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Abstract—Airborne transmission is now believed to be the
primary way that COVID-19 spreads. We study the airborne
transmission risk associated with holding in-person classes on
university campuses. We utilize a model for airborne transmission
risk in an enclosed room that considers the air change rate
for the room, mask efficiency, initial infection probability of
the occupants, and also the activity level of the occupants.

We introduce, and use for our evaluations, a metric R
eff
0

that represents the ratio of new infections that occur over a
week due to classroom interactions to the number of infected
individuals at the beginning of the week. This can be seen as
a surrogate for the well-known R0 reproductive number metric,
but limited in scope to classroom interactions and calculated on a
weekly basis. The simulations take into account the possibility of
repeated in-classroom interactions between students throughout
the week. We presented model predictions were generated using
Fall 2019 and Fall 2020 course registration data at a large US
university, allowing us to evaluate the difference in transmission
risk between in-person and hybrid programs. We quantify the
impact of parameters such as reduced occupancy levels and mask
efficacy. Our simulations indicate that universal mask usage
results in an approximately 3.6× reduction in new infections
through classroom interactions. Moving 90% of the classes online
leads to about 18× reduction in new cases. Reducing class
occupancy to 20%, by having hybrid classes, results in an
approximately 2.15− 2.3× further reduction in new infections.

Index Terms—COVID-19, Epidemic Modeling

I. INTRODUCTION AND RELATED WORK

The COVID-19 pandemic has had a profound impact on

educational institutions around the world. More than 85 col-

leges and universities across the US have reported at least

1,000 cases of COVID-19, and over 680 institutions have

reported at least 100 cases [1]. More than 124,000 public and

private schools, colleges, and universities in the US closed

in April 2020, impacting more than 55 million students [2].

Worldwide, similar disruptions have affected more than 1.7

billion students [3, 4].

In response to the initial COVID-19 outbreak in Spring

2020, a large number of colleges and universities across the

US decided to cancel classes and close student housing [4].

Many universities and colleges moved instruction online. In

Fall 2020, many institutions of higher education in the US

returned to in person instruction. However, this led to a

significant increase in new infections. Several colleges and

universities decided to reopen in the Fall 2020 and provide

hybrid classes where a portion of the students could attend the

classes in person while the others attended online, providing a

partial solution to the problems associated with purely online

instruction. In addition, colleges and universities put in place

rules about physical distancing and face covering usage and

limited social gatherings. Many institutions also put in place

extensive population testing, contact tracing, and quarantining

measures for on-campus students, staff, and faculty. This

combination of measures had some success in curbing the

spread of COVID-19 on campuses [1].

In this work, we study the impact of different policies on

transmission through classroom interactions at universities.

We characterize the effect of parameters such as reduced

occupancy and mask wearing on the number of new infections

generated via university classroom interactions. In particular,

we compare model predictions generated using course regis-

tration data from a large US university for Fall 2019, when

all classes were held in person, and for Fall 2020, when most

classes were online and some were conducted in hybrid mode.

The main contribution of this work is to quantify the impact

of university policies on COVID-19 transmission through

classroom interactions. Our analysis indicates that, with the

Fall 2019 schedule in place, universal mask wearing would

have resulted in a roughly 3.6× reduction in new cases

and a reduction in classroom occupancy to 20% would have

resulted in a further 2.15 − 2.3× reduction. Moving 90% of

classes online, as was done for Fall 2020, leads to a roughly

18× reduction in cases relative to the Fall 2019 baseline,

with universal masking and reduced occupancy leading to

further reductions. Together, these findings suggest that the

precautions taken by US institutions of higher education may

have had a significant impact in curbing the spread of COVID-

19 via classroom interactions.This work has been supported by a Provost’s New Strategic Directions in
Research and Scholarship Award at USC.
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The rest of the paper is organized as follows. Section II

presents a general model for transmission risk in enclosed

spaces. In section III, we describe how this model is used

to compute transmission via classroom interactions in our

simulations. In section IV, we present the Fall 2019 and Fall

2020 datasets that we used in the simulations. The simulation

methodology is discussed in section V. Simulation results are

presented and discussed in section VI. Finally, in section VII

we conclude the paper.

II. GENERAL RISK MODEL

In this section, we present a simple model for airborne

virus emission and exposure in an enclosed space. The goal

is to provide an estimate for airborne virus concentrations

and dosage for a known number of occupants and duration of

proximity. Airborne virus concentrations depend on the num-

ber of infectious persons in the room, whether the occupants

are being active or passive, as well as any mitigating factors

such as the use of face coverings, enhanced HVAC protocols,

and limited occupant density due to physical distancing. The

dosage for exposed individuals further depends on the duration

of proximity and the effectiveness of any face coverings. The

main assumption of this model is that it considers perfectly-

mixed conditions in the room, which means the concentration

of virus particles is uniform. In simple terms, the model

assumes that any airborne particles are mixed throughout the

space quickly. This assumption implies a uniform transmission

risk for all occupants in the room. Such mixed flow or

continuously-stirred reactor models are common in indoor air

quality modeling [5, 6]. In the context of airborne disease

transmission, such models are typically referred to as Wells-

Riley models after pioneering studies in this field [7–9].

In this model, we consider an enclosed room of volume v
(m3) with a volumetric air exchange rate through the HVAC

system Ehvac (m3/s). The total number of people in the

room is n. Each person is assumed to inspire and expire

(“exchange”) air at the rate of Q (m3/s) on average. The

probability of a person being initially infected is qi and the

virion emission rate for an infected person is QCa
i (virions/s)

if the person is being active (e.g., lecturing loudly) and

QCp
i (virions/s) if the person is being passive (e.g., listening

quietly). A virion is a single infectious virus particle. The

probability of a person being active is pa; the probability

of a person being passive is therefore pp = 1 − pa. We

further assume that the use of face coverings with the filtration

efficiency f and f̂ for inhalation and exhalation, respectively.

Finally, we assume that the occupants remain in the enclosed

room for the duration of T . Using these parameters, we can

estimate the average airborne virus concentration C using a

room-scale mass balance as:

C(n, qi, pa) = (1− f̂)
n

Ehvacv
qi (paQCa

i + (1 − pa)QCp
i )

(1)

and estimate the average virus dose D for an occupant as:

D(n, qi, pa) = C(n, qi, pa)(1− f)QT =

(1− f̂)(1 − f)
n

Ehvacv
qi (paQCa

i + (1− pa)QCp
i )QT (2)

Note that the above equations assume steady state conditions.

Further, for simplicity, this formulation neglects virus removal

due to settling and the decay in the number of viable (or

infectious) virus particles over time. In other words, the

primary sink of virions is assumed to be air exchange through

the HVAC system. This is a reasonable simplification given

that (1) settling timescales for aerosols are typically an order

of magnitude higher compared to the time scales associated

with air turnover [10], and (2) there is significant variability

in estimates for how long SARS-CoV-2 remains viable in

aerosols or droplet nuclei [11].

The virus emission rates QCa
i and QCp

i can be estimated

based on known virus concentrations and aerosol volumes

for typical active and passive activities [12–14]. For instance,

Stadnytskyi et al. [13] estimate that 25s of active or loud

speaking leads to the emission of between 60nL and 320nL

of oral fluid. The viral load in the sputum is estimated to

be cv ≈ 7 × 106 virions/cm3, though this may be as high

as O(109) virions/cm3 [15]. Based on these estimates, the

virus output for an active infected person is expected to be

QCa
i ≈ 17 − 90 virions/s. Further, the data presented in

Buonanno et al. [14] suggest that virus emissions are roughly

40 times higher while speaking when compared to resting

conditions. Assuming QCa
i /QCp

i ≈ 40, virus emissions from

passive persons are expected to be QCp
i ≈ 0.4−2.3 virions/s.

Given the average virus dosage, we can calculate the in-

fection probability for one individual in the room after the

exposure to other potentially initially infected occupants as:

Pi = 1− e−
D(n,qi,pa)

D0 (3)

where D0 is the dose that leads to transmission in approx-

imately 63% of cases [8, 14]. Note that the exponential

mapping used to translate virus dose into a transmission

probability implicitly accounts for the variation in physio-

logical responses to the same exposure as well as the room-

scale variation in exposure that the well-mixed model neglects

(i.e., arising from concentration hotspots). To our knowledge,

the infectious dose for SARS-CoV-2 remains uncertain, but

previous estimates for SARS-CoV-1 and Influenza A suggest

that 300−800 virions are needed to cause infection in 50% of

the population [16, 17]. If the infectious dose is D0 = 1000
virions, the respiratory emission estimates provided above

suggest that active infectious persons with QCa
i ≈ 17 − 90

virions/s can emit approximately 60 to 320 infectious doses

per hour while passive persons can emit approximately 1.8 to 7

infectious doses per hour. These ranges are consistent with the

estimates provided by Buonanno et al. [14], who suggest that

infectious persons undergoing light activity and talking can

generate over 100 quanta per hour, where a quantum is defined

as the dose required to cause infection in 63% of susceptible

persons. We recognize that there is significant variability in



our estimates for both virus emissions and infectious dose.

As a result, any predictions for absolute infection risk must

be treated with caution. Nevertheless, predictions generated

using the physics-based model presented in this section should

still provide useful estimates for relative risk under different

scenarios.

III. CLASSROOM RISK MODEL

In this section, we take the model presented in section II

and adapt it to consider classroom interactions. A classroom is

assumed to be occupied by instructors (teachers) and students.

Instructors are more likely to be active (i.e., lecturing) during

a class while students are more likely to be passive (i.e.,

listening). Therefore, to better model classrooms interactions,

we assume different activity levels for instructors (teachers)

and students and we also consider the effect of differing initial

infection probabilities for instructors (teachers) and students.

Specifically, we assume instructors (teachers) and students

have activity rates of pta and psa, respectively. Similarly, we

assume instructors and students have initial infection proba-

bilities qti and qsi , respectively. We further assume that we have

Ns students in a classroom and 1 instructor. Ns is the number

of students attending the class in person and is given by:

Ns = αn, (4)

where n is the total number of students enrolled in the class

and α is the occupancy ratio of the students who attend

the class in person. The average viral dose from m infected

students in a classroom can be calculated as:

Ds
m = D(m, 1, psa) (5)

and the average viral dose from one infected instructor can be

calculated as:

Dt = D(1, 1, pta). (6)

The infection probability for a student in a given classroom

after one session, for the case that the instructor and m
students are initially infected, is given by:

Pi(1,m) = 1− e−
Dt+Ds

m
D0 . (7)

The infection probability for a student in the case that the

instructor is not initially infected but m students are initially

infected is given by:

Pi(0,m) = 1− e−
Ds

m
D0 . (8)

To find the total infection probability for a student in a class

session, we have to first compute the probability that m
students out of Ns will be infectious given the initial infection

probability of 1 student as qsi . For this purpose, we use the

following binomial probability:

psi (m,Ns) =

(

Ns

m

)

(qsi )
m(1 − qsi )

Ns
−m. (9)

Finally, to calculate the total infection probability for any

one student after one class meeting given the initial infection

probability for the instructor, qti , and the students, psi (m,Ns),
we have:

P s
i,class =

N
∑

m=0

psi (m,Ns)[qtiPi(1,m) + (1− qti)Pi(0,m)].

(10)

Using the above formulation, we can now formally define

three important metrics for assessing the impact of classroom

interactions over one week: (i) P s
i,week, the individual infection

probability for students1, (ii) P̂ s
i,week , the average infection

probability, and (iii) Reff
0

, the effective reproduction number.

We define these metrics below.

The reason that we present these metrics with reference to

the time period of one week is in part a modeling choice –

our analysis and simulations could easily be carried out for

any other time period. However, one week is a natural time-

scale to focus on for two reasons. First, class schedules repeat

weekly. Second, COVID-19 symptoms appear at the latest

after two weeks, and on average symptomatic patients show

the symptoms after one week [18]. We assume individuals

would not attend classes once they are symptomatic.

If a particular student j attends k classes with infection

probabilities of p1, p2, · · · , pk, the individual infection prob-

ability for this particular student after attending one week of

classes will be:

P s
i,week(j) = 1− (1− p1)

n1(1− p2)
n2 · · · (1 − pk)

nk , (11)

where ni is the number of sessions for the class i. We can

then define the average infection probability after one week

of classes as:

P̂ s
i,week =

1

Ns

Ns

∑

j=1

P s
i,week(j). (12)

A well-known parameter for infection spread in epidemics is

R0, referred to as the expected reproductive number, which

indicates the average number of individuals infected by one

initially infected individual in a population. For classroom

interactions over a week, we can define a similar ratio of

new cases to initial cases by taking the ratio of infection

probabilities before and after the week. We thus define the

effective R0 from one week of operating classes as:

Reff
0

=
P̂ s
i,week

qsi
. (13)

IV. DATASET

We obtained registration information of all students for a

large US university for Fall 2019 and Fall 2020. Both datasets

include information for each student registered for classes. For

Fall 2019, we consider only classes that were held in person

(as most of them were). However, the classes in Fall 2020

were either online or hybrid. In hybrid mode, a fraction of

students are assumed to attend the class in person and the rest

1For simplicity and ease of exposition, we focus only on students because
we assume a high student-faculty ratio at a university.



are assumed to watch the class online. As shown in table I,

for Fall 2019 there were 5986 courses with 34042 students

on campus. For Fall 2020, there were 523 hybrid courses

and 6376 students registered for those classes. The remaining

classes were entirely online and are therefore not considered

in this study.

TABLE I: Datasets Information

Semester #In-Person Courses #Students on Campus

Fall 2019 5986 34042

Fall 2020 523 6376

We also obtained a dataset containing information about

buildings, classroom sizes, ventilation rates, and maximum

occupancy (or capacity). This dataset was used to estimate

the physical parameters (classroom volume v, air change rate

Ehvac, etc.) appearing in equations (1)-(2).

V. SIMULATION METHODOLOGY

We performed simulations to understand the impact of

holding one week of classes. We used the three metrics

introduced in section III to evaluate the impact of different

policies on virus spread predicted in our simulations. The

first metric is the infection probability of individual students

after attending one week of classes, shown in equation (11).

This metric is shown via histograms in figure 1 for different

policies for the Fall 2019 and Fall 2020 datasets. The second

metric is the average infection probability of the students after

attending one week of classes, shown in equation (12). The

third metric is the effective reproduction number Reff
0

for the

students given in equation (13) for one week of classes. This

metric was calculated for differing scenarios and is presented

in Table III. In the simulations, we explicitly study the impact

of the following parameters on classroom transmission.

• α: This parameter represents the occupancy ratio of the

number of students who attend the class in person. We

consider the default value for the occupancy ratio to be

α = 0.2 for hybrid classes in the Fall 2020 dataset, which

assumed that 20% of registered students attend the classes

in person. For in person classes in the Fall 2019 dataset,

we assume full occupancy, α = 1.

• f, f̂ : These parameters represent how effective masks

are in decreasing transmission probability. The default

value for the mask efficiency is considered to be 0.5

based on experimental measurements made for a variety

of common mask materials [19].

For reference, default values for each parameter are shown in

table II.

VI. RESULTS AND DISCUSSION

We now study the impact of different policies on virus

spread for the Fall 2019 and Fall 2020 datasets in the context

of the three different metrics discussed in section V.

Figure 1 shows infection probability distributions for the

students after one week of classes under three different oc-

cupancy and masking scenarios for Fall 2019 and Fall 2020.

TABLE II: Assumed parameter values, unless specified.

Occupancy ratio, α 0.2

Respiration rate, Q 10
−4 m3s−1

Active emission rate, QCa
i 40 virions s−1

Passive emission rate, QC
p
i 1 virion s−1

Mask filtration efficiency, f = f̂ 0.5
Infectious Dose, D0 1000 virions

Active fraction instructors, pta 0.9
Active fraction students, psa 0.05

Initial infection probability instructor, qti 0.01
Initial infection probability student, qsi 0.01

For the business-as-usual case with the Fall 2019 dataset (i.e.,

in-person classes, full occupancy, no mask usage), figure 1(a)

shows that a significant proportion of the students have high

individual infection probabilities, P s
i,week ≥ 0.05. Indeed,

the average infection probability after one week of classes

is P̂ s
i,week = 0.05407, which is more than five times higher

than the initial infection probabilities for the students and

instructors. In other words, the simulations predict that holding

classes in person without occupancy reductions or masking

requirements would have led to a substantial increase in

infection rates for the students.

Figure 1(b) shows that the transition to online instruction

with limited hybrid classes leads to a substantial reduction

in infection probabilities compared to the business-as-usual

scenario. Specifically, the average infection probability for the

students reduces by more than a factor of 3 to P̂ s
i,week =

0.01508 even without occupancy reductions or mask usage.

Note that this average infection probability is still higher than

the initial infection probabilities at the start of the week, which

is indicative of a reproductive number greater than 1. However,

as shown in figures 1(d) and 1(f), the use of 50% effective

masks and a reduction to 20% occupancy leads to significant

further reductions in average infection probabilities to levels

where the effective reproductive number is less than 1.

Table III provides a summary of average infection prob-

abilities and effective reproductive numbers for the different

scenarios we considered. The simulations predict a lower aver-

age infection probability for Fall 2020 compared to Fall 2019

across all masking and occupancy conditions. They indicate

that universal mask usage results in an approximately 3.6×
reduction in new infections through classroom interactions.

In addition, reducing class occupancy to 20%, by having

hybrid classes, results in an approximately 2.15−2.3× further

reduction in new infections. The transition to having 90% of

the courses online between Fall 2019 to Fall 2020 alone, even

without using masks or reducing the occupancy, results in a

18× reduction of cases.

VII. CONCLUSION

In this work, we have studied the impact of various poli-

cies on COVID-19 transmission via classroom interactions at

universities. Our specific aim has been to quantify the effect

of different policies on transmission rates, and thereby enable

institutions of higher education to prepare for future epidemics.

We utilized an established model for airborne transmission in



((a)) Fall 2019, α= 1, f = f̂= 0, P̂ s
i,week= 0.05407 ((b)) Fall 2020, α= 1, f = f̂= 0, P̂ s

i,week= 0.01608

((c)) Fall 2019, α= 1, f = f̂= 0.5, P̂ s
i,week= 0.01480 ((d)) Fall 2020, α= 1, f = f̂= 0.5, P̂ s

i,week= 0.00438

((e)) Fall 2019, α= 0.2, f = f̂= 0.5, P̂ s
i,week= 0.00634 ((f)) Fall 2020, α= 0.2, f = f̂= 0.5, P̂ s

i,week= 0.00204

Fig. 1: Infection probability distributions for the students after attending one week of classes, assuming initial infection

probabilities of 0.01 for both students and instructors, i.e., qsi = qti = 0.01. The average infection probability (P̂ s
i,week) after

one week of classes is shown in the individual captions.



TABLE III: Infection Probability Distribution Information

Fall 2019 Fall 2020
α = 1

f = f̂ = 0

α = 1

f = f̂ = 0.5

α = 0.2

f = f̂ = 0.5

α = 1

f = f̂ = 0

α = 1

f = f̂ = 0.5

α = 0.2

f = f̂ = 0.5

Average Infection Probability 0.05407 0.01480 0.00634 0.01608 0.00438 0.00204

Average New Infected Students 1864 504 216 103 28 13

R
eff
0

5.407 1.480 0.634 1.608 0.438 0.204

enclosed classrooms and registration data from a large uni-

versity to perform simulations for different scenarios. We also

introduced a quantitative metric Reff
0

that represents the ratio

of the infection probability after holding one week of classes

to the initial infection probability. We consider this metric

to be analogous to the well-known reproductive number, R0.

We have analyzed the effect of classroom occupancy, mask

usage, and initial infection probabilities in the student and

instructor populations on transmission. The simulations also

accounted for repeated interactions in classes between students

throughout the week. In the future, it would be of interest to

also investigate the effect of student interactions outside of

classes, although, it is challenging to find relevant data.
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