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Abstract

To limit the spread of the novel coronavirus on college campuses, a common strategy for the
Fall 2020 and Spring 2021 terms has been to offer instruction weighted toward hybrid or fully
online modalities. Colleges are now considering whether and how to expand hybrid or fully in-
person instruction for future terms, and learn lessons from this experience for future use. Our
paper uses Fall 2019 enrollment data for a medium-sized public American university to analyze
whether some student groupings by class standing or course level are more susceptible to the spread
of infectious disease through academic enrollment networks. Replicating Weeden and Cornwell
[8], we find that enrollment networks at the institution are “small worlds” characterized by high
clustering, short average path lengths, and multiple independent connections. We also find that
connectivity decreases as class standing (graduate vs. undergraduate; senior vs. freshman) and
course level increase; as students move from generalized to specialized course loads, networks cluster
by major. Holding other factors constant, our analysis indicates that policies focusing on in-person
instruction for lower division students to capture the freshman experience conflict with the greater
risk of infectious spread through a lower division network in the absence of additional steps to
minimize academic connectivity. There are academic and financial incentives for emphasizing the
freshman experience, including concerns about student attrition from the first to second academic
year and recouping costs of infrastructure investments in dormitories that are disproportionately
used by freshmen. Possible solutions could include (i) restricting face-to-face or hybrid instruction
to courses in students’ academic majors, which would disrupt larger networks into smaller ones and
thus restrict the spread of infection across majors, and (ii) take a “scalpel” approach to instruction
modes by moving online courses most likely to facilitate epidemic spread.



1 Introduction

The COVID-19 epidemic resulted in the suspension of face-to-face teaching on university campuses
in the United States in the spring of 2020. The subsequent debate on when and how to return to
face-to-face instruction has been informed by several recent studies. Notably, Weeden and Cornwell
[8] studied course enrollment at Cornell University and concluded that a graph with edges between
students registered for the same course section forms a small world network, with high clustering,
short average path length, and multiple independent paths between pairs of students. This appears
to indicate that infections could spread quickly among the student population unless several courses
were converted to online instruction, with face-to-face instruction limited to small sections only.

Given that a vaccine is unlikely to produce community immunity before the start of the fall
semester of 2021 and fully online instruction is considered suboptimal for student learning and
institutional finances, the key question for the remainder of Academic Year 2021 is to what extent
institutions can return to face-to-face or hybrid instruction. How many classes can resume face-to-
face or hybrid instruction, how large can they be, and which students can populate them? Also,
what are the lessons to be learned from this experience so that we are better prepared for course
planning and scheduling if such epidemics are in the our future?

This paper describes an effort to replicate Weeden and Cornwell’s study in the context of the
University of Texas at Dallas (henceforth, “UT Dallas”), a medium-sized public university. Cornell
and UT Dallas have a similar enrollment, though UT Dallas has a higher share of undergraduates
(71% vs. 63% per the 2019-2020 Common Data Set), a higher ratio of incoming transfer students
to incoming freshmen (1 : 2 vs. 1 : 6), and an undergraduate population that is older on average
(13% of UT Dallas undergraduates are over 25, vs. 1% at Cornell University). UT Dallas has a
smaller fraternity/sorority population (∼ 5%, vs. ∼ 25%) and a smaller share of freshmen (52%, vs.
99%) and undergraduates (24%, vs. 52%) living on campus. In addition, UT Dallas has a higher
student/instructor ratio (24 : 1 vs. 9 : 1). Whereas 56% of Cornell’s undergraduate sections have
fewer than 20 students, at UT Dallas the share is only 20%. Most critically for our study, UT Dallas
has a core curriculum requirement for all undergraduate students, under which students must take
some courses outside their discipline (usually as freshmen or sophomores). Subsequent sections of
this paper discuss whether these differences result in any significant impact on clustering, average
path length, and bi-connectivity of students.

The Weeden and Cornwell study analyzed enrollment data for the entire university, for under-
graduate students only, and for the Liberal Arts College. For the UT Dallas study, we perform
a similar analysis for the entire university, as well as separately for graduate and undergraduate
students. Additionally, due to the general core requirement (which for the most part correspond
to lower division courses, i.e., those at the freshmen and sophomore levels), we separately analyze
the data for lower division and upper division undergraduate courses. We also investigate the
relationships at inter-school level.

While a 1000-level course at UT Dallas is usually interpreted as a freshman-level course, the
reality is a little different. Even though most 1000-level courses primarily have freshmen en-
rolled in them, some also include sophomores, juniors and seniors trying to fulfill general core
requirements. Likewise, freshmen with ample AP and other college-level credits may be taking
higher level courses. Therefore, we also analyze networks formed among undergraduate students
by considering the graphs formed using only (i) edges between students taking courses at the same
(1000, 2000, 3000, or 4000) level, and (ii) edges between students at the same class rank, namely
freshmen, sophomores, juniors, or seniors. Several interesting trends emerge when juxtaposing
these networks together.

As described in Section 5, we notice a pattern that calls into question the efficacy of the strategy
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followed by some universities as they started classes in Fall 2020. We observed that all students
taking freshmen-level classes form a highly connected and low-diameter network, with students
across all majors reachable from each other along short paths. By comparison, graduate students
- and to a slightly lesser extent those taking senior-level classes - tend to exhibit a higher level
of clustering by major or school. Students taking graduate and senior level courses from the
same school are densely clustered together with several short paths among them, and there are
significantly fewer links connecting these intra-school or intra-major clusters. This leads us to
conclude that, rather than inviting freshmen to take in-person classes, it would have
been more prudent to limit in-person classes to graduate students and upper-division
students while offering only online/remote instruction for lower-division courses.

2 Related Work

Milgram and Travers introduced the notion of small-world networks among people [5, 6]. In [6],
they showed that participants in Nebraska and Boston managed to get letters delivered to targets
in Massachusetts using relatively short chains of acquaintances. They also refer to the presence of
a small number of “sociometric stars” through which a disproportionate number of acquaintance
chains passed. Their work spurred investigation of small-world phenomenon in a number of disci-
plines, including sociology, medicine, and computer science. Graph theory has been applied to this
phenomenon by all of these disciplines. People are modeled as nodes in a graph. An edge is drawn
between two nodes if a relation relevant to the problem being studied exists between the people
corresponding to those nodes.

Watts and Strogatz [7] proposed a framework for modeling networks ranging from truly random
networks with low diameters to uniform networks with high diameters. They considered a uniform
lattice with edges connecting neighboring nodes and only a small number of edges connecting
neighbors replaced by edges between random pairs of nodes. As the fraction of these random edges
increases, the graph transitions from uniform to random. Watts and Strogatz showed that, even
with a small fraction of edges between distant nodes, the diameter of the graph reduces significantly
and the graph starts exhibiting the small-world phenomenon. One effect of this phenomenon is
that the diameter of the graph becomes a logarithmic function of the number of vertices. This is
relevant to our study of student enrollment in courses. A two-mode graph of course enrollment
would have students and courses as nodes, with an edge between student x and course y if student
x is enrolled in course y. From such a graph, it is easy to obtain a single-mode graph with only
students as nodes and edges between pairs of students taking the same course. While students of
the same rank (freshmen, sophomore, etc.) and the same major may take most of their courses with
other students of the same rank and major, there are always a small number of edges connecting
random students. For example, a computer science freshman may be in the same statistics class as
a junior majoring in sociology.

Amaral et al. [1] studied three classes of small-world networks, namely scale-free networks,
broad-scale networks, and single-scale networks. Scale-free networks in particular are small-world
networks in which new vertices will preferentially connect to the more highly connected vertices
within the network, wherein the diameter will increase logarithmically with the number of vertices.
As such, the growth of a scale-free network closely mimics the transmission of an infectious disease
through a population, where a person is more likely to be infected through a connection with a
superspreader who has contact with many people.

The “sociometric stars” observed by Travers and Milgram in their experiments [6] point to an
important concept in graphs: point centrality. Freeman [3, 4] described this as the betweenness
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property of a vertex. A vertex has high centrality if it falls on the shortest path between a large
number of pairs of vertices. In effect, this vertex can connect many otherwise distant pairs or clusters
of vertices. From a course enrollment perspective, consider a mathematics major at UT Dallas.
Though the number of students majoring in mathematics is small, this particular mathematics
major may be in an algorithms class with computer science majors, a statistics course with business
administration majors, and a calculus course with physics and mechanical engineering majors. This
student would connect otherwise disparate clusters of students, lie on the shortest path between
several pairs of students, and exhibit high centrality or betweenness. From an epidemiological
perspective, if such a student were to contract an infectious disease like COVID-19, they could be a
superspreader. Hence, in our analysis of enrollment data, we attempt to identify the characteristics
of students exhibiting high centrality.

Caley et al. [2] quantified the effect of social distancing on the spread of influenza in Sydney
during the 1918-19 epidemic, as well as how successive waves of infection could be explained by
varying levels of social distancing as people’s perception of risk fluctuated. One way to minimize the
risk of spreading an infectious disease through classroom attendance would be to move courses and
students with high centrality to online instruction. This would have the effect of increasing network
diameter and, therefore, enrollment-driven social distance between distinct groups of students.

As stated earlier, the work that is most relevant to the present study is by Weeden and Cornwell
[8]. They examine the potential for epidemic spread of an aerosolized virus (such as SARS-CoV-2)
through in-person instruction at a medium-sized private American university (Cornell). Modeling
connectivity between students co-enrolled in course sections, they find that the potential for spread
is high due to college campuses meeting the criteria for a “small world” network [7], namely high
clustering (nearly all students are connected) and short average path lengths (the average student-
pair has a low degree of separation). Despite academic concentration creating disciplinary silos,
students are connected through hub courses such as general education requirements or gateway
courses shared across disciplines. Furthermore, students are connected through multiple paths
(shared sections or third parties), so removing even the most centralized sections or students will
not significantly impact the diameter of the network. Weeden and Cornwell’s analysis indicates
that about half of all students were still connected in four or fewer steps even when all sections of
30 or more were eliminated from the network. Given full-time course loads, and that individuals
can transmit SARS-CoV-2 for days before recognizing the need to quarantine, four steps is a good
approximation of a week’s worth of potential exposure on a college campus. Whereas Cornell’s
small class sizes means that a 30-student threshold forced the removal of approximately 16 percent
of sections with an in-person component, at UT Dallas (a medium-sized, public university), a 30-
student threshold affected 34% of sections with an in-person component in Fall 2019, as well as
73% of in-person student-section enrollments.

3 UT Dallas Enrollment Data

For our primary analysis we consider student enrollment data for the University of Texas at Dallas,
a medium-sized public university that is part of the University of Texas System. Total enrollment in
the Fall 2019 semester was 29, 449 students registered in 5, 235 courses. As in the Weeden-Cornwell
work, we removed all online courses from consideration and those students who registered only for
such courses. This left us with 28, 852 students registered in 4, 994 courses. Of these, 20, 953 were
undergraduate students and 7, 899 were graduate students. Freshmen, sophomore, junior and senior
level courses are numbered 1xxx, 2xxx, 3xxx and 4xxx, respectively, while graduate level courses
have higher numbers: 5xxx through 8xxx. The second digit in each course number indicates the
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number of student contact hours per week for that course. Each course number is preceded by an
alphabetic string representing the academic program that offers the course. Based on this prefix it
is possible to uniquely associate a course with the school offering it.

The university is organized into eight schools, namely (i) Arts and Humanities (AH), (ii) Arts,
Technology and Emerging Communication (ATEC), (iii) Behavioral and Brain Sciences (BBS), (iv)
Economic, Political and Policy Sciences (EPPS), (v) Engineering and Computer Science (ECS), (vi)
Interdisciplinary Studies (IS), (vii) Management (SOM), and (viii) Natural Sciences and Mathe-
matics (NSM). Of these schools, Engineering and Computer Science and Management have the
largest enrollment at both the undergraduate and graduate levels.

3.1 Common Core

As our study is based on the one described in [8], it is important to state some of the important
differences between Cornell and UT Dallas curriculum. While the exact number varies from one
major to another, all undergraduate students need to complete just over 120 semester credit hours
of coursework to graduate. Unlike Cornell, all undergraduate students at UT Dallas are required
to complete a general education core curriculum of forty-two semester credit hours, in addition to
the required courses in their major, and any elective courses.

The credit requirements for the general education core curriculum include six credit hours in
Communication, three credit hours in Mathematics, six credit hours in Life and Physical Sciences,
three credit hours in Language, Philosophy and Culture, three credit hours in Creative Arts, six
credit hours in American History, six credit hours in Government/Political Science, three credit
hours in Social and Behavioral Sciences, and six credit hours classified as Component Area Options.
In each of these nine categories there are a large number of options. So, within the framework of
core curriculum there is still a fair amount of flexibility. However, some courses like calculus, general
chemistry, modern biology tend to have very high enrollment due to a large number of students
interested in majoring in engineering, physical and life sciences related fields. These courses, for
the most part, tend to have lectures with very large number of students, and laboratory sessions
with comparatively smaller groups of students.

UT Dallas admits approximately 2, 000 transfer students every year who come in primarily as
sophomores and juniors, having completed most of their general education core curriculum and
some major-specific introductory courses at regional community colleges. Also, some UT Dallas
students choose to take these general education core curriculum courses at community colleges and
use the credits towards their graduation requirement. Courses taken at community colleges are not
considered in our analysis. So, it is possible that based solely on UT Dallas courses we may infer
that two students do not have any course in common when they may be taking a common course
in a community college.

3.2 Adjacency Matrix of Student Interaction

We represent student enrollment information as a two-mode n × m matrix, D, where n is the
number of students, and m is the number of sections offered across all courses (high enrollment
courses do have multiple sections, with a subset of students taking the course getting enrolled in
a given section). Students enrolled in the same section share the same physical space, while those
in different sections do not. Each student is assigned a unique index in the range [1, n]. Similarly,
each section is assigned a unique index in the range [1,m]. If student i is enrolled in section j then
D[i, j] = 1, otherwise 0. From this matrix, we compute another matrix A = D × DT , where DT
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represents the transpose of matrix D. Matrix A is an n× n matrix where:

∀ 1 ≤ i, j ≤ n : A[i, j] =
m∑
k=1

D[i, k] ∗DT [k, j] (1)

If students i and j are both enrolled in section k, then D[i, k] ∗DT [k, j] is equal to 1. A[i, j], where
i 6= j represents the number of sections in which students i and j are both enrolled. Hence, A is
a one-mode matrix that represents the strength of interaction between students: higher the value
of A[i, j], the greater the number of sections in which they are both enrolled and, therefore, the
stronger the interaction between them. If two students, x and y are enrolled in no common section
then A[x, y] = 0.

We also employ two variants of the A matrix. We refer to them as Abinary and Aweighted.
Matrix Abinary is a binary matrix such that if A[i, j] > 0 then Abinary[i, j] = 1, and if A[i, j] = 0
then Abinary[i, j] = 0. This is the matrix and its corresponding graph, described later in Section 4,
that we use to compute the distance between students, average student network diameter, etc.

The matrix Aweighted attempts to capture the strength of interaction between pairs of students
by not only considering the number of sections they have in common, but the duration they could,
in theory, spend in common classrooms during a week. While a common one-credit-hour course
section between students i and j would contribute the same as a common three-credit-hour course
section in matrix A, the element Aweighted[i, j] represents the total amount of time students i and
j would spend in common classrooms during a week, assuming there are no class absences.

4 Formal Definition of Terms and Metrics

Consider Abinary, the matrix of student interactions in courses. As stated in Section 3.2, if
Abinary[i, j] = 1, then students i and j have at least one course section in common. We also
set Abinary[i, i] = 1 because doing so helps in some calculations described later. We use this matrix
to represent an undirected graph G = (V, E) with the following properties:

• V is the set of vertices of the graph and contains one vertex for each student. The total
number of vertices, | V |, is equal to n. Vertex vi : 1 ≤ i ≤ n represents the ith student.

• E is the set of edges of the graph. There is an edge (vi, vj) ∈ E if an only if Abinary[i, j] = 1.

Let s(i, j) denote the length of the shortest path between vertices vi and vj in graph G. Note

that there are
(
n
2

)
= n(n−1)

2 pairs of vertices in a graph of n vertices. Therefore, the average path
length, `G, of a connected, undirected graph G of n vertices (which refers to the mean of the shortest
distances between all pairs of nodes) can be calculated as follows:

`G =
2

n(n− 1)

∑
1≤i<j≤n

s(i, j) (2)

The diameter of a connected graph G is:

diameterG = max
vi, vj∈V

s(i, j) (3)

Low values of diameterG and `G for the student enrollment graph would be indicative of a small
world network.
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A vertex vi is said to be part of a triangle if it has two neighbors vj and vk that are also neighbors
of each other. In other words, the edges (vi, vj), (vj , vk) and (vk, vi) form a triangle. If vertex vi has

degree d, then vi can be part of up to
(
d
2

)
= d(d−1)

2 triangles. Let T (vi) represent the actual number
of triangles that vi belongs to. The unweighted clustering coefficient, c(vi), which indicates the
cliquishness between vertex vi and its neighbors (i.e., the fraction of all possible triangles involving
vi that are actually present in the graph), can be calculated as follows:

c(vi) =
2T (vi)

d(d− 1)
(4)

The mean value of c(vi) over all vertices vi ∈ V is the average local clustering coefficient, C, for
the network:

CG =
1

n

∑
vi∈V

c(vi) (5)

A set of three vertices that are reachable from each other is called a triad. A triad could either
be a triangle or a pair of edges between three vertices. The global clustering coefficient, also referred
to as transitivity, of a graph G is expressed as:

TG =
3× number of triangles

number of triads
(6)

The second power of Abinary is represented as A2
binary = Abinary × Abinary. If A2

binary[i, j] is
non-zero, the shortest path between vertices vi and vj is at most two. Generalizing this notation,
Ak

binary = Ak−1
binary × Abinary, and if Ak

binary[i, j] is non-zero, the shortest path between vi and vj is

no more than k.1 The density of an n × n adjacency matrix Abinary raised to the power k is the
fraction of non-zero elements in Ak

binary:

ρAk
binary

=
number of non-zero elements in Ak

binary

n2
(7)

where 0 ≤ ρ ≤ 1. This property measures the reachability of students within path length k and
may not reach 1 for finite values of k if the graph represented by A is disconnected.

The network density r is the ratio between the number of observed edges in an undirected graph
G and the total number of possible edges. For a graph with m edges and n vertices, it is expressed
as:

rG =
2m

n(n− 1)
(8)

As r approaches 1, G gets closer to a complete graph.
The betweenness centrality of a node v in a weighted, connected graph G is

bv =
∑
s,t∈V

σst(v)

σst
(9)

where σst is the number of shortest paths between s and t and σst(v) is the number of those paths
that also pass through v. By this definition, if v = s or v = t, then σst(v) = 0, and if s = t, then
σst = 0.

1Note that setting Abinary[i, i] to 1 for all i ensures that once Ak
binary[i, j] becomes non-zero, it stays so for higher

powers of Abinary.
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The betweenness centrality described above is a function of the number of vertices in the graph.
So, to compare the betweenness centrality of vertices in graphs of different sizes, it is necessary to
normalize the value as a function of graph size. For a connected graph of n vertices, the maximum
value of betweenness centrality of a vertex is

(
n−1
2

)
= (n−1)(n−2)

2 , which arises when that vertex
is the hub of a star network with n − 1 neighbors. Hence, we report the normalized betweenness
centrality of a vertex as follows:

bv,norm =
2× bv

(n− 1)(n− 2)
(10)

A student who is represented by a vertex with high betweenness centrality connects a large
number of pairs of students. Such a student, if infected with a contagious disease, could be a
proverbial superspreader. Hence, in our analysis, we not only determine the betweenness centrality
of vertices, but also try to identify the kinds of vertices that exhibit high betweenness centrality.
Course delivery-based strategies to minimize rapid spread of infectious diseases should try to move
the corresponding students to online instruction to minimize their physical interaction with other
students.

Thus far, we have considered an unweighted graph of students where all edges have unit weight.
Such a graph does not differentiate between a pair of students who are enrolled in a single common
course that meets for an hour each week and another pair of students who are enrolled in three
common courses, each of which meet for three hours per week. Hence, we define a new metric for
weekly contact duration between students. Let enrollment(x) be the set of students enrolled in
course x, and let contact(x) be the number of weekly class contact hours for course x. Then, the
amount of time two students spend together in classrooms each week (assuming no absences) can
be represented as:

contact duration(i, j) =
∑
{contact(x) : i, j ∈ enrollment(x)} (11)

Using this metric, we consider a weighted graph Gweighted with the corresponding adjacency matrix
Aweighted such that Aweighted[i, j] = 1

contact duration(i,j) . The more time students i and j spend
together in class, the lower the weight of the edge between them. We determine minimal-weight
paths between pairs of vertices and the betweenness centrality of vertices in this weighted graph.
Our assumption is that the betweenness centrality metric for this weighted graph will be a better
indicator of the potential for an infected student to spread a contagion through classroom interaction
than the corresponding metric for an unweighted graph.

5 Analysis of Data for Fall 2019

The results of this study pertaining to the entire university are summarized in Table 1. A total of
28, 849 students registered in Fall 2019 courses, but the largest connected component of student-
to-student network had only 27, 080 students. In this largest connected component of all students
at the university, the average path length, `G (also referred to as the average geodesic distance), is
equal to 2.97. This implies that, on an average, two students are within a distance of three hops
of each other. This short distance between students is more pronounced if we limit our analysis to
undergraduate students for whom the average geodesic distance is a low 2.44. Such a short distance
in a large graph is indicative of a small-world network.
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5.1 Graduate versus undergraduate level courses

Graduate students constitute 27% of all students. Like the university-wide network, a majority
(79.1%) of the nodes in the graduate network belong to the main component, where defining small
world characteristics emerged. The local clustering coefficient was much higher between graduate
students (0.63) than the university wide network (0.46). In particular, we notice that unlike the
interconnectivity between nodes of several majors in the university-wide network, the arrangement
of nodes in the graduate student subnetwork involves students having more connections with their
intra-school cohorts because they register in major-specific coursework. Figure 1c also reveals the
distinct clustering of students in ECS, EPPS, AH, and SOM. Furthermore, NSM nodes cluster near
the center, and many of these nodes act as bridges between major clusters, such as SOM and ECS.

The average geodesic distance in the graduate network is approximately 4.1. So, on average,
connecting any two students in the graduate student network takes about 2 more steps than doing
so requires in the undergraduate network. Although students may be more interconnected with
other students of the same major, the formation of separate clusters may lead to an increased
number of steps to connect students that may be in different majors, causing the average shortest
path length to increase.

Nodes in the graduate network have a significantly lower average degree (94.5) than those in the
undergraduate network (326.6), indicating that, on average, graduate students have fewer direct
connections to others. We also find that the average edge weight in the graduate network is greater
(11.03 credit hours) than that in the undergraduate network (9.50 credit hours). Taken together,
these two findings explain that, although graduate students may be connected to fewer people on
average, they spend more time in classes with each other compared to undergraduates.

The diameter of the largest connected component among graduate students, which corresponds
to the distance between two farthest nodes, is only 9. When limited to undergraduate students
only, this number drops to 5. So, more than 99% of undergraduate students can reach each other
within five steps.

As can be seen in the table, the largest connected component of students exhibits a high level
of local (0.46) and global (0.38) clustering. Yet another indicator of the small world network is
that such a high level of clustering is achieved with a relatively low level of network density, close
to 0.01.

Metric University Graduates Undergraduates
Nodes, full graph 28,849 7,899 20,950
Edges, full graph 3,714,254 298,316 3,394,312
Nodes, n 27,080 6,252 20,784
Edges, m 3,711,518 295,445 3,394,310
Average degree 274.12 94.512 326.63
Percent nodes in largest comp. 93.861 79.149 99.208
Average edge weight 9.6231 11.025 9.4966
Average geodesic distance, `G 2.9694 4.1021 2.4425
Diameter of network 9 10 5
Unweighted local CG 0.46487 0.62702 0.41971
Unweighted global TG 0.38386 0.45109 0.38247
Network density, rG 0.010122 0.015120 0.015716

Table 1: Metrics for the largest connected component of student-to-student networks at the
university-wide, graduate, and undergraduate levels.
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5.2 Diving deeper: comparison between course levels

Next, let us consider the relationships between students enrolled in all courses at specific levels
(i.e., 1xxx through 7xxx) as shown in Table 2. As there are very few 8xxx level courses, and they
typically correspond to individual research credits taken by doctoral students, we do not report the
corresponding numbers. Among undergraduate students, a low average geodesic distance between
students is evident at all levels of courses (1xxx through 4xxx). These are markedly lower than the
average geodesic distances for 5xxx and 6xxx level courses, which constitute the bulk of graduate
level courses with classroom instruction. Also, the diameter (the longest path between any two
nodes) for the 1xxx level courses is significantly lower (5) than it is at the 4xxx level courses (8),
and the diameters at all four undergraduate course levels are lower than the diameter for 5xxx and
6xxx level courses (11).

Course Catalog Prefix
Metric 1xxx 2xxx 3xxx 4xxx 5xxx, 6xxx 7xxx
Nodes, full graph 9,149 12,454 13,285 8,454 7,346 738
Edges, full graph 879,833 1,346,377 866,593 435,992 305,919 10,167
Nodes, n 9,145 12,413 13,183 7,999 6,354 178
Edges, m 879,823 1,346,377 866,410 435,956 303,180 5,586
Percent nodes in largest comp. 99.956 99.671 99.232 94.618 86.496 24.119
Average edge weight 7.5897 9.1007 10.175 10.436 10.983 6.3960
Average geodesic distance, `G 2.5027 2.50434 2.98580 3.3771 4.1291 2.1117
Diameter of network 5 5 6 8 11 6
Unweighted local CG 0.72779 0.71452 0.66008 0.758890 0.64202 0.88821
Unweighted global TG 0.54725 0.57823 0.52284 0.63947 0.45031 0.85617
Network density, rG 0.021043 0.017477 0.0099714 0.013629 0.015021 0.354600

Table 2: Metrics for the largest connected component of student-to-student networks at the various
course levels.

Freshmen students are not limited to taking 1xxx level courses, sophomores are not limited
to taking 2xxx level courses, and so on. For example, a senior may be enrolled in a 1xxx or
2xxx level course that satisfies a general core requirement. So, we analyze course registration data
for students classified as freshmen, sophomores, juniors and seniors separately. Similar trends,
including a high level of clustering, low diameter, and low average geodesic distance, are evident,
as shown in Table 3.

Figure 1 shows the cumulative distribution of student pairs that are reachable from each other
within a given distance. Let us first consider the graph on the left. As seen in the plot for all
students (blue curve), more than 80% of student pairs are within a distance of 4 of each other.
Freshmen students are even more strongly interconnected (orange curve), with almost all students
pairs within a distance of 4 of each other (more than 90% of freshmen students pairs are within a
distance of 2 of each other). Graduate students are not as closely related (green curve), with less
than 40% of them within a distance of 4 of each other. Even when we consider a greater distance,
interconnectivity remains somewhat low; only 60% of graduate student pairs are within a distance
of 6 of each other. Similar trends are visible when we analyze the data for different course levels
(i.e., 1xxx through 7xxx; see graph on the right). The plots for the 1xxx and 2xxx courses are
almost identical and appear as one (orange curve). Especially noteworthy, as an outlier, is the plot
for 7xxx-level courses, which indicates a high level of fragmentation for advanced graduate-level
courses.

Weeden and Cornwell [8] investigate the impact of moving large enrollment courses online on
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Metric Freshman Sophomore Junior Senior
Nodes, full graph 4,330 3,220 6,119 7,088
Edges, full graph 663,636 203,254 350,073 426,513
Nodes, n 4,277 3,211 6,092 6,985
Edges, m 663,608 203,249 350,071 426,509
Average degree 310.315 126.595 114.9281 122.1214
Percent nodes in largest comp. 98.776 99.720 99.559 98.547
Average edge weight 8.2339 10.373 10.226 11.414
Average geodesic distance, `G 1.9951 2.3124 2.6136 2.7737
Diameter of network 6 5 5 6
Unweighted local CG 0.42119 0.44724 0.4261 0.4914
Unweighted global TG 0.39850 0.46357 0.4252 0.4656
Network density, rG 0.072571 0.039444 0.018868 0.017486

Table 3: Metrics for the largest connected component of student-to-student networks for under-
graduate freshmen, sophomores, juniors, and seniors.
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Figure 1: Cumulative density of matrices for consecutive powers of Abinary.

interconnection between students taking in-person classes. They studied the impact of removing
courses with enrollment over 30, 40, 50, 75 and 100 from the network on path lengths between
students. We performed a similar simulation. The results are shown in Figure 2. Instead of choosing
arbitrary thresholds, we relied on the quintile thresholds for course enrollment. Sections with
enrollment less than 25 account for 20% of student enrollment in classes (first quintile). Sections
with enrollment less than 40 account for 40% of class enrollments (second quintile). Similarly, the
third and fourth quintile thresholds are sections with sizes of 55 and 85, respectively.
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Removing all sections with enrollment of 40 or more, over 65% of student pairs are within a
distance of 4 and more than 80% are within a distance of 8. When all sections with enrollment of
25 or more are removed from the network, almost 40% of student pairs are still within a distance
of 4 of each other and over 60% are within a distance of 8.
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Figure 2: Cumulative density of matrices for consecutive powers of Abinary, keeping courses by size.

5.3 Academic silos or strong interconnections

Let us now dive deeper and consider the connectivity between individual students. Whereas Weeden
and Cornwell [8] considered a dual-mode graph of courses and students, we chose to focus on a
single mode graph among students. The student-to-student network is drawn using the force-
directed Fruchterman-Reingold algorithm. The more edge connections (shared courses) that two
nodes (students) have in common, the closer together they are drawn.

Nodes in Figures 3, 4, and 5 were colored according to the school or concentration that their
corresponding students were primarily registered with: Management (SOM, green), Engineering
& Computer Science (ECS, pink), Natural Science & Mathematics (NSM, maroon), Behavior &
Brain Sciences (BBS, yellow), Arts/Technology/Emerging Communications (ATEC, dark yellow),
Economic/Political and Policy Sciences (EPPS, blue), Interdisciplinary Studies (IS, dark green),
Arts & Humanities (AH, cyan), Executive Management (EMGT, teal), and unspecified (grey).
Though Executive Management courses are offered by the School of Management, students in
these courses tend to form their own tight knit community for the most part and interact very
little with other Management students. A very small number of students fall into the unspecified
category.

The size of nodes scales linearly relative to the value of the highest betweenness centrality and
students that share at least one course are connected by a black edge. Edge thickness represents
the number of course hours shared by the student-pair. Although the positions of individual nodes
might not provide meaningful information, the relative positions of distinct regions in the network
convey the interdisciplinary relationship of node clusters.
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SOM ECS NSM BBS ATEC EPPS IS AH EMGT Other

(a) University-wide network (b) Undergraduate network (c) Graduate network

Figure 3: University wide, undergraduate, and graduate networks. Larger nodes have higher
weighted betweenness centralities.

In Figure 3a we see that all students are closely connected, even though students belonging
to the two largest schools by enrollment (ECS and SOM) tend to be clustered together. Looking
at Figures 3b and 3c, it can be inferred that graduate students have a higher level of clustering
than undergraduate students, likely caused by increased registration in major-specific coursework.
We also find that interdisciplinary relationships are visible through the relative distances of the
clusters, especially between the AH, NSM, and ECS clusters, and that the NSM and ECS nodes
are influential bridges between several clusters.

5.3.1 Lower division courses

Figure 4 shows the interconnections among students enrolled in lower-division undergraduate
courses, i.e., 1xxx and 2xxx level courses. As in the previous figure, larger sized nodes have
higher weighted betweenness centralities. The graphs are clumped edges often connect students
from different majors since many individuals share lower-level introductory classes. SOM and ECS
dominate the graphs because they are the two most popular schools of study.

5.3.2 Upper division courses

Figure 5 shows the connections between students taking upper division undergraduate courses (3xxx
and 4xxx), classroom-based graduate level courses (5xxx and 6xxx), and graduate level seminar
and independent study courses (7xxx). Once again, larger nodes have higher weighted betweenness
centralities. Clusters become increasingly visible in higher-level courses and they begin to rely more
on bridge nodes to connect clusters. At the 7xxx level, clusters break down into components that
mostly specialize in a specific field of study; only about 24% of nodes are in the largest component.
As the 7xxx level courses tend to be populated primarily by doctoral and master’s thesis students,
the significant level of intra-program clustering and disconnections between programs indicate that
these courses could be the first ones to be conducted in-person due to the low risk of spreading an
infectious disease, compared to undergraduate courses.
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SOM ECS NSM BBS ATEC EPPS IS AH EMGT Other

(a) 1000’s level courses (b) 2000’s level courses

Figure 4: Lower division student-to-student networks partitioned by course level.

5.4 Courses contributing to high betweenness centrality

As shown in Figure 2, even if all sections with enrollment of 25 or more are removed from the
network, a significant number of students are still able to reach each other through short paths.
Hence, we investigated another possibility of disrupting the small world network between students:
eliminating courses that contribute to high betweenness centrality.

As betweenness centrality in a student-to-student network is a property of individual nodes, we
investigated this idea as follows. For a given set of students, first we identified the one hundred
students with the highest betweenness centrality. We refer to them as the pivotal students. Then, we
identified all sections in which these pivotal students were enrolled. This simulation was conducted
on the unweighted network of students as well as the weighted network described in Section 4.
Our conjecture is that removing classes with high pivotal student enrollment from the student-to-
student network (i.e., moving these courses online) could disrupt the small world network, increase
average path length between student pairs, and also increase the diameter of the network.

Figure 7 lists sections in which pivotal students are enrolled. Figure 7a shows such courses for
the entire student population, while Figure 7b and 7c are limited to undergraduate and graduate
students, respectively. Courses shown in Figure 7 are not surprising. They either correspond to
upper division undergradaute or graduate courses (e.g., ENTP4340, CS 4485, CS 6375) from ECS
and SOM, the two schools with largest enrollment; or they correspond to lower division courses
that satisfy the general core requirement (e.g., GOVT 2305, GOVT 2306). Eight out of the one
hundred students with the highest betweenness centralities are enrolled in ENTP 4340.

An interesting situation emerges when we limit the analysis to undergraduate (Figure 7b) or
graduate (Figure 7c) students. While eight students taking ENTP 4340 were among the one hundred
nodes with highest betweenness centrality for the university-wide network, only four of them are
among the top one hundred when the analysis was limited to undergraduate students. The other
four most likely had high betweenness centralities because they were also taking some graduate
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SOM ECS NSM BBS ATEC EPPS IS AH EMGT Other

(a) 3000’s level courses (b) 4000’s level courses

(c) 5000’s and 6000’s level courses (d) 7000’s level courses (full network is shown)

Figure 5: Upper division student-to-student networks partitioned by course level.
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SOM ECS NSM BBS ATEC EPPS IS AH EMGT Other

(a) Freshman level network (b) Sophomore level network

(c) Junior level network (d) Senior level network

Figure 6: Student-to-student networks partitioned by student rank (freshmen, sophomores, juniors,
and seniors). Larger nodes have higher weighted betweenness centralities.
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Figure 7: The classes most frequently taken by pivotal students (nodes with high betweenness
centralities) in student-to-student networks.
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level courses and were on the shortest paths between several graduate and undergraduate students.
Those links disappeared when the ananlysis was limited to undergraduate students. Similarly,
only three of the one hundred students with the highest betweenness centralities were in GOVT
2305. However, when the analysis was limited to undergraduate students, that number jumped to
thirteen.
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Figure 8: The classes most frequently taken by pivotal students (nodes with high betweenness
centralities) in lower division student-to-student networks.

Figure 8 shows the courses taken by the one hundred pivotal students among freshmen-rank
students, sophomore-rank students, 1xxx-level courses, and 2xxx-level courses. As expected, stu-
dents with high betweenness centralities for 1xxx level courses (Figure 8a) were taking courses
corresponding to the core curriculum such as HUMA 1301, CHEM 1312, PHYS 1301, etc. When
we turn our focus from 1xxx-level courses to freshmen rank students, we find that some fresh-
men with high betweenness centralities were enrolled in 2xxx courses that most likely satisfy their
general core requirements, such as GOVT 2305, GOVT 2306, ECON 2301.

Figure 9 shows the courses taken by the one hundred pivotal students when we limit the analysis
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Figure 9: The classes most frequently taken by pivotal students (nodes with high betweenness
centralities) in upper division student-to-student networks.
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to juniors, seniors, graduate students, students taking 3xxx-level courses, students taking 4xxx-level
courses, and students taking 5xxx and 6xxx level courses. Following a course like CS 4485 across
the university wide network, undergraduate student network, and senior-rank student network, an
interesting trend emerges. Only six of the one hundred pivotal students in the university wide
network were enrolled in CS 4485. This number increased to seven when the network was limited
to undergraduate students only, and rose to eight for the network of senior-rank students. Some
of these students with the highest betweenness centrality in smaller populations cease to occupy
positions of similar distinction when the scope of the network is enlarged because these students
are closely linked only to students within their own small group. Persuading these students to move
to online learning may not have much of an impact on achieving the desired outcomes of reducing
clustering and increasing the diameter of the network at the university level. On the other hand,
doing the same for students who continue to be part of the pivotal student group as the scope of
the network is enlarged may achieve the desired result.

5.5 Scalpel approach: selective removal of minimal subset of courses

As stated above, only when a large number of courses with high enrollment are moved online does
the graph based on in-person classes show a significant increase in network diameter and average
path length. If such a solution is not available to decision-makers, we explore an alternative
approach that requires moving a much smaller subset of courses online. We refer to this less
intrusive approach as the scalpel approach. In this approach, we exploit the betweenness centrality
information about pivotal students, as described in Section 5.4.

Pivotal students lie on a disproportionately large number of short paths between pairs of stu-
dents. We studied the impact of reducing the number of face-to-face classes in which such students
participate, which would reduce the number of shortest paths passing through these students.
Specifically, we identified all sections corresponding to the twenty-five courses with the highest
enrollment of pivotal students for the unweighted network in Figure 7a. We simulated moving all
these sections to online instruction. Consequently, edges between students contributed by these
classes were removed from the university-wide enrollment graph. The number of sections declined
from 4, 956 to 4, 888, a very modest reduction of 68 sections (just under 1.4% of all sections). Yet,
the change in graph connectivity is noteworthy, as shown in Table 4.

Metric University Scalpel Approach
Nodes 28,849 28,793
Edges, full graph 3,714,254 3,302,030
Nodes, n 27,080 26,954
Edges, m 3,711,518 3,297,916
Average degree 274.12 244.70698
Percent nodes in largest comp. 93.861 93.613
Average edge weight 9.6231 9.5522
Average geodesic distance, `G 2.9694 3.0547
Diameter of network 9 9
Node pairs within distance 4 84.219% 82.238%
Unweighted local CG 0.46487 0.47189
Unweighted global TG 0.38386 0.39536
Network density, rG 0.010122 0.009079

Table 4: Metrics for the largest connected component of student-to-student networks with and
without the scalpel approach of removing courses.
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The scalpel approach increases average path length by approximately 0.1, reduces the average
degree of vertices significantly (by about 30), and increases the local and global clustering coeffi-
cients while reducing network density, making it more of a small-world network. These changes
in connectivity and path length are significant considering the small number of sections that are
moved online.

By far the most remarkable impact of the scalpel approach is the reduction in the percentage
of student pairs that are within a distance of 4 of each other. As shown in Figure 2, removing the
top 20% of courses by enrollment decreased this from 84.219% to 81.477%, a reduction of 2.74%.
In comparison, removing barely 1.4% of classes using the scalpel approach reduced this metric by
1.98% (from 84.219% to 82.238%)

Hence, the scalpel approach appears to be promising. A two-pass scalpel approach could be
worth considering. In the first pass, courses would be moved online based on the approach described
above. In the next pass, the pivotal students for the graduate-students-only and undergraduate-
students-only graphs could be identified and a limited number of courses with high number of pivotal
students from corresponding populations could be moved online. This would further disrupt the
small-world networks among these sub-populations.

6 Discussion and Recommendations

A vaccine is unlikely to produce community immunity before the start of the fall semester of 2021.
Fully online instruction is considered suboptimal for student learning and institutional finances.
Hence, the key question for the remainder of Academic Year 2021, and for future occurrences of
such a pandemic is this: to what extent can institutions return to face-to-face or hybrid instruction?
How many classes can resume face-to-face or hybrid instruction, how large can they be, and which
students can populate them?

We replicate Weeden and Cornwell’s study [8] by finding that students at our medium-sized
public American university represent a “small-world” network susceptible to infections spread.
Given the average student course load and the window for individuals with COVID-19 to move
from infectious to symptomatic, a four-step threshold representing a week’s worth of courses is a
good benchmark for identifying the potential for epidemic spread.

By moving as much as 60% of enrollment by course section (courses with 40 or more students)
online, we were able to reduce the largest network below 75% connectivity (to 64.1%) within four
steps. In addition, by moving 80% of enrollment by course section (courses with 25 or more
students) online, we were able to reduce the largest network below 50% connectivity (to 33.2%)
within four steps, and it took more than eighteen steps for 71% of students to reach each other.

Building on Weeden and Cornwell, we find an inverse relationship between network connec-
tivity and class standing (freshmen to senior), as well as a similar relationship between network
connectivity and course level. Seniors are significantly less connected than freshmen are and doc-
toral students are significantly less connected than master’s students. Without removing any class
sections from the sample, 97.5% of freshmen were within four steps of one another, while 97% of
seniors were within four steps of one another. However, freshmen students are much more closely
linked to each other than seniors: only about 24% of senior pairs are within two steps of each other,
whereas 91% of freshmen pairs are within the same distance. In contrast, only 35.7% of graduate
student pairs were within four steps of one another.

This pattern is also present in the graphs formed by considering enrollment at the various course
levels. For example, 99.9% of student-pairs in the 1xxx-level graph were within four steps of each
other, a number that drops to 81.9% in the 4xxx-level graph. Further, it is safe to assume that
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this difference is not the result of low enrollment, as the 1xxx-level graph features 9, 149 students,
which is not prohibitively dissimilar to the 4xxx-level graph’s 8, 454 students.

An even lower percentage (only 41.9%) of student pairs in a graph using 5xxx or 6xxx level
courses (master’s level) were within four steps of one another. The percentage further declined to
10.2% of student pairs enrolled in 7xxx level courses (doctoral level) being within four steps of one
another.

A key mechanism underpinning our findings is specialization. As students at American uni-
versities increase in class standing, they move from generalized (“core curriculum”) to specialized
(“major”) course loads. This increases clustering within academic divisions but decreases clustering
between divisions. As a result, networks of students with higher class standing tend to be split into
smaller groups by major and overall connectivity decreases. Similarly, due to core curriculum and
course requirements, students are more likely to take lower-level courses outside their division.

In addition, we found that certain courses have a greater potential for epidemic spread due to
their centrality to the core curriculum or to majors in our largest divisions (ECS and SOM). These
courses are more likely to enroll highly connected students, so taking them online may be sufficient
to reduce the potential for epidemic spread without broadly restricting courses by size or division.
For example, we found that 25 courses have more than three of the 100 most connected students
in the university-wide network. Removing them from the network reduces connectivity within four
steps from 84.219% to 82.238%.

Given that this analysis is concerned with a topic of immediate relevance to thousands of higher
education institutions, there are a number of questions that must be addressed when considering
whether and how to convert the trends that we have observed into policy decisions. First, how
generalizable are our findings to other institutions? As a medium-sized, public, four-year institution
that transitions students from general to specialized courses, we expect our analysis to be most
relevant to similar institutions. One potential difference is our mix of majors; in Fall 2019, 30%
of our undergraduate students were majoring in the School of Engineering and Computer Science
while a further 22% were majoring in the School of Management. Beyond the core curriculum,
programs from both schools (e.g., Computer Science, Finance) require courses in mathematics,
natural sciences (e.g., physics), and/or social sciences (e.g., economics, political science). Relative
to an institution with a larger share of arts and humanities or social sciences students, students at
our institution may be more connected due to our programmatic distribution.

Furthermore, as Weeden and Cornwell note, our analysis is necessarily limited to academic
networks. It does not consider residential patterns, social activities, contact in research spaces
(libraries or laboratories), transit between courses, shared instructors or class spaces, transit modes
to and from the institution (mass vs. personal transit), or exposure to the broader community
through activities such as grocery shopping. Additionally, our analysis does not consider how the
presence or absence of mitigating policies, such as testing and contact tracing, mandated masking,
or restrictions on high-transmission activities (such as indoor dining), affect spread at an institution.
The impact of each factor will vary by student demographics; the characteristics of the surrounding
community; and institutional, local, and state policies.

In general, we can identify factors that are likely to reinforce the difference in the susceptibility
to infectious spread and other factors likely to reduce this difference. As lower-division students
are more likely to live in dorms, they are in closer contact with other students through shared bed-
rooms, bathrooms, and common areas. Similarly, undergraduates are more likely than graduate
students to engage in extracurricular activities that increase the risk of transmission, notably frater-
nities/sororities and campus athletics. Conversely, upper division students and graduate students
are more likely to have legal access to bars, which are associated with a high risk of transmission, or
to live with non-college students (e.g., roommates or a spouse), which increases the risk of spread
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from outside the student community. In addition, we should not discount that older students are
generally less susceptible to risk-taking behaviors [1]. Given the relatively low number of fresh-
men who live on campus and the relatively high share of transfer and older (25+) undergraduates,
UT Dallas undergraduates are likely less connected outside the classroom than students at the
archetypical flagship or major private university.

A common strategy for Fall 2020 was to focus on bringing lower-division students back to campus
in order to maintain the “freshman experience”. There are academic and financial incentives for
pursuing this strategy. Student attrition is highest from the first to the second academic year,
making that early experience crucial for habituating students to the rigors of higher education and
strengthening connections to their institution (and each other). Financially, first year students are
the most likely to utilize on campus, university-owned dormitories, which represent a significant,
fixed cost for institutions.

Our analysis indicates that a strategy returning lower-division students to campus runs contrary
to the goal of minimizing infectious spread through an academic network in the absence additional
steps to reduce connectivity. One potential mitigating step would be to recreate the specialization
of upper-division students through academic pods, restricting face-to-face or hybrid instruction to
courses in their academic division (Engineering, Management, etc.) while limiting student enroll-
ment in courses outside their division to online instruction. This method would maximize student
habituation to their discipline, where a student will spend most of their academic careers, while
minimizing the risk of infectious spread across divisions. Furthermore, though housing arrange-
ments for Academic Year 2021 are effectively locked in, institutions facing similar challenges in
the future could combine academic and habitation choices, assigning students to dormitories by
academic division. This strategy of creating bubbles, combined with a rigorous testing regime,
proved successful for major American sports leagues in 2020. However, our analysis also indicates
that institutions with sufficient analytic capacity might also take a scalpel approach to instruction
modes by identifying the specific courses most likely to facilitate epidemic spread.

7 Conclusion

In this work we have performed a graph-theoretic analysis of interconnections among students in a
medium-sized public university. This analysis is similar to that performed by Weeden and Cornwell
[8] for a medium-sized private university. Students, through enrollment in various courses, form a
small world network.

Due to the comparatively larger section sizes in the public university considered in this study,
the solution proposed by Weeden and Cornwell to prevent the spread of contagion through class-
room contact may not be as effective. This work proposes a complementary solution, the scalpel
approach, that disrupts paths for the spread of contagion by moving courses that contribute to
high betweenness centrality to online instruction. Another recommendation is to maintain class-
room teaching of highly specialized graduate and some upper-division courses as students in these
courses tend to be tightly knit with little to know connection with other students, while moving all
other courses online.

While the development of vaccines may result in some restoration of normalcy by Fall 2021,
recommendations provided in this work could be useful for policy makers if faced with similar
pandemics in the future.
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