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Abstract—COVID-19 has resulted in a public health global
crisis. The pandemic control necessitates epidemic models that
capture the trends and impacts on infectious individuals. Many
exciting models can implement this but they lack practical
interpretability. This study combines the epidemiological and
network theories and proposes a framework with causal inter-
pretability in response to this issue. This framework consists
of an extended epidemic model in interconnected networks
and a dynamic structure that has major human mobility. The
networked causal analysis focuses on the stochastic processing
mechanism. It highlights the social infectivity as the intervention
estimator between the observable effect (the number of daily
new cases) and unobservable causes (the number of infectious
persons). According to an experiment on the dataset for Tokyo
metropolitan areas, the computational results indicate the propa-
gation features of the symptomatic and asymptomatic infectious
persons. These new spatiotemporal findings can be beneficial for
policy decision making.

Index Terms—COVID-19, Epidemic model, Interconnected
networks, Spatio-temporal dynamics, Causal interpretation

I. INTRODUCTION

THE presence of COVID-19 has resulted in a global health

crisis. Controlling the pandemic requires monitoring and

evaluating the infection transition, and this is an aspect that

direct statistics are unable to measure. This study presents

an approach that infers the infectious population as target

unobservable information from the limited observable factors.

This includes the daily confirmed cases, incubation period, and

spreading routes.

The SEIR model is a classic epidemic model that consists

of four classes of susceptible (S), exposed (E), infected (I),

and recovered (R) individuals. Here, S+E+I+R=N, where N is

the total population of a region that can be either a country, a

metropolitan area, or a city. In the proposed network model,

N is defined as the number of nodes.

When considering the new features of COVID-19, we

extended the SEIR model. First, we included the asymptomatic

(A) component, which is the group of infected individuals that

are asymptomatic. Consequently, we defined E, I, and A as the
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Infectious Classes in our model. Their demographic transition

is the main target of the unobservable information that is

explored in this study. Second, we included the hospitalized

(H) component, which consists of the new daily confirmed

cases that were announced by public health authorities. Thus,

the extended SEIR is referred to as the SEIRAH model.

The real world is similar to interconnected networks, and

the constituents create new paths of propagation [1]. Previous

studies have clarified that the propagation is significantly

affected by the structure of the social networks and human

mobility[2][7].

This study proposes interconnected networks, a spatial

structure with primary human mobility. A simplified analysis is

performed that consists of several residential regions and one

central work region, which is a typical metropolitan model.

Residential regions are individual social networks with family

based activities. The work region is also an individual network,

but it is organized by the daily commuting of people from the

residential regions.

We overlaid the SEIRAH model on the interconnected

networks with the overall framework called the interconnected

SEIRAH. It is the simulated society model that explores

the propagation dynamically, as described in Fig.1. In the

SEIRAH model, Social Infectivity is defined as the probability

of infection between the infectious and susceptible individuals

in social activities. We can express the social infectivity as

an interventions estimator of the propagation in the SEIRAH

mechanism.

We built causal inferences for the social infectivity. The

number of daily new cases, namely the hospitalized (Ht) time

series, is the observable source information as the Effect of

Propagation in the mechanism. The infectious classes consist

of unobservable target information as the Causes of Propa-

gation. A computational path is from the effect to the causes

of the SEIRAH mechanism in the interconnected dynamical

networks.

Following Section III described the structure and mecha-

nism of the interconnected SEIRAH framework. Moreover,

Section IV verified this framework using the experiential data

that belongs to the Tokyo metropolitan areas since the COVID-

19 outbreak. The simulation output the inference results with

the findings of the epidemic dynamics.

Furthermore, a networked database can be generated by

using the proposed framework’s computing processes. The

network nodes store the time series of the status transitions that

are organized by the spatial topology. This networked database

http://arxiv.org/abs/2104.04695v1
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Fig. 1. Framework of the interconnected SEIRAH. General description of the
computing procedures in this study.

can be a value-added outcome that collaborates with classic

epidemiological statistics by supporting either the macro-

or micro-level observations of the propagation, even at the

individual level. This methodological collaboration will help

us understand more propagation features and provide more

useful references to control a pandemic.

II. RELATED WORKS

A. Spatial Structure in Epidemic Dynamics

The small-world network model, which was introduced by

Watts and Strogatz in 1998 [3], indicated two important prop-

erties that are observed in many societies: a small diameter

and a high clustering coefficient. This milestone study tested

a simplified epidemic model and determined that the propaga-

tion in small-world networks might be faster and broader than

in regular networks. The small-world model has emerged in

terms of network research in social sciences. Newman et al. [1]

developed fundamental percolation and mean-field methods to

study the propagation in small-world networks.

The severe acute respiratory syndrome (SARS) outbreak

that occurred in 2003 provided a chance to verify some of

the theoretical issues in the small-world. Michael and Chi

[10] determined that the spreading of SARS in Hong Kong

had typical small-world properties. Consequently, epidemics

have focused more on the spatial factors. Gama and Nunes

[2] attempted the SEIR model in the small world in 2006.

They indicated that an epidemic model might consider that

the populations are finite and discrete, and they include a

realistic representation of the spatial degrees of freedom or

the interaction network structure.

Distance is one of the basic concepts in spatial and net-

worked analyses. Brokmann et al. [5] proposed the effective

distance concept of social networks in 2013. In their study, the

intricate spatiotemporal patterns could be reduced to simple,

homogeneous wave propagation patterns if a stochastically

motivated effective distance replaces the conventional geo-

graphic distance. In the context of global, air-traffic-mediated

epidemics, it has been shown that an effective distance reliably

predicts the disease arrival times, even if the epidemiological

parameters are unknown. This approach could also identify

the spatial origin of the spread of SARS in 2003, and it

was successfully applied to the data of the worldwide H1N1

influenza in 2009. This indicates that other network-driven

dynamic processes might also show an effective distance, such

as rumors, opinions, innovations, and other social phenomena.

The concept of social infectivity in our study is based on the

concept of effective distance.

Recent studies have explored the interactions between the

networks. Liu et al. [6] studied epidemics in two intercon-

nected small-world networks by using the SIS (susceptible-

infected-susceptible) model. They described that the epidemic

threshold in these networks decreases when the rewiring

probability of the component small-world networks increases.

When the infection rate is low, the rewiring probability affects

the global steady-state infection density. However, when the

infection rate is high, the infection density is insensitive to

the rewiring probability. Moreover, they indicated that the

epidemics in the interconnected small-world networks can

spread at different speeds, which depends on the rewiring

probability. Following their leads, this study explores the

various network patterns in epidemic dynamics by adjusting

the rewiring probability in the following experiment.

B. Human Mobility Affects the Propagation

Barabasi [7] pointed out that, in contrast to the pathological

parameters, the social network structure and people mobility

affect the propagation more significantly.

Transportation networks and their functions during an epi-

demic have been recently studied. Qian et al. [8] studied how

transportation changed the spread of the epidemic in three

major metropolitan areas in China. Their model explained how

the structural properties of the metropolitan contact networks

are associated with the risk level of communicable diseases.

Their results highlighted the vulnerability of the urban mass

transit systems during disease outbreaks, and they suggested

important planning and operation strategies to mitigate the risk

of communicable diseases.

Mobility was determined to be an essential factor in spread-

ing epidemics. Chang et al. [9] investigated mobility tracks

by using the smartphone location data of nearly 98 million
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Fig. 2. Epidemic SEIRAH model and the propagation mechanism by the stochastic processes.

people in ten large cities in the United States. The mobility

is between the census block groups (CBGs, living areas) and

the points of interest (POIs, e.g., cafe shops and restaurants),

which includes the information on the staying time and the

spatial size of the locations. The CBGs-POIs model simulates

an interconnected structure that explores the propagation.

According to the information on the daily new cases, we

can confirm the infection rate in different cities. Like the

CBGs-POIs structure, this study developed an interconnected

residence-work network model that resembles Japan’s urban

life pattern.

C. Position of this Study

This study presents a novel networked framework for

epidemic dynamics, which includes computational methods

for epidemiological trends and status transitions. The core

function is the causal inference that clarifies the unobserv-

able causes and the intervention estimator from the limited

observable effects of the propagation. This extended epidemic

model in interconnected networks is a value-added model that

collaborates with classic epidemiological statistics that lacks

spatial analysis. This methodological collaboration provides

another type of networked causal analysis path to explore the

epidemic dynamics.

III. GENERAL FRAMEWORK

A. SEIRAH Model and Social Infectivity

In classic epidemic models, infectivity is one of the static

epidemiological parameters from clinical statistics compatible

with most local or short-term infectious diseases. Unlike

these diseases, the COVID-19 pandemic has significant social

features, including a droplet infection route and an impact

on human mobility. Therefore, the infectivity of COVID-19

cannot be considered to be a static parameter; instead, it is

a variable parameter determined by different social circum-

stances.

This study extended the classic SEIR to the SEIRAH

epidemic model as shown in Fig.2(a). The three E, A, and I

Fig. 3. Interconnected networks framework with major human mobility (daily
commuting) in a typical metropolitan model.

classes are infectious classes that are expressed as propagation

causes. The H class is the effect of the propagation. The social

infectivity is the interventions estimator between the causes

and effects, as shown in Fig.2(b).

The SEIRAH propagation mechanism is illustrated in Fig.4.

The status transition can be considered to be a stochastic

process [11][15]. Therefore, in the simulation, the transition

occurs when the random triggering probability exceeds a

specific threshold value.

B. Interconnected Networks

This study modeled society as a combination of residence-

work networks in a typical metropolitan area with one center

and several outskirts, and they were initialized as individual

networks. The work network consists of people that are

commuting daily from the residential regions.

Here, daily commuting is considered to be patterned human

mobility in the metropolitan model. The work network inter-
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Fig. 4. Algorithm 2: Propagation mechanism by the stochastic processes.

connects all the residence networks and it has no transmission

among the residence networks.

This model divides one day into two time zones of ‘Day-

Hours(1)’ and ‘DayHours(2)’ for a simplified daily human

activity pattern. The former is the lifetime, and the latter is

the working hours. These are temporal factors for the time-

series analysis in the interconnected SEIRAH.

The above decomposes the human mobility simulation to a

particular spatial-temporal pattern, as shown in Fig.3.

Then, we choose a suitable network model to simulate the

real world. Small-world networks possess short node-to-node

distances and a high degree of clustering, which is similar to

the human community. Many previous studies indicate that the

small-world effect is one of the most common consequences of

disease propagation [1]. We chose the Newman-Watts small-

world model in this study, in which the parameters are linked

to explainable social meanings. The parameter set (N, k, p) is

as follows.

• N : Number of nodes, namely the population in each

residence or work network.

Algorithm 1 Modified binary search for social infectivity time

series (βt)

1: if E +A+ I = 0 then

2: β̂t ← 0
3: else

4: β̂t ← βt−1, A← 0, B ← 1
5: X ← {β̂t, A,B}
6: while |A−B| > ǫ do

7: DX =
∑m

i=0(Ĥ
X
t+i −Ht+i)

2

8: if DA > DB then

9: A← β̂t, D
A ← Dβ̂t

10: else if DA < DB then

11: B ← β̂t, D
B ← Dβ̂t

12: end if

13: β̂t ←
1
2 (A+B)

14: end while

15: end if

16: return βt ← β̂t

• k: Each node joint with its k nearest neighbors in a

ring topology. k describes the fundamental contacts of

an individual in a network.

• p: Probability of adding a new edge to each edge. The

value range is [0, 1].

After determining the parameter set, we generate Newman-

Watts small-world network as follows. First, a ring of N nodes

was generated. Each node connects to its k-nearest neighbors

(or k−1 if k is odd). Shortcuts are then added as new edges in

the ring. The new edges are between the existing nodes chosen

randomly by the parameter p. Do not remove any edges.

C. Causal Inference of Social Infectivity

Social infectivity indicates the infection effects of the propa-

gation on a social level. Algorithm 2 illustrates the propagation

mechanism, while any infectious node (E, A, or I) exists in the

networks. Social infectivity is the interventions estimator used

to conduct a causal analysis in the interconnected SEIRAH

framework.

According to the SEIRAH mechanism, the hospitalized time

series (Ht) has an evident monotonic relationship with a

social infectivity value in a specific network. To deal with the

computational procedures of the social infectivity (βt), this

study took βt−1 (social infectivity value of one day before) as

the predicted prior social infectivity to calculate the posterior

social infectivity. Here, t is the subscript of the time series

(daily) variable. The predicted posterior social infectivity (βt)

was optimized until the preset accuracy was obtained in the

model. The computational method is a modified binary search

that applies the optimization processes that are described in

Algorithm 1.
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TABLE I
THE POPULATION OF THE TOKYO METROPOLITAN AREAS

(unit: thousand people)

City Population Daily Commuting* % of Population

Tokyo 13,520 4,864 36.0%

Kanagawa 9,200 888 10.0%

Saitama 7,340 780 10.6%

Chiba 6,280 598 9.5%

Total 36,340 7,130 19.6%

*People commute to the central city for daily work by public transportation.

TABLE II
THRESHOLD VALUES OF STATUS TRANSITION

Status Transition Threshold Calculated Value

E → A p1σ 0.036

E → I (1− p1σ) 0.164

A → H p2λAH 0.028

A → R (1− P2)γAR 0.08

I → H λIH 0.950

H → R γHR 0.100

*Parameter descriptions are in Fig.2(a).

IV. EXPERIMENT AND RESULTS

A. Data Sources

This study used an experimental dataset from the Tokyo

metropolitan area. This dataset consisted of one central city

(Tokyo) and three outskirts (Kanagawa, Saitama, and Chiba

prefectures), as shown in Table I.

The Tokyo metropolitan area has a developed urban train

system that serves around 83% of the daily commuting people

before the pandemic outbreak. The station peak-time indicator

receives regular monitoring by the Japanese authority for

social management. After the outbreak, Japan enhanced their

monitoring for the number of train users during daily peak

times and sampling from the main stations in the Tokyo and

Osaka metropolitan areas.

1) Station Peak-time Indicator: An indicator of the

Japanese authority sets a standard level, the average station

user amount, which were monitored daily from February 24

to 28, 2020, just before the COVID-19 outbreak occurred

in Tokyo. From March 1, this indicator is the daily user

amount that is normalized by the mentioned standard level.

In this study, this indicator calculated the daily commuting

population.

2) Epidemiological Parameters: The SEIRAH model

shown in Fig.2(a) illustrates their relationships. They are sum-

marized in Table II with the sources of public information from

the Ministry of Health, Labour and Welfare (www.mhlw.go.jp,

the Japan public health authorities), and the recently published

studies [23][26][29][33]. In this study, the parameters do

not consider the new virus variations, which require more

epidemiological evidence.

B. Procedure and Results

We generated four residence networks that have a 1/100

population scale to simulate Tokyo, Kanagawa, Saitama, and

Chiba. One work network interconnected the four metropolitan

areas, which was dynamically composed according to the

daily commuting population. Here, the network parameter

set (N, k, p) is a particular pattern. The SEIRAH model

was overlaid on these interconnected networks to explore the

epidemic dynamics.

First, we used the hospitalized numbers to infer social

infectivity in time series, namely βt in the generated networks.

Second, we tested the various network parameter patterns

to search for the appropriate topology by the parameter p to

fit the experimental data well in the simulation.

Finally, we obtained the time series of the status transition

by using the above procedures, which is the target information

that concerns the propagation features to explore the epidemic

dynamics.

1) Social infectivity (βt): In the early days of the outbreak,

the social infectivity was relatively high. This is demonstrated

in Fig.5(a), which shows the lack of public awareness in

the COVID-19 pandemic. While the situation worsened, the

government announced a state of emergency. Most of the

people started to pay serious attention to social distancing and

their outside movements. At this time, the severity of the social

infections decreased. The simulation results are as follows.

• The recent social infectivity has shown a βt < 0.1. βt

decreases to approximately 30% from the early outbreak

period. This trend indicates a mindful awareness of the

public health in the Tokyo metropolitan area.

• We control the propagation under the condition of βt →
0, which is also the target of public health policy.

• The social infectivity changes significantly before and

after the state of emergency in Japan. The behavior

restriction causes the social infectivity to decrease.

• Non-pharmaceutical interventions (NPIs) affect the prop-

agation; however, it is difficult to isolate the infections

completely. This fact tends to show that only pharmaceu-

tical interventions can terminate the pandemic on a social

level.

2) Network parameters (p(r), p(w)): A small-world net-

work has the parameter set of (N, k, p), as previously men-

tioned in Section III.B. The small-world model initializes a

flexible topology to simulate the real world by adjusting the

network topology. Fig.5 shows the simulation results for the

different network parameter sets.

Different network topologies may cause different epidemic

dynamics [5][7]. This study explores the different network

topologies by adjusting the parameter p. The causality of p

and Ht is challenging to explore. Thus, we tested the various

patterns to search for a suitable range or value of p by

Algorithm 1. A suitable p outputs the predicted Ht, which

matches the real Ht well.

Our trial contained a total of 363,400 node-scale intercon-

nected networks. Here, we abbreviated the parameter p of the

residence network as p(r), and the work network is abbreviated

as p(w). The trial steps were as follows.

(1) Set patterns of p(r) and p(w) in the range of [0, 1].

(2) Input the p pattern and generate the networks for the

simulation.

www.mhlw.go.jp
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Fig. 5. Simulation results of the SEIRAH model in the interconnected networks with a variety of network patterns (i)(ii)(iii)(iv).

(3) Evaluate the output of the social infectivity βt and

predicted Ht time series.

We trailed a variety of p patterns as shown in Fig.6, with

some findings as follows.

• The appropriate network patterns were estimated in the

range of p(r) ∈ [0, 0.1] and p(w) ∈ [0, 0.2].
• The significant ranges are p(r) ∈ [0, 0.05] and p(w) ∈

[0, 0.1].
• In most cases, p(r) < p(w). This indicates that out-family

contacts are always more frequent than within-family

contacts in the social networks.

V. DISCUSSION

A. Interpretability of the Observed Data

Interpretability is an essential, yet an often-confusing is-

sue, when applying the analysis models to the real world

because of the known and unknown bias or causality. The

non-pharmaceutical intervention (NPI) analysis is a popular

method that has been performed in recent studies. We noticed

a topic that has emerged in a few papers published in Nature

[38][39][40] in terms of estimating the effects of the NPIs on

COVID-19 in Europe.

In this emerging topic, by focusing on the selected five NPIs

(social distancing encouraged, self-isolation, school closures,

public events banned, and complete lockdown), Flaxman et al.

[38] pointed out that the lockdown had the most identifiable

effect on the propagation reduction. Soltesz et al. [39] exam-

ined this result with the same model and indicated that the

invention of the banned public events has a more identifiable

effect than the complete lockdowns. After a further analysis,

Flaxman et al. [40] noted that the different model pooling

methods resulted in different results. Flaxman et al. utilized a

partial pool of 11 European countries. However, Soltesz et al.

used a full pool for the individual Swedish data.
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Fig. 6. Parameter p patterns of the residence networks and work network, namely the pairs of p(r) and p(w) , for the 363,400 node-size interconnected
network simulation. The ‘×’ indicates the tested inappropriate network topology, and the ‘red •’ indicates the appropriate ones.

From these studies, we know that the interventions’ effect

estimation may cause a bias and different interpretations while

neglecting the regional scale and causal inference. First, we

chose a metropolitan scale, which is smaller. As a result, the

metropolitan scale is better for interventional bias control than

the country and multi-country scales. We can then represent

the social infectivity, which is an average estimator of the

COVID-19 transmission that covers the effects of the defined

and undefined NPIs. The social infectivity shown in Fig.5(a)

is an outcome of the mechanism from our epidemic model,

which applies to causal interpretation.

In our study, the epidemic model outputs the simulated

hospitalized number series (Ht) in Fig.5(b) on a certain level

of social infectivity. The simulated Ht can be compared with

the observed real Ht to control the simulation bias.

Many studies use the hospitalized number Ht series as a

data source by performing a parametric or non-parametric

analysis. Ren et al. [16] presented a non-parametric analysis of

the singular spectral analysis (SSA). The SSA decomposes the

hospitalized number series into different components without

prior assumptions. As a model-free technique, the SSA avoids

the empirical parameters, and it has a good computing effi-

ciency.

Unlike SSA, our study adopted a parametric analysis be-

cause of its emphasis on data interpretability. Our model

outputs nearly the same results in Fig.5(b) as demonstrated in

the SSA method by Ren et al. Moreover, with the propagation

mechanism in the epidemic model, our model builds an inter-

pretable path from the infectivity, as shown in Fig.5(a), to the

transition of the infectious classes, as shown in Fig.5(c). Our

method improves the data interpretability, which is an essential

advantage for propagation understanding and decision making.

Meanwhile, as a parametric analysis, our study is limited

by the empirical parameters. Recently, viral variations have

been confirmed in many countries. In terms of future work,

we will need to reinforce our model by updating the necessary

parameters with more epidemiological evidence.

B. Propagation Feature Findings of the Infectious Classes

1) The peak of the exposed (E) individuals emerges two

weeks ahead of ‘H’.: In Fig.5(c), we can find two peaks

with ‘E’ numbers at the beginning of April and August. Then,

the ‘H’ peaks follow after two weeks. According to the World

Health Organization (WHO), the incubation period of COVID-

19 ranges from 1 to 14 days with a median of 5 days. The

situation in Tokyo confirms this. This propagation feature

finding emphasizes the importance of checking in the target

regions or persons. Except when performing polymerase chain

reaction (PCR) testing in a hospital, a simple home checking

kit might be worthier of being promoted. To confirm the rising

exposed ratio, more buffer days were required to enhance the

local medical measurements.

2) Asymptomatic (A) has a subsequent descent after ‘H’.:

This must be considered when controlling COVID-19. Another

propagation feature finding is that the trend transition of

‘A’ follows ‘H’ with a significant subsequent descent. The

‘H’ descent quickly causes the overhasty judgment of the

‘getting better’ situation. However, this fact is not positive

because of the unobservable ‘A’ of the vast majority. In Japan,

once the number of hospitalizations decreased in May, the

authority lifted the state of emergency at the end of May and

soon promoted the ‘Go To Eat’ and ‘Go To Travel’ policy

for economic revitalization. This overhasty policy accelerated

human mobility and triggered a second outbreak in July.



8

Meanwhile, we have seen similar overhasty policies in other

countries.

The transition of the ‘A’ population also emphasizes the im-

portance of checking. In the SEIRAH mechanism, by having

more checking, the more asymptomatic infected individuals

will be inspected and accelerated to the ‘H’ class. As a

result, we can protect more susceptible individuals from social

networks.

3) The symptomatic infected (I) has a faster trend than

‘A’.: In the SEIRAH model, the ‘E’ individuals transit to

‘I’ stochastically as a causal effect. In Fig.5(c), we can see

that the trend of ‘I’ is similar to ‘A’; however, it decreases

relatively fast. The Tokyo metropolitan areas have developed

medical systems with hierarchical hospitals and community

clinics. This system accelerates the transition of ‘I’ to ‘H’,

while the symptoms appear. Meanwhile, we can use the ratio

of ‘I’ in the total ‘H’ from the hospital statistics to estimate

the ‘A’ population. Controlling ‘A’ might be more important

than ‘I’ with regard to public health authority tasks.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

First, this study extends the classic epidemic model with

the new features of COVID-19. This study reinforced the

existing stochastic processing analysis of the propagation by

combining the causal interpretation and overlaying the model

on the networks. This method improved the practical level of

the epidemic model that has conditions that simulate the actual

conditions in a society.

Second, recent studies have mainly focused on predicting

the trend of the daily hospitalized numbers and they have

overlooked the mechanism of the infection causes. This study

contributes to the core mechanism of the causal inference,

which focuses on the average effect of the non-pharmaceutical

interventions. This is named as the social infectivity in the

model, which illustrates an interpretable path between the ob-

served effect and the unobservable causes of the propagation.

Third, we highlighted the interconnected networks to un-

derstand the epidemic dynamics while considering human

mobility effects, which is the first factor of propagation in

modern society. This study explored the epidemic dynamics

spatiotemporally by using the Tokyo metropolitan dataset. This

has interpretable outcomes of the unobservable social factors

that contains new feature findings. This can help us obtain

a better understanding of COVID-19 and provide us with

valuable local references for propagation control.

B. Future Work

The stochastic processes method can provide more reliable

results when the amount of network nodes is closer to the

target region’s population. Theoretically, the computational

complexity is between O(N) and O(NlogN) by the current

network traversal. A larger network size results in a much

longer computational time. Therefore, the algorithms in this

study are limited to a vast network, such as millions of nodes

or more. We expect that the graph neural network (GNN) is

an advanced option to fit our networked structure with a better

data analyzing performance.

Some recent studies have challenged the development of

more computational methods and algorithms that concerns the

causal analysis in the GNN or networked structures that are

similar. This direction is expected to explore more features

from observable information and reinforce the interpretability

of the data analysis.

Moreover, these models are expected to implement more

counterfactual experiments with significant social implica-

tions. COVID-19 is a new pandemic to mankind with many un-

known characteristics. Meanwhile, we are limited to evaluating

new control measurements by performing social testing. From

this, counterfactual experiments can explore more epidemic

dynamics for decision making, which is a primary task in our

future work.
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