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ABSTRACT

Neural networks trained to classify images do so by identifying fea-
tures that allow them to distinguish between classes. These sets
of features are either causal or context dependent. Grad-CAM is
a popular method of visualizing both sets of features. In this pa-
per, we formalize this feature divide and provide a methodology
to extract causal features from Grad-CAM. We do so by defining
context features as those features that allow contrast between pre-
dicted class and any contrast class. We then apply a set theoretic ap-
proach to separate causal from contrast features for COVID-19 CT
scans. We show that on average, the image regions with the proposed
causal features require 15% less bits when encoded using Huffman
encoding, compared to Grad-CAM, for an average increase of 3%
classification accuracy, over Grad-CAM. Moreover, we validate the
transfer-ability of causal features between networks and comment on
the non-human interpretable causal nature of current networks.

Index Terms— Visual Causality, Contrastive Explanations,
COVID-19, Gradients, Causal metrics

1. INTRODUCTION

In the field of image classification, deep learning networks have sur-
passed the top-5 human error rate [1] on ImageNet dataset [2]. In this
dataset, neural networks learn to differentiate between 1000 classes
of natural images. The success of deep learning networks on natu-
ral images has fostered its usage on computed visual data including
biomedical [3] and seismic [4, 5] fields. While the number of learn-
able classes in these fields is generally limited, neural networks have
the additional task of aiding domain specific experts to interpret the
explanations behind their decisions to promote trust in the network.
For instance, in the field of biomedical imaging, a medical practi-
tioner diagnoses whether a patient is COVID positive or negative
based on CT scans [6]. The authors in [7] use transfer learning ap-
proaches on CT scans to perform the detection and provide explana-
tory results using Grad-CAM [8] to justify their network’s efficacy
in detecting COVID-19. Grad-CAM highlights features in the im-
age that lead to the network’s decision. In this paper, we analyze a
neural network’s causal capability using existing explanatory meth-
ods by providing a technique to extract causal features from such
explanatory methods.

Probabilistic causation assumes a causal relationship between
two events C and P if event C increases the probability of occur-
rence of P [9]. In image classification networks, P refers to de-
cisions made by neural networks based on features C. A popular
method for ascertaining probabilistic causality is through interven-
tions in data [10]. In these models, the set of causal features C is
varied by intervening in the generation process of C to ascertain the

change in the observed decision P . Such interventions can how-
ever be long, complex, unethical or impossible [11] like in COVID
CT scans. Hence, we forego interventionist causality and rely on
observed causality to derive causation. Observed causality relies
on passive observation to determine statistical causality. The au-
thors in [12] propose that non-interventionist observation provides
two sets of features - causal C, and context B - that lead to decision
P . In other words, a decision P is made based on both causal and
context features in an image. Hence, existing explanatory methods
including [8, 13, 14] highlight C ∪ B features. However, they do
not provide a methodology to extract either C or B separately. In
this paper, we utilize contrastive features from [15] to approximate
B features. We then propose a set-theoretic approach to abstract C
out of Grad-CAM’s C ∪B features. The contributions of this paper
include:

• Formulating a set theoretic interpretation of causal and con-
text features for observed causality in visual data.

• Expressing context features as contrastive features.

• Providing an evaluation setup that tests for causality in a lim-
ited label scenario.

In Section 2, we motivate context via contrast and review Grad-
CAM and contrastive explanations. We then motivate the proposed
method and detail its procedure in Section 3. We finally present the
results in Section 4 before concluding in Section 5.

2. BACKGROUND AND RELATED WORKS

Causal and Context features: The authors in [12] define causal
features as visual features that exist within the physical body of the
object in an image and context features as visual features that sur-
round the object in the image. In this paper, we forego the definitions
based on physical locations in favor of the feature’s membership to-
wards predicting a class P . We define causal features C as those
features whose presence increases the likelihood of occurrence of
decision P in any CT scan x. Conversely, the absence of causal
features C decreases the probability of decision P . The above two
definitions of causal features are derived from the Common Cause
Principles [16] and are used in [17] to evaluate causality. We follow
a slightly altered methodology to showcase the causal effectiveness
of our method. We define context features B contrastively, as fea-
tures that allow differentiating predicted class P and a contrast class
Q, without necessarily causing P .
Context and Contrast features: In the field of human visual
saliency, the authors in [18] provide an argument for the existence
of contextual features of a class that are represented by their rela-
tionship with features of other classes. In [19], the implicit saliency
of a neural network is extracted as an expectancy-mismatch between



Fig. 1. Top : Venn diagram for problem formulation based on Eq. 1. Bottom : Estimating context features from Eq. 2. Note that because the
network does not classify with 100% confidence, we cannot resolve CP ∩BP .

the predicted class against all learned classes thereby empirically
validating the existence of contrastive information within neural
networks. The authors in [15] extract this information and visualize
them as explanations. In this paper, we represent the context features
B as contrast features.
Grad-CAM and Contrastive Explanations: Consider a trained bi-
nary classifier f(). Given an input image x, y = f(x) are the logit
outputs of dimensions 2 × 1. The predicted class P of image x is
the index of the maximum element in y i.e. P = argmaxi yi, ∀i ∈
[1, 2]. Grad-CAM localizes all features in x that leads to a deci-
sion P by backpropagating the logit yP to the last convolutional
layer l. The per-channel gradients in layer l are summed up to ob-
tain an importance score αk for a channel k, k ∈ [1,K] and multi-
plied with the activations in their respective channels Ak. The im-
portance score weighted activation maps are averaged to obtain the
Grad-CAM mask GP = ReLU(

∑K
k=1 αkA

k) for class P . The au-
thors in [15] modified the Grad-CAM framework to backpropagate a
loss functionLP,Q between predicted class P and a contrast classQ.
With the other steps remaining the same, a contrast-importance score
αc
k weighted contrast mask is given by C = ReLU(

∑K
k=1 α

c
kA

k)
for predicted and contrast classes P and Q. Note that gradients are
used as features in multiple works including [20, 21, 22].

3. PROPOSED METHOD

We first motivate our method based on set theory before describing
the process of extraction of causal features.

3.1. Theory

Consider the setting as described in Section 2 where a binary clas-
sification network f() is trained on COVID-19 CT scans [6]. Once
trained, for any given scan from the dataset, Grad-CAM provides vi-
sual features that combine both causal and context features. Hence,
Grad-CAM provides a mask, GP = CP ∪ BP for the prediction P
on a given scan x. If the network classifies x correctly with 100%
confidence, then f() has resolved causal and context features in-

dependently such that GP = CP + BP . However, this rarely oc-
curs in practice and we assume GP = CP + BP − (CP ∩ BP ).
Hence, our goal is to extract the relative complement CP \BP given
GP = CP ∪ BP . This is illustrated in Fig. 1. Based on a visual
inspection of the venn diagram, we can rewrite CP \BP as,

CP \BP = GP −BP . (1)

Note that we do not have access to either CP or BP . We are only
provided with GP . In this paper, we estimate the context features
BP using contrastive features from [15]. Specifically, continuing
the notations from Section 2, we represent BP as,

BP = CP,Q − CP,Q − CP,P . (2)

Substituting Eq. 2 back in Eq. 1, we obtain our final formulation,

CP \BP = GP − [CP,Q − CP,Q − CP,P ]. (3)

A venn diagram visualization is presented in Fig. 1. We qualitatively
explain all the contrastive terms.

3.2. Contrastive features

CP,Q: Highlights features that answer ‘Why P or Q?’. This term
contrastively leads to either decisions of P or Q. In the binary set-
ting, we approximate this to be all possible features U . Borrowing
notations from Section 2, CP,Q is obtained by backpropagating a
loss L(y, [1, 1]) to obtain a contrast-importance score αP,Q

k .
CP,Q: Highlights features that answer ‘Why neither P nor Q?’.

The features in this term do not increase the probability of either P
or Q. CP,Q is obtained by backpropagating a loss L(y, [0, 0]) to

obtain a contrast-importance score αP,Q
k .

CP,P : Highlights features that answer ‘Why not P with 100%
confidence?’. Hence, it highlights all unresolved causal features.
CP,P is obtained by backpropagating a loss L(y, [1, 0]) to obtain a

contrast-importance score αP,P
k



Fig. 2. (a) Deletion - Curves to the left are ideal. (b) Insertion - Curves to the right are ideal. (c) Original scan. (d) Grad-CAM. (e)
Grad-CAM++. (f) Proposed causal explanation. (g) CP,Q. (h) CP,P

3.3. Implementation

Continuing the notations from Section 2, the implementation equiv-
alent of Eq. 3 is given by,

CP \BP = ReLU

( K∑
k=1

−
[
αk−αP,Q

k +αP,Q
k +αP,P

k

]
Ak

)
, (4)

where αk represents the importance score from Grad-CAM and αc
k

represents the normalized importance score from contrast maps. The
overall negative sign occurs because α are gradients whose direc-
tions are opposite to the feature minima. The final map is normal-
ized and is visualized. A representative COVID negative scan and
its Grad-CAM [8] and Grad-CAM++ [13] explanations are shown
in Figs. 2c, 2d, and 2e respectively. The causal map from Eq. 4
and contrastive maps CP,Q and CP,P are visualized in Figs. 2f, 2g
and 2h respectively. Note that while CP,Q appears similar to G, CP,Q
is biased by normalization and its αk values are lesser.
Effect of number of classes: In a binary classification setting, we
need four feature maps - one Grad-CAM and three contrastive maps
to extract causal features. These are obtained by backpropagating
{(0, 0), (1, 0), (1, 1) and the logit for Grad-CAM. Hence, we back-
propagate the power set of all possible class combinations. This
translates to 2N backpropagations for N classes. Therefore, this
technique is suitable for a limited class scenario.

4. EXPERIMENTS
In this section, we detail the experiments to validate the causal
nature of our proposed features. We perform two sets of experi-
ments to validate within-network and inter-network causality. The
COVID-19 dataset [6] consists of 349 COVID positive CT scans
and 463 COVID negative CT scans. We train ResNets-18,34,50 [1]
and DenseNets-121,169 [23] as described in [7].

4.1. Within-network causality : Deletion and Insertion
The authors in [17] propose two causal metrics - deletion and inser-
tion. In deletion, the identified causes are deleted pixel by pixel and
the probability of predicted class, as a function of the fraction of the
removed pixels, is monitored. In insertion, the non-causal pixels are
added and the increase in probability as a function of added fraction
of pixels is noted. However, in a binary setting, the probability for a
class rarely decreases to a large extent even after removing a major-
ity of the pixels. Hence, we modify the deletion and insertion setup
to measure accuracy instead of probability on masked images.

A threshold is applied on the Grad-CAM [8], Grad-CAM++ [13]
and proposed causal maps. For deletion, the pixels greater than the
given threshold are made equal to 1 with the rest being 0. And vice-
versa for insertion. The binary mask is then multiplied with the orig-
inal input image and the masked image is passed through the model.
The model’s prediction is noted. This is conducted on all images in
the testing set and the average test accuracy is calculated. The exper-
iment is conducted with 81 thresholds ranging from 0.1 to 0.8 with
an increment of 0.01. The average accuracy in each case is noted.
From Figs. 2f and 3, we see that the area highlighted by the proposed
causal features is lesser than the compared methods. To objectively
measure this area, we encode the original and masked images using
Huffman coding [24] as Hf and Hm respectively. The ratio of the
bits is taken as H = Hm/Hf . Each average accuracy for a thresh-
old is now associated with an H. All 81 accuracies are plotted as a
function of theirH and depicted in Fig. 2a. Consider two points DC

and DG on the proposed causal and Grad-CAM curves respectively.
These points depict roughly 65% averaged accuracy. From the cor-
responding bit rates in the x-axis, the causal features achieve this
accuracy at a lower bit rate compared to Grad-CAM. Hence, dense
causal features are encoded by lesser bits in the proposed method.
This is validated in the insertion plot in Fig. 2b as well.



Table 1. Causal Feature Transference from ResNet-18 to other architectures.

Threshold Huffman (↓) Accuracies (↑)
ResNet-34 ResNet-50 DenseNet-121 DenseNet-169

GradCAM Causal GradCAM Causal GradCAM Causal GradCAM Causal GradCAM Causal
0.1 0.7802 0.5456 0.6158 0.6502 0.7586 0.7537 0.6404 0.6453 0.7044 0.7291
0.2 0.6442 0.4549 0.5911 0.6355 0.7734 0.7783 0.6158 0.6256 0.7143 0.7685
0.3 0.5329 0.3879 0.5665 0.5764 0.7241 0.7980 0.6108 0.6207 0.6946 0.7389
0.4 0.4434 0.3329 0.5074 0.5419 0.67 0.7882 0.5911 0.5961 0.6305 0.7192
0.5 0.3715 0.2886 0.5025 0.5222 0.601 0.7586 0.5911 0.6108 0.6059 0.6847

Table 2. Causal Feature Transference from ResNet-34 to other architectures.

Threshold Huffman (↓) Accuracies (↑)
ResNet-18 ResNet-50 DenseNet-121 DenseNet-169

GradCAM Causal GradCAM Causal GradCAM Causal GradCAM Causal GradCAM Causal
0.1 0.8352 0.6531 0.7094 0.7044 0.7783 0.7241 0.6108 0.6552 0.7389 0.7586
0.2 0.7493 0.5646 0.7044 0.6995 0.7931 0.7586 0.6059 0.6256 0.7537 0.7586
0.3 0.6584 0.4781 0.6749 0.6749 0.8177 0.7537 0.6059 0.6059 0.7389 0.7340
0.4 0.5672 0.3983 0.6502 0.6650 0.7635 0.7685 0.6059 0.5911 0.7192 0.7044
0.5 0.4749 0.3292 0.6010 0.6059 0.7783 0.7537 0.5764 0.5616 0.6897 0.6552

4.2. Inter-network causality : Transference of features
In this section, we mask input images based on features obtained
from the proposed causal and Grad-CAM methods using ResNet-
18 [1]. We then pass these masked images through other trained
networks including ResNets-34,50 [1] and DenseNets-121,169 [23].
This experiment is designed to validate the transfer-ability of causal
features identified by ResNet-18 to other networks. The accuracy
and Huffman ratio results for 5 different thresholds are shown in Ta-
ble 1. It can be seen that the huffman ratio for the proposed method
is lesser than Grad-CAM for all thresholds. Hence, it is able to iden-
tify dense causal features from Grad-CAM. The averaged accuracy
of masked images is also shown for 4 other networks. In 19 of the 20
categories, the proposed causal feature masked images outperform
Grad-CAM feature masked images with a lesser huffman ratio. In
Table 2, we extract masks using ResNet-34, perform deletion based
on shown thresholds and obtain huffman ratios for all test images.
These masked images are then passed into the corresponding net-
works and the accuracy results are shown. In 10 of the 20 categories,
the proposed causal features outperform Grad-CAM features.

4.3. Qualitative Analysis
The authors in [17] argue that humans must be kept out of the loop
when evaluating causality. However, by definition, explanations are
rationales used by networks to justify their decisions [25]. These jus-
tifications are made for the benefit of humans. Such justifications are
required in fields like biomedical imaging where deep learning tools
are used as aids by medical practitioners. We visualize Grad-CAM
and their underlying causal features from the proposed technique in
Fig. 3. Both original scans are from COVID positive patients. In
Fig. 3a, Grad-CAM fails to highlight the circled red region that de-
picts COVID. More importantly, the extracted causal features are at
the bottom right. Feeding the masked image into ResNet-18, the
network classifies both correctly but with a higher confidence in the
causal features. In Fig. 3b, we pick a scan whose Grad-CAM and
causal features were classified with the same confidence but from
different regions within the scans.

These results suggest that it is the context features that add hu-
man interpretability and causal features that aid classification. In
real-world biomedical applications like in the considered COVID-
19 detection, it is imperative to identify and make decisions based

Fig. 3. (a) Non human-interpretable causal feature has higher pre-
diction confidence. (b) The prediction confidences from both expla-
nations are equal.

on causal features. It merits further study into designing better net-
works whose causal features are more human interpretable, similar
to Grad-CAM’s causal and context feature set.

5. CONCLUSION

In this paper we formalize the causal and context features that a neu-
ral network bases its decision on. We express context features in
terms of contrastive features between classes that the neural network
has implicitly learned. This allows separation between causal and
context features. Grad-CAM is used as the explanatory mechanism
from which causal features are extracted. We validate and establish
the trasfer-abilty of these causal features across networks. The visu-
alizations suggest that the causal regions that a neural network bases
its decision on is not always human interpretable. This calls for more
work in designing human-interpretable causal features especially in
fields like biomedical imaging.



6. REFERENCES

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[2] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al., “Imagenet large scale
visual recognition challenge,” International journal of com-
puter vision, vol. 115, no. 3, pp. 211–252, 2015.

[3] Dogancan Temel, Melvin J Mathew, Ghassan AlRegib, and
Yousuf M Khalifa, “Relative afferent pupillary defect screen-
ing through transfer learning,” IEEE Journal of Biomedical
and Health Informatics, vol. 24, no. 3, pp. 788–795, 2019.

[4] Yazeed Alaudah, Patrycja Michałowicz, Motaz Alfarraj, and
Ghassan AlRegib, “A machine-learning benchmark for facies
classification,” Interpretation, vol. 7, no. 3, pp. SE175–SE187,
2019.

[5] Muhammad A Shafiq, Mohit Prabhushankar, Haibin Di, and
Ghassan AlRegib, “Towards understanding common features
between natural and seismic images,” in SEG Technical Pro-
gram Expanded Abstracts 2018, pp. 2076–2080. Society of Ex-
ploration Geophysicists, 2018.

[6] Jinyu Zhao, Yichen Zhang, Xuehai He, and Pengtao Xie,
“Covid-ct-dataset: a ct scan dataset about covid-19,” arXiv
preprint arXiv:2003.13865, 2020.

[7] Xuehai He, Xingyi Yang, Shanghang Zhang, Jinyu Zhao,
Yichen Zhang, Eric Xing, and Pengtao Xie, “Sample-efficient
deep learning for covid-19 diagnosis based on ct scans,”
medRxiv, 2020.

[8] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra, “Grad-
cam: Visual explanations from deep networks via gradient-
based localization,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 618–626.

[9] Christopher Hitchcock, “Probabilistic causation,” 1997.
[10] Judea Pearl et al., “Models, reasoning and inference,” Cam-

bridge, UK: CambridgeUniversityPress, 2000.
[11] Mark Steyvers, Joshua B Tenenbaum, Eric-Jan Wagenmakers,

and Ben Blum, “Inferring causal networks from observations
and interventions,” Cognitive science, vol. 27, no. 3, pp. 453–
489, 2003.

[12] David Lopez-Paz, Robert Nishihara, Soumith Chintala, Bern-
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