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ABSTRACT
Data-driven deep learning provides efficient algorithms for parameter identification
of epidemiology models. Unlike the constant parameters, the complexity of identify-
ing time-varying parameters is largely increased. In this paper, a variant of physics-
informed neural network (PINN) is adopted to identify the time-varying parameters
of the Susceptible-Infectious-Recovered-Deceased model for the spread of COVID-19
by fitting daily reported cases. The learned parameters are verified by utilizing an
ordinary differential equation solver to compute the corresponding solutions of this
compartmental model. The effective reproduction number based on these parame-
ters is calculated. Long Short-Term Memory (LSTM) neural network is employed
to predict the future weekly time-varying parameters. The numerical simulations
demonstrate that PINN combined with LSTM yields accurate and effective results.
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1. Introduction

The novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has spread
all over the world since its discovery at the end of 2019, with millions of confirmed
cases and more than a million deaths [29]. On March 11, 2020, COVID-19 was char-
acterized as a pandemic by the World Health Organization (WHO) [28]. Due to the
huge negative effects of COVID-19, precautionary measures have been aggressively
carried out worldwide, such as facial masking, contact tracing, social distancing, and
some governmental actions such as lockdowns. Hence, it is significant to analyze the
dynamics of COVID-19 so that the effectiveness of those implemented measures can
be verified.

Epidemiological models provide an efficient tool for determining and explaining the
dynamics of disease transmission. In the early stage, one of the classical models is the
Susceptible-Infectious-Recovery (SIR) model presented by Kermack and McKendrick
in 1927 [13]. This compartmental model computes the theoretical number of suscep-
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tible people that became infected by the disease and then recovered. Based on the
SIR model, many models have been proposed for different diseases, like SARS and
COVID-19 [24, 8, 27]. The Susceptible-Exposed-Infectious-Removed (SEIR) model is
proposed to analyze the effect of the precautionary measures on the dynamics of the
epidemic [2]. Taking quarantine into account, a SEIQR model is investigated analyti-
cally and numerically [19]. The SEIR model has been extended by two extra classes of
populations namely, ’C’, which is the number of cumulative cases, and ’D’ that is the
number of severe, critical, and deceased cases, respectively, to understand the trends
of COVID-19 outbreak in Wuhan, China [15].

The SIRD model is governed by three parameters β, γ, and µ. Commonly, these
parameters are assumed as independent of time during the epidemic. However, the
interventions and measures implemented by governments to control the spread of
COVID-19 result in significantly varying parameters with time. Thus, if parameters
are still considered as constants, the epidemiology model cannot discover the varied
dynamic of this disease transmission that is affected by those efficient precautions.
Regarding parameters as time-series enable the model to react to the changes in real
situations.

Recently, data-driven algorithms were developed to the determination of such time-
varying parameters. Raissi et al. [21] proposed PINN to approximate parameters,
which are constants, of the SIR model using a small data set. Furthermore, Wang et
al. [26] divided the period time into four phases so that their parameters become piece-
wise constants. Also, there are some studies relating to the time-dependent parameter,
like a time-dependent SIR model is proposed to track their parameter time-series [3].
Similarly, the time-dependent parameters of the SIR model were identified by utilizing
a neural network to analyze the COVID-19 spread in South Korea [11].

Predicting the trend of COVID-19 transmission is a significant and arduous topic.
A model of COVID-19 in China was developed to predict the cumulative number of
reported cases [16]. By averaging the slope of approximated parameters of the SIRD
model over the last several days, the extrapolated trends of infected, recovered, de-
ceased, and susceptible cases were obtained via solving the model with estimated
parameters [18]. An artificial intelligence method was used to predict the pandemic
by training on the 2003 SARS data [30]. Recently, several forecasting models includ-
ing autoregressive integrated moving average, support vector regression, LSTM, and
bidirectional LSTM (BiLSTM) were proposed to predict the confirmed cases, deaths,
and recoveries [23]. Similarly, Recurrent Neural Network (RNN), LSTM, BiLSTM,
Gated recurrent units (GRUs), and Variational AutoEncoder (VAE) algorithms were
employed to forecast the number of infected and recovered cases [31].

Based on data collected, the SIRD model is used in this study to simulate the dy-
namics of the disease. Parameters of this model are regarded as daily and weekly time-
varying. As for daily time-varying parameters, it represents that parameters would be
varied from each day so that they are more similar to real situations. However, the
difficulty of parameter identification increases with the smaller time interval by utiliz-
ing some general regression methods such as least square methods. PINN is still able
to approximate these time-series parameters with some changes in architecture. Then,
they are verified by being substituted into the SIRD model, and then a numerical
algorithm is used to solve this ordinary differential equation (ODE) system.

When it comes to weekly time-series, we divide the collected data week by week and
employ the interpolation method for each week to gain more data so that the neural
network has enough information to learn. The neural network implemented here is the
PINN, which can estimate parameters to fit the collected data [20]. When the iden-
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tification of these weekly time-series parameters is validated, LSTM is implemented
to predict future parameters. In this way, by examining weekly values instead of daily
ones, LSTM can still accurately predict future parameters. Another reason to predict
the parameters rather than forecast the infectious cases directly is that we could ob-
tain corresponding reproduction number R0. It is an essential threshold to reflect the
disease transmission speed and verify the effectiveness of these measures in curbing
the outbreak of COVID-19.

Figure 1. Flow Chart of Data-Driven Algorithm

In Figure 1, we describe that PINN approximates the parameters of the SIRD
model by training collected data. Then, LSTM is proposed to predict the future value
of parameters. After that, obtained parameters are substituted into the SIRD model
so that we could predict the infectious cases.

Outline of the paper: In Section 2 we introduce the SIRD model and explain
model parameters (β, γ, and µ). Following that, we introduce the effective reproduction
number and how to compute it. Deep learning neural networks, including feedforward
neural network (FNN), PINN, and LSTM, are described briefly in Section 3. In Section
4, the collected data is described, and the loss function of PINN is formulated. After
that, we present LSTM neural networks for the future prediction of parameters. The
simulation results are discussed in Section 5.

2. Epidemiology Model

In this section, we introduce the SIRD model employed in our study. One promise
of the SIRD model is that natural birth and death rates are neglected or equivalent
so that the total population is considered as constant. Then, the population could be
divided into four mutually exclusive groups, which are susceptible, infected, recovered,
and deceased, respectively. Also, the reproduction number is introduced in this section.

2.1. SIRD Model

We consider the SIRD model described by the following system of ordinary differential
equations [5]:

Ṡ(t) = −β(t)S(t)I(t)

N

İ(t) =
β(t)S(t)I(t)

N
− (γ(t) + µ(t))I(t)

Ṙ(t) = γ(t)I(t)

Ḋ(t) = µ(t)I(t),

(1)

where S(t), I(t), R(t), and D(t) are the numbers of susceptible, infected, recovered,
and deceased individuals, respectively, and N is the total population, N = S(t) +
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I(t) + R(t) + D(t). Without loss of generality, N is a large number and difficult to
compute in some optimization problems. Thus, we used the fraction of the population
in each, which means that S(t), I(t), R(t), and D(t) are divided by N . In this way,
our calculation is simpler, and we can still adhere to the same dynamic system of the
epidemic.

The parameter β(t) represents the number of contacts each day for infected individ-
uals. Besides, there are two essential assumptions. First, contacts between the infected
and uninfected people are sufficient to spread the disease. Second, the population is
mixed homogeneously. Thereby, β(t)S(t) susceptible people are infected by a patient
each day on average, and β(t)S(t)I(t) is the number of newly infected people, γ(t)
is the rate at which infected cases become recovered. Then, there are γI(t) infected
individuals turned into the third compartment. Similarly, µ(t) is the rate of mortality
by disease, and µ(t)I(t) infected individuals are deceased.

2.2. Reproduction Number

There is an essential threshold used to get a better understanding of the transmission
rate. This threshold is characterized by the reproduction number, which is an estimate
of newly infected cases caused by an infected individual [25]. Assuming there is just
one person infected in the beginning, then in the SIRD model, I0 = 1, S0 = N − 1,
and no recovery at this moment. When we utilized the fraction for each compartment,
I0 ≈ 0 and S0 ≈ 1. By the second equation of eq. (1), we have:

İ(t) = I(t)[β(t)S(t)− (γ(t) + µ(t))], (2)

where β(t), γ(t), and µ(t) are greater than 0. In eq. (2), it is simple to obtain İ > 0 when
β(t)S(t) > (γ(t) + µ(t)), which means the number of infected cases keeps increasing.

A key idea about the reproduction number R0 is that it is the gauge of the secondary
infections at the beginning of this disease invasion [9]. After the disease invasion, the
contact rate β decreases because of the reduction of this susceptible group. Those
who are infected or have already recovered cannot be infected once again. Thereby,
another similar threshold, which is the effective reproduction number Re [22], is used
to indicate whether the disease keeps spreading, and R0 is the upper bound of Re [12].

Re(t) =
β(t)S(t)

γ(t) + µ(t)
<

β(0)

γ(0) + µ(0)
= R0. (3)

3. Deep Neural Network

In this section, we provide a brief description of the deep learning neural network ar-
chitectures utilized in our algorithm for parameter identification and disease dynamics
prediction.

3.1. Feedforward Neural Network

The feedforward neural network (FNN) is an artificial neural network with a simple
architecture in which the connections between the nodes do not form a cycle. FNN is
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utilized to approximate the target function by applying several activation functions to
input recursively and then output a value or vector that is close to the target values.

The input layer consists of input neurons, bringing the training data into the network
for further processing by hidden layers. Layers between the input layer and output layer
are hidden layers, which perform linear or nonlinear transformations of training data
to produce an intended output. These transformations are implemented by activation
functions. The first hidden layer takes the weighted sums of input through an activation
function to produce output for each neuron. Then, these outputs plus a constant, which
is bias in the first hidden layer, are viewed as an input of the second hidden layer.
After that, as the last layer of the network, the output layer presents desired results
[6].

The forward propagation from one layer to the next layer’s nodes is given as follows
[7].

zl+1
j =

nl∑
i

wl
ijfl−1(zli) + bl, (4)

where nl represents the number of neurons in the lth layer, zli, i = 1, · · · , nl, denotes
the output of the ith node in (l − 1)th layer, f represents the activation function, wl

ij

are the weights between node ith and node jth, bl are the bias in the lth layer. The
activation functions employed in this study are the hyperbolic tangent function

tanh(x) =
ex − e−x

ex + e−x
, (5)

and sigmoid function

σ(x) =
1

1 + e−x
. (6)

When output values are obtained from the output layer, they are used to build
a loss function, which is used to estimate the error of the model. An optimizer, like
Adam [14] or gradient descent method [1], is employed to minimize the loss function
so that the output is close to the observations. According to different problems, the
selections of optimizer and loss function are different.

3.2. Physics-Informed Neural Network

The physics-inform neural network (PINN) is a data-driven algorithm to approximate
the solution of differential equations and identify parameters [20]. It could utilize any
type of neural network architectures, like the FNN and Convolutional neural networks
(CNN), as the main framework. The applied activation functions and optimization
methods in PINN are the same as the usual deep learning techniques. The fascinating
part of this algorithm is the loss function, which is generally comprised of boundary
conditions, initial values, and physical constraints.

The outputs of the neural network are constrained to satisfy the system of dif-
ferential equations by penalizing the residuals of differential equations into the loss
function. In these residual equations, the derivatives of outputs with respect to time
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are computed by a black-box, which is automatic differentiation [17]. Automatic dif-
ferentiation is employed to train these models and allows PINN to take derivatives
with respect to input coordinates so that it could discover the latent physical laws.
More details could be found in [20].

3.3. Long Short-term Memory Neural Network

As an advanced tool to process and predict time-series, LSTM is a special type of RNN.
The difference between RNN and feedforward neural network is that it is capable of
storing past information by taking previous layers’ output as an input for the next
input. Also, all layers of RNN share the same parameters because they perform the
same tasks for the elements of the sequence, which is a so-called recurrent. Based on
this feature, RNN could predict sequential information. However, on account of only
involving the output of the last layer, it cannot work out long-term memory problems
[10]. Thus, LSTMs are created for solving them.

Figure 2. Architecture of LSTM Cell [4]

LSTMs as shown in Figure 2 are chains of memory cells containing three gates, which
are input gate, forget gate, and output gate as explained in [4]. The key part of these
memory cells is the cell state that could maintain the global information of sequence in
each time-step. The content of the cell state would be modified at different time-steps
through the forget gates and input gates. More specifically, forget gates decide what
information would be thrown away by utilizing the sigmoid function. Instead, input
gates decide what new information would be stored by combining sigmoid eq. (6) and
tanh eq. (5) functions. Then, the cell state is updated and moves forward to the next
state by implementing some operations. After that, the output is calculated in the
output gate. By analyzing the structure of a memory cell, we could see that LSTMs
are capable of storing long-term memory by putting new information into cell states.

4. Data and Algorithms

In this section, we describe the collected data and introduce our algorithms for pa-
rameter identification and making predictions. In our work, the parameters of the
SIRD model are viewed as daily-varying and weekly-varying parameters to simulate
the complex real situation of COVID-19. Based on this perspective, two algorithms
are employed to identify daily and weekly time-series parameters. Having the identi-
fied parameters by PINN as an input, we introduce the LSTM algorithm for making
predictions.
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4.1. Data

The data considered in our study is downloaded from https://covidtracking.com/

data/download for New York, New Mexico, and Texas states. It is comprised of com-
mutative infected, recovered, and deceased cases for the period from March 30 to
September 30. A plot of the data is shown in Figure 3.

Figure 3. COVID-19 data for New York, New Mexico, and Texas

As can be observed, the three states have different dynamics between the com-
partments. In New York, while the number of cases in I, R, and D compartments is
increasing, the number of recovered and deceased cases is relatively small compared
to infections. New Mexico data shows that the infected and recovered cases kept al-
most the same increasing rate before August but then the infections started decreasing
slowly, while the number of recovered individuals kept increasing at a high rate. As
for Texas, the infected population started growing fast from the second half of June,
and then went down after about 30 days.

4.2. Parameter Identification Algorithm

In this subsection, we describe how to identify parameters of the SIRD model by
utilizing PINN.

4.2.1. PINN Architecture for SIRD Model

The utilized PINN for learning the parameters is composed of an FNN architecture.
This architecture consists of 4 hidden layers and 60 neurons in each layer. The ac-
tivation functions of hidden layers and the output layer are the hyperbolic tangent
function, and sigmoid function, respectively.
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Figure 4. Physics Informed Neural Network

Figure 4 shows the basic framework, which is FNN, and the loss function of PINN
in our study. The loss function of PINN has two parts, namely GEloss and OBloss

in this figure. The GEloss represents the residuals that are obtained from the SIRD
model eq. (1) by subtracting the right side from the left side:

R1 =
dS

dt
+ β(t)S(t)I(t)

R2 =
dI

dt
− β(t)S(t)I(t) + (γ(t) + µ(t))I(t)

R3 =
dR

dt
− γ(t)I(t)

R4 =
dD

dt
− µ(t)I(t).

(7)

The OBloss is the mean squared error between the outputs of the neural network and
data. We employ Adam algorithm, which is the first-order gradient-based optimization
of stochastic objective functions [14], to update the parameters of the neural network
by minimizing the loss function.

4.2.2. Parameters Identification Algorithm

Algorithm 1 describes how to use PINN to identify the daily time-varying param-
eters. The input is time t, and outputs include the three parameters and the four
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compartments of the SIRD model. The weights w and bias b are initialized randomly.

Algorithm 1: PINN identify daily time-varying parameters

Data: S,I,R,D,t
Initialize weights w, bias b;
for number of epochs do

Each compartment of SIRD is obtained from forwarding propagation of
neural network

Ŝ, Î, R̂, D̂, β, γ, µ = NN(t)

Build the loss function components, where Nob is the number of collected
data of each compartment, and Nf is the number of collocation points

OBloss =
1

Nob

Nob∑
i=1

(∣∣Ŝi − Si
∣∣+
∣∣Îi − Ii∣∣+

∣∣R̂i −Ri
∣∣+
∣∣D̂i −Di

∣∣)
OBloss denotes the difference between the output of the neural network
and observation data

GEloss =
1

Nt

Nt∑
i=1

(∣∣∣dŜi

dti
+ βŜiÎi

∣∣∣+
∣∣∣dÎi
dti
− βŜiÎi + (γ + µÎi)

∣∣∣
+
∣∣∣dR̂i

dti
− γÎi

∣∣∣+
∣∣∣dD̂i

dti
− µD̂i

∣∣∣)
GEloss represents the SIRD model residual loss, then we have the total
loss

loss = OBloss +GEloss

Using the Adam optimizer to update the weights and bias by minimizing
the loss function

end

The approach of identifying the weekly-varying parameters is described in algorithm
2. We divide the utilized data of algorithm 1 into weekly intervals, and then they are
trained to identify corresponding parameters. Cubic spline interpolation is employed
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to obtain adequate training set for the neural network training.

Algorithm 2: PINN identify weekly time-varying parameters

Data: S,I,R,D,t
Form the weekly data;
for each week do

S, I,R,D, t = CubicSpline(S, I,R,D, t) ;
N = length(t) ; .Each dataset has the same length

Initialize weights w, bias b,β,γ,µ;
for number of epochs do

Each compartment of SIRD is obtained from forwarding propagation of
neural network

Ŝ, Î, R̂, D̂ = NN(t)

Build the loss function components.

OBloss =
1

N

N∑
i=1

(∣∣Ŝi − Si
∣∣2 +

∣∣Îi − Ii∣∣2 +
∣∣R̂i −Ri

∣∣2 +
∣∣D̂i −Di

∣∣2)
OBloss denotes the difference between the output of the neural
network and observation data

GEloss =
1

N

N∑
i=1

(∣∣∣dŜi

dti
+ βŜiÎi

∣∣∣2 +
∣∣∣dÎi
dti
− βŜiÎi + (γ + µÎi)

∣∣∣2
+
∣∣∣dR̂i

dti
− γÎi|2 +

∣∣∣dD̂i

dti
− µD̂i

∣∣∣2)
GEloss represents the SIRD model residual loss

loss = OBloss +GEloss

Using the Adam optimizer to update the weights and bias by
minimizing the loss function

end
save the value of β γ and µ

end

4.3. LSTM for Prediction of Infectious Cases

Having the learned parameters by PINN, the LSTM is employed to predict the fu-
ture parameters by applying Keras as depicted in Figure 5. At first, we normalize
these parameters and create new datasets with multiple inputs and one output. In-
puts are previous three-time steps parameters, and output, which is the prediction of
these inputs, is the next one-time step parameter. Then, the data is used to train the
LSTM neural network. We utilize three hidden layers of 80 nodes each to predict the
parameters of the next four weeks.
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Figure 5. Flow-Chart of LSTM

5. Simulation

In this section, we present and discuss our simulation results. The accuracy of the
learned parameters by PINN is validated using the relative error in the numerical so-
lution of System (1), obtained using the Fourth Order Runge-Kutta (RK4) method,
with respect to the exact solution. Furthermore, the relative error in the learned solu-
tion by PINN with respect to the data is examined. We start by presenting the results
for the learned daily and weekly time-varying parameters followed by the associated
reproduction numbers. Then, predictions of infectious cases are provided.

5.1. Time-Varying Parameters

In general, the daily-varying values of the parameters are more reflective of the daily
data than the single constant average values of these parameters. However, identifying
the daily-varying parameters is traditionally costly and adds to the complexity of the
problem. Fortunately, PINN provides an efficient approach to overcome this difficulty.
On the other hand, our simulations show that the learned weekly-varying data produce
precisely identified parameters and more stable approximation results.

Algorithms 1 and 2 give the identified parameters and the learned values of the
SIRD model by PINN. We use the RK4 method to solve the SIRD model with learned
parameters. Then, the solutions of the ODE system (1) are compared with the learned
values.

In Figures 6, 7, and 8, we present the learned values by PINN (NN), the solution of
the ODE system (1) (ode), and the reported data (data). Moreover, the relative errors
with respect to the reported data are also computed.
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Figure 6. Simulation Results of New York

Figure 7. Simulation Results of Texas
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Figure 8. Simulation Results of New Mexico

There are some large relative errors at the early stage of the outbreak of the disease.
This could be due to the small size of the recovered and deceased populations. But the
relative errors of the solution of the SIRD model are in a reasonable range, which means
that we obtained ideal identified parameters. For the weekly-varying parameters, the
period is divided into weeks and the learned results are presented in Figures 9, 10, and
11.

Figure 9. Simulation Results of New York
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Figure 10. Simulation Results of Texas

Figure 11. Simulation Results of New Mexico

The relative errors in Figures 9, 10, and 11 are smaller compared to the results in
Figures 6, 7, and 8. Thus, we could infer that the approximation of constant parameters
is more accurate and stable.

5.2. Simulated Reproduction Numbers

By eq. (3), the effective reproduction number can be obtained using the learned daily
and weekly varying parameters. Figure 12 shows the effective reproduction number in
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the three states. We could see the daily and weekly time-varying reproduction numbers
have the similar trends, which proves the feasibility and effectiveness of our methods
to some extent. In the result of New York, we could see the Re is greater than 1 in the
whole period, which represents that the number of infectious cases keeps increasing. As
for the situation in New Mexico, Re decreases to 1 from August, then the population of
infected individuals decreased at that period. By observing the change of Re in Texas,
the value is too large in the beginning because the parameter identification in that
period is not ideal. But after that period, the Re goes back to normal and oscillates
between 0 and 4. Besides, we could see that the growth rate of infected individuals in
New York is faster than the other two states by Figure 3.

(a) New York

(b) New Mexico (c) Texas

Figure 12. Effective Reproduction Number

5.3. Prediction of Infectious Cases

The LSTM is employed to predict the future values of the parameters. Figure 13
presents the predictions of infected cases for the next four weeks. The prediction of
New York is close to the original trend of infectious cases. Predictions in New Mexico
show general accord with real situations, but it cannot capture the small fluctuations.
As for Texas, there is a sharp increase and decrease in the infectious cases at the end
of September, and our prediction could not detect this situation.

15



(a) New York

(b) New Mexico (c) Texas

Figure 13. Predictions

6. Conclusions

We introduced a data-driven deep learning approach based on physics informed neural
network to solve the epidemiological models and identify weekly and daily time-varying
parameters. The PINN was used for parameters identification and solving the ODE
system. LSTM was implemented to predict the weekly time-varying parameters and
then substituted predicted parameters into the SIRD model so that we could obtain
the future trend of COVID-19. The results and errors have shown that the weekly
time-varying parameters provided a good fit to the real data. The algorithms could
be further developed to achieve a more accurate approximation for complex problems.
We intend to explore other architectures of PINN in future work.
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