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Abstract

While a common trend in disease modeling is to develop models of increasing com-
plexity, it was recently pointed out that outbreaks appear remarkably simple when viewed
in the incidence vs. cumulative cases (ICC) plane. This article details the theory behind this
phenomenon by analyzing the stochastic SIR (Susceptible, Infected, Recovered) model in
the cumulative cases domain. We prove that the Markov chain associated with this model
reduces, in the ICC plane, to a pure birth chain for the cumulative number of cases, whose
limit leads to an independent increments Gaussian process that fluctuates about a determin-
istic ICC curve. We calculate the associated variance and quantify the additional variability
due to estimating incidence over a finite period of time. We also illustrate the universality
brought forth by the ICC concept on real-world data for Influenza A and for the COVID-19
outbreak in Arizona.

1 Introduction: Outbreaks beyond the time domain and the
ICC perspective

As evidenced by the COVID-19 pandemic, societies throughout the world are highly vulner-
able to disease outbreaks [13]. To understand the mechanism involved in disease spread and
eventually provide a framework for effective public health guidance, scientists have developed
numerous mathematical, statistical, and computational models of infectious disease dynam-
ics [10, 24]. But a dilemma quickly emerges: because disease spread is inherently complex,
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realistic descriptions commonly rely on a large number of parameters that are often unidentifi-
able or difficult to estimate, thereby leading to huge uncertainty in associated forecasts [5]. As is
typically the case with nonlinear systems, reducing the dynamics to a core nonlinear model and
quantifying the associated uncertainty should provide a viable compromise between complexity
and simplicity. The ICC approach [11, 12] introduces such a framework and, as illustrated in
Figure 1, uncovers what appears to be a generic property of outbreak data.

In most instances, the independent variable underlying the course of an epidemic is time:
health authorities report numbers of new cases and deaths per day or week, forming what is
commonly called an epidemiological (EPI) curve (see examples in the top left panel of Figure
1); and modelers fit their models to this same EPI curve. However, time – as we measure it –
is not intrinsic to the spread dynamics of the pathogen. As such, focusing on temporal aspects
obscure relevant properties of these dynamics, thereby making it more difficult to fit models to
data. The ICC viewpoint [11, 12] suggests replacing time with a monotonic, nonlinear function
thereof: cumulative cases. Therefore, in contrast to EPI curves, which describe how humans
perceive outbreaks as time unfolds, ICC curves emphasize the pathogen’s perspective centered
on the number of people infected (i.e. the resources that have been consumed so far).

Figure 1 illustrates how these ideas can reveal important traits shared by different outbreaks
associated with the same pathogen. The left plot of the top row shows the EPI curves of the
24 Inluenza A (H3N2) outbreaks that took place in US HHS regions between 1998 and 2019
and led to more than 3000 confirmed cases. No specific properties of these curves are readily
observable, because the peak timing and peak height vary between seasons. However, when the
same curves are plotted in the incidence vs. cumulative cases (ICC) plane, a structure emerges
(top right panel), revealing similarities between each season that, as we will see, are characteris-
tic of the disease itself. To emphasize that such properties are generic, the bottom row of Figure
1 shows similar results for multiple instances of the spread of a disease on a network [16], as
described by a stochastic SIR (Susceptible, Infected, Recovered) model. Again, the universal-
ity normally hidden behind classical EPI curves becomes evident once time is removed from
the picture and the independent variable is replaced with cumulative cases. The bottom row of
Figure 1 comes from simulations of a SIR model on a network. Incidence is defined as βIS,
which for the deterministic SIR model equals dC/dt. Here, β is the contact rate of the disease,
I is the number of infected individuals, S is the number of susceptible individuals, and C is the
cumulative number of cases. For deterministic systems, an ICC curve is therefore the graph of
dC/dt as a function of C. In a discrete setting, the reported incidence is the number of new
cases ∆C that occurred over a fixed period of time ∆ and the incidence per unit of time is
∆C/∆.

Dynamical systems theory has long promoted such a phase portrait perspective as displayed
in the right panels of Figure 1, since it can provide both intuitive insights and analytical ap-
proaches not easily identified under the time domain description. In [12], Lega & Brown ad-
vocated for the relevance of this viewpoint in disease modeling; they pointed out that in many
instances epidemiological data appear to follow a parabolic ICC curve, thereby suggesting that
the logistic equation is a good model for the overall dynamics of C as a function of time. This
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Figure 1: Top Row, left: weekly incidence I/Ĉ∞ plotted as a function of time, for influenza
A (H3N2) outbreaks that took place in the US between 1998 and 2019, and were of final size
Ĉ∞ > 3000 cases. Each curve corresponds to one flu season in an HHS region. Time is mea-
sured in weeks from epidemiological week (EW) 31 of each year. The data were downloaded
from the CDC Fluview database using the R cdcfluview package [15]. Top row, right:
the same curves plotted in the ICC plane, showing I/Ĉ∞ as a function of scaled cumulative
cases C/Ĉ∞. Bottom row, left: EPI curves for 5997 runs of a stochastic SIR model with size
N = 2500 and R0 = 2. Bottom row, right: Corresponding ICC curves, showing I/Ĉ∞ as a
function of C/Ĉ∞. The white dashed curve corresponds to Equation 1, scaled to the expected
final size C∞ of the outbreak (C∞/N is the non-zero root of the right-hand side of Eq. 1 with
c0 set to 0). For the stochastic SIR model, I is defined as the random variable βIS (see text for
details).
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provided context to earlier works, in which the relevance of the logistic equation to the spread
of Ebola in Africa had been noted [4, 14]. In [11], Lega proved that the deterministic SIR com-
partmental model [10] has an exact ICC curve, whose shape is almost parabolic. The present
work goes beyond the macroscopic picture provided by deterministic approaches. We analyze
the statistical properties of the stochastic SIR model and explain the origins of the ICC curve
from microscopic stochastic interactions.

The rest of this article is organized as follows. Section 2 introduces the stochastic SIR
model and establishes that, in the limit of large populations, a single realization of this model
fluctuates about the deterministic SIR ICC curve. Section 3 builds on these results to prove
that the stochastic SIR model defines a Gaussian process with independent increments in the
ICC plane. We quantify the associated variance, provide an elegant way of recovering a known
formula for the distribution of the final size of an outbreak, find the distribution of incidence at
expected disease peak, and discuss the added variability due to the difference quotient nature of
the reported incidence. Section 4 summarizes our results and reviews their potential applications
to the analysis of outbreak data.

2 The Stochastic SIR model and a Functional Law of Large
Numbers

The SIR model consists of three compartments representing individuals susceptible of catch-
ing the disease (S), those who have the disease and are infectious (I), and those who have
recovered (R) and can not longer infect others. In the stochastic version, the size of each com-
partment evolves according to a continuous time Markov process [2] involving the two tran-
sitions described in Table 1. Here, n is the number of individuals in the population, nS , nI ,
and nR are the number of susceptible, infective, and recovered individuals respectively, and
nC = nI + nR = n − nS is the number of cases. The parameters β and γ are the contact and
recovery rates of the disease, respectively.

event transition rate
infection (nS, nI , nR)→ (nS − 1, nI + 1, nR) βnSnI
recovery (nS, nI , nR)→ (nS, nI − 1, nR + 1) γnI

Table 1: Continuous-time Markov process associated with the SIR model.

The ICC curve was developed to determine a direct relationship between incidence and the
number of cases. For the deterministic SIR model, it reads [11]

dc

dt
= βP

(
c+

1

R0

ln (1− c)− 1

R0

ln (1− c0)

)
(1− c) = G(c, c0), (1)
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where c = nC/n, n is the population size, βP = nβ is the population-level contact rate of the
disease, R0 is the basic reproductive number, and c0 ' 0 represents the initial condition for c.
The goal of this section is to prove that an analogous relationship can be found by representing
the stochastic SIR model as a multiparameter random time change (see [6], Section 6.2).

2.1 Multiparameter Random Time Change Representation
Let Yi, i = 1, 2 be two independent unit rate Poisson processes, one for infection and one for
recovery. Then, we can write the stochastic SIR model (NS, NI , NR) as

NS(t) = NS(0)− Y1

(∫ t

0

βNS(u)NI(u)du

)
,

NI(t) = NI(0) + Y1

(∫ t

0

βNS(u)NI(u)du

)
− Y2

(∫ t

0

γI(u)du

)
,

NR(t) = NR(0) + Y2

(∫ t

0

γNI(u)du

)
. (2)

As is shown in Section 6.4 of [6], the system of equations in (2) has a unique solution and is
the SIR model introduced in Table 1. The cumulative number of cases NC(t) = NI(t) +NR(t)
satisfies

NC(t) = NC(0) + Y1

(∫ t

0

βNS(u)NI(u)du

)
= NC(0) + Y1

(∫ t

0

β(n−NC(u))NI(u)du

)
.

Now, taking advantage of the independent increments of the Poisson process, we may write

NC(t+ ∆)−NC(t)

= Y1

(∫ t+∆

0

β(n−NC(u))NI(u)du

)
− Y1

(∫ t

0

β(n−NC(u))NI(u)du

)
= Ỹ1

(∫ t+∆

t

β(n−NC(u))NI(u)du

)
, (3)

where Ỹ1 is also a unit rate Poisson process. As a consequence, we have the following lemma.

Lemma 1. The rate of increase in the expected number of cases

Ċ(nC) =
d

d∆
E[NC(t+ ∆)−NC(t)|NC(t) = nC ]

∣∣∣
∆=0

satisfies the equation

Ċ(nC) = E[βNI(t)(n− nC)|NC(t) = nC ] = βE[NI(t)|NC(t) = nC ](n− nC). (4)
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Proof. The conditional mean of the increment in (3) is given by

E[NC(t+ ∆)−NC(t)|NC(t) = nC ]

= E

[
Ỹ1

(∫ t+∆

t

β(n−NC(u))NI(u)du

) ∣∣∣NC(t) = nC

]
=

∫ t+∆

t

βE[(n−NC(u))NI(u)|NC(t) = nC ] du

Now divide by ∆ and let ∆→ 0.

Lemma 1 relates Ċ(nC) to the conditional expectation of β nI(n− nC) = β nI nS . We call
the random variable I = β nI nS the “macroscopic incidence.” Our next step is to find a formula
for E[NI(t)|NC(t) = nC ], the mean number of infective individuals given the number of cases.
This relationship can be understood by examining the underlying discrete time Markov chain.

2.2 Underlying discrete time Markov chain
By the Doob-Gillespie algorithm [3, 8], a time-homogeneous pure-jump Markov process con-
sists of two independent parts.

1. The length of time that the process remains in its current state is exponentially distributed
with parameter value depending only on the current state, equal to the sum of the rates
listed in the above table.

2. The jumps form an underlying time-homogeneous discrete time Markov chain.

For the SIR model, the underlying discrete time Markov chain has two transitions, with proba-
bilities listed in the table below.

event transition probability
infection (nS, nI , nR)→ (nS − 1, nI + 1, nR) βnSnI/(βnSnI + γnI)

= βnS/(βnS + γ)
recovery (nS, nI , nR)→ (nS, nI − 1, nR + 1) γnI/(βnsnI + γnI)

= γ/(βns + γ)

Note that the probabilities in the last column do not depend on nI when nI > 0. Choosing
state space variables nC and nI , we recast the Markov chain transitions in terms of the total
population n and the number of cases nC , leading to the following table.

event transition probability
infection (nC , nI)→ (nC + 1, nI + 1) p(nC) = β(n− nC)/(β(n− nC) + γ)
recovery (nC , nI)→ (nC , nI − 1) 1− p(nC) = γ/(β(n− nC) + γ)

6



Using the expression for the basic reproduction number,R0 = nβ/γ = βP/γ, we can also write

p(nC) =
R0(n− nC)/n

R0(n− nC)/n+ 1
.

Consequently, we can denote the underlying Markov chain by Cj, j = 0, 1, . . . for the total
number of cases at the j-th event. The ability to cast the Markov chain for cases alone with the
number of infectives playing no role mirrors the property that the dynamics of the deterministic
SIR model is completely described by a first-order differential equations forC(t) [11]. Note that
Cj is a pure birth chain with a jump up with each new infection. This Markov chain has a single
parameter, namely R0. In terms of statistical inference, the ratio that leads to the probabilities
p(nC) shows that the parameter β is ancillary to the dynamics (see [7] for the properties of
ancillary statistics).

2.3 The mean for the number of infected individuals
We are now prepared to investigate properties of the distribution of Ij , the number of infected
individuals at the jth event, when the number of cases is known. To this end, note that with
Cj = nC

Ij = nC − (j − nC) = 2nC − j (5)

since there have been nC infections in j steps, and thus j − nC recoveries. Also note that the
nature of the chain is such that C0 = 0 and C1 = 1. Next, let

τnC
= min{j;Cj = nC}

denote the number of steps in the discrete Markov chain needed to reach nC cases, which is also
known as a hitting time of the Markov chain. Then,

IτnC
= 2nC − τnC

.

This shows that if we can determine the distribution of τnC
, then we can also determine the

distribution of IτnC
.

Theorem 2. The expectation of τnC
satisfies

lim
n→∞

1

n
EτnC

= c− 1

R0

ln(1− c)

and consequently,

lim
n→∞

1

n
EIτnC

= c+
1

R0

ln(1− c),

where c = nC/n.
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Proof. A pure-birth Markov chain remains in a given state m for a geometric number of steps
before making the transition to the state m+ 1. With this in mind, we can write

τnC
= σ1 + · · ·+ σnC−1 (6)

as the sum of independent random variables σm ∼ Geom1(p(m)), where the subscript 1 in
Geom1(p(m)) indicates that the the state space is {1, 2, . . .} (rather than {0, 1, 2, . . .}). Thus,
Eσm = 1/p(m). Write

EτnC
=

nC−1∑
m=1

1

p(m)
=

nC−1∑
m=1

R0(n−m)/n+ 1

R0(n−m)/n
= (nC − 1) +

n

R0

nC−1∑
m=1

1

n−m
.

Then,

1

n
EτnC

= c− 1

n
+

1

R0

n c−1∑
m= 1

1

1−m/n
1

n

→ c+
1

R0

∫ c

0

1

1− q
dq = c+

1

R0

ln(1− c) as n→∞.

Corollary 3. The scaled rate of increase in the expected number of cases, ċ (see Lemma 1),
satisfies

ċ = lim
n→∞

1

n
Ċ(nc) = βP

(
c+

1

R0

ln(1− c)
)

(1− c). (7)

Proof. The theorem above shows that

lim
n→∞

1

n
E[NI(t)|NC(t) = n c] = c+

1

R0

ln(1− c) = mI(c),

where the last inequality defines mI(c). Now substitute into (4) and recall that βP = nβ.

We therefore have recovered the ICC curve (1) as the mean of the macroscopic incidence I
in the limit as n → ∞. We now turn to a description of how individual realizations of I in the
stochastic SIR model fluctuate about the mean ICC curve.

3 The statistics of fluctuations about the ICC curve
In this section, we establish a functional central limit theorem in which the limit is an indepen-
dent increments Gaussian process.
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The ingredients for a Gaussian process are a mean function and a variance-covariance func-
tion. Thus, the next task is to determine the variance structure that arises as a limit for the
pure-birth Markov chain Cj . Recall that we set σm ∼ Geom1(p(m)), the number of steps that
the chain remains in a given state m. Because the σm are independent, we can use (6) and write
the variance of τnC

as follows.

Var(τnC
) =

nC−1∑
m=1

Var(σm) =

nC−1∑
m=1

1− p(m)

p(m)2

=

nC−1∑
m=1

1/(R0(n−m)/n+ 1)

((R0(n−m)/n)/(R0(n−m)/n+ 1))2
(8)

=

nC−1∑
m=1

R0(n−m)/n+ 1

R2
0(n−m)2/n2

=
n

R0

nC−1∑
m=1

1

n−m
+
n2

R2
0

nC−1∑
m=1

1

(n−m)2
.

Consequently, using the relationship in (5).

Var(IτnC
) = Var(τnC

) =
n

R0

nC−1∑
m=1

1

n−m
+
n2

R2
0

nC−1∑
m=1

1

(n−m)2
.

Theorem 4. Set c0 = nC0/n and c = nC/n,

lim
n→∞

1

n
(Var(IτnC

)− Var(IτnC0
)) =

1

R0

ln

(
1− c0

1− c

)
+

1

R2
0

c− c0

(1− c)(1− c0)
.

Proof. Take the expression (8), divide by n and notice that the two sums are Riemann sums.
Take the limit to obtain the corresponding integral, which can be evaluated explicitly.

3.1 Functional central limit theorem
We can turn the calculations above into a functional central limit theorem. To start, define

Īc =
1

n
IτnC

, τ̄c =
1

n
τnC

.

Due to the fact that they are derived from sums of independent geometric random variables,
both Īc and τ̄c have independent increments. In particular, set c = nC/n and define Fc to be the
σ-algebra generated by {Cj; j ≤ τnC

}. Then for c0 < c1, τ̄c1 − τ̄c0 and Fc0 are independent and
by the basic properties of conditional expectation

E[τ̄c1 − τ̄c0|Fc0 ] = E[τ̄c1 − τ̄c0 ] = Eτ̄c1 − Eτ̄c0 .

Rearranging terms,
E[τ̄c1 − Eτ̄c1|Fc0 ] = τ̄c0 − Eτ̄c0 , (9)

where we have used E[Eτ̄c1 |Fc0 ] = Eτ̄c1 and E[τ̄c0|Fc0 ] = τ̄c0 .
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Theorem 5. Define
Mn

c =
√
n(Īc − EĪc) = −

√
n(τ̄c − Eτ̄c).

and
Anc = nVar(Īc) = nVar(τ̄c) = Var(Mn

c ).

Then, Mn
c and (Mn

c )2 − Anc are mean zero martingales.

Proof. The fact E[Mn
c1
|Fc0 ] = Mn

c0
follows directory from (9), showing that Mn

c is a mean zero
martingale.

Using the mean zero and independent increments properties again, we find

E[(Mn
c1
−Mn

c0
)2|Fc0 ] = Var(Mn

c1
−Mn

c0
|Fc0) = Var(Mn

c1
−Mn

c0
) = Anc1 − A

n
c0
.

Also,

E[(Mn
c1
−Mn

c0
)2|Fc0 ] = E[(Mn

c1
)2|Fc0 ]− 2Mn

c0
E[Mn

c1
|Fc0 ] + (Mn

c0
)2

= E[(Mn
c1

)2|Fc0 ]− (Mn
c0

)2.

Combining,

E[(Mn
c1

)2|Fc0 ]− (Mn
c0

)2 = Anc1 − A
n
c0
, and E[(Mn

c1
)2 − Anc1|Fc0 ] = (Mn

c0
)2 − Anc0 ,

showing that
(Mn

c )2 − Anc
is also a martingale.

We may therefore state the following theorem.

Theorem 6. Mn
c converges in distribution as n → ∞ to a continuous independent increments

Gaussian process with mean zero and variance function σ2
I (c).

Proof. The martingale central limit theorem has three ingredients:

1. A sequence of martingales, here the sequence of stochastic processes Mn
c .

2. A sequence of positive processes Anc that compensate for (Mn
c )2 so that (Mn

c )2 −Anc is a
martingale.

3. Anc converges to a deterministic function continuous in c. Here Anc → σ2
I (c) as n → ∞,

where
σ2
I (c) = − 1

R0

ln(1− c) +
1

R2
0

c

1− c
.

We have set c0 = 0 in the asymptotic expansions derived in Theorem 4 to obtain an
expression in terms of c only.
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Since 1, 2, and 3 hold, then the sequence of martingales converges to a mean-zero independent
increments Gaussian process (see [6] Section 7.1).

Remark 7. As a consequence of Theorem 6, the mean of the scaled infected satisfies

EĪc ' mI(c) = c+
1

R0

ln(1− c)

and the variance
nVar(Īc) ' σ2

I (c),

with equality in the limit as n→∞.

Remark 8. Because Var(Īc) → 0 as n → ∞, the convergence of expectations in Theorem 2
can, by Theorem 6, be replaced by convergence in mean square.

Remark 9. We can recover the number of recovered at the hitting time τnC
by noting that

RτnC
−Rτn0

= (τnC
− τn0)− (nC − n0) = −(IτnC

− Iτn0
) + (nC − n0)

and thus

1

n
(RτnC

−Rτn0
) = − 1

n
(IτnC

− Iτn0
) + (c− c0) = −(Īc − Īc0) + (c− c0).

Corollary 10. The scaled limit of R̄c = RτnC
/n converges to an independent increments Gaus-

sian process. The mean of the increment from c0 to c is

mR(c)−mR(c0) =
1

R0

ln

(
1− c0

1− c

)
.

The variance satisfies σ2
R(c) = σ2

I (c). The limiting processes for the scaled infective and recov-
ered individuals have correlation −1.

Remark 11. For large n and c0 > 0, the distribution of increment Īc− Īc0 can be approximated
using a deterministic time change of standard Brownian motion, B.

Īc − Īc0 ≈ mI(c)−mI(c0) +
1√
n

(B(σI(c))−B(σI(c0)).

This allow for easy and very accurate simulation of the independent increments Gaussian pro-
cess.
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3.2 Functional central limit theorem for the macroscopic incidence
We now turn to the macroscopic incidence scaled to the population size n, defined as

I
n

= In = (β n)Īc(1− c), I = β nI nS,

where I was introduced at the end of Section 2. Note that as n → ∞, the population contact
rate βP = βn remains constant for fixed R0 = (βn)/γ = βP/γ. A central limit theorem similar
to the one established in the previous section applies to In. The mean scaled macroscopic
incidence is obtained from the scaled number of infections

mI(c) = (β n)mI(c)(1− c),

and so is its variance, as stated below.

Corollary 12. The scaled limit of In converges to an independent increments Gaussian process,
of mean

G(c, 0) = G(c) = (β n)

(
c+

1

R0

ln(1− c)
)

(1− c) (10)

and variance
1

n
σ2
I(c), where

σ2
I(c) = (β n)2σ2

I (c)(1− c)2 = β2
P

(
− 1

R0

ln(1− c) +
1

R2
0

c

1− c

)
(1− c)2. (11)

The expression for G in (10) is the same as in Equation (1) with c0/n set to 0, showing
agreement between the deterministic result and the mean of the stochastic model in the limit of
large populations. This is the reason why we called I = βnInS the macroscopic incidence. The
above calculations have immediate consequences for the distribution of two quantities relevant
to public health: the fraction of the population infected at peak incidence, and the final size of
the outbreak. We state these results in the next section.

3.3 Final population size and peak incidence
Important properties of a disease outbreak are given at critical values c∗ of the fraction of cu-
mulative cases c = nC/n. Two particularly relevant examples of c∗ are

1. c∧, the fraction of the population that will have been infected at expected peak incidence,
i.e. when G′(c∧) = 0, and

2. c∞, the expected final size of the outbreak, i.e. the mean fraction of the population that
will have been infected by the time the outbreak ends.
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The first may be obtained implicitly by solving G′(c∧) = 0 for c∧.

0 = G′(c∧) = (β n)((m′I(c∧)(1− c∧)−mI(c∧))

= (β n)

((
1− 1

R0

1

1− c∧

)
(1− c∧)−

(
c∧ +

1

R0

ln(1− c∧)
))

= (β n)

((
(1− c∧)−

1

R0

)
−
(
c∧ +

1

R0

ln(1− c∧)
))

= (β n)

(
1− 2c∧ −

1

R0

(1 + ln(1− c∧)
)

=⇒ c∧ =
−1

2R0

(1 + ln(1− c∧)) +
1

2
.

The value of c∧ may then be found numerically for specific values of R0. In addition, the
expression for σI(c∧) may be applied to estimate the distribution of the scaled macroscopic
incidence when c = c∧. The bottom row of Figure 2 shows c∧ (left) and σ∧ = σI/(βn) (right)
as functions of R0, whereas Table 2 displays their numerical values for typical values of R0.

The second requires the variant of the delta method applied to hitting times (see [6], Section
11.4.) This approach uses propagation of error to give a valuable extension of the central limit
theorem. We state the result in the form of a theorem below.

Theorem 13. Define
ĉ∞ = inf{c > 0; Īc = 0}.

Then, ĉ∞ is approximately normally distributed, with mean c∞ such that mI(c∞) = 0 and
standard deviation

σ(ĉ∞) ≈ 1

|m′(c∞)|
σI(c∞)√

n
=
σ∞√
n
.

Proof. Because Īc → mI(c) in L2 as n→∞ and mI is continuous, we have ĉ∞ → c∞. By the
central limit theorem (Theorem 6 of the previous section),

√
n(Īĉ∞ −mI(ĉ∞))→ W,

where W ∼ N(0, σ2
I (c∞)), a normal random variable with mean 0 and variance σ2

I (c∞). Next,
recall that mI(c∞) = Īĉ∞ = 0, thus

√
n(Īĉ∞ −mI(ĉ∞)) =

√
n(mI(c∞)−mI(ĉ∞)) '

√
nm′I(c∞)(c∞ − ĉ∞).

Consequently, ĉ∞ is approximately normally distributed, with mean c∞ and standard deviation

σ(ĉ∞) ' 1

|m′(c∞)|
σI(c∞)√

n
=
σ∞√
n
.
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Thus, the standard deviation is multiplied by a propagation of error which is inversely pro-
portional to the slope of mI(c∞). The error is expanded when the slope is shallow and con-
tracted when the slope is steep. An expression for c∞ may be found implicitly as a function of
R0.

0 = mI(c∞) = c∞ +
1

R0

ln(1− c∞), i.e. c∞ = − 1

R0

ln(1− c∞).

Substituting into the variance formula, we have

σ2
I (c∞) = − 1

R0

ln(1− c∞) +
1

R2
0

c∞
1− c∞

= c∞ +
1

R2
0

c∞
1− c∞

.

In addition, the derivative

m′I(c∞) = 1− 1

R0

1

1− c∞
leads to

σ2
I (c∞)

m′I(c∞)2
=

c∞ + 1
R2

0

c∞
1−c∞(

1− 1
R0

1
1−c∞

)2 =
R2

0c∞(1− c∞)2 + c∞(1− c∞)

(R0(1− c∞)− 1)2

=
c∞(1− c∞)(R2

0(1− c∞) + 1)

(R0(1− c∞)− 1)2
.

The square root of this expression gives σ∞, from which one can calculate σ(ĉ∞) for specific
values of n. The top row of Figure 2 shows c∞ (left) and σ∞ (right) as functions ofR0. Selected
numerical values are displayed in Table 2.

Remark 14. The central limit theorem for c∞ is known (see [17, 18]) but the proof presented
here is new.

As the graphs associated to c∞ show, the course of the pandemic looks more and more
deterministic asR0 grows, with an increase in cases and reduction in the standard deviation σ∞.
The value of c∧ increases with R0 from 0.152 to 0.462 as R0 increases from 1.2 to 5.0 while the
standard deviation σ∧ decreases forR0 > 1.5. Notably, the ratio c∧/c∞ is nearly stable between
0.45 and 0.49 over a large range of values forR0, reflecting the universal properties of the shape
of the ICC curve.

3.4 The stochastic ICC curve
Section 3.1 focused on the relationship between the fraction of infective individuals and the
fraction of cumulative cases. This casting of the question has been shown to remove time from
the analysis and with it the parameter β, the time rate of infections.

We know bring time back into the picture by examining discrete incidence as a function of
cases. Discrete, or reported, incidence I∆ is the number of new cases that occur over a given

14



Figure 2: Functional dependence of select outbreak characteristics on the basic reproduction
number R0. Top row, left: Mean c∞ of the fraction of population that eventually become cases,
ĉ∞. Top row, right: Behavior of σ∞, where ĉ∞ has standard deviation σ∞/

√
n. Bottom row,

left: Fraction of cumulative cases at expected peak infection c∧. Bottom row, right: Behavior
of σ∧, where In(c∧) has standard deviation (β n)σ∧/

√
n.

R0 µĉ∞ = c∞ σ∞ µĉ∧ = c∧ σ∧ c∧/c∞
1.2 0.314 3.708 0.152 0.434 0.485
1.5 0.583 1.835 0.273 0.448 0.468
2.0 0.797 0.913 0.363 0.386 0.455
2.5 0.893 0.547 0.403 0.335 0.452
3.0 0.941 0.357 0.426 0.297 0.453
3.5 0.966 0.245 0.440 0.268 0.455
4.0 0.980 0.174 0.450 0.246 0.459
4.5 0.988 0.126 0.457 0.229 0.462
5.0 0.993 0.094 0.462 0.214 0.465

Table 2: Values for the means of the fraction of population that eventually become cases
µĉ∞ = c∞, and the fraction of cases at peak infection µĉ∧ = c∧. For a population of size n, the
standard deviation for ĉ∞ is σ∞/

√
n. The standard deviation of I/n at c = c∧ is (βn)σ∧/

√
n.

The final column gives the ratio of means and shows the universality of the ICC curve over a
range of values for R0.
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period of time ∆. We shall see how the variance for I∆ depends on ∆ in a nontrivial manner. To
understand this dependence, we return to Equation 3 and continue our analysis by computing
the variance of the increment of the number of cases from time t to time t+ ∆.

Var(NC(t+ ∆)−NC(t)|NC(t) = nC)

= Var
(
Ỹ1

(∫ t+∆

t

β(n−NC(u))NI(u)du

) ∣∣∣NC(t) = nC

)
.

where Ỹ1 is a rate-1 Poisson process.
To simplify notation, denote the conditional expectation EnC

= E[·|NC(t) = nC ] and
conditional variance VarnC

= Var(·|NC(t) = nC). Define the random variables

ζ =

∫ t+∆

t

β(n−NC(u))NI(u)du and η = Ỹ1(ζ).

Then, η ∼ Pois(ζ). Because the parameter in a Poisson random variable is both its mean and
its variance, EnC

[η|ζ] = VarnC
(η|ζ) = ζ . By the law of total variance,

VarnC
(η) = EnC

[VarnC
(η|ζ)] + VarnC

(EnC
[η|ζ]) = EnC

[ζ] + VarnC
(ζ). (12)

The first term of (12) has order ∆. Corollary 3 shows, that after dividing by ∆, its limit as
∆→ 0 is

β(n− nC)E[NI(t)|NC(t) = nC ]. (13)

Expression (13) is the ICC curve. The second term is O(∆2). So, dividing by ∆2,

1

∆2
VarnC

(ζ) = VarnC

(
1

∆

∫ t+∆

t

β(n−NC(u))NI(u)du

)
→ VarnC

(β(n− nC)NI(t)) = β2(n− nC)2Var(NI(t)|NC(t) = nC). (14)

as ∆→ 0. In the limit of large populations, expression (14) is the variance of the macroscopic
incidence given by Var(I) = nσ2

I , where σ2
I is defined in Equation (11).

Because the second term in the law of total variance is O(∆2), we will need to determine
the second order term for EnC

[ζ] to complete our analysis. To this end, we first rewrite the
continuous time Markov SIR model with the number of cases nC and the number of infective
individuals nI as state variables.

The information in Table 3 is also conveyed using the generator G of the Markov process,

Gh(nC , nI) =β(n− nC)nI
(
h(nC + 1, nI + 1)− h(nC , nI)

)
+ γnI

(
h(nC , nI − 1)− h(nC , nI)

)
Proposition 15. The O(∆2) term in the expansion of EnC

[ζ] is

1

2
β2(n− nC)

((
n− nC − 1− n

R0

)
EnC

[NI(t)]− EnC
[NI(t)

2]

)
. (15)
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event transition rate
infection (nC , nI)→ (nC + 1, nI + 1) β(n− nC)nI
recovery (nC , nI)→ (nC , nI − 1) γnI

Table 3: Continuous-time SIR Markov process model with number of cases and number of
infective as state variables.

Proof. Set g(nC , nI) = β(n−nC)nI . Then subtract theO(∆) term (13) fromEnC
[ζ] as defined

in Equation (12).

EnC

[
Ỹ1

(∫ t+∆

t

g
(
NC(u), NI(u)

)
du

)
− g
(
nC , NI(t)

)
∆

]
= EnC

[∫ t+∆

t

g
(
NC(u), NI(u)

)
du− g

(
nC , NI(t)

)
∆

]
= EnC

[∫ t+∆

t

(
g
(
NC(u), NI(u)

)
− g
(
nC , NI(t)

))
du

]
=

∫ t+∆

t

EnC

[
g
(
NC(u), NI(u)

)
− g
(
nC , NI(t)

)]
du.

Divide by ∆2 and take a limit using, successively, l’Hôpital’s rule and the definition of the
generator.

lim
∆→0

1

∆2

∫ t+∆

t

EnC

[
g
(
NC(u), NI(u)

)
− g
(
nC , NI(t)

)]
du (16)

= lim
∆→0

1

2∆
EnC

[
g
(
NC(t+ ∆), NI(t+ ∆)

)
− g
(
nC , NI(t)

)]
=

1

2
EnC

[
Gg
(
nC , NI(t)

)]
=

1

2
E
[
Gg
(
nC , NI(t)

)∣∣∣NC(t) = nC

]
To evaluate the generator G on g, note that

g(nC + 1, nI + 1)− g(nC , nI) = β(n− nC − nI − 1)

g(nC , nI − 1)− g(nC , nI) = −β(n− nC)

So,

Gg(nC , nI) = β(n− nC)nIβ(n− nC − nI − 1)− γnIβ(n− nC)

= β(n− nC)nI
(
β(n− nC − nI − 1)− γ

)
= β(n− nC)

((
β(n− nC − 1)− γ

)
nI − βn2

I

)
= β(n− nC)

(
β
(
(n− nC − 1)− n 1

R0

)
nI − βn2

I

)
17



Now, put this in the expression for the limit in Equation (16).

Theorem 16. The variance of the incidence over a time interval ∆ is to order ∆2,

1

n
Var(NC(t+ ∆)−NC(t)|NC(t) = nC)

' βP (1− c)mI(c)∆

+ β2
P (1− c)

(
1

2

((
1− c− 1

R0

)
mI(c)−mI(c)

2

)
+ (1− c)σ2

I (c)

)
∆2

+O(∆3)

as ∆→ 0, with equality in the limit as n→∞.

Proof. Recall that βP = nβ, R0 = βP/γ, and c = nC/n. We take the three expressions (13),
(15), and (14) arising from Equation 12 in order.

1. O(∆) for EnC
[ζ].

1

n
β(n− nC)E

[
NI(t)|NC(t) = nC

]
=βP (1− c)E

[
1

n
NI(t)

∣∣NC(t) = nC

]
→ βP (1− c)mI(c)

as n→∞ by the proof of Corollary 3.

2. O(∆2) for EnC
[ζ].

1

2n
β2(n− nC)

((
n− nC − 1− n

R0

)
EnC

[NI(t)]− EnC
[NI(t)

2]

)
=

1

2
β2
P (1− c)

((
1− c− 1

n
− 1

R0

)
EnC

[NI(t)/n]− EnC

[
(NI(t)/n)2

])
=

1

2
β2
P (1− c)

((
1− c− 1

n
− 1

R0

)
EnC

[NI(t)/n]

−
((
EnC

[NI(t)/n]
)2

+ VarnC

(
NI(t)/n

)))
'1

2
β2
P (1− c)

((
1− c− 1

n
− 1

R0

)
mI(c)−

(
mI(c)

2 +
σ2
I (c)

n

))
→1

2
β2
P (1− c)

((
1− c− 1

R0

)
mI(c)−mI(c)

2

)
where the last two lines stem from Remark 7.
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Figure 3: Left: Graphs for the terms in the variance in the stochastic ICC curve (R0 = 2). Solid
blue curve times βP∆ is the first order term from EnC

[ζ]. Solid red curve times (βP∆)2 is the
second order term from VarnC

(ζ). Yellow curve times (βP∆)2 is the second order term from
EnC

[ζ]. Sum of second order terms shown in violet. Right: The graph times βp∆ is the ratio of
the second to the first order terms.

3. O(∆2) for VarnC
(ζ).

1

n
β2(n− nC)2Var

(
NI(t)|NC(t) = nC

)
= β2

P (1− c)2nVarnC

(
NI(t)/n

)
→ β2

P (1− c)2σ2
I (c),

as n→∞, by Theorem 6.

Remark 17. Let’s examine the implications for these terms.

1. The first order term in ∆ for EnC
[ζ] (shown in solid blue in Figure 3, left) indicates that

over a short time interval, the incidence is dominated by the Poisson arrival of new cases
and thus the variance is ∆ times the ICC curve.

2. The second order term in ∆ arising from VarnC
(ζ) reflects the uncertainty in the number

of infected over the time interval under consideration (shown in red in Figure 3, left). It
corresponds to the variance of the macroscopic incidence I.

3. The second order term in ∆ for EnC
[ζ] (shown in yellow in Figure 3, left) is a small

perturbation of the second order term in VarnC
(ζ).
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Figure 4: Norms of the numerically evaluated variance σ2 = Var(I∆/n) (yellow), of the macro-
scopic variance of Var(In) (red curve) and of the correction term to order ∆2 (blue stars), for
20,000 simulations with N = 10, 000 and different values of ∆. The theoretical estimate de-
scribed in Theorem 16 (dots) matches the numerical simulations (yellow circles) over a broad
range of values of ∆.

4. The first order term depends on βP and ∆ through their product, the dimensionless term
βP∆. Correspondingly the second order terms depend on these quantities through β2

P∆2,
the square of their product.

5. The ratio of the first and second order terms (shown Figure 3, right with R0 = 2) is
relatively constant over a large range of values for c. For example, for R0 = 2, this ratio
lies between 0.5 and 0.6 for c ∈ [0, 0.5].

6. Thus, the first order terms dominates the variance when βP∆ � β2
P∆2 or for short

time intervals for which ∆ � 1/βP . The second order term dominates for longer time
intervals when these inequalities are reversed. Both terms play a significant role for
values of ∆ between these two extremes.

Figure 4 summarizes these results for the network simulations of Figure 1. The `2 norm of
σ2 = Var(I∆/n), is calculated numerically and compared to the expressions shown in Theorem
16. This is a discrete norm since it is estimated at discrete values of c. Good agreement is
observed for a range of values of ∆, with the macroscopic term, Var(In), becoming dominant
for larger values of ∆.

4 Conclusions
Although not surprising from a dynamical systems point of view, the ICC perspective [11,
12] presents a fundamentally new way of thinking about epidemics. This article develops the
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corresponding theory for stochastic outbreaks and explains how they relate to deterministic ICC
curves. The analysis is done for the stochastic SIR model, which captures the basic tenets of
disease spread. We prove that, in the limit of large populations, the dynamics of this model in
the ICC plane results from a Gaussian process with independent increments, whose distribution
is concentrated about the deterministic ICC curve (1). The variance of I∆, the incidence over a
length of time ∆, is equal to the variance of the macroscopic incidence I plus a correction term
that depends on ∆, as described in Theorem 16. In addition, the relevance of the ICC approach
becomes apparent in the nature of the dynamics: the Markov chain and its limit have a single
parameter R0, and the contact rate βP for infections is an ancillary parameter. In other words,
shifting from the human time-centric perspective (in terms of EPI curves) to the pathogen’s
resource-centric perspective (in terms of ICC curves), isolates ancillary parameters from the
statistical analysis of single outbreaks.

The ability to describe outbreaks as realizations of a Gaussian process with independent
increments presents many advantages. First, any outbreak can easily be simulated in the ICC
plane as a deterministic time change of Brownian motion, as suggested by Remark 11. The
discrete equivalent consists in looking at the current number of cumulative cases C(t), drawing
the new number of cases I∆ from the appropriate Gaussian distribution, adding this number
to C(t), and repeating these steps until no new infection occurs. Second, parameter estima-
tion is simplified: likelihoods naturally factorize into a product of normal densities, leading to
a weighted least-square minimization problem in the ICC domain. This is much simpler than
the typical MCMC methods used for parameter estimation in the time domain. In addition,
Fisher information can be computed explicitly to give confidence regions for model parame-
ters, in contrast to computationally intensive simulation-based approaches. Third, the property
of independent increments guarantees that estimates do not depend on the past history of the
epidemic, thereby making it possible, in the case of evolving outbreaks, to infer time-dependent
parameters from local data in the ICC plane.

Although the stochastic SIR model provides a simplified description of contagion, we show
in Appendix A that in the ICC plane, COVID-19 incidence data oscillate about a finite number
of mean ICC curves, each having the same functional form as G(c), obtained from the SIR
model. Each of these mean ICC curves corresponds to one wave of the pandemic. We use
Arizona as an example, but similar behaviors are observed in other states and other countries.
Moreover, the independent increment nature of the process is dramatically illustrated by these
data (see Figure 5). Estimates of R0 and N are entirely informed by the local dynamics of
the portion of the epidemic under a given ICC curve. Data associated to the other ICC curves
cannot and do not play any role.

The present analysis also shows that ICC curves can address recent challenges raised in
the literature regarding time-based analysis of epidemics. In 2020, Juul et al. [9] reported on
the issues associated with fixed time statistics and the underestimation of extremes in epidemic
curve ensembles. ICC curves circumvent many of the shortcomings of fixed time statistics
because the stochastic ICC process has independent increments and thus obviates the issues of
long-term correlations. In addition, the call for “curve based” statistics made in [9] is integral
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to the characterization of the epidemic as a realization of a Gaussian process. This makes it
possible to incorporate the entire ICC curve in the likelihood associated with any estimation,
including for parameter inference, or for detecting the impact of changes – for instance in
people’s behavior or due to the introduction of a vaccine, and for forecasting.

In summary, the probabilistic analysis described in the present article equips us with more
powerful approaches to understand epidemic dynamics. With a change of perspective from the
human to the pathogen, this article shows that the nearly century-old Kermack-McKendrick [10]
mathematical model is again the foundation for modern, even more powerful, analytical tools
that yield clearer insights into the nature of an outbreak.

A Relevance of the stochastic SIR model to outbreak data
The relevance of the SIR model to outbreaks is illustrated in Figure 5, which shows the daily
COVID-19 incidence in the state of Arizona for the 2020 calendar year, both in the time domain
(top row: standard EPI curve) and in the cumulative cases domain (bottom row: ICC curve).
The first arrow marks the end of the initial stay at home period (03/19/2020 - 05/15/2020)
ordered by the Governor of Arizona [19–21]; the second arrow, on August 31st, indicates the
end of the first six months of the outbreak (the first two cases were reported in Arizona on
03/04/2020); the third arrow marks the last day the number of cumulative cases in the state was
below 300,000. Whereas the spacing between consecutive dates (108 and 83 days respectively)
is similar in the time domain (top plot), this is no longer true in the cumulative case domain
(bottom plot), which reveals that about twice as many cases were reported between 05/15/2020
and 08/31/2020 than between 08/31/2020 and 11/22/2020.

The inset displays an enlargement of the ICC curve for the first 30,000 cases (in the time
domain, from 03/04/2020 to 06/10/2020). Three different waves are visible in the bottom panel
of Figure 5, each of which is locally well approximated by an ICC curve (in black) of the form
Ī = N G(c, c0), where c = C/N , c0 = C0/N , and G is defined in Equation (1). Recall that
βP is the population contact rate of the disease, R0 is the basic reproductive number, and C0

represents initial conditions. In addition, N should be thought of as an effective population
size. The parameters used to fit each wave vary, indicating an increase in the effective size N
(estimated at 49,388 individuals for the first wave, 279,027 for the second, and 1,547,228 for
the third) as the outbreak unfolds, while the basic reproduction number R0 fluctuates between
1.5 and 2 (respective estimates are 1.56, 1.85, and 1.79). The corresponding values of βP and
γ = βP/R0 are (βP , γ) ' (0.12, 0.08), (0.21, 0.11), and (0.16, 0.09) respectively.

Figure 5 suggests that each wave of the COVID-19 outbreak in Arizona is, in trend, well
captured by the deterministic SIR model: the black curves, of equation Ī = N G(c, c0) where
G is defined in (1), are the exact relationship between incidence Ī and cumulative cases C for
the deterministic SIR model [11]. In addition, consistent with the results of this manuscript for
the stochastic SIR model, each of the three waves appears to be independent from the others,
and the daily incidence I∆, ∆ = 1, fluctuates about one of the three mean ICC curves.
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Figure 5: COVID-19 outbreak in the state of Arizona in 2020, from March 1st to December
31st. Top: Daily incidence as a function of time. Bottom: Daily incidence as a function of
cumulative cases. The inset magnifies the region with less than 30,000 cumulative cases. The
first arrow corresponds to 05/04/2020, when it was announced that the stay at home order would
end [22,23] before 05/15/2020 (second arrow). The three waves are well approximated by ICC
curves for the SIR model (black solid lines), whose parameters were found using a range (stars)
of smoothed incidence values (yellow). The nonlinear relationship between cumulative counts
C and time is reflected by the change in spacing between the arrows in the top and bottom
plots. COVID-19 case data provided by The COVID Tracking Project at The Atlantic under a
CC BY-4.0 license [1].
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