1),

Ik+1 =Ik +∆t

{

βSk

Ik1
N

H(tk − τ1)− (1− α)βSk2

Ik12
N

H(tk − τ1 − τ2)

−αβSk3

Ik13
N

H(tk − τ1 − τ3)

}

,

Rk+1 =Rk +∆t(1− α)βSk2

Ik12
N

H(tk − τ1 − τ2),

Dk+1 =Dk +∆tαβSk3

Ik13
N

H(tk − τ1 − τ3).

where the indexes k1, k2, k12, k3 and k13 are given by

kj = max

{

0,

⌊

tk − τj
∆t

⌋}

, j = 1, 2, 3,

k1m = max

{

0,

⌊

tk − τ1 − τm
∆t

⌋}

, m = 2, 3,

with ⌊·⌋ the floor function.
Note that at each time step the condition

Sk+1 + Ik+1 +Rk+1 +Dk+1 = Sk + Ik +Rk +Dk

is satisfied.
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6 Numerical results

6.1 SIRD model

Concerning the SIRD model introduced in Sec. 2, we perform some numerical simulations by
adopting the algorithm of Sec. 4. A crucial point is to fix the parameters entering the model.
About the mortality α we consider the infection fatality ratio (IFR), i.e. the ratio between the
number of deaths from disease and the number of infected individuals, whose value is reported
in the range 0.5 - 1% [14]. According to [15], the incubation period τ1 is on average 5-6 days,
but it can be as long as 14 days. For the healing and dead time τ2 and τ3 respectively, we remark
that the commonly adopted criteria for discharging patients from isolation are the following:
for symptomatic patients, 10 days after the symptom onset, plus at least 3 additional days
without symptoms; for asymptomatic individuals, 10 days after positive test [16]. In all the
simulations of the present paper we have assumed I0 = 1. The adopted values are reported in
Table 1.

Parameter Value
α 0.006
τ1 6 d
τ2 12 d
τ3 13 d

Table 1: Parameters adopted for the simulation of the SIRD model. The τ ’s are in days (d).

More controversial is to fix the contact frequency β. It should be around β ≃ 1 d−1

according to some estimations [17] but it varies with time and as consequence of measures of
social restriction by the authorities. For such a reason we have performed the simulations of
the stochastic SIRD model for several values of this parameter: β = 1.2, 1, 0.8, 0.6. The results
are shown in Fig. 3 in the case of a population of 1000 individuals. The same cases have been
also simulated when N = 10000. The qualitative behavior is essentially the same, in particular
the value of the maximum percentage of infected, but with a temporal dilation.

Typical features of all the simulations are the reduction of susceptible people and a non
monotone behaviour of the number of infected ones. The latter first increases and then tends
to zero. The peak of the infected people is considered (see [20]) as the value which represents
the state when the herd immunity is reached without any actions by the authorities in charge for
the health issues, also according to other models, e.g. see [8]. From a quantitative point of view
our results indicate that the herd immunity is reached when about 70÷80 % of the population
is infected which is a quite pessimistic foresight. Therefore, political strategies based on a pure
herd immunity appear too risky because they could lead to a 0.6% of dead people due to the
COVID-19 (see the inset in Fig. 3).

To avoid the drawbacks mentioned above, worldwide governments are assuming restrictions
on free movement of people, the so-called lockdown, to contain the spread of the pandemic.
In order to simulate the effect of a lockdown in our stochastic SIRD model, we suppose that
the parameter β changes in β ′ whether the fraction of infected individuals reaches 10% of the
total population size. Remember that 1/β is the average contact time. So, if social distancing
measures are adopted, they can be modelled as a reduction of β, that is by extending the average
contact time among the individuals. In Fig. 5 we show the curve of infected individuals for
several values of β ′. It is evident that the peak of infected persons lowers even if we have longer
tails. This is quite realistic because the disease still remains but the number of recovered
people increases in a slower way. Of course, if the aim is to alleviate the burden of hospitalized
patients, the presence of a longer time to get the disappearance of the disease is a minor
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Figure 3: Behavior of SIRD model with a population of 1000 individuals and β of 1.2 (top-left),
1 (top-right), 0.8 (bottom-left) and 0.6 (bottom-right). In the inset the values for large times
are magnified.

matter. Apparently with the lockdown it seems that the herd immunity is reached with a lower
percentage of infected people than the case without lockdown.

To assess the validity of the model, in Fig. 6 we show a comparison between numerical
results obtained by the stochastic SIRD model of Sec. 2 and the deterministic one presented
in Sec. 5. There is a good agreement by obtaining a cross validation of both models. It
is noteworthy that the numerical solution tends to the disease-free stationary critical points
S∗ = I∗ = 0, R∗, D∗ ∈ [0, 1] with R∗ +D∗ = 1.
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Figure 4: Behavior of SIRD model with a population of 10000 individuals and β of 1.2 (top-
left), 1 (top-right), 0.8 (bottom-left) and 0.6 (bottom-right). In the inset the values for large
times are magnified.
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Figure 5: Behavior of the SIRD model with a population of 1000 individuals and several values
of β ′: number of infected individuals versus days. Note that the peak lowers by decreasing β ′.
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Figure 6: Comparison between the stochastic (continuous lines) and deterministic (dashed
lines) SIRD model in the case of N = 1000 and β = 1. Similar results are obtained with other
values of β.
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6.2 SAI(L)RD model

As further improvements, here we also include the presence of asymptomatic and infected iso-
lated individuals by presenting the results of the simulations obtained with the SAI(L)RD
model. Regarding the parameters for the asymptomatic infections, η and τ2, the literature
reports that the proportion of people who become infected and remain asymptomatic through-
out infection seems to be in the range 40-45% and they can transmit the virus for a period of
about 14 days [18]. Concerning the parameter τ1, we assume that symptomatic individuals can
transmit the virus and they are isolated after an average period of 5-6 days because the illness
is detected by tests. During the isolation they can heal or die with the same arguments of the
SIRD model.

Since it is not known how long antibody responses will be maintained or whether they
will provide protection from reinfection [19], we suppose that healed individuals may get a
temporary or permanent immunity. We set the probability λ to have temporary immunity
equal to 0.1 and the duration 90 days. The list of the adopted values is reported in Table 2. In
the plots L is included in I.

Parameter Value
α 0.006
η 0.4
λ 0.1
τ1 6 d
τ2 14 d
τ3 12 d
τ4 13 d
τ5 90 d

Table 2: Parameters adopted for the simulation of the SAI(L)RD model.

In Fig. 7 we show the numerical solutions of the SAI(L)RD model in the case of N = 1000
and β = 1. The main distinctive feature with respect to the results obtained by the SIRD
model is that after about 100 days we observe a new availability of susceptible individuals due
to the loss of immunity. This along with a second wave of infection which, however, has a lower
peak. Asymptotically we get again a disease-free situation with about 6% of dead people. We
remark that by isolating the infected people the herd immunity is guaranteed by a peak of
infected of about 30% to which about 20% of asymptomatic individuals must be added with
a total of about 50% of people with disease. Again the strategy based on reaching the herd
immunity can be deemed as to avoid because too costly in terms of hazard for the life of the
population.

The above findings strongly support the need of the restrictive measures from a quantitative
point of view. In order to analyze the effect of a lockdown we have also adopted the SAI(L)RD
model. We start by taking β = 1 and then we set β = 1/10 when the fraction of infected
individuals reaches 0.1. After 60 days we switch to β = 1/3 considering some restrictions still
valid after the lockdown. The obtained numerical solutions are shown in Fig. 8. The values
of the maximum for both infected and asymptomatic individuals are lower. Moreover, we
observe that a second wave of infection is present which is less intense than the case of constant
β. However, the asymptotic number of the dead person with the lockdown is only slightly
improved. The main effect of the lockdown is to alleviate the congestion in the intensive care
because the infections are spread over a longer time. Finally, we would like to remark that if
the probability of immunity loss λ is very high then periodic waves of persistent infection will
show up for some years, as indicated in Fig. 9. Note that the asymptotic number of the dead
people is about 1.7%.
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Figure 7: Behavior of SAI(L)RD model with a population of 1000 individuals and β set as 1.
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Figure 8: Behavior of SAI(L)RD model with a population of 1000 individuals in the case of a
lockdown.

As last remark, if the size of the population is greater a dilation of the time is observed but
the main features remain the same as the case of 1000 people.
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Figure 9: Behavior based on the SAI(L)RD model with a population of 1000 individuals in the
case of a probability of reinfection λ = 0.8.

Conclusions and acknowledgments

Two stochastic models for simulating the evolution of the pandemic SARS-CoV-2 have been
proposed. By using a Monte Carlo method, realistic situations have been investigated, obtaining
insights about the possibility to get the herd immunity and the effects of measures as social
distancing.

The models and the numerical approach have been tested by considering a deterministic
version. The good agreement between the stochastic and deterministic results provides a cross
validation.

The models are quite flexible and allow us an easy inclusion of the effects of a lockdown.
The evolution we have considered does not take into account a campaign of vaccination but
this can be included with a moderate additional effort.

The authors G.N. and V.R. acknowledge the support from INdAM (GNFM).
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