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Compliance with public health measures, such as restrictions on movement and socialization, is paramount in limiting the spread of

diseases such as the severe acute respiratory syndrome coronavirus 2 (also referred to as COVID19). Although large population datasets,

such as phone-based mobility data, may provide some glimpse into such compliance, it is often proprietary, and may not be available

for all locales. In this work, we examine the usefulness of video sharing on social media as a proxy of the amount of time Internet

users spend at home. In particular, we focus on the number of people sharing YouTube videos on Twitter before and during COVID19

lockdown measures were imposed by 109 countries. We find that the media sharing behavior differs widely between countries, in some

having immediate response to the lockdown decrees – mostly by increasing the sharing volume dramatically – while in others having a

substantial lag. We confirm that these insights correlate strongly with mobility, as measured using phone data. Finally, we illustrate

that both media sharing and mobility behaviors change more drastically around mandated lockdowns, and less so around more lax

recommendations. We make the media sharing volume data available to the research community for continued monitoring of behavior

change around public health measures.

1 INTRODUCTION

The COVID19 pandemic has brought drastic changes in people’s lives around the world. With respect to online activities

and usage of the Internet, people have turned to social media and other networking and messaging platforms for

socialization, networking, sharing and consumption of content [2, 10]. In particular, during the first COVID19 lockdown

(Q2-Q3 2020), popular social platforms such as Twitter [25], Facebook [24], and YouTube [26], saw an increase in daily

and monthly active users [11, 19], with YouTube and Facebook-related content being among the top shared [10, 27]. Such

large changes in social media use may be not only due to increased interest, but indeed due to the physical constraints of

the restrictive measures taken by the governments worldwide.

Currently, lively research is being done around misinformation that is possibly spreading among the above channels,

affecting health-related beliefs and behaviors of their audience [13, 45]. However, in the unique circumstances of physical

lockdowns, media consumption and sharing may be a sign of another health-related behavior: social and physical isolation.

Compliance with the social distancing measures is critical in controlling the spread of COVID19 [16], and alternative data

sources have been proposed to track it, including mobile phone GPS and traffic congestion data [29]. Social media may

be another such resource. Already, previous studies of social media have found daily and weekly periodicity, indicating

shifts in check-in and sharing behavior around different activities [21]. Small-scale studies are already being published for

using social media posts to track individuals who may be associated with the spread of the disease [8, 48]. In this work,

we propose to use a large language- and space-agnostic collection of YouTube video sharing on Twitter as another tool for

measuring population behavior around the social distancing measures.

Beyond monitoring the activity of users on separate platforms, studying cross-platform posting offers unique insights

into users’ behavior, as it indicates higher engagement on multiple platforms. Given that such behavior is more time-

consuming, and requires (higher) users’ attention to view the video on YouTube and share it on Twitter, it could reveal

tendencies of users with respect to daily schedules such as working vs. resting hours, etc. Further, it is an act of social

or “communal” video co-consumption, which can provide insights into community or group-focused video sharing and
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diffusion. Finally, technically Twitter stream provides an easier way to monitor engagement of users with YouTube videos,

and to model those users through their posting history, than building crawling engines for both YouTube and Twitter and

handling API-related constraints for both platforms.

Concretely, in this paper, we use a dataset of 390 million Twitter posts mentioning YouTube videos spanning the

period from July 2019 to September 2020. After geo-locating the users of these posts, we select 109 countries which

have had a COVID19-related social distancing recommendation or mandate. We find that, indeed, the posting trend shifts

dramatically around government measures, although the precise timing may differ, depending on the peculiarities of

each government’s handling of the pandemic. We also find that these changes in media sharing have a strong negative

relationship with the phone-based mobility data, suggesting social media may provide valuable insights, especially where

such mobility data is not available.

In particular, we make the following contributions:

• We are the first to study cross-platform video posting behavior and how COVID19-related lockdowns may have

impacted it.

• We study this behavior worldwide for 109 countries, and provide case studies of countries with different govern-

mental actions around the pandemic.

• We investigate if the country-specific changes in media sharing behavior can be used as a proxy for the detection

of reduced mobility of its residents.

• Finally, we provide to the research community a unique dataset with daily aggregated per-country media sharing

statistics in order to encourage reproducibility and future research of health-related behaviors1.

2 BACKGROUND & RELATED WORK

YouTube on Twitter. Twitter, as a social media platform, is frequently used to disseminate various types of content

produced and published in other platforms, such as news, photos, videos, etc. Such cross-platform data have been used

to better understand user engagement with YouTube content, predict the extent of its diffusion, as well as to profile its

viewers. For example, Christodoulou et al. [12] studied Twitter users and how their properties impact the popularity

and diffusion of YouTube videos. Several papers have studied the problem of finding the best Twitter users to promote

YouTube videos to increase engagement and viewership of said videos [14, 43, 44]. Furthermore, other papers investigated

the phases that a video goes through with respect to popularity (proxied by viewership), by building models to predict

popularity of videos using power-law fitting [47]. In addition, characteristics of YouTube videos shared on Twitter [1], as

well as complex graph features [46] were employed to model video popularity. In this work, we consider a large dataset

of YouTube links diffused via Twitter posts across over a hundred countries around the world, crucially capturing the

sharing behavior before and during the rise of COVID19 in the early 2020.

Impact of COVID19 on usage of online platforms. COVID19 has had a great impact on many aspects of our offline

and online lives. In relation to the focus of this paper, COVID19 has affected the intensity and frequency with which

we use online platforms, including social media and digital devices. Recent studies have measured these changes by

focusing on different aspects of our online world. For example, Lutu et al. [31] performed a characterization of the impact

that the pandemic had on the traffic processed by a mobile network operator, finding that mobile traffic was reduced

due to users’ reduced mobility during lockdown. Also, Bottger et al. [10] studied how the Facebook Edge Network

reacted to COVID19 and the traffic induced by users, which was found to be higher during and after lockdown was

1 https://github.com/ymejova/yt-tw-covid
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Twitter/YouTube collection

Duration 459 days (06/19/2019-09/20/2020)
Posts (tweets) 390,002,678
Unique Locations 8,436,027
Countries 249
Languages 66

COVID19 Policy data (Oxford’s Coronavirus Response)

Duration 276 days (01/01/2020-10/01/2020)
Countries 185
Lockdown states 3

Mobility data (Apple Mobility Trends)

Duration 231 days (01/14/2020-09/01/2020)
Countries 63
Mobility states driving, walking, transit

Table 1. Datasets used in our analysis, before filtering took place.

Rank Country % of tweets

1 USA 25.24
2 Japan 14.47
3 Great Britain 5.19
4 Brazil 5.11
5 France 4.04
6 India 3.53
7 Spain 2.76
8 Italy 2.60
9 Canada 2.16
10 Mexico 1.91

Table 2. Top 10 countries by number of posts.

imposed in different countries; in many cases this increase was due to higher video consumption. Finally, Feldmann

et al. [17] studied how being under lockdown affected various aspects of internet traffic around the world. On the other

hand, very recent studies looked into COVID19-related information spreading through various social media platforms. For

example, Cinelli et al. [13] studied how (mis)information related to COVID19 spreads on Twitter, Instagram, YouTube,

Reddit and Gab, as well as differences in the diffusion of information from questionable and reliable sources on each

platform. Li et al. [30] studied popular YouTube videos related to COVID19 and identified that over 25% of such videos

contained misinformation regarding COVID19. In this work, not only do we find that the focus on COVID19-related

videos increases around the onset of lockdown measures, but also that sharing of other content also markedly increases,

pointing a behavior shift beyond attention to the ongoing events. Thus, we consider the media sharing as a proxy of offline

behavior, and specifically we compare this data to mobility.

Social media and mobility. In the previous decade, the proliferation of mobile technology has provided researchers with

unprecedented fine-grained data on human mobility, often coming from phone records or large internet platforms, which

has been combined with more traditional sources such as air traffic and public transit data. Geo-tagged social media

posts then have been used as a way to enrich the existing mobility information, for example by annotating movement by

content associated with it [41] or explaining traffic events in a city [42]. Quercia et al. [35] use Flickr photos as proxies of

beauty to measure “happiness” of trajectories through a city. However, going beyond annotation, attempts have been made

to derive mobility data directly from the social media activity, such as international and national travel flows networks

[3, 5] or local commuting patterns [34]. This information then can be used to track disease [28], migration patterns of

refugees [22] or as a testbed for building mobility prediction models [18]. Recently, attempts have been made to use

Twitter data for tracking the spread of COVID19. For instance, Bisanzio et al. [8] correlated the posting behavior of 161

users with COVID19 cases in locales they visited, while Zeng et al. [48] used geo-tagged tweets to estimate mobility of

the U.S. state of South Carolina. However, the size of the dataset presented in this paper allows for a much larger view of

the interaction between COVID19-related measures and media consumption. In the pages below, we both quantify the

relationship between media sharing and various stages of lockdowns, and discuss several case studies illustrating the

complex nature of such data. Also, we provide additional visualizations and aggregated data to the research community.
3
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Fig. 1. Daily number of unique users for the top 10 countries across time (June 2019 - October 2020.

3 DATA

In this section, we describe the datasets used in the present study, along with preprocessing and selection steps. First, we

detail our efforts to build the Twitter & YouTube dataset (Sec. 3.1). Then, we briefly describe the extraction of lockdown

dates from the Oxford COVID19 regulations data (Sec. 3.2). Finally, we conclude with a description of the Apple mobility

dataset (Sec. 3.3). The various datasets used are summarized in Table 1.

3.1 Twitter & YouTube Data

Collection. This dataset was collected using the Twitter Streaming API with queries “youtube” and “youtu.be” (a popular

shortened URL for the platform). Besides the query, no other constraint was applied. The collection took place from June

19, 2019 to September 20, 2020, capturing at least a half of year before COVID19 is discovered, and several months of

worldwide lockdowns in 2020. The captured information includes tweet text, user information, metadata about posting

time, and link to the YouTube video. This collection resulted in 390,002,678 tweets.

Preprocessing. We then geo-locate the users in this dataset using the Location field of their profiles. We use the GeoNames

location database to match the user-specified free-text location strings to a populated location.2 We are able to locate

4,055,292 out of 8,436,027 unique location strings present in the data, which covers 165,520,903 tweets (42.4% of all).

Figure 1 shows daily statistics on unique users of the top 10 countries, sorted by volume of posts (also Table 2). We

can see a handful of points in time when, due to technical difficulties, the collection was disrupted. Also, we can already

observe that 1) there is a weekly periodicity of users’ behavior in sharing YouTube videos on Twitter, 2) there was a shift

in posting frequency between March and May 2020, and 3) USA and Japan have significantly higher posting activity

across time compared to the other countries.

Next, we consider three metrics for data analysis: raw number of posts per day, unique number of users, and unique

videos (figures are omitted due to space). As expected, all three metrics have skewed distributions across countries. For

example, the median for daily number of posts, users and videos is 82, 51 and 71, respectively, but the mean is 1491, 892

and 948, respectively. Therefore, we apply an activity threshold and keep countries with activity (in unique users) above

the median of all countries, and across all available dates. After applying this filter, from 249 countries, we are left with

125 countries. Furthermore, the three available metrics we have at hand (i.e., number of posts, unique users, and unique

videos) are highly correlated with each other: average Spearman correlation between users and videos across all countries

is 0.74, and between users and posts is 0.85. Given that the number of posts or videos involved in this sharing activity

can be skewed by abnormal or extreme posting by any particular user, for the rest of the study, we focus on unique users

2 The optimized code for geolocation can be found at https://sites.google.com/site/yelenamejova/resources

4

https://sites.google.com/site/yelenamejova/resources


posting per day. Finally, we linearly interpolate the values for the days in which the collection went down. We dub the

resulting time series as the 𝑇 dataset.

3.2 COVID19 Response Data

Collection. We use the University of Oxford’s Coronavirus Government response tracker [9, 36] to gather the indicator

variables for the levels of lockdown in the above countries. It covers the time period from January 1, 2020 to October

2, 2020. We use the field “C6: Stay at home requirements”, which “Records orders to “shelter-in-place” and otherwise

confine to the home”. This field has an ordinal scale of several levels: L0: no measures, L1: recommend not leaving house,

L2: require not leaving house with exceptions for daily exercise, grocery shopping, and ’essential’ trips, and L3: require

not leaving house with minimal exceptions. Using the above scale, we define lockdown (𝐿) as the period of time that a

country was requiring its residents to stay at home unless (minimal) exceptions apply (i.e., L2 or L3). We also consider

the days under L1 as recommended lockdown, and we use this distinction when appropriate.

Preprocessing. The data regarding the lockdown and other related information on COVID19 were reported for 185

countries, covering all 125 countries in our data. For each country, we find the starting date 𝐷𝐿2 when it entered in

lockdown mode, i.e., L2 or L3 (from here on, when referring to L2 we include both states), and the ending date 𝐷𝐿2𝑒𝑛𝑑 ,

i.e., when the country entered L0 or L1. In case more than one starting and ending dates are detected, we apply a buffer

time 𝐿2𝐵 = 7 to merge consecutive lockdown periods (we experimented with 𝐿2𝐵 up to 28, but results changed minimally).

The median country went through ∼52 days of lockdown, which lasted for up to 107 days for 75% of the countries.

About 10% of countries have remained in a lockdown mode for the whole duration of observation (∼200 days), while 41

countries (i.e., 33%) had 0 days in lockdown. The latter countries either did not define any stay at home guidelines (L0, 9

countries) or did not provide any COVID19 data (5 countries), and where subsequently removed. Finally, we removed 2

countries which had enforced fewer than 30 days of lockdown. These steps resulted in two lists of countries: 82 that had a

(L2) lockdown, and a more inclusive one of 109 countries that had at least a lockdown recommendation (L1).

3.3 Mobility Data

Collection & Preprocessing. Finally, in order to explore the relationship between media sharing (𝑇 ) and mobility (𝑀),

we utilize the Mobility Trends Report published by Apple, which “reflects requests for directions in Apple Maps”3. The

report offers normalized mobility activity in three categories: driving, walking, and transit. For our analysis, we use the

walking estimates as the finest of granularity levels. In the end, out of the 109 countries which have passed the activity

and COVID19 lockdown thresholds, 56 had mobility data (signal 𝑀) provided by the Mobility Trends Report.

4 MEDIA SHARING ABOUT COVID19

We begin by examining the extent to which the increase in shared media (𝑇 ) can be directly attributed to conversations

about the pandemic, or if other topics were also at play. We use a dictionary of 590 keywords defined by Twitter for its

multilingual COVID19 stream4, since these keywords indicate interest in the topic of the pandemic. Figure 2(a) shows the

country macro-average of the daily unique users in our dataset who are mentioning COVID19-related keywords. Such

spike on Twitter and Facebook-related activity has also been reported in recent works [45]. On average, the maximum

contribution of COVID19-related posting is ∼15%, and appears to happen in late March 2020, when most lockdowns

3 https://covid19.apple.com/mobility 4 https://developer.twitter.com/en/docs/labs/covid19-stream/filtering-rules
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Fig. 2. (a) Portion of daily unique users who are mentioning COVID19-related keywords, macro-averaged over countries.
Gray bars indicate standard deviation per day. (b) Normalized volume of tweets (by volume on first day), which do/do not
mention COVID19-related keywords, macro-averaged over countries.

Rank Popular Word Before 𝐿 Popular Word During 𝐿 Rank Popular Word Before 𝐿 Popular Word During 𝐿

1 via (28.13%) via (27.03%) 11 like (1.18%) covid (1.56%)
2 youtube (5.25%) youtube (5.13%) 12 love (1.14%) got (1.51%)
3 video (5.10%) video (4.85%) 13 one (1.04%) trump (1.42%)
4 amp (2.51&) amp (2.37%) 14 full (1.00%) like (1.05%)
5 new (2.35%) live (2.20%) 15 de (0.95%) one (1.01%)
6 official (2.31%) new (2.02%) 16 coronavirus (0.95%) love (1.80%)
7 watch (2.11%) watch (2.12%) 17 song (0.94%) de (0.98%)
8 live (2.09%) official (2.29%) 18 check (0.91%) song (0.98%)
9 trump (1.83%) coronavirus (1.80%) 19 time (0.82%) check (0.93%)
10 music (1.71%) music (1.56%) 20 day (0.81%) day (0.92%)

Table 3. Popular words in tweets with YouTube links. Popularity shown in % out of top 100 words.

started across many countries. The spike tends to be higher for countries having fewer users, with Spearman 𝜌 = −0.362
(𝑝 < 0.001) between average volume of tweets vs. maximum contribution of COVID19-related posting.

Interestingly, Figure 2(b) shows that the volume increase around the second half of March is not only due to the

posting around COVID19. In this figure, we normalize the volume of posting in each country by dividing it by the volume

on the first day and multiplying by 100, such that the volume increase is standardized. We find that, despite a rise in

COVID19-related volume (in blue), there is additional volume (in orange) not attributable to the interest in pandemic.

To check whether topics other than COVID19 are mentioned in these posts, we take the U.S. as an example (which

also has the highest volume per country), and compute the top terms mentioned in the two months before and two months

during the lockdown. The top terms, shown in Table 3, show that, even though COVID19-related keywords emerge in the

topics during the lockdown (e.g., coronavirus and covid), others remain, including music, mentions of President Trump,

and other general terms like love, check, and day. Thus, we postulate that the increased media sharing behavior is not

wholly explained by the increased interest in the pandemic, but includes the habitual use of the platform.

6
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Fig. 3. Hourly volume (by unique posting users) of signal 𝑇 in four countries, 2 months before and 2 months after lockdown
announcements (𝐷𝐿2) in each country. Bars indicate standard deviations.

5 MEDIA SHARING AROUND COVID19 LOCKDOWNS

5.1 Hourly Sharing Behavior Change Before and During Lockdown

Focusing specifically on the posting behavior before and after lockdown was announced (𝐷𝐿2) by the respective govern-

ments of the studied countries, we first examine the hourly periodicity of the posting behavior. Figure 3 shows examples

of unique users posting during the hours of the day in four countries, separately for weekdays and weekends, and before

and during COVID19 lockdowns. Here, we consider 2 months before and 2 months after the lockdown announcements,

average the posting volume over the days, and show standard deviation in vertical bars. Not only do we see a marked

rise in posting volume during L2 lockdowns, but also a shift in posting patterns, though differently for each country.

For instance, in U.S., the posting rate in the morning increases, compared to pre-COVID19 levels, whereas in Brazil it

elevates especially around evening. Also, the difference in posting between weekdays and weekends becomes less clear

during lockdown (e.g., in Spain or Brazil), suggesting a similar media consumption on weekdays and weekends.

5.2 Sharing Behavior Change at the Lockdown Start

Next, we examine the change in the media sharing behavior (𝑇 ) around the lockdown dates. As described in Sec. 3.2,

we define the lockdown dates at several levels. Specifically, we consider two scenarios: (1) an L1 lockdown (with its

starting date signified as 𝐷𝐿1), when only a recommendation to stay at home is promoted, and (2) an L2 lockdown (with

its starting date signified as 𝐷𝐿2), when only essential trips are allowed. To compare the behavior change to these days,

we employ change point detection on signal 𝑇 , using the pruned exact linear time (PELT) algorithm [39] that detects

change points through minimising a cost function over possible numbers and locations, as implemented in the python

ruptures library [38]. We apply this algorithm to 𝑇 data from each country separately, taking the 2 months before their

lockdown date (𝐷𝐿1 or 𝐷𝐿2), and 2 months after the date, or until the studied lockdown is over (whichever comes first).

Dates of detected trend change are signified as 𝐷𝑇𝐶 (𝑇 ) . Out of the 109 countries having L1 and/or L2, we detected a

change point for 100 countries, and for the 82 countries having L2 only, we detected change point for 77 countries.

Figure 4(a) shows the frequency distribution of countries having a difference between the detected change point and

the lockdown dates (i.e., 𝐷𝑇𝐶 (𝑇 ) - 𝐷𝐿1 or 𝐷𝑇𝐶 (𝑇 ) - 𝐷𝐿2), such that points below 0 indicate countries in which change

point happened before the lockdown, and above 0 after lockdown. For both definitions of lockdown (L1 or L2), about half

of the time the change points happened within 5 days of the lockdown (51% for L1 and 52% for L2). And, as expected,

for more strict lockdown definition (L2), more change points happened before 0 (64%) than for less strict (51%).

7
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Fig. 4. Number of countries (y-axis) having (a) a difference (x-axis) between the change point in media posting behavior (𝑇 )
and the starting date of L1 or L2 lockdowns (countries with both 𝐷𝐿1 and 𝐷𝐿2 are considered separately for each group).
(b) Pearson correlation 𝑟 (x-axis) between a 7-day averaged mobility (𝑀) and media sharing (𝑇 ), by country lockdown
situation (L1 vs. L2 vs. L1,L2). (c) Difference in days (x-axis) between change points of mobility (𝐷𝑇𝐶 (𝑀 ) ) and media sharing
(𝐷𝑇𝐶 (𝑇 ) ), by country lockdown situation (L1 vs. L2 vs. L1,L2).
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Fig. 5. Media sharing volume (blue) and mobility (green) in four countries. Vertical lines: L1 lockdown date 𝐷𝐿1 (orange),
L2 lockdown date 𝐷𝐿2 (red), media sharing change point 𝐷𝑇𝐶 (𝑇 ) (blue), mobility change point 𝐷𝑇𝐶 (𝑀 ) (green). In grey,
Interrupted Time Series model for media sharing 𝑇 around its change point 𝐷𝑇𝐶 (𝑇 ) .

Figure 5 shows four countries exemplifying the case in which the change in behavior is detected, on the same day as the

announcement (United States), before the lockdown announcement (Japan & Brazil), and after it (Italy). The readers are

welcome to examine the plots for all countries at the end of this paper (Appendix A). The blue line shows the normalized
8



sharing volume (in unique users), while the lockdown dates are shown in vertical lines – orange for L1, and red for

L2. We explain the other lines in the next sections. United States (as well as Serbia, New Zealand, Spain, and others)

show changes in posting behavior that correspond precisely to the lockdown announcements. In the case of the U.S., on

March 16, President Trump announced “15 Days to Slow the Spread” with a series of guidelines on physical distancing

and self-isolation, and recommendations to close schools and businesses [33]. Italy’s lockdown happened gradually,

first quarantining 50,000 people from 11 different municipalities in the northern region on February 22, with gradual

subsequent closures of regions [15], until the Prime Minister Giuseppe Conte announced a country-wide quarantine on

March 9 [4]. Similarly, in Japan, Prime Minister Shinzo Abe requested that all Japanese elementary, junior high, and high

schools close on February 27 [37], and the state of emergency declaration eventually expanded to include every prefecture

within the country on April 16 [32]. Brazil displays a notable shift in behavior around the time of the first COVID19

related death on March 17 [6], without any official lockdowns until some of the northern cities announced the measures

on May 7 [20]. The sudden or gradual shifts in the media sharing behavior, thus, visibly happen around the measures

being taken at the time of the collection gathering, but not always, as in the case of Brazil. We encourage the reader to

explore these graphs for all countries, shown at the bottom of the paper.

5.3 Media Sharing as a Proxy for Mobility

Thus, we find that the media sharing behavior changes around the dates of lockdown enforcement. We hypothesize that

this change reflects the physical mobility of users, and the fact that they have more time to spend watching and sharing

media online. To explore the relationship between media sharing and mobility, we utilize the Apple mobility dataset (𝑀)

as described in Sec 3. Recall that 56 countries that have passed our selection filters appeared in this dataset.

Figure 4(b) shows the Pearson correlation 𝑟 between mobility 𝑀 and media sharing 𝑇 , by the lockdown situations

that happened in each country: having only L1, right away into L2, and having first L1 and later L2 (L1,L2). Here, we

smooth both trends using a 7-day average, in order to remove weekly periodicity (that was obvious in Figure 1). Most

correlations are strongly negative, and all those less than −0.6 are significant at 𝑝 < 0.0001. Interestingly, the correlation

is the weakest for countries which had only L1 lockdown (the rightmost points on the graph are Slovakia (𝑟 = 0.23,

𝑝 = 0.011), Cambodia (𝑟 = −0.25, 𝑝 = 0.011), Thailand (𝑟 = −0.46, 𝑝 < 0.0001), and Hong Kong (𝑟 = −0.56, 𝑝 < 0.0001)).

This strongly suggests that mobility is inversely proportional to media sharing behavior, as captured in the 𝑇 dataset.

Further, Figure 4(c) shows the difference in days between the change point detected in the mobility and media sharing

(both raw, un-smoothed). Out of 50 countries that had a change point detected for both mobility and media sharing, 44

are within 7 days, and for most countries the change in media sharing change follows the change in mobility. The three

countries having largest difference in change points (ticks in the far right of the plot) are Philippines (23), South Korea

(20), and Singapore (18) – all countries close to China that took early precautions against the virus.

If we return to the countries in Figure 5, we now can examine the media sharing volume (in blue) in the contemporary

context of the mobility score (green), and their respective change points (vertical lines in their respective colors). In the

case of the United States, the change happens all at once, and the change points, thus, happen within 1 day of each other.

The change points are a bit further apart in Brazil at 4 days, Italy at 5, and Japan at 7.

Some could argue that the identified cross-platform sharing changes were more predominant in countries with highly

connected Internet users. However, when we take the correlation of mobility and media sharing 𝑟𝑇,𝑀 computed above,

and correlate it to the internet penetration in the corresponding countries (data extracted from [23]), we find no significant

relationship (𝑟 = −0.18, 𝑝 = 0.16). This suggests that, once the countries have a minimum volume of Twitter usage, the

signal can be used as a proxy for mobility irrespective of internet penetration. This is encouraging, since only 56 out of
9



109 originally selected countries had mobility data available, so that an alternative proxy is especially valuable for those

locales where the major technology service providers do not release their data.

6 MEDIA SHARING BEHAVIOR CHANGE: INTERRUPTED TIME-SERIES MODELING

To understand whether human behavior changes significantly around the time of COVID-related lockdowns, we employ

Interrupted Time Series analysis (ITS) [7], which aims to estimate the effect of an intervention which has a well-defined

starting time. Specifically, we examine both the time series of media sharing volume (𝑇 ), as well as the mobility data

(𝑀), in order to gauge the extent of the behavior change. We employ Ordinary Least Squares (OLS) regression to model

the behavior time series of the two signals using two variables: 𝑃 signifying time passage in days and 𝑋𝑡 , an indicator

signifying the beginning of the intervention period. For example, modeling change in the media sharing volume around a

lockdown date, in following equation:
𝑦𝑡 = 𝛽0 + 𝛽1𝑃 + 𝛽2𝑋𝑡 + 𝛽3𝑃𝑋𝑡

𝑦𝑡 is the volume of media sharing at the time 𝑡 , 𝛽0 is the baseline volume at the beginning of the time series, 𝛽1 is the

baseline change in volume over time before the lockdown date, 𝛽2 is the change in volume at the lockdown date, and

𝛽3 is the trend (slope) change following the lockdown date. In this paper, we focus specifically on the 𝛽2, the change in

behavior around the intervention. Visually, the ITS models are plotted in grey in Figure 5 for the four countries.

To capture the complexity of the lockdown situations, we again examine three groups of countries: those that only had

L1, those that only had L2, and those that went from L1 to L2 (L1=>L2). Note that for the last group of countries, we can

test both lockdown dates. Additionally, since in the previous sections we found that the actual behavior change often

happened some days before or after the official lockdown dates, we decided to perform ITS with 4 different types of dates:

two lockdown dates (𝐷𝐿1 or 𝐷𝐿2), and two trend change points (𝐷𝑇𝐶 (𝑇 ) or 𝐷𝑇𝐶 (𝑀) ), on the groups of countries that each

applies. As in the previous section, we select 2 months before and 2 months after the selected date, and here consider only

the 54 countries with mobility data.

Table 4 shows statistics of ITS models for various scenarios. It reports the mean (𝛽) and standard deviation (𝜎𝛽 ) of the

intervention point coefficient, and the model fit (𝑅2), aggregated over relevant countries (𝑛). First, we observe that the 𝛽

coefficients are positive across all models. Note that we z-normalize the sharing volume (𝑇 ), making it comparable across

countries. Second, strongly negative 𝛽 coefficients for mobility indicate a sharp decrease around the interruption dates,

echoing the negative relationship between sharing volume (𝑇 ) and mobility (𝑀) we have previously established. Third,

we find the model fit to be the worst for countries that had L1 lockdowns, indicating that the behavior change, both in

media sharing and in mobility, are affected the least by policies merely recommending people to stay home. Further, we

find similar 𝛽 values and model fit for the two levels of lockdowns for the L1=>L2 countries, indicating that for such

scenarios it may be difficult to discern the effect of L1 policy, as it is usually quickly followed by a more stringent one

(for 75% of the countries within 2 weeks).

Finally, we make two methodological observations. We confirm that the extent of change of behavior (both in media

sharing and mobility) is greater at change points than at lockdown dates, suggesting that factors other than those captured

by lockdown policies – including other communication by the authorities – may have had an effect on behavior. The

better fit of the ITS models in the case of mobility points to the quicker effect on this variable, and a less sudden one on

media sharing, pointing to a gradual behavior change when it concerns media consumption during emergency measures.

The implications in terms of attention to public messaging, adjustment in daily routine, and mental health maintenance

are exciting future directions of research.
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Model 𝛽 𝜎𝛽 𝑅2 𝑛

media sharing & L1 date (L1) 1.126 0.832 0.477 18
media sharing & L2 date (L2) 1.349 0.598 0.650 24
media sharing & L1 date (L1=>L2) 1.158 0.685 0.652 14
media sharing & L2 date (L1=>L2) 1.044 0.579 0.651 14
media sharing & sharing change point (L1) 1.667 0.439 0.580 15
media sharing & sharing change point (L2) 1.659 0.453 0.701 23
media sharing & sharing change point (L1=>L2) 1.697 0.370 0.756 13
media sharing & mobility change point (all countries) 1.298 1.084 0.623 54

mobility & L1 date (L1) -48.767 30.435 0.751 18
mobility & L2 date (L2) -64.630 30.556 0.804 24
mobility & L1 date (L1=>L2) -58.422 31.459 0.790 14
mobility & L2 date (L1=>L2) -44.808 25.672 0.760 14
mobility & mobility change point (L1) -65.221 21.345 0.817 16
mobility & mobility change point (L2) -82.002 25.618 0.878 24
mobility & mobility change point (L1=>L2) -53.372 82.838 0.865 14
mobility & sharing change point (all countries) -67.582 29.810 0.831 51

Table 4. Interrupted Time Series models with the mean (𝛽) and standard deviation (𝜎𝛽 ) of the intervention point coefficient,
and average model fit (𝑅2), aggregated over relevant countries (𝑛). Model specification indicates data being modeled (media
sharing or mobility) and kind of interruption point, as well as lockdown scenario (L1, L2, or L1=>L2).

7 DISCUSSION & CONCLUSIONS

This paper provides a large-scale evidence of individual behavioral response to the social distancing interventions taking

place around the world in the early 2020. We find that media sharing behavior increased in the majority of countries

during the COVID19 lockdowns. However, COVID19-related activity only accounts for 15% of the overall volume of

posts. In fact, users shared with each other content on a wide range of topics apart from COVID19. Whether this change in

behavior extends beyond volume, and impacts the media consumption qualitatively is a fascinating question. We are open

to collaborating with researchers (as making full dataset is against Twitter Terms of Service) on exploring, for instance,

the change in quality of information being shared, the kind of health advice people turn to in an emergency situation, and

how users may maintain social ties and communities around co-consumption of online media.

We also established a strongly negative relationship between media sharing and mobility, however it is not certain that

this relationship will endure. We find the spike in interest about COVID19 dissipates after several months, whereas the

sharing volume remains elevated over time. This data provides an opportunity to study psychological adaptation during a

crisis, and test theories around, for instance, emotional evanescence as individuals adjust their emotional reactions [40],

and the role of media in post-traumatic stress disorder after major events.

As far as the online behavior can be viewed as a proxy of mobility, it may be especially useful in the understanding of

public compliance with the public health measures, and its implications on the spread of disease. In the post-hoc analysis

of the effectiveness of government measures, online data may provide a window into individual behaviors that signify

online and offline socialization, as well as interest in public health messages, which may relate to actions individuals take

that may raise or lower the risk of disease contraction. Further, country-specific cultural aspects may play a role, as well

as trust in or disobedience to authority, and individual’s relation to society.

There are several important limitations to our study. Not only are we limited by the users of two specific internet

platforms (albeit some of the most popular ones), the adoption of these platforms is non-uniform around the world,
11



allowing us to examine only some countries. Analysis of local platforms, such as Sina Weibo in China, may provide

a better coverage. Further, as we have found, definitions of “lockdown” are highly varied, as each country presents a

unique combination of local guidance, social support systems, and public messaging, which makes comparison across

countries approximate. Finally, a plethora of other signals should be considered when modeling public health-related

behaviors beyond lockdown measures, and future work in understanding health belief formation and the changing of

action affordances will provide a fuller picture of this emergency.

In order to support repeatable and extensible research, we make country-specific daily data and additional visualizations

available at https://github.com/ymejova/yt-tw-covid.
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