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Fig. 1: Overview of matching contactless fingerprint images with a legacy database of contact-based fingerprint impressions. While only a specific scenario
is shown here where contact-based images are obtained from optical FTIR readers (slap or single finger capture) and contactless images are captured by a
smartphone camera, our approach can be applied to any heterogeneous fingerprint matching problem.

Abstract—Matching contactless fingerprints or finger photos
to contact-based fingerprint impressions has received increased
attention in the wake of COVID-19 due to the superior hygiene
of the contactless acquisition and the widespread availability of
low cost mobile phones capable of capturing photos of finger-
prints with sufficient resolution for verification purposes. This
paper presents an end-to-end automated system, called C2CL,
comprised of a mobile finger photo capture app, preprocessing,
and matching algorithms to handle the challenges inhibiting
previous cross-matching methods; namely i) low ridge-valley
contrast of contactless fingerprints, ii) varying roll, pitch, yaw,
and distance of the finger to the camera, iii) non-linear distortion
of contact-based fingerprints, and vi) different image qualities
of smartphone cameras. Our preprocessing algorithm segments,
enhances, scales, and unwarps contactless fingerprints, while
our matching algorithm extracts both minutiae and texture
representations. A sequestered dataset of 9, 888 contactless 2D
fingerprints and corresponding contact-based fingerprints from
206 subjects (2 thumbs and 2 index fingers for each subject)
acquired using our mobile capture app is used to evaluate the
cross-database performance of our proposed algorithm. Further-
more, additional experimental results on 3 publicly available
datasets demonstrate, for the first time, contact to contactless
fingerprint matching accuracy that is comparable to existing
contact to contact fingerprint matching systems (TAR in the
range of 96.67% to 98.15% at FAR=0.01%).

Index Terms—Fingerprint recognition, Sensor interoperability,
Contact to contactless fingerprint matching
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I. INTRODUCTION

DUE to their presumed uniqueness and permanence, fin-
gerprints are one of the most widely used biometric

traits for secure authentication and search [1], [2]. Over the
years many different types of fingerprint readers have been
developed to obtain a digital image of a finger’s friction ridge
pattern. These readers vary in a number of different ways,
including the underlying sensing technology (e.g., optical,
capacitive, ultrasonic, etc.) or in the manner in which a user
interacts with the reader (i.e. contactless, 4-4-2 slap, or single
finger contact-based acquisition). Most prevailing fingerprint
readers in use today necessitate physical contact of the user’s
finger with the imaging surface of the reader; however, this
direct contact presents certain challenges in processing the
acquired fingerprint images. Most notably, elastic human skin
introduces a non-linear deformation upon contact with the
imaging surface which has been shown to significantly degrade
matching performance [3], [4], [5]. Furthermore, contact with
the surface is likely to leave a latent impression on the imaging
surface [6], which presents a security risk as an imposter
could illegally gain access to the system though creation of
a presentation (i.e., spoof) attack.

In light of the ongoing Covid-19 pandemic, contactless
fingerprint recognition has gained renewed interest as a hy-
gienic alternative to contact-based fingerprint acquisition [7].
This is further supported by a recent survey that showed
that the majority of users prefer touchless capture methods in
terms of usability and hygeine considerations [8]. Prior studies
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Fig. 2: Examples of contactless fingerprints (a) and their corresponding
contact-based fingerprint images (b). Varying viewing angle (indicated by the
orientation axes), resolution, and illumination of contactless images and non-
linear distortion of contact-based fingerprints contribute to the degradation
of cross-matching performance. The contactless images shown were captured
using our smartphone app and the contact-based impressions are from a URU
4500 optical scanner.

have explored the use of customized 2D or 3D sensing for
contactless fingerprint acquisition [9], [10], [11], [12], [13],
[14], while others have explored the low-cost alternative of
using readily available smartphone cameras to capture “finger
photos”1 [15], [16], [17].

Despite the benefits of contactless fingerprint acquisition,
imaging and subsequently matching a contactless fingerprint
presents its own set of unique challenges. These include
(i) low ridge-valley contrast, (ii) non-uniform illumination,
(iii) varying roll, pitch, and yaw of the finger, (iv) varying
background, (v) perspective distortions due to the varying
distances of the finger from the camera, and (vi) lack of
cross-compatibility with legacy databases of contact-based
fingerprints (see Figure 2). For widespread adoption, contact-
less fingerprint recognition must overcome the aforementioned
challenges and achieve the same levels of accuracy as in
contact-contact fingerprint matching.

The most significant factor limiting the adoption of contact-
less fingerprint technology is cross-compatibility with legacy
databases of contact-based fingerprints, which is particularly
important for governmental agencies and large-scale national
ID programs such as India’s Aadhaar National ID program
which has already enrolled over 1 billion users based upon
contact-based fingerprints. Several studies have aimed at im-
proving the compatibility of matching legacy slap images
to contactless fingerprint images [21], [20], [24], [25], [23],
[19]; however, none have achieved the same levels of ac-

1In general, contactless fingerprints refers to fingerprint images acquired by
a contactless fingerprint sensor, whereas finger photo refers to fingerprint
images acquired by a mobile phone. In this paper, we use the two terms
interchangeably.

curacy as state-of-the-art contact-contact fingerprint matching
(such as the results reported in FVC-ongoing [26] and NIST
FpVTE [27]). Furthermore, all of these works focus on solving
only a subset of the challenges in an effort to obtain contact-
contactless matching accuracy which is comparable to state-of-
the-art contact-contact matching systems. Indeed, to the best
of our knowledge, this study presents the most comprehensive,
end-to-end solution in the open academic literature for contact-
contactless fingerprint matching that addresses the challenges
inherent to each step in the contact to contactless matching
process (mobile capture, segmentation, enhancement, scaling,
non-linear warping, representation extraction, and matching).

We show that our end-to-end matcher, called C2CL, is able
to significantly improve contact-contactless matching perfor-
mance over the prevailing state-of-the-art methods through
experimental results on a number of different datasets, col-
lected by various research groups using their own app and
fingerprint readers. We also demonstrate that our matcher
generalizes well to datasets which were not included during
training. This cross-database evaluation solves a shortcoming
of many existing studies which train and evaluate algorithms
on different training and test splits of the same contact-
contactless dataset. Furthermore, despite multiple evaluation
datasets, we train only a single model for our evaluations,
rather than fine-tuning individual models to fit a specific
dataset (as is the case in many previous studies).

Concretely, the contributions of this work are summarized
as:

1) An end-to-end system, called C2CL, for contact-
contactless fingerprint matching. C2CL is comprised of
preprocessing, (segmentation, enhancement, scaling, and
deformation correction), feature extraction (minutiae and
texture representations), and matching modules. Our ap-
proach is more comprehensive than published methods
which focus on only a subset of these modules needed
for state-of-the-art performance.

2) A fully automated, preprocessing pipeline to map con-
tactless fingerprints into the domain of contact-based fin-
gerprints and a contactless-contact adaptation of Deep-
Print [28] for representation extraction. Our preprocess-
ing and representation extraction is generalizable across
multiple datasets and contactless capture devices.

3) State-of-the-art cross-matching verification and large-
scale identification accuracy using C2CL on both pub-
licly available contact-contactless matching datasets as
well as on a completely sequestered dataset collected
at Zhejiang University, China. Our evaluation includes
the most diverse set of contactless fingerprint acquisition
devices, yet we employ just a single trained model for
evaluation.

4) A smartphone contactless fingerprint capture app that
was developed in-house for improved throughput and
user-convenience. This app will be made available to
the public to promote further research in this area2.

2The project repository for the smartphone contactless fingerprint capture app
is available at https://github.com/ronny3050/FingerPhotos.

https://github.com/ronny3050/FingerPhotos
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Fig. 3: Example contactless and contact-based fingerprint image pairs from databases which we have obtained from different research groups: (a) IIT
Bombay [18], (b) ISPFDv2 [19], (c) MSU [20], (d) PolyU [21], (e) UWA [22], and (f) ZJU datasets. In general, contactless fingerprints suffer from low
ridge-valley contrast, varying roll, pitch, and yaw, and perspective distortions, especially those captured by smartphone cameras (e.g., (a), (b), (c) and (f)). We
believe our study involves the largest collection of public domain databases of contactless and contact-based fingerprints.

II. PRIOR WORK

Prior studies on contact-contactless fingerprint matching
primarily focus on only one of the sub-modules needed to
obtain matching accuracy comparable to contact-contact based
fingerprint matching systems (e.g. segmentation, distortion
correction, or feature extraction only). These studies are cate-
gorized and discussed below.

A. Segmentation

The first challenge in contact-contactless matching is seg-
menting the relevant fingerprint region from the captured
contactless fingerprint images. Malhotra et al. [19] proposed
a combination of a saliency map and a skin-color map to

segment the distal phalange (i.e., fingertip) of contactless
fingerprint images in presence of varying background, illumi-
nation and resolution. Despite impressive results, the algorithm
requires extensive hyperparameter tuning and still fails to ac-
curately segment fingerprints in severe illumination conditions
or noisy backgrounds. To alleviate these issues, we incorporate
segmentation via an autoencoder trained to robustly segment
the distal phalange of input contactless images.

B. Enhancement

One of the better known challenges with contactless finger-
print images is the low ridge-valley contrast (Figure 3). The
literature has addressed this in a number of different ways,
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TABLE I: Summary of Published Cross-Matching Contact to Contactless Fingerprint Recognition Studies.

Study Approach Database Accuracy†

Lin and Kumar, 2018 [21] Robust TPS deformation correction model,
minutiae and ridge matching

1, 800 contactless and contact fingerprints
from 300 fingers [21].
2, 000 contactless and 4, 000 contact fin-
gerprints from 1, 000 fingers [22]

EER = 4.46% [21]
EER = 19.81% [22]

Deb et al., 2018 [20] COTS matcher 2, 472 contactless and contact fingerprints
from 1, 236 fingers [20]

TAR = 92.4%− 98.6%
@ FAR = 0.1% [20]

Lin and Kumar, 2019 [23] Fusion of three Siamese CNNs
960 contactless and contact fingerprints
from 160 fingers [21].
1, 000 contactless and 2, 000 contact fin-
gerprints from 500 fingers [22]

EER = 7.93% [21]
EER = 7.11% [22]

Wild et al., 2019 [24] Filtering based on NFIQ 2.0 quality mea-
sure, COTS matcher

1, 728 contactless and 2, 582 contact fin-
gerprints from 108 fingers [24]

TAR = 95.5%− 98.6%
@ FAR = 0.1% [24]

Dabouei et al., 2019 [25]
TPS spatial transformer network for de-
formation correction and binary ridge-map
extraction network, COTS matcher

2, 000 contactless and 4, 000 contact
fingerprints from 1, 000 fingers [22] EER = 7.71% [22]

Malhotra et al., 2020 [19]
Feature extraction with deep scattering net-
work, random decision forest matcher

8, 512 contactless and 1, 216 contact
fingerprints from 152 fingers [19] EER = 2.11%− 5.23% [19]

Priesnitz et al., 2021 [8]
Neural network-based minutiae feature ex-
traction, open-source minutiae matcher

896 contactless from two different capture
setups and 464 contact fingerprints from
232 fingers [8]

EER = 15.71% and
32.02% [8]

Proposed Approach

TPS spatial transformer for 500 ppi
scaling and deformation correction of
contactless fingerprints. Fusion of
minutiae and CNN texture representations.

8, 512 contactless and 1, 216 contact fin-
gerprints from 152 fingers [19].
2, 000 contactless and 4, 000 contact fin-
gerprints from 1, 000 fingers [22].
960 contactless and contact fingerprints
from 160 fingers [21].
9, 888 contactless and 9, 888 contact fin-
gerprints from 824 fingers (ZJU Fin-
ger Photo and Touch-based Fingerprint
Database)

EER = 1.20% [19]
EER = 0.77% [22]
EER = 0.30% [21]
EER = 0.62% (ZJU dataset)

† Some studies only report EER while other studies only report TAR @ FAR = 0.1%.

including adaptive histogram equalization, Gabor filtering,
median filtering, and sharpening by subtraction of the Gaussian
blurred image (with σ = 2) from the captured image ([25],
[23], [19]). We also incorporate adaptive contrast enhancement
in our work; however, one simple consideration that is lacking
in existing approaches is the ridge inversion that occurs with
Frustrated Total Internal Reflection (FTIR) optical imaging.
In particular, the ridges and valleys of an FTIR fingerprint
image will appear dark and light, respectively, while the
opposite is true in contactless fingerprint images. Therefore, a
simple binary inversion of the contactless fingerprint images
is expected to improve the correspondence with their contact-
based counterparts.

C. Scaling

After segmenting and enhancing a contactless fingerprint,
the varying distances between fingers captured and the camera
(standoff) must be accounted for. In particular, since contact-
based fingerprints are almost always captured at 500 pixels
per inch (ppi), the contactless fingerprints need to be scaled
to be as close to 500 ppi as possible. Previous studies have
applied a fixed manual scaling, set for a specific dataset, or
have employed contact-based fingerprint ridge frequency esti-
mation and/or normalization algorithms that rely on accurate
ridge extraction - which is often unreliable for contactless
fingerprints. In contrast, we incorporate a spatial transformer
network [30] which has been trained to automatically nor-
malize the resolution of the contactless fingerprints to match

that of the 500 ppi contact images. This scaling is performed
dynamically, i.e. every input contactless fingerprint image is
independently scaled.

D. Distortion Correction

A final preprocessing step necessary for contact-contactless
fingerprint matching is non-linear distortion correction. In
particular, non-linear distortions are present in contact-based
fingerprints (due to interaction between the finger and the
sensor platen which “unrolls” a contactless fingerprint into a
distorted contact-based fingerprint). To address this problem,
[21] used thin-plate-spline (TPS) deformation correction mod-
els (previously applied for contact-contact matching [3], [31],
[32], [5], [33], [34]) using the alignment between minutiae
annotations of corresponding contactless and contact finger-
prints. A limitation is that the transformation is limited to
one of six possible parameterizations. In a different study,
Dabouei et al. [31] train a spatial transformer to learn the
TPS distortion correction that is dynamically computed for
each input image. In [31], a contact-based image is used as the
reference for learning the distortion correction for a contactless
image. However, we argue that this is not a reliable ground
truth since the deformation varies among different contact-
based fingerprint impressions. In our attempt to re-implement
the algorithm in [31], we found that this lack of a reliable and
consistent ground truth makes training quite unstable, making
it difficult to learn sound distortion parameters. In our work,
rather than using the contact-based image as a reference, we
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TABLE II: Summary of contact to contactless fingerprint recognition datasets used in this study.

Dataset # Subjects # Unique # Images Contactless Capture Device Contact Capture Device
Fingers (Contactless / Contact)

UWA Benchmark 3D Finger-
print Database, 2014 [22]

150 1, 500 3, 000 / 6, 000 3D Scanner (TBS S120E) CROSSMATCH Verifier 300
LC2.0

ManTech Phase2, 2015 [29] 496 4, 960 N/A / N/A∗
AOS ANDI On-The-Go
(OTG), MorphoTrak
Finger-On-The-Fly (FOTF),
IDair innerID on iPhone 4.

Cross Match Guardian R2,
Cross Match SEEK Avenger,
MorphoTrak MorphoIDent,
MorphoTrust TouchPrint
5300, Northrop Grumman
BioSled

PolyU Contactless 2D to
Contact-based 2D Images
Database, 2018 [21]

N/A 336 2, 976 / 2, 976 Low-cost camera and lens
(specific device not given)

URU 4000

MSU Finger Photo and
Slap Fingerprint Database,
2018 [20]

309 1, 236 2, 472 / 2, 472 Xiaomi Redmi Note 4 smart-
phone

CrossMatch Guardian 200,
SilkID (SLK20R)

IIT Bombay Touchless and
Touch-Based Fingerprint
Database, 2019 [18]

N/A 200 800 / 800 Lenovo Vibe k5 smartphone eNBioScan-C1 (HFDU08)

ISPFDv2, 2020 [19] 76 304 17, 024 / 2, 432
OnePlus One (OPO) and Mi-
cromax Canvas Knight smart-
phones

Secugen Hamster IV

ZJU Finger Photo and Touch-
based Fingerprint Database

206 824 9, 888 / 9, 888 HuaWei P20, Samsung s9+,
and OnePlus 8 smartphones

URU 4500

∗ The number of contact and contactless images acquired per finger varies for each device and the exact number is not provided.

Fig. 4: System architecture of C2CL. (a) A contactless fingerprint is captured and used as input to the preprocessing module, consisting of segmentation,
enhancement, 500 ppi ridge frequency scaling, and deformation correction; (b) the transformed image output by the preprocessing module is fed to
DeepPrint [28], which extracts a texture representation (shown in red). Without performing any additional preprocessing, the corresponding contact-based
fingerprint is again fed to DeepPrint to extract a texture representation (shown in blue). Simultaneously, a minutiae representation is extracted using the
Verifinger 12.0 SDK from both the contactless and contact-based fingerprint images.

use the match scores of our texture matcher as supervision for
generating robust distortion correction. In other words, in our
approach, the distortion correction is optimized to maximize
the match scores between genuine contactless and contact
fingerprint pairs.

E. Representation Extraction and Matching

After preprocessing a contactless fingerprint image to lie
within the same domain as a contact-based fingerprint, a
discriminative representation must be extracted for matching.
In the prior literature there are two main approaches to feature
representation: (i) minutiae representation ([31], [21]) and
(ii) deep learning representation ([23], [19]). Minutiae-based

approaches rely on clever preprocessing and other techniques
to improve the compatability of contactless fingerprint images
for traditional contact-based minutiae extraction algorithms.
On the other hand, deep learning approaches place less em-
phasis on preprocessing to manipulate the contactless finger-
print image to improve correspondence with their contact-
based fingerprints, rather the responsibility is placed on the
representation network to learn the correspondence despite the
differences. For example, Lin and Kumar [35] and Dabouei et
al. [31] both apply a deformation correction to the contactless
image to improve the minutiae correspondence while match-
ing contact-based fingerprints. In contrast, the deep learning
approach taken in [23] applies very little preprocessing to
the contactless image (just contrast enhancement and Gabor
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(a)
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Fig. 5: Example segmentation successes (a) and failures (b) from images in
the ISPFDv2 dataset using our segmentation algorithm. Sources of failure
are presence of skin-like color tones in the background and varying skin
complexion due to varying illumination.

filtering) and leverages a Siamese CNN to extract features
for matching. Similarly, Malhotra et al. [19] utilize a deep
scattering network to extract multi-scale and multi-directional
feature representations.

In contrast to prior studies, our approach utilizes both a
texture representation and a minutiae representation. Given the
lower contrast and quality of contactless fingerprints (causing
missing or spurious minutiae) and the non-linear distortion
and scaling discrepancies between contact and contactless
fingerprints (negatively impacting minutiae graph matching
algorithms) a global texture representation is useful to improve
the contact-contactless matching accuracy. We demonstrate
this hypothesis empirically in the experimental results.

III. METHODS

Our matcher, C2CL, aims to improve contact to contactless
fingerprint recognition through a multi-stage preprocessing al-
gorithm and matching algorithm comprised of both a minutiae
representation and a texture feature representation. The prepro-
cessing is employed to minimize the domain-gap between the
contactless fingerprints residing in a domain Dcl and contact-
based fingerprints residing in another domain Dc and consists
of segmentation, enhancement, ridge frequency scaling to 500
ppi, and deformation correction through a learned spatial
transformation network. After preprocessing, we extract deep-
textural and minutiae representations (unordered, variable
length sets T = {(x1, y1, θ1), ..., (xn, yn, θn)}) for matching.
The final match scores are obtained via a score-level fusion
between the texture representation score and the minutiae
matching score.

A. Preprocessing

Here we discuss the details of each stage of our preprocess-
ing algorithm. The subsequent outputs of our preprocessing
pipeline are illustrated in Figure 6.

1) Segmentation: Many contactless fingerprint datasets are
unsegmented; for example, the ISPFDv2 dataset [19] contains
unsegmented, (4, 208× 3, 120) images with varying illumina-
tion, resolution, and background conditions. Thus, the first step
in our preprocessing pipeline is to segment the distal phalange
of the fingerprint using a U-net segmentation network [36].
Our segmentation algorithm is a network S(·) which takes as
input the unsegmented contactless fingerprint Icl of dimension
(m × n) and outputs a segmentation mask M̂ ∈ {0, 1} of
dimension (m × n). The obtained segmentation mask, M̂ , is
element-wise multiplied with Icl to (i) crop out only the distal
phalange of the contactless fingerprints and (ii) eliminate the
remaining background to avoid detection of spurious minutiae
in the later representation extraction stage. The segmented
image I ′cl is then resized to 480 × 480 by maintaining the
aspect ratio with appropriate padding for further processing.
Formally, this process of segmentation is given by Eqs. 1 and
2.

M̂ = S(Icl) (1)

I ′cl = M̂ � Icl (2)

For training S(·), we manually marked ground truth seg-
mentation masks M of the distal phalange of 496 contactless
fingerprints from the ISPFDv2 dataset3. Initially, a total of 200
images were randomly selected to have varying resolutions of
either 5MP, 8MP, or 16MP and another 200 were selected
with varying backgrounds and illumination. An additional 96
images from the training set of ISPFDv2 were specifically se-
lected for their greater perceived difficulty, particularly images
with skin tone backgrounds. The optimization function for
training S(·) is a pixel-wise binary cross-entropy loss between
M̂ and M (Eq. 3).

Lseg(Icl, Ic,M) = −
∑
i,j

[Mi,j log(M̂i,j |Icl)

+ (1−Mi,j) log(1− M̂i,j |Icl)] (3)

2) Enhancement: Following segmentation, we apply a se-
ries of image enhancements E(·) to increase the contrast of
the ridge-valley structure of the contactless images, including:
(i) an adaptive histogram equalization4 to improve the ridge-
valley contrast and (ii) pixel gray-level inversion to correct for
the inversion of ridges between contact-based and contactless
fingerprints. We also experimented with state-of-the-art super
resolution and de-blurring techniques, such as RDN [38], to
further improve the contactless image quality, but found only
minimal matching accuracy improvements at the expense of
significant additional computational cost.

3We used the open source Labelme segmentation tool found on GitHub [37].
4We used the Contrast Limited Adaptive Histogram Equalization (CLAHE)
function in open-cv: https://docs.opencv.org/3.4/d6/db6/classcv 1 1CLAHE.
html

https://docs.opencv.org/3.4/d6/db6/classcv_1_1CLAHE.html
https://docs.opencv.org/3.4/d6/db6/classcv_1_1CLAHE.html
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(a) (b) (c) (d) (e)

Fig. 6: Illustration of our preprocessing pipeline including (a) segmentation, (b) enhancement, (c) scaling, and (d) warping. For reference, a corresponding
contact-based fingerprint is shown in (e).

3) Distortion Correction and Scaling: After segmenting
and enhancing the contactless fingerprints, the non-linear dis-
tortions that separate the domains of a contactless fingerprint
and a contact-based fingerprint must be removed. In particular,
both a perspective distortion (caused by the varying distance of
a finger from the camera) and a non-linear distortion (caused
when the elastic human skin flattens against a platen) must be
accounted for.

To correct for these discrepancies, we train a spatial
transformer network (STN [30]) T (·) that takes as input a
segmented, enhanced contactless image Iecl = E(I ′cl) and
aligns the ridge structure to better match the corresponding
contact-based image domain Dc. The goal of the STN is two-
fold: (i) an affine transformation Ts(·) to normalize the ridge
frequency of the contactless images to match the 500 ppi
ridge spacing of the contact-based impressions and (ii) a TPS
deformation warping Td(·) of the contactless images to match
the deformation present in contact-based images due to the
elasticity of the human skin.

Both Ts(·) and Td(·) are comprised of a shared localization
network l(·, w) and individual differentiable grid-samplers.
Given an enhanced contactless fingerprint Iecl, l(I

e
cl, w) outputs

the scale (s), rotation (θ), and translation (tx, ty) of an affine
transformation matrix As (Eq. 4) and a distortion field Θ
which is characterized by a grid of n×n pixel displacements
{(x1, y1)...(xn, yn)}. Subsequently, a scaled, warped image
Iwcl is obtained via Equation 5.

To learn the weights w of the localization network such
that Ts(·) and Td(·) correctly scale the contactless fingerprints
to 500 ppi, and unroll them into a contact-based fingerprint,
we minimize the distance between DeepPrint representations
extracted from genuine pairs of scaled, warped contactless
fingerprints (Iwcl ) and contact-based fingerprints (Ic). In par-
ticular, let f(·) be a frozen DeepPrint network pretrained
on contact-based fingerprints. Then, we can obtain a pair
of 192D DeepPrint identity representations Rcl and Rc via
Rcl = f(Iwcl) and Rc = f(Ic). Our loss can then be computed
from Equation 6. By using the DeepPrint identity features
extracted from contact-based fingerprint images to compute
the loss, we are able to utilize the contact-based impressions
as a ground truth of sorts. In particular, we are training our
localization network to output better scalings and warpings
such that the distortion and scale corrected contactless images

have DeepPrint representations closer to their corresponding
“ground truth” contact-based image.

We note that this approach has key differences to that which
was proposed in [25] where the distortion corrected contactless
image (scale was not learned in [25]) would be more directly
compared to the ground-truth contact-based fingerprint via a
cross-entropy loss between “binarized” versions of Iwcl and
Ic. We found that directly comparing the contactless and
contact images via a cross entropy loss was quite difficult in
practice since the ground truth contact image and the corre-
sponding contactless image will have different rotations and
translations separating them (even after scaling and distortion
correction - resulting in a high loss value even if the scaling
and distortion are correct). Furthermore, the contact-based
image itself varies based upon the pressure applied during
the acquisition, environmental conditions, sensor model, etc.,
meaning that directly using the contact-based image as ground
truth is unreliable. In contrast, since DeepPrint has been
trained to be invariant to pressure, environmental conditions,
and sensor model, our ground truth (DeepPrint representations
from contact-based images) will remain stable across different
contact-based impressions. In short, unlike [25], we learn both
distortion correction and scaling correction simultaneously,
and we use the DeepPrint identity loss to stabilize training
of T (·) and to enable predictions of warpings and scalings
which better improve matching accuracy.

As =

[
s cos(θ) −s sin(θ) tx

s sin(θ) s cos(θ) ty

]
(4)

Iwcl = T (Iecl;As,Θ) = Td(Ts(I
e
cl, As),Θ) (5)

LSTN = ‖Rcl −Rc‖22 (6)

B. Representation Extraction

After performing all of the aforementioned preprocess-
ing steps, we enter the second major stage of our contact-
contactless matcher, namely the representation extraction
stage. Our representation extraction algorithm extracts both
a textural representation (using a CNN) and a minutiae-set.
Scores are computed using both of these representations and
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TABLE III: Number of contactless and contact fingerprint images used in training each component of C2CL.

Dataset
Segmentation Deformation Correction & Scaling DeepPrint

S(·) T(·) f(·)
UWA Benchmark 3D Fingerprint Database [22] 0/0 0/0 1, 000/2, 000

ManTech Phase2, 2015 [29] 0/0 0/0 21, 352/28, 574

PolyU Contactless 2D to Contact-based 2D Images Database [21] 0/0 1, 920/1, 920 1, 920/1, 920

MSU Finger Photo and Slap Fingerprint Database [20] 0/0 2, 472/2, 472 2, 472/2, 472

IIT Bombay Touchless and Touch-based Fingerprint Database [18] 0/0 800/800 800/800

ISPFDv2 [19] 496/0 8, 400/1, 200 8, 400/1, 200

ZJU Finger Photo and Touch-based Fingerprint Database 0/0 0/0 0/0

Total (# contactless / # contact) 496/0 13,592/6,392 35,944/36,966

then fused together using a sum score fusion for a final
similarity score.

1) Texture Representation: To extract our textural repre-
sentation, we fine-tune the DeepPrint network proposed by
Engelsma et al. in [28] on a training partition of the publicly
available datasets which we aggregated (Table III). We note
that we do not include any data from our newly collected
ZJU dataset for fine-tuning as we want this dataset to remain
completely unseen for a more rigorous evaluation. Unlike
the deep networks used in [23], [19] for extraction of tex-
tural representations from contactless fingerprints, DeepPrint
is a deep-network which has been specifically designed for
fingerprint representation extraction via a built-in alignment
module and minutiae domain knowledge. Therefore, in this
work, we seek to adopt DeepPrint (originally utilized for
contact-contact fingerprint matching) for contactless-contact
fingerprint matching.

Formally, DeepPrint is a network f(·) with parameters
w that takes as input a fingerprint image I and outputs a
fixed-length fingerprint representation R (which encodes the
textural related features). During training, DeepPrint is guided
to encode features related to fingerprint minutiae via a multi-
task learning objective including: (i) a cross-entropy loss on
both the minutiae branch identity classification probability ŷ1
and texture branch identity classification probability ŷ2 (Eq.
7), (ii) minimize the intra-class variance of class y via a center
loss between the predicted minutiae feature vector R1 and its
mean feature vector Ry

1 and the predicted texture feature vector
R2 and its mean feature vector Ry

2 (where R1 concatenated
with R2 form the full representation R), and (iii) a mean
squared error loss on the predicted minutiae maps Ĥ output by
DeepPrint’s minutiae branch and ground truth minutiae maps
H (Eq. 9). These losses are combined to form the DeepPrint
identity loss, LID (Eq. 10), where λ1 = 1, λ2 = 0.00125,
λ3 = 0.095 are empirically set.

L1(I, y) = − log(ŷj=y
1 |I, w)− log(ŷj=y

2 |I, w)] (7)

L2(I, y) = ‖R1 − R̄y
1‖22 + ‖R2 − R̄y

2‖22 (8)

L3(I,H) =
∑
j,k,l

(Ĥj,k,l −Hj,k,l)
2 (9)

LID(I, y,H) = argmin
w

N∑
i=1

[λ1L1(Ii, yi) + λ2L2(Ii, y)

+ λ3L3(Ii, Hi)] (10)

Due to the large differences in resolution, illumination,
and backgrounds observed between different datasets of con-
tactless fingerprint images, generalization to images captured
on unseen cameras becomes critical. The problem of cross-
sensor generalization in fingerprint biometrics (e.g., optical
reader to capacitive reader), of which contact to contactless
matching is an extreme example, has been noted in the liter-
ature [39], [40], [41], [42], with many previous works aimed
at improving the interoperability [43], [44], [45]. Motivated
by the recent work employing adversarial learning to improve
cross-sensor generalization of fingerprint spoof detection [46],
we incorporate an adversarial loss to encourage robustness
of DeepPrint to differences between acquisition devices or
smartphone cameras. The adversarial loss LA is defined as the
cross-entropy on the output of an adversary network q(·, θA)
across C classes of sensors, where the adversarial ground
truth y′ is assigned equal probabilities across these C classes
(Eq. 11). The adversarial loss LA and identity loss LID form
the overall loss function LD used to train DeepPrint (Eq.
12), where λ4 = 0.1 is empirically selected. The adversary
network, q(·, θA), is a two layer fully connected network, with
weights θA, that predicts the probability of the class of input
device used to capture each image, i.e., minimizes the cross-
entropy of the predicted device and the ground truth device
label y (Eq. 13). Intuitively, if DeepPrint learns to fool the
adversary, it has learned to encode identifying features which
are independent of the acquisition device or camera.

LA(I, y′) = −
C∑

c=1

y′c log qA(yc|f(I;w); θA) (11)

LD(I, y,H, y′) = argmin
w

N∑
i=1

[LID(I, y,H)

+ λ4LA(Ii, y′i)] (12)

LC(I, yc) = −yc log qA(yc|f(I;w); θA)] (13)
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In addition to the adversarial loss, we also increased the
DeepPrint representation dimensionality from the original
192D to 512D and added perspective distortion and scaling
augmentations during training. In an ablation study (Table VI),
we show how each of our DeepPrint modifications (fine-
tuning, adversarial loss, perspective and scaling augmenta-
tions, and dimensionality change) improves the contactless-
contact fingerprint matching performance on our newly col-
lected ZJU dataset.

2) Minutiae Representation: Finally, after extracting a tex-
tural representation with our modified DeepPrint network, we
extract a minutiae-based representation from our preprocessed
contactless fingerprints with the Verifinger 12.0 SDK.

C. Matching

Following feature extraction, from which we obtain texture
representations (Rc

t , Rcl
t ) and Verifinger minutiae represen-

tations (Rc
m, Rcl

m) for a given pair of contact and contactless
fingerprint images (Ic, Icl), we compute a final match score as
a weighted fusion of the individual scores computed between
(Rc

t , Rcl
t ) and (Rc

m, Rcl
m). Concretely, let st denote the sim-

ilarity score between (Rc
t , Rcl

t ) and sm denote the similarity
score between (Rc

m, Rcl
m), then the final similarity score is

computed from a sum score fusion shown in Equation 14. For
our implementation, wt = wm = 0.5 was selected empirically.

s = wtst + wmsm (14)

IV. EXPERIMENTS

In this section, we give details on various experimental
evaluations to determine the effectiveness of C2CL for contact
to contactless fingerprint matching. We employed various
publicly available datasets for the evaluation of our algorithms,
as well as a new database of contactless and correspond-
ing contact-based fingerprints which was collected using our
mobile-app in coordination with Zhejiang University (ZJU).

A. Datasets

Table II gives a detailed description of the publicly available
datasets for contact to contactless matching used in this
study and Figure 3 shows some example images from these
datasets. For comparison with previous studies, we use the
same train/test split of the PolyU dataset that was used in
[23], which consists of 160 fingers for training with 12 im-
pressions each and the remaining 160 fingers for testing with 6
impressions each. Similarily, we split the UWA Benchmark 3D
dataset into 500 training fingers and 1, 000 unique test fingers.
Furthermore, following the protocol of Malhotra et al. [19], we
split the ISPFDv2 dataset evenly into 50% train and 50% test
subjects. Finally, we captured and sequestered a new dataset of
contactless fingerprints and contact-based fingerprint images
in coordination with ZJU for a cross-database evaluation (e.g.
not seen during training) to demonstrate generalizability of
our algorithm. The cross-database evaluation is much more
stringent than existing approaches which only train/test on

different partitions of the same dataset. Indeed, the cross-
database evaluation is a much better measure of how C2CL
would perform in the real world.

The new ZJU Finger Photo and Touch-based Fingerprint
Database contains a total of 206 subjects, with 12 contactless
images and 12 contact-based impressions per finger. The
thumb and index fingers of both hands were collected for
each subject, giving a total of 9, 888 contactless and 9, 888
contact-based images. The contactless images were captured
using three commodity smartphones: HuaWei P20, Samsung
s9+, and OnePlus 8, whereas the contact-based fingerprint
impressions were captured on a URU 4500 optical-based
scanner at 512 ppi. An Android fingerphoto capture app was
developed to improve the ease and efficiency of the data
collection. To initiate the capturing process, a user or operator
enters the transaction ID for the user and uses an on screen
viewing window to help guide and capture the fingerprint
image. Furthermore, a counter displayed on the screen keeps
track of subsequent captures to streamline the data collection
process.

B. Implementation Details

All the deep learning components (segmentation network,
deformation correction and scaling network, and DeepPrint)
are implemented using the Tensorflow deep learning frame-
work. Each network is trained independently and information
regarding how many of the contactless and contact fingerprint
images from each of the datasets used in training each com-
ponent of our algorithm is given in Table III.

1) Segmentation Network: A total of 496 contactless fin-
gerprint images from the ISPFDv2 were manually labeled
with segmentation masks outlining the distal phalange were
used for training. Input images were resized to 256 × 256
during training to reduce the time to convergence, which
occurred around 100, 000 iterations. During inference, the
contactless fingerprint images are also resized to 256 × 256
and resulting segmentation masks are upsampled back to
the original resolution. Due to limited number of manually
marked images, we employed random rotations, translations,
and brightness augmentations to avoid over-fitting.

2) Deformation Correction and Scaling Network: The pre-
trained DeepPrint model in [28] was used to provide supervi-
sion of our spatial transformation network in line with Eq 6.
The motivation for using a network pretrained on contact-
based fingerprints, rather than our new finetuned model on
contactless fingerprints, is that the goal of our transformation
network is to transform the contactless fingerprint images
to better resemble their contact-based counterparts. Thus, a
supervisory network trained on solely contact-based fingerprint
images is more suitable for this purpose. The architectural
details of our STN localization network are given in Table VII.
For our implementation, we set the number of sampling points
for the distortion grid to n = 4 × 4. Data augmentations
of random rotations, translations, brightness adjustments, and
perspective distortions were employed to avoid over-fitting.

3) DeepPrint: The DeepPrint network utilized the same
optimizer and hyper-parameters as originally reported in [28].
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TABLE IV: Verification performance of the C2CL.

Dataset
Verifinger 12.0 DeepPrint DeepPrint + Verifinger 12.0 Previous SOTA

EER (%) TAR @ FAR=0.01% EER (%) TAR @ FAR=0.01% EER (%) TAR @ FAR=0.01% EER (%)
PolyU 0.46 97.20 2.37 72.07 0.30 97.74 7.93 [23]

UWA 0.44 98.64 5.29 83.40 0.77 98.15 7.11 [23]

ISPFDv2 1.44 96.02 2.33 84.33 1.20 96.67 3.40‡ [19]

ZJU† 0.79 96.88 2.08 86.42 0.62 97.60 N/A
‡ [19] reports results on the ISPFDv2 dataset per individual capture condition; 3.40 is the average EER across these data splits.
† Cross-database evaluation, i.e., not seen during training.

TABLE V: Ablation study of C2CL using only Verifinger 12.0 for matching∗.
S = segmentation, E = enhancement Ts = scaling, Td = deformation
correction.

Dataset
Modules Overall (%)

S E Ts Td EER TAR @ FAR = 0.01%

PolyU

X 0.86 93.19

X X 0.45 96.96

X X X 0.48 96.44

X X X X 0.46 97.2

UWA‡
X 0.81 97.03

X X 0.44 98.64

ISPFDv2

X 13.76 23.93

X X 7.83 38.53

X X X 2.02 93.3

X X X X 1.44 96.02

ZJU†

X 3.35 82.8

X X 1.88 89.9

X X X 0.9 96.97

X X X X 0.79 96.88

∗ Ablation results for DeepPrint are not shown since only a single
model was trained on the final E+S+Ts+Td images.
‡ We do not apply our STN here since these images are captured with
a 3D scanner and are already unrolled and at a resolution of 500 PPI.
† Cross-database evaluation, i.e., not seen during training.

TABLE VI: DeepPrint Ablation Study

Method ZJU EER (%)
DeepPrint [28] 4.07

+ finetune 2.68

+ 512D 2.64

+ Augmentations 2.35

+ Adversarial Loss 2.08
∗ Each row adds on to the previous row.

A small validation set was partitioned from DeepPrint fine-
tuning data outlined in Table III to stop the training (which
occurred at 73,000 steps). The added adversary was trained
with the RMSProp optimizer.

C. Evaluation Protocol

To evaluate the cross-matching performance of our algo-
rithms, we conduct both verification (1:1 comparison) and
identification (1:N comparison) experiments on four datasets
of contactless and contact-based fingerprints. For the verifica-
tion experiments, we report the Receiver Operating Character-

TABLE VII: Deformation Correction and Scaling Spatial Transformation
Network Architecture, T (·).

Layer #Filters, Filter Size, Stride Output Dim.

0. Input 0, 0, 0 480× 480× 1

1. Convolution 32, 3× 3, 2 240× 240× 32

2. Convolution 64, 3× 3, 2 120× 120× 64

3. Convolution 128, 3× 3, 2 60× 60× 128

4. Convolution 256, 3× 3, 2 30, 30, 256

5. Max Pool 6× 4, 2 46592

7. Dense 1024 1024

8. Dense 2× n0 + 4 2× n0 + 4

The final dense layer contains output neurons for a 2× n0 grid of n0 =
n×n pixel displacements for the deformation correction and 4 neurons for
the affine transformation matrix (s, θ, tx and ty .). In our implementation,
n = 4.

istic (ROC) curves at specific operating points and equal error
rates (EER). Note that we report the TAR @ FAR=0.01%,
which is a stricter threshold than is currently reported in
the literature, and which is also a threshold expected for
field deployment. For the search experiments, the Cumulative
Match Characteristics (CMC) curves and rank-one search
accuracy are given against an augmented large scale gallery
of 1.1 contact million fingerprints taken from an operational
forensics database [2]. This is a much larger gallery than has
previously been evaluated against in the literature and is again
more indicative of what C2CL would face in the real world.
The first three datasets were split into their respective train and
testing sets with no overlapping subjects and used to compare
C2CL with existing approaches, whereas the fourth dataset
(ZJU) is reserved for a cross-database evaluation. Finally, we
present ablation results on each significant component of our
proposed system.

D. Verification Experiments

The verification experiments are conducted in a manner con-
sistent with previous approaches to facilitate a fair comparison.
In particular, (i) the PolyU testing dataset yields 5, 760 (160×
6×6) genuine scores and 915, 840 (160×159×6×6) imposter
scores, (ii) the UWA Benchmark 3D dataset yields 8, 000
(1, 000×4×2) genuine and 7, 992, 000 (1, 000×999×4×2)
imposter scores, (iii) the ISPFDv2 dataset (which is split into 7
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(a) (b)

(c) (d)

Fig. 7: ROCs of the proposed contact-contactless matcher on (a) PolyU, (b) UWA, (c) ISPFDv2, and (d) ZJU cross-matching fingerprint datasets.

different capture variations)5 yields 68, 096 ((152×8×8)×7)
genuine and 10, 282, 496 ((152× 151× 8× 8)× 7) imposter
scores, and (iv) the ZJU dataset yields 118, 656 (824×12×12)
genuine and 97, 653, 888 (824×823×12×12) imposter scores.
Due to the very high number of possible imposter scores for
ZJU, we limit the number of imposter scores computed to only
include the first impression of each imposter fingerprint. This
process results in 678, 152 imposter scores out of the possible
97, 653, 888 scores. It is assumed for all experiments that the
contactless fingerprints and contact-based impressions are the
probe and enrollment images, respectively.

Table IV provides the Equal Error Rate (EER) and True
Acceptance Rate (TAR) at a False Acceptance Rate (FAR) of
0.01% of C2CL on the different datasets. Additionally, the full

5The 7 scenarios consist of different background, illumination, and resolution
variations (e.g., white background & indoor lighting, white background &
outdoor lighting, natural background & indoor lighting, natural background
& outdoor lighting, 5MP resolution, 8MP resolution, and 16MP resolution.
For our evaluation, we combine each of these into a single dataset.

ROC plots are given in Figure 7 for each dataset. For compari-
son with previous methods, rather than implement the relevant
state-of-the-art approaches that have been proposed and risk
under representing those methods, we directly compare our
approach to the results reported in each of the respective
papers. In terms of EER, our method outperforms all the
previous approaches in the verification setting. Not only does
our individual performance of the minutiae and textural repre-
sentations alone exceed that of the previous SOTA methods (in
particular, even if we remove Verifinger, we still beat state-of-
the-art in all cases), the fusion performance attains matching
accuracy (EER = 0.30% − 1.20%) comparable to contact-
contact fingerprint matching [26]. Even in the most challeng-
ing cross-database evaluation (ZJU), C2CL attains competitive
performance with contact-contact matching - demonstrating
the generalizability of C2CL to unseen datasets. Note that we
report the TAR @ FAR=0.01% only for C2CL since most of
the prior approaches only report EER and none report TAR
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TABLE VIII: Multi-finger fusion verification results of the proposed matcher
on the ZJU dataset.

Finger Type EER (%) TAR (%) @ FAR = 0.01%
Thumb 0.95 95.89

Index 0.48 98.31

LT + LI 0.00 99.77

RT + RI 0.00 99.74

RT + LT 0.00 99.80

RI + LI 0.00 99.89

@ FAR =0.01%.

1) Ablation study: We present an ablation study (Table V)
to fully understand the contribution of the main components
of our algorithm; namely, segmentation, enhancement, 500
ppi frequency scaling, and TPS deformation correction. From
the ablation, we notice there is a substantial improvement in
both EER and TAR @ FAR=0.01% just from incorporating
proper enhancement of the contactless images. In most cases,
there is almost a 50% reduction in EER from including
both contrast enhancement and binary pixel inversion. For
brevity, not shown in the table is the individual contribution
of inverting the ridges of the contactless images aside from
contrast enhancement. For reference, the EER of DeepPrint on
ZJU warped images with only contrast enhancement is 2.49%.
This is in comparison to the EER of 2.08% on the warped
images with both contrast enhancement and pixel inversion.
Furthermore, we observe that for the smartphone captured
contactless fingerprints in the ISPFDv2 and ZJU datasets,
there is a dramatic performance jump when incorporating our
500 PPI scaling network. Finally, there is another noticeable
improvement when incorporating the deformation correction
branch of our STN, most notably for the ISPFDv2 dataset.
Since the ZJU dataset contains equal numbers of thumb and in-
dex fingers, where the majority of our training datasets contain
mostly non-thumb fingers, we observed that the deformation
correction is less beneficial on average for the ZJU dataset
compared to ISPFDv2. However, from Table VIII, we see
that the EER of just index fingers of ZJU is noticably lower
than the EER on thumbs. This is a limitation of the available
training data, which could be alleviated in the future with more
training examples of thumbs.

2) Multi-finger fusion verification: The final set of verifica-
tion experiments is to investigate the effects of finger position
and multiple finger fusion in the verification accuracy for the
ZJU dataset. Table VIII, shows the individual performance
per finger position and the fusion of multiple fingers; namely,
thumb only, index only, fusion of right thumb and right index,
fusion of left thumb and left index, and four finger fusion.
The motivation for considering fusion of the thumb and index
on each hand is that from a usability standpoint, a user may
be able to use their dominant hand when capturing their own
fingerprints. Notably, when fusing multiple fingers (e.g., right
index and left index), we obtain nearly perfect verification
accuracy.

Fig. 8: CMC for ZJU dataset

TABLE IX: Search performance of the proposed matcher on the ZJU dataset
with a gallery of 1.1 million.

Method Rank 1 Rank 10 Rank 100 Rank 500
DeepPrint 83.56% 93.06% 95.86% 97.08%

Verifinger
12.0

95.25% 96.47% 96.95% 97.20%

DeepPrint
+ Verifinger
12.0

95.49% 96.10% 96.95% 97.08%

DeepPrint + Verifinger 12.0 refers to indexing the top-500 can-
didates with DeepPrint and then re-sorting those 500 candidates
using a fusion of the Verifinger and DeepPrint score.

E. Search Experiments

For the identification (or search) experiments, we utilize the
first impressions of both the contact-based fingerprints and the
contactless fingerphotos of the ZJU dataset. The contact-based
fingerprints are placed in the gallery which is augmented with
1.1 million fingerprint images from an operational forensic
database [2]. The contactless fingerprint images serve as the
probes. We note that our 1.1 million augmented gallery is
significantly larger than any of the existing galleries used to
evaluate contactless-contact fingerprint search, and is more
indicative of the real world use-case of cross fingerprint
matching (e.g. in a National ID system like Aadhaar where a
large gallery of contact-based fingerprints is already enrolled
and used for de-duplication).

We evaluate 3 different search algorithms on the ZJU
augmented gallery: (i) Verifinger 1:N search, (ii) search via
our DeepPrint texture matcher (scores st from Eq. 14 are
computed between a given preprocessed, contactless probe,
and all 1.1 million contact-based fingerprints in the gallery),
and (iii) a two-stage search algorithm [28] where the DeepPrint
texture scores are first used to retrieve the top-500 candidates,
followed by a reordering using the 1:1 minutiae matching
scores (sm from Eq. 14) from Verifinger. The advantage of
the two-stage search scheme is that it balances both speed
and accuracy by utilizing the matching speed of DeepPrint
to locate the first list of 500 candidates and the accuracy of
Verifinger to further refine this list.

From Figure 8 and Table IX, we can observe that Verifinger
outperforms DeepPrint stand-alone. However, we note from
Table X that the Verifinger search time against 1.1 million
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TABLE X: Search time against 1.1 million background gallery.

Method Search Time (seconds)
DeepPrint 0.4

Verifinger 12.0 60.1

DeepPrint + Verifinger 12.0 10.5

TABLE XI: Intersection Over Union (IOU) of the proposed segmentation
network S(·).

Method IOU
Baseline [19] 0.747

Proposed 0.899

is quite slow in comparison to DeepPrint. This motivates
combining both approaches into the aforementioned two-stage
search algorithm which actually outperforms Verifinger at
Rank-1, and reduces the search time by 50 seconds. In short,
our two stage search algorithm obtains high levels of search
accuracy on a large-scale gallery at a significant search time
savings.

F. Segmentation Evaluation

A successful segmentation algorithm for contactless finger-
print images must not only reliably detect the distal phalange
of the contactless fingerprint, but also be robust to varying
illumination, background, and resolution that is expected to oc-
cur in highly unconstrained capture environments. The method
by Malhotra et al. [19] performed well on the ISDFPDv2
dataset using certain hyperparameters that were fit to this
particular dataset; however, the authors did not evaluate it
on unseen datasets. In contrast, our algorithm requires no
hyperparameter tuning and still performs well across a variety
of different evaluation datasets, both seen and unseen. Table XI
gives a comparison on the unseen ZJU dataset between our
method and our implementation of the baseline approach of
Malhotra et al., which was trained on the ISPFDv2 dataset.
For this evaluation, we manually marked the first contactless
fingerprint image of each unique finger in the ZJU dataset
with ground truth segmentation masks of the distal phalange,
and then computed the Intersection Over Union (IOU) metric
between the predicted segmentation masks of our algorithm
and our implementation of the benchmark algorithm in [19].
Our method does not require any hyper-parameter tuning and
still achieves higher IOU compared to [19].

A qualitative analysis of our segmentation network (see Fig-
ure 5) shows our algorithm is robust to varying illumination,
background, and resolution and generalizes across multiple
datasets of contactless fingerprints. However, as seen in Fig-
ure 5 (b), the network may still fail in extremely challenging
background and illumination settings. An additional consid-
eration, which is of importance for real-time deployment,
is the processing speed of the segmentation network. Our
segmentation algorithm is extremely fast compared to existing
methods - requiring just 12.6 ms to segment a (900 × 1200)
resolution image. In contrast, our parallel implemenation of the
baseline approach of Malhotra et al. requires 3s per image.

(a)

(b)

Fig. 9: Example failure cases from the ISPFDv2 dataset: (a) falsely rejected
image pairs and (b) falsely accepted image pairs.

V. DISCUSSION

Despite the low error rates achieved across each dataset,
there are many factors that complicate the cross-matching
performance and lead to both type I (false rejects) and type
II (false accepts) errors. Many of the type I and type II
errors are attributed to a failure to correctly segment and scale
only the distal phalange of the input contactless fingerprint.
Incorrect segmentation can lead the large amounts of the image
containing background rather than the relevant fingerprint
region, as is the case in the middle column of Figure 9.
Other errors can be attributed to the inherent low-contrast
of the contactless fingerprints, despite any effort of contrast
or resolution enhancement (illustrated in the first column of
Figure 9). The only way to mitigate these types of failures is
to include a quality assurance algorithm at the point of capture
of the contactless fingerprint images. Lastly, minimal overlap
in the fingerprint ridge structure between genuine probe and
gallery fingerprint images is the cause of many false rejections,
whereas very similar ridge structure between imposter finger-
print pairs leads to a number of false accepts. This challenge is
present in contact-contact matching; however, is exaggerated
in C2CL because of the unconstrained pose variance of the
finger in 3D space.

The potential for greater variance in the capture conditions
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(a)

(b)

Fig. 10: Comparison of ridge overlap (a) with and (b) without the unwarping
module. The left image in each row is the contactless fingerprint image. Use
of unwarping module results in better ridge alignment between contactless
and contact-based images. The alignment is shown for the ridges in the blue
window.

when capturing contactless fingerprint images necessitates
more robust preprocessing to reliably match contactless fin-
gerprints. Thus, performance will likely be markedly lower in
unconstrained scenarios compared to highly controlled capture
environments that employ dedicated hardware for the image
acquisition, such as the PolyU and UWA datasets. How-
ever, C2CL has pushed the SOTA forward both in matching
more unconstrained fingerphotos and the more constrained
dedicated-device captured contactless fingerprints.

As highlighted in the ablation study of Table IV, most
of the improvement in interoperability between contactless
and contact-based fingerprints is due to appropriate 500 ppi
scaling of the contactless prints; however, incorporating a
deformation correction module is also shown, with statistical
significance6, to further improve the compatibility. Figure 10
aims to highlight this fact through an overlay of the fingerprint
ridge structure of one contactless fingerprint to it’s correspond-
ing contact-based impression before and after applying the
deformation correction. The improved alignment indubitably
leads to better minutiae-based and texture-based matching, as
verified by our experiments.

VI. COMPUTATIONAL EFFICIENCY

Our system architecture consists of a variety of deep net-
works (segmentation network, enhancement, deformation cor-
rection and scaling spatial transformer, CNN feature extractor

6The Mann-Whitney rank test [47] was used to compute the statistical
significance between the ROC curves of E+S and E+S+T in Figure 7. For all
four datasets, the p value is smaller than 0.05, indicating that the difference
is statistically significant to reject the hypothesis that the two curves are
similar with a confidence of 95%.

and minutiae matcher). The deep network components of our
algorithm are capable of very fast inference per input image;
however, the system as a whole consumes a large amount
of memory (400 MB). To fit into a resource constrained
environment, such as a mobile phone, further optimization
to the system architecture can easily be implemented with
very little, if any, performance drop. First, the intermediate
step of generating a scaled image prior to the deformation
correction is not required for deployment and was just included
for the ablation study. Instead, we can remove the affine
transformation layer of our STN and directly scale and warp
the input images in one step. Furthermore, rather than rely on
a COTS system for minutiae extraction and matching, we can
directly use the minutiae sets output by DeepPrint and a com-
putationally efficient minutiae matcher to obtain the minutiae
match scores, such as MSU’s Latent AFIS Matcher [48]. With
these optimizations to improve the efficiency and reduce the
size of the networks, the inference time on a mobile phone
(Google Pixel 2) is ≈ 2 seconds.

VII. CONCLUSION AND FUTURE WORK

W have presented the first end-to-end system for matching
contactless fingerprints (i.e., finger photos) to contact-based
fingerprint impressions that achieves error rates comparable to
contact-contact fingerprint matching. In particular, our contact
to contactless matcher achieves less than 1% EER across mul-
tiple datasets employing a variety of contactless and contact-
based acquisition devices with varying background, illumina-
tion, and resolution settings. Critical to the success of our
system is our extensive preprocessing pipeline consisting of
segmentation, contrast enhancement, 500 ppi scale normaliza-
tion, deformation correction, and our adaptation of DeepPrint
for contactless-contact matching. Our cross-database evalua-
tions and large-scale search experiments are more rigorous
evaluations than what is reported in the open literature, and
it enables us to confidently demonstrate a contactless-contact
fingerprint matcher with similar levels of accuracy to state-of-
the-art contact-contact fingerprint matching accuracy.
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