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Abstract

In this chapter, we discuss applications of topological data analysis (TDA) to
spatial systems. We briefly review the recently proposed level-set construction of
filtered simplicial complexes, and we then examine persistent homology in two
cases studies: street networks in Shanghai and hotspots of COVID-19 infections.
We then summarize our results and provide an outlook on TDA in spatial systems.

1 Introduction
To improve our understanding of spatial systems, it is important to develop methods
that directly probe the effects of space on their structure and dynamics. Many
complex systems have a natural embedding in a low-dimensional space or are
otherwise influenced by space [1, 18]. Spatial effects significantly influence both
their structure and their dynamics. One way to gain information about the global
structure of spatial systems is by studying notions of ‘connectness’, ‘holes’, and
‘cavities’. Consequently, it is not surprising that many researchers have used
topological data analysis (TDA), usually in the form of persistent homology (PH),
to study a diverse variety of spatial systems. For example, TDA has been used
to study granular and particulate systems [5, 23], neuronal networks [28], leaf-
venation patterns [25], networks of blood vessels [6], aggregation models [34],
spatial percolation [31], human migration [14], voting patterns [10].

Analyzing PH allows one to quantify holes in data in a meaningful way and
has made it possible to apply homological ideas to a wide variety of empirical data
sets [22]. To study PH, one needs to construct a filtered simplicial complex. (See,
e.g., Chapter 3 and [7].) In [10], Feng and Porter developed new types of filtered
simplicial complexes that incorporate spatial information. In [9], they applied their
new constructions to synthetic spatial networks, city street networks, spiderwebs,
and snowflakes. Other studies have also incorporated spatial information into PH
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(see, e.g., [6,16,26]). Recently, researchers have also extended TDA methods other
than PH — ones that use persistent cohomology [32] and the Euler characteristic
[29] — to incorporate spatial information.

In the present chapter, we discuss two case studies of PH to spatial systems. We
use a level-set construction of simplicial complexes, which were introduced recently
in [10], to (1) city street networks in Shanghai1 and (2) hotspots of COVID-19
infections. Through these examples, we illustrate the importance of incorporating
spatial information when doing TDA on spatial systems.

Our chapter proceeds as follows. In Section 2, we discuss the level-set con-
struction of filtered simplicial complexes. We use these complexes to study PH
for city street networks in Shanghai in Section 3 and for hotspots of COVID-19
infections in Section 4. In Section 5, we conclude and give a brief outlook on TDA
in spatial systems.

2 Level-Set Complexes
We now briefly review the level-set construction of filtered simplicial complexes
that was introduced recently in [10]. For discussions of other types of filtered
simplicial complexes (which are often called simply “filtrations”), see Chapter 3
and [22].

In a level-set filtration, one describes data as a manifold. Let 𝑀 denote a
two-dimensional (2D) manifold, such as data in an image format. We construct a
sequence

𝑀0 ⊆ 𝑀1 ⊆ · · · ⊆ 𝑀𝑛

of manifolds (where 𝑀0 is an approximation of 𝑀) as follows. At each time 𝑡, we
evolve the boundary Γ𝑡 of 𝑀𝑡 outward according to the level-set equation of front
propagation [21]. Specifically, for a manifold 𝑀 that is embedded in R2, we define
a function 𝜙(®𝑥, 𝑡) : R2 ×R→ R, where 𝜙(®𝑥, 𝑡) is the signed distance function from
®𝑥 to Γ𝑡 at time 𝑡 ≥ 0. We propagate Γ𝑡 outward at velocity 𝑣 using the partial
differential equation

𝜕𝜙

𝜕𝑡
= 𝑣 |∇𝜙 | (1)

until all homological features die. The evolution (1) gives a signed distance function
at each time 𝑡. We take 𝑀𝑡 to be the set of points ®𝑥 such that 𝜙(®𝑥, 𝑡) > 0. (This
corresponds to points inside the boundary Γ𝑡 .) In our examples in this chapter, we
use 𝑣 = 1.

By imposing {𝑀𝑖} over a triangular grid of points (see [10]), we obtain a
corresponding simplicial complex 𝑋𝑖 for each 𝑀𝑖 . Because the level-set equation
(1) evolves outward, we satisfy that condition that 𝑋𝑖 ⊆ 𝑋𝑖+1 for all 𝑖, so {𝑋𝑖} is a
filtered simplicial complex.

3 Case Study: Street Networks in Shanghai
This case study is an extended discussion of one of the examples in [9]. In this case
study, we use level-set complexes to examine patterns in city street networks. We
focus on the city of Shanghai, which has a long history of urban development [37].

1This case study is related to an example in [9].
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The discussion in [9] used PHs of level-set complexes to classify a variety of
small street networks from different neighborhoods of Shanghai. In the present
discussion, however, we closely examine the PHs of street networks in several
different neighborhoods of Shanghai. Computing PH (and, more generally, using
TDA) allows us to detect both topological and geometric properties of city blocks in
these neighborhoods. These properties may reflect differences in the development
of city streets across time and cultural influences.

The city of Shanghai was first inhabited about 6000 years ago during China’s
Warring States period. Over the course of several millennia, Shanghai has expe-
rienced urban growth, with a variety of developmental styles, over many distinct
time periods [37]. These different architectural and urban-planning styles reflect
a diversity of different views by the various powers of Shanghai for how the city
should be structured. In the following paragraphs, we use PH to highlight street
networks in several distinct neighborhoods of Shanghai. We draw connections
between the history of these neighborhoods and the topological features that we
observe in their PHs.

We use networks from OSMnx [3] as input data. Our street networks are
images of street maps; they consist of a 2 km by 2 km square that is centered at a
given set of (latitude, longitude) coordinates. We show three such street maps in
Figure 1. In Figure 1(a), we show a street map from Laoximen (“Old West Gate”), a
neighborhood that was built up around the western gate of Shanghai’s original city
walls. In Figure 1(b), we show a street map from the former French concession,
which was a French colonial territory from 1849 to 1943. In Figure 1(c), we show
a street map from Pudong New Area, which is a modern financial district that has
developed mostly over the last few decades.

(a) Laoximen (b) Former French conces-
sion

(c) Pudong New Area

Figure 1: Street networks from three different neighborhoods of Shanghai. (We gener-
ated these maps using OSMnx [3].)

From the street maps in Figure 1, we obtain level-set complexes following the
approach in Section 2. In Figure 2, we show the level-set complex that corresponds
to the map in Figure 1(c). This level-set complex begins with line segments that
represent the streets in the network. The streets expand outward as we add simplices
to the complex. We thereby capture city blocks as homological features, whose
death times increase as the sizes of the blocks increase. (Larger blocks take longer
to be “filled” by the expanding streets in the simplicial complex.)

To visualize the features of the PHs of the street-map images, we use persistence
diagrams (PDs). PDs represent homological features as points on a scatter plot. We
plot each feature at a point (𝑏, 𝑑), where 𝑏 is the birth time of the feature and 𝑑 is its
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(a) (b) (c) (d) (e)

Figure 2: Selected steps of the level-set evolution of the map of Pudong New Area from
Figure 1c. As the level-set complex evolves, the streets expand and fill in the blocks.
Smaller blocks fill in faster.

death time. We show zero-dimensional (0D) features in pink and one-dimensional
(1D) features in blue. Because features cannot die before they are born, all points
must lie on or above the identity line 𝑔(𝑥) = 𝑥. More persistent features lie farther
above this line. See Chapter 3 and [22] for more information about PDs.

In Figure 3, we show the PDs that correspond to the maps in Figure 1. The
PD of Laoximen [see Figure 3(a)] reveals that most of the 1D features have death
times of less than 10. This indicates that the city blocks in this area are relatively
small. Additionally, although many of the features of the map of Laoximen are
born at early times (such features are close to the vertical axis of a PD), there are
also several points close to the diagonal that have later birth times. These points
correspond to features that tend to occur when a street map has dead ends. As the
level-set complex evolves, dead ends expand. This can result in a single block being
“pinched” into multiple smaller blocks when the dead end connects to the streets
that border the block. Similarly, blocks that are not rectangular because of winding
roads can be “pinched” into smaller blocks when narrower areas fill in faster than
wider areas. In the street map of Laoximen, there are a large number of dead ends
and winding streets. Street designs like these, which do not resemble rectangular
grids, are less common in modern street layouts than in older ones [4]. We observe
in Figure 1 that the southern part of our Laoximen map seems to contain more of
these features than other parts of the map. This particular area of the map includes
one of the oldest remaining neighborhoods of Laoximen.2 Much of the area around
it has been demolished and redeveloped.

The PD of the former French concession [see Figure 3(b)] has more features
with death times between 10 and 20 than is the case for the PD of Laoximen.
This indicates the existence of medium-size blocks, and we see in Figure 1 that
the blocks in the former French concession are generally larger than those in
Laoximen. We still observe many features with death times that are less than 10,
so the street network of the former French concession does have a variety of block
sizes. Although it has fewer dead ends than Laoximen, many of the blocks in the
former French concession are not rectangular because of its curved roads. Like
Laoximen, the former French concession has experienced much redevelopment in
the last several decades [13]. However, many of the original buildings and streets
remain, and the former French concession is a popular tourist destination because

2This part of Laoximen has been slated for redevelopment since 2017 [15]. When we obtained these
street maps in 2019, residents were fighting redevelopment efforts and development had not yet begun [36].
It remains to be seen how this part of our Laoximen street map will change as a result of redevelopment.
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of its European-style buildings and streets. Extra-settlement roads that were built
by the French colonial government, spacious residential lots, and its wide and
tree-lined streets are reflected in its street map.

The final district that we discuss is Pudong New Area, a financial hub that has
developed rapidly in the last few decades. This area, which is located across the
Huangpu River from European concession territories and the old city of Shanghai,
was initially developed only modestly before the late 20th century. In the 1990s, the
Chinese government set up a Special Economic Zone in Pudong New Area [27],
and this district now has some of Shanghai’s most famous skyscrapers. The PD of
our street map of Pudong New Area [see Figure 3(c)] has several 1D features with
death times that are larger than 20, indicating the existence of large blocks. We also
observe several features with early and moderate death times; these correspond to
a few small blocks on the map. For example, there appears to be a small traffic
circle towards the western part of the street map [see Figure 1(c)]. The large blocks
are indicative of modern styles of urban planning, with large blocks laid out along
grids. Although these blocks are much larger than those in the street maps of the
other two regions, many of them are not rectangular, so we again observe several
features with late birth times.

(a) Laoximen (b) Former French conces-
sion

(c) Pudong New Area

Figure 3: Persistence diagrams of street networks from three neighborhoods of Shang-
hai. By comparing the birth and death times of the features in the PDs, we observe
differences in block-size distributions and block shapes in these neighborhoods. These
differences reflect the different developmental histories of these three areas.

4 Case Study: Hotspots of COVID-19 Infec-
tions
The spread of coronavirus disease 2019 (COVID-19), which is caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global
pandemic [20]. Modeling the spread of COVID-19 is an important and complicated
task [35], in part because of the spatial heterogeneity in how it spreads.

TDA can be useful for the analysis of spreading phenomena. For example,
PH has been used previously in epidemiological applications to forecast the spread
of Zika [30] and to analyze the Watts threshold model of a contagion on noisy
geometric networks [33]. PH provides a different perspective than the many spa-
tiotemporal forecasting models that have been developed for COVID-19 without
TDA (see, e.g., [2, 38]).
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(a) LA Neighborhoods (b) California Counties

Figure 4: Cumulative COVID-19 case counts on 30 June 2020 in (a) Los Angeles
neighborhoods and (b) California counties. We plot the LA case counts on a linear
scale and the California county case counts on a (natural) logarithmic scale.

In our case study, we use PH to analyze the spatial properties of the spread of
COVID-19 in Los Angeles (LA) neighborhoods and California counties. In contrast
to prior work, we use PH in a way that incorporates the underlying geographic
structure and various spatial relationships. We consider two data sets. The first
is a highly granular data set that consists of COVID-19 case counts in 136 LA
neighborhoods on 30 June 2020. The second is a coarser data set that consists of
case counts in the 58 counties of California on the same day [8]. For each data
set, we also have geographic information in the form of a shapefile [12, 24]. We
visualize these data sets in Figure 4.

Let 𝑀LA denote the 2D manifold that consists of the union of LA neighborhoods
with fewer than 750 cumulative cases, and let 𝑀𝐶𝐴 denote the union of California
counties with fewer than 5, 000 cumulative cases. We approximate these manifolds
by rasterizing the associated shapefiles to obtain manifolds 𝑀LA

0 and 𝑀CA
0 . We

show 𝑀LA
0 and 𝑀CA

0 in Figure 5. As we described in Section 2, we construct
sequences of manifolds starting from 𝑀LA

0 and 𝑀CA
0 using level-set dynamics (1).

We then construct a level-set filtration for each of these sequences by imposing the
manifolds in them on a triangulation of the plane.

In Figure 6, we show the PDs that we compute for the 1D PH of our level-set
complexes for the two data sets. These PDs can help us identify COVID-19 hotspots.
We define a “hotspot” to be a collection of regions — sets of neighborhoods in
the LA data and sets of counties in the California data — in which the case count
is higher than in the surrounding area. This notion of a hotspot is analogous to
the political “islands” that were studied using PH in [10]. Hotspots with a case
count that is at least as large as the threshold (750 for LA neighborhoods and
5,000 for California counties) appear as holes in 𝑀0, unless the hotspot is adjacent
to the boundary of the map. The hotspots that are not adjacent to the boundary
correspond to homology classes that are born at time 0. Note that there is not a
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(a) 𝑀LA
0 (b) 𝑀CA

0

Figure 5: Initial manifolds for the level-set filtrations that we construct from data of
the spread of COVID-19. (a) The manifold 𝑀LA

0 is an approximation of the manifold
𝑀LA, which consists of the union of LA neighborhoods with fewer than 750 cumulative
cases on 30 June 2020. (b) The manifold 𝑀CA

0 is an approximation of the surface 𝑀CA,
which consists of the union of California counties with fewer than 5, 000 cumulative
cases on 30 June 2020.

one-to-one correspondence between hotspots and homology classes that are born
at time 0. Some of the homology classes that are born at 0 are simply holes in
the map (e.g., see Figure 4a), and hotspots that are adjacent to a boundary do not
necessarily correspond to any homology class. Homology classes that are born after
time 0 usually reflect only the geography of the regions, although they sometimes
correspond to hotspots on the boundary of the map (much like the homology classes
that are created by city blocks with dead ends in the Shanghai street networks). The
PDs reflect both the number of hotspots and the sizes of the hotspots.

5 Conclusions
In this chapter, we discussed the importance of incorporating spatial information
into TDA when one uses it to study spatial systems. As case studies, we computed
PH using a level-set construction of filtered simplicial complexes on two case
studies: city street networks in Shanghai and hotspots in the spread of COVID-19
infections.

In our case study of street networks in Shanghai, we illustrated that PH can cap-
ture both topological and geometric properties of the organization of city streets.
We also observed that the PHs of Shanghai’s street networks reflect underlying
differences in urban planning and organization. This suggests that topological
tools can summarize information about how humans organize themselves in space,
although further study is necessary to fully understand what types of spatial orga-
nization are amenable to TDA.

In our case study of the spread of COVID-19, we showed that one can use a
level-set filtration to study the number and sizes of COVID-19 hotspots on both a

7



(a) LA neighborhoods (b) CA counties

Figure 6: The PDs of the level-set filtrations for COVID-19 cases in (a) LA and (b)
California.

granular level (by considering neighborhoods in Los Angeles) and a coarse level (by
considering counties in California). We used only case counts in our computations,
but one can also construct level-set filtrations for the death counts, hospitalization
counts, or other quantities. The level-set filtration is flexible, but our approach has
important limitations. For example, we only detected hotspots with a case count
that is above some fixed threshold. This restricts us to measuring the severity of an
outbreak based on its geographic area. One way to address this issue is by applying
the level-set filtration after constructing a cartogram [11], instead of directly from
a shapefile. Additionally, the level-set filtration is unable to detect hotspots that
occur on the boundary of a map. Addressing these limitations is part of ongoing
work.

Many spatial systems are also social in nature, and there are major challenges
to overcome when studying such systems using TDA. In this chapter, we studied
spatial systems, but it is important to point out that many spatial systems (including
the examples in this chapter) reflect complicated social dynamics. For example,
the Shanghai street networks have been shaped by social processes like colonial
occupation and displacement of historical neighborhoods. Additionally, COVID-19
is known to disproportionately affect certain communities because of a confluence
of social factors, including who is in prison [17], where hospitals are located [19],
and so on. The interaction between social and spatial systems is complicated and
inseparable, and intense work is necessary to connect approaches like TDA in
spatial systems to the social factors at play.
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