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Analysis and clustering of multivariate time-series data attract grow-
ing interest in immunological and clinical studies. In such applications, re-
searchers are interested in clustering subjects based on potentially high-
dimensional longitudinal features, and in investigating how clinical covari-
ates may affect the clustering results. These studies are often challenging due
to high dimensionality, as well as the sparse and irregular nature of sam-
ple collection along the time dimension. We propose a smoothed probabilis-
tic PARAFAC model with covariates (SPACO) to tackle these two problems
while utilizing auxiliary covariates of interest. We provide intensive simula-
tions to test different aspects of SPACO and demonstrate its use on immuno-
logical data sets from two recent cohorts of SARs-CoV-2 patients.

1. Introduction. We consider the modeling of sparsely observed multivariate longitu-
dinal data. Such data are common in medical applications, where we may observe for each
participant/subject i= 1, . . . , I a matrix Xi ∈ Rni×J , measured for J different features and
collected at ni different times {ti,1, . . . , ti,ni

}. For example, immune profiles are measured
for hundreds of markers for each patient at irregular sampling times in Lucas et al. (2020)
and Rendeiro et al. (2020). Letting T be the number of distinct time points across all subjects,
such multivariate time-series data can be viewed as a three-way tensor X ∈ RI×T×J , with
potentially high missing-rate along the time dimension.

In applications such as immunological analysis, X usually has many features J , with
strong correlation structure. Moreover, the data for each subject i tends to be sparsely and
irregularly sampled in time. In addition to X , researchers often have a set of nontemporal
covariates zi ∈ Rq associated with subject i. These auxiliary covariates are perhaps helpful
in accounting for the heterogeneity inXij(t) across different subjects. Researchers are often
interested in understanding how subjects differ in terms of features’ time trajectories, and
how these differences relate to these covariates Z := (z1, . . . ,zI)

>.
To adapt to the characteristics of X and efficiently utilize the auxiliary variables Z , we

propose a smoothed and probabilistic PARAFAC model for X in the presence of auxiliary
covariates (SPACO). SPACO assumes that (1)X is a noisy realization of an underlying low-
rank tensor, and (2) the subject scores in the tensor decomposition are a noisy realization of
a linear function of Z . More specifically, we consider the following probabilistic model:

xitj =

K∑
k=1

uikφtkvjk + εitj , εitj ∼N (0, σ2
j )

ui = (uik)
K
k=1 ∼N (µi,Λ

−1
f ), µi = β>zi.

Here, (1) uik, φtk, vjk are the subject score, trajectory value and feature loading for factor k in
the PARAFAC model and the for observation indexed by (i, t, j), (2) β ∈Rq×K describes the
dependence of the expected subject score for subject i on zi, and (3) Λf is a K×K diagonal
precision matrix. We impose smoothness on the time trajectories (φtk)

>
t=1 and sparsity on β,
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and estimate these parameters using a mixed EM procedure. More explanation of the model
is given in Section 2 and Section 3.

Several related issues arise when estimating the parameters and interpreting the results.
We shall summarize them here, with more detailed descriptions in Section 4:

• A good initialization is usually important for iterative optimization of a nonconvex ob-
jective. We suggest an initialization procedure combining multilinear SVD (MLSVD) and
functional PCA, as an alternative to random parameter initialization that is frequently used
in the PARAFAC decomposition.

• Selection of tuning parameters to control the smoothness and sparsity level is non-trivial.
It can be computationally expensive to carry out cross-validation. We will suggest a com-
putationally efficient way of auto-tuning in this paper.

• In high dimensions, our estimated model parameters tend to overfit towards the noise,
especially in the low signal-to-noise (SNR) setting. We propose a cross-fitting procedure
for better reconstructing the signal array, motivated by observations of eigenvalue bias and
eigenvector inconsistency in high-dimensional PCA.

• We suggest a computationally efficient method of performing hypothesis testing on β. The
constructed p-values can be used as an informative measure of variable importance of Z
for patient subgroups.

We provide a python package spaco for researchers interested in applying the proposed
method.

Our model is built upon a large body of previous literature around PCA, functional PCA,
and tensor decomposition. PCA/SVD is the most popular tool for dimension reduction and
exploration of multivariate observations. Functional PCA (Besse and Ramsay, 1986; Yao,
Müller and Wang, 2005) is often used in particular for modeling longitudinal data. It utilizes
the smoothness of time trajectories to handle sparsity in the longitudinal observations, and es-
timates the eigenvectors and factor scores under this smoothness assumption. The smoothed
probabilistic PARAFAC model can be viewed as an extension of functional PCA to the setting
of three-way tensor decomposition (Acar and Yener, 2008; Sidiropoulos et al., 2017) using
the parallel factor (PARAFAC) model (Harshman and Lundy, 1994; Carroll, Pruzansky and
Kruskal, 1980).

Tensor decomposition has been applied to many applications, including speech signal sep-
aration(Nion et al., 2009), topic modeling (Anandkumar et al., 2012), communication (Nion
and Sidiropoulos, 2010), spectral hypergraph theory and hyper-graph matching(Duchenne
et al., 2011), and analysis of biomedical multi-omics data (Taguchi, 2019; Xu et al., 2020).
In the study of multivariate longitudinal data in economics (Fan, Fan and Lv, 2008; Lam,
Yao and Bathia, 2011; Fan, Liao and Mincheva, 2011), researchers have combined tensor
decomposition with auto-cross-covariance estimation and autoregressive models (Wang, Liu
and Chen, 2019; Wang et al., 2021). However, these methods usually do not work well with
highly sparse data or do not scale well with the feature dimensions, which are important for
working with medical data. In Yokota, Zhao and Cichocki (2016) and Imaizumi and Hayashi
(2017), the authors introduce smooth tensor decomposition models, and estimate the model
parameters by iteratively solving penalized regression problems.

In contrast to the approaches of Yokota, Zhao and Cichocki (2016) and Imaizumi and
Hayashi (2017), SPACO is a probabilistic model, which also jointly models the longitudinal
data with potentially high-dimensional non-temporal covariatesZ . The incorporation of aux-
iliary covariates can sometimes improve signal estimation quality in the matrix setting (Li,
Shen and Huang, 2016), and we observe similar improvements when the auxiliary covariates
contain important information about the subject clustering structure. We also suggest meth-
ods for good initialization and efficient selection of tuning parameters, which are important
in practice but were not discussed in these two previous works.
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Even in settings without auxiliary covariatesZ , our combination of probabilistic modeling
and automatic parameter tuning provides an attractive alternative to existing smooth tensor
decomposition methods. We will refer to this model without covariates as SPACO-, and we
will also compare SPACO with SPACO- in our simulations.

The paper is organized as follows. Section 1.1 provides a brief review of the PARAFAC
decomposition and related tensor decomposition methods. We describe the SPACO model
in Section 2 and model parameter estimation with fixed tuning parameters in Section 3. In
Section 4, we discuss parameter initialization, the choice of tuning parameters, cross-fitting,
and hypothesis testing. We provide extensive simulations in Section 5 on the different aspects
of the SPACO model. Finally, in Section 6, we apply SPACO to two SARS-COV-2 data sets
and demonstrate its use in immunological studies.

1.1. Notations and previous work.

1.1.1. Notations. LetX ∈RI×T×J be a tensor for some sparse multivariate longitudinal
observations, where I is the number of subjects, J is the number of features and T is the num-
ber of total unique time points. For any matrix A, we let Ai:/A:i denote its ith row/column,
and often write Ai for the ith column A:i. We let XI :=

(
X:,:,1 · · ·X:,:,J

)
∈ RI×(TJ),

XT :=
(
X>:,:,1 · · ·X>:,:,J

)
∈ RT×(IJ), and XJ :=

(
X>:,1,: · · ·X>:,T,:

)
∈ RJ×(IT ) be the ma-

trices created by unfolding X in the subject/feature/time dimension respectively. We also
define:

• Tensor product }: for three vectors a ∈RI , b ∈RT , c ∈RJ , A= a} b} c ∈RI×T×J with
Aitj = aibtcj .

• Kronecker product ⊗: for two matrices A ∈RI1×K1 , B ∈RI2×K2 ,

C =A⊗B =

A11B . . . A1K1
B

...
. . .

...
AI11B . . . AI1K1

B

 ∈R(I1I2)×(K1K2).

• Column-wise Khatri-Rao product �: for two matrices A ∈RI1×K , B ∈RI2×K , C =A�
B ∈R(I1I2)×K with C:,k = (A:,k ⊗B:,k) for k = 1, . . . ,K .

• Element-wise multiplication ·: for two matrices A,B ∈ RI×K , C = A · B ∈ RI×K with
Cik = (AikBik); for b ∈ RK , C = A · b = Adiag{b1, . . . , bK}; for b ∈ RI , C = b · A =
diag{b1, . . . , bI}A.

• Inner product 〈., .〉: for two vectors a, b ∈RI , 〈a, b〉=
∑I

i=1 aibi.

1.1.2. PARAFAC decomposition. We can decompose a tensor X based on two factor-
ization models, the PARAFAC/CANDECOMP model (Harshman and Lundy, 1994; Carroll,
Pruzansky and Kruskal, 1980) or the Tucker model (Tucker, 1966). The PARAFAC model
decomposes X into a linear combination of rank-one tensors:

(1) X =

K∑
k=1

Uk }Φk }Vk.

K is the rank of X and is the minimum number of rank-one tensor needed to produce X .
Unlike SVD, the above tensor decomposition does not require the orthogonality ofU/Φ/V .

Low-rank approximation of an observed tensor X is often performed by solving the opti-
mization problem

(2) min
U ,Φ,V

‖X −
K∑
k=1

[Uk }Φk }Vk]‖2F ,
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for small K . This low-rank approximation is NP-hard to compute in general (Johan, 1990),
and a common heuristic is to find a locally optimal solution by updating U ,Φ,V with alter-
nating least squares (ALS):

U ← arg min
U
‖XI −U(V �Φ)>‖2F

Φ← arg min
Φ
‖XT −Φ(V �U)>‖2F

V ← arg min
V
‖XJ −V (Φ�U)>‖2F

Another tensor decomposition model is the Tucker model. This usually requires (U ,Φ,V ) to
be orthogonal matrices, and introduces a cross-component correlation using a non-diagonal
core array G ∈ RK×K×K . Solutions from the PARAFAC and Tucker decompositions can
be expressed using one another (ignoring computational challenges). We omit details of the
Tucker model and refer interested readers to Sidiropoulos et al. (2017).

1.1.3. Tensor decomposition for multivariate longitudinal data. Tensor decomposition
has been proposed previously to analyze multivariate longitudinal data. In Wang et al. (2021),
the authors consider an autoregressive time-series model where

xt =A1xt−1 + . . .+Apxt−p + εt,

with xt = (xitj : i= 1, . . . , I, j = 1, . . . , J) and the coefficient matrix (A1, . . . ,Ap) assumed
to be an unfolding of a tensor with multi-linear low rank (Tucker, 1966). In Wang, Liu
and Chen (2019), the authors consider a procedure based on auto-cross-covariance estima-
tion. Setting xt,j = (xitj : i = 1, . . . , I), the authors first estimate the empirical auto-cross-
covariance

Ω̂x,j1j2(h) =
1

T − h

T−h∑
t=1

xt,j1x
>
t+h,j2 ,

followed by a low-rank decomposition of M =
∑h0

h=1

∑p
j1=1

∑p
j2=1 Ω̂x,j1j2(h) to estimate

the auto-covariance of the structure of latent time trajectories. Both these two approaches do
not deal well with sparsity along the time dimension. The second approach also scales poorly
with the feature dimension J , which can be hundreds or thousands in medical applications.

Tensor decomposition models that impose smoothness along the time dimension were
studied in Imaizumi and Hayashi (2017) and Yokota, Zhao and Cichocki (2016). In Imaizumi
and Hayashi (2017), the authors introduced smoothness to the reconstructed array X̂ ,
whereas in Yokota, Zhao and Cichocki (2016), the authors considered a PARAFAC model
with a smoothness penalty on the decomposed components. Both works proposed optimiza-
tion approaches for parameter estimation.

We extend the approach of Yokota, Zhao and Cichocki (2016) by considering a probabilis-
tic model, and incorporate the auxiliary covariates Z . A probabilistic model can be helpful
with highly sparse and irregular longitudinal sampling, by modeling randomness in the ob-
servations. Auxiliary covariates are common in medical applications where biologists and
clinicians may want to understand whether age, sex, disease status, or other personalized
medical histories are related to subjects’ temporal trajectories.

2. SPACO model.
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2.1. A probabilistic PARAFAC decomposition with covariates. Our probabilistic PARAFAC
model extends probabilistic matrix factorization (Tipping and Bishop, 1999; Mnih and
Salakhutdinov, 2007; Hinrich and Mørup, 2019) to higher-order arrays. In the probabilis-
tic PARAFAC, we assume X to be a noisy realization of an underlying signal array
F =

∑K
k=1Uk } Φk } Vk. We stack Uk/Φk/Vk as the columns of U/Φ/V , denote the

rows of U/Φ/V by ui/φt/vj , and their entries by uik/φtk/vjk. We let xitj denote the
(i, t, j)-entry of X .

Even though X is often of high rank, we consider the scenario where the rank of F is
small. The mathematical formulation of the probabilistic model is given by

xitj =

K∑
k=1

uikφtkvjk + εitj ,(3)

ui ∼N (µi,Λ
−1
f ),

εijt ∼N (0, σ2
j ),

where Λf = diag{ 1
s2
1
, . . . , 1

s2
K
} is a K ×K diagonal precision matrix. Without covariates,

we set the mean parameter µi = 0. If we are interested in explaining the heterogeneity in
µi across subjects with auxiliary covariates Z ∈ RI×q , then we may µi as a function of
zi :=Zi,:. Here, we consider a linear model

µik = z>i βk, ∀k = 1, . . . ,K.

To avoid confusion, we will always call X the “features”, and Z the “covariates” or “vari-
ables”.

The component U characterizes differences across subjects and can be used for subject
clustering. We refer toU as the subject scores. The component V reveals the composition of
the factors in terms of the original features, and can be used for downstream interpretation.
We refer to V as the feature loadings. The component Φ can be interpreted as function values
sampled from some underlying smooth functions φk(t) at a set of discrete-time points, so that

Φk = (φk(t1), . . . , φk(tT )).

We refer to Φ as the time trajectories. The smoothness assumption enables us to work with
sparse longitudinal observations efficiently. We treat U as latent variables and let

Θ = {V ,Φ,β,
(
σ2
j , j = 1, . . . , J

)
,
(
s2
k, k = 1, . . . ,K

)
}

denote the set of model parameters.
If U is completely observed, then it is straightforward to write down the complete-data

log-likelihood: Recalling that XI ∈ RI×(TJ) is the unfolding of X in the subject direction,
we write~i for the indices of observed values in the ith row of XI , and XI,~i for the vector of
these observed values. Each such observed value xitj has noise variance σ2

j , and we write Λ~i
to represent the diagonal precision matrix of values 1/σ2

j correpsonding to the indices in ~i.
Similarly, we define {~t, XT,~t, Λ~t} for the unfolding XT ∈ RT×(IJ), and {~j, XJ,~j , Λ~j} for
XJ ∈RJ×(IT ).

The complete data log-likelihood is given by

L(X,U |Θ) =− 1

2

∑
i

(
XI,~i − (V �Φ)~iui

)>
Λ~i

(
XI,~i − (V �Φ)~iui

)>
(4)

− 1

2

∑
i

(ui −β>zi)
>Λf (ui −β>zi) +

1

2

∑
i

(
log |Λ~i|+ I log |Λf |

)
.
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In practice, U is not observed. As a result, we consider the marginal log-likelihood in-
tegrating out U in our model. Under the Gaussian assumption for U , this marginalization
results in the closed-form expression

L(X|Θ)∝−1

2

∑
i

(
X>
I,~i

Λ~iXI,~i + z>i βΛfβ
>zi −µ>i Σ−1

i µi

)
(5)

+
1

2

(∑
i

(
log |Λ~i|+ log |Σi|

)
+ I log |Λf |

)
,

where

(6) Σi =
(

Λf + (V �Φ)>~i Λ~i(V �Φ)~i

)−1
, µi = Σi

(
Λfβ

>zi + (V �Φ)>~i Λ~iXI,~i

)
are the posterior covariance and mean of ui. We discuss identifiability of model parameters
and smoothness and sparsity penalties in the remainder of this section. We give a mixed
EM-procedure for greedily maximizing the penalized likelihood in Section 3.

2.2. Identifiability of model parameters. The parameters of the model described in Sec-
tion 2.1 are not strictly identifiable, for the following reasons:

• Permuting the factors {1, . . . ,K} yields the same model. We will always order the factors
such that s2

1 ≥ . . .≥ s2
K when reporting results.

• The rescaling (c1Uk, c2Φk, c3Vk) represents the same model as (Uk,Φk,Vk) if c1c2c3 =
1. Thus, in our setting where U are latent variables, the parameters (Φk,Vk,βk, s

2
k) rep-

resent the same model as (c1Φk, c2Vk, c3βk, c
2
3s

2
k):

PROPOSITION 2.1. Let Θk(c1, c2, c3) = {c1Φk, c2Vk, c3βk, c
2
3s

2
k}, and let Θkc be the

remaining parameters of Θ. Then

L(X|Θk(c1, c2, c3),Θkc) = L(X|Θk(1,1,1),Θkc), for all c1c2c3 = 1.

This non-identifiability may cause problems in algorithmic convergence, and the spe-
cific scaling of Φk is also important for the smoothness penalization that we later intro-
duce. To avoid these problems, we will enforce the scalings

(7) ‖Vk‖22 = 1, ‖Φk‖22 = T.

2.3. Smoothness and sparsity. We assume that the time component Φk is sampled from
a slowly varying trajectory function φk(t). We encourage smoothness of φk(t) by directly
penalizing the function values via a penalty term

∑
k λ1kΦ

>
k ΩΦk.

There are different types of penalty matrices Ω that practitioners can use. In this paper, we
consider a Laplacian smoothing (Sorkine et al., 2004) with weighted adjacency matrix Γ:

Ω = Γ>Γ, Γ =


1

T [2]−T [1] −
1

T [2]−T [1] . . . 0 0

0 1
T [3]−T [2]

. . . 0
...

...
...

. . .
...

...
0 0 . . . 1

T [T ]−T [T−1] −
1

T [T ]−T [T−1]

 ∈RT×(T−1)

If practitioners want φk(t) to have slowly varying derivatives, they can also use a penalty
matrix that penalizes changes in gradients over time.

When the number of covariates q in Z is moderately large, we may wish to impose spar-
sity in the β parameter. We encourage such sparsity by including a lasso penalty (Tibshirani,
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2011) in the model. Our goal is then to find parameters maximizing the expected penalized
log-likelihood, or minimizing the penalized expected deviance loss, under the scaling con-
straints of eq. (7):

min J(Θ) :=−1

2
L(X|Θ) +

K∑
k=1

λ1kΦ
>
k ΩΦk +

∑
k

λ2k|βk|

s.t ‖Vk‖22 = 1, ‖Φk‖22 = T, for all k = 1, . . . ,K.(8)

Eq. (8) describes a non-convex problem. However, we can find locally optimal solutions via
an alternating update procedure. We may update βk using lasso regression, fixing other pa-
rameters. However, there is no simple subroutine for updating parameters like Vk, even with
other parameters fixed. This leads to a mixed EM procedure where we update βk maximizing
the marginal log-likelihood, and update other parameters using the EM algorithm. We give
details of our iterative estimation procedure in Section 3 and show that the loss is nonincreas-
ing over the iterations.

3. Parameter estimation. Given penalty terms λ1k, λ2k, we alternately update param-
eters β, V , U , s2 and σ2 with a mixed EM procedure described in Algorithm 1. We briefly
explain the updating steps here:

• Given other parameters, we can minimize over β by solving a least-squares regression
problem with lasso penalty.

• Fixing β, we update the other parameters using an EM procedure. Denote the current
parameters as Θ0. Our goal is to maximize the penalized expected log-likelihood

EU |Θ0

{
L(X,U |Θ)−

∑
k

λ1kΦ
>
k ΩΦk −

∑
k

λ2k|βk|

}
,

under the posterior distribution U |Θ0. However, this is still a non-convex problem under
the constraints ‖Vk‖22 = 1 and ‖Φk‖22 = T .

• In Algorithm 1, steps 6-15, we update parameters Vk, Φk, s2
k and σ2

j iteratively. In particu-
lar, due to the nonconvex constraints on Vk and Φk, we update these via proximal gradient
descent. We define proximal mappings proxVk

(y;y0, ρ)/proxΦk
(y;y0, ρ) for updating

Vk/Φk as

proxVk
(y;y0, ρ) =


1
2‖y− y0‖22 − ρy>

∂EU|Θ0
L(X,U |Θ)
∂Vk

∣∣∣∣
Vk=y0

if ‖y‖22 = 1

∞ otherwise,

proxΦk
(y;y0, ρ) =


1
2‖y− y0‖22 − ρy>

(
∂EU|Θ0

L(X,U |Θ)
∂Φk

∣∣∣∣
Φk=y0

− λ1kΩy0

)
if ‖y‖22 = T

∞ otherwise.

In steps 7-9 and 11-13, we perform a proximal update for Vk and Φk until no improvement
is observed in our objective.
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Algorithm 1: SPACO with fixed penalties
Data: X , Ω, λ1, λ2, K
Result: Estimated V , Φ, β, s2, σ2 and P (U |Θ,X), the posterior distribution of U .

1 Initialization of V , Φ, β, s2, σ2;
2 while Not converged do
3 for k = 1, . . . ,K do
4 β:,k← arg maxβ:,k

{L(X|Θ) + λ2k|β:,k|}
5 end
6 For k = 1, . . . ,K:
7 while Not converged do
8 Vk← arg miny proxVk

(y;Vk, ρ) for a sufficiently small ρ.
9 end

10 For k = 1, . . . ,K:
11 while Not converged do
12 Φk← arg miny proxΦk

(y;Φk, ρ) for a sufficiently small ρ.
13 end
14 For k = 1, . . . ,K: s2

k← arg mins2
k
EU |Θ0

L(X,U |Θ).
15 For j = 1, . . . , J : σ2

j ← arg minσ2
j
EU |Θ0

L(X,U |Θ).
16 end

In more detail, the following are the explicit forms of the updates of all model parameters:
Recall the posterior covariance Σi and mean µi from eq. (6) given the current model param-
eters. In the context of two indices j and t, recall also the index vectors ~j and ~t of observed
columns in the jth and tth rows of XJ and XT . Stack µ1, . . . ,µI as the rows of µ ∈ RI×K ,
and let (Φ�µ)~j and (V �µ)~t denote these corresponding rows of (Φ�µ) and (V �µ). Fi-
nally, let Oit = 1 if features Xi,t,: are observed, and Oit = 0 otherwise. The exact parameter
update rules are provided in Lemma 3.1.

LEMMA 3.1. The parameter update steps in Algorithm 1 take the following forms:

• In line 4, βk = arg maxβk
{L(X|Θ) + λ2k|β.k|}= arg minβk

1
2‖ỹ − Z̃βk‖

2
2 + λ2k|βk|,

where

z̃i =

√
1

s2
k

s2
k − (Σi)k,k

s2
k

zi,(9)

ỹi =

√
1

s2
k

s2
k

s2
k − (Σi)k,k

(
(Σi)k,:(V �Φ)>~i Λ~iXI,~i + (Σi)k,kcΛf,kcβ>kczi

)
.(10)

Here (Σi)k,: is the kth row of Σi, and (Σi)k,kc is this row with kth entry removed; Λf,kc is
the sub matrix of Λf with the kth column and row removed.

• Define M j = 1
σ2
j

[
(Φ�µ)~j(Φ�µ)>~j +

(∑
t(
∑

i:Oit=1 Σi) · (φtφ>t )
)]
∈ RK×K , hj =

1
σ2
j
(Φ� µ)>~j,kXJ,~j . Let AVk = diag{M1

k,k, . . . ,M
J
k,k}, a ∈ RJ with aj = hj − VkcM j

kc,k,

where Vkc is V excluding its kth column. Then line 8 is

Vk =
Ṽk

‖Ṽk‖2
, Ṽk = Vk + ρ(a−AVk Vk).

• Define M t =
[
(V �µ)>~t Λ~t(V �µ)~t +

∑
j

1
σ2
j

(∑
i:Oit=1 Σi

)
·
(
vjv

>
j

)]
, ht = (V �

µ)>~t,kΛ~tXT,~t. Let AΦ
k = diag{M1

k,k, . . . ,M
>
k,k}, a ∈ RT with at = ht −ΦkcM t

kc,k. Then
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line 12 is

Φk =
Φ̃k

‖Φ̃k‖2
, Φ̃k = Φk + ρ(a−AΦ

k Φk − λ1kΦk).

• In lines 14 and 15,

s2
k←

1

I

∑
i

[
(µik − z>i βk)

2 + (Σi)kk

]
and

σ2
j ←

1

|~j|

[
(XJ,~j − (Φ�µ)~jvj)

>(XJ,~j − (Φ�µ)~jvj) + v>j

(∑
t

( ∑
i:Oit=1

Σi

)
· (φtφ>t )

)
vj

]
,

where |~j| is the total number of observed entries for feature j across all subjects and times.

Even though ‖Vk‖22 = 1 and ‖Φk‖22 = T are non-convex constraints, Algorithm 1 guaran-
tees that the loss is non-increasing as long as proximal gradient descent uses a sufficiently
small step size when updating Vk and Φk. Let eigmax(A) be the largest eigenvalue of a matrix
A.

THEOREM 3.2. Let ρk(V ) and ρk(Φ) be the step sizes in proximal gradient descent for
Vk and Φk. Let Θ` be parameters at the beginning of the `th iteration of the outer while loop
and Θ`+1 be the parameter values at the end of this iteration. When 1

ρk(V ) ≥ maxjM
j
kk,

1
ρk(Φ) ≥ eigmax(AΦ

k + λ1kΩ), we have J(Θ`)≥ J(Θ`+1).

Table 1 tracks the computational cost at each of the updating steps. (Here |~i| is the number
of observed entries in~i, etc.)

TABLE 1
Computational complexity for SPACO

Update posteriors for U O(K2|~i|) for Σi and µi, and O(K2J
∑
itOit) in total.

Update Φ O(K2|~t|) for M t, ht, O(T 2m) for m proximal updates, O(K2J
∑
itOit +KT 2m) in total.

Update V O(K2|~j|) for Mj , hj , O(Jm) for m proximal updates, O(K2J
∑
itOit +KJm2) in total.

Update β O(mKIqq∗) where q∗ = sparsity level, m= number of iterations for lasso to converge.
Update σ2 O(KJ

∑
itOit)

Update s2 O(IqK)

Treating the number of lasso and proximal descent iterations as fixed, the computational
complexity for each full update isO(KT 2 +K2J

∑
itOit+KIqq∗), which is at most linear

in the total number of observations J
∑

itOit and quadratic in the number of unique time
points. Hence, SPACO scales well with the problem dimensions.

4. Initialization, tuning, cross-fitting, and variable importance.

4.1. Model parameter initialization. Random initialization for the PARAFAC model
is often used, for example in the smooth PARAFAC decomposition of Yokota, Zhao and
Cichocki (2016). An alternative approach is to first perform Tucker decomposition using
HOSVD/MLSVD (De Lathauwer, De Moor and Vandewalle, 2000), followed by PARAFAC
decomposition on the small core tensor G ∈ RK×K×K (Bro and Andersson, 1998; Phan,
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Tichavskỳ and Cichocki, 2013). We propose an efficient initialization for SPACO based on
this approach, as described in Algorithm 2. Our approach follows a procedure similar to (Bro
and Andersson, 1998; Phan, Tichavskỳ and Cichocki, 2013), where we first form a Tucker
decomposition using a MLSVD-type procedure X ≈ [U⊥,Φ⊥,V⊥;G] with orthonormal
U⊥ ∈ RI×K , Φ⊥ ∈ RT×K and V⊥ ∈ RJ×K . Our initialization is different from MLSVD
because we account for missing data and smoothness in Φ. Algorithm 2 consists of the fol-
lowing steps:

• Same as in MLSVD, we perform SVD on XJ to get V⊥.
• We project XJ onto each column of V⊥ and perform functional PCA on a total product

matrix, to estimate Φ⊥.
• We run a ridge-penalized regression of rows of XI on V⊥ ⊗Φ⊥, and estimate U⊥ and G

from the regression coefficients.

Algorithm 2: Initialization of SPACO
22 Perform SVD on XJ using observed columns, and let V⊥ be the top K left singular

vectors.
44 Set Y(k) = (Y1(k), . . . ,YT (k)) ∈RI×T , where Yt(k) =X:,t,:(V⊥)k ∈RI is the

projection along the kth column of V⊥ of the data at time t.
66 Perform functional PCA by smooth estimation of the total product matrix of Y(k):

W =

K∑
k=1

W(k) ∈RT×T , Wt,t′(k) = E[Yt(k)Yt′(k)].

Here E[Yt(k)Yt′(k)] is the same product across subjects i= 1, . . . , I . Smooth
estimation of W is done via a local linear regression estimate described in Yao,
Müller and Wang (2005). We provide details in Appendix B.1 for the sake of
completeness. Let Φ⊥ be the top K eigenvectors of the smooth estimate of W.

88 Let Ũ = arg minU{‖XI −U(V⊥ ⊗Φ⊥)>‖2F + δ‖U‖2F } ∈RI×K
2

, where δ is a
small regularization parameter to avoid severe over-fitting to the noise. By default,
we set δ = 1√

J×T .

1010 Let U⊥ be the top K left singular eigenvectors of Ũ , and G̃=U>⊥ Ũ ∈RK×K
2

. Let
G ∈RK×K×K be the estimated core array from rearranging G̃ with

Gk,:,: =

 G̃>k,1:K
...

G̃>k,K(K−1):K2

.

1212 Let
∑K

k=1Ak }Bk }Ck be the rank-K PARAFAC approximation of G. Stack these
as the columns of A,B,C ∈RK×K , and set

[U ,Φ,V ] = [U⊥A,Φ⊥B,V⊥C].

13 For each k = 1, . . . ,K , rescale the columns (Uk,Φk,Vk) 7→ (c1Uk, c2Vk, c3Vk) to
satisfy the constraints of eq. (7), where c1c2c3 = 1. These are our initializations for
V ,Φ, and we initialize β = 0 and s2

k as the sample variance of Uk.

In a noiseless model with ε = 0 and complete temporal observations, one may replace
the functional PCA step of Algorithm 2 with standard PCA. Then [U ,Φ,V ] becomes a
PARAFAC decomposition of 1

1+δX .
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LEMMA 4.1. Suppose X =
∑K

k=1U
∗
k } Φ∗k } V ∗k and is completely observed. Re-

place Φ⊥ in Algorithm 2 by the top K eigenvectors of W = 1
I

∑K
k=1 Y(k)>Y(k). Then,

the output U ,Φ,V of Algorithm 2 forms a PARAFAC decomposition of 1
1+δX: X =

(1 + δ)
∑K

k=1Uk }Φk }Vk.

In Algorithm 2, we estimate Φ⊥ based on functional PCA to account for the temporal
sparsity and observational noise. When the data are incomplete, setting δ > 0 can also help
avoid estimates driven by subjects exhibiting low signal to noise ratio, i.e., subjects i where
(V⊥ ⊗Φ⊥)>~i,:(V⊥ ⊗Φ⊥)~i,: ∈R

K2×K2

is rank-deficient or poorly conditioned.

4.2. Tuning Parameters. One way to choose the tuning parameters λ1k and λ2k is to
use cross-validation. However, this can be computationally expensive even if we tune each
parameter sequentially. It is also difficult to determine a good set of candidate values for the
parameters before running SPACO. We propose instead to determine the tuning parameters
via nested cross-validation, which has been shown to be empirically useful (Huang et al.,
2008; Li, Shen and Huang, 2016). In nested cross-validation, the parameters are tuned within
their corresponding subroutines. Although this is not as disciplined as full cross-validation,
it incurs much less computational cost.

More specifically, we propose the following procedure:

• In the update for Φk, perform column-wise leave-one-out cross-validation to select λ1k,
where we leave out all observations from a single time point.

• In the update for β:,k, perform K-fold cross-validation to select λ2k.

We provide details about the column-wise leave-one-out cross-validation in Appendix B.2.

4.3. Cross-fitting. We now discuss reconstruction of the underlying signal tensor F =∑K
k=1Uk }Φk }Vk. Under the probabilistic model of SPACO, we can perform this recon-

struction using the estimated posterior means µ and Φ, V :

F̂ =

K∑
k=1

µk }Φk }Vk.

However, in the two-dimensional matrix setting, it is known that such an estimate may be
inaccurate due to eigenvalue bias and eigenvector inconsistency in high dimensions (Baik
and Silverstein, 2006; Paul, 2007; Mestre, 2008), and shrinkage of the estimated factor scores
can often reduce the MSE. The same phenomena exist in the three-dimensional tensor setting
of SPACO. Here, we propose a shrinkage on µ based on cross-fitting.

Let µ ∈ RI×K be the posterior means (from either SPACO with covariates or SPACO-
without). We perform the reconstruction by shrinking each µk by a constant ck ∈ [0,1], and
use µ̃k = ckµk in the reconstruction. Our determination of ck is motivated by the following
toy example.

EXAMPLE. Consider a matrix that is the sum of a rank-one component and mean-zero
observational noise, X = suv> + ε where s > 0 and u,v are unit-norm. Let ŝ, û, v̂ be the
empirical singular value and unit-norm singular vectors of X . Then the oracle shrinkage
factor is ĉ= arg minc ‖c · ŝûv̂> − suv>‖2F = s

ŝ〈û,u〉〈v̂,v〉.
Suppose we have also X̃ = suv> + ε̃ with the same signal component and independent

noise. Let s̃= ‖X̃v̂‖ and ũ= X̃v̂/s̃ be the signal strength and factor scores for v̂. Then

〈ũ, û〉= 1

s̃

〈
(suv> + ε̃)v̂, û

〉
=
s

s̃
〈v̂,v〉〈û,u〉+ 1

s̃
û>ε̃v̂ ≈ s

s̃
〈v̂,v〉〈û,u〉,
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where the last approximation holds by independence of ε and ε̃, as long as the entrywise
noise variance of ε̃ is much smaller than s̃2. Thus, s̃ŝ〈ũ, û〉 ≈

s
ŝ〈v̂,v〉〈û,u〉= ĉ, so we may

estimate the optimal shrinkage factor ĉ by s̃
ŝ〈ũ, û〉.

Returning to SPACO, identifying (‖µk‖2, µk

‖µk‖2 ) with (ŝk, ûk) of this example, this sug-
gests to set

(11) ck =
‖µ̃k‖2
‖µk‖2

(
〈µ̃k,µk〉

)
+

if we had access to µ̃k estimated from an independent copy of the signal array. For SPACO-
without covariates, a natural correction based on this idea is to use cross-fitting, where we
approximate µ̃k using model parameters estimated from data excluding different folds:

1. Divide the data into M different folds ∪Mm=1Vm.
2. Compute the posterior mean µ̃ of U for subjects in fold Vm using the parameters
V −m,Φ−m estimated from data excluding fold Vm.

3. For each kth component, set the shrinkage factor ck by eq. (11).

For SPACO with covariates Z , the correction is more complicated because we want to
correct potential inflation in Zβ. For this purpose, we use a cross-fitted β̂. More specifically,
in the βk-update step of Lemma 3.1, we construct ỹi for i ∈ Vm as

ỹi =

√
1

s2
k

s2
k

s2
k − (Σi)k,k

(
(Σi)k,:(V

−m �Φ−m)>Λ~iXI,~i + (Σi)k,kcΛf,kcβ̂>kczi

)
in place of (10). In our empirical study, cross-fitting reduces the reconstruction error in high
dimensions and offers better empirical type I error control when testing for variable impor-
tance.

4.4. Variable importance measure. We are often interested in measuring the importance
of each covariate Zj on a given factor uk. In this section, we construct variable importance
measures as approximate p-values from tests of conditional association or marginal associa-
tion between Zj and uk. Both measures are popular in practice.

In Section 4.4.1, we first briefly describe hypothesis testing based on randomization, and
its application to our problem when all model parameters other than βk for the kth factor are
known. We then discuss testing with the estimated model parameters in Section 4.4.2.

4.4.1. Randomization test for SPACO with known model parameters. First consider a
simple linear regression model

Y = Z>β + ζ,

with mean-zero noise ζ independent of Z = (Z1, . . . ,Zq). P-values for testing the conditional
independence/partial correlation or the marginal independence/association

Hpartial
0 : Zj ⊥⊥ Y |Zjc , Hmarginal

0 : Zj ⊥⊥ Y

are popular measures of the importance of a feature Zj . Randomization test is a procedure
for constructing p-values without assuming the correctness of the linear model of Y on Z .

Suppose that we have access to the conditional distribution of Zj |Zjc . Let t(Zj ,Zjc ,y)
be a test statistic. Let T := t(Zj ,Zjc ,y) and T ∗ := t(Z∗j ,Zjc ,y), where Z∗j is an inde-
pendent copy generated from the conditional distribution Zj |Zjc and Zjc . Then, under the
null hypothesis Hpartial

0 of conditional independence, T and T ∗ have the same law con-
ditional on Zjc and y. So P (T > t∗1−α|Zjc ,y) ≤ α for any α ∈ (0,1), where t∗1−α is the
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(1− α)-percentile of the conditional distribution of T ∗ (Candès et al., 2018). Similarly, for
the null hypothesis Hmarginal

0 of marginal independence, consider a test statistic t(Zj ,y)
and set T := t(Zj ,y) and T ∗ := t(Z∗j ,y) where Z∗j is an independent copy generated from
the marginal distribution of Zj . Then P (T > t∗1−α|y)≤ α for any α ∈ (0,1).

For SPACO, we are interested in testing the analogous hypotheses

Hpartial
0k : Zj ⊥⊥ µk|Zjc , Hmarginal

0k : Zj ⊥⊥ µk
for the relationship betweenZj and a single factor µk. In an idealized setting where all model
parameters except βk are known, let V ,Φ, s2, σ2 and β∗` for ` 6= k be the true model param-
eters. Then the SPACO estimate for βk is the solution to a penalized regression problem:

PROPOSITION 4.2. Given the other model parameters V ,Φ, s2, σ2 and β∗` for ` 6= k, the
SPACO estimate for βk is

β̂k = arg min
βk

{
I∑
i=1

1

wi
(z̃>i βk − ỹi)2 + λ2k|βk|1

}
= arg min

βk

{
I∑
i=1

1

wi
(z̃>i βk − z̃>i β

∗
k − ζi)2 + λ2k|βk|1

}
,

where wi = s2
k − (Σi)kk, ζi ∼N (0,wi), and z̃i, ỹi are defined by eq. (10) at the given model

parameters.

Hence, the testing problem reduces to that of testing the variable triple (Z̃j , Z̃jc , Ỹ ) in a
linear model, and we may perform the above randomization tests:

• For the partial correlation test, we use a residualized and weighted univariate regression
coefficient

T =

∑I
i=1

1
wi

(ỹi − z̃>i,jcβ̂jc,k)z̃ij∑I
i=1

1
wi

z̃2
ij

, T∗ =

∑I
i=1

1
wi

(ỹi − z̃>i,jcβ̂jc,k)z̃
∗
ij∑I

i=1
1
wi

z̃2
ij

.

Here β̂jc,k is trained using the weighted regression in Proposition 4.2 excluding covariate
j, and z̃∗ij is constructed as in eq. (9) replacing zij with z∗ij , which are independently
generated from the conditional distribution of Zj |Zjc .

• For the marginal correlation test, we use the weighted univariate regression coefficient

T =

∑I
i=1

1
wi
ỹiz̃ij∑I

i=1
1
wi

z̃2
ij

, T∗ =

∑I
i=1

1
wi
ỹiz̃
∗
ij∑I

i=1
1
wi

z̃2
ij

,

with z̃∗ij constructed as in eq. (9) replacing zij with z∗ij independently generated from the
marginal distribution of Zj .

4.4.2. Testing for SPACO with estimated parameters. In practice, β` for the other factors
` 6= k are also estimated from the data. Inaccurate estimation of β∗` may directly impact the
validity of the above randomization test for βk. In this section, we provide a valid test by
constructing alternative response variables, covariates, and weights that do not depend on β`
for ` 6= k.

More generally, we consider a family of response and covariate constructions indexed by
δ ∈ [0,1], where δ = 1 corresponds to the original update for βk in SPACO, and δ = 0 fully
decouples βk from β`.
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LEMMA 4.3. Fixing the model parameters V ,Φ, s2, σ2, let β` be an estimate of β∗` for

` 6= k. Define Σi(δ) =
(
δΛf + (V �Φ)>~i Λ~i(V �Φ)~i

)−1
,

z̃i(δ) =

(
1− δΣi(δ)kk

s2
k

)
zi,

ỹi(δ) = Σi(δ)k,:(V �Φ)>Λ~iXI,~i + δ
∑
`6=k

Σi(δ)k`
s2
`

z>i β`,(12)

and wi(δ) = s2
k + (1− 2δ)Σi(δ)kk + (δ2 − δ)Σi(δ)k,:ΛfΣi(δ):,k. Then ỹi(δ) has the distri-

bution

ỹi(δ) = z̃i(δ)
>β∗k + δ

∑
` 6=k

Σi(δ)k`
s2
`

z>i (β` −β∗` ) + ξi, ξi ∼N (0,wi(δ)).

The above dependence of ỹi(δ) on z>i (β`−β∗` ) may render the randomization test invalid
when β` 6= β∗` . Thus, we typically set δ = 0 to remove this dependence. Under this setting, we
have z̃i(0) = zi and ỹi(0) = z>i β

∗
k+ξi. Algorithm 3 summarizes our proposal for performing

hypothesis testing using these constructed response variables and weights.

Algorithm 3: Randomization test for Zj
1 for k = 1, . . . ,K do
33 Construct responses and features as described in Lemma 4.3, for δ = 0.
55 Define β̂k by

β̂k = arg min
βk:βk,j=0


I∑
i=1

1

wi(0)
(z>i βk − ỹi(0))2 + λ2k|βk|1

 .

77 Compute the designed test statistic T using (Zj ,Zjc , ỹ(0), β̂jc,k).

99 Compute randomized statistics T ∗b using (Zb∗j ,Zjc , ỹ(0), β̂jc,k), where Zb∗j for b= 1, . . . ,B are
the generated (conditionally or marginally) independent copies of Zj .

1111 Let Ĝ(.) be the empirical estimate of the CDF of T under H0 using {T ∗1 , . . . , T
∗
B}, and return the

two-sided p-value p= [1− Ĝ(|T |)] + Ĝ(−|T |).
12 end

LEMMA 4.4. Suppose the model parameters V ,Φ, s2 and σ2 are known. Fix j, k, and
let ỹi(0) and w(0) be the constructed responses and weights in Lemma 4.3 with δ = 0. Let
β̂k be the estimate in Algorithm 3, and define

Tpartial =

∑
i

1
wi(0)(ỹi(0)− z>i,jcβ̂jc,k)zij∑

i
1

wi(0)z
2
ij

, Tmarginal =

∑
i

1
wi(0) ỹizij∑
i

1
wi(0)z

2
ij

.

Let Z∗j be the generated (conditionally or marginally) independent copy of Zj , and define
T ∗partial, T

∗
marginal similarly with Z∗j in place of Zj . Let ỹ(0) = (ỹ1(0), . . . , ỹI(0))T , then

• Tpartial|(ỹ(0),Zjc)
d
= T ∗partial|(ỹ(0),Zjc) if Hpartial

0k holds.

• Tmarginal|ỹ(0)
d
= T ∗marginal|ỹ(0) if Hmarginal

0k holds.
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REMARK 4.4.1. More generally, for δ > 0, the test based on ỹi(δ), w(δ), and z̃i(δ)
trades off robustness against estimation errors in Z>(β`−β∗` ) for possibly increased power.

To see this, suppose that β` = β∗` for ` 6= k and Zj ∼N (0,1). The signal to noise ratio
with δ ∈ {0,1} can be calculated as

SNR(0) =
E(z>i β

∗
k)

2

1
I

∑
iwi(0)

=
‖β∗k‖22

1
I

∑
iwi(0)

=
‖β∗k‖22

s2
k + 1

I

∑
iΣi(0)kk

,

SNR(1) =
1
I

∑
iE(z̃i(1)>β∗k)

2

1
I

∑
iwi(1)

=

1
I

∑
i(1−

Σi(1)kk

s2
k

)‖β∗k‖22
s2
k −

1
I

∑
iΣi(1)kk

=
‖β∗k‖22
s2
k

.

Thus, the signal-to-noise ratio is higher with δ = 1 if we have access to the true β∗` .

In practice, the model parameters V ,Φ, s2, σ2 of SPACO are also unknown, and we will
substitute their empirical estimates in the above procedure. In particular, we use V ,Φ from
the cross-fitted SPACO for constructing ỹ(0), i.e., as described in Section 4.3, for i ∈ Vm we
construct

ỹi(0) = Σi(0)k,:(V
−m �Φ−m)>Λ~iXI,~i.

The randomization test requires generating Z∗j from the conditional or marginal distribu-
tion of Zj , and estimating the resulting distribution of T ∗. We will estimate the distribution
of T ∗ by fitting a skewed t-distribution as suggested in (Katsevich and Roeder, 2020). The
use of the fitted Ĝ(.) instead of the empirical CDF can greatly reduce the computational cost:
We may obtain accurate estimates of small p-values around 10−4 using only 100 independent
generations of Z∗j and the fitted Ĝ(.). More details on the generations of Z∗j are provided in
Appendix B.3.

5. Simulations.

5.1. Comparison between SPACO and SPACO-. In this section, we compare SPACO
with SPACO- (which does not use the covariates Z) for reconstruction of the underlying
signal array, as measured by Pearson correlation between the estimated values and the signal
values. We simulate Gaussian data across different signal levels and different missing rates
along the time dimension:

• We test (I,T,J, q) = (100,30,10,100) and (100,30,500,100). The number of factors is
K = 3, the noise variance of ε is fixed at 1, and V and Z are randomly generated as
Vjk ∼N (0, 1

J ) and Zi` ∼N (0,1).
• We observe a γ = {100%,50%,10%} fraction of time points {1, . . . , T}, chosen indepen-

dently for each subject.

• We set φ1(t) = θ1, φ2(t) = θ2

√
1−

(
t
T

)2, φ3(t) = θ3 cos(4π t
T ) with random parameters

θ1, θ2, θ3 ∼ c1 · N (0, logJ+logT
nTγ ) for c1 ∈ {1,3,5}.

• We set β`,k ∼ c2 · N (0, log q
I ) for c2 ∈ {0,3,10} for the first 3 covariates ` = 1,2,3, and

β`,k = 0 otherwise. When c2 = 0, all β`,k are 0. Each Uk is standardized to have mean 0
and variance 1 after generation.

Consistent with our expectation, SPACO improves upon SPACO- when X contains insuffi-
cient information to determine the underlying truth whileZ is informative. Table 2 shows the
average correlations between the reconstructed and true signals cross 50 random repetitions.
In these simulations, SPACO is comparable to SPACO- when the signal in X is strong or
when the signal in Z is weak; it provides a significant gain in settings that favor SPACO.
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TABLE 2
Correlations between the reconstructed values and the underlying signals: raw = raw observation X . For each

simulation set-up, we use boldface to indicate methods that are within 2 standard deviations from the top
performer. r· in the column names represents percent of observed time points per subject. SNR· represents the

signal strength c2 for β`,k , e.g., r.1SNR3 corresponds to observation rate γ = 10% and c2 = 3. Similarly, SNR·
and J· in the row names represent the values for c1 and J .

r1SNR0 r1SNR3 r1SNR10 r.5SNR0 r.5SNR3 r.5SNR10 r.1SNR0 r.1SNR3 r.1SNR10
setting method

SNR1J10 raw 0.059(1E-03) 0.057(1E-03) 0.057(1E-03) 0.078(2E-03) 0.078(2E-03) 0.083(2E-03) 0.186(4E-03) 0.177(3E-03) 0.178(4E-03)
SPACO- 0.156(1E-02) 0.136(1E-02) 0.165(2E-02) 0.107(1E-02) 0.145(1E-02) 0.172(2E-02) 0.198(1E-02) 0.19(1E-02) 0.208(1E-02)
SPACO 0.154(1E-02) 0.167(2E-02) 0.26(2E-02) 0.101(9E-03) 0.174(2E-02) 0.269(2E-02) 0.182(1E-02) 0.208(1E-02) 0.298(2E-02)

SNR3J10 raw 0.169(3E-03) 0.169(3E-03) 0.168(3E-03) 0.23(4E-03) 0.228(5E-03) 0.24(5E-03) 0.466(7E-03) 0.475(7E-03) 0.484(7E-03)
SPACO- 0.786(1E-02) 0.796(1E-02) 0.789(1E-02) 0.795(9E-03) 0.778(1E-02) 0.804(9E-03) 0.793(9E-03) 0.802(9E-03) 0.811(9E-03)
SPACO 0.787(1E-02) 0.818(9E-03) 0.859(8E-03) 0.793(9E-03) 0.798(1E-02) 0.87(7E-03) 0.788(9E-03) 0.821(8E-03) 0.886(7E-03)

SNR5J10 raw 0.271(5E-03) 0.269(5E-03) 0.275(5E-03) 0.378(6E-03) 0.37(6E-03) 0.374(7E-03) 0.666(6E-03) 0.65(7E-03) 0.656(7E-03)
SPACO- 0.924(4E-03) 0.924(3E-03) 0.92(6E-03) 0.926(3E-03) 0.926(3E-03) 0.923(4E-03) 0.921(3E-03) 0.9(5E-03) 0.915(3E-03)
SPACO 0.925(3E-03) 0.929(3E-03) 0.944(6E-03) 0.927(3E-03) 0.93(3E-03) 0.946(3E-03) 0.92(3E-03) 0.9(5E-03) 0.944(2E-03)

SNR1J500 raw 0.014(1E-04) 0.014(1E-04) 0.014(1E-04) 0.019(2E-04) 0.019(2E-04) 0.019(2E-04) 0.043(4E-04) 0.043(4E-04) 0.043(4E-04)
SPACO- 0.012(1E-03) 0.014(2E-03) 0.013(2E-03) 0.011(1E-03) 0.011(1E-03) 0.016(2E-03) 0.015(1E-03) 0.016(1E-03) 0.018(2E-03)
spaco 0.012(1E-03) 0.019(2E-03) 0.019(3E-03) 0.011(1E-03) 0.012(1E-03) 0.018(2E-03) 0.015(1E-03) 0.017(2E-03) 0.021(3E-03)

SNR3J500 raw 0.041(2E-04) 0.041(2E-04) 0.041(2E-04) 0.057(2E-04) 0.058(2E-04) 0.058(2E-04) 0.128(6E-04) 0.128(5E-04) 0.129(6E-04)
SPACO- 0.451(1E-02) 0.476(1E-02) 0.487(1E-02) 0.529(2E-02) 0.547(1E-02) 0.547(1E-02) 0.665(6E-03) 0.649(7E-03) 0.615(1E-02)
SPACO 0.451(1E-02) 0.491(2E-02) 0.513(1E-02) 0.53(2E-02) 0.555(2E-02) 0.583(1E-02) 0.665(6E-03) 0.662(7E-03) 0.661(1E-02)

SNR5J500 raw 0.068(2E-04) 0.068(2E-04) 0.068(2E-04) 0.096(2E-04) 0.096(3E-04) 0.095(4E-04) 0.21(9E-04) 0.212(7E-04) 0.21(8E-04)
SPACO- 0.875(1E-03) 0.865(4E-03) 0.856(4E-03) 0.875(6E-04) 0.874(1E-03) 0.861(3E-03) 0.872(1E-03) 0.873(1E-03) 0.867(2E-03)
SPACO 0.874(1E-03) 0.866(4E-03) 0.863(4E-03) 0.875(6E-04) 0.875(1E-03) 0.869(3E-03) 0.872(1E-03) 0.874(9E-04) 0.877(1E-03)

TABLE 3
Relative MSE between cross-fitted SPACO/SPACO- and SPACO/SPACO-: Each value is the ratio between MSE

of the cross-fitted procedure to the procedure without cross-fitting. The column labels r· and SNR· and row labels
SNR· and J· are the same as in Table 2.

r1SNR0 r1SNR3 r1SNR10 r.5SNR0 r.5SNR3 r.5SNR10 r.1SNR0 r.1SNR3 r.1SNR10
setting method

SNR1J10 spaco0 0.906 0.9 0.901 0.905 0.915 0.917 0.942 0.945 0.933
spaco 0.863 0.847 0.843 0.873 0.879 0.854 0.862 0.879 0.84

SNR3J10 spaco0 0.983 0.982 0.979 0.998 0.994 0.991 1.02 1.02 1.02
spaco 0.982 0.989 0.974 1 1 0.983 1.03 1.04 1.01

SNR5J10 spaco0 0.998 1 0.998 1.02 1.02 1.02 1.09 1.05 1.12
spaco 1 1.02 1.04 1.02 1.05 1.05 1.09 1.07 1.11

SNR1J500 spaco0 0.26 0.262 0.259 0.263 0.267 0.268 0.326 0.33 0.296
spaco 0.242 0.242 0.244 0.256 0.254 0.26 0.337 0.307 0.302

SNR3J500 spaco0 0.628 0.62 0.595 0.639 0.624 0.601 0.701 0.708 0.677
spaco 0.628 0.627 0.598 0.64 0.631 0.601 0.696 0.706 0.679

SNR5J500 spaco0 0.841 0.826 0.784 0.866 0.861 0.813 0.926 0.926 0.908
spaco 0.843 0.836 0.815 0.867 0.867 0.835 0.927 0.932 0.937

5.2. Improvements using cross-fitting. In reconstructing the signal array, SPACO/
SPACO- can overfit towards the noise, resulting in high reconstruction errors in weak signal
and high-dimensional settings. Here, we compare the reconstruction errors with and without
cross-fitting in the same simulation set-ups as in Section 5.1. In each simulation set-up, we
treat MSE for SPACO-/SPACO as the baseline and show the relative levels of errors after
cross-fitting. The corrected SPACO/SPACO- estimates achieve much lower reconstruction
errors in high-dimensional and weak-signal settings, with a slight increase in error in the
low-dimensional and strong-signal settings.
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TABLE 4
Conditional association test: Achieved type-I error and power with target level α= 0.01,0.05 and simulations

described in Section 5.1, averaged across 50 repetitions. For the rows, the first column of row names SNR·J·
represent the values of c1 and J , and the second column of row names SNR·r· represent c2 and the observation

rate γ. All associations are null when c2 = 0, and some are null when c2 = 10.

0.01 0.05
SPACO SPACO- SPACO SPACO-
typeI power typeI power typeI power typeI power

Xsignal Zsignal+sparsity
SNR1J10 SNR0r1.0 0.012 nan 0.01 nan 0.054 nan 0.053 nan

SNR0r0.5 0.012 nan 0.01 nan 0.055 nan 0.057 nan
SNR0r0.1 0.011 nan 0.01 nan 0.058 nan 0.057 nan
SNR10r1.0 0.012 0.15 0.011 0.14 0.054 0.24 0.052 0.22
SNR10r0.5 0.011 0.16 0.0093 0.12 0.053 0.25 0.053 0.23
SNR10r0.1 0.013 0.14 0.011 0.12 0.058 0.23 0.056 0.2

SNR3J10 SNR0r1.0 0.0096 nan 0.01 nan 0.053 nan 0.054 nan
SNR0r0.5 0.0083 nan 0.0094 nan 0.053 nan 0.053 nan
SNR0r0.1 0.011 nan 0.011 nan 0.051 nan 0.052 nan
SNR10r1.0 0.0096 0.54 0.0093 0.54 0.052 0.61 0.055 0.64
SNR10r0.5 0.0096 0.59 0.01 0.6 0.054 0.64 0.054 0.66
SNR10r0.1 0.0096 0.58 0.011 0.6 0.052 0.67 0.053 0.69

SNR1J500 SNR0r1.0 0.016 nan 0.012 nan 0.059 nan 0.058 nan
SNR0r0.5 0.012 nan 0.01 nan 0.054 nan 0.051 nan
SNR0r0.1 0.0088 nan 0.0096 nan 0.048 nan 0.05 nan
SNR10r1.0 0.013 0.04 0.01 0.038 0.058 0.12 0.054 0.1
SNR10r0.5 0.011 0.047 0.012 0.044 0.053 0.13 0.054 0.12
SNR10r0.1 0.0097 0.042 0.011 0.033 0.055 0.12 0.055 0.12

SNR3J500 SNR0r1.0 0.0094 nan 0.0087 nan 0.054 nan 0.054 nan
SNR0r0.5 0.0085 nan 0.0095 nan 0.051 nan 0.053 nan
SNR0r0.1 0.0091 nan 0.011 nan 0.048 nan 0.051 nan
SNR10r1.0 0.013 0.48 0.012 0.48 0.057 0.57 0.056 0.58
SNR10r0.5 0.01 0.54 0.012 0.55 0.054 0.61 0.057 0.61
SNR10r0.1 0.0089 0.64 0.01 0.63 0.052 0.72 0.056 0.72

TABLE 5
Same as Table 4, for the marginal association test.

0.01 0.05
SPACO SPACO- SPACO SPACO-
typeI power typeI power typeI power typeI power

Xsignal Zsignal+sparsity
SNR1J10 SNR0r1.0 0.011 nan 0.01 nan 0.056 nan 0.053 nan

SNR0r0.5 0.012 nan 0.01 nan 0.057 nan 0.057 nan
SNR0r0.1 0.013 nan 0.011 nan 0.059 nan 0.056 nan
SNR10r1.0 0.013 0.15 0.011 0.14 0.055 0.24 0.051 0.22
SNR10r0.5 0.012 0.16 0.0091 0.12 0.053 0.23 0.053 0.24
SNR10r0.1 0.013 0.13 0.01 0.11 0.06 0.22 0.057 0.2

SNR3J10 SNR0r1.0 0.0097 nan 0.011 nan 0.054 nan 0.055 nan
SNR0r0.5 0.0085 nan 0.0094 nan 0.052 nan 0.053 nan
SNR0r0.1 0.011 nan 0.011 nan 0.051 nan 0.052 nan
SNR10r1.0 0.01 0.5 0.011 0.5 0.053 0.58 0.054 0.59
SNR10r0.5 0.01 0.53 0.0096 0.53 0.054 0.61 0.055 0.6
SNR10r0.1 0.0094 0.54 0.011 0.56 0.053 0.62 0.054 0.64

SNR1J500 SNR0r1.0 0.015 nan 0.012 nan 0.066 nan 0.058 nan
SNR0r0.5 0.011 nan 0.01 nan 0.054 nan 0.051 nan
SNR0r0.1 0.0086 nan 0.0096 nan 0.048 nan 0.051 nan
SNR10r1.0 0.015 0.04 0.011 0.038 0.063 0.13 0.054 0.11
SNR10r0.5 0.011 0.042 0.011 0.044 0.053 0.13 0.053 0.12
SNR10r0.1 0.0098 0.04 0.011 0.031 0.056 0.11 0.057 0.12

SNR3J500 SNR0r1.0 0.0097 nan 0.0091 nan 0.054 nan 0.054 nan
SNR0r0.5 0.0083 nan 0.0094 nan 0.051 nan 0.054 nan
SNR0r0.1 0.0091 nan 0.011 nan 0.048 nan 0.051 nan
SNR10r1.0 0.014 0.42 0.012 0.42 0.057 0.52 0.059 0.54
SNR10r0.5 0.011 0.46 0.01 0.47 0.056 0.56 0.055 0.56
SNR10r0.1 0.011 0.58 0.011 0.57 0.055 0.65 0.057 0.66

5.3. Variable importance and p-values. We investigate the approximated p-values based
on cross-fitting for testing both the partial and marginal associations of Z with µ. Recall
that the conditional association test uses conditional randomization and residuals, while the
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marginal test uses unconditional randomization and ỹ. Since our variables inZ are generated
independently, the two null hypotheses coincide in this setting. Note that both SPACO- and
SPACO are testing association with the covariates Z , although SPACO- does not use Z in
model fitting.

Table 4 and Table 5 show the achieved Type I error and power at levels α = 0.01,0.05.
Both SPACO and SPACO- achieve reasonable empirical control of the Type I error. Cross-
fitting is important for ensuring this Type I error control: In Appendix C, we present qq-plots
comparing p-values using cross-fitted V and Φ and those using the in-sample V and Φ,
across 16 simulation set-ups. We observe a large deviation from the uniform distribution for
the later construction.

The conditional association test yields higher power over the marginal test in the stronger
signal settings, because we reduce the noise level when using the residual. The power of
cross-fitted SPACO is better than SPACO- when the signal in X is weak. This advantage
disappears as the task becomes easy for both methods.

6. Applications. In this section, we demonstrate SPACO with immunological data from
two recent SARS-COV-2 studies.

6.1. Deep immune profiling of COVID-19 patients. Data set A is from Rendeiro et al.
(2020). It contains 45 longitudinal observations for individuals with COVID-19. For each
individual, blood samples were collected at enrollment, and approximately every seven days
after that if permissible. The authors performed deep immune profiling for seven immune
panels at those time points. In addition to the longitudinal immune profiling data, covariates
such as patient severity group and age were also collected.

We retain a set of immune profiles that are non-missing at every available sample, and
perform quantile normalization of these features. For each sample, we consider days-from-
symptom-onsite (DFSO) as its measured time. The final X is of dimension (I,T,J) =
(36,40,133). The covariates Z are of dimension q = 10. For each feature, we have removed
the mean curve whose smoothness level is tuned via leave-one-subject-out cross-validation
(LOSOCV). The average number of time points observed per subject is 1.86. The left half
of Figure 1 shows examples of time trajectories of four features for different subjects, after
this mean removal. Each line/dot represents observations from a single subject, with a dot
indicating that only 1 time point was observed. Subjects with/without intubation are colored
red/blue.

We apply SPACO to dataset A with K = 5 factors. The right half of Figure 1 shows
example plots of raw observations against our reconstructions across all samples. We see a
positive correlation between these observed and reconstructed values.

We evaluate the overall predictive power of our model based on LOSOCV. For each subject
i, our prediction for xitj is

x̂itj =

K∑
k=1

ûikφktvjk.

Table 6 shows the average percent of variance explained across subjects, based on in-sample
measures and LOSOCV. There are two types of in-sample measures. The first column “in-
sample" uses the posterior mean µ from SPACO for the above values ûik. The second and
third columns “insample0" and “cv.insample0" use only the estimated β from SPACO, with
β of the former estimated using lasso penalties λ2k = 0 and β of the later estimated us-
ing lasso penalties chosen by cross-validation (fixing other model parameters). The columns
“cv.SPACO" and “cv.SPACO-" are reconstruction errors using LOSOCV, where we use β̂−i,
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FIG 1. Dataset A. Left panel: examples of time trajectories of four features for different subjects, after mean
removal. Each line/dot represents observations from a single subject. Subjects with intubation are colored red.
Horizontal time axis is the DFSO (self-reported). Right panel: Plots of observed feature values against estimated
ones from SPACO. Each line/dot represents observations from a single subject.

TABLE 6
Dataset A. Average percents of variance explained across subjects using in-sample data and LOSOCV.

insample insample0 cv.insample0 cv.SPACO cv.SPACO-

47.5 18.5 11.2 10.3 7.7

V −i, and Φ−i estimated excluding subject i. Comparing “cv_SPACO" and “cv_SPACO-",
“cv_SPACO-" estimates β̂−i in a post-processing step after fitting the other model parame-
ters. Figure 2 shows the negative logarithms of the p values from the randomized association
tests, both for partial correlation and for marginal association.

6.2. IMPACT COVID-19 study. Data set B is from Lucas et al. (2020). It contains im-
mune profiles for patients with COVID-19 from the IMPACT (Implementing Medical and
Public Health Action Against Coronavirus CT) study. The authors assessed (1) levels of
plasma cytokines and chemokines, (2) leukocyte profiles (by flow cytometry using freshly
isolated peripheral blood mononuclear cells), and (3) PBMCs at various time points. Clinical
variables including clinical scores, age are available.

We filter out features with more than 20% missingness among collected sample, and
impute missing data using MOFA Argelaguet et al. (2018). The processed X has a size
(I,T,J) = (98,35,111), and Z is of dimension q = 12. The average number of time points
observed per subject is 1.84. We consider a SPACO model with K = 5 factors, and perform
the same analysis as we have done in dataset A. The left half of Figure 3 shows the examples
of time trajectories of four features for different subjects after the mean removal, and the right
half of Figure 3 plots the observed values against our estimated ones, with subjects in ICU
colored red.

Table 7 shows the average percents of variance explained across subjects based on in-
sample measures and LOSOCV. Figure 4 shows the negative log p-values from the random-
ized test.
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FIG 2. Dataset A. P-values testing for partial correlation (left) and marginal association (right). The y-axis shows
− log10(pvalue) and x-axis shows the covariate names. The horizontal blue line represents p-value being 0.05.

FIG 3. Dataset B. Left panel: examples of time trajectories of four features for different subjects, after mean
removal. Subjects in ICU are colored red. Horizontal time axis is the self-reported DFSO. Right panel: Plots of
observed and estimated feature values.

TABLE 7
Dataset B. Average percents of variance explained across subjects using in-sample data and LOSOCV.

insample insample0 cv.insample0 cv.SPACO cv.SPACO-

33.4 8.9 5.1 4.7 3.1
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FIG 4. Dataset B. P-values testing for partial correlation (left) and marginal association (right). The y-axis shows
− log10(pvalue) and x-axis shows the covariate names. The horizontal blue line represents p-value being 0.05.

6.3. A closer look at the analysis results. Several features in Z seem to be related to the
derived factors in both datasets A and B. An age-related factor is identified in both data sets
(factor 5). “Clinicalscores" is important in dataset B: It is associated with factor 5, and also
associated strongly with factor 4, whose association with age is not strong.

Apart from claims about significance and reconstructions, we can also look into the com-
position of factors related to the clinical covariates. We take dataset B as an example, and
demonstrate how other information from SPACO may be interesting to immunologists.

We can evaluate the contribution of features to each of the components by examining the
corresponding entries in V . Figure 5 shows the top 25 features measured by the absolute
value of V for factors 4 and 5. We divide subjects by age into young (≤ 70) and old (> 70),
and by clinical score into mild (≤ 3) and severe (> 3), and we visualize these two covariates’
marginal effects on factors 4 and 5. To do this, we plot the weighted time curves for each of
the participant groups, where we weight each of the features by their corresponding entries
from V , i.e., yit = x>i,t,.Vk for factor k. Figure 6 shows the time trajectories for different
patient groups. It seems that different disease severity groups start to diverge earlier using
a feature combination specified by factor 4, while different age groups diverge later using a
feature combination determined by factor 5. When combining the feature contribution coef-
ficients V and the factor trajectory, we can qualitatively characterize the original feature’s
behavior and cross-check with findings from the literature. For instance, the top contributor
for factor 4 is IL-6. It is the most informative feature for separating the severe group from the
mild group in Lucas et al. (2020), with severe patients showing higher IL-6 levels.

7. Discussion. We propose a model called SPACO that can jointly model sparse multi-
variate longitudinal data and auxiliary covariates. In our simulations, access to informative
auxiliary covariates can improve the time series data reconstruction. We applied the proposed
method to COVID-19 data and identified clinical variables that explain the heterogeneity be-
tween different patient subgroups. Even though both data sets are highly sparse and of small
size, SPACO finds feature groups and time trajectories that can be potentially interesting for
further investigation.
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FIG 5. Bar plots of feature contribution in the construction of factors 4 and 5, measured by entries in V . The
x-axis shows the the corresponding values from V for different features that are indicated by the row names.

FIG 6. Weighted time trajectories for different patient groups. Left: Comparison of mild and severe patient groups,
with features weighted by factor 4. Right: Comparison of young and old patient groups, with features weighted
by factor 5. Horizontal time axes show the DFSO, and y-axes show the weighted feature values.

We mention two useful extensions of SPACO here. We can encourage sparsity in V by
imposing a lasso penalty in the estimation of V . This sparsity may be helpful for inter-
pretability when features are high-dimensional, but only some are relevant to a given factor.
It is also interesting to extend SPACO to model multi-omics data. Such data may introduce
two complications: First, different omics can be measured at different times. Second, the data
type and data scale can be very different. For example, the number of features for RNA-seq
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data (Marguerat and Bähler, 2010) is often of much higher dimension than the number of cell
types derived from single-cell experiments (Trapnell, 2015), and DNA methylation data is bi-
nary instead of Gaussian (Bock, 2012). These reasons motivate the more careful design of a
tailored model, rather than a naive approach of blindly pooling different omics data together.

APPENDIX

We provide proofs to Propositions, Lemmas, and Theorems in the main paper in Appendix
A. In Appendix B, we describe the estimation details in procedures left out in the main paper.
We also include qq-plots comparing p-values from cross-fitted and non-cross-fitted SPACO
in Appendix C.

APPENDIX A: PROOFS

APPENDIX: PROOF OF PROPOSITIONS

A.1. Proof of Proposition 2.1.

PROOF. From eq. (5), the marginal log-likelihood for any subject i is
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When we plug in the expression for the posterior covariance Σi and means µi in to the above
expression, we have
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As a result, when c1c2c3 = 1, we haveL(XI,~i|Θk(c1, c2, c3),Θkc) = L(XI,~i|Θk(1,1,1),Θkc)

for all i= 1, . . . , I . Consequently, we haveL(XI |Θk(c1, c2, c3),Θkc) = L(XI |Θk(1,1,1),Θkc).
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A.2. Proof of Proposition 4.2.

PROOF. It is immediate from Lemme 3.1 that SPACO solves for βk considering
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Consequently, we have ỹi = z̃>i βk + ζi, with ζi ∼N (0,wi).

APPENDIX: PROOFS OF LEMMAS AND THEOREMS

A.3. Proof of Lemma 3.1. Lemma A.1 will be used for the derivation of the proximal
update and the proof of the objective being non-decreasing,

LEMMA A.1. Let A be a semi-positive definite matrix. For the constrained problem

min
x:‖x‖22=h0

f(x) :=
1

2
x>Ax− a>x,

we define the proximal mapping at x0 and with step size ρ as

proxρ(x0) =

{
1
2‖x− x0‖22 + ρ(Ax0 − a) if ‖x‖22 = h0

∞ otherwise

The solution to proxρ(x0) takes the form

x∗ =

√
h0x̃

‖x̃‖2
, x̃= x0 − ρ(Ax0 − a).

Let γ be the largest eigenvalue of A. When ‖x0‖22 = h0 and ρ≤ 1
γ , we have f(x∗)≤ f(x0).

The proof of Lemma A.1 is given in Appendix A.8.

PROOF. We now show the derivation of the updating formulas.
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Update β. We update βk iteratively for k = 1, . . . ,K using the marginal log likelihood
fixing all other parameters. Given the model parameters, the marginal log likelihood can be
expressed as

L(X|Θ)∝−1

2

∑
i

(
X>
I,~i

Λ~iXI,~i + z>i βΛfβ
>zi − µ>i Σ−1

i µi

)
+

1

2

(∑
i

(
log |Λ~i|+ log |Σi|

)
+ I log |Λf |

)

where Σi =
(

Λf + (V
⊙

Φ)>~i Λ~i(V
⊙

Φ)~i

)−1
, µi = Σi

(
Λfβ

>zi + (V
⊙

Φ)>~i ΛiXI,~i

)
are the posterior covariance and mean of ui. As a consequence, maximizing the penalized
marginal log likelihood with respect to βk is equivalent to minimizing the following lasso
penalized squared error loss:

J(βk) =
1

wi

(
(
s2
k − (Σi)kk

s2
k

)2β>k ziz
>
i βk − 2(

s2
k − (Σi)kk

s2
k

)β>k zi

(
(Σi)k:(V

⊙
Φ)>~i Λ~iXI,~i

+ (Σi)kkcΛf,kcβ
>
kczi

))
+ λ2k|βk|,

where wi = s2
k − (Σi)kk. Let z̃i =

√
1
s2
k

s2
k−(Σi)kk

s2
k

zi, and

ỹi =

√
1

s2
k

s2
k

s2
k − (Σi)kk

(
Σi,k,.(V

⊙
Φ)>Λ~iXI,~i + (Σi)kkcΛf,kcβ>kczi

)
.

Then minimization of J(βk) is equivalent to solving the following lasso penalized regression
problem

min
βk

1

2
‖ỹ− Z̃βk‖22 + λ2k|βk|,

where ỹ = (ỹ1, . . . , ỹI) and Z̃ is the row stack of z̃i.

Update s2. Let EΘ0
L(X,U |Θ)be the expected log likelihood under P (U |Θ0) and the

part of it that relates to {s2
k, k = 1, . . . ,K} is

2EΘ0
L(X,U |Θ)∝

I∑
i=1

{EΘ0
[−(ui −β>zi)

>Λf (ui −β>zi)] + log |Λf |}

∝
K∑
k=1

{∑I
i=1

(
(µik − z>i βk)

2 + (Σi)kk
)

s2
k

− I log s2
k

}
Consequently, the solution for s2

k given other parameters is s2
k = 1

I

∑I
i=1

(
(µik − z>i βk)

2 + (Σi)kk
)
.

Update σ2. The part of expected log likelihood related to V and σ2 can be expressed as
J(V , σ2)

=− 1

2

J∑
j=1

{
1

σ2
j

EΘ0
(X

J,~j
− (Φ

⊙
U)~jvj)

>(X
J,~j
− (Φ

⊙
U)~jvj) + |~j| logσ2

j

}

=− 1

2

J∑
j=1

 1

σ2
j

(X
J,~j
− (Φ

⊙
µ)~jvj)

>(X
J,~j
− (Φ

⊙
µ)~jvj) + v>j

∑
t

(
∑
Oit=1

Σi) · (φtφ>t )

vj
+ |~j| logσ2

j


Hence, our update rule for σ2

j

σ2
j =

1

|~j|

[
(XJ,~j − (Φ

⊙
µ)~jvj)

>(XJ,~j − (Φ
⊙

µ)~jvj) + v>j

(∑
t

(
∑
Oit=1

Σi) · (φtφ>t )

)
vj

]
.
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Update V . Define M j = 1
σ2
j

[
(Φ
⊙
µ)~j(Φ

⊙
µ)>~j +

(∑
t(
∑

Oit=1 Σi) · (φtφ>t )
)]

, and

Hj = 1
σ2
j
(Φ
⊙
µ)>~j XJ,~j . The expected negative log likelihood associated with Vk can be

written as

J(Vk) =
1

2
V >k AVk − a>Vk,

where A= diag{M1
kk, . . . ,M

J
kk} and a=H1:J

k − VkcM1:J
kc,k. Our proximal mapping for Vk

at the current parameter value and step size ρ can be written as

proxVk
(y;Vk, ρ) =

{
1
2‖y−Vk‖

2
2 − ρ(a−AVk)>y if ‖y‖22 = 1

∞ otherwise,

By Lemma A.1, the solution to the proximal mapping is

Vk← y∗ = arg min
y
proxVk

(y;Vk, α) =
ỹ

‖ỹ‖22
, ỹj = Vjk + ρ(a−AVk).

Update Φ . The part of expected log likelihood related to Φ can be expressed as

J(Φ) =

>∑
t=1

EΘ0

[
(XT,~t − (V

⊙
U)~t.φt)

>Λ~t(XT,~t − (V
⊙

U)~t.φt)
]

∝
>∑
t=1

{
φ>t EΘ0

[
(V
⊙

U)>~t.Λ
−1
~t

(V
⊙

U)~t.

]
φt − 2φ>t EΘ0

[
(V
⊙

U)>~t.Λ~t

]
XT,~t

}

=

>∑
t=1

φ>t
(V

⊙
µ)>~t.Λ~t(V

⊙
µ)~t. +

∑
j

(∑
Oit=1 Σi

)
·
(
vjv

>
j

)
σ2
j

φt − 2φ>t

[
(V
⊙

µ)>~t.Λ~t

]
XT,~t


Define

M t =

(V
⊙

µ)>~t.Λ
−1
~t

(V
⊙

µ)~t. +
∑
j

(∑
Oit=1 Σi

)
·
(
vjv

>
j

)
σ2
j

 , Ht = (V
⊙

µ)>~t Λ~tXT,~t.

Then, together with the smoothness penalty, we are considering the following constrained
quadratic problem when updating Φk:

min
Vk

1

2
V >k (A+ λ1kΩ)Vk − a>Vk,

where A= diag{M1
kk, . . . ,M

T
kk} and a ∈RT is a stack of Ht

k −ΦkcM t
kc,k for t= 1, . . . , T .

Same as in the derivation of updating Vk, by Lemma A.1, we have

Φk← y∗ = arg min
y
proxΦk

(y;Φk, ρ) =
ỹ

‖ỹ‖2
, ỹ = Φk + ρ(a−AVk − λ1kΩVk).

A.4. Proof of Theorem 3.2.

PROOF. The update from Θ` to Θ`+1 consists of two steps:

• Θ`⇒ (Θ` \ {β`})∪ {β`+1}.
• (Θ` \ {β`})∪ {β`+1}⇒Θ`+1.
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The first step leads to non-decreasing marginal log-likelihood by definition, while the second
step is a EM procedure. If we can show that the penalized marginal log-likelihood is non-
decreasing at each subroutine of the EM procedure, we prove Theorem 3.2.

For simplicity, θ be the parameters that is being updated in some subroutine and Θ\θ
parameters excluding θ. Let Θ = Θ\θ ∪ θ, Θ′ = Θ\ ∪ θ. It is known that if a new θ′ is no
worse compared with θ using the EM objective, it is no worse than θ when it comes to the
(regularized) marginal MLE (Dempster, Laird and Rubin, 1977). We include the short proof
here for completeness.

Because the log of the posterior of U can be decomposed into the difference between
the log of the log complete likelihood and the log marginal likelihood, L(U |X,Θ) =
L(U ,X|Θ) − L(X|Θ), we have (expectation with respect to posterior distribution of U
with parameters Θ):

EΘL(U ,X|Θ′) = EΘL(X|Θ′) +EΘL(U |X,Θ′) = L(X|Θ′) +EΘL(U |X,Θ′).

As a result, when

EΘL(X,U |Θ′)≥ EΘL(X,U |Θ),

the following inequality holds,

L(X|Θ′)−L(X|Θ) = {EΘL(X|Θ′) +EΘL(U |X,Θ′)−L(X|Θ′)}+ {EΘL(U |X,Θ′)−EΘL(U |X,Θ)}

≥ EΘ log
P (U |X,Θ)

P (U |X,Θ′)
≥ 0.

The last inequality is due to the fact that the mutual information EΘ log P (U |X,Θ)
P (U |X,Θ′) is nonneg-

ative.
For our subroutines of updating s2 and σ2, they are defined as the maximizers of

EΘL(X,U |Θ−θ, θ). For updating Vk and Φk, by Lemma A.1, we know that

• EΘL(X,U |Θ−θ, θ) for θ = Vk if 1
ρk(V ) ≥maxjM

j
kk.

• EΘL(X,U |Θ−θ, θ) for θ = Φk if 1
ρk(Φ) ≥ eigmax(AΦ

k + λ1kΩ).

Hence, we have proved our statement. Hence, the log likelihood is non-decreasing or equiv-
alently, the loss J(Θ) is non-increasing.

A.5. Proof of Lemma 4.1.

PROOF. If we can show that XI =U⊥M
>
U , XT = Φ⊥M

>
T and XT = V >⊥MV . Then,

there exists a rank-K core-array G=
∑K

k=1Ak }Bk }Ck, such that

X =

K∑
k=1

Uk }Φk }Vk,

where U =U⊥A, Φ = Φ⊥B and V = V⊥C . This statement can be checked easily: since
U⊥ spans the row space of XI , we can find a matrix A such that if we replace U∗ with
U⊥A, we still have a PARAFAC decomposition of X . We can apply the same arguments to
Φ⊥,V⊥, and hence prove the statement at the beginning.

The proposed V⊥ satisfies the requirement by construction. Hence, we need only to check
that U⊥ and Φ⊥ spans the row space of XI and XT respectively.
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• The projection of XJ onto V⊥ results in H = V >⊥ Xj = C(Φ∗ � U∗)>, where C =
V >⊥ V

∗. Hence, we have

W =

K∑
k=1

1

I
Y(k)>Y(k) = Φ∗

(
K∑
k=1

(U∗ ·Ck,.)> (U∗ ·Ck,.)

)
Φ∗,T = Φ∗MΦ∗>

where M = RK×K with M`k = 〈C`,Ck〉〈U∗` ,U∗k 〉. Notice that

XTX
>
T = Φ∗ (V ∗ �U∗)> (V ∗ �U∗)Φ∗,T

= Φ∗ ((V⊥C1)⊗U∗1 , . . . , (V⊥CK)⊗U∗K)> ((V⊥C1)⊗U∗1 , . . . , (V⊥CK)⊗U∗K)Φ∗>

= Φ∗
((
C>` V

>
⊥ V⊥Ck

)
⊗ (U>` Uk)

)
`k

Φ∗>

= Φ∗
((
C>` Ck

)
(U>` Uk)

)
`k

Φ∗> = Φ∗MΦ∗>

Hence, Φ⊥ is the top K left singular vectors of XT . We set B = Φ>⊥Φ∗.
• U⊥ is estimated by regressionXI on V⊥⊗Φ. Because both V⊥ and Φ⊥ are orthonormal,
V⊥ ⊗Φ⊥ is also orthonormal:

(V⊥ ⊗Φ)>(V⊥ ⊗Φ) = (V >⊥ V⊥)⊗ (Φ>Φ⊥) = IdK×K ⊗ IdK×K = IdK2×K2 .

Hence, we have

Ũ(V⊥ ⊗Φ⊥)> =
1

1 + δ
XI(V⊥ ⊗Φ⊥)(V⊥ ⊗Φ⊥)>

=
1

1 + δ
XI((V⊥V

>
⊥ )⊗ (Φ⊥Φ>⊥))

=
1

1 + δ
U∗ ((V⊥C)� (Φ⊥B))> (V⊥ ⊗Φ⊥)(V⊥ ⊗Φ⊥)>

=U∗

 (C>1 V
>
⊥ V⊥V

>
⊥ )⊗ (B>1 Φ>⊥Φ⊥Φ>⊥)

. . .
(C>KV

>
⊥ V

>
⊥ V

>
⊥ )⊗ (B>KΦ>⊥Φ⊥Φ>⊥)

 (V⊥ ⊗Φ⊥)

=
1

1 + δ
XI

The row space spanned by Ũ is the same as the row space spanned by XI , thus, the space
spanned by top K left singular vectors of Ũ is the same by that of XI . As a result, U⊥
also satisfies the requirement. In particular, we have

U>⊥ Ũ =
1

1 + δ
U>⊥XI(V⊥ ⊗Φ⊥) =

1

1 + δ
U>⊥U⊥GI(V⊥ ⊗Φ⊥)>(V⊥ ⊗Φ⊥) =GI

whereGI is the unfolding of the core arrayG in the subject dimension. Hence, we recover
A,B,C applying a rank-K PARAFAC decomposition on the arranged three-dimensional
core array from GI as described in Algorithm 2.

A.6. Proof of Lemma 4.3.
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PROOF. Let ek = (0, . . . ,0︸ ︷︷ ︸
k−1

,1,0, . . . ,0︸ ︷︷ ︸
K−k

)>. Plug-in the expression ofXI,~i = (V
⊙

Φ)~iui =

(V
⊙

Φ)~i((β
∗)>zi + ζi) + εI,~i into the expression of ỹi(δ):

ỹi(δ) =

(Σi(δ))k:(V �Φ)>Λ~iXI,~i + δ
∑
`6=k

(Σi(δ))kl
s2
`

z>i β`


= (e>k − δ(Σi(δ))k:Λf )(β∗)>zi + δ

∑
`6=k

(Σi(δ))kl
s2
`

z>i β` + (e>k − δ(Σi(δ))k:Λf )ζi

+ (Σi(δ))k:(V
⊙

Φ)>~i Λ~iεI,~i

= (1− δ (Σi(δ))kk
s2
k

)z>i β
∗
k −

∑
`6=k

(Σi(δ))kl
s2
l

z>i (β∗` −β`) + ξi

where ξi = (e>k − δ(Σi(δ))k:Λf )ζi + (Σi(δ))k:(V
⊙

Φ)>~i Λ~iεI,~i and

E(ξ2
i ) = (e>k − δ(Σi(δ))k:Λf )Λ−1

f (ek − δΛf (Σi(δ)):k) + (Σi(δ))k:(V
⊙

Φ)>~i Λ~i(V
⊙

Φ)>~i (Σi(δ)):k

= s2
k − 2δ(Σi(δ))kk + δ2(Σi(δ))k:Λf (Σi(δ)):k(δ) + (Σi(δ))k:(Σ

−1
i − δΛf )(Σi(δ)):k

= s2
k + (1− 2δ)(Σi(δ))kk(δ) + (δ2 − δ)(Σi(δ))k:Λf (Σi(δ)):k =wi(δ)

A.7. Proof of Lemma 4.4.

PROOF. Notice that

ỹi(0) = Σik:(0)(V �Φ)~iΛ~iXI,~i = z>i βk + ξi = µi + ξi, ξi ∼N (0,wi(0)).

The conclusions then follow from the following arguments:

1. Under the marginal nullHmarginal
0k , we haveZj ⊥⊥ µk andZj ⊥⊥ ξ, thus, Tmarginal|ỹ(0)

d
=

T ∗marginal|ỹ(0).

2. Under the conditional null Hpartial
0k , we have Zj ⊥⊥ µk|Z−j , Zj ⊥⊥ ξ, and β̂k is a fixed

quantity given ỹ(0) and Zjc , and thus Tpartial|(ỹ(0),Zjc)
d
= T ∗partial|(ỹ(0),Zjc).

A.8. Proof of Lemma A.1.

PROOF. Suppose that the optimal solution to the proximal problem takes the form x∗ =

α
√
h0x̃
‖x̃‖2 +

√
(1− α2)h0z for some α ∈ [0,1] and z satisfying z>x̃= 0 and ‖z‖2 = 1. Then,

let C = 1
2‖x̃− x0‖22 + ρ(Ax0 − a)>x̃, we have,

1

2
‖x∗ − x0‖22 + ρ(Ax0 − a)>x∗

=C +
1

2
‖x∗ − x̃‖22

=C + (x̃− α
√
h0

‖x̃‖2
x̃−

√
1− α2h0z)

2

=C + ‖x̃‖22 + α2h0 − 2α
√
h0‖x̃‖2 + (1− α2)h2

0 =C + ‖x̃‖22 + h2
0 − 2α

√
h0‖x̃‖2
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The smallest objective is reached at α= 1, x∗ =
√
h0x̃
‖x̃‖2 . For any x, let f(x) = 1

2x
>Ax+ b>x,

we have

f(x)≤ f(x0) + f ′(x0)>(x− x0) +
1

2
eigmax(A)‖x− x0‖22

Since x∗ is the optimal solution to the problem proxρ(x0), we have

f ′(x0)>(x∗ − x0) +
1

2ρ
‖x∗ − x0‖22 ≤ 0.

Combine them together:

f(x∗)−f(x0)≤ f ′(x0)>(x∗−x0)+
1

2ρ
‖x∗−x0‖22 +

1

2
(
1

ρ
−eigmax(A))‖x∗−x0‖22 ≤

1

2
(
1

ρ
−λmax)‖x∗−x0‖22.

As a result, if the step size ρ≤ 1
eigmax(A) , we are guaranteed to have f(x∗)− f(x0)≤ 0.

APPENDIX B: ESTIMATIONS

B.1. Functional PCA for initializations. In Yao, Müller and Wang (2005), the authors
suggest a functional PCA analysis by performing eigenvalue decomposition of the smoothed
product matrix fitted with a local linear surface smoother. Here, we apply the suggested esti-
mation approach on the total product matrix. Let Ŵi,s,t =

∑
kYis(k)Yit(k) be the empirical

estimate of the total product matrix for subject i.

• To fit a local linear surface smoother for the off-diagonal element of Ws0,t0 , we consider
the following problem:

min
∑
i

∑
OitOis=1,s 6=t

κ(
s− s0

hG
,
t− t0
hG

)(Ŵi,s,t − g((s0, t0), (s, t), β))2,

with g((s0, t0), (s, t), β) = β0 + β1(s − s0) + β2(t − t0), and κ : R2 7→ R is a standard
two-dimensional Gaussian kernel.

• For the diagonal element, we estimate it by local linear regression: for each t0:

min
∑
i

∑
Oit=1

κ1(
t− t0
hG

)(Ŵi,t,t − g(t0, t, β))2.

where g(t0, t, β) = β0 + β1(t− t0).

By default, we let hG = T√
1+

∑
s 6=t 1{

∑
iOisOit>0}

.

B.2. Parameter tuning. In this section, we provide more details on the leave-one-time-
out cross-validation for tuning λ1k, ∀ k = 1, . . . ,K . The expected penalized deviance loss
can be written as (keeping only terms relevant to Φ):

L=

>∑
t=1

φ>t
(V

⊙
µ)>~t.Λ~t(V

⊙
µ)~t. +

∑
j

(∑
Oit=1 Σi

)
·
(
vjv

>
j

)
σ2
j

φt − 2φ>t

[
(V
⊙

µ)>~t.Λ~t

]
XT,~t


+
∑
k

λ1kΦ
>
k ΩΦk.
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For a given k, we define the diagonal matrix A ∈RT×T and the vector a ∈RT as

Att =

(V
⊙

µ)>~t.Λ~t(V
⊙

µ)~t. +
∑
j

(∑
Oit=1 Σi

)
·
(
vjv

>
j

)
σ2
j


kk

at = (Vk ⊗ µk)>~t Λ~tXT,~t −

〈(V
⊙

µ)>~t.Λ~t(V
⊙

µ)~t. +
∑
j

(∑
Oit=1 Σi

)
·
(
vjv

>
j

)
σ2
j


k,kc

,φt,kc

〉
.

When we leave out a specific time point t0, we optimize for Φk minimizing the following
leave-one-out constrained loss,

min
Φk

J(t0, k) = Φ>k (A(t0) + λ1kΩ)Φk − 2a(t0)>Φk, ‖Φk‖22 = T.

We set A(t0) as A with the (t0, t0)-entry zeroed out, and a(t0) as a with a(t0) zeroed out.
The leave-one-time cross-validation error is calculated based on the expected deviance loss
(unpenalized) at the leave-out time point t0:

Jloocv(t0, k) =At0,t0φ
2
t0k − 2at0φt0k.

The overall leave-one-time-out cross validation is calculated as Jloocv(k) =
∑T

t=1 Jloocv(t, k).
At each step of updating Φk, we perform this this leave-one-column-out cross validation

for every candidate penalty values of λ1k, and select the penalty that achieves s small leave-
one-column out error Lloocv(k).

B.3. GeneratingZ∗
j . In the simulations and real data examples, we encounter two types

of Zj : Gaussian and binary. We model the conditional distribution of Zj given Zjc with a
(penalized) GLM. For Gaussian data, we consider a model where

Zj = Zjcθ+ εj , εj ∼N (0, σ2).

We estimate θ and σ2 empirically from data. When q, the dimension of Z , is large, we apply
a lasso penalty on β with penalty level selected with cross-validation. Let θ̂ and σ̂2 be our
estimates of the distribution parameters. We then generate new z∗i for subject i from the
estimated distribution z∗i = z>i,jc θ̂+ ε∗ij , with ε∗ij independently generated fromN (0, σ̂2). For
binary Zj , we consider the model

log
P (Zj = 1)

1− P (Zj = 1)
= Zjcθ.

Again, we estimate θ empirically, with cross-validated lasso penalty for large q. We then
generate z∗ij independently from

P (Zj = 1|zjc) =
1

1 + exp(−z>i,jc θ̂)
.

To generate Z∗j from the marginal distribution of Zj , instead of estimating this distribution,
we let Z∗j be a random permutation of Zj .

APPENDIX C: EMPIRICAL P-VALUES

In this section, we show qq-plots of the negative log10(pvalue) and compare the p-value
distributions for SPACO with and without cross-fitting across 16 simulation settings dis-
cussed in our Section 5. The calibration for cross-fitted p-value is empirically good, whereas
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the p-values derived without cross-fitting show a large deviation from uniform in quite a few
settings. Like in the simulation setting, (SNR1, SNR2) are the signal to noise ratio in X and
Z , J is the feature dimension of X and “rate" is the observed rate in the time dimension. In
all figures below, the horizontal axis shows the theoretical negative log10(p.value) and the
vertical axis shows the observed negative log10(p.value).

FIG 7. p-values for partial associations using cross-fitting.
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FIG 8. p-values for partial associations without cross-fitting.
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FIG 9. p-values for marginal associations using cross-fitting.
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FIG 10. p-values for marginal associations without cross-fitting.

SUPPLEMENTARY MATERIAL

Code and data.
Code used for simulations and real data analysis, and the associated real data sets are available
at https://github.com/LeyingGuan/spaco_py.git

https://github.com/LeyingGuan/spaco_py.git
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