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Compressibility of Network Opinion and Spread
States in the Laplacian-Eigenvector Basis

Sandip Roy and Mengran Xue

Abstract—Opinion-evolution and spread processes on networks
(e.g., infectious disease spread, opinion formation in social net-
works) are not only high dimensional but also volatile and multi-
scale in nature. In this study, we explore whether snapshot data
from these processes can admit terse representations. Specifically,
using three case studies, we explore whether the data are
compressible in the Laplacian-eigenvector basis, in the sense
that each snapshot can be approximated well using a (possibly
different) small set of basis vectors. The first case study is
concerned with a linear consensus model that is subject to a
stochastic input at an unknown location; both empirical and
formal analyses are used to characterize compressibility. Second,
compressibility of state snapshots for a stochastic voter model is
assessed via an empirical study. Finally, compressibility is studied
for state-level daily COVID-19 positivity-rate data. The three case
studies indicate that state snapshots from opinion-evolution and
spread processes allow terse representations, which nevertheless
capture their rich propagative dynamics.

I. INTRODUCTION

There has been an extensive effort to model opinion-
evolution and spread processes in networks, which spans
social sciences, natural sciences, and engineering communi-
ties [1]–[7]. These studies postulate local update rules for
agents’ opinions or statuses, and seek to characterize emergent
network-wide properties of the opinion-evolution/spread (e.g.,
attractivity to a manifold, amplification rate, settling time).
In parallel, empirical analyses of network opinion-evolution
and spread data have been undertaken [8]–[10]. These efforts
using field data clarify that opinion/spread processes exhibit
sophisticated and volatile behaviors at multiple scales (e.g.
stochastic and heterogeneous evolution rules, manipulative
behaviors), which need to be accounted for in models and
data analysis.

The profound interconnectivity of modern human society,
both with respect to cyber interactions and direct physical con-
tact, is necessitating analysis of opinion and spread processes
which have extremely high dimension. For example, online
social networks include tens-of-millions to billions of users,
with tens-of-thousands of users sometimes communicating on
a single topic during a span of a few minutes. Modeling or data
analysis for even a single trending topic therefore may require
consideration of a high-dimensional process. Analogously,
as the COVID pandemic has highlighted, infectious disease
spread and management may have global scale, while also
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requiring understanding of interactions at highly localized
scales [11].

The extreme dimensionality of opinion-evolution and spread
processes motivates the development of terse descriptions,
including reduced-order models and reduced representations
of process data. Indeed, reduced-order modeling of opinion-
consensus dynamics has been pursued recently in the controls
community [12], [13]. In parallel, there have been numerous
studies on reduced-dimension representation of social-network
data, using techniques such as principal component analysis
and factor analysis [14]. These techniques are based on the
concept that process states of interest are largely constrained
to a fixed low-dimensional manifold within the full state space,
which therefore allows model reduction and data projection.

While it is appealing to approximate opinion and spread
processes using fixed low-dimensional bases, the volatility and
multi-scale dynamics of these processes may frustrate such
approximations. For example, the pattern of COVID-19 preva-
lences in geographical areas within the United States (e.g.,
states or counties) has shown considerable variation over time
due to changing drivers and complex local spread processes; in
consequence, it is unlikely that prevalence patterns throughout
the epidemic can be approximated in a single low-dimensional
basis. Likewise, social interactions governing decision-making
and voting processes, as well as opinion-diffusion in social
networks, are highly stochastic and yield rich dynamics that
cannot easily be projected on a common low-dimensional
basis.

Even when network opinion and spread processes are not
representable in a fixed low-dimensional basis, the state at each
time may have considerable structure, exhibiting correlation,
periodicity, or other features. Moreover, the structure in the
state may have a close connection with the graph topology of
the network. The purpose of this work is to examine whether
state snapshots admit terse representations which capture this
structure, while allowing for the inherent variability and so-
phisticated multi-scale dynamics of the processes.

The notion of compressibility, which was developed in the
signal-processing community for sparse signal reconstruction,
provides an interesting framework for terse representation of
network process snapshots [15], [16]. In this literature, a signal
ensemble is viewed as compressible, if it admits a sparse
approximation in a particular full-dimensional basis – however,
one that may differ from one ensemble member to another.
For example, a class of images is compressible in the Fourier
basis, if each image of this type has only a few frequency
components, albeit perhaps different ones. In this study, we
explore whether the state snapshots of network opinion and
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spread process are compressible, in the sense that each snap-
shot admits a (possibly-different) sparse representation in a
particular full-dimensional basis. We particularly focus on
whether these processes are compressible in the Laplacian-
eigenvector basis, defined by the right eigenvectors of the
Laplacian matrix associated with the network’s graph.

The article is focused around three case studies, which are
used to explore whether model-generated and also field data
of opinion/spread processes are compressible in the Laplacian-
eigenvector basis. To describe the case studies, we first define
compressibility notions for network opinion/spread processes,
and develop the Laplacian-eigenvector basis (Section II). Then,
in the first case study, we characterize compressibility of
an opinion-consensus process that is subject to a stochastic
input, using both empirical analyses of model-generated data
and some formal analyses (Section III). The second case
study is focused on empirical analysis of compressibility for
data from a stochastic voter model (Section IV). Finally, in
Section V, compressibility of COVID-19 field data is explored.
Outcomes of the cases studies and possible applications of
compressibility are briefly summarized in Section VI.

II. DEFINITIONS AND AIMS

Compressibility of snapshot data (i.e., data at a particular
time point) from a network opinion-evolution or spread pro-
cess is studied. Specifically, a data vector x ∈ RN , which
captures the state of a network process at a particular time,
is considered. Each entry xi of x represents the opinion or
status of a node i in the network. Broadly, x is viewed as
being drawn from an ensemble X , which encompasses state
snapshots at different times or for different instantiations.

A weighted digraph with N vertices, corresponding to the
N nodes in the network, is used to represent interactions
or influences in the network. Specifically, an edge is drawn
from vertex i to vertex j to indicate that the node i directly
influences node j in the evolution of the opinion/spread state.
For an edge from vertex i to vertex j, a weight wij > 0 is
assigned which indicates the strength of the interaction.

Exact and approximate notions of compressibility are de-
fined for individual state snapshot data x and for the data
ensemble X , following on the definitions used in the com-
pressive sensing literature [15]–[18]. These notions are defined
with respect to a specific basis for RN , which we specify as
the columns of a real N ×N matrix Φ. The state snapshot x
is defined to be exactly K-compressible with respect to Φ, if
the state snapshot x can be expressed as x = Φs, where at
most K entries of the real vector s. If each vector x ∈ X is
exactly K-compressible, then the ensemble X is also referred
to as exactly K-compressible.

In many circumstances, exact compressibility is not
achieved, but each state snapshot can be approximated well
as a sparse combination of basis vectors. The accuracy of a
sparse approximation can naturally be measured in terms of
the expected signal energy fraction captured by the approx-
imation. In particular, the energy fraction F of a K-sparse

approximation x = Φs of x, where s has K non-zero entries,
is defined as:

F = 1− ||x− x||22
||x||22

, (1)

where the subscript indicates the 2-norm of the vector.
Also of interest is the maximum energy fraction among all

K-sparse approximations:

F ∗ = max
s s.t.||s||0=K

F, (2)

where ||s||0 indicates the number of non-zero entries. We
refer to F ∗ as the optimal energy fraction for a K-sparse
approximation, and the argument s = s∗ that optimizes the
energy fraction as the optimizing component vector (where we
use the term ‘component’ because s contains the components
in the basis directions forming the approximation). In the
case where Φ is an orthonormal basis, it is easy to see
that the optimizing component vector s∗ can be found by
first computing s = Φ−1x, and then setting to zero all
except the K largest-magnitude entries in s. For the general
case, this approximation is not necessarily the optimal one,
however maintaining the large-magnitude entries provides a
good approximation (with provable performance relative to
the optimal if the angles between basis vectors are lower-
bounded). Finally, the average value of the optimal energy
fraction over the ensemble X (provided that the ensemble is
stochastic), and/or the extremal values over the ensemble, may
be of interest.

The exact compressibility of a signal, as well as the energy
fraction captured by a sparse approximation, are dependent on
the basis Φ used for compression. Idealized models for many
opinion and spread processes are defined by the Laplacian ma-
trix associated with the network’s graph, and hence it is natural
to assess compressibility in bases obtained from the Laplacian
matrix. In particular, the natural responses of deterministic
linear opinion and spread models are sometimes primarily gov-
erned by dominant modes, which are aligned with certain right
eigenvectors of the Laplacian matrix. Thus, one might expect
that data from real-world spread and opinion processes, or data
generated from stochastic models of opinion formation/spread,
may be compressible in the Laplacian-eigenvector basis – i.e.,
state snapshots may primarily have components along a few
dominant eigenvector directions, albeit in a time-dependent or
instance-dependent fashion. With this motivation in mind, here
we study compressibility of opinion and spread dynamics in
the Laplacian-eigenvector basis.

Formally, the N ×N Laplacian matrix L of the digraph Γ
is defined as follows. The off-diagonal entry of L at row j
and column i is set to −wji if the graph has an edge from
vertex i to vertex j, and is set to 0 otherwise. Meanwhile, the
diagonal entries are selected so that each row of the Laplacian
matrix sums to 0.

The eigenvalues of the Laplacian matrix L are known to lie
in the closed right half plane, with all eigenvalues on the jω-
axis located at the origin and non-defective. We use the nota-
tion 0 = λ1, . . . , λN for the eigenvalues of L. We also define
the matrix V =

[
v1, . . . ,vN

]
to contain the corresponding

right eigenvectors (where each eigenvector is normalized to
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unit two-norm). In the case where L has complex eigenvalues,
the corresponding eigenvectors (and generalized eigenvectors)
are complex-conjugate pairs; in this case, we replace the
conjugate vectors in V with their real and imaginary parts.
For the compressibility analysis, we focus on the case that the
sparsifying basis is Φ = V .

We note that compression of data in the Laplacian-
eigenvector or graph-spectrum basis has recently been con-
sidered in the signal-processing literature for the purpose
of compressive sensing [19], however to the best of our
knowledge the compressibility of network process data has
not been considered.

Our primary aim in this study is to explore whether the rich
dynamics exhibited in network opinion-evolution and spread
processes are compressible in the Laplacian-eigenvector ba-
sis. Thus, in a deviation from the standard presentation in
controls-engineering articles, we primarily focus on empirical
assessment of compressibility in several examples or case
studies. In particular, three case studies are pursued: 1) data
generated from a linear opinion-consensus model which is
subject to a stochastic input at an unknown location; 2)
data generated from a voter model; and 3) field data of
daily COVID positivity rates in U.S. states. An initial formal
treatment of compressibility is also undertaken for the linear
opinion-consensus model.

III. LINEAR OPINION-CONSENSUS MODEL

Models for opinion consensus with stubborn or manipulative
nodes (agents) have been widely studied [5], [20], [21]. When
opinion-consensus processes are impacted by such actors, the
agents’ states may not reach consensus, and in fact may
continuously vary. Here, we consider a canonical discrete-time
linear opinion consensus model, and augment it to include an
additive stochastic input at an unknown node. Specifically, the
consensus model is of the form:

x[k + 1] = Ax[k] +Bu[k], (3)

where x[k] ∈ RN contains the statuses of the N nodes at time
k, A = [aij ] is a row-stochastic matrix, B is a 0−−1 indicator
vector, and u[k] is a zero-mean unit-variance Gaussian white
noise process. The entry of B which is equal to 1 (indicating
the node where the input is applied), say the zth entry, is
unspecified. The model is representative of a network opinion-
evolution process that is subject to manipulation at one node,
which is unknown to network analysts. Scenarios of this sort
are common in social-network processes, where sources of
manipulation or opinion-modification may be hidden. Models
of this form also can capture physical-world diffusion pro-
cesses that are subject to unknown or stochastic drivers. Many
opinion-evolution and diffusion models of this type are high
dimensional, and hence terse representations of noisy process
data are desirable.

An N -vertex digraph Γ is defined to capture the direct
influence between nodes in the consensus model. An edge is
drawn from vertex i to vertex j (i 6= j) in Γ if aji > 0, and as-
signed a weight of aji. We assume that the graph Γ is strongly
connected. In this case, absent a driving input, the statuses of

the nodes would reach a common value (consensus); however,
with the stochastic input, the state varies with time. We note
that the Laplacian matrix L of the graph is closely related to
the state matrix A of the model, as A = I − L.

Our interest lies in determining the compressibility of state
snapshots x = x[k] in the Laplacian-eigenvector basis. Com-
pressibility metrics (energy fractions) for individual snapshots,
as well as for the stochastic ensemble at a particular time
k, are studied. An empirical analysis is undertaken for an
example and then some initial formal analyses are pursued,
which illustrate that the data is compressible.

A. Empirical Analysis

A network with 200 nodes is considered. The network’s
graph is formed by placing vertices in the unit plane, and
connecting vertices within a certain radius (Figure 1). The
edge weights are first set to a common value, and then the
incoming weights into each vertex are scaled to sum to 0.8
(hence the diagonal entries in A equal 0.2). A single node
is selected randomly (with equal probability) as the location
of the stochastic input. The network instantiation is then
simulated assuming a zero initial condition to generate state
process data.

Fig. 1. A 200 node graph is shown. Both linear-consensus dynamics (Section
III.A) and voter dynamics (Section IV) were simulated on this graph.

Compressibility of the state snapshot x = x[k] at a par-
ticular time (k = 400) in the Laplacian-eigenvector basis is
considered. Specifically, a K-sparse approximation of the state
snapshot is determined by finding s = Φ−1x[k], and setting
to zero all but the K largest entries. The energy fraction F is
computed. Also, the basis vectors (eigenvectors) with largest
components in the K-sparse approximation are tabulated.

Figure 2 shows the energy fraction for a K-sparse approx-
imation of the state snapshot as a function of K, for an
ensemble of simulations. The average energy fraction across
the ensemble is also shown. The plots show that approximately
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Fig. 2. For the linear consensus model, the energy fraction achieved by a
K-sparse approximation is shown as a function of K, for each snapshot in
the ensemble (top) and also averaged over the ensemble (bottom).

60% of the energy is captured in the first basis vector on
average, with 80% of the total energy captured in the first 20
of the 200 basis vectors (equivalently, 50% of the remaining
energy beyond the first basis vector). Approximately 90%
of the energy is captured in the first 40 basis vectors. The
energy fractions for the individual state snapshots show some
variability, however for almost all ensemble members 50%
of the energy is captured using 20 basis vectors, and 70% is
captured using 40 basis vectors.

It is instructive to compare the dominant basis directions
(the ones with the largest-energy components) for different
ensemble members, both in the case that the input node is
randomly varied and the case that the input node is held fixed.
As an example, for one simulation with the stochastic input
at node 1, we find that the indices of the first four dominant
basis directions and corresponding Laplacian eigenvalues are:
1 (λ = 0), 2 (λ = 0.04), 19 (λ = 0.56), and 3 (λ = 0.05).
Meanwhile, for another simulation with the same input loca-
tion, they are 1 (λ = 0), 167 (λ = 0.79), 180 (λ = 0.80),
and 19 (λ = 0.56). Meanwhile, for a different input node,
they are: 2 (λ = 0.04), 3 (λ = 0.05), 1 (λ = 0), and 166
(λ = 0.79). The examples suggest that the dominant basis

directions change among the ensemble members, even though
a large energy fraction is captured within a few basis vectors.
Certain directions appear as dominant basis vectors with some
frequency, particularly ones corresponding to eigenvalues near
zero which are known to have network-wide span [22].
However, these basis directions are not always present, and
other basis vectors appear as dominant ones depending on the
ensemble member and input location. The simulations suggest
that state snapshots are compressible, but the dominant basis
directions vary among the ensemble members.

B. Statistical Analysis

An initial statistical analysis of the linear opinion-consensus
model (3) is undertaken, which gives some insight into com-
pressibility of state snaphsots in the Laplacian-eigenvector
basis. The statistical analysis also suggests an alternate basis
which allows for further compression, but requires some
additional knowledge about the driving input.

To simplify the presentation, we assume that eigenvalues
of A are real and simple. This case encompasses state ma-
trices that are symmetric or diagonally symmetrizable, which
have been widely considered for network opinion-formation
models. The specialization is not essential for compressibility,
however is simplifies the technical analysis. For the analysis,
we also assume that the matrix A is aperiodic in addition
to irreducible (which is a consequence of Γ being strongly
connected).

For the formal analysis, it is convenient to order the eigen-
values of A. Specifically, we label the N eigenvalues of A as
1 = λ̂1 > λ̂2 > . . . > λ̂N > −1, where we have used the fact
that A has a simple strictly dominant eigenvalue at 1 since it
is irreducible and aperiodic. The corresponding eigenvectors
are labeled as v̂1, . . . , v̂N .

Importantly, the eigenvalues and eigenvectors of A are
closely related to those of the Laplacian matrix L associated
with the network’s weighted digraph Γ. Specifically, noticing
that A = I − L, it follows that λ̂i = 1 − λi, where the
eigenvalues λi of the Laplacian matrix satisfy 0 = λ1 <
λ2 < . . . < λN < 2. Additionally, the eigenvectors of A
are identical to those of L, i.e. v̂i = vi. For the analysis,
the vectors in the Laplacian-eigenvector basis are ordered in
a commensurate fashion, i.e. V =

[
v1 . . . vN

]
. Also, the

matrix W = [wij ] is defined as W = V −1. The rows of W are
the left eigenvectors of L, which are also the left eigenvectors
of A.

To assess compressibility, it is convenient to express the
state x[k] of the linear-consensus process in the Laplacian-
eigenvector basis. In general, the state can be written as
x[k] = V s[k], where the vector s[k] lists the components
in each basis direction. Compressibility is essentially related
to the squared magnitudes of the entries in s[k], which are
statistical quantities. Hence, we are interested in characterizing
the second moments of the vector s[k], particularly in the
large-k asymptote. The following result gives an explicit
expression for the statistics of s[k]:

Theorem 1: Consider the opinion-consensus model in the
case where the eigenvalues of A are real and simple. Consider
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the vector s[k] = V −1x[k], which indicates the components
of the time-k state x[k] in the Laplacian-eigenector basis. The
vector s[k] is Gaussian, with zero mean. Also, in the limit of
large k, the second moment of s[k] approaches:

Σ = E(s[k]s[k]T ) = QCQ. (4)

Here, Q is a diagonal matrix with ith diagonal entry given
by the entry wiz in the left-eigenvector matrix W , where z is
the (unknown) location of the stochastic input in the opinion-
consensus model. Meanwhile, the entries of the matrix C =
[cij ] are the following:

c11 = k (5)

c1j = cj1 =
1

λj
j = 2, . . . , n

cij =
1

1− (1− λi)(1− λj)
i = 2, . . . , n, j = 2, . . . , n.

Proof: Substituting x[k] = V s[k] into the state equa-
tion for the linear-consensus model yields: s[k + 1] =
Λs[k] + hu[k], where Λ = diag(λ̂i) and h = WB =w1z

...
wnz

. From this transformed equation, s[k] can be ex-

pressed as: s[k] =
∑k−1
i=0 Λk−1−ihu[i]. From this expres-

sion, it is immediate that s[k] is zero mean. Also, the sec-
ond moment Σ = E(s[k]s[k]T ) can be written as: Σ =∑k−1
i=0

∑k−1
j=0 Λk−1−ihE(u[i]u[i]T )hTΛk−1−j . Since u[k] is

a zero-mean unit variance white process, Σ can be further
simplified to: Σ =

∑k−1
l=0 Λk−1−lhhTΛk−1−l. Noticing that

Λk−1−l is diagonal, Σ can be further simplified to: Σ =
QCQ, where Q is defined in the theorem statement, and

C=
∑k−1
l=0

λ̂
k−1−l
1

...
λ̂k−1−ln


λ̂

k−1−l
1

...
λ̂k−1−ln


T

. The entry of C at row i

and column j can be further simplified as
∑k−1
l=0 (λ̂iλ̂j)

k−1−l.
Noting that λ̂1 = 1 while λ̂2, . . . , λ̂n are strictly within the
unit circle, and considering large k, the expressions for the
entries in C in the theorem statement are recovered. �

Theorem 1 shows that the components of the time-k state
s[k] in the Laplacian-eigenvector basis are zero-mean Gaussian
random variables, with asymptotic covariance matrix given by
Equation 4. We are interested in whether the energy in s[k]
is concentrated in a small number K of the largest entries,
which would indicate compressibility.

The asymptotic expression for the second moment of s[k]
gives insight into why the energy in s[k] is often concentrated
in a small number of entries. Specifically, the diagonal entries
in the second-moment Σ indicate the expected energies of
each component in s[k]. Notice that the first diagonal entry
in Σ, given by w2

1zk, is growing with k while the remaining
entries remain bounded. Thus, the expected energy fraction
along the first basis vector (the all-ones eigenvector 1 of the
Laplacian) approaches 1 for large k. Meanwhile, the remaining
diagonal entries of Σ take the form w2

iz

1−(1−λi)2
. These diagonal

entries are much larger for λi near 0 or 2 as compared to

other values of λi, provided that the corresponding w2
iz are

not vanishingly small. For many network graphs, including the
example considered above, the Laplacian has a relatively small
set of eigenvalues near 0, and the corresponding eigenvectors
have wide support on the network. Thus, the expected energy
in the corresponding components of s[k] are amplified com-
pared to the remaining components. In an instantiation of the
state, only a subset of these components (basis directions) with
large expected energy will have large amplitude in actuality.
Thus, the signal energy should be concentrated in a small,
time-varying set of components in the Laplacian-eigenvector
direction – and thus the signal should be compressible. If
the location of the stochastic input is variable, the dominant
components and their expected magnitudes will change (since
Q changes), but the state should remain compressible.

An exact analysis of the energy contained in the proposed
K-sparse approximation is complicated, since it requires char-
acterizing the order statistics of the entries in s[k]. However,
a simple lower bound on the energy can be found when the
basis is orthonormal, based on the diagonal entries of Σ. This
bound is presented in the following corollary:

Corollary 1: Consider the linear consensus model, and
assume that the Laplacian matrix is symmetric (equivalently,
the Laplacian-eigenvector basis V is orthonormal). Consider
K-sparse approximations of x = x[k] in the Laplacian-
eigenvector basis, for sufficiently large k. Let p(1), . . . , p(K)
be the indices for K largest-magnitude diagonal entries of Σ.
Then the expected energy contained in the optimal K-sparse
approximation is lower bounded by

∑K
i=1 σp(i),p(i).

Proof: For a particular time-k snapshot x = x[k], con-
sider the optimal K-sparse approximation s in the Laplacian-
eigenvector basis. The energy contained in the approxi-
mation is equal to

∑K
i=1 s

2
q(i), where sq(1), . . . , sq(K) are

the K largest-magnitude entries in s. The expected en-
ergy across the ensemble of snapshots is therefore given
by E(

∑K
i=1 s

2
q(i)). However, for each snapshot, notice that∑K

i=1 s
2
q(i) ≥

∑K
i=1 s

2
p(i). The lower bound in the corollary

statement follows.
Theorem 1 also suggests an alternate basis which can allow

sparse representation using fewer basis vectors. In partic-
ular, previous work has shown that sparse representations
of Gaussian data are obtained in an whitening basis under
certain circumstances [23], i.e. one where the components
are statistically independent. The second-moment expression
for s[k] in Theorem 1 shows that the Laplacian-eigenvector
basis is not a whitening basis, since the entries in s[k] are
correlated. A whitening basis can be found using an eigenvalue
decomposition of Σ = QCQ. In particular, noticing that Σ
is positive definite and symmetric, it follows that Σ can be
decomposed as Σ = V ∗DV ∗−1, where the orthonormal matrix
V ∗ contains the eigenvectors of Σ, and D is a diagonal matrix
with its eigenvalues. Thus, it follows that the basis Φ = V ∗V
is a whitening basis for x[k] for sufficiently large k, with the
second moment or covariance matrix in the new basis equal
to D.

The whitening basis has been applied to the 200-node
example network described in Section III.A. In the new basis,



6

a good sparse approximation is achieved with very few basis
vectors. In particular, a two basis vectors capture 89% of the
signal energy, and three basis vectors capture 99% of the
signal energy, and four basis vectors capture 99.9% of te signal
energy.

In the example, the effectiveness of sparse approximation
in the whitening basis results from the fact that the diagonal
entries in D (the component variances in the whitening basis)
decay exponentially: when ordered by magnitude, each entry
is a small fraction of the previous. Indeed, this exponential
decay in the component variances is a more general property
of the whitening basis, for the class of models considered
here. This can be seen by first recognizing that the covariance
matrix Σ in the Laplacian-eigenvector basis is a controllability
Gramian matrix for a single-input system. The entries in D,
which are the component variances in the whitening basis, are
the eigenvalues of this Gramian. However, the eigenvalues of
Gramians for single-input systems have been shown to exhibit
an exponential falloff for a wide range of system parameters,
using properties of Cauchy matrices [24], [25]. These results
explain why very sparse approximations can be obtained in
the whitening basis.

While the whitening basis is appealing in enabling very
efficient sparse approximations, there are practical challenges
to its use in analyzing network opinion and spread data. Impor-
tantly, constructing the basis requires knowing the location of
the external input, which is often unrealistic in real-world sce-
narios. In addition, because the eigenvalues of Σ have greatly
varying orders of magnitude, computing the corresponding
eigenvectors and hence the basis represents a computational
challenge. For these reasons, the Laplacian-eigenvector basis,
though suboptimal, is practical for processing opinion/spread
data in many real-world circumstances.

IV. VOTER MODEL

Stochastic automata network models, wherein nodes hold
discrete-valued opinions or statuses which evolve through
probabilistic interactions, are also widely used to represent
opinion evolution. In particular, voter models – in which agents
stochastically poll neighors to update their states – have been
used to represent various decision-making and algorithmic pro-
cesses [3], [5]. Reflecting real-world voting processes, Voter-
model dynamics are intrinsicially random, which complicates
reduced-order modeling and data analysis. In addition, the
models are sometimes used to represent individual opinions
within large populations, and hence may be high dimensional.
For these reasons, terse representations of voter-model data
are of interest.

Formally, we consider a (discrete-time) voter model with
N nodes, each of which has a status of either 0 or 1 at each
time step. The evolution of the state x[k] at each time k can
be described in two stages:
Stage 1: The vector y[k] is computed as y[k] = Ax[k], where
A is an N×N row-stochastic matrix. We note that each entry
in y[k] is in [0, 1].
Stage 2: Each entry in the next state x[k + 1] is generated
from y[k], as follows. The entry xi[k + 1] is set to 1 with

probability yi[k], and is set to 0 otherwise, independently of
the updates of the other statuses.

The voter model is entirely defined by the row-stochastic
matrix A, in analogy with the linear consensus model. We
define the graph for the model in the same way as for the linear
consensus model, since this graph captures direct influences
between nodes.

An empirical study of the compressibility of state snapshots
is undertaken for the voter model. The 200-vertex graph and
stochastic matrix A defined in Section III.A is also used for
the voter model. Two nodes in the network are set to maintain
statuses of 0 and 1, respectively. The remaining nodes update
their statuses as described above. It can be seen that the nodes’
statuses persistently fluctuate between 0 and 1. The model state
exhibits considerable temporal variability, but also exhibits
spatial correlation which should allow for compression.

Fig. 3. For the voter model, the average energy fraction captured by a K-
sparse approximation is plotted as a function of K.

Compressibility of voter-model state snapshots in the Lapla-
cian basis has been undertaken. In particular, compressibility
of the ensemble of voter-model states snapshots at a specific
(k = 500) has been studied. The average energy fraction
captured by an optimal K-sparse approximation is plotted
as a function of K in 3. The approximation is seen to
capture 75% of the signal content for K = 20, and 85% for
K = 40. As with the linear consensus model, the dominant
basis vectors vary significantly among the ensemble members,
but a high energy fraction is achieved regardless of which basis
vectors have large components. While many different basis
vectors may have large components, wide-area basis directions
corresponding with small eigenvalues of the Laplacian are
frequently dominant.

It is instructive to see how effectively sparse approximations
can recover the discrete state of the voter model. To illustrate
this, we have pursued reconstruction of the state snapshot
from the sparse representation in one example, see Figure
4. Specifically, a sparse approximation has been computed
using 20 basis vectors, and then translated to a discrete-state
approximation by rounding. The approximation matches the
original voter model’s state at 177 of the 200 nodes (89%). It
captures the state pattern well, while making errors at isolated
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Fig. 4. Reconstruction of a discrete-valued voter model state using a 20-
sparse approximation is shown. The original snapshot (top) and reconstruction
(bottom) have an 89% match. (Red squares in the graph indicate statuses of
‘1’.

nodes. When 40 basis vectors are used, the approximation is
correct at 193 of the 200 nodes.

V. DAILY COVID-19 POSITIVITY RATES

Compressibility of Coronavirus disease 2019 (COVID-
2019) data was studied. Specifically, daily state-level positivity
rates for COVID-19 across the continguous United State (48
states + Washington DC) was examined, over a 250 day period.
The data were obtained from [26]. The data for each day was
viewed as a snapshot of the COVID spread state on a graph
of the contiguous United States, with nodes representing the
states and bidirectional edges indicating contiguous states.

The compressibility of the data in the Laplacian-eigenvector
basis was examined. As with the other examples, as K-sparse
approximation was obtained by expressing the state snapshot
in the (orthonormal) Laplacian eigenvector basis, and then
maintaining the K largest-magnitude entries while setting the
remaining entries to 0.

Fig. 5. For the COVID-19 positivity data, the optimal energy fraction achieved
by a K-sparse approximation is shown as a function of K, for each day’s
data.

Figure 5 shows the optimal energy fraction F ∗ as a function
of the sparsity K, for each state snapshot (day). The plot shows
that 10 basis vectors are sufficient to capture 70− 92% of the
energy (two-norm) in the state snapshot on every day, with an
average optimal energy fraction of about 80%. Examination of
the K-sparse approximations for each day shows that the dom-
inant basis vectors are time-varying, showing gradual drifts
as well as periodic deviations caused by altered measurement
protocols on weekends.

Fig. 6. A basis vector that has a large component on several days is plotted
on top of the network graph. Blue and green circles are used to show strongly
positive and strongly negative vector entries. The basis vector shows a gradient
between the Norheastern and Southeastern United States.

Finally, we illustrate that plots of the dominant basis di-
rections on top of the network graph can give intuition into
the spread state. In Figure 6, one basis vector which has
large-magnitude components on several days is plotted. The
basis vector shows a gradient between the Northeastern and
Southeastern United States, indicating that there is a broad
difference in COVID positivity rates between the two regions
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on these days.

VI. DISCUSSION AND POSSIBLE APPLICATIONS OF
COMPRESSIBILITY

Our empirical and preliminary formal analyses indicate
that snapshot data from network opinion-evolution and spread
processes are compressible in the Laplacian-eigenvector basis.
In this sense, network opinion and spread data are much like
images and other scenes, but with the distinction that the
compressive bases are tied to the network’s topology. The
analogy suggests that alternate graph-related bases like graph
wavelet bases may also yield sparse representations [27].

The compressibility of opinion-evolution and spread process
data may prove useful for several applications, such as:

1) State Reconstruction from Sparse Data. Reconstruction
of opinion/spread processes from sparse measurements is
of substantial interest. Compressibility allows application of
compressive-sensing techniques for reconstructing the state
from sparse measurements. In particular, for an N -dimensional
state that is (approximately) K-sparse in a known basis, it is
known that the full state can be recovered using on the order
of K log(N/K) measurements under broad conditions [15].
Furthermore, this can be done in a computationally appealing
way using L1 optimization approaches.

2) Sparse Control Design. The design of controls to manage
opinion dynamics and mitigate spread is also of interest. Com-
pressibility potentially may allow for sparse control designs,
where actuation or influence is applied at only a small number
of network nodes.

3) Process Visualization. Compressibility enables approxi-
mation of an opinion/spread state in terms of a small number
of Laplacian eigenvectors. The Laplacian eigenvectors, when
plotted on the network’s graph, have wave-like shapes with
different spatial frequencies. Plotting the dominant eigenvector
components for a particular state snapshot can thus assist in
visualizing the snapshot.
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