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ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc worldwide with millions of lives claimed,
human travel restricted, and economic development halted. Leveraging city-level mobility and case data across mainland
China, our analysis shows that the spatial dissemination of COVID-19 in mainland China can be well explained by the human
migration from Wuhan and there will be very different outcomes if the COVID-19 outbreak occurred in other cities. For example,
the outbreak in Beijing or Guangzhou would result in a ∼90% increase of COVID-19 cases at the end of the Chinese New
Year holiday. After the implementation of a series of control measures, human mobility had experienced substantial changes
toward containing the spread of COVID-19. Our results also suggest an inequality of economic deprivation as less developed
areas generally suffered more severe economic recession during the COVID-19. Intuitively, it’s anticipated that cities with more
confirmed cases would suffer more economic losses. However, for cities outside of Hubei province, we don’t observe such a
phenomenon. Our work has important implications for the mitigation of disease and the reevaluation of the social and economic
consequences of COVID-19 on our society.

1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused coronavirus disease 2019 (COVID-19), emerged
in Wuhan (the provincial capital of Hubei province) in December 2019 and diffused quickly across mainland China, coinciding
with mass human migration during the Spring Festival period1, 2. Given the migration scale (estimated to be three billion trips
over the festival period) and the position of Wuhan in the national transportation network, combating the dissemination of
SARS-CoV-2 becomes urgent and very challenging.

In response to the rapid escalation of COVID-19 cases and deaths and to contain the threat of COVID-19, Wuhan, the
epicenter of COVID-19 outbreak in mainland China, was put on lockdown on 23 January 2020, followed by the lockdown of
other cities in Hubei province and national lockdown afterwards. Unprecedented measures were also implemented, including the
isolation of individuals who had related symptoms, quarantine of people who returned from Wuhan, mandatory mask-wearing
at public indoor venues, closure of non-essential businesses and activities, and extension of the Chinese New Year holiday
period2, 3. These bold acts, accompanying with other social distancing policies and improved clinical testing capacity, had
drastically shifted the rapid evolution of COVID-19 outbreak in mainland China2, 4, 5. After the extended holiday, national
reopening was then put in force orderly due to the notably positive trending of COVID-19 containment.

Human movements are thought to play a crucial role in shaping the spatio-temporal transmission of infectious diseases6–14.
Using human mobility and case data covering more than 360 cities in mainland China, we assess how human mobility drives
the spatial dissemination of COVID-19 across the country and what it would be if the COVID-19 outbreak happens in cities
other than Wuhan. We find that the spatial dissemination of COVID-19 across mainland China can be well explained by the
human flow from Wuhan and city population, which is quite different from classic disease spreading process in complex
networks where cities located at central positions in the mobility network would get more infections due to the travel of infected
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people. This also indicates the effectiveness of the implemented strict control measures in mainland China, where most of the
infected people were quarantined or isolated during the lockdown, thus largely preventing further transmission to other areas.
Although Wuhan is one of the hubs in the national transportation network, it would be much more dangerous if the COVID-19
outbreak happens in other cities. For example, based on the human migration data, we estimate that the outbreak in Beijing or
Guangzhou would result in the number of infected nearly doubled.

"The COVID-19 pandemic is far more than a health crisis: it is affecting societies and economies at their core"15. The
implemented severe control measures had not only significantly changed the course of COVID-19 spread, but also triggered
substantial changes in human mobility and forced reevaluation of economic development15–21. We observe a long-lasting
reduction of mass migration, where human movements were reduced substantially during the national lockdown and began to
revive after the national reopening. The human mobility network had experienced striking structural changes as well, with
the average shortest path length increasing drastically while the average degree decreasing substantially during the national
lockdown. As human mobility network provides the primary pathway along which diseases are transmitted from one place to
another, these significant mobility changes would contribute a lot to the prevention and control of COVID-1921–23. With the
gradual lifting of lockdown, we also note a steady recovery of human mobility with an unequal resumption of human outflow
from developed to undeveloped areas. Based on the economic performances of more than 300 cities in the first quarter of
2020, our analysis further reveals that less developed areas were likely to bear more severe economic deprivation during the
COVID-19. Intuitively, areas with more cases would suffer more severe economic recession as more control efforts would be
required to contain the spread of COVID-19. However, we only find that cities in Hubei province suffered the most severe
economic recession, while for cities outside of Hubei, the economic development was not significantly correlated with the
severity of the local epidemic. Our study helps to understand the spatial dissemination of COVID-19 and could shed light on
the reevaluation of socio-economic consequences in the post-epidemic period.

2 Results

2.1 Human mobility network
The human mobility data were collected from Baidu Migration platform24 which is curated by Chinese search engine Baidu
based on its location-based services. This platform presents relative daily human movements (depicted by the Baidu Migration
Index) rather than the exact number of travelers across cities and provinces in mainland China. We collected the human flow
data of 366 cities at the municipal level which cover the whole territory of mainland China (See Methods section). The national
human mobility network is then constructed based on the human movements across cities.

Figure 1A illustrates the aggregated human mobility network from 1 January 2020 to 23 January 2020, with nodes
representing cities and edges representing the human flow between them. Cities are placed according to their geographical
coordinates, and node and label sizes are proportional to the weighted degree of each city in the constructed mobility network.
Cities in Hubei province and the human migration from them are highlighted in color. The corresponding human mobility data
are further presented in Figure 1B, where cities in the same province are placed together and darker colors indicate larger values
of human migration. For ease of visualization, only province names are shown and provincial capital cities arrive first in each
provincial block. As shown in the figure, most of the large values are condensed around the diagonal in the flow matrix, which
may suggest a clustered structure of human mobility where human movements primarily circulate from one city to another in
the same province.

To contain the spatial dissemination of COVID-19, Wuhan was put on lockdown on 23 January 2020 (two days before
the upcoming Lunar New Year). The lockdown of Wuhan had drastically reduced the population flow from Wuhan to other
areas (Figure 1E). For example, compared with last year the human migration from Wuhan dropped about 75% on the first day
(25 January 2020) and 90% on the third day (27 January 2020) of the Lunar New Year (in lunar calendar). Shortly after the
lockdown of Wuhan, similar control measures were also implemented in other cities of Hubei province, followed by the national
lockdown and stay-at-home orders. Figure 1 C-D present two snapshots of the daily human mobility network before (16 January
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Figure 1. Human mobility network. (A) Human mobility network depicted by Baidu Migration Index. Node and label sizes are proportional
to the weighted degree of each city in the constructed human mobility network, and edge width is proportional to the volume of human
movements. (B) Matrix of the human mobility data corresponding to (A), with cities in the same province (shown in green) placed together. For
ease of visualization, the raw Baidu Migration Index is multiplied by 100 and then log-transformed by ln(x+1). (C) Snapshot of human mobility
network from cities in Hubei (colored in orange with Wuhan highlighted in red) to nearby cities on 16 January 2020. (D) Same to (C) but on 26
January 2020. (E) Outflow index of Wuhan in January 2020 compared with that in 2019, aligned by the Lunar New Year (which is 25 January in
2020).

2020) and after (26 January 2020) the lockdown of Wuhan. Clearly, the implemented control measures had effectively cut
down the social connections between Hubei and other areas.

2.2 The spatial dissemination of COVID-19
Catalyzed by the annual Spring Festival Travel Rush (which involves as many as three billion trips in a 40-day period) and the
improved clinical testing capacity, the number of reported COVID-19 cases was escalating with the arrival of the Lunar New
Year. As of 25 January 2020, there were only 2,010 confirmed COVID-19 cases in mainland China, but on 9 February 2020 (14
days since enforced stay-at-home orders for most provinces), 40,138 cases were confirmed: 16,902 in Wuhan, 12,729 in other
cities of Hubei, and 10,507 in cities outside of Hubei province (Figure 2A). To prevent and control the local transmission of
COVID-19, the Chinese New Year holiday was extended to 9 February 2020 for most provinces, which covers the estimated
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Figure 2. Cumulative COVID-19 cases. (A) Daily cumulative COVID-19 cases. Cities outside of Hubei province are shown in dark blue,
cities inside Hubei (excluding Wuhan) are shown in light blue while the city of Wuhan is shown in grey. (B) Human flow from Wuhan explains the
spatial distribution of COVID-19 cases. The R2 values are obtained by OLS regressions using the number of cumulative cases (log-transformed)
of each city as a function of human flow from Wuhan (log-transformed). (C) Coefficients from OLS regression (show in circle) and Negative
Binomial regression (shown in square) are plotted, with error bars indicating 95% confidence intervals. Confidence intervals that do not cross 0
are colored.

incubation period of COVID-19. There was a surge of confirmed cases on 12 February 2020 due to the inclusion of clinical
confirmation of COVID-19 (rather than merely laboratory confirmation). After March, the local transmission of COVID-19 had
been greatly mitigated, and most of the cases were imported from overseas and isolated upon arrival at the border.

Consistent with previous studies10–12, we also find that the spatial distribution of COVID-19 in mainland China can be
well explained (measured by R2) by the human flow from Wuhan (1-23 January 2020) (Figure 2B). For a given date, the R2

value is obtained by Ordinary Least Squares (OLS) regression using the number of cumulative cases (log-transformed) on
that day as a function of human flow from Wuhan (log-transformed). Specially, we achieve a R2 value of approximately 0.8
since 31 January 2020. We further incorporate more city-specific factors in the analysis, including the distance to Wuhan,
city population, intra-city activity intensity (provided by Baidu), and centrality of a city in the mobility network (measured
by Pagerank25, 26). Figure 2C illustrates the estimated coefficients for each predictor in predicting accumulative COVID-19
cases on 9 February 2020 (corresponding to the end of the extended Chinese New Year holiday for most provinces) using OLS
and Negative Binomial regression models. In OLS regression, the dependent variable (i.e., number of accumulative cases)
is log-transformed by ln(x+1), while in Negative Binomial regression, the raw value of the dependent variable is used. As
shown in the figure, we find consistent evidence that both human flow from Wuhan and city population act as significant and
positive predictors (p < 0.001) in the case prediction. In other words, cities with larger volumes of human migration from
Wuhan and more population will get more infections.

More importantly, classic complex network spreading theory would hypothesize that cities located at central positions in
the mobility network are generally vulnerable to the infectious disease. However, although network centrality (measured by
Pagerank) is positively associated with the number of confirmed COVID-19 cases (Spearman’s r = 0.6698, p < 0.001), once
the human flow from Wuhan and city population are controlled in the regression, the positive role of network centrality in the
prediction of COVID-19 cases disappears (Figure 2C). This also implies the effectiveness of the implemented disease control
measures across the country where most of the infected people were quarantined and isolated during the national lockdown,
thereby preventing further transmission to other areas. In other words, without effective control measures, cities located at
central positions would have got much more people infected due to the migration of infected people.
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Figure 3. COVID-19 outbreak in other areas. (A) Outflow index of nine example cities. (B) Estimated accumulative COVID-19 cases if the
outbreak happens in other cities. The vertical dashed line indicates the actual number of confirmed cases in cities other than Wuhan on 9
February 2020 (serves as baseline), and the number after each bar indicates the relative change of confirmed cases compared with the baseline.

2.3 COVID-19 outbreak in other cities

As we have demonstrated above, the human flow from Wuhan has largely driven the spatial distribution of COVID-19 across
mainland China, therefore there could be very different consequences if the COVID-19 outbreak happens in cities other than
Wuhan. Figure 3A presents the outflow index of nine example cities in January 2020, where some cities, such as Beijing,
Shanghai, and Guangzhou, underwent much larger volumes of population outflow than Wuhan.

We focus on several key factors that would help the prediction of COVID-19 prevalence, including the human flow from
and the distance to the outbreak city (log-transformed), city population (log-transformed), and intra-city activity intensity. For
the outbreak in Wuhan (which is the real case), we fit a negative binomial regression model with the number of COVID-19
cases on 9 February 2020 set as the dependent variable and the above key factors set as the independent variables. After that,
we obtain the spatial dissemination pattern of COVID-19 depicted by these key factors. Suppose that the control measures and
the spatial dissemination pattern of COVID-19 remain the same. Based on the fitted model, the spatial prevalence of COVID-19
is then estimated when the outbreak city changes.

Figure 3B illustrates the estimated cumulative cases (excluding the outbreak city) as of 9 February 2020, varying with
the outbreak city. The vertical dashed line indicates the actual number of confirmed cases in cities other than Wuhan on 9
February 2020 (which is 23,236) and serves as the baseline. Compared with the outbreak in Wuhan (the baseline), the relative
change of cumulative cases is shown in percentage in the figure. We emphasize that our model doesn’t aim to address the
actual spreading process of COVID-19, but rather intends to show the relative prevalence of COVID-19 when the outbreak city
changes. As shown in Figure 3B, if the COVID-19 outbreak happens in megacities like Beijing and Guangzhou, the number of
confirmed cases would have been nearly doubled, but if the outbreak emerges in cities with relatively less population outflows
such as Shenyang and Nanchang, we would see a shrink of infected cases by nearly half. This also suggests that where does the
outbreak happen would matter a lot in the spatial dissemination of COVID-19.

2.4 Mobility changes

After the implementation of a series of control measures during the national lockdown, human mobility had undergone striking
changes. Usually, we would expect a recovery of human movements since the second day of the Lunar New Year. However,
due to the outbreak of COVID-19, the national migration had witnessed drastic and long-lasting shrinkage during the national
lockdown (Figure 4A). For example, on the sixth day of the Lunar New Year (30 January 2020), the national migration scale
dropped by nearly three quarters compared with last year. Specifically, instead of a travel surge immediately after the Lunar
New Year, we observe that the national migration scale gradually decreased until the Lantern Festival (close to the end of the

5/18



A

B

Figure 4. Human mobility during the COVID-19. (A) Daily national migration. (B) Mobility network change in terms of average degree,
average shortest path length, and average travel distance. For ease of presentation, these three metrics are normalized to the range [0, 1].

extended Chinese New Year holiday). At the same time, the average geographical travel distance was also reduced substantially
(Figure 4B). After the extended holiday, economic reopening was put in force orderly, and the national migration as well as
long-distance travel steadily revived afterwards.

We also observe remarkable structural changes of the mobility network (Figure 4B). During the national lockdown, not only
did the national migration undergo substantial reduction, but also the mobility network became less connected (measured by
the average degree). Moreover, the average shortest path length of the mobility network also experienced substantial increases
during the lockdown, which largely reduced the reachability of the mobility network and is able to delay the spread of virus
from one city to another. Taken together, these mobility changes during the national lockdown have meaningful implications
for the mitigation of disease21, 27. After the national reopening, especially after 15 February 2020, we observe a steady recovery
of the network connectivity and reachability, which indicates the gradual lifting of travel restrictions across the country.

Compared with the human migration in 2019, Figure 5 illustrates the relative inflow and outflow changes in 2020 by
cities in different deciles of GDP per capita. During the national lockdown, all the cities went through similar human flow

All cities

A

B

Figure 5. Relative human flow change. (A) Inflow and (B) outflow changes by cities across deciles of GDP per capita. Colors indicate
cities in 1-10 deciles in terms of GDP per capita. The grey dashed curve in each panel indicates the average changes for all 366 cities.
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Table 1. OLS regression results on economic development. The dependent variable is GDP
growth rate in 2020Q1.

Coef. Std. err. t value p value [95% CI]

GDP per capita (log) 0.040 0.008 4.966 0.000 0.024 0.055
GDP growth rate (2019) 0.009 0.002 4.285 0.000 0.005 0.013
Cumulative cases (log) 0.001 0.003 0.276 0.782 -0.005 0.007
City in Hubei -0.251 0.023 -10.689 0.000 -0.297 -0.205
Intra-city activity (aggregated) 0.0003 0.0001 3.093 0.002 0.000 0.001
Intra-city activity reduction -0.0003 0.0001 -2.292 0.023 -0.001 -4.22e-05
observations: 330; R2: 0.467; adjusted R2: 0.457

reductions. After reopening, cities across deciles of GDP per capita still experienced very close inflow changes (Figure 5A), but
the disparities of outflow changes were pronounced as developed areas generally suffered more severe outflow reductions than
less developed areas (Figure 5B). In addition, the weekly human flow rhythm (indicated by the fluctuation of changes) emerged
for both inflow and outflow after reopening, which may suggest a steady shift of human migration in the face of COVID-19.

2.5 Economic development

The prevalence of COVID-19 and the enforced control measures worldwide are plunging the world economy into the worst
recession since the Great Depression15–17. We compile a dataset comprising the GDP records of more than 300 cities in 2019
and the first quarter of 2020 (2020Q1). To denote the economic growth of each city amid COVID-19, we divide their GDP in
2020Q1 by a quarter of their GDP in 2019. Therefore, a lower economic growth rate would indicate a more severe economic
recession.

We find that less developed areas suffered more severe economic recession as cities with lower GDP per capita were likely to
undergo lower rates of economic growth (Spearman’s r = 0.1185, p = 0.031). This pattern becomes even clear after excluding
cities in Hubei province (Spearman’s r = 0.1549, p = 0.006). This finding is further validated by regression analysis where the
economic growth rate is regressed on GDP per capita and several other covariates (e.g., the GDP growth rate in last year and
aggregate intra-city activity intensity). Table 1 summarises the OLS regression results, where cities with higher GDP growth
rates in last year would still tend to have better economic performances in the face of COVID-19 (β = 0.0086, p < 0.001).
More importantly, after controlling several important covariates, economic growth is still significantly and positively correlated
with GDP per capita (β = 0.0396, p < 0.001), which provides compelling evidence that less developed areas generally suffered
more severe economic recession during the COVID-19. This may also imply that the economy in developed areas is more
resilient to COVID-19 disruption than that of undeveloped areas.

Intuitively, cities with more infections would suffer more economic damages due to the necessary protection measures
against the spread of COVID-19. However, our analysis reveals that it’s city in Hubei province (β = −0.2509, p < 0.001)
rather than the number of cumulative cases (β = 0.0008, p = 0.782) that is negatively correlated with economic growth. This
may be explained by the fact that cities in Hubei endured the most strict lockdown measures which severely crippled their
economic activities, while for most of the cities outside of Hubei, undifferentiated or similar nationwide control measures were
implemented, regardless of the local epidemic incidence. Therefore, for cities outside of Hubei, more confirmed cases would
probably not imply a more severe economic recession. As expected, we also find that cities with higher levels of intra-city
activity (β = 0.0003, p < 0.01; aggregated from 1 January 2020 to 15 March 2020) and less intra-city activity reduction
(β =−0.0003, p < 0.05; compared with last year in the lunar calendar) would have better economic performances under the
threat of COVID-19.
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3 Discussion

The COVID-19 pandemic is crippling our society and economy with historical levels of human movement restriction and
economic deprivation. In this paper, our analysis shows that the spatial dissemination of COVID-19 in mainland China can be
well explained by the human flow from Wuhan, and implies the effectiveness of the enforced lockdown across the country.
Based on the spatial trajectories of human movements, it’s estimated that there will be much different consequences if the
COVID-19 outbreak emerged in other cities. For example, the outbreak in cities like Beijing, Shanghai, and Guangzhou
would result in a much more serious epidemic spreading than the current situation, which has important implications for future
epidemic prevention. We also note a remarkable reduction of human movements during the national lockdown, with significant
changes of the human mobility network toward containing the spread of COVID-19.

In addition, the prevalence of COVID-19 may have unevenly affected developed and undeveloped areas as cities with lower
GDP per capita and slower economic growth rate (in last year) were likely to suffer more severe economic recession under
the threat of COVID-19. This finding suggests that the income and economic inequality would be enlarged without targeted
interventions. Unexpectedly, for cities outside of Hubei province, more infections perhaps not suggest more severe economic
deprivation. This may be induced by the fact that similar epidemic prevention and control measures were implemented for
cities outside of Hubei, thus calling for differentiated and tailored epidemic control strategies based on the local epidemic.

In summary, our work contributes to a further understanding of how human mobility can be utilized to address the spatial
dissemination of COVID-19 and paves a way for the application of data analytics in preventing and containing an epidemic.
Our work also highlights the need to evaluate the impact of COVID-19 on our society and economy and provides practical
implications for policy interventions.

Methods

Data

The human mobility data were sourced from the Baidu Migration platform24 based on Baidu’s location-based services. As the
dominant search engine in China, Baidu has nearly 189 million daily active users and responses to more than 120 billion daily
location service requests. Similar to recent studies3, 11, the mobility data don’t indicate the absolute number of recorded trips
but reflect the relative movements of people using Baidu’s location-based services. We collected daily inter- and intra-city
mobility data across 366 cities from 1 January to 15 March in 2020 and the corresponding period in 2019 (aligned by the Lunar
New Year). For inter-city activity in 2019, only aggregated inflow and outflow data were provided for each city.

The COVID-19 data were obtained from the daily case report released by the Health Commission of each province and
NetEase News28, a professional media platform that provides timely updates and serves as a supplementary source in our study.
The population and economic records in 2019 were obtained from the National Economic and Social Development Statistical
Bulletin 2019 of each city. The GDP data in 2020Q1 were obtained from official reports and media coverage. For nearly 30
cities, their economic data in 2019 or 2020Q1 were not available.

Network analysis

We adopt Pagerank25, 26, a classic global network centrality measure, to quantify how important a city is in the mobility network.
The human flow volume between two cities is used as the weight in the calculation of Pagerank. The average degree measures
the average number of incoming and outgoing links of nodes in the mobility network. In the context of human migration, two
cities are said to be close to each other if they share a large volume of human flow. As such, we use the inverse of the human
flow volume to denote the “distance” of two cities along each edge in the mobility network, based on which the shortest path
length from one city to another is calculated. The average shortest path length of the mobility network is thus obtained by
averaging the shortest path lengths of all pairs of nodes. In practice, these network metrics were obtained using Python package
networkx.
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Statistical analysis
Most of the data processing was done by Python package pandas and R package dplyr. Spearman rank correlation was
performed by Python package scipy; OLS regression analysis was performed by Python package statsmodel and R
function lm; Negative binomial regression was performed by R package MASS.

Data availability

The relevant data are collected from public sources and available from the corresponding authors upon reasonable request.
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SUPPLEMENTARY INFORMATION:

The spatial dissemination of COVID-19 and associated socio-economic consequences
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1. Shanghai Jiao Tong University; 2. City University of Hong Kong; 3. Shanghai University

Note 1 - Data

1 Human mobility data

The city-level human mobility data were collected from Baidu Migration platform1 based on Baidu’s location-based services.
For each city, this platform presents the top 100 outflow destinations or inflow origins in percentage (if there are less than 100
recorded destinations or origins, all the records will be shown). Based on the daily outflow or inflow migration index shown on
the platform, the daily human flow data from one city to another are thus obtained.

For example, on 16 January 2020, the outflow migration index of Wuhan is 6.0027804, and 1.28% of the movements
are directed to Beijing, Therefore, according to the outflow data of Wuhan, the human flow volume from Wuhan to Beijing
is 6.0027804× 1.28% = 7.683558912%. Similarly, based on the inflow data we may obtain another human flow matrix
complementing the one obtained by outflow data. For example, on 16 January 2020, the inflow migration index of Beijing is
7.683179184, and 0.89% of the movements are from Wuhan. Therefore, according to the inflow data of Beijing, the human
flow volume from Wuhan to Beijing is 7.683179184×0.89% = 7.683179184%. These two values are then averaged to depict
the human flow from Wuhan to Beijing on 16 January 2020. However, if only one human flow record from city A to city B is
found in the data (e.g., city B is not ranked in the top 100 destinations of city A and thus not shown in the outflow data of city
A), the human flow volume from city A to city B is thus obtained based on the found record. If no records are found from city
A to city B in the data, the human flow volume from city A to city B is thus denoted as 0. Based on the obtained human flow
data across cities, the human mobility network is thus constructed. For ease of presentation, the raw Baidu Migration Index is
multiplied by 100 in the analysis.

Figure 1A presents the human mobility network based on the aggregate population flow data from 1 January 2020 to
23 January 2020. Specifically, this network has 366 nodes and 97,650 edges. Table S1 shows the basic descriptions of the
constructed human mobility network. The basic description of aggregate human flow data from Wuhan to other 365 cities is
shown in Table S2. The intra-city activity, which measures the mean intra-city activity intensity (provided by Baidu migration)
between 1-23 January 2020, is also shown in Table S2.

Table S1. Human mobility network description.

count mean std min 25% 50% 75% max

Degree 366.0 533.607 101.360 211.000 461.250 514.500 594.750 730.000
Indegree 366.0 266.803 54.644 85.000 226.250 259.500 304.750 365.000
Outdegree 366.0 266.803 51.014 116.000 234.000 252.000 299.750 365.000

Weighted degree 366.0 5556.440 7211.316 21.767 1656.513 3537.837 6394.397 52915.163
Weighted indegree 366.0 2778.220 2803.648 9.974 899.161 2094.317 3695.821 20647.785
Weighted outdegree 366.0 2778.220 4608.780 11.041 750.650 1485.201 2478.662 33847.200

1https://qianxi.baidu.com/2020/ [in Chinese]
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Table S2. Data description.

count mean std min 25% 50% 75% max

Accumulative cases (2020-02-09) 366.0 109.667 907.214 0.000 4.000 12.000 34.750 16902.000
Accumulative cases (2020-03-01) 366.0 218.470 2590.573 0.000 5.000 15.000 44.000 49315.000
Accumulative cases (2020-04-01) 366.0 221.975 2626.571 0.000 5.000 15.000 44.000 50006.000
Human flow from Wuhan 365.0 43.162 180.383 0.006 2.116 6.702 17.232 2075.494
Distance to Wuhan (km) 365.0 1087.670 727.494 52.384 577.254 899.410 1361.106 3602.513
Population (in 10,000) 365.0 386.389 349.426 6.427 154.900 307.700 505.700 3124.320
Pagerank (weighted) 366.0 0.0027 0.0024 0.0004 0.0014 0.0021 0.0032 0.0217
Intra-city activity (mean) 366.0 5.089 0.760 1.622 4.740 5.257 5.586 6.553
GDP per capita (in 10,000 RMB) 364.0 6.041 3.460 1.416 3.563 4.811 7.693 21.043
GDP growth rate (2019) 353.0 6.397 1.971 -3.600 5.300 6.700 7.800 11.800
GDP growth rate (2020Q1) 332.0 0.826 0.092 0.389 0.802 0.843 0.875 1.035

2 Case data
The COVID-19 case data were obtained from the daily case report released by the Health Commission of each province and
NetEase News2, which serves as a supplementary source. Figure S1 presents the number of daily reported cases. There was a
surge of confirmed cases on February 12 due to the change of the criteria of COVID-19 confirmation. For example, instead of
laboratory confirmation, people with related COVID-19 clinical symptoms are also considered infected. As shown in the figure,
most of the cases were identified before March 2020. The basic description of accumulative case data on 9 February 2020 and 1
April 2020 are also shown in Table S2.

Figure S1. Number of daily reported cases.

3 Other kinds of data
Table S2 presents the basic descriptions of some key variables. Due to the constraint of data availability, there are missing
values on specific data. The socio-economic data were obtained from the National Economic and Social Development Statistical
Bulletin 2019 of each city and media coverage. Specifically, the GDP growth rate in 2019 indicates the relative GDP growth of
each city and was obtained from the National Economic and Social Development Statistical Bulletin 2019, while the GDP
growth rate in 2020Q1 was obtained by dividing the GDP in 2020Q1 by a quarter of the GDP in 2019 of each city.

In addition, Pagerank measures the global centrality of a city in the constructed mobility network using the human flow
volume between cities as the weight. City tier is a synthetic evaluation of cities and was obtained from a specialized financial
media platform3. For example, Beijing, Shanghai, Guangzhou, and Shenzhen are the four cities in Tier 1, while Wuhan, Suzhou,
and other 13 cities are listed as cities in new Tier 1. Tier 1 and new Tier 1 are combined as one category (i.e., Tier 1) in this
study.

2https://wp.m.163.com/163/page/news/virus_report/index.html [in Chinese]
3https://www.yicai.com/news/100648666.html [in Chinese]
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Note 2 - Analysis on the spatial distribution of COVID-19

1 Regression analysis

The spatial distribution of COVID-19 in mainland China can be well explained by the human flow from Wuhan (Figure 2B).
For most areas, the Chinese New Year holiday was extended to 9 February 2020, before which the national stay-at-home was
implemented and after which the national reopening was put in force orderly. In this regard, the number of accumulative cases
on 9 February 2020 could be an important indicator to investigate the spatial distribution of COVID-19.

After incorporating more city-specific factors, such as population and distance to Wuhan, Figure 2C in the main text
presents further analysis results using OLS and Negative Binomial regression models. The pairwise Spearman rank correlation
coefficients between variables can be found in Table S3. In both models, the number of accumulative cases is set as the
dependent variable, except that the dependent variable is log-transformed in OLS regression due to its highly skewed distribution.
The detailed regression tables (corresponding to Figure 2C) can be found in Tables S4 and S5. As shown in the tables, human
flow from Wuhan and city population consistently serve as positive and significant predictors (p < 0.001) in predicting the
number of accumulative cases in both models. Figures S2 further illustrates the number of predicted cases versus the number of
confirmed cases using Negative Binomial model, where the red dots represent cities in Hubei province.

More importantly, once the human flow from Wuhan and city population are considered in the regression, the centrality of a
city (measured by Pagerank in current study) no longer plays a positive and significant role in the prediction of COVID-19

Table S3. Pairwise Spearman rank correlation coefficients.

Cumulative cases Human flow Distance Population Pagerank
from Wuhan to Wuhan (weighted)

Cumulative cases 1.0***
Human flow from Wuhan 0.881*** 1.0***
Distance to Wuhan -0.698*** -0.783*** 1.0***
Population 0.709*** 0.761*** -0.508*** 1.0***
Pagerank (weighted) 0.67*** 0.77*** -0.431*** 0.827*** 1.0***
Intra-city activity 0.308*** 0.342*** -0.357*** 0.315*** 0.327***
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001
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Figure S2. Number of confirmed cases versus number of estimated cases using Negative Binomial regression
model. The orange line in the diagonal position indicates a perfect fit where the number of estimated cases is equal to the
number of confirmed cases for each city. For ease of visualization, number of cases (N) are added by 1 (i.e., N +1).
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Table S4. OLS regression results. The dependent variable is the number of accumulative
cases on 9 February 2020, log-transformed by ln(x+1).

coef std err t P> |t| [0.025 0.975]

Human flow from Wuhan (log) 0.8187 0.061 13.440 0.000 0.699 0.938
Distance to Wuhan (log) -0.1721 0.100 -1.716 0.087 -0.369 0.025
Population (log) 0.2410 0.063 3.811 0.000 0.117 0.365
Pagerank (log) -0.2281 0.112 -2.042 0.042 -0.448 -0.008
Intra-city activity 0.0901 0.055 1.642 0.102 -0.018 0.198
First-tier city 0.5803 0.226 2.570 0.011 0.136 1.024
Second-tier city 0.4786 0.164 2.921 0.004 0.156 0.801
Third-tier city 0.2048 0.125 1.635 0.103 -0.042 0.451
Fourth-tier city 0.0057 0.107 0.053 0.958 -0.205 0.217
(Intercept) -1.2712 1.457 -0.873 0.384 -4.137 1.594

Number of observations: 364; R2: 0.832; Adjusted R2: 0.828

Table S5. Negative Binomial regression results. The dependent variable is the number of
accumulative cases on 9 February 2020.

coef std err z P> |z| [0.025 0.975]

Human flow from Wuhan (log) 0.8333 0.066 12.673 0.000 0.704 0.962
Distance to Wuhan (log) -0.1418 0.112 -1.271 0.204 -0.360 0.077
Population (log) 0.4125 0.077 5.369 0.000 0.262 0.563
Pagerank (log) -0.3971 0.122 -3.257 0.001 -0.636 -0.158
Intra-city activity 0.1604 0.068 2.355 0.019 0.027 0.294
First-tier city 0.3399 0.240 1.418 0.156 -0.130 0.810
Second-tier city 0.3808 0.174 2.190 0.029 0.040 0.722
Third-tier city 0.0019 0.136 0.014 0.989 -0.266 0.269
Fourth-tier city -0.1567 0.118 -1.323 0.186 -0.389 0.075
(Intercept) -3.6387 1.632 -2.230 0.026 -6.837 -0.440

Number of observations: 364; pseudo R2: 0.829

cases (Table S6; see also Table S4 and Table S5). This finding suggests that the spatial dissemination of COVID-19 in mainland
China is quite different from the classic spreading process in networks where cities located at central positions would get more
people infected due to the movements of infected people. This may be due to the fact that most of the infected people are
quarantined and isolated during the national lockdown, thus largely preventing transmission to other areas. It also implies the
effectiveness of the enforced disease control measures across mainland China as cities located at central positions would get
more infections without these effective control measures.

2 Additional analysis
2.1 LASSO regression

To address the potential problem induced by the possible multicollinearity among the independent variables (e.g., Table S3) in
the regression analysis, we further adopt Least Absolute Shrinkage and Selection Operator (LASSO) in the analysis. LASSO is
a widely used approach in variable selection and sparse regression. It assigns L1 penalty of the estimated coefficients (added as
the regularization term) to the loss function. Specifically, LASSO will continuously shrink the coefficients of less important
features to be 0 as the regularization level increases. In practice, we use the Python package sklearn to implement LASSO
regression.

Figure S3 presents the variable trace profiles via L1-regularized (LASSO) linear regression. As shown in the figure, human
flow from Wuhan and city population are first selected before other variables and act as positive predictors, or in other words,
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Table S6. Stepwise regression results. The dependent variable is the number of accumulative cases on 9 February 2020.
For OLS model, the dependent variable is log-transformed.

OLS model Negative Binomial model
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Human flow from 1.01∗∗∗ 0.93∗∗∗ 0.99∗∗∗ 0.91∗∗∗
Wuhan (log) (0.03) (0.03) (0.03) (0.04)

Population (log) 1.01∗∗∗ 0.31∗∗∗ 0.99∗∗∗ 0.45∗∗∗
(0.06) (0.06) (0.08) (0.07)

Pagerank (log) 1.59∗∗∗ −0.20∗ 1.72∗∗∗ −0.37∗∗∗
(0.10) (0.10) (0.13) (0.11)

(Intercept) 0.45∗∗∗ −2.94∗∗∗ 12.43∗∗∗ −2.33∗∗ 0.68∗∗∗ −1.66∗∗∗ 14.37∗∗∗ −3.96∗∗∗
(0.07) (0.34) (0.63) (0.86) (0.08) (0.45) (0.79) (0.97)

R2 0.81 0.43 0.40 0.82
Adj. R2 0.81 0.43 0.40 0.82
AIC 2780.61 3310.38 3306.88 2741.73
BIC 2792.30 3322.07 3318.57 2761.22
Log Likelihood −1387.30 −1652.19 −1650.44 −1365.87
Num. obs. 364 364 364 364 364 364 364 364
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001
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Figure S3. LASSO variable trace profiles. In the L1-regularized linear regression, the dependent variable is the number of
accumulative cases on 9 February 2020 (log-transformed). With the decrease of the regularization level, more important
features are first selected.

human flow from Wuhan and city population are the two major factors in predicting the spatial distribution of COVID-19.
Moreover, with the decrease of the regularization level, the centrality of the city (measured by Pagerank in the mobility network)
is one of the last selected variables and consistently serves as a negative predictor in the regression. In summary, the outputs
from LASSO regression provide further evidence to the findings above.

2.2 Mixed-effects model

In mainland China, most of the control measures were implemented at the province level. As such, there may exist a hierarchical
structure in the data, where cities in the same province are clustered together and are non-independent with each other. To
address this issue, we further adopt mixed-effects model (also called multilevel model) in the analysis. Specifically, provinces
(the group factor in the data) are assigned as the random effects in the model. In practice, we adopt the R package lme4 to
implement the mixed-effects model.

Table S7 shows the regression results using linear mixed-effects model and Negative Binomial generalized linear mixed-
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Table S7. Mixed-effects models. The number of accumulative COVID-19 cases on 9 February 2020 is set
as the dependent variable in both models (log-transformed for linear mixed-effects model).

Negative Binomial
Linear mixed-effects model generalized linear mixed-effects model

Human flow from Wuhan (log) 0.86∗∗∗ 0.87∗∗∗

(0.09) (0.09)
Distance to Wuhan (log) −0.08 −0.06

(0.13) (0.14)
Population (log) 0.26∗∗∗ 0.36∗∗∗

(0.08) (0.10)
Pagerank (log) −0.19 −0.24

(0.13) (0.15)
Intra-city activity −0.05 −0.02

(0.07) (0.08)
First-tier city 0.35 0.16

(0.25) (0.28)
Second-tier city 0.35 0.26

(0.19) (0.20)
Third-tier city 0.14 0.03

(0.14) (0.14)
Fourth-tier city 0.01 −0.06

(0.11) (0.12)
(Intercept) −1.12 −2.24

(1.73) (1.85)

AIC 748.55 2668.10
BIC 795.32 2714.86
Log Likelihood −362.28 −1322.05
Num. obs. 364 364
Num. groups: Provinces 31 31
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

effects model. After controlling the clustered structure of the data–cities in the same province are clustered together, human
flow from Wuhan and city population remain positive and significant predictors (p < 0.001) in the case prediction. Consistent
with the main analysis, the centrality of a city (measured by Pagerank) still doesn’t play a positive and significant role in the
case prediction.

2.3 Analysis on other dates

To investigate the factors that help to explain the spatial dissemination of COVID-19, we present regression results when the
dependent variable is the number of accumulative cases on 9 February 2020 in the main text and previous sections (Figure 2C;
Tables S4, S5 and S7). In this section, we present additional regression analysis to predict the spatial distribution of COVID-19
cases on 1 March 2020 and 1 April 2020.

Table S8 shows the regression results using OLS and Negative Binomial models. As shown in the table, the primary findings
in the main text remain the same. Specifically, human flow from Wuhan and city population still act as significant and positive
predictors in the case prediction on 1 March 2020 and 1 April 2020. The centrality of a city (measured by Pagerank) in the
mobility network doesn’t play a positive and significant role in the case prediction.
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Table S8. Statistical results for case prediction on 1 March 2020 and 1 April 2020. The number of
accumulative COVID-19 cases on the given date is set as the dependent variable in each regression model. For
OLS models, the dependent variable is log-transformed.

OLS model Negative Binomial model
Model 1 Model 2 Model 3 Model 4

(1 March 2020) (1 April 2020) (1 March 2020) (1 April 2020)

Human flow from Wuhan (log) 0.86∗∗∗ 0.87∗∗∗ 0.78∗∗∗ 0.79∗∗∗

(0.07) (0.07) (0.08) (0.08)
Distance to Wuhan (log) −0.14 −0.13 −0.23 −0.21

(0.11) (0.11) (0.13) (0.13)
Population (log) 0.28∗∗∗ 0.28∗∗∗ 0.48∗∗∗ 0.49∗∗∗

(0.07) (0.07) (0.09) (0.09)
Pagerank (log) −0.25∗ −0.26∗ −0.34∗ −0.36∗

(0.12) (0.12) (0.14) (0.14)
Intra-city activity 0.09 0.09 0.02 0.02

(0.06) (0.06) (0.07) (0.07)
First-tier city 0.46 0.54∗ 0.08 0.19

(0.25) (0.25) (0.28) (0.28)
Second-tier city 0.40∗ 0.41∗ 0.16 0.16

(0.18) (0.18) (0.20) (0.20)
Third-tier city 0.19 0.20 −0.05 −0.05

(0.14) (0.14) (0.16) (0.16)
Fourth-tier city −0.04 −0.04 −0.31∗ −0.31∗

(0.12) (0.12) (0.13) (0.14)
(Intercept) −1.68 −1.98 −1.93 −2.22

(1.61) (1.61) (1.85) (1.85)

R2 0.81 0.81
Adj. R2 0.81 0.81
AIC 2960.11 2967.53
BIC 3002.98 3010.40
Log Likelihood −1469.05 −1472.76
Num. obs. 364 364 364 364
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

Table S9. Pairwise Spearman rank correlation coefficients.

GDP growth GDP per GDP growth Cumulative City in Intra-city activity
rate (2020Q1) capita rate (2019) cases Hubei (aggregated)

GDP growth rate (2020Q1) 1.0***
GDP per capita 0.1185* 1.0***
GDP growth rate (2019) 0.2849*** 0.1244* 1.0***
Cumulative cases -0.0708 0.344*** 0.1797*** 1.0***
City in Hubei -0.3253*** 0.0982 0.1725** 0.336*** 1.0***
Intra-city activity (aggregated) 0.2384*** -0.231*** 0.0908 -0.0745 -0.2783*** 1.0***
Intra-city activity reduction -0.2044*** 0.2809*** -0.1165* 0.36*** 0.3234*** -0.5794***
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001
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Note 3 - Economic growth

Table S9 shows the pairwise Spearman rank correlation coefficients between variables. Table S10 presents the regression results
on economic growth in 2020Q1. Specifically, we use the GDP growth rate in 2020Q1 to denote the economic growth during the
COVID-19. Intuitively, a lower GDP growth rate would indicate a more severe economic recession. City in Hubei denotes
whether a city is located in Hubei province or not. We use the number of accumulative cases on 9 February 2020 to denote the
severity of the local epidemic. The activity intensity measures the aggregate intra-city activity intensity (provided by Baidu
migration) from 1 January 2020 to 15 March 2020, while the activity reduction measures the relative reduction of the intra-city
activity compared with last year (2019).

As shown in Table S10, the inclusion of city in Hubei significantly improves the model fitting with R2 value improved from
0.278 to 0.467 (ANOVA analysis, Fstatistic = 114.26, p < 0.001). More importantly, once the city in Hubei is controlled, the
number of cumulative cases is no longer a significant and negative factor in the prediction of economic growth. This may
suggest that cities in Hubei suffered the most severe economic recession, while for cities outside of Hubei, more confirmed
cases would probably not imply more severe economic recession.

Table S10. Stepwise OLS regression on economic growth.

Dependent variable:

GDP growth rate (2020Q1)

Model 1 Model 2

GDP per capita (log) 0.055∗∗∗ 0.040∗∗∗

(0.009) (0.008)
GDP growth rate (2019) 0.006∗∗ 0.009∗∗∗

(0.002) (0.002)
Cumulative cases (log) −0.014∗∗∗ 0.001

(0.003) (0.003)
City in Hubei −0.251∗∗∗

(0.023)
Intra-city activity (aggregated) 0.0005∗∗∗ 0.0003∗∗

(0.0001) (0.0001)
Intra-city activity reduction −0.0004∗∗ −0.0003∗

(0.0002) (0.0001)
(Intercept) 0.619∗∗∗ 0.637∗∗∗

(0.046) (0.040)

R2 0.278 0.467
Adjusted R2 0.267 0.457
Observations 330 330
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001
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